Sample records for science learning community

  1. Linking Science Fiction and Physics Courses

    NASA Astrophysics Data System (ADS)

    McBride, Krista K.

    2016-05-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.

  2. Improving Health with Science: Exploring Community-Driven Science Education in Kenya

    NASA Astrophysics Data System (ADS)

    Leak, Anne Emerson

    This study examines the role of place-based science education in fostering student-driven health interventions. While literature shows the need to connect science with students' place and community, there is limited understanding of strategies for doing so. Making such connections is important for underrepresented students who tend to perceive learning science in school as disconnected to their experiences out of school (Aikenhead, Calabrese-Barton, & Chinn, 2006). To better understand how students can learn to connect place and community with science and engineering practices in a village in Kenya, I worked with community leaders, teachers, and students to develop and study an education program (a school-based health club) with the goal of improving knowledge of health and sanitation in a Kenyan village. While students selected the health topics and problems they hoped to address through participating in the club, the topics were taught with a focus on providing opportunities for students to learn the practices of science and health applications of these practices. Students learned chemistry, physics, environmental science, and engineering to help them address the health problems they had identified in their community. Surveys, student artifacts, ethnographic field notes, and interview data from six months of field research were used to examine the following questions: (1) In what ways were learning opportunities planned for using science and engineering practices to improve community health? (2) In what ways did students apply science and engineering practices and knowledge learned from the health club in their school, homes, and community? and (3) What factors seemed to influence whether students applied or intended to apply what they learned in the health club? Drawing on place-based science education theory and community-engagement models of health, process and structural coding (Saldana, 2013) were used to determine patterns in students' applications of their learning. Students applied learning across health topics they identified as interesting and relevant to their community: hand-washing, disease-prevention, first aid, balanced diet, and water. Students' application of their learning was influenced by internal, external, and relational factors with the community, science education factors, and cultural factors. Some factors, which may have been barriers for students to apply their learning, were turned into supports via bridging strategies used by the students and teacher. Bridging strategies allowed students to connect between their place and science in meaningful ways in the classroom. These strategies were critical in bringing students' place into the classroom and enabling students to apply their learning toward place. The model resulting from the identified factors informed existing models for sociocultural considerations in community-based health interventions. The community-engagement applied practices of science (CAPS) model serves to conceptualize findings in this study and informs an integrated method for using community-engagement education as a stimuli for students to become cultural brokers and improve community health. In addition to focusing on teaching practices of science and encouraging students to apply their learning, this research suggests that bridging strategies can be used to connect science with a students' place in meaningful ways that serve both students and their local communities.

  3. Knowing and Learning about Science in Primary School "Communities of Science Practice": The Views of Participating Scientists in the "MyScience" Initiative

    ERIC Educational Resources Information Center

    Forbes, Anne; Skamp, Keith

    2013-01-01

    "MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. One component of this initiative involves professional scientists interacting with primary school communities which are navigating their way towards sustainable "communities of practice" around the "domain" of…

  4. Benefiting Female Students in Science, Math, and Engineering: The Nuts and Bolts of Establishing a WISE (Women in Science and Engineering) Learning Community

    ERIC Educational Resources Information Center

    Pace, Diana; Witucki, Laurie; Blumreich, Kathleen

    2008-01-01

    This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…

  5. Examining Classroom Science Practice Communities: How Teachers and Students Negotiate Epistemic Agency and Learn Science-as-Practice

    ERIC Educational Resources Information Center

    Stroupe, David

    2014-01-01

    The Next Generation Science Standards and other reforms call for students to learn science-as-practice, which I argue requires students to become epistemic agents--shaping the knowledge and practice of a science community. I examined a framework for teaching--ambitious instruction--that scaffolds students' learning of science-as-practice as…

  6. Improving the quality of learning in science through optimization of lesson study for learning community

    NASA Astrophysics Data System (ADS)

    Setyaningsih, S.

    2018-03-01

    Lesson Study for Learning Community is one of lecturer profession building system through collaborative and continuous learning study based on the principles of openness, collegiality, and mutual learning to build learning community in order to form professional learning community. To achieve the above, we need a strategy and learning method with specific subscription technique. This paper provides a description of how the quality of learning in the field of science can be improved by implementing strategies and methods accordingly, namely by applying lesson study for learning community optimally. Initially this research was focused on the study of instructional techniques. Learning method used is learning model Contextual teaching and Learning (CTL) and model of Problem Based Learning (PBL). The results showed that there was a significant increase in competence, attitudes, and psychomotor in the four study programs that were modelled. Therefore, it can be concluded that the implementation of learning strategies in Lesson study for Learning Community is needed to be used to improve the competence, attitude and psychomotor of science students.

  7. Explainers' development of science-learner identities through participation in a community of practice

    NASA Astrophysics Data System (ADS)

    Richardson, Anne E.

    The urgent environmental issues of today require science-literate adults to engage in business and political decisions to create solutions. Despite the need, few adults have the knowledge and skills of science literacy. This doctoral dissertation is an analytical case study examining the science-learner identity development of Exploratorium Field Trip Explainers. Located in San Francisco, CA, the Exploratorium is a museum of science, art, and human perception dedicated to nurturing curiosity and exploration. Data collected included semi-structured interviews with sixteen former Field Trip Explainers, participant observation of the current Field Trip Explainer Program, and review of relevant documentation. Data analysis employed constant comparative analysis, guided by the communities of practice theoretical framework (Wenger, 1998) and the National Research Council's (2009) Six Strands of Science Learning. Findings of this research indicate that Exploratorium Field Trip Explainers participate in a community of practice made up of a diverse group of people that values curiosity and openness to multiple ways of learning. Many participants entered the Field Trip Explainer Program with an understanding of science learning as a rigid process reserved for a select group of people; through participation in the Field Trip Explainer community of practice, participants developed an understanding of science learning as accessible and a part of everyday life. The findings of this case study have implications for research, theory, and practice in informal adult science learning, access of non-dominant groups to science learning, and adult workplace learning in communities of practice.

  8. Cultivating Sustainable and Authentic Service-Learning Partnerships in the Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Ivanochko, Tara; Grain, Kari

    2017-04-01

    The two-term, community service-learning capstone course for Environmental Sciences at the University of British Columbia, Canada, aims to support both community and students using authentic science practice in service of the community. During the course development, we implemented a routine process for student and community feedback, instructor reflection and course revision. Drawing on data from 23 interviews and 9 focus groups collected over three years, findings from this study highlight ways that community partnerships can be sustained while students have an authentic science experience. Based on data collected from community partners, we highlight the key processes, challenges, successes, and practical considerations in the creation and sustainability of a scientifically robust service-learning course.

  9. Influence of Professional Learning Community (PLC) on Learning a Constructivist Teaching Approach (POE): A Case of Secondary Science Teachers in Bangladesh

    ERIC Educational Resources Information Center

    Rahman, S. M. Hafizur

    2012-01-01

    No major change has occurred up until now with regard to the teaching-learning methods of science used in Bangladesh. Teachers, in most cases, tend to teach the same things in the same ways they were taught when they were students. This study will, therefore, investigate how science teachers' learning in a professional learning community (PLC)…

  10. Classrooms and Culture: The Role of Context in Shaping Motivation and Identity for Science Learning in Indigenous Adolescents

    ERIC Educational Resources Information Center

    Middleton, Michael; Dupuis, Juliann; Tang, Judy

    2013-01-01

    Many rural indigenous communities rely on science knowledge and innovation for survival and economic advancement, which requires community members to be motivated for learning science. Children in these communities have been viewed by some as unmotivated due to their low science achievement as they progress in school, particularly into majority…

  11. The Impact of an Interdisciplinary Learning Community Course on Pseudoscientific Reasoning in First-Year Science Students

    ERIC Educational Resources Information Center

    Franz, Timothy M.; Green, Kris H.

    2013-01-01

    This case study examined the development and evaluation of an interdisciplinary first-year learning community designed to stimulate scientific reasoning and critical thinking. Designed to serve the needs of scholarship students majoring in mathematics and natural sciences, the six-credit learning community course was writing-intensive and…

  12. A Professional Learning Community Activity for Science Teachers: How to Incorporate Discourse-Rich Instructional Strategies into Science Lessons

    ERIC Educational Resources Information Center

    Lewis, Elizabeth; Baker, Dale; Watts, Nievita Bueno; Lang, Michael

    2014-01-01

    In this article we describe current educational research underlying a comprehensive model for building a scientific classroom discourse community. We offer a professional development activity for a school-based professional learning community, providing specific science instructional strategies within this interactive teaching model. This design…

  13. It takes a village: supporting inquiry- and equity-oriented computer science pedagogy through a professional learning community

    NASA Astrophysics Data System (ADS)

    Ryoo, Jean; Goode, Joanna; Margolis, Jane

    2015-10-01

    This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science (ECS) program in the Los Angeles Unified School District, this article describes how participating in professional development activities purposefully aimed at fostering a teachers' professional learning community helps ECS teachers make the transition to an inquiry-based classroom culture and break professional isolation. This professional learning community also provides experiences that challenge prevalent deficit notions and stereotypes about which students can or cannot excel in computer science.

  14. Engaging Karen refugee students in science learning through a cross-cultural learning community

    NASA Astrophysics Data System (ADS)

    Harper, Susan G.

    2017-02-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as co-teachers for fourth- and fifth-grade Karen and non-Karen students in a science and culture after-school programme in a public elementary school in the rural southeastern United States. Photovoice provided a critical platform for students to create their own cultural discourses for the learning community. The theoretical framework of critical pedagogy of place provided a way for the learning community to decolonise and re-inhabit the learning spaces with knowledge they co-constructed. Narrative analysis of video transcripts of the after-school programme, ethnographic interviews, and focus group discussions from Photovoice revealed a pattern of emerging agency by Karen students in the scientific practice of constructing scientific explanations based on evidence and in Karen language lessons. This evidence suggests that science learning embedded within a cross-cultural learning community can empower refugee students to construct their own hybrid cultural knowledge and leverage that knowledge to engage in a meaningful way with the epistemology of science.

  15. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    ERIC Educational Resources Information Center

    Lohwasser, Karin

    2013-01-01

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the…

  16. Teacher Learning from Girls' Informal Science Experiences

    ERIC Educational Resources Information Center

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  17. Linking Science Fiction and Physics Courses

    ERIC Educational Resources Information Center

    McBride, Krista K.

    2016-01-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty…

  18. The Impacts of Professional Learning Communities on Science Teachers' Knowledge, Practice and Student Learning: A Review

    ERIC Educational Resources Information Center

    Dogan, Selcuk; Pringle, Rose; Mesa, Jennifer

    2016-01-01

    The purpose of this article is to provide a review of empirical studies investigating the impact of professional learning communities (PLCs) on science teachers' practices and knowledge. Across 14 articles that satisfied the definition we embraced, most were devoted to the change in science teaching practices, disciplinary content knowledge (DCK)…

  19. A Dialogue of Life: Integrating Service Learning in a Community-Immersion Model of Preservice Science-Teacher Preparation

    ERIC Educational Resources Information Center

    Handa, Vicente; Tippins, Deborah; Thomson, Norman; Bilbao, Purita; Morano, Lourdes; Hallar, Brittan; Miller, Kristen

    2008-01-01

    Dubbed a "dialogue of life," community immersion in preservice science-teacher education aims at providing a true-to-life and empowering opportunity for prospective science teachers (both elementary and secondary) to become active participants in community life through field and service-learning experiences. It consists of a three-unit…

  20. Celebrating Science with the Community: An Approach to Science Fairs Intended to Create Learning Celebrations

    ERIC Educational Resources Information Center

    Pittman, Jason

    2016-01-01

    Learning celebrations are increasingly common in schools looking to put more emphasis on community and efficacy in place formulaic science fair projects. The celebration aspect is in the community's participation and interaction with the learners. Students are the main event, performing as they would in a school play or applying acquired knowledge…

  1. Science education and worldview

    NASA Astrophysics Data System (ADS)

    Keane, Moyra

    2008-09-01

    Is there a place for Indigenous Knowledge in the science curriculum for a Zulu community in rural Kwa-Zulu Natal, South Africa? This article argues "yes," based on a participative research and development project that discovered relevant science learning in a Zulu community. Among community concerns for relevant factual and performative knowledge, we found that culture and worldview are critical to community identity, to visioning educational outcomes, and to learning in school science. Cultural practices may contribute to pedagogy and curriculum; curriculum, in turn, may affirm cultural practices. Further, worldview needs to be understood as an aspect of knowledge creation. By understanding key aspects of an African worldview, science educators can contribute to both meaningful science education and community well-being. By fostering culture and worldview, a rural community can make a unique contribution to science education.

  2. Influence of Professional Learning Community (PLC) on Secondary Science Teachers' Culture of Professional Practice: The Case of Bangladesh

    ERIC Educational Resources Information Center

    Rahman, S. M. Hafizur

    2011-01-01

    While the current reform efforts in Bangladesh require a substantive change in how science is taught, an equally substantive change is needed in the culture of professional practice. This study will, therefore, investigate how science teachers' learning in a professional learning community (PLC) influences the ways in which participant teachers…

  3. A qualitative study of science education in nursing school: Narratives of Hispanic female nurses' sense of identity and participation in science learning

    NASA Astrophysics Data System (ADS)

    Gensemer, Patricia S.

    The purpose of this qualitative study was to learn from Hispanic nursing students regarding their experiences as participants in science learning. The participants were four female nursing students of Hispanic origin attending a small, rural community college in a southeastern state. The overarching question of this study was "In what ways does being Hispanic mediate the science-related learning and practices of nursing students?" The following questions more specifically provided focal points for the research: (1) In what ways do students perceive being Hispanic as relevant to their science education experiences? (a) What does it mean to be Hispanic in the participants' home community? (b) What has it meant to be Hispanic in the science classroom? (2) In what ways might students' everyday knowledge (at home) relate to the knowledge or ways of knowing they practice in the nursing school community? The study took place in Alabama, which offered a rural context where Hispanic populations are rapidly increasing. A series of four interviews was conducted with each participant, followed by one focus group interview session. Results of the study were re presented in terms of portrayals of participant's narratives of identity and science learning, and then as a thematic interpretation collectively woven across the individuals' narratives. Portraitures of each participant draw upon the individual experiences of the four nursing students involved in this study in order to provide a beginning point towards exploring "community" as both personal and social aspects of science practices. Themes explored broader interpretations of communities of practice in relation to guiding questions of the study. Three themes emerged through the study, which included the following: Importance of Science to Nurses, Crossing with a Nurturing and Caring Identity, and Different Modes of Participation. Implications were discussed with regard to participation in a community of practice and rethinking scientific literacy in terms of different modes of participation that are brought to the community of science learning.

  4. Science and Community Engagement: Connecting Science Students with the Community

    ERIC Educational Resources Information Center

    Lancor, Rachael; Schiebel, Amy

    2018-01-01

    In this article we describe a course on science outreach that was developed as part of our college's goal that all students participate in a meaningful community engagement experience. The Science & Community Engagement course provides a way for students with science or science-related majors to learn how to effectively communicate scientific…

  5. Discussing Science in Professional Learning Communities

    ERIC Educational Resources Information Center

    Harris, Emily; Rosenman, Amelia

    2017-01-01

    Teachers who participate in the Teacher Institute on Science and Sustainability (TISS) at the California Academy of Sciences commit to intensive professional development--that is, two two-week summer sessions, four evening workshops, and four Professional Learning Community (PLC) meetings throughout each school year--focused on creating more…

  6. Sociocultural Perspective of Science in Online Learning Environments. Communities of Practice in Online Learning Environments

    ERIC Educational Resources Information Center

    Erdogan, Niyazi

    2016-01-01

    Present study reviews empirical research studies related to learning science in online learning environments as a community. Studies published between 1995 and 2015 were searched by using ERIC and EBSCOhost databases. As a result, fifteen studies were selected for review. Identified studies were analyzed with a qualitative content analysis method…

  7. Transfer Learning Community: Overcoming Transfer Shock and Increasing Retention of Mathematics and Science Majors

    ERIC Educational Resources Information Center

    Scott, Timothy P.; Thigpin, Sara S.; Bentz, Adrienne O.

    2017-01-01

    The College of Science at Texas A&M University developed a transfer student learning community with one 2-year institution after receiving National Science Foundation funds for scholarships to support students majoring in engineering and science. To date, 89% of the students that matriculated to Texas A&M University under this grant have…

  8. Co-constructing cultural landscapes for disciplinary learning in and out of school: the next generation science standards and learning progressions in action

    NASA Astrophysics Data System (ADS)

    Córdova, Ralph A.; Balcerzak, Phyllis

    2016-12-01

    The authors of this study are teacher-researchers, the first is a university researcher and former third and fourth grade teacher, while the second author is a university-based science educator. They report findings from a community-based study that Ralph, the first author, and his students conducted across two academic years (2001-2003) in order to illustrate the ways in which the next generation science standards and learning progressions can be appropriated as social-constructed practices inside and outside of school. The authors argue that what constitutes science learning in school is not a `state of grace' dictated by standards. Rather, becoming a scientist within a community of learners is a cultural phenomenon that teachers and students co-construct and as such teachers can approach the next generation science standards and learning progressions as opportunities to create intentional, disciplinary practice-based learning communities inside and outside of school.

  9. Joining "Us"; Creating and Maintaining a Discipline-Based Learning Community

    ERIC Educational Resources Information Center

    McHugh, Kelly; Anderson, R. Bruce

    2015-01-01

    The article describes the development of a disciplinary living/learning community in political science; the authors, two faculty members, started the community in the fall of 2012. The faculty leaders describe the various practices used to integrate political science courses in two subfields: American politics and international politics. In…

  10. Enhancing Self-Efficacy in Elementary Science Teaching with Professional Learning Communities

    ERIC Educational Resources Information Center

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-01-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in…

  11. Engaging Karen Refugee Students in Science Learning through a Cross-Cultural Learning Community

    ERIC Educational Resources Information Center

    Harper, Susan G.

    2017-01-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as…

  12. Evaluating PK-12 Professional Learning Communities: An Improvement Science Perspective

    ERIC Educational Resources Information Center

    Woodland, Rebecca H.

    2016-01-01

    Professional learning communities (PLCs) have emerged as one of the nation's most widely implemented strategies for improving instruction and PK-12 student learning outcomes. PLCs are predicated on the principles of improvement science, a type of evidenced-based collective inquiry that aims to bridge the research-practice divide and increase…

  13. Applying TLC (a Targeted Learning Community) to Transform Teaching and Learning in Science

    ERIC Educational Resources Information Center

    Steiner, Hillary H.; Dean, Michelle L.; Foote, Stephanie M.; Goldfine, Ruth A.

    2013-01-01

    This article describes the development of a Targeted Learning Community (TLC) that supports first-year science students enrolled in a General Chemistry course. Drawing on student feedback and knowledge and expertise in their respective disciplines, four faculty members from two colleges at Kennesaw State University came together to develop a…

  14. A Time for Change: Advocating for STSE Education through Professional Learning Communities

    ERIC Educational Resources Information Center

    Pedretti, Erminia; Bellomo, Katherine

    2013-01-01

    New science curricula in Ontario position science, technology, society, and environment (STSE) objectives at the fore of all science courses. A professional learning community (PLC) consisting of 24 elementary teachers and a facilitation team was established to assist teachers in meeting the challenges of STSE education. Specifically, we examine…

  15. Why STEM Learning Communities Work: The Development of Psychosocial Learning Factors through Social Interaction

    ERIC Educational Resources Information Center

    Carrino, Stephanie Sedberry; Gerace, William J.

    2016-01-01

    STEM learning communities facilitate student academic success and persistence in science disciplines. This prompted us to explore the underlying factors that make learning communities successful. In this paper, we report findings from an illustrative case study of a 2-year STEM-based learning community designed to identify and describe these…

  16. Designing for expansive science learning and identification across settings

    NASA Astrophysics Data System (ADS)

    Stromholt, Shelley; Bell, Philip

    2017-10-01

    In this study, we present a case for designing expansive science learning environments in relation to neoliberal instantiations of standards-based implementation projects in education. Using ethnographic and design-based research methods, we examine how the design of coordinated learning across settings can engage youth from non-dominant communities in scientific and engineering practices, resulting in learning experiences that are more relevant to youth and their communities. Analyses highlight: (a) transformative moments of identification for one fifth-grade student across school and non-school settings; (b) the disruption of societal, racial stereotypes on the capabilities of and expectations for marginalized youth; and (c) how youth recognized themselves as members of their community and agents of social change by engaging in personally consequential science investigations and learning.

  17. Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten

    2014-01-01

    The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…

  18. Teacher learning from girls' informal science experiences

    NASA Astrophysics Data System (ADS)

    Birmingham, Daniel J.

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP, 2010). Despite the success, little is known about how teachers can learn from informal science practices to support student engagement in science. In this study, I examine the impact informal science experiences has for the teaching and learning of science in school contexts. This study is focused on eliciting girls' stories of informal science learning experiences and sharing these stories with science teachers to examine what they notice and make meaning of in connection with their classroom practices (van Es & Sherin, 2002). I co-constructed cases of informal science experiences with middle school females who participate in an after school science program in an urban area. These cases consisted of the girls' written stories, their explicit messages to science teachers, examples of actions taken when investigating community based science issues and transcripts of conversations between the girls and researchers. These cases were shared with local science teachers in order to investigate what they "notice" (van Es & Sherin, 2002) regarding girls' participation in informal science learning, how they make meaning of youths' stories and whether the stories influence their classroom practices. I found that the girls' use their cases to share experiences of how, where and why science matters, to express hope for school science and to critique stereotypical views that young, female, students of color from lower SES backgrounds are not interested or capable of making contributions to scientific investigations. Additionally, I found that teachers noticed powerful messages within and across the girls' cases. The messages include; 1) students' desire to be active participants in science investigations, 2) the need to provide spaces for students to leverage their strengths when learning and doing science, 3) the importance of building connections between science and community, and 4) expanding the outcomes of scientific investigations beyond traditional school measures. However, their individual meaning making was influenced by tensions between what they found powerful in the cases, the institutional narratives that often guide practice in schools and the societal and personal narratives connected to participation of girls from non dominant communities in science. Thus, each of the three teachers took different pathways as they implemented new science learning experiences based upon what each found most salient in the girls' stories as well as the influence of institutional, societal and personal narratives, resulting in varied learning experiences for their students.

  19. Community Based Informatics: Geographical Information Systems, Remote Sensing and Ontology collaboration - A technical hands-on approach

    NASA Astrophysics Data System (ADS)

    Branch, B. D.; Raskin, R. G.; Rock, B.; Gagnon, M.; Lecompte, M. A.; Hayden, L. B.

    2009-12-01

    With the nation challenged to comply with Executive Order 12906 and its needs to augment the Science, Technology, Engineering and Mathematics (STEM) pipeline, applied focus on geosciences pipelines issue may be at risk. The Geosciences pipeline may require intentional K-12 standard course of study consideration in the form of project based, science based and evidenced based learning. Thus, the K-12 to geosciences to informatics pipeline may benefit from an earth science experience that utilizes a community based “learning by doing” approach. Terms such as Community GIS, Community Remotes Sensing, and Community Based Ontology development are termed Community Informatics. Here, approaches of interdisciplinary work to promote and earth science literacy are affordable, consisting of low cost equipment that renders GIS/remote sensing data processing skills necessary in the workforce. Hence, informal community ontology development may evolve or mature from a local community towards formal scientific community collaboration. Such consideration may become a means to engage educational policy towards earth science paradigms and needs, specifically linking synergy among Math, Computer Science, and Earth Science disciplines.

  20. Understanding and Enhancing Learning Communities in Tertiary Education in Science and Engineering

    ERIC Educational Resources Information Center

    Forret, Michael; Eames, Chris; Coll, Richard

    2007-01-01

    This research aims to build upon current research in the area of teaching and learning at tertiary level and explore the nature of learning communities in tertiary science and engineering. This study uses a sociocultural approach to address the following question: "What are teachers' and learners' perceptions of the nature of the learning…

  1. `You Actually Feel like You're Actually Doing Some Science': Primary Students' Perspectives of Their Involvement in the MyScience Initiative

    NASA Astrophysics Data System (ADS)

    Forbes, Anne; Skamp, Keith

    2017-07-01

    MyScience is a primary science education initiative in which being in a community of practice (CoP) is integral to the learning process. Stakeholder groups—primary teachers, primary students and scientist mentors—interact around the CoP domainof investigating scientifically and learn from each other through participation. This paper is the fifth in a series and reports 27 year 5/6 students' (from three schools) perceptions of how their views were influenced through their involvement in a MyScience CoP. Semi-structured interviews, guided by a phenomenographic framework, were the substantive data source. Primary students' perceptions about science, science learning and science teaching were analysed using attributes associated with both communities of practice and the nature of science. Findings reveal that students' perceptions of what it means to be doing science' were transformed through their participation and students were able to identify some of the contributing factors. Where appropriate, students' views were compared with the published views of their participating scientist mentors and teachers from earlier papers. Implications for science teaching and learning in primary school community of practice settings are discussed.

  2. From a Sense of Stereotypically Foreign to Belonging in a Science Community: Ways of Experiential Descriptions about High School Students' Science Internship

    ERIC Educational Resources Information Center

    Hsu, Pei-Ling; Roth, Wolff-Michael

    2010-01-01

    Science educators often suggest that students should learn science in ways and settings that bear family resemblance with "the real thing." Internship in science laboratories constitutes one such way in which students may learn science and learn about science. However, very little is known about "how" participants experience a…

  3. Learning in a Physics Classroom Community: Physics Learning Identity Construct Development, Measurement and Validation

    NASA Astrophysics Data System (ADS)

    Li, Sissi L.

    At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based introductory physics. The responses were analyzed using principal component exploratory factor analysis. The emergent factors were analyzed to create reliable subscales to measure PLI in terms of physics learning self-efficacy and social expectations about learning. Using these subscales, I present a case study of a student who performed well in the course but resisted the identity learning goals of the curriculum. These findings are used to support the factors that emerged from the statistical analysis and suggest a potential model of the relationships between the factors describing science learning and learning identity in large enrollment college science classes. This study offers an instrument with which to measure aspects of physics learning identity and insights on how PLI might develop in a classroom community of practice.

  4. Building Learning Communities: Foundations for Good Practice

    ERIC Educational Resources Information Center

    Davies, Alison; Ramsay, Jill; Lindfield, Helen; Couperthwaite, John

    2005-01-01

    The School of Health Sciences at the University of Birmingham provided opportunities for the development of student learning communities and online resources within the neurological module of the BSc Physiotherapy degree programme. These learning communities were designed to facilitate peer and independent learning in core aspects underpinning…

  5. The Role of Technology in Supporting Learning Communities.

    ERIC Educational Resources Information Center

    Riel, Margaret; Fulton, Kathleen

    2001-01-01

    In a learning community, students learn to cooperate and make teams work. Past technologies (print, photography, film, and computers) have enabled idea sharing, but are one-way communication modes. Broader learning communities have been made possible through electronic field trips, online mentoring, science investigations, and humanities…

  6. Two-Year Community: Construction with Scaffolds: Helping Community College Students Build Explanations

    ERIC Educational Resources Information Center

    Bennett, Steve; Gotwals, Amelia Wenk

    2017-01-01

    Science education reform documents call for students to learn science by engaging in inquiry and using science practices. One such science practice is constructing evidence-based explanations. Few students enter community college science classrooms having experience with, or being proficient in, using evidence to explain scientific phenomena.…

  7. NASA’s Universe of Learning: Engaging Subject Matter Experts to Support Museum Alliance Science Briefings

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this presentation, learn how you can help contribute to the NASA’s Universe of Learning and take part in Science Briefings.

  8. Connecting Students and Policymakers through Science and Service-Learning

    NASA Astrophysics Data System (ADS)

    Szymanski, D. W.

    2017-12-01

    Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present their findings to the non-profit partner and make policy recommendations to legislators in Capitol Hill visits. The projects have been highly impactful as a form of community science, creating passionate science advocacy among non-majors, improving collaborations with community partners, and spurring action by federal policymakers.

  9. Not Driven by High-Stakes Tests: Exploring Science Assessment and College Readiness of Students from an Urban Portfolio Community High School

    NASA Astrophysics Data System (ADS)

    Fleshman, Robin Earle

    This case study seeks to explore three research questions: (1) What science teaching and learning processes, perspectives, and cultures exist within the science classroom of an urban portfolio community high school? (2) In what ways does the portfolio-based approach prepare high school students of color for college level science coursework, laboratory work, and assessment? (3) Are portfolio community high school students of color college ready? Is there a relationship between students' science and mathematics performance and college readiness? The overarching objectives of the study are to learn, understand, and describe an urban portfolio community high school as it relates to science assessment and college readiness; to understand how the administration, teachers, and alumni perceive the use of portfolios in science learning and assessment; and to understand how alumni view their preparation and readiness for college and college science coursework, laboratory work, and assessments. The theoretical framework of this study encompasses four theories: critical theory, contextual assessment, self-regulated learning, and ethic of care. Because the urban high school studied partnered with a community-based organization (CBO), it identifies as a community school. Therefore, I provide context regarding the concept, culture, and services of community schools. Case study is the research design I used to explore in-depth this urban portfolio community high school, which involved mixed methods for data collection and analysis. In total, six alumni/current college students, five school members (administrators and teachers), and three CBO members (administrators, including myself) participated in the study. In addition to school artefacts and student portfolios collected, classroom and portfolio panel presentation observations and 13 semi-structured interviews were conducted to understand the portfolio-based approach as it pertains to science learning and assessment and college science readiness. Data from the transcripts of two graduating classes were analyzed and the interview transcripts were coded and analyzed as well. Analysis of qualitative data revealed key findings: (1) the school's Habits of Mind, authentic scientific inquiry, self-regulated learning triggers and strategies, and teacher feedback practices driven by an ethic of care supported students' science learning and portfolio assessment; and (2) the cyclical and extensive portfolio processes of writing, revision, and submission well prepared alumni for college science laboratory work and coursework, to a certain extent, but not for the traditional assessments administered in college science courses. Analysis of quantitative data revealed that, if based solely on the City University of New York's Regents score criteria for college readiness, the majority of students from these two graduating classes studied would not have been considered college ready even though all participants, including interviewed alumni, believed the school prepared them for college. The majority of these students, however, were transitioning to college readiness based on their Regents-level science and mathematics coursework. Findings of this study have implications for science assessment, professional development in science, education policy reform, and high school partnerships with CBOs and postsecondary institutions as they pertain to college and college science readiness for students of color in urban portfolio community high schools.

  10. Using Science to Take a Stand: Action-Oriented Learning in an Afterschool Science Club

    NASA Astrophysics Data System (ADS)

    Hagenah, Sara

    This dissertation study investigates what happens when students participate in an afterschool science club designed around action-oriented science instruction, a set of curriculum design principles based on social justice pedagogy. Comprised of three manuscripts written for journal publication, the dissertation includes 1) Negotiating community-based action-oriented science teaching and learning: Articulating curriculum design principles, 2) Middle school girls' socio-scientific participation pathways in an afterschool science club, and 3) Laughing and learning together: Productive science learning spaces for middle school girls. By investigating how action-oriented science design principles get negotiated, female identity development in and with science, and the role of everyday social interactions as students do productive science, this research fills gaps in the understanding of how social justice pedagogy gets enacted and negotiated among multiple stakeholders including students, teachers, and community members along what identity development looks like across social and scientific activity. This study will be of interest to educators thinking about how to enact social justice pedagogy in science learning spaces and those interested in identity development in science.

  11. The Application of Community Service Learning in Science Education

    ERIC Educational Resources Information Center

    Ng, Betsy Ling-Ling

    2012-01-01

    Learning of science has been traditionally conducted in classrooms or in the form of lectures. Science education is usually context-specific learning as students are taught a particular module of content in class. In problem-based learning, they are provided with examples of problems in which they learn how to solve these types of problems.…

  12. Situated Learning in Computer Science Education

    ERIC Educational Resources Information Center

    Ben-Ari, Mordechai

    2004-01-01

    Sociocultural theories of learning such as Wenger and Lave's situated learning have been suggested as alternatives to cognitive theories of learning like constructivism. This article examines situated learning within the context of computer science (CS) education. Situated learning accurately describes some CS communities like open-source software…

  13. A Strategy to Learn How to Build Scientific-Education and Outreach Partnerships in the Ocean Sciences: COSEE Ocean Learning Communities.

    NASA Astrophysics Data System (ADS)

    Keil, R. G.; Bell, P. L.; Bittner, M. S.; Robigou, V.; Sider, K.

    2005-12-01

    The College of Ocean and Fishery Sciences and the College of Education at the University of Washington, the Seattle Aquarium, and the California Maritime Academy formed a partnership to establish a Center for Ocean Sciences Education Excellence (COSEE) labeled "Ocean Learning Communities." The COSEE-OLC will join the national network of NSF-funded centers that provide a catalytic environment in which partnerships between ocean researchers and educators flourish. The COSEE network contributes to the national advancement of ocean science education by sharing high-quality K-12 or informal education programs, best practices and methodologies, and offering exemplary courses through the network and at national professional meetings. Building on the successes and lessons of the existing COSEE centers, the COSEE-OLC will foster collaborations among the oceanography research community, the science of learning community, informal and formal educators, the general public, and the maritime industry in the Northwest region and the West coast. The concept for this partnership is based on reaching out to traditionally underserved populations (from the businesses that use the sea or for which economic success depends on the oceans to the united native tribes), listening to their concerns and needs and how these can be addressed within the context of ocean-based research. The challenges of integrating education and outreach with scientific research programs are addressed by the center's main catalytic activity to create Ocean Learning Communities. These communities will be gatherings of traditionally disparate stakeholders including scientists, educators, representatives of businesses with a connection to the oceans, and citizens who derive economic or recreational sustenance from the oceans. The center's principal goal is to, through time and structured learning activities, support various communities 1) to develop a common language and 2) to make a commitment to creating collaborations that will improve ocean research and public awareness at the regional scale. Researchers in the science of learning will evaluate and study the successes and challenges of these regional approaches to better understand the development and sustainability of productive partnerships and to develop learning models to share and apply at the national level.

  14. Mathematics and Computer Science: Exploring a Symbiotic Relationship

    ERIC Educational Resources Information Center

    Bravaco, Ralph; Simonson, Shai

    2004-01-01

    This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…

  15. Meaningful Engagement in Scientific Practices: How Classroom Communities Develop Authentic Epistemologies for Science

    NASA Astrophysics Data System (ADS)

    Krist, Christina Rae

    Recent reforms in science education, based on decades of learning research, emphasize engaging students in science and engineering practices as the means to develop and refine disciplinary ideas. These reforms advocate an epistemic shift in how school science is done: from students learning about science ideas to students figuring out core science ideas. This shift is challenging to implement: how do we bring the goals and practices of a discipline into classroom communities in meaningful ways that go beyond simply following rote scientific procedures? In this dissertation, I investigate how classroom communities learn to engage meaningfully in scientific practices, characterizing their engagement as a process of epistemic learning. I take a situated perspective that defines learning as shifts in how members engage in communities of practice. I examine students' epistemic learning as a function of their participation in a classroom community of scientific practice along two dimensions: what they do, or the practical epistemic heuristics they use to guide how they build knowledge; and who they are, or how ownership and authorship of ideas is negotiated and affectively marked through interaction. I focus on a cohort of students as they move from 6th to 8 th grade. I analyze three science units, one from each grade level, to look at the epistemic heuristics implicit in student and teacher talk and how the use of those heuristics shifts over time. In addition, I examine one anomalous 8th grade class to look at how students and the teacher position themselves and each other with respect to the ideas in their classroom and how that positioning supports epistemic learning. Taken together, these analyses demonstrate how students' engagement in scientific practices evolves in terms of what they do and who they are in relation to the knowledge and ideas in their classroom over time. I propose a model for epistemic learning that articulates how classroom communities develop practical epistemologies that guide their knowledge building work and how the development of these epistemologies is identity-laden. I find that for engagement in science practices to be meaningful, classroom communities' engagement is motivated by the unknowns in students' knowledge, or what they still need to figure out and explain. In contexts where knowledge is uncertain, practical epistemic heuristics become authentically useful for students' knowledge building work. However, using unknowns to motivate learning can be distressing for students. The anomalous case study suggests that students' meaningful engagement in science knowledge building requires particular affective supports from the teacher that allow students to take on and embrace new identities with respect to ideas in their classroom. Taken together, the model of epistemic learning that I propose suggests that both conceptual and affective supports are necessary to shift science classrooms in ways that engage students in meaningful science knowledge building.

  16. Science Alive!: Connecting with Elementary Students through Science Exploration.

    PubMed

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  17. Science Talk: Preservice Teachers Facilitating Science Learning in Diverse Afterschool Environments

    ERIC Educational Resources Information Center

    Cartwright, Tina Johnson

    2012-01-01

    The purpose of this study was to assess the impact a community-based service learning program might have on preservice teachers' science instruction during student teaching. Designed to promote science inquiry, preservice teachers learned how to offer students more opportunities to develop their own ways of thinking through utilization of an…

  18. Measuring Choice to Participate in Optional Science Learning Experiences during Early Adolescence

    ERIC Educational Resources Information Center

    Sha, Li; Schunn, Christian; Bathgate, Meghan

    2015-01-01

    Cumulatively, participation in optional science learning experiences in school, after school, at home, and in the community may have a large impact on student interest in and knowledge of science. Therefore, interventions can have large long-term effects if they change student choice preferences for such optional science learning experiences. To…

  19. Writing-to-learn in undergraduate science education: a community-based, conceptually driven approach.

    PubMed

    Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J

    2012-01-01

    Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.

  20. Moving Science Off the ``Back Burner'': Meaning Making Within an Action Research Community of Practice

    NASA Astrophysics Data System (ADS)

    Goodnough, Karen

    2008-02-01

    In this study, the participants conceptualized and implemented an action research project that focused on the infusion of inquiry principles into a neglected science curriculum. Specific objectives were to find (a) What factors challenge and support the evolution of an action research community of practice? (b) How are teachers’ beliefs about science teaching and learning transformed? and (c) How does teachers’ knowledge of curriculum, instruction, assessment, and student learning change as a result of learning within a community of practice? In this instrumental case study (Stake 2000, In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 435-454). Thousand Oaks, CA: Sage), a range of data collection sources and methods were adopted. Outcomes focus on how the design principles for cultivating a community of practice emerged in the action research group, as well as the types of teacher learning that occurred by engaging in action research.

  1. Community Science: creating equitable partnerships for the advancement of scientific knowledge for action.

    NASA Astrophysics Data System (ADS)

    Lewis, E. S.; Gehrke, G. E.

    2017-12-01

    In a historical moment where the legitimacy of science is being questioned, it is essential to make science more accessible to the public. Active participation increases the legitimacy of projects within communities (Sidaway 2009). Creating collaborations in research strengthens not only the work by adding new dimensions, but also the social capital of communities through increased knowledge, connections, and decision making power. In this talk, Lewis will discuss how engagement at different stages of the scientific process is possible, and how researchers can actively develop opportunities that are open and inviting. Genuine co-production in research pushes scientists to work in new ways, and with people from different backgrounds, expertise, and lived experiences. This approach requires a flexible and dynamic balance of learning, sharing, and creating for all parties involved to ensure more meaningful and equitable participation. For example, in community science such as that by Public Lab, the community is at the center of scientific exploration. The research is place-based and is grounded in the desired outcomes of community members. Researchers are able to see themselves as active participants in this work alongside community members. Participating in active listening, developing plans together, and using a shared language built through learning can be helpful tools in all co-production processes. Generating knowledge is powerful. Through genuine collaboration and co-creation, science becomes more relevant. When community members are equitable stakeholders in the scientific process, they are better able to engage and advocate for the changes they want to see in their communities. Through this talk, session attendees will learn about practices that promote equitable participation in science, and hear examples of how the community science process engages people in both the knowledge production, and in the application of science.

  2. The Use of Edmodo in Creating an Online Learning Community of Practice for Learning to Teach Science

    ERIC Educational Resources Information Center

    Ekici, Didem Inel

    2017-01-01

    This study aimed to create an online community of practice by creating a virtual classroom in the Edmodo application and ascertain the opinions of pre-service primary teachers about the effects of Edmodo on their learning to teach science and availability of Edmodo. The research used a case study, which is one method of descriptive research.…

  3. Long Term Benefits for Women in a Science, Technology, Engineering, and Mathematics Living-Learning Community

    ERIC Educational Resources Information Center

    Maltby, Jennifer L.; Brooks, Christopher; Horton, Marjorie; Morgan, Helen

    2016-01-01

    Science, technology, engineering and math (STEM) degrees provide opportunities for economic mobility. Yet women, underrepresented minority (URM), and first-generation college students remain disproportionately underrepresented in STEM fields. This study examined the effectiveness of a living-learning community (LLC) for URM and first-generation…

  4. Steps to Fostering a Learning Community in the Primary Science Classroom

    ERIC Educational Resources Information Center

    Pressick-Kilborn, Kimberley

    2009-01-01

    "Teaching Science" has, as one of its predecessors, the "Investigating" journal, which first appeared in 1988. Looking back ten years, the winner of the "Most Valuable Paper Award" for 1999 was Kimberley Pressick-Kilborn for her article--"Steps to Fostering a Learning Community in the Primary Science…

  5. How Can Museum Exhibits Enhance Earthquake and Tsunami Hazard Resiliency?

    NASA Astrophysics Data System (ADS)

    Olds, S. E.

    2015-12-01

    Creating a natural disaster-ready community requires interoperating scientific, technical, and social systems. In addition to the technical elements that need to be in place, communities and individuals need to be prepared to react when a natural hazard event occurs. Natural hazard awareness and preparedness training and education often takes place through informal learning at science centers and formal k-12 education programs as well as through awareness raising via strategically placed informational tsunami warning signs and placards. Museums and science centers are influential in raising science literacy within a community, however can science centers enhance earthquake and tsunami resiliency by providing hazard science content and preparedness exhibits? Museum docents and informal educators are uniquely situated within the community. They are transmitters and translators of science information to broad audiences. Through interaction with the public, docents are well positioned to be informants of the knowledge beliefs, and feelings of science center visitors. They themselves are life-long learners, both constantly learning from the museum content around them and sharing this content with visitors. They are also members of a community where they live. In-depth interviews with museum informal educators and docents were conducted at a science center in coastal Pacific Northwest. This region has a potential to be struck by a great 9+ Mw earthquake and subsequent tsunami. During the interviews, docents described how they applied learning from natural hazard exhibits at a science visitor center to their daily lives. During the individual interviews, the museum docents described their awareness (knowledge, attitudes, and behaviors) of natural hazards where they live and work, the feelings evoked as they learned about their hazard vulnerability, the extent to which they applied this learning and awareness to their lives, such as creating an evacuation plan, whether their behaviors changed as a result of learning about earthquakes and tsunamis, and other related questions. In this presentation, results from this qualitative study will be shared along with future research this is planned to explore the issue of community and individual resiliency further.

  6. Community Garden: A Bridging Program between Formal and Informal Learning

    ERIC Educational Resources Information Center

    Datta, Ranjan

    2016-01-01

    Community garden activities can play a significant role in bridging formal and informal learning, particularly in urban children's science and environmental education. It promotes relational methods of learning, discussing, and practicing that will integrate food security, social interactions, community development, environmental activism, and…

  7. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    NASA Astrophysics Data System (ADS)

    Forbes, Anne; Skamp, Keith

    2016-02-01

    MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.

  8. The Pre-Instructors in Math and Science (PIMAS) Program at the University of Arizona’s Flandrau Science Center

    NASA Astrophysics Data System (ADS)

    Brissenden, G.; Slater, T. F.; Colodner, D.; Johnson, S.

    2003-12-01

    The Pre-Instructors in Math and Science (PIMAS) Program at the University of Arizona's Flandrau Science Center offers high school students the opportunity to explore careers in science teaching through on-the-job training in informal science teaching, both at Flandrau and in the community. The goal of the PIMAS program is to encourage these students to consider pursuing science teaching careers as they transition from high school to college. Students become members of the Flandrau Science Center staff, learning how to present several astronomy demonstrations. These demonstrations include: A Journey to Pluto, Robots on Mars, and Constructing the Seasons. Students also learn how to host star parties. They then offer these presentations at Flandrau on Saturdays and public viewing nights. During the Fall semester, students have the opportunity to learn about best practices in informal science education. They participate, as peers, in the U of A's Science Teachers Colloquium Series. They meet with astronomers, planetary scientists, engineers, and amateur astronomers to learn more about the science behind the demonstrations they are learning. In the Spring semester, students take what they've learned "on the road." They plan and execute Space Nights for their communities-at their schools, their siblings' schools, their churches, their scouting troupes, etc. We believe that by letting the students go into their own communities, they have a greater sense of ownership and pride in these events. The PIMAS Program is now entering its third year. We present both our successes and our lessons learned, as well as what the PIMAS students have to say about the program. We greatly appreciate, and acknowledge, the support of the Arizona Teacher Education Coalition, which is funded by the US Department of Education.

  9. CosmoQuest: Building community around Citizen Science Collaboration

    NASA Astrophysics Data System (ADS)

    Gay, P.

    2015-12-01

    CosmoQuest was envisioned in 2011 with a singular goal: to create a place where people of all backgrounds can learn and do science in a virtual research community. Like a brick-and-mortar center, CosmoQuest includes facilities for doing science and for educating its members through classes, seminars, and other forms of professional development. CosmoQuest is unique with its combination of public engagement in doing science—known as "citizen science"— and its diversity of learning opportunities that enable STEM education. Our suite of activities is able maximize people's ability to learn and do science, while improving scientific literacy. Since its launch on January 1, 2012, CosmoQuest has grown to become the most trafficked astronomy citizen science site on the English-language internet. It has hosted five citizen science portals supporting NASA SMD science and is the only citizen science site to have produced peer-reviewed surface science results [Robbins, et al. 2014]. CosmoQuest, however, is more than just citizen science. It is a virtual research center for the public, and for the educators who teach in classrooms and science centers. Like with with any research center, CosmoQuest's success hinges on its ability to build a committed research community, and the challenge has been creating this community without the benefit of real-world interactions. In this talk, we overview how CosmoQuest has built a virtual community through screen-to-screen interactions using a suite of technologies that must constantly evolve as the internet evolves.

  10. Exploring How Families Do Science Together: Adult-Child Interactions at Community Science Events

    ERIC Educational Resources Information Center

    Tuttle, Nicole; Mentzer, Gale A.; Strickler, Lacey; Bloomquist, Debra; Hapgood, Susanna; Molitor, Scott; Kaderavek, Joan; Czerniak, Charlene M.

    2017-01-01

    Promoting family learning around science represents an important opportunity to reinforce science learning during out-of-school time. Evidence suggests that parent-child discourse around science can promote inferential thinking by children and help solidify their understanding of science concepts. While teacher professional development that…

  11. Science Education and Worldview

    ERIC Educational Resources Information Center

    Keane, Moyra

    2008-01-01

    Is there a place for Indigenous Knowledge in the science curriculum for a Zulu community in rural Kwa-Zulu Natal, South Africa? This article argues "yes," based on a participative research and development project that discovered relevant science learning in a Zulu community. Among community concerns for relevant factual and performative…

  12. ``Yo soy indígena'': identifying and using traditional ecological knowledge (TEK) to make the teaching of science culturally responsive for Maya girls

    NASA Astrophysics Data System (ADS)

    Hamlin, Maria L.

    2013-12-01

    This study examines how traditional ecological knowledge—TEK—can be identified and utilized to create culturally responsive science learning opportunities for Maya girls from a community in the Guatemalan highlands. Maya girls are situated in a complex socio-historical and political context rooted in racism and sexism. This study contextualizes the current situation of Maya women and girls in Guatemala and emphasizes the important need for educators to create science-learning opportunities that are culturally congruent. The author posits that when considering how to make the teaching and learning of science culturally responsive for Maya girls, educators must begin with the scientific knowledge inherent within Maya communities. Indigenous communities have a wealth of TEK that can be used to contextualize science curricula that can be purposely designed to meet the nuanced cultural needs of traditional Maya girls within and outside Guatemala.

  13. Professional Development of Secondary Science Teachers of English Learners in Immigrant Communities

    ERIC Educational Resources Information Center

    Manzo, Rosa D.; Cruz, Lisceth; Faltis, Christian; de la Torre, Adela

    2011-01-01

    This is a research study of secondary science teacher professional development, in which 30 teachers learned about and implemented a series of teaching strategies aimed at increasing the participation and learning of English Learners in schools serving largely Latino immigrant communities within California's Central Valley. This study focuses on…

  14. Opening the Classroom Door: Professional Learning Communities in the Math and Science Partnership Program

    ERIC Educational Resources Information Center

    Hamos, James E.; Bergin, Kathleen B.; Maki, Daniel P.; Perez, Lance C.; Prival, Joan T.; Rainey, Daphne Y.; Rowell, Ginger H.; VanderPutten, Elizabeth

    2009-01-01

    This article looks at how professional learning communities (PLCs) have become an operational approach for professional development with potential to de-isolate the teaching experience in the fields of science, technology, engineering, and mathematics (STEM). The authors offer a short synopsis of the intellectual origins of PLCs, provide multiple…

  15. STEM Learning Community: An Interdisciplinary Seminar for First- and Second-Year College Science Majors

    ERIC Educational Resources Information Center

    Piper, Jon K.; Krehbiel, Dwight

    2015-01-01

    To attract and retain more academically qualified students to science and mathematics, we developed a merit-based scholarship program for incoming students with STEM interests. Scholarship recipients participate for the first two years in an interdisciplinary learning community and declare a STEM major by the sophomore year. STEM Learning…

  16. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    ERIC Educational Resources Information Center

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  17. Integrating Ubunifu, informal science, and community innovations in science classrooms in East Africa

    NASA Astrophysics Data System (ADS)

    Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.

    2015-12-01

    This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ( Ubunifu) and what students learn in secondary schools in Kenya, Tanzania, and Uganda. In an effort to reconcile the difference between students' lived experiences and Science, Technology, Engineering, and Mathematics (STEM) taught in classrooms, this study presents an experiential iSPACES instructional model as an example of curriculum integration in science classrooms. The culmination is presentation of lessons learned from history, including Africa's unique contributions to science, theory, and indigenous innovations, in the hope that these lessons can spur the development of new instructional practices, standards, curriculum materials, professional and community development, and dialogue among nations.

  18. Now for the Science Bit: Implementing Community-Based Learning in Chemistry

    ERIC Educational Resources Information Center

    McDonnell, Claire; Ennis, Patricia; Shoemaker, Leslie

    2011-01-01

    Purpose: The purpose of this paper is to contribute to the understanding of student learning from community engagement by critically assessing the implementation of this pedagogical approach in the context of teaching and learning chemistry and also evaluating the role of personal development in student-community engagement.…

  19. Science Alive!: Connecting with Elementary Students through Science Exploration†

    PubMed Central

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-01-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach. PMID:27158309

  20. QuikSCience: Effective Linkage of Competitive, Cooperative, and Service Learning in Science Education

    ERIC Educational Resources Information Center

    Lemus, Judith D.; Bishop, Kristina; Walters, Howard

    2010-01-01

    The QuikSCience Challenge science education program combines a cooperative team project emphasizing community service with an academic competition for middle and high school students. The program aims to develop leadership abilities, motivate interest in ocean sciences, engage students in community service and environmental stewardship, and…

  1. Educating adult females for leadership roles in an informal science program for girls

    NASA Astrophysics Data System (ADS)

    McCreedy, Dale

    The purpose of this study is to gain an understanding of and an evidentiary warrant for, how a community of practice focused on informal science learning, can engage and promote active participation that offers adult female members and the community opportunities for legitimacy and transformation. This study is a qualitative, ethnographic research study that documents how adult female volunteers, historically inexperienced and/or excluded from traditional practices of science, come to engage in science activities through an informal, community-based context that helps them to appreciate science connections in their lives that are ultimately empowering and agentic. I begin to understand the ways in which such informal contexts, often thought to be marginal to dominant educational beliefs and practices, can offer adults outside of the field of science, education, or both, an entree into science learning and teaching that facilitate female's participation in legitimate and empowering ways. Using descriptive analyses, I first identify the characteristics of peripheral and active program participants. Through phenomenological analyses, I then develop an understanding of participation in an informal science program by focusing on three adult female members' unique trajectories of participation leading to core member status. Each draws on different aspects of the program that they find most salient, illustrating how different elements can serve as motivators for participation, and support continuation along the trajectory of participation reflecting personal and political agency. Through a purposeful ethnographic case-study analysis, I then explore one core member's transformation, evidenced by her developing identities as someone who enjoys science, engages in science activities, and, enacts a role as community old timer and door opener to science learning. This study: (1) contributes to the limited knowledge base in fields of informal learning, science education, and feminist research; (2) provides data that lead to assertions about the impact of NSP participation; and (3) takes advantage of a unique context in which to study adults and the interaction of gender, science, and informal learning.

  2. Acting in Our Own Self-Interests: Blending University and Community in Informal Science Education

    NASA Astrophysics Data System (ADS)

    Finkelstein, Noah D.; Mayhew, Laurel

    2008-10-01

    Research in physics education has demonstrated new tools and models for improving the understanding and engagement of traditional college students [1]. Building on this base, the research community has bridged the gap from college to pre-college education, even elementary school [2]. However, little work has been done to engage students in out-of-school settings, particularly for those students from populations under-represented in the sciences. We present a theoretically-grounded model of university-community partnership [3] that engages university students and children in a collective enterprise that has the potential to improve the participation and education of all. We document the impact of these programs on: university participants who learn about education, the community and even some science; children in the community who learn about science, the nature of science and develop their identities and attitudes towards science; and, shifts in institutional practice which may allow these programs to be sustained, or not.

  3. The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science

    NASA Astrophysics Data System (ADS)

    Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.

    2015-10-01

    Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning environment, whereas students in the experimental group participated in online collaborative activities using the Edmodo educational platform in a hybrid learning environment. Students completed the Classroom Community Scale survey as a pretest and posttest. Results indicated that the students who participated in the face-to-face classroom had higher overall sense of community and learning community than students who participated in collaborative activities in the online environment. Results and implications are discussed and suggestions for future research are provided.

  4. The Center for Informal Learning and Schools' Informal Learning Certificate (ILC) Program: Professional Development and Community for Informal Science Educators Working with Schools. An Evaluation Report

    ERIC Educational Resources Information Center

    Smith, Anita; Helms, Jenifer V.; St. John, Mark

    2007-01-01

    Inverness Research Associates served as external evaluators for the Center for Informal Learning and Schools (CILS) from its inception in 2002 as a National Science Foundation (NSF)-funded Center for Learning and Teaching. One of the programs that CILS developed was the Informal Learning Certificate (ILC) for informal science educators (mostly…

  5. From a Sense of Stereotypically Foreign to Belonging in a Science Community: Ways of Experiential Descriptions About High School Students' Science Internship

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling; Roth, Wolff-Michael

    2010-05-01

    Science educators often suggest that students should learn science in ways and settings that bear family resemblance with “the real thing.” Internship in science laboratories constitutes one such way in which students may learn science and learn about science. However, very little is known about how participants experience a science internship in an “authentic” science setting (i.e., a science laboratory). Our study was designed to understand the nature of participants’ experiences of “authentic science.” Participants included 11 high school students, one high school teacher, five laboratory technicians, and two scientists. High school students practiced science alongside technicians (young scientists) in real ongoing projects of a biology laboratory. Data sources include 19 semi-structured and video-recorded interviews held after the 2-month science internship. Drawing on phenomenographic method, we identified five categories of experiential descriptions: (a) authenticity of university science, (b) channeling and connecting different communities, (c) advanced knowledge required in and lengthy procedures mobilized by university science, (d) self-exploration and reflection, and (e) comprehensive science learning. Each category’s meaning for participants and implications for science education are illustrated and discussed. This study demonstrates positive evidence of the science internship on helping students learn different dimensions of science and reflect their relationship with science. Suggestions on facilitating the partnership between secondary and postsecondary education are provided.

  6. University-Urban High School Partnership: Math and Science Professional Learning Communities

    ERIC Educational Resources Information Center

    ndunda, mutindi; Van Sickle, Meta; Perry, Lindsay; Capelloni, Alison

    2017-01-01

    This study focused on science and math professional learning communities (PLCs) that were implemented through a university-urban high school partnership. These PLCs were part of mandated school-wide, content-based PLCs implemented as part of the reform efforts initiated in an urban school to address the school's failure to meet Adequate Yearly…

  7. Natural Science Majors and Liberal Education: The Impact of a Living-Learning Community

    ERIC Educational Resources Information Center

    Hutt, Chris D.

    2012-01-01

    The purpose of this study was to explore the articulated experiences of natural science majors who were participating in a liberal arts living-learning community. Using the American Association of College and University's (2002) report, "Greater Expectations" as an organizing framework, this study sought to determine how--if at…

  8. Valuing Difference in Students' Culture and Experience in School Science Lessons

    ERIC Educational Resources Information Center

    Banner, Indira

    2016-01-01

    Susan Harper writes about how a cross-cultural learning community can be formed where people from different cultures are not simply assimilated into a school science community but are seen and heard. This makes learning reciprocal and meaningful for both recent refugees and the dominant population. Although maybe not refugees, students from poorer…

  9. It Takes a Village: Supporting Inquiry- and Equity-Oriented Computer Science Pedagogy through a Professional Learning Community

    ERIC Educational Resources Information Center

    Ryoo, Jean; Goode, Joanna; Margolis, Jane

    2015-01-01

    This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science…

  10. The Effect of Online Collaborative Learning on Middle School Student Science Literacy and Sense of Community

    ERIC Educational Resources Information Center

    Wendt, Jillian Leigh

    2013-01-01

    This study examines the effects of online collaborative learning on middle school students' science literacy and sense of community. A quantitative, quasi-experimental pretest/posttest control group design was used. Following IRB approval and district superintendent approval, students at a public middle school in central Virginia completed a…

  11. Writing-to-Learn in Undergraduate Science Education: A Community-Based, Conceptually Driven Approach

    PubMed Central

    Reynolds, Julie A.; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J.

    2012-01-01

    Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement. PMID:22383613

  12. Community Organizations' Programming and the Development of Community Science Teachers

    ERIC Educational Resources Information Center

    Varelas, Maria; Morales-Doyle, Daniel; Raza, Syeda; Segura, David; Canales, Karen; Mitchener, Carole

    2018-01-01

    In this study, we explored how science teacher candidates construct ideas about science teaching and learning in the context of partnerships with urban community-based organizations. We used a case study design focusing on a group of 10 preservice teachers' participation in educational programming that focused on environmental racism and connected…

  13. Implementing Service Learning in the Principles of Marketing Course

    ERIC Educational Resources Information Center

    Klink, Richard R.; Athaide, Gerard A.

    2004-01-01

    Service learning--a pedagogical technique combining academic learning with community service--offers many benefits to students, faculty, educational institutions, and the community. Relative to social sciences and liberal arts faculty, however, business faculty have been slow to incorporate it into their coursework. Service learning may be…

  14. Self-regulated learning and science achievement in a community college

    NASA Astrophysics Data System (ADS)

    Maslin, (Louisa) Lin-Yi L.

    Self-regulated learning involves students' use of strategies and skills to adapt and adjust towards achievement in school. This research investigates the extent to which self-regulated learning is employed by community college students, and also the correlates of self-regulated learning: Is it used more by students in advanced science classes or in some disciplines? Is there a difference in the use of it by students who complete a science course and those who do not? How does it relate to GPA and basic skills assessments and science achievement? Does it predict science achievement along with GPA and assessment scores? Community college students (N = 547) taking a science course responded to the Motivated Strategies for Learning Questionnaire (MSLQ). The scales measured three groups of variables: (1) cognitive strategies (rehearsal, elaboration, organization, and critical thinking); (2) metacognitive self-regulation strategies (planning, monitoring, and self-regulation); and (3) resource management strategies (time and study environment, effort regulation, peer learning, and help-seeking). Students' course scores, college GPA, and basic skills assessment scores were obtained from faculty and college records. Students who completed a science course were found to have higher measures on cumulative college GPAs and assessment scores, but not on self-regulated learning. Self-regulated learning was found not to be used differently between students in the advanced and beginning science groups, or between students in different disciplines. The exceptions were that the advanced group scored higher in critical thinking but lower in effort regulation than the beginning group. Course achievement was found to be mostly unrelated to self-regulated learning, except for several significant but very weak and negative relationships in elaboration, self-regulation, help-seeking, and effort regulation. Cumulative GPA emerged as the only significant predictor of science achievement, accounting for roughly one-third of the variance. The basic skills assessments and self-regulated learning were not significant predictors. English and reading assessments were more highly significant predictors in the biology than in the physical science groups, while math assessment was not related to science achievement.

  15. Telementoring Physics: University-Community After-school Collaborations and the Mediation of the Formal/Informal Divide

    NASA Astrophysics Data System (ADS)

    Lecusay, Robert A.

    For several decades improvement of science education has been a major concern of policy makers concerned that the U.S. is a "nation at risk" owing to the dearth of students pursing careers in science. Recent policy proposals have argued that provision of broadband digital connectivity to organizations in the informal sector would increase the reach of the formal, academic sector to raise the overall level of science literacy in the country. This dissertation reports on a longitudinal study of a physics telementoring activity jointly run by a university-community collaborative at a community learning center. The activity implemented a digital infrastructure that exceeds the technical and social-institutional arrangements promoted by policy makers. In addition to broadband internet access (for tele-conferencing between students at the community center and physicists at a university), supplemented by digital software designed to promote physics education, the activity included the presence of a collaborating researcher/tutor at the community learning center to coordinate and document the instructional activities. The current research revealed a fundamental contradiction between the logic, goals, and practices of the physics instructors, and the corresponding logic, goals, and practices of the participants at the community learning center. This contradiction revolves around a contrast between the physicists' formal, logocentric ways of understanding expressed in the ability to explain the scientific rules underlying physical phenomena and the informal, pragmatic orientation of the youth and adults at the learning center. The observations in this dissertation should remind techno-enthusiasts, especially in the arena of public education policy, that there are no turnkey solutions in "distance" science education. Technically "connecting" people is not equivalent to creating conditions that expand opportunities to learn and a functioning socio-technical system that supports learning. Secondly, for designers and practitioners of informal learning in community-university collaborative settings, it is critically important to understand distance learning activities as developing "cross-cultural, " collaborative encounters, the results of which are more likely to be hybrids of different ways of learning and knowing than the conversion of informal learning into a tool for instruction that will allow youth to "think like physicists."

  16. Integrating "Ubunifu," Informal Science, and Community Innovations in Science Classrooms in East Africa

    ERIC Educational Resources Information Center

    Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.

    2015-01-01

    This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ("Ubunifu") and what students learn in secondary schools in Kenya, Tanzania, and…

  17. Integrating Service-Learning Pedagogy for Preservice Elementary Teachers' Science Identity Development

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel E.; Bradbury, Leslie U.; McGlasson, Martha A.

    2015-04-01

    The purpose of this article is to explore how preservice elementary teachers (PSETs) interpreted their service-learning experiences within a pre-methods environmentally focused course and how their interpretations shaped their science teaching identities. Along a continuum of service-learning experiences were events that emphasized science learning, that focused on science teaching, and that were transitional, with elements of both science learning and science teaching. These various service-learning experiences were designed to be "boundary experiences" for professional identity development (Geijsel & Meijers in Educational Studies, 3(4), 419-430, 2005), providing opportunities for PSETs to reflect on meanings in cultural contexts and how they are related to their own personal meanings. We analyzed written reflections and end-of-course oral reflection interviews from 42 PSETs on their various service-learning experiences. PSETs discussed themes related to the meanings they made of the service-learning experiences: (a) experiencing science in relation to their lives as humans and future teachers, (b) interacting with elementary students and other PSETs, and (c) making an impact in the physical environment and in the community. The connections that PSETs were making between the discursive spaces (service-learning contexts) and their own meaning-making of these experiences (as connected to their own interests in relation to their future professions and daily lives) shows evidence of the potential that various types of science service-learning experiences have for PSETs in developing inbound science teaching identity trajectories (Wenger in Communities of practice: Learning, meaning, and identity. Cambridge: Cambridge University Press, 1998). The findings of this study point to positive outcomes for PSETs when they participate in structured service-learning experiences along a learning to teaching continuum (246).

  18. Simple Activities for Powerful Impact

    NASA Astrophysics Data System (ADS)

    LaConte, K.; Shupla, C. B.; Dusenbery, P.; Harold, J. B.; Holland, A.

    2016-12-01

    STEM education is having a transformational impact on libraries across the country. The STAR Library Education Network (STAR_Net) provides free Science-Technology Activities & Resources that are helping libraries to engage their communities in STEM learning experiences. Hear the results of a national 2015 survey of library and STEM professionals and learn what STEM programming is currently in place in public libraries and how libraries approach and implement STEM programs. Experience hands-on space science activities that are being used in library programs with multiple age groups. Through these hands-on activities, learners explore the nature of science and employ science and engineering practices, including developing and using models, planning and carrying out investigations, and engaging in argument from evidence (NGSS Lead States, 2013). Learn how STAR_Net can help you print (free!) mini-exhibits and educator guides. Join STAR_Net's online community and access STEM resources and webinars to work with libraries in your local community.

  19. Professional Learning Communities' Impact on Science Teacher Classroom Practice in a Midwestern Urban School District

    ERIC Educational Resources Information Center

    Carpenter, Dan

    2012-01-01

    The purpose of this reputation-based, multiple-site case study was to explore professional learning communities' impact on teacher classroom practice. The goal of this research was to describe the administrator and teachers' perceptions with respect to professional learning communities as it related to teacher practice in their school. Educators…

  20. Technology-Enhanced Physics Programme for Community-Based Science Learning: Innovative Design and Programme Evaluation in a Theme Park

    ERIC Educational Resources Information Center

    Tho, Siew Wei; Chan, Ka Wing; Yeung, Yau Yuen

    2015-01-01

    In this study, a new physics education programme is specifically developed for a famous theme park in Hong Kong to provide community-based science learning to her visitors, involving her three newly constructed rides. We make innovative use of digital technologies in this programme and incorporate a rigorous evaluation of the learning…

  1. Science education as/for participation in the community

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael; Lee, Stuart

    2004-03-01

    In this paper, we take up and advance the project of rethinking scientific literacy by Eisenhart, Finkel, and Marion (American Educational Research Journal, 1996, 33, 261-295). As part of a project of rethinking science education, we advance three propositions. First, because society is built on division of labor, not everybody needs to know the same basic sets of concepts; it is more important to allow the emergence of scientific literacy as a collective property. Second, scientific knowledge ought not to be privileged in democratic collective decision making but ought to be one of many resources. Third, rethinking science education as and for participation in community life sets up the potential for lifelong participation in and learning of science-related issues. To show the viability of these propositions, we provide a case study based on a 3-year, multisite ethnographic research project as part of which we investigated science in the community. Framing our work in terms of activity theory, we provide descriptions of science in a local middle school, where students learn science while participating in a community effort to contribute to the knowledge base about a local creek. The children's activities are continuous with those of adults concerned about environmental health. In this way, rather than preparing for life after school, science education allows students to participate in legitimate ways in community life and therefore provides a starting point for uninterrupted lifelong learning across the presently existing boundary separating formal schooling from everyday life outside schools.

  2. Two-Year Community: Increasing Science Knowledge among High-Risk Student Populations through a Community College Honors/Service-Learning Program

    ERIC Educational Resources Information Center

    Ellerton, Sharon; Carmona, Naydu; Tsimounis, Areti

    2016-01-01

    There is an urgent need to increase K-12 science knowledge and STEM (science, technology, engineering, and mathematics) preparedness for college. State and national data suggest a strong correlation between student performance in STEM subjects and student socioeconomic status, race, and ethnicity. Queensborough Community College (QCC) is situated…

  3. Changing Lives: The Baltimore City Community College Life Sciences Partnership with the University of Maryland, Baltimore

    ERIC Educational Resources Information Center

    Carroll, Vanessa G.; Harris-Bondima, Michelle; Norris, Kathleen Kennedy; Williams, Carolane

    2010-01-01

    Baltimore City Community College (BCCC) leveraged heightened student interest and enrollment in the sciences and allied health with Maryland's world-leading biotechnology industry to build a community college life sciences learning and research center right on the University of Maryland, Baltimore's downtown BioPark campus. The BCCC Life Sciences…

  4. An Explicit Representational Focus for Teaching and Learning about Animals in the Environment

    ERIC Educational Resources Information Center

    Tytler, Russell; Haslam, Filocha; Prain, Vaughan; Hubber, Peter

    2009-01-01

    There has been growing interest in linking the learning of Science with the literacies of Science and representations. Recent attention has been focused on learning theories that emphasise the socio-cultural and situated aspects of learning, and in particular the notion of learning as participation in a discourse community. This paper will…

  5. Methodological Advances in Research on Learning and Instruction and in the Learning Sciences

    ERIC Educational Resources Information Center

    Fischer, Frank; Järvelä, Sanna

    2014-01-01

    Recent years have seen a dynamic growth of research communities addressing conditions, processes and outcomes of learning in formal and informal environments. Two of them have markedly advanced the field: The community on research on learning and instruction that has been organized in the European Association for Research on Learning and…

  6. Evaluating the Impact of a Faculty Learning Community on STEM Teaching and Learning

    ERIC Educational Resources Information Center

    Smith, Tori Rhoulac; McGowan, Jill; Allen, Andrea R.; Johnson, Wayne David, II; Dickson, Leon A., Jr.; Najee-ullah, Muslimah Ali; Peters, Monique

    2008-01-01

    The faculty learning community project at Howard University involved a diverse group of men and women, tenured, tenure-track, and future faculty across science, technology, engineering, and mathematics (STEM) disciplines. The purpose of the group was to engage in the scholarship of teaching and learning by learning about teaching, reflecting on…

  7. Facilitating long-term changes in student approaches to learning science.

    PubMed

    Buchwitz, Brian J; Beyer, Catharine H; Peterson, Jon E; Pitre, Emile; Lalic, Nevena; Sampson, Paul D; Wakimoto, Barbara T

    2012-01-01

    Undergraduates entering science curricula differ greatly in individual starting points and learning needs. The fast pace, high enrollment, and high stakes of introductory science courses, however, limit students' opportunities to self-assess and modify learning strategies. The University of Washington's Biology Fellows Program (BFP) intervenes through a 20-session, premajors course that introduces students to the rigor expected of bioscience majors and assists their development as science learners. This study uses quantitative and qualitative approaches to assess whether the 2007-2009 BFP achieved its desired short- and long-term impacts on student learning. Adjusting for differences in students' high school grade point average and Scholastic Aptitude Test scores, we found that participation in the BFP was associated with higher grades in two subsequent gateway biology courses, across multiple quarters and instructors. Two to 4 yr after participating in the program, students attributed changes in how they approached learning science to BFP participation. They reported having learned to "think like a scientist" and to value active-learning strategies and learning communities. In addition, they reported having developed a sense of belonging in bioscience communities. The achievement of long-term impacts for a short-term instructional investment suggests a practical means to prepare diverse students for the rigors of science curricula.

  8. Facilitating Long-Term Changes in Student Approaches to Learning Science

    PubMed Central

    Buchwitz, Brian J.; Beyer, Catharine H.; Peterson, Jon E.; Pitre, Emile; Lalic, Nevena; Sampson, Paul D.; Wakimoto, Barbara T.

    2012-01-01

    Undergraduates entering science curricula differ greatly in individual starting points and learning needs. The fast pace, high enrollment, and high stakes of introductory science courses, however, limit students’ opportunities to self-assess and modify learning strategies. The University of Washington's Biology Fellows Program (BFP) intervenes through a 20-session, premajors course that introduces students to the rigor expected of bioscience majors and assists their development as science learners. This study uses quantitative and qualitative approaches to assess whether the 2007–2009 BFP achieved its desired short- and long-term impacts on student learning. Adjusting for differences in students’ high school grade point average and Scholastic Aptitude Test scores, we found that participation in the BFP was associated with higher grades in two subsequent gateway biology courses, across multiple quarters and instructors. Two to 4 yr after participating in the program, students attributed changes in how they approached learning science to BFP participation. They reported having learned to “think like a scientist” and to value active-learning strategies and learning communities. In addition, they reported having developed a sense of belonging in bioscience communities. The achievement of long-term impacts for a short-term instructional investment suggests a practical means to prepare diverse students for the rigors of science curricula. PMID:22949424

  9. Factors affecting construction of science discourse in the context of an extracurricular science and technology project

    NASA Astrophysics Data System (ADS)

    Webb, Horace P.

    Doing and learning science are social activities that require certain language, activities, and values. Both constitute what Gee (2005) calls Discourses. The language of learning science varies with the learning context (Lemke, 2001,1990). Science for All Americans (AAAS, 1990) and Inquiry and the National Science Education Standards (NRC, 2000) endorse inquiry science learning. In the United States, most science learning is teacher-centered; inquiry science learning is rare (NRC, 2000). This study focused on 12 high school students from two suburban high schools, their three faculty mentors, and two engineering mentors during an extracurricular robotics activity with FIRST Robotics Competition (FRC). FRC employed student-centered inquiry focus to teach science principles integrating technology. Research questions were (a) How do science teachers and their students enact Discourses as they teach and learn science? and (b) How does the pedagogical approach of a learning activity facilitate the Discourses that are enacted by students and teachers as they learn and teach science? Using Critical Discourse Analysis (CDA), the study examined participants' language during robotic activities to determine how language used in learning science shaped the learning and vice versa. Data sources included videorecordings of participant language and semi-structured interviews with study participants. Transcribed recordings were coded initially using Gee's (2005) linguistic Building Tasks as a priori codes. CDA was applied to code transcripts, to construct Discourses enacted by the participants, and to determine how context facilitated their enactment. Findings indicated that, for the students, FRC facilitated elements of Science Discourse. Wild About Robotics (W.A.R.) team became, through FRC, part of a community similar to scientists' community that promoted knowledge and sound practices, disseminated information, supported research and development and encouraged interaction of its members. The public school science classroom in the U.S. is inimical to inquiry learning because of practices and policies associated with the epistemological stance that spawned the standards and/or testing movement and No Child Left Behind (Baez & Boyles, 2009). The findings of this study provided concrete ideas to accommodate the recommendations by NRC (1996) and NSES (2000) for creating contexts that might lead to inquiry science learning for meaningful student engagement.

  10. Institutionalization in Action: Interactive Science Center Interactivity and Materiality from the Family Perspective

    ERIC Educational Resources Information Center

    Crain, Rhiannon Lorraine

    2009-01-01

    Interactive science centers are unique players in the science education community, but their positioning as both authorities on science and providers of "free choice" learning presents learning researchers with a problematic contradiction rooted in the complexities of trying to be both "scientific" and "education" organizations. Using insight from…

  11. Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.

    2016-12-01

    Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.

  12. Designing for Online Collaborations and Local Environmental Action In Citizen Science: A Multiple Case Study

    NASA Astrophysics Data System (ADS)

    Kermish-Allen, Ruth

    Traditional citizen science projects have been based on the scientific communities need to gather vast quantities of high quality data, neglecting to ask what the project participants get in return. How can participants be seen more as collaborative partners in citizen science projects? Online communities for citizen science are expanding rapidly, giving participants the opportunity to take part in a wide range of activities, from monitoring invasive species to identifying far-off galaxies. These communities can bring together the virtual and physical worlds in new ways that are egalitarian, collaborative, applied, localized and globalized to solve real environmental problems. There are a small number of citizen science projects that leverage the affordances of an online community to connect, engage, and empower participants to make local change happen. This multiple case study applies a conceptual framework rooted in sociocultural learning theory, Non-Hierarchical Online Learning Communities (NHOLCs), to three online citizen communities that have successfully fostered online collaboration and on-the-ground environmental actions. The purpose of the study is to identify the range and variation of the online and programmatic functions available in each project. The findings lead to recommendations for designing these innovative communities, specifically the technological and programmatic components of online citizen science communities that support environmental actions in our backyards.

  13. Learning in Discussion Forums: An Analysis of Knowledge Construction in a Gaming Affinity Space

    ERIC Educational Resources Information Center

    Davis, Don; Marone, Vittorio

    2016-01-01

    In the learning sciences and game studies communities, there has been an increasing interest in the potential of game-related "paratexts" and "surrounds" in supporting learning, such as online discussion forums and gaming affinity spaces. While there have been studies identifying how learning occurs in such communities, little…

  14. Service-Learning in the Financial Planning Curriculum: Expanding Access to the Community

    ERIC Educational Resources Information Center

    Annis, Paul M.; Palmer, Lance; Goetz, Joseph

    2010-01-01

    Service-learning projects are a cornerstone of student experiential learning. Such programs have proven to be mutually beneficial to communities and students within a variety of family and consumer sciences courses. However, there is a paucity of literature addressing service-learning efforts within the field of financial planning. There is an…

  15. How Does a Community of Principals Develop Leadership for Technology-Enhanced Science?

    ERIC Educational Resources Information Center

    Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.

    2010-01-01

    Active principal leadership can help sustain and scale science curriculum reform. This study illustrates how principal leadership developed in a professional learning community to support a technology-enhanced science curriculum reform funded by the National Science Foundation. Seven middle school and high school principals in one urban-fringe…

  16. Catalyzing Effective Science Education: Contributions from the NASA Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Bartolone, L.; Eisenhamer, B.; Lawton, B. L.; Schultz, G. R.; Peticolas, L.; Schwerin, T.; Shipp, S.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-06-01

    Advancing scientific literacy and strengthening the Nation’s future workforce through stimulating, informative, and effective learning experiences are core principles of the NASA Science Mission Directorate (SMD) education and public outreach (E/PO) program. To support and coordinate its E/PO community in offering a coherent suite of activities and experiences that effectively meet the needs of the education community, NASA SMD has created four Science Education and Public Outreach Forums (Astrophysics, Planetary Science, Heliophysics, Earth Science). Forum activities include: professional development to raise awareness of the existing body of best practices and educational research; analysis and cataloging of SMD-funded education materials with respect to AAAS Benchmarks for Science Literacy; Working Groups that assemble needs assessment and best practices data relevant to Higher Education, K-12 Formal Education, and Informal Science Education audiences; and community collaborations that enable SMD E/PO community members to develop new partnerships and to learn and share successful strategies and techniques. This presentation will highlight examples of Forum and community-based activities related to astronomy education and teacher professional development, within the context of the principles articulated within the NRC Framework for K-12 Science Education and the Next Generation Science Standards. Among these are an emerging community of practice for K-12 educators and online teacher professional development and resources that incorporate misconception research and authentic experiences with NASA Astrophysics data.

  17. Asthma in the community: Designing instruction to help students explore scientific dilemmas that impact their lives

    NASA Astrophysics Data System (ADS)

    Tate, Erika Dawn

    School science instruction that connects to students' diverse home, cultural, or linguistic experiences can encourage lifelong participation in the scientific dilemmas that impact students' lives. This dissertation seeks effective ways to support high school students as they learn complex science topics and use their knowledge to transform their personal and community environments. Applying the knowledge integration perspective, I collaborated with education, science, and community partners to design a technology enhanced science module, Improving Your Community's Asthma Problem. This exemplar community science curriculum afforded students the opportunity to (a) investigate a local community health issue, (b) interact with relevant evidence related to physiology, clinical management, and environmental risks, and (c) construct an integrated understanding of the asthma problem in their community. To identify effective instructional scaffolds that engage students in the knowledge integration process and prepare them to participate in community science, I conducted 2 years of research that included 5 schools, 10 teachers, and over 500 students. This dissertation reports on four studies that analyzed student responses on pre-, post-, and embedded assessments. Researching across four design stages, the iterative design study investigated how to best embed the visualizations of the physiological processes breathing, asthma attack, and the allergic immune response in an inquiry activity and informed evidence-based revisions to the module. The evaluation study investigated the impact of this revised Asthma module across multiple classrooms and differences in students' prior knowledge. Combining evidence of student learning from the iterative and evaluation studies with classroom observations and teacher interviews, the longitudinal study explored the impact of teacher practices on student learning in years 1 and 2. In the final chapter, I studied how the Asthma module and students' local community influenced students as they integrated their ideas related to perspectives, evidence use, the consideration of tradeoffs, and localization to construct explanations and decision justifications regarding their community's asthma problem. In the end, this dissertation offers evidence that informs the future design of community science instruction that successfully engages students in the knowledge integration process and has implications for creating multiple opportunities for students to meaningfully participate in community science.

  18. Building Relationships, Sharing Resources, and Opening Opportunities: A STEM Learning Community Builds Social Capital for Students with Disabilities

    ERIC Educational Resources Information Center

    Whitney, Jean; Langley-Turnbaugh, Samantha; Lovewell, Lynn; Moeller, Babette

    2012-01-01

    This article describes a learning community designed for university students with disabilities in science, technology, engineering, and math (STEM) majors at the University of Southern Maine. The Learning Community (LC) seminar is a credit-bearing class and part of a pipeline of supports and services for high school and college students with…

  19. Paper 8775 - Integrating Natural Resources and Ecological Science into the Disaster Risk CYCLE: Lessons Learned and Future Directions

    NASA Astrophysics Data System (ADS)

    Brosnan, D. M.

    2014-12-01

    Familiar to disaster risk reduction (DRR) scientists and professionals, the disaster cycle is an adaptive approach that involves planning, response and learning for the next event. It has proven effective in saving lives and helping communities around the world deal with natural and other hazards. But it has rarely been applied to natural resource and ecological science, despite the fact that many communities are dependent on these resources. This presentation will include lessons learned from applying science to tackle ecological consequences in several disasters in the US and globally, including the Colorado Floods, the SE Asia tsunami, the Montserrat volcanic eruption, and US SAFRR tsunami scenario. The presentation discusses the role that science and scientists can play at each phase of the disaster cycle. The consequences of not including disaster cycles in the management of natural systems leaves these resources and the huge investments made to protect highly vulnerable. The presentation discusses how The presentation discusses how science can help government and communities in planning and responding to these events. It concludes with a set of lessons learned and guidlines for moving forward.

  20. Learning Analytics and Computational Techniques for Detecting and Evaluating Patterns in Learning: An Introduction to the Special Issue

    ERIC Educational Resources Information Center

    Martin, Taylor; Sherin, Bruce

    2013-01-01

    The learning sciences community's interest in learning analytics (LA) has been growing steadily over the past several years. Three recent symposia on the theme (at the American Educational Research Association 2011 and 2012 annual conferences, and the International Conference of the Learning Sciences 2012), organized by Paulo Blikstein, led…

  1. Fostering Distributed Science Learning through Collaborative Technologies

    ERIC Educational Resources Information Center

    Vazquez-Abad, Jesus; Brousseau, Nancy; Guillermina, Waldegg C.; Vezina, Mylene; Martinez, Alicia D.; de Verjovsky, Janet Paul

    2004-01-01

    TACTICS (French and Spanish acronym standing for Collaborative Work and Learning in Science with Information and Communications Technologies) is an ongoing project aimed at investigating a distributed community of learning and practice in which information and communications technologies (ICT) take the role of collaborative tools to support social…

  2. Civic Learning through Public Scholarship: Coherence among Diverse Disciplines

    ERIC Educational Resources Information Center

    Dostilio, Lina D.; Conti, Norman; Kronk, Rebecca; Weideman, Yvonne L.; Woodley, Sarah K.; Trun, Nancy

    2013-01-01

    This article presents three cases of community-engaged, or "public," scholarship across diverse disciplines (social science, natural science, and health science) in which the rigid boundaries of what has been conceived as traditional service-learning have been blurred. The innovations represented within these cases explicitly address…

  3. Measuring the Impact of a Science Center on Its Community

    ERIC Educational Resources Information Center

    Falk, John H.; Needham, Mark D.

    2011-01-01

    A range of sources support science learning, including the formal education system, libraries, museums, nature and Science Centers, aquariums and zoos, botanical gardens and arboretums, television programs, film and video, newspapers, radio, books and magazines, the Internet, community and health organizations, environmental organizations, and…

  4. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    ERIC Educational Resources Information Center

    Forbes, Anne; Skamp, Keith

    2016-01-01

    "MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups--primary teachers, primary students and mentors--interact around the "domain" of "investigating scientifically". This paper builds on three earlier…

  5. The Effects of Community-Based Service Learning on Preservice Teachers' Beliefs About the Characteristics of Effective Science Teachers of Diverse Students

    NASA Astrophysics Data System (ADS)

    Cone, Neporcha

    2012-12-01

    The purpose of this study was to investigate the effects of community-based service learning (CBSL) on preservice elementary teachers' beliefs of the characteristics of effective science teachers of diverse students. Using semi-structured interviews, data were collected from 74 preservice teachers enrolled in four sections of an elementary science methods course over a semester. Findings suggest that preservice teachers who participated in CBSL developed beliefs about the characteristics of effective science teachers that are complimentary to the descriptions of effective teachers of diverse students provided in the literature.

  6. Evaluating Indicator-Based Methods of "Measuring Long-Term Impacts of a Science Center on Its Community"

    ERIC Educational Resources Information Center

    Jensen, Eric Allen

    2016-01-01

    This article addresses some of the challenges faced when attempting to evaluate the long-term impact of informal science learning interventions. To contribute to the methodological development of informal science learning research, we critically examine (Falk and Needham (2011) "Journal of Research in Science Teaching," 48: 1-12.) study…

  7. Preparation for Practice: Elementary Preservice Teachers Learning and Using Scientific Classroom Discourse Community Instructional Strategies

    ERIC Educational Resources Information Center

    Lewis, Elizabeth; Dema, Oxana; Harshbarger, Dena

    2014-01-01

    Despite historical national efforts to improve elementary science education, science instruction continues to be marginalized, varying by state. This study was designed to address the ongoing challenge of educating elementary preservice teachers (PSTs) to teach science. Elementary PSTs are one of the science education community's major links…

  8. Identifying Elements Critical for Functional and Sustainable Professional Learning Communities

    ERIC Educational Resources Information Center

    Richmond, Gail; Manokore, Viola

    2011-01-01

    In this paper, we examined data collected as part of a 5-year project designed to foster reform-based urban science teaching through teachers' communities of inquiry. Drawing upon a distributed leadership framework, we analyzed teacher "talk" during professional learning community (PLC) meetings. This analysis yielded five elements:…

  9. Reframing Science Learning and Teaching: A Communities of Practice Approach

    ERIC Educational Resources Information Center

    Sansone, Anna

    2018-01-01

    Next Generation Science Standards encourage science instruction that offers not only opportunities for inquiry but also the diverse social and cognitive processes involved in scientific thinking and communication. This article gives an introduction to Lave and Wenger's (1991) communities of practice framework as a potential way of viewing…

  10. NSF-OEDG Manoomin Science Camp Project: A Model for Engaging American Indian Students in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Dalbotten, Diana; Ito, Emi; Myrbo, Amy; Pellerin, Holly; Greensky, Lowana; Howes, Thomas; Wold, Andrew; Breckenridge, Rachel; Drake, Christa; Bucar, Leslie; Kowalczak, Courtney; Lindner, Cameron; Olson, Carolyn; Ray, T. J.; Rhodes, Richard; Woods, Philip; Yellowman, Tom

    2014-01-01

    The Manoomin ''wild rice'' Science Camp program, a partnership between the University of Minnesota, the Fond du Lac Tribal and Community College, and the Fond du Lac Band of Lake Superior Chippewa is an example of how a community-based participatory research project can become the catalyst for STEM learning for an entire community, providing…

  11. Building Climate Literacy Through Strategic Partnerships

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Creyts, T. T.; Bell, R. E.; Meadows, C. A.

    2012-12-01

    One of the challenges of developing climate science literacy is establishing the relevance of both climate science and climate change at a local community level. By developing partnerships with community-based informal science education providers, we are able to build our climate science and climate change content into existing programs. Employing a systems science approach facilitates these partnerships as our systems science program links with a range of topics, demonstrating the multiple connections between climate, our communities and our daily lives. Merging hands on activities, collaborative projects, and new technology, we encourage learning through doing by engaging participants in active exploration of climate science concepts. Many informal education venues operating locally, from large science museums to small grass-roots community groups, provide ongoing opportunities to connect with students. Through our collaborations we have worked with various types and sizes of non-classroom science providers including: the Intrepid Sea, Air and Space Museum "Greater Opportunities Advancing Leadership and Science" camps for high school girls, Hudson River Park Trust 'Science on the River' events, the annual New York City World Science Festival, and the AAUW's annual STEM Super Scholars Workshops among others. This range of venues has enabled us to reach various ages, backgrounds and interests advancing climate literacy in a number of forums. Major outcomes of these efforts are: (1) Building capacity with community groups: Many local organizations running community programs do not have in-house science expertise. Both science educators and local organization benefit from these collaborations. Science educators and scientists provide up to date climate science information to the community groups while these programs establish strong working relationships between our research and the local community. (2) Developing climate science literacy and lifelong learning: We have delivered climate science in a variety of ways, each designed to connect the participants with a fundamental science concept while building excitement for the topic and facilitating learning in a non-traditional setting. Our approaches range from launching teams of young people into experiments exploring glacial physics through free-choice inquiry opportunities, to enlisting undergraduate science students in working with the participants demonstrating glacial motion and measurement through engaging technology such as Kinect Xbox 360 sensors, to short single concept hands-on activities designed to deliver a specific climate 'take home' message. (3) Generating a local connection to climate science and impacts: Working with local informal education groups we connect climate topics to community-based issues and 'hot topics' such as sustainable planning, waterfront erosion, storm surge impacts, and local sea level rise projections. Partnering with community based informal education providers allows us to expand our offerings to reach a wider audience of young people, and to connect more directly with our local community. We are excited by the potential in these partnerships to connect students with climate science and develop not only a climate literate group of young people, but also lifelong science learners.

  12. Underserved populations in science education: Enhancement through learning community participation

    NASA Astrophysics Data System (ADS)

    Gray, Jennifer Emily

    A positive relationship between college anatomy students' achievement and academic language proficiency in the context of a learning community was established. For many students the barrier to learning science is language. A relationship exists between low academic language proficiency and lack of success among students, in particular failure among at-risk minority and language-minority students. The sample consisted of Anatomy classes during the Fall semesters of the academic years, 2000, 2001, and 2002 at a community college in Central California having a high percentage of culturally and linguistically diverse students. Students from each semester participated in the academic language proficiency and science achievement studies. Twenty-two of the Fall 2002 students (n = 65) enrolled in the Learning Community (LC) that included instruction in academic language in the context of the anatomy course content. Fall 2002 students (n = 19) also participated in Peer-led Support (PLS) sessions. Fall 2001 students participated in a textbook use study (n = 44) and in a Cooperative-Learning (CL) (n = 35) study. Students in the LC and Non-LC groups took the academic language assessment; their results were correlated with course grades and attendance. Fall 2002 students were compared for: (1) differences regarding self-expectations, (2) program impressions, and (3) demographics. Fall 2001 student reading habits and CL participation were analyzed. Results identified: (1) selected academic language tasks as good predictors of science success, (2) a significant positive relationship between science success and participation in support interventions, (3) no differences in self expectations or demographic characteristics of participants and non-participants in the LC group, and (4) poor textbook reading habits. Results showed a significant positive relationship between academic language proficiency and science achievement in participatory instruction.

  13. Pacific CRYSTAL Teacher Professional Development Models: Lessons Learned

    NASA Astrophysics Data System (ADS)

    van der Flier-Keller, E.; Yore, L.

    2010-12-01

    From 2005 to 2010 Pacific CRYSTAL (Centre for Research in Youth Science Teaching and Learning) has been engaged in community-based research fostering teacher leadership in innovative science education through a variety of approaches to teacher professional development. Pacific CRYSTAL is a University of Victoria based, NSERC funded project founded on a collaborative research model involving scentists, science educators and community members including schools, teachers, community groups and government. Pacific CRYSTAL professional development approaches embrace both in-service teachers and pre-service teachers, and include Lighthouse schools, workshops (ongoing as well as one-time), community-based partnerships in Pacific CRYSTAL research projects, teachers as researchers, and university science courses and workshops for pre-education and education students. A number of common themes, identified through these approaches, should be considered in the development and implementation of future science professional development initiatives. They include; teacher turnover, expanding and adding schools and participating teachers, teacher apprehension, building leadership capacity, further engagement of 'tourist' teachers, continuing professional support for teachers, as well as on-going mentoring.

  14. Teen Advocates for Community and Environmental Sustainability

    NASA Astrophysics Data System (ADS)

    Wunar, B.

    2017-12-01

    The Museum of Science and Industry, Chicago (MSI) is in the early stages of a NOAA supported Environmental Literacy Grant project that aims to engage high school age youth in the exploration of climate and Earth systems science. Participating youth are positioned as teen advocates for establishing resilient communities in the Midwest. The project utilizes a variety of resources, including NOAA Science On a Sphere® (SOS) technology and datasets, Great Lakes and local climate assets, and local municipal resiliency planning guides to develop museum-based youth programming. Teen participants in the project will share their learning through regular facilitated interactions with public visitors in the Museum and will bring learning experiences to Chicago Public Library sites throughout the city's neighborhoods. Project content will also be adapted for use in 100+ after-school science clubs to engage younger students from diverse communities across the Chicago area. Current strategies for supporting teen facilitation of public experiences, linkages to out of school time and summer learning programs, and connections to local resiliency planning agencies will be explored.

  15. Science in the community: An ethnographic account of social material transformation

    NASA Astrophysics Data System (ADS)

    Lee, Stuart Henry

    This dissertation is about the learning and use of science at the level of local community. It is an ethnographic account, and its theoretical approach draws on actor-network theory as well as neo-Marxist practice theory and the related notion of situated cognition. This theoretical basis supports a work that focuses on the many heterogeneous transformations that materials and people undergo as science is used to help bring about social and political change in a quasi-rural community. The activities that science becomes involved in, and the hybrid formations as it encounters local issues are stressed. Learning and knowing as outcomes of community action are theorized. The dissertation links four major themes throughout its narrative: scientific literacy, representations, relationships and participatory democracy. These four themes are not treated in isolation. Different facets of their relation to each other are stressed in different chapters, each of which analyze different particular case studies. This dissertation argues for the conception of a local scientific praxis, one that is markedly different than the usual notion of science, yet is necessary for the uptake of scientific information into a community.

  16. Integrating STEM Place-Based, Culturally Responsive and Citizen Science Learning in Exploring the Impacts and Feedbacks of a Changing Arctic

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Spellman, K. V.; Fabbri, C.; Comiso, J. C.; Chase, M.; Fochesatto, G. J.; Butcher, C. E.; Jones, D.; Bacsujlaky, M.; Yoshikawa, K.; Gho, C. L.; Wegner, K.

    2016-12-01

    To build capacity in navigating challenges associated with a changing climate, learning in Arctic communities must not only increase STEM and climate change literacy, but also generate new knowledge as the rapid changes occur. Among the new NASA Science Mission Directorate Science Education projects, Arctic and Earth SIGNs (STEM Integrating GLOBE and NASA assets) is providing opportunities for K-12 pre-service and in-service teachers, their students, and lifelong learners to engage in citizen science using the Global Learning and Observations to Benefit the Environment (GLOBE) methods and culturally responsive learning to help address climate change challenges within their unique community, and contribute to hypothesis driven research. This project will weave traditional knowledge and western science, and use ground observations and satellite data and best teaching practices in STEM learning, supported through a NASA cooperative agreement and collaborative partnerships. Implementation will begin in rural Alaska and grow within Alaska and throughout the United States to reach underserved and STEM underrepresented populations, through face-to-face and on-line teaching and learning as well as building partnerships among educators, scientists, local and indigenous experts, institutions, agencies, and learning communities. Partners include research and teaching institutions at the University of Alaska Fairbanks, the Association of Interior Native Educators, the North Slope Borough School District and other school districts, the Kenaitze Tribe Environmental Education program, NASA science education and research programs as well as those of NOAA and NSF, the GLOBE Implementation Office, the 4-H program and others. The program resources and model will be shared and disseminated within the United States and globally through partners for local, national and worldwide use in STEM climate change education and citizen empowerment.

  17. Natural science majors and liberal education: The impact of a living-learning community

    NASA Astrophysics Data System (ADS)

    Hutt, Chris D.

    The purpose of this study was to explore the articulated experiences of natural science majors who were participating in a liberal arts living-learning community. Using the American Association of College and University's (2002) report, Greater Expectations as an organizing framework, this study sought to determine how - if at all - students in this learning community were encountering the organizational educational principles consistent with classical and contemporary liberal education. The study was a qualitative inquiry that examined students' precollege experiences and beliefs, their current perceptions on their academic experiences, and student reflections on the meaning of these experiences. The data collected and analyzed in the completion of this study consisted of a series of 19 individual interviews with students enrolled in both a natural science major and in a living- learning community (LLC). Analysis of the interview data led the researcher to identify four themes: (a) Students attributed intellectual growth to experiences in both the major and the LLC, and that the science curriculum was in some ways separated from the liberal arts curriculum; (b) Students experienced and defined diversity in meaningful ways; (c) Physical place and social space of the LLC contributed significantly to the program; and (d) Students reflected learning experiences and outcomes consistent with both classical and contemporary liberal educational environments. Ultimately, the students in this study viewed their participation in the LLC as a meaningful supplement to the science major. Further analysis of the findings, as well as conclusions and recommendations for both policy and practice, are discussed in the final chapter of the study.

  18. Service-Learning in the Mathematical Sciences

    ERIC Educational Resources Information Center

    Hadlock, Charles R.

    2013-01-01

    Service-learning can be a valuable educational enterprise with both course-specific and general education benefits, as well as contributions to the community. These potential merits and key considerations in achieving them are discussed with special attention to the mathematical sciences.

  19. Learning in the context of community: The academic experiences of first-year arts and science students in a learning community program

    NASA Astrophysics Data System (ADS)

    Schmidt, Nancy

    2000-10-01

    This study explored the academic experiences of two groups of first-year students in university, one in the arts and one in the science, who participated in a residential-based learning community program. Using qualitative and critical analysis of in-depth student interviews conducted over a fall and winter semester, I constructed their world as implied from their stories and narratives. From this vantage point, I investigated how students as novice learners negotiated their role as learners; the belief systems they brought with them to minimize academic risk; their coping strategies in a 12 week semestered system; and the tacit theories they acquired within their day-to-day educational experiences. A number of themes emerged from the research: students intentionally minimizing faculty contact until they developed 'worthiness'; learning as 'teacher pleasing'; disciplinary learning differences between the arts and sciences students; and a grade orientation that influenced what and how students learned. Within the broader political, ideological, and cultural framework of the university, I identified student patterns of accommodation, resistance, silence and submission in negotiating their roles as learners. By critiquing the academic side of university life as students experienced it and lived it as a community of learners, I exposed the tensions, contradictions, and paradoxes that emerged. I revealed the points of disjuncture that came from competing discourses within the university for these students: the discourse of community, the discourse of collective harmony, and the discourse of the market place.

  20. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    NASA Astrophysics Data System (ADS)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  1. Innovative Graduate Research Education for Advancement of Implementation Science in Adolescent Behavioral Health

    PubMed Central

    Levin, Bruce Lubotsky; Massey, Tom; Baldwin, Julie; Williamson, Heather

    2016-01-01

    An innovative approach to research education that integrates the theory and principles of implementation science, participatory research, and service learning in the area of adolescent behavioral health is presented. Qualitative interviews and surveys of program participants have been conducted to assess the program’s curricula, service-learning partnerships, student (scholar) satisfaction, and views of community partnerships and academic mentors. The Institute has experienced the successful completion of its first and second cohorts and enrollment of a third cohort of scholars. Community partners are utilizing results of service-learning projects to influence agency operations. Institute scholars have identified research and service learning experiences as key factors in the decision to apply to the Institute graduate certificate program. The availability of tuition support is identified as valuable but not ranked as the most important reason for scholar interest in the program. Academic mentors report positive relationships with community agencies. Future iterations of the program will expand options for distance learning and alternatives to traditional graduate education for community-based scholars. Community partner agency capacity for participation is expected to change over time. Methods are being identified to both sustain existing partnerships and develop new community partnership relationships. PMID:26746638

  2. Innovative Graduate Research Education for Advancement of Implementation Science in Adolescent Behavioral Health.

    PubMed

    Burton, Donna L; Levin, Bruce Lubotsky; Massey, Tom; Baldwin, Julie; Williamson, Heather

    2016-04-01

    An innovative approach to research education that integrates the theory and principles of implementation science, participatory research, and service learning in the area of adolescent behavioral health is presented. Qualitative interviews and surveys of program participants have been conducted to assess the program's curricula, service-learning partnerships, student (scholar) satisfaction, and views of community partnerships and academic mentors. The Institute has experienced the successful completion of its first and second cohorts and enrollment of a third cohort of scholars. Community partners are utilizing results of service-learning projects to influence agency operations. Institute scholars have identified research and service learning experiences as key factors in the decision to apply to the Institute graduate certificate program. The availability of tuition support is identified as valuable but not ranked as the most important reason for scholar interest in the program. Academic mentors report positive relationships with community agencies. Future iterations of the program will expand options for distance learning and alternatives to traditional graduate education for community-based scholars. Community partner agency capacity for participation is expected to change over time. Methods are being identified to both sustain existing partnerships and develop new community partnership relationships.

  3. WISE Science: Web-based Inquiry in the Classroom. Technology, Education--Connections

    ERIC Educational Resources Information Center

    Slotta, James D.; Linn, Marcia C.

    2009-01-01

    This book shares the lessons learned by a large community of educational researchers and science teachers as they designed, developed, and investigated a new technology-enhanced learning environment known as WISE: The Web-Based Inquiry Science Environment. WISE offers a collection of free, customizable curriculum projects on topics central to the…

  4. Turning Visitors into Citizens: Using Social Science for Civic Engagement in Informal Science Education Centers

    ERIC Educational Resources Information Center

    Bunten, Alexis; Arvizu, Shannon

    2013-01-01

    How can museums and other informal learning institutions cultivate greater civic engagement among the visiting public around important social issues? This case study of the National Network of Ocean and Climate Change Interpreters' (NNOCCI) professional learning community illustrates how insights from the social sciences can be productively…

  5. Engaging in Vocabulary Learning in Science: The Promise of Multimodal Instruction

    ERIC Educational Resources Information Center

    Townsend, Dianna; Brock, Cynthia; Morrison, Jennifer D.

    2018-01-01

    To a science 'outsider', science language often appears unnecessarily technical and dense. However, scientific language is typically used with the goal of being concise and precise, which allows those who regularly participate in scientific discourse communities to learn from each other and build upon existing scientific knowledge. One essential…

  6. Linking Research, Education and Public Engagement in Geoscience: Leadership and Strategic Partnerships

    NASA Astrophysics Data System (ADS)

    Spellman, K.

    2017-12-01

    A changing climate has impacted Alaska communities at unprecedented rates, and the need for efficient and effective climate change learning in the Boreal and Arctic regions is urgent. Learning programs that can both increase personal understanding and connection to climate change science and also inform large scale scientific research about climate change are an attractive option for building community adaptive capacity at multiple scales. Citizen science has emerged as a powerful tool for facilitating learning across scales, and for building partnerships across natural sciences research, education, and outreach disciplines. As an early career scientist and interdisciplinary researcher, citizen science has become the centerpiece of my work and has provided some of the most rewarding moments of my career. I will discuss my early career journey building a research and leadership portfolio integrating climate change research, learning research, and public outreach through citizen science. I will share key experiences from graduate student to early career PI that cultivated my leadership skills and ability to build partnerships necessary to create citizen science programs that emphasize synergy between climate change research and education.

  7. Service-Learning and Emergent Communities of Practice: A Teacher Education Case Study

    ERIC Educational Resources Information Center

    Kaschak, Jennifer Cutsforth; Letwinsky, Karim Medico

    2015-01-01

    This study investigates the unexpected emergence of a community of practice in a middle level mathematics and science methods course. The authors describe how preservice teacher participation in a collaborative, project-based service-learning experience resulted in the formation of a community of practice characterized by teamwork, meaningful…

  8. Chaos, Complexity, and Earning Community: What Do They Mean for Education?

    ERIC Educational Resources Information Center

    Pouravood, Roland C.

    1997-01-01

    Ponders possible explanations for the connections among chaos, complexity, and a learning community. Challenges the Newtonian world model, suggests that the world operates in a complex, nonlinear, unpredictable pattern, and calls for a new science to understand this complexity. A true learning community values individual autonomy, risk taking,…

  9. The Role of Afterschool and Community Science Programs in the Lives of Urban Youth

    ERIC Educational Resources Information Center

    Rahm, Jrene; Moore, John C.; Martel-Reny, Marie-Paule

    2005-01-01

    Afterschool and community science programs have become widely recognized as important sanctuaries for science learning for low-income urban youth and as offering them with "missing opportunities." Yet, more needs to be known about how youth, themselves, perceive such opportunities. What motivates youth to seek out such opportunities in…

  10. Science Professional Learning Communities: Beyond a singular view of teacher professional development

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Gardner, Grant E.; Robertson, Laura; Robert, Sarah

    2013-07-01

    Professional Learning Communities (PLCs) are frequently being used as a vehicle to transform science education. This study explored elementary teachers' perceptions about the impact of participating in a science PLC on their own professional development. With the use of The Science Professional Learning Communities Survey and a semi-structured interview protocol, elementary teachers' perceptions of the goals of science PLCs, the constraints and benefits of participation in PLCs, and reported differences in the impact of PLC participation on novice and experienced teachers were examined. Sixty-five elementary teachers who participated in a science PLC were surveyed about their experiences, and a subsample of 16 teachers was interviewed. Results showed that most of the teachers reported their science PLC emphasized sharing ideas with other teachers as well as working to improve students' science standardized test scores. Teachers noted that the PLCs had impacted their science assessment practices as well as their lesson planning. However, a majority of the participants reported a differential impact of PLCs depending on a teacher's level of experience. PLCs were reported as being more beneficial to new teachers than experienced teachers. The interview results demonstrated that there were often competing goals and in some cases a loss of autonomy in planning science lessons. A significant concern was the impact of problematic interpersonal relationships and communication styles on the group functioning. The role of the PLC in addressing issues related to obtaining science resources and enhancing science content knowledge for elementary science teachers is discussed.

  11. SciJourn Is Magic: Construction of a Science Journalism Community of Practice

    ERIC Educational Resources Information Center

    Nicholas, Celeste R.

    2017-01-01

    This article is the first to describe the discoursal construction of an adolescent community of practice (CoP) in a non-school setting. CoPs can provide optimal learning environments. The adolescent community centered around science journalism and positioned itself dichotomously in relationship to school literacy practices. The analysis focuses on…

  12. Rethinking Environmental Science Education from Indigenous Knowledge Perspectives: An Experience with a Dene First Nation Community

    ERIC Educational Resources Information Center

    Datta, Ranjan Kumar

    2018-01-01

    This auto-ethnographic article explores how land-based education might challenge Western environmental science education (ESE) in an Indigenous community. This learning experience was developed from two perspectives: first, land-based educational stories from Dene First Nation community Elders, knowledge holders, teachers, and students; and…

  13. A Community-University Exchange Project Modeled after Europe's Science Shops

    ERIC Educational Resources Information Center

    Tryon, Elizabeth; Ross, J. Ashleigh

    2012-01-01

    This article describes a pilot project of the Morgridge Center for Public Service at the University of Wisconsin-Madison for a new structure for community-based learning and research. It is based on the European-derived science shop model for democratizing campus-community partnerships using shared values of mutual respect and validation of…

  14. The Effect of Participating in a Pre-Veterinary Learning Community of Freshmen Interest Group (FIG) Has on the Odds of New Animal Science Majors Graduate

    ERIC Educational Resources Information Center

    Purdie, John R., II; Williams, James E.; Ellersieck, Mark R.

    2007-01-01

    All first-year students who entered the University of Missouri-Columbia as animal science majors between the fall of 1998 and 2004 (n = 619) had the opportunity to participate in a residentially-based Freshmen Interest Group (FIG) and/or a learning community specifically designed for them. The odds of graduating is significant for all three…

  15. CosmoQuest Collaborative: Galvanizing a Dynamic Professional Learning Network

    NASA Astrophysics Data System (ADS)

    Cobb, Whitney; Bracey, Georgia; Buxner, Sanlyn; Gay, Pamela L.; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    The CosmoQuest Collaboration offers in-depth experiences to diverse audiences around the nation and the world through pioneering citizen science in a virtual research facility. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and citizens of all ages—to explore and make sense of our solar system and beyond. Leveraging human networks to expand NASA science, scaffolded by an educational framework that inspires lifelong learners, CosmoQuest engages citizens in analyzing and interpreting real NASA data, inspiring questions and defining problems.The QuestionLinda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] … [and] connected to teachers' collaborative work in professional learning community...." (2012) In light of that, what is the unique role CosmoQuest's virtual research facility can offer NASA STEM education?A Few AnswersThe CosmoQuest Collaboration actively engages scientists in education, and educators (and learners) in science. CosmoQuest uses social channels to empower and expand NASA's learning community through a variety of media, including science and education-focused hangouts, virtual star parties, and social media. In addition to creating its own supportive, standards-aligned materials, CosmoQuest offers a hub for excellent resources and materials throughout NASA and the larger astronomy community.In support of CosmoQuest citizen science opportunities, CQ initiatives (Learning Space, S-ROSES, IDEASS, Educator Zone) will be leveraged and shared through the CQPLN. CosmoQuest can be present and alive in the awareness its growing learning community.Finally, to make the CosmoQuest PLN truly relevant, it aims to encourage partnerships between scientists and educators, and offer "just-in-time" opportunities to support constituents exploring emerging NASA STEM education, from diverse educators to the curious learner of any age.

  16. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    NASA Astrophysics Data System (ADS)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups including research scientists, formal and informal educators, business representatives, and non-profit groups to identify ocean-related problems, and develop solutions to share with their own communities. COSEE OLC practices and studies the skills of developing these collaborations.

  17. Evaluating Community-Based Participatory Research to Improve Community-Partnered Science and Community Health

    PubMed Central

    Hicks, Sarah; Duran, Bonnie; Wallerstein, Nina; Avila, Magdalena; Belone, Lorenda; Lucero, Julie; Magarati, Maya; Mainer, Elana; Martin, Diane; Muhammad, Michael; Oetzel, John; Pearson, Cynthia; Sahota, Puneet; Simonds, Vanessa; Sussman, Andrew; Tafoya, Greg; Hat, Emily White

    2013-01-01

    Background Since 2007, the National Congress of American Indians (NCAI) Policy Research Center (PRC) has partnered with the Universities of New Mexico and Washington to study the science of community-based participatory research (CBPR). Our goal is to identify facilitators and barriers to effective community–academic partnerships in American Indian and other communities, which face health disparities. Objectives We have described herein the scientific design of our National Institutes of Health (NIH)-funded study (2009–2013) and lessons learned by having a strong community partner leading the research efforts. Methods The research team is implementing a mixed-methods study involving a survey of principal investigators (PIs) and partners across the nation and in-depth case studies of CBPR projects. Results We present preliminary findings on methods and measures for community-engaged research and eight lessons learned thus far regarding partnership evaluation, advisory councils, historical trust, research capacity development of community partner, advocacy, honoring each other, messaging, and funding. Conclusions Study methodologies and lessons learned can help community–academic research partnerships translate research in communities. PMID:22982842

  18. Beginning science teachers' strategies for communicating with families

    NASA Astrophysics Data System (ADS)

    Bloom, Nena E.

    Science learning occurs in both formal and informal spaces. Families are critical for developing student learning and interest in science because they provide important sources of knowledge, support and motivation. Bidirectional communication between teachers and families can be used to build relationships between homes and schools, leverage family knowledge of and support for learners, and create successful environments for science learning that will support both teaching and student learning. To identify the communication strategies of beginning science teachers, who are still developing their teaching practices, a multiple case study was conducted with seven first year secondary science teachers. The methods these teachers used to communicate with families, the information that was communicated and shared, and factors that shaped these teachers' continued development of communication strategies were examined. Demographic data, interview data, observations and documentation of communication through logs and artifacts were collected for this study. Results indicated that the methods teachers had access to and used for communication impacted the frequency and efficacy of their communication. Teachers and families communicated about a number of important topics, but some topics that could improve learning experiences and science futures for their students were rarely discussed, such as advancement in science, student learning in science and family knowledge. Findings showed that these early career teachers were continuing to learn about their communities and to develop their communication strategies with families. Teachers' familiarity with their school community, opportunities to practice strategies during preservice preparation and student teaching, their teaching environment, school policies, and learning from families and students in their school culture continued to shape and influence their views and communication strategies. Findings and implications for teacher preparation programs, teachers, schools and organizations are discussed.

  19. Creating a virtual community of practice to investigate legitimate peripheral participation by African American middle school girls in science activities

    NASA Astrophysics Data System (ADS)

    Edwards, Leslie D.

    How do teenage girls develop an interest in science? What kinds of opportunities can science teachers present to female students that support their engagement with learning science? I studied one aspect of this issue by focusing on ways students could use science to enhance or gain identities that they (probably) already valued. To do that I created technology-rich activities and experiences for an after school class in science and technology for middle school girls who lived in a low socio-economic urban neighborhood. These activities and experiences were designed to create a virtual community of practice whose members used science in diverse ways. Student interest was made evident in their responses to the activities. Four conclusions emerged. (1) Opportunities to learn about the lives and work of admired African American business women interested students in learning by linking it to their middle-class aspirations and their interest in things that money and status can buy. (2) Opportunities to learn about the lives and work of African American women experts in science in a classroom context where students then practiced similar kinds of actual scientific tasks engaged students in relations of legitimate peripheral participation in a virtual and diverse community of practice focused on science which was created in the after-school classes. (3) Opportunities where students used science to show off for family, friends, and supporters of the after-school program, identities they valued, interested them enough that they engaged in long-term science and technology projects that required lots of revisions. (4) In response to the opportunities presented, new and enhanced identities developed around becoming a better student or becoming some kind of scientist.

  20. Cultural Memory Banking in Preservice Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Handa, Vicente C.; Tippins, Deborah J.

    2012-12-01

    This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers and a science teacher educator/doctoral candidate formed a research team and documented community funds of knowledge relevant to science teaching and learning through their participation in a Community Immersion course. The study employed the use of the cultural memory banking as a meditational tool to analyze, make sense of, and represent interview, focus-group discussion, and observation data, among others, for the development of culturally relevant science lessons. Originally used as an anthropological tool to preserve cultural knowledge associated with the cultivation of indigenous plant varieties, the cultural memory banking, as adapted in science education, was used, both as a data collection and analytic tool, to locate relevant science at the intersection of community life. The research team developed a cultural memory bank exemplar, "Ginamos: The Stinky Smell that Sells," to highlight the learning experiences and meaning-making process of those involved in its development. Dilemmas and insights on the development and use of cultural memory banking were discussed with respect to issues of knowledge mining and mainstreaming of indigenous/local funds of knowledge, troubling the privileged position of Western-inspired nature of science.

  1. Professional Development as a Catalyst for Change in the Community College Science Classroom: How Active Learning Pedagogy Impacts Teaching Practices as Well as Faculty and Student Perceptions of Learning

    ERIC Educational Resources Information Center

    Harmon, Melissa Cameron

    2017-01-01

    Active learning, an engaging, student-centered, evidence-based pedagogy, has been shown to improve student satisfaction, engagement, and achievement in college classrooms. There have been numerous calls to reform teaching practices, especially in science, technology, engineering, and math (STEM); however, the utilization of active learning is…

  2. "Because We Weren't Actually Teaching Them, We Thought They Weren't Learning": Primary Teacher Perspectives from the "My Science" Initiative

    ERIC Educational Resources Information Center

    Forbes, Anne; Skamp, Keith

    2014-01-01

    "MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. This paper describes the ongoing journey to date of eight primary teachers from three primary schools who actively participated in "MyScience" over an extended period. Their views of interactions…

  3. Bridging Communities: Culturing a Professional Learning Community that Supports Novice Teachers and Transfers Authentic Science and Mathematics to the Classroom

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; Miller, H. R.; Loving, C. L.; Pedersen, S.

    2006-12-01

    Professional Learning Community Model for Alternative Pathways (PLC-MAP) is a partnership of North Harris Montgomery Community Colleges, Texas A&M University, and 11 urban, suburban, and rural school districts in the Greater Houston area focused on developing a professional learning community that increases the retention and quality of middle and high school mathematics and science teachers who are being certified through the NHMCCD Alternative Certification Program. Improved quality in teaching refers to increased use of effective inquiry teaching strategies, including information technology where appropriate, that engage students to ask worthy scientific questions and to reason, judge, explain, defend, argue, reflect, revise, and/or disseminate findings. Novice teachers learning to adapt or designing authentic inquiry in their classrooms face two enormous problems. First, there are important issues surrounding the required knowledgebase, habit of mind, and pedagogical content knowledge of the teachers that impact the quality of their lesson plans and instructional sequences. Second, many ACP intern teachers teach under challenging conditions with limited resources, which impacts their ability to implement authentic inquiry in the classroom. Members of our professional learning community, including scientists, mathematicians and master teachers, supports novice teachers as they design lesson plans that engage their students in authentic inquiry. The purpose of this research was to determine factors that contribute to success or barriers that prevent ACP secondary science intern and induction year teachers from gaining knowledge and engaging in classroom inquiry as a result of an innovative professional development experience. A multi-case study design was used for this research. We adopted a two-tail design where cases from both extremes (good and poor gains) were deliberately chosen. Six science teachers were selected from a total of 40+ mathematics and science teachers. These six, on average, demonstrated either the highest gain in knowledge and/or engagement in inquiry-based teaching or the lowest gain among all the novice science teachers through the year of participation in the PLC-MAP program. Certain patterns emerged across all six cases, even when the other variables are acknowledged. The principal external factors were school climate—its culture, its mandates, its degree of teacher autonomy. The internal factors were teacher beliefs about learning through inquiry, about their own need for additional knowledge, and about managing inquiry--all tied to degrees of self-efficacy.

  4. Not Driven by High-Stakes Tests: Exploring Science Assessment and College Readiness of Students from an Urban Portfolio Community High School

    ERIC Educational Resources Information Center

    Fleshman, Robin Earle

    2017-01-01

    This case study seeks to explore three research questions: (1) What science teaching and learning processes, perspectives, and cultures exist within the science classroom of an urban portfolio community high school? (2) In what ways does the portfolio-based approach prepare high school students of color for college level science coursework,…

  5. "But the Science We Do Here Matters": Youth-Authored Cases of Consequential Learning

    ERIC Educational Resources Information Center

    Birmingham, Daniel; Calabrese Barton, Angela; McDaniel, Autumn; Jones, Jalah; Turner, Camryn; Rogers, Angel

    2017-01-01

    In this paper, we use the concept of "consequential learning" to frame our exploration of what makes learning and doing science matter for youth from nondominant communities, as well as the barriers these youth must confront in working toward consequential ends. Data are derived from multimodal cases authored by four females from…

  6. Pedagogic Practice Integrating Primary Science and Elearning: The Need for Relevance, Recognition, Resource, Reflection, Readiness and Risk

    ERIC Educational Resources Information Center

    Rodrigues, Susan

    2006-01-01

    This article describes a well-funded and well-equipped model of teacher professional development that encouraged the promotion of information-rich learning environments for learning science. A community of practice using face-to-face and electronic communication encouraged learning, and generated and ensured pedagogical change and innovation. The…

  7. Open Educational Resources in Support of Science Learning: Tools for Inquiry and Observation

    ERIC Educational Resources Information Center

    Scanlon, Eileen

    2012-01-01

    This article focuses on the potential of free tools, particularly inquiry tools for influencing participation in twenty-first-century learning in science, as well as influencing the development of communities around tools. Two examples are presented: one on the development of an open source tool for structured inquiry learning that can bridge the…

  8. Formative Reflections of University Recreation Science Students in South Africa as Catalyst for an Adapted Service-Learning Program

    ERIC Educational Resources Information Center

    Goslin, Anneliese; van der Klashorst, Engela; Kluka, Darlene A.; van Wyk, Johannes G. U.

    2016-01-01

    Community-university partnerships through service-learning have progressively developed as part of institutions of higher education's mission statements. This paper explores the qualitative reflections of 410 undergraduate students enrolled in an academic recreation science course on a first time service-learning experience in South Africa. The…

  9. Community-Based Engineering

    ERIC Educational Resources Information Center

    Dalvi, Tejaswini; Wendell, Kristen

    2015-01-01

    A team of science teacher educators working in collaboration with local elementary schools explored opportunities for science and engineering "learning by doing" in the particular context of urban elementary school communities. In this article, the authors present design task that helps students identify and find solutions to a…

  10. Designing and Implementing Service Learning Projects in an Introductory Oceanography Course Using the ``8-Block Model''

    NASA Astrophysics Data System (ADS)

    Laine, E. P.; Field, C.

    2010-12-01

    The Campus Compact for New Hampshire (Gordon, 2003) introduced a practical model for designing service-learning exercises or components for new or existing courses. They divided the design and implementation process into eight concrete areas, the “8-Block Model”. Their goal was to demystify the design process of service learning courses by breaking it down into interconnected components. These components include: project design, community partner relations, the problem statement, building community in the classroom, building student capacity, project management, assessment of learning, and reflection and connections. The project design component of the “8-Block Model” asks that the service performed be consistent with the learning goals of the course. For science courses students carry out their work as a way of learning science and the process of science, not solely for the sake of service. Their work supports the goals of a community partner and the community partner poses research problems for the class in a letter on their letterhead. Linking student work to important problems in the community effectively engages students and encourages them to work at more sophisticated levels than usually seen in introductory science classes. Using team-building techniques, the classroom becomes a safe, secure learning environment that encourages sharing and experimentation. Targeted lectures, labs, and demonstrations build the capacity of students to do their research. Behind the scenes project management ensures student success. Learning is assessed using a variety of tools, including graded classroom presentations, poster sessions, and presentations and reports to community partners. Finally, students reflect upon their work and make connections between their research and its importance to the well being of the community. Over the past 10 years, we have used this approach to design and continually modify an introductory oceanography course for majors and non-majors. The goal was to provide students with an opportunity to do authentic research on water quality and marine resource issues in local coastal embayments. Student research supported several community organizations, most notably the Friends of Casco Bay, an NGO interested in improving the water quality in Casco Bay. This research helped the students to reach some of the learning goals for the course including an understanding of tides, currents, phytoplankton, water quality parameters, dissolved nutrients, and analysis and presentation of quantitative data. Using this pedagogical model allowed the basic structure of the course to remain the same over the years, while enabling us to flexibly respond to changes in the needs and interests of community partners. Gordon, R, Ed. (2003) Problem Based Service Learning: A Field Guide for Making a Difference in Higher Education, 2nd edition. Campus Compact for New Hampshire, Bedford, NH

  11. Pupils' Beliefs in Cultural Interpretations of "Heat" Associated with Anger: A Comparative Study of Ten Ethnic Communities in Kenya

    ERIC Educational Resources Information Center

    Okere, Mark I. O.; Keraro, Fred N.; Anditi, Zephania

    2012-01-01

    Emerging evidence indicates that culture influences pupils learning of science. However, the influence of culture on science learning is usually not considered when developing science curricular for both primary and secondary schools. This study investigated the extent to which primary and secondary school pupils believe in cultural…

  12. Turning the Tide: Transforming Science Learning and Teaching in Rural and Remote Schools

    ERIC Educational Resources Information Center

    Aldous, Carol

    2008-01-01

    A recent national study into Science, ICT and Mathematics education in rural and regional Australia (SiMERR) highlighted the disadvantages faced by rural and remote communities in terms of science learning and teaching. Focus group interviews conducted in rural primary schools in South Australia identified a lack of resources and of access to…

  13. Campus Community Involvement in an Experimental Food Research Project Increases Students' Motivation and Improves Perceived Learning Outcomes

    ERIC Educational Resources Information Center

    Goto, K.; Bianco-Simeral, S.

    2009-01-01

    Although the effects of pedagogical strategies using collaborative learning on students' perceived learning outcomes have been studied, little has been examined about possible benefits and challenges in collaborating with the campus community in a food science research project conducted by nutrition majors. We examined the effects of involving…

  14. Developing University and Community Partnerships: A Critical Piece of Successful Service Learning

    ERIC Educational Resources Information Center

    McDonald, James; Dominguez, Lynn A.

    2015-01-01

    The partnership between science and the environment in service-learning projects helps students to make greater connections to the world around them. Service learning provides many benefits to students, faculty, and communities within the context of a college course. However, to prevent frustration, it is important for faculty members to make a…

  15. Valuing difference in students' culture and experience in school science lessons

    NASA Astrophysics Data System (ADS)

    Banner, Indira

    2016-12-01

    Susan Harper writes about how a cross-cultural learning community can be formed where people from different cultures are not simply assimilated into a school science community but are seen and heard. This makes learning reciprocal and meaningful for both recent refugees and the dominant population. Although maybe not refugees, students from poorer backgrounds in many countries are less likely to choose science at a post-compulsory level. This article discusses some of the potential barriers that are faced by many of these students, that prevent them from participating in school science. It suggests how people involved in school science might address these issues to allow a smoother cultural border crossing between the students' cultures and school science culture by reducing the significance of the crossing.

  16. Relationship between Active Learning Methodologies and Community College Students' STEM Course Grades

    ERIC Educational Resources Information Center

    Lesk, Cherish Christina Clark

    2017-01-01

    Active learning methodologies (ALM) are associated with student success, but little research on this topic has been pursued at the community college level. At a local community college, students in science, technology, engineering, and math (STEM) courses exhibited lower than average grades. The purpose of this study was to examine whether the use…

  17. Training the Foot Soldiers of Inquiry: Development and Evaluation of a Graduate Teaching Assistant Learning Community

    ERIC Educational Resources Information Center

    Linenberger, Kimberly; Slade, Michael C.; Addis, Elizabeth A.; Elliott, Emily R.; Mynhardt, Glené; Raker, Jeffrey R.

    2014-01-01

    As part of a Howard Hughes Program for Innovation in Science Education grant at Iowa State University, a series of interdisciplinary graduate teaching assistant learning communities (TALC) were developed. The purpose of these communities was to create an environment to facilitate teaching assistants' pedagogical development and training to enhance…

  18. Investigating Student Communities with Network Analysis of Interactions in a Physics Learning Center

    ERIC Educational Resources Information Center

    Brewe, Eric; Kramer, Laird; Sawtelle, Vashti

    2012-01-01

    Developing a sense of community among students is one of the three pillars of an overall reform effort to increase participation in physics, and the sciences more broadly, at Florida International University. The emergence of a research and learning community, embedded within a course reform effort, has contributed to increased recruitment and…

  19. Uncomfortable Departments: British Historians of Science and the Importance of Disciplinary Communities

    ERIC Educational Resources Information Center

    Fyfe, Aileen

    2015-01-01

    This paper explores issues around disciplinary belonging and academic identity. Historians of science learn to think and practise like historians in terms of research practice, but this paper shows that British historians of science do not think of themselves as belonging to the disciplinary community of historians. They may be confident that they…

  20. Community based monitoring: engaging and empowering Alberta ranchers

    Treesearch

    Michael S. Quinn; Jennifer E. Dubois

    2005-01-01

    Community based monitoring (CBM), a form of citizen science, is presented as a potential contributor to ecosystem management and sustainable development. A conceptual model for CBM and lessons learned from a Canadian national pilot program, the Canadian Community Monitoring Network, are summarized along with a description of the European university-based “science shop...

  1. The Process of Science Communications at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning-based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium.

  2. Negotiating Three Worlds: Academia, Nursing Science, and Tribal Communities

    PubMed Central

    Holkup, Patricia A.; Rodehorst, T. Kim; Wilhelm, Susan L.; Kuntz, Sandra W.; Weinert, Clarann; Stepans, Mary Beth Flanders; Salois, Emily Matt; Bull, Jacqueline Left Hand; Hill, Wade G.

    2009-01-01

    Purpose The purpose of this article is to use a cross-cultural model to guide the exploration of common issues and the dynamic interrelationships surrounding entrée to tribal communities as experienced by four nursing research teams. Method Members of four research teams discuss the primary lessons learned about successful strategies and challenges encountered during their projects' early stages. Results Understanding the cultural values of relationship and reciprocity is critical to the success of research projects conducted in Native American communities. Discussion Conducting cross-cultural research involves complex negotiations among members of three entities: academia, nursing science, and tribal communities. The lessons learned in these four research projects may be instructive to investigators who have the opportunity to conduct research with tribal communities. PMID:18948449

  3. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    NASA Astrophysics Data System (ADS)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to outcomes of science curriculum change improvements with the consideration but not the dictation of the larger school community and state agendas. Thus, the study's results work to fuse previously separated research on general PLCs and curriculum change efforts into a cohesive understanding of the unexplored potential of a science PLC and school-based science curriculum change.

  4. Preparing Scientists to be Community Partners

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2012-12-01

    Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential. There is much more to learn about preparing students for these collaborative approaches, and the principal goal of sharing these strategies is to spark a conversation about the ways we prepare scientists and the public to work together in an increasingly collaborative scientific enterprise.

  5. Climate Modeling Computing Needs Assessment

    NASA Astrophysics Data System (ADS)

    Petraska, K. E.; McCabe, J. D.

    2011-12-01

    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  6. Mapping a sustainable future: Community learning in dialogue at the science-society interface

    NASA Astrophysics Data System (ADS)

    Barth, Matthias; Lang, Daniel J.; Luthardt, Philip; Vilsmaier, Ulli

    2017-12-01

    In 2015, the German Federal Ministry of Education and Research (BMBF) announced that the Science Year 2015 would focus on the "City of the Future". It called for innovative projects from cities and communities in Germany dedicated to exploring future options and scenarios for sustainable development. Among the successful respondents was the city of Lüneburg, located in the north of Germany, which was awarded funding to establish a community learning project to envision a sustainable future ("City of the Future Lüneburg 2030+"). What made Lüneburg's approach unique was that the city itself initiated the project and invited a broad range of stakeholders to participate in a community learning process for sustainable development. The authors of this article use the project as a blueprint for sustainable city development. Presenting a reflexive case study, they report on the process and outcomes of the project and investigate community learning processes amongst different stakeholders as an opportunity for transformative social learning. They discuss outputs and outcomes (intended as well as unintended) in relation to the specific starting points of the project to provide a context-sensitive yet rich narrative of the case and to overcome typical criticisms of case studies in the field.

  7. Teachers in an Interdisciplinary Learning Community: Engaging, Integrating, and Strengthening K-12 Education

    ERIC Educational Resources Information Center

    Hardré, Patricia L.; Ling, Chen; Shehab, Randa L.; Nanny, Mark A.; Nollert, Matthias U.; Refai, Hazem; Ramseyer, Christopher; Herron, Jason; Wollega, Ebisa D.

    2013-01-01

    This study examines the inputs (processes and strategies) and outputs (perceptions, skill development, classroom transfer, disciplinary integration, social networking, and community development) of a yearlong, interdisciplinary teacher learning and development experience. Eleven secondary math and science teachers partnered with an…

  8. Aligning the Stars

    ERIC Educational Resources Information Center

    Thomas, Jeff; White, Katie

    2012-01-01

    Science Night--everybody wants one, but how does a teacher make it happen? To promote connections between schools, families, and communities, the authors organized a unique learning opportunity by combining three community partners' efforts and strengths. The school's Parent Teacher Association (PTA) coordinated and sponsored a science night for…

  9. Community development in a Research Experience for Teachers (RET) program: Teacher growth and translation of the experience back to the classroom

    NASA Astrophysics Data System (ADS)

    Johnston, Carol Suzanne Chism

    This qualitative study explores how a scientific research experience helped seven secondary science teachers to grow professionally. The design of this Research Experience for Teachers (RET) program emphasized having teachers become members of university scientific research communities---participating in experimental design, data collection, analysis, and presenting of findings---in order to have a better understanding of research science. I conducted individual interviews with teacher and scientist participants, visited the teachers in their laboratories, videotaped classroom visits, and videotaped group meetings during the summers to learn what teachers brought back to their classrooms about the processes of science. I examined the teachers' views of research science, views shaped by their exposure to research science under the mentorship of a scientist participant. The teachers observed the collaborative efforts of research scientists and experienced doing scientific research, using technology and various experimental methods. Throughout their two-year experience, the teachers continually refined their images of scientists. I also examined how teachers in this program built a professional community as they developed curricula. Further, I investigated what the teachers brought from their experiences back to the classroom, deciding on a theme of "Communicating Science" as a way to convey aspects of scientific inquiry to students. Teacher growth as a result of this two-year program included developing more empathy for student learning and renewing their enthusiasm for both learning and teaching science. Teacher growth also included developing curricula to involve students in behaving as scientists. The teachers identified a few discrete communication practices of scientists that they deemed appropriate for students to adopt to increase their communication skills. Increased community building in classes to model scientific communities was seen as a way to motivate students and to help them to understand scientific concepts.

  10. Place-based Learning About Climate with Elementary GLOBE

    NASA Astrophysics Data System (ADS)

    Hatheway, B.; Gardiner, L. S.; Harte, T.; Stanitski, D.; Taylor, J.

    2017-12-01

    Place-based education - helping students make connections between themselves, their community, and their local environment - is an important tool to help young learners understand their regional climate and start to learn about climate and environmental change. Elementary GLOBE storybooks and learning activities allow opportunities for place-based education instructional strategies about climate. In particular, two modules in the Elementary GLOBE unit - Seasons and Climate - provide opportunities for students to explore their local climate and environment. The storybooks and activities also make connections to other parts of elementary curriculum, such as arts, geography, and math. Over the long term, place-based education can also encourage students to be stewards of their local environment. A strong sense of place may help students to see themselves as stakeholders in their community and its resilience. In places that are particularly vulnerable to the impacts of climate and environmental change and the economic, social, and environmental tradeoffs of community decisions, helping young students developing a sense of place and to see the connection between Earth science, local community, and their lives can have a lasting impact on how a community evolves for decades to come. Elementary GLOBE was designed to help elementary teachers (i.e., grades K-4) integrate Earth system science topics into their curriculum as they teach literacy skills to students. This suite of instructional materials includes seven modules. Each module contains a science-based storybook and learning activities that support the science content addressed in the storybooks. Elementary GLOBE modules feature air quality, climate, clouds, Earth system, seasons, soil, and water. New eBooks allow students to read stories on computers or tablets, with the option of listening to each story with an audio recording. A new Elementary GLOBE Teacher Implementation Guide, published in 2017, provides educators with information and strategies how Elementary GLOBE modules can be effectively applied in classrooms, how Elementary GLOBE modules are aligned with national standards, and how student literacy and science inquiry skills can be strengthened while learning about the Earth system.

  11. #ClimateEdCommunity : Field Workshops Bring Together Teachers and Researchers to Make Meaning of Science and Classroom Integration

    NASA Astrophysics Data System (ADS)

    Bartholow, S.; Warburton, J.; Wood, J. H.; Steiner, S. M.

    2015-12-01

    Seeing Understanding and Teaching: Climate Change in Denali is a four-day immersive teacher professional development course held in Denali National Park. Developed through three partner organizations, the course aims to develop teachers' skills for integrating climate change content into their classrooms. This presentation aims to share tangible best practices for linking researchers and teachers in the field, through four years of experience in program delivery and reported through a published external evaluation. This presentation will examine the key aspects of a successful connection between teachers, researchers, science, and classrooms: (1) Inclusion of teacher leaders, (2) dedicated program staff, (3) workshop community culture, and will expose barriers to this type of collaboration including (1) differences in learning style, (2) prior teaching experience, (3) existing/scaffolding understanding of climate change science, and (4) accessibility of enrollment and accommodations for the extended learning experience. Presentation Content Examples:Participants overwhelmingly value the deep commitment this course has to linking their field experience to the classroom attributing to the role of a teacher-leader; an expert science teacher with first-hand field research experience in the polar regions. The goal of including a teacher-leader is to enhance translatability between fieldwork and the classroom. Additionally, qualitative aspects of the report touches on the intangible successes of the workshop such as: (1) the creation of a non-judgmental learning atmosphere, (2) addressing accessibility to science learning tools in rural and under-served communities, (3) defining successful collaboration as making meaning together through exploratory questioning while in the field (4) discussed the social and cultural implications of climate change, and the difficulty of navigating these topics in educational and/or multicultural spaces. Next Steps? Create a #ClimateEdCommunity that is both teachers and researchers with teacher leaders as a catalyst for transcending our disparate disciplines and developing a community of learning, without judgment, and interpersonal connections.

  12. Supporting the Development of Science Communication Skills in STEM University Students: Understanding Their Learning Experiences as They Work in Middle and High School Classrooms

    ERIC Educational Resources Information Center

    Grant, Brooke L.; Liu, Xiufeng; Gardella, Joseph A.

    2015-01-01

    This paper examines the roles that 52 university Science, Technology, Engineering, and Mathematics (STEM) students play in an Interdisciplinary Science and Engineering Partnership that connects several middle schools, high schools, institutions of higher learning, businesses, and community institutions. It also examines the support these students…

  13. Preparing for a Global Scientific Workforce: Lessons Learned by the Chemistry Community

    NASA Astrophysics Data System (ADS)

    Baranovic, M.; Nameroff, T.

    2005-12-01

    Globalization has significant implications for science, science education, and the workforce. Flows of capital and knowledge are altering patterns of economic and technological development. Technology is allowing science to be conducted in real time on a global scale. International connections and mobility are increasing worldwide. At the same time science is becoming a truly global endeavor, the convergence of disciplines suggests that scientists from different backgrounds can learn from each other's experiences in addressing these challenges and opportunities. This presentation reviews some of the impacts of globalization on the chemically related sciences, students, and profession. As a result of globalization, today's practitioners of chemistry need an ever-expanding skill set to succeed. In addition to a strong command of the basic principles of chemistry, students and practitioners need to know how to work on multicultural teams, have knowledge of other languages, and be able to communicate effectively. The American Chemical Society (ACS) is coming to terms with and responding to changes in the nature of chemistry and its practice. This presentation will explore some of the innovative efforts of ACS to meet the challenges for chemistry in an era of globalization. The Earth and space sciences community may benefit from the chemistry community's "lessons learned."

  14. The Art and Science of Leadership in Learning Environments: Facilitating a Professional Learning Community across Districts

    ERIC Educational Resources Information Center

    Hands, Catherine; Guzar, Katlyn; Rodrigue, Anne

    2015-01-01

    A professional learning community (PLC) is one of the most promising strategies for effecting change in educational practices to improve academic achievement and wellbeing for all students. The PLC facilitator's role in developing and leading blended (online and face-to-face) PLCs with members from Ontario's school districts was examined through a…

  15. Professional Learning Communities

    ERIC Educational Resources Information Center

    Eley, Alison

    2017-01-01

    There are many professional development programmes on offer for primary science. The best of these involve teachers in developing practice over time, alongside engaging with theory. In this article, the author considers how working as part of a professional learning community can support a collaborative and evidence informed approach to improving…

  16. Community Resource Curriculum Development: Grades 3-4.

    ERIC Educational Resources Information Center

    Bentley, Michael L.; And Others

    This manual was developed by the Community Resource Curriculum Development Project (CRCDP), a cooperative project to develop multi-disciplinary, multi-ethnic, multi-cultural science/social sciences teaching units based upon the Illinois State Goals for Learning. This manual contains seven teaching units that include several experience-based…

  17. Collaboration with Community Partners

    ERIC Educational Resources Information Center

    Sterling, Donna R.; Frazier, Wendy M.

    2006-01-01

    For eight years, relationships with community partners have been the mainstay of a science enrichment program for secondary students. Through the use of problem-based learning, science classes use, the techniques and tools of scientists to solve authentic problems directly related to students' interests and needs. In this article, the author…

  18. A collaboration among health sciences schools to enhance faculty development in teaching.

    PubMed

    Sicat, Brigitte L; O'Kane Kreutzer, Kathy; Gary, Judy; Ivey, Carole K; Marlowe, Elizabeth P; Pellegrini, Joan M; Shuford, Veronica P; Simons, Dianne F

    2014-06-17

    Those involved in providing faculty development may be among only a few individuals for whom faculty development is an interest and priority within their work setting. Furthermore, funding to support faculty development is limited. In 2010, an interprofessional, self-formed, faculty learning community on faculty development in teaching was established to promote collaboration on faculty development initiatives that have transference to faculty members across disciplines and to share expertise and resources for wider impact. The organic structure and processes of the faculty learning community created an environment that has not only resulted in an increased offering of faculty development opportunities and resources across the health science campus, but has created a rich environment that combines the knowledge, innovation, and experience to promote collaborative efforts that benefit all. The background, structure, processes, successes, and lessons learned of the interprofessional faculty learning community on faculty development in teaching are described.

  19. Application of Implementation Science Methodology to Immediate Postpartum Long-Acting Reversible Contraception Policy Roll-Out Across States.

    PubMed

    Rankin, Kristin M; Kroelinger, Charlan D; DeSisto, Carla L; Pliska, Ellen; Akbarali, Sanaa; Mackie, Christine N; Goodman, David A

    2016-11-01

    Purpose Providing long-acting reversible contraception (LARC) in the immediate postpartum period is an evidence-based strategy for expanding women's access to highly effective contraception and for reducing unintended and rapid repeat pregnancy. The purpose of this article is to demonstrate the application of implementation science methodology to study the complexities of rolling-out policies that promote immediate postpartum LARC use across states. Description The Immediate Postpartum LARC Learning Community, sponsored by the Association of State and Territorial Health Officials (ASTHO), is made up of multi-disciplinary, multi-agency teams from 13 early-adopting states with Medicaid reimbursement policies promoting immediate postpartum LARC. Partners include federal agencies and maternal and child health organizations. The Learning Community discussed barriers, opportunities, strategies, and promising practices at an in-person meeting. Implementation science theory and methods, including the Consolidated Framework for Implementation Research (CFIR), and a recent compilation of implementation strategies, provide useful tools for studying the complexities of implementing immediate postpartum LARC policies in birthing facilities across early adopting states. Assessment To demonstrate the utility of this framework for guiding the expansion of immediate postpartum LARC policies, illustrative examples of barriers and strategies discussed during the in-person ASTHO Learning Community meeting are organized by the five CFIR domains-intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and process. Conclusion States considering adopting policies can learn from ASTHO's Immediate Postpartum LARC Learning Community. Applying implementation science principles may lead to more effective statewide scale-up of immediate postpartum LARC and other evidence-based strategies to improve women and children's health.

  20. The Relative Influence of Formal Learning Opportunities versus Indicators of Professional Community on Changes in Science Teaching in Urban Schools

    ERIC Educational Resources Information Center

    McGee, Steven

    2016-01-01

    Previous research has shown that professional communities have the potential to be a powerful lever for continuous improvement in school settings. This research seeks to extend previous research by investigating the indicators of professional community that influence science teaching practice. This study took place in a network of urban…

  1. Engaging Scientists in NASA Education and Public Outreach: Informal Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Discovery Guides Collaborative, Universe; Collaborative, NASAScience4Girls; SEPOF Informal Education Working Group; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Informal Science Education and Outreach communities. Members of the Informal Science Education and Outreach communities include museum/science center/planetarium professionals, librarians, park rangers, amateur astronomers, and other out-of-school-time educators. The Forums’ efforts for the Informal Science Education and Outreach communities include a literature review, appraisal of informal educators’ needs, coordination of audience-based NASA resources and opportunities, and professional development. Learn how to join in our collaborative efforts to reach the informal science education and outreach communities based upon mutual needs and interests.

  2. Learning progressions from a sociocultural perspective: response to "co-constructing cultural landscapes for disciplinary learning in and out of school: the next generation science standards and learning progressions in action"

    NASA Astrophysics Data System (ADS)

    Tytler, Russell

    2016-10-01

    This article discusses a case for a different, socio-cultural way of looking at learning progressions as treated in the next generation science standards (NGSS) as described by Ralph Cordova and Phyllis Balcerzak's paper "Co-constructing cultural landscapes for disciplinary learning in and out of school: the next generation science standards and learning progressions in action". The paper is interesting for a number of reasons, and in this response I will identify different aspects of the paper and link the points made to my own research, and that of colleagues, as complementary perspectives. First, the way that the science curriculum is conceived as an expanding experience that moves from the classroom into the community, across subjects, and across time, links to theoretical positions on disciplinary literacies and notions of learning as apprenticeship into the discursive tools, or `habits of mind' as the authors put it, that underpin disciplinary practice. Second, the formulation of progression through widening communities of practice is a strong feature of the paper, and shows how children take on the role of scientists through this expanding exposure. I will link this approach to some of our own work with school—community science partnerships, drawing on the construct of boundary crossing to tease out relations between school science and professional practice. Third, the demonstration of the expansion of the children's view of what scientists do is well documented in the paper, illustrated by Figure 13 for instance. However I will, in this response, try to draw out and respond to what the paper is saying about the nature of progression; what the progression consists of, over what temporal or spatial dimensions it progresses, and how it can productively frame curriculum processes.

  3. A review of microbiology service learning.

    PubMed

    Webb, Ginny

    2017-02-01

    Service learning is a teaching method that incorporates community engagement into the curriculum of a course. Service learning is becoming increasingly popular on college campuses and across disciplines. Studies have shown many benefits to service learning for the students and the community they serve. Service learning has been incorporated into science courses, including microbiology. This review will address the benefits to service learning and provide an overview of the various types of service-learning projects that have been completed in microbiology courses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. The Learning Sciences and Liberal Education

    ERIC Educational Resources Information Center

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  5. Exploring Hybrid Instruction in Science: Using LMS for Contextual, Interdisciplinary Active Learning Enrichment

    ERIC Educational Resources Information Center

    Quarless, Duncan; Nieto, Fernando

    2013-01-01

    Learning Management Systems are instructional platforms that offer opportunities to address the development of core competencies across disciplines. The emergence of instructional models which place greater emphasis on core skill development in science education help to build interdisciplinary communities through curricular connectivity and…

  6. Developing Preservice Elementary Teachers' Knowledge and Practices through Modeling-Centered Scientific Inquiry

    ERIC Educational Resources Information Center

    Schwarz, Christina

    2009-01-01

    Preservice elementary teachers face many challenges in learning how to teach science effectively, such as engaging students in science, organizing instruction, and developing a productive learning community. This paper reports on several iterative cycles of design-based research aimed at fostering preservice teachers' principled reasoning around…

  7. Learning to Feel Like a Scientist

    ERIC Educational Resources Information Center

    Jaber, Lama Z.; Hammer, David

    2016-01-01

    There is increased attention in the science education community on the importance of engaging students in the practices of science. However, there is much to be learned about "how" students enter into and sustain their engagement in these practices. In this paper, we argue that "epistemic affect"--feelings and emotions…

  8. Networked Environments that Create Hybrid Spaces for Learning Science

    ERIC Educational Resources Information Center

    Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen

    2014-01-01

    Networked learning environments that embed the essence of the Community of Inquiry (CoI) framework utilise pedagogies that encourage dialogic practices. This can be of significance for classroom teaching across all curriculum areas. In science education, networked environments are thought to support student investigations of scientific problems,…

  9. A Place-Based Learning Community: Klamath Connection at Humboldt State University

    ERIC Educational Resources Information Center

    Johnson, Matt; Sprowles, Amy; Overeem, Katlin; Rich, Angela

    2013-01-01

    A place-based learning community called "Klamath Connection" was designed to improve the academic performance of freshman in Science, Technology, Engineering, and Math (STEM) majors at Humboldt State University, a midsize public institution in a location geographically and culturally unfamiliar to the majority of its students. The…

  10. Being "chill" with teachers and "frozen" by peers in science: overcoming social and educational barriers in a learning community

    NASA Astrophysics Data System (ADS)

    Kim, Hannah; Scantlebury, Kathryn

    2013-09-01

    This forum discusses the issue of `othering' and how intersectionality is a useful analytical framework for understanding the students' immigrant experiences in, and out of, the science classroom. We use a feminist perspective to discuss Minjung's study because gender is a key aspect of one's identity other aspects such as race, religion, socio-economic status, and age have assumed a significant status in gender studies. Lastly we examine the supports and barriers that cliques can produce and propose the importance of building a learning community in the science classroom to engage all students.

  11. Community Resource Curriculum Development: Grades K-2.

    ERIC Educational Resources Information Center

    Bentley, Michael L.; And Others

    This manual was developed by the Community Resource Curriculum Development Project (CRCDP), a cooperative project to develop multi-disciplinary, multi-ethnic, multi-cultural science/social sciences teaching units based upon the Illinois State Goals for Learning and the Chicago Public Schools outcomes for a seamless kindergarten, first, and second…

  12. "Nuestra Tierra Dinamica" Global Climate Change STEM Education Fostering Environmental Stewardship

    NASA Astrophysics Data System (ADS)

    La Grave, M.; de Valenzuela, M.; Russell, R.

    2012-12-01

    CLUB ECO LÓGICO is a democratic and participatory program that provides active citizenship in schools and community, placing climate change into context for the Latino Community. The program's objectives focus on: 1. The Environment. Reducing the school and community impact on the environment through environmental footprint through stewardship actions. 2. Empowerment. Engaging participants through project and service learning and make decisions about how to improve their schools, their homes and their community's environment. 3. Community and Research Partnerships. Fostering collaborations with local community, stakeholders, government, universities, research organizations, and businesses that have expertise in environmental research, management, education and climate change. 4. Awareness. Increasing environmental and climate science knowledge of participants through STEM activities and hands-on access to technology. 5. Research and evaluation. Assessing the relevance of program activities through the engagement of the Latino community in planning and the effectiveness and impact of STEM activities through formative and summative evaluation. To address these objectives, the program has several inter related components in an after school setting: SUN EARTH Connections: Elementary (grades K to 2) students learn the basic climate change concepts through inquiry and hands on STEM activities. Bilingual 8 facilitators adapt relevant NASA educational resources for use in inquiry based, hands on activities. Drama and the arts provide unique experiences as well as play a key role in learning, participation and facilitation. GREEN LABS: Elementary students (grades 3 to 5) participate in stations where each Lab is staffed by at least two professionals: a College level fully bilingual Latin American Professional and a stakeholder representing either a research organization or other relevant environmental organization. Our current Green Lab themes include: Air, Soils, Water, Energy, Health, Waste and Communicating Science. Parental and Community Engagement: Family or Community Nights and community events showcasing student products, videos, and service learning projects in a bilingual format; and presentations by research scientists on climate and environmental science topics of interest to the Latino community. Our events have been highlighted on Univision television evening news, reaching Latinos across the state. Digital Story Telling: Our Video Lab involves Latino high school students who are trained as mentors, encouraged to research climate change topics, meet scientists and learn about video technology. By fall 2013, our HS Video Lab will mentor local middle school students. Throughout the year students take field trips to film and interview key scientists and educators. The project will share lessons learned concerning several issues: 1. What environmental and climate science issues are most relevant for Latinos; 2. What strategies are effective in engaging the Latino community in program planning and in engaging participation; 3. What approaches are effective in developing or adapting environmental and climate science education activities for Latino students and families; 4. How to develop effective partnerships with research and other environmental organizations; 5. How to develop culturally sensitive evaluation strategies.

  13. Promoting Science Literacy through Research Service-Learning--An Emerging Pedagogy with Significant Benefits for Students, Faculty, Universities, and Communities

    ERIC Educational Resources Information Center

    Reynolds, Julie A.; Ahern-Dodson, Jennifer

    2010-01-01

    Research service-learning (RSL) is an emerging pedagogy in which students engage in research within a service-learning context. This approach has great potential to promote science literacy because it teaches students how to use scientific knowledge and scientific ways of thinking in the service of society and helps them to better appreciate the…

  14. Creating and Sustaining University-Community Partnerships in Science Education (Invited)

    NASA Astrophysics Data System (ADS)

    Finkelstein, N.

    2009-12-01

    Despite years of research and investment, we have yet to see the widespread implementation of a myriad research-proven instructional strategies in STEM education[1]. To address this challenge, we present and analyze one such strategy, a theoretically-grounded model of university-community partnership [2] that engages university students and children in a collective enterprise that has the potential to improve the participation and education of all. We document the impact of this effort on: university participants who learn about education, the community and science; children in the community who learn about science, the nature of science and develop their identities and attitudes towards science; and, shifts in institutional structures which may allow these programs to be part of standard practice. This project is designed to be sustained and scaled, and is analyzed through the application of a new framework [3] which brings together theories of STEM change that come from studies in higher education, faculty development and disciplinary-based education research in STEM. [1] National Research Council. (2003). Improving Undergraduate Instruction in Science, Technology, Engineering, and Mathematics: Report of A Workshop. Washington, D.C.: The National Academies Press. [2] Finkelstein, N. and Mayhew, L. (2008). Acting in Our Own Self-Interest: Blending University and Community. Proceedings of the 2008 Physics Education Research Conf, AIP Press. Melville NY, 1064, 19-22. [3] Henderson, C., Finkelstein, N. & Beach A. (to appear). Beyond Dissemination in College science teaching: An Introduction to Four Core Change Strategies. Accepted May 2009 in Journal of College Science Teaching.

  15. The Costa Rica GLOBE (Global Learning and Observations to Benefit the Environment) Project as a Learning Science Environment

    ERIC Educational Resources Information Center

    Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca

    2015-01-01

    GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old…

  16. Taking Risks with a Growth Mindset: Long-Term Influence of an Elementary Pre-Service after School Science Practicum

    ERIC Educational Resources Information Center

    Cartwright, T. J.; Hallar, B.

    2018-01-01

    In this study, we present the long-term influence of an after school science practicum associated with an elementary science methods course. The practicum or field experience could be considered a community-based service learning programme as it is situated both within and for the community. Study participants included eight third- and fifth-grade…

  17. Overview of NASA's Universe of Learning: An Integrated Astrophysics STEM Learning and Literacy Program

    NASA Astrophysics Data System (ADS)

    Smith, Denise; Lestition, Kathleen; Squires, Gordon; Biferno, Anya A.; Cominsky, Lynn; Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. Together we develop and disseminate data tools and participatory experiences, multimedia and immersive experiences, exhibits and community programs, and professional learning experiences that meet the needs of our audiences, with attention to underserved and underrepresented populations. In doing so, scientists and educators from the partner institutions work together as a collaborative, integrated Astrophysics team to support NASA objectives to enable STEM education, increase scientific literacy, advance national education goals, and leverage efforts through partnerships. Robust program evaluation is central to our efforts, and utilizes portfolio analysis, process studies, and studies of reach and impact. This presentation will provide an overview of NASA's Universe of Learning, our direct connection to NASA Astrophysics, and our collaborative work with the NASA Astrophysics science community.

  18. Training Families To Learn Science Together Using Astronomical Topics

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Wyllie, G.; Lierheimer, D.

    2012-05-01

    We present a collection of messages and lessons learned from a set of Family Science programs that have been developed, implemented and/or evaluated by the RIT Insight Lab over the past 5 years. The programs are connected by their use of astronomical topics to serve as the motivator for engagement and learning. The programs all focus on the development of inquiry skills and connecting family members to each other as science learning communities, rather than focusing on the development of specific content knowledge. We show how family science programs can increase engagement in STEM for parents and their children alike, and strengthen the pipeline of the next generation of scientists and engineers.

  19. Inquiry in interaction: How local adaptations of curricula shape classroom communities

    NASA Astrophysics Data System (ADS)

    Enyedy, Noel; Goldberg, Jennifer

    2004-11-01

    In this study, we seek a better understanding of how individuals and their daily interactions shape and reshape social structures that constitute a classroom community. Moreover, we provide insight into how discourse and classroom interactions shape the nature of a learning community, as well as which aspects of the classroom culture may be consequential for learning. The participants in this study include two teachers who are implementing a new environmental science program, Global Learning through Observation to Benefit the Environment (GLOBE), and interacting with 54 children in an urban middle school. Both qualitative and quantitative data are analyzed and presented. To gain a better understanding of the inquiry teaching within classroom communities, we compare and contrast the discourse and interactions of the two teachers during three parallel environmental science lessons. The focus of our analysis includes (1) how the community identifies the object or goal of its activity; and (2) how the rights, rules, and roles for members are established and inhabited in interaction. Quantitative analyses of student pre- and posttests suggest greater learning for students in one classroom over the other, providing support for the influence of the classroom community and interactional choices of the teacher on student learning. Implications of the findings from this study are discussed in the context of curricular design, professional development, and educational reform. ? 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 905-935, 2004.

  20. NASA and Public Libraries: Enhancing STEM Literacy in Underserved Communities

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Harold, J. B.; Randall, C.

    2016-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, and defining the conditions necessary to support life beyond Earth. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was recently funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are developing new ways to engage their patrons in STEM learning, and NCIL's STAR Library Education Network (STAR_Net) has been supporting their efforts for the last eight years, including through a vibrant community of practice that serves both librarians and STEM professionals. Project stakeholders include public library staff, state libraries, the earth and space science education community at NASA, subject matter experts, and informal science educators. The project will leverage high-impact SMD and library events to catalyze partnerships through dissemination of SMD assets and professional development. It will also develop frameworks for public libraries to increase STEM interest pathways in their communities (with supports for reaching underserved audiences). This presentation will summarize the key activities and expected outcomes of the 5-year project.

  1. Science Teacher Leadership: Learning from a Three-Year Leadership Program

    ERIC Educational Resources Information Center

    Luft, Julie A.; Dubois, Shannon L.; Kaufmann, Janey; Plank, Larry

    2016-01-01

    Teachers are professional learners and leaders. They seek to understand how their students learn, and they participate in programs that provide new instructional skills, curricular materials, and ways to become involved in their community. This study follows a science teacher leadership program over a three-year period of time. There were…

  2. Latino Youth's Out-of-School Math and Science Experiences: Impact on Teacher Candidates

    ERIC Educational Resources Information Center

    Diaz, Maria E.; Bussert-Webb, Kathy

    2017-01-01

    This qualitative study examines the learning and interaction processes between Latino/a teacher candidates (TCs) and youth during a community service-learning program involving science and math. Knowing and affirming nondominant youth's strengths are essential from funds of knowledge and Third Space perspectives. Participants were 11 TCs and their…

  3. Program Evaluation of a High School Science Professional Learning Community

    ERIC Educational Resources Information Center

    McLelland-Crawley, Rebecca

    2014-01-01

    Teachers may benefit more from a professional learning community (PLC) than from professional development initiatives presented in single day workshops. The purpose of this program evaluation study was to identify characteristics of an effective PLC and to determine how the members of the PLC have benefitted from the program. Fullan's educational…

  4. "The Teacher Education Conversation": A Network of Cooperating Teachers

    ERIC Educational Resources Information Center

    Nielsen, Wendy S.; Triggs, Valerie; Clarke, Anthony; Collins, John

    2010-01-01

    This study investigated a professional learning community of cooperating teachers and university-based teacher educators. To examine our roles and perspectives as colleagues in teacher education, we drew on frameworks in teacher learning and complexity science. Monthly group meetings of this inquiry community were held over two school years in a…

  5. Blurring the Boundaries between School and Community: Implementing Connected Learning Principles in English Classrooms

    ERIC Educational Resources Information Center

    Cartun, Ashley; Penuel, William R.; West-Puckett, Stephanie

    2017-01-01

    In participatory cultures, the lines between producers and consumers of text are blurred, and communities emerge that are based on shared interest and peer support. Although literacy scholarship has mostly focused on youth engagement and literacy practices within online participatory cultures, scholars in the learning sciences investigate these…

  6. Developing Enlightened Leaders for Industry and Community: Executive Education and Service-Learning

    ERIC Educational Resources Information Center

    Rhee, Kenneth S.; Sigler, Tracey Honeycutt

    2010-01-01

    What does it take to develop enlightened leaders who can transform their organizations and communities? The quest to develop enlightened leaders who are self-aware, learning centered, adaptable, interpersonally competent, and team oriented is a challenge faced by many management programs. The Master of Science program in Executive Leadership and…

  7. Web 2.0 Technologies and Back Channel Communication in an Online Learning Community

    ERIC Educational Resources Information Center

    Kearns, Lorna R.; Frey, Barbara A.

    2010-01-01

    Communication, collaboration and community development are processes that contribute to student satisfaction and learning in online courses. This paper describes a study that investigated how campus and distance graduate students in a library science program communicated with one another outside the official boundaries of their courses. We…

  8. Global Learning Communities: A Comparison of Online Domestic and International Science Class Partnerships

    ERIC Educational Resources Information Center

    Kerlin, Steven C.; Carlsen, William S.; Kelly, Gregory J.; Goehring, Elizabeth

    2013-01-01

    The conception of Global Learning Communities (GLCs) was researched to discover potential benefits of the use of online technologies that facilitated communication and scientific data sharing outside of the normal classroom setting. 1,419 students in 635 student groups began the instructional unit. Students represented the classrooms of 33…

  9. The Internet Learning Forum: Developing a Community Prototype for Teachers of the 21st Century.

    ERIC Educational Resources Information Center

    Reynolds, Eric; Treahy, Diana; Chao, Chin-chi; Barab, Sasha

    2001-01-01

    Reports on the creation of a community of practice for teachers' professional development via the World Wide Web. Highlights include theoretical foundations; current online models of professional development; and the Internet Learning Forum, a Web site developed to support mathematics and science teachers. (Author/LRW)

  10. Towards science educational spaces as dynamic and coauthored communities of practice

    NASA Astrophysics Data System (ADS)

    Dhingra, Koshi

    2008-04-01

    In this essay review, four studies around the themes of identity and globalization are summarized and analyzed. The researchers' perspectives are generally grounded in Brown and Campione's ideas on situated knowledge ( Classroom lessons: Integrating cognitive theory and classroom practice (pp. 229-270). Cambridge: The MIT Press/Bradford Books, 1994) and Lave and Wenger's definition of learning as an activity fostered through participation in communities of practice ( Situated learning. Legitimate peripheral participation. Cambridge: University of Cambridge Press, 1991). Questions about the goals of science education spaces, the nature of globalization in relation to practices in schools, the role of identities-in-practice in relation to participation in communities of practice such as classrooms are explored. Recommendations for key design features in effective science educational spaces, based upon the findings presented in the collection of four studies, are offered. School, it is suggested here, functions best as a clearing house for the myriad science-related stories student participants generate in their various communities of practice (e.g., within popular culture, family, community, informal educational sites). In this way, school has the potential to construct bridges between multiple student experiences and identities-in-practice.

  11. Trust Matters: Distinction and Diversity in Undergraduate Science Education

    ERIC Educational Resources Information Center

    Ream, Robert K.; Lewis, James L.; Echeverria, Begoña; Page, Reba N.

    2014-01-01

    Background: How do we account for the persistent difficulty the U.S. community of science has in educating larger numbers of talented and diverse undergraduates? We posit that the problem lies in the community's unremitting focus on scientific subject matter knowledge and students' ability to learn, to the neglect of interpersonal social…

  12. Knowledge Construction, Meaning-Making and Interaction in CLIL Science Classroom Communities of Practice

    ERIC Educational Resources Information Center

    Evnitskaya, Natalia; Morton, Tom

    2011-01-01

    This paper draws on Wenger's model of community of practice to present preliminary findings on how processes of negotiation of meaning and identity formation occur in knowledge construction, meaning-making and interaction in two secondary Content and Language Integrated Learning (CLIL) science classrooms. It uses a multimodal conversation analysis…

  13. Sustainability Transdisciplinary Education Model: Interface of Arts, Science, and Community (STEM)

    ERIC Educational Resources Information Center

    Clark, Barbara; Button, Charles

    2011-01-01

    Purpose: The purpose of this paper is to describe the components of a sustainability transdisciplinary education model (STEM), a contemporary approach linking art, science, and community, that were developed to provide university and K-12 students, and society at large shared learning opportunities. The goals and application of the STEM curriculum…

  14. Differential Workload Calculation and Its Impact on Lab Science Instruction at the Community College Level

    ERIC Educational Resources Information Center

    Boyd, Beth Nichols

    2013-01-01

    The calculation of workload for science instructors who teach classes with laboratory components at the community college level is inconsistent. Despite recommendations from the National Research Council (1996) and the large body of evidence which indicates that activity-based instruction produces greater learning gains than passive, lecture-based…

  15. Tangled paths: Three experienced teachers' growth in understanding during an extended science community of practice professional development effort

    NASA Astrophysics Data System (ADS)

    Brown, Nancy Melamed

    This qualitative investigation extends the study of teacher learning within a reform-based community of practice model of professional development. This long-term, multiple case study examined three experienced teachers' transformations in thinking about science instruction. Data were collected during the three years of the Guided Inquiry supporting Multiple Literacies research project, designed to develop instructional practices informed by a socio-cultural, inquiry-based orientation. Data sources included: transcripts of semi-structured interviews collected at strategic points, the teacher's journals, initial application information, and teachers' written case studies. Using an interpretive case study approach, tenets of the teachers' orientations were identified through a recursive process. Results are organized to reflect two principles that were integral to the design of the professional development community. The first principle describes changes in teachers' orientations about the goals and characteristics of science instruction in the elementary grades. The second describes changes about teachers' knowledge about themselves as learners and the influence of this knowledge on their thinking about science instruction and student learning. Illustrative findings indicate that: (a) it is possible for teachers' language regarding conceptions of their practice to change with only superficial change in their orientations, (b) teachers can hold dualistic ways of thinking about their practice, (c) in some cases, teachers use a significant amount of autobiography about their own learning to explain their practice; over time, this was replaced with warrants using the language that developed within the professional development community, and (d) long-term case studies revealed differences in orientations that emerged and were refined over time. These findings provide strong support for communities of practice as a model of professional development and hold implications for advancing teacher learning.

  16. Monitoring Seasons Through Global Learning Communities

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Robin, J. H.; Jeffries, M. O.; Gordon, L. S.; Verbyla, D. L.; Levine, E. R.

    2006-12-01

    Monitoring Seasons through Global Learning Communities (MSTGLC) is an inquiry- and project-based project that monitors seasons, specifically their interannual variability, in order to increase K-12 students' understanding of the Earth system by providing teacher professional development in Earth system science and inquiry, and engaging K-12 students in Earth system science research relevant to their local communities that connect globally. MSTGLC connects GLOBE students, teachers, and communities, with educators and scientists from three integrated Earth systems science programs: the International Arctic Research Center, and NASA Landsat Data Continuity and Terra Satellite Missions. The project organizes GLOBE schools by biomes into eight Global Learning Communities (GLCs) and students monitor their seasons through regional based field campaigns. The project expands the current GLOBE phenology network by adapting current protocols and making them biome-specific. In addition, ice and mosquito phenology protocols will be developed for Arctic and Tropical regions, respectively. Initially the project will focus on Tundra and Taiga biomes as phenological changes are so pronounced in these regions. However, our long-term goal is to determine similar changes in other biomes (Deciduous Forest, Desert, Grasslands, Rain Forest, Savannah and Shrubland) based upon what we learn from these two biomes. This project will also contribute to critically needed Earth system science data such as in situ ice, mosquito, and vegetation phenology measurements for ground validations of remotely sensed data, which are essential for regional climate change impact assessments. Additionally it will contribute environmental data critical to prevention and management of diseases such as malaria in Asian, African, and other countries. Furthermore, this project will enable students to participate in the International Polar Year (IPY) (2007-2009) through field campaigns conducted by students in polar regions, and web chats between IPY scientists and GLOBE students from all eight GLCs that include non-polar countries.

  17. STAR Library Education Network: a hands-on learning program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.

    2010-12-01

    Science and technology are widely recognized as major drivers of innovation and industry (e.g. Rising above the Gathering Storm, 2006). While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement and public understanding of STEM disciplines. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. Designed spaces, like libraries, allow lifelong, life-wide, and life-deep learning to take place though the research basis for learning in libraries is not as developed as other informal settings like science centers. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national education project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. This project will deepen our knowledge of informal/lifelong learning that takes place in libraries and establish a learning model that can be compared to the more established free-choice learning model for science centers and museums. The project includes the development of two STEM hands-on exhibits on topics that are of interest to library staff and their patrons: Discover Earth and Discover Tech. In addition, the project will produce resources and inquiry-based activities that libraries can use to enrich the exhibit experience. Additional resources will be provided through partnerships with relevant professional science and technology organizations (e.g. American Geophysical Union; National Academy of Engineering) that will provide speakers for host library events and webinars. Online and in-person workshops will be conducted for library staff with a focus on increasing content knowledge and improving facilitation expertise. This presentation will report on strategic planning activities for STAR-Net, a Community of Practice model, and the evaluation/research components of this national education program.

  18. Astronomy Outreach for Large and Unique Audiences

    NASA Astrophysics Data System (ADS)

    Lubowich, D.; Sparks, R. T.; Pompea, S. M.; Kendall, J. S.; Dugan, C.

    2013-04-01

    In this session, we discuss different approaches to reaching large audiences. In addition to star parties and astronomy events, the audiences for some of the events include music concerts or festivals, sick children and their families, minority communities, American Indian reservations, and tourist sites such as the National Mall. The goal is to bring science directly to the public—to people who attend astronomy events and to people who do not come to star parties, science museums, or science festivals. These programs allow the entire community to participate in astronomy activities to enhance the public appreciation of science. These programs attract large enthusiastic crowds often with young children participating in these family learning experiences. The public will become more informed, educated, and inspired about astronomy and will also be provided with information that will allow them to continue to learn after this outreach activity. Large and unique audiences often have common problems, and their solutions and the lessons learned will be presented. Interaction with the participants in this session will provide important community feedback used to improve astronomy outreach for large and unique audiences. New ways to expand astronomy outreach to new large audiences will be discussed.

  19. What Is "Agency"? Perspectives in Science Education Research

    ERIC Educational Resources Information Center

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  20. "What" and "how" does a mentor teacher learn during a secondary science teacher candidate's internship?

    NASA Astrophysics Data System (ADS)

    Ashmann, Scott A.

    Teaching science for understanding is hard work. Not many teachers leave a teacher education program sufficiently prepared to engage in this practice. In fact, many veteran teachers struggle with this complicated task, so effective professional development is needed. One approach that may hold some promise is being a mentor teacher to an intern. To investigate this possibility, the following central question guided this study: "What" and "how" does a secondary science teacher learn about the practices of teaching from the experience of being a mentor teacher for a science intern? A conceptual framework based on three planes of focus was utilized in this study. These planes are (a) a focus on the larger learning community and context, (b) a focus on the local learning community and activities, and (c) a focus on learners and purposes. Data were collected on two focus mentor teachers. These data included observations of interactions between the mentor and intern, responses to clarifying questions, interviews with other science teachers, and observations of both the mentor and the intern teaching lessons. Relationships among the characteristics of the context of the school and science department with the mentor teacher's theory of learning and teaching practices and the patterns of practice the mentor used in responding to specific occasions for learning were explored. It was found that these characteristics are related to five elements of mentor teacher learning: the social environment, resource use, defining tasks, the learning process, and the nature of a satisfactory conclusion. Two conclusions were made. The first was that remarkably detailed parallels exist among key elements in the context in which a mentor teacher works, the mentor teacher's approaches to teaching and learning, and the mentor's response to occasions for learning during the internship. The second was that differences among mentors in these key elements could account for differences in "what" was learned and "how" it was learned.

  1. National Intelligence University’s Role in Interagency Research: Recommendations from the Intelligence Community

    DTIC Science & Technology

    2013-01-01

    outreach, and (4) social science and historical research/lessons learned . In some instances, the research entity fit into more than one category. We...Bureau of Intelligence and Research (INR) and the Analytic Outreach Initiative (AOI) at ODNI. Social science and historical research/lessons learned ...its coordination efforts, CSIR was interested in learning more about potential interagency research partners and how collaboration could be improved

  2. Building Learning Communities for Research Collaboration and Cross-Cultural Enrichment in Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.

    2003-12-01

    The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole classes of students have engaged in and contributed data to science investigations. In Alaska, classes and individual students have conducted their own inquiry studies and have successfully presented their investigations and competed at science fairs and statewide high school science symposium and international conferences. Two students presented their research investigations at the GLOBE Learning Expedition in Croatia and four students presented their study at the GLOBE Arctic POPs Conference in Sweden. These students increased not only their understanding and knowledge of science but also in appreciation of people in other countries and their cultures. Friendships have also bloomed. The learning community in Alaska has expanded to include family and community members including Native elders (using OLCG), teachers, scientists and students from other countries. The following challenges remain: 1) getting funds to be able to provide GLOBE equipment and continuous support to GLOBE teachers and students throughout the year, 2) reaching teachers and students in remote areas, 3) rapid teacher turn-over rate in rural areas, 4) using inquiry-based pedagogies during GLOBE professional development workshops including the opportunity for teacher participants to conduct their own inquiries during the workshop, 5) time, school curriculum and national education requirement constraints, 6) involving school administrators, and more local scientists and community members, and 7) providing culturally relevant and responsive science education programs and life-long learning communities.

  3. Moving Past Curricula and Strategies: Language and the Development of Adaptive Pedagogy for Immersive Learning Environments

    ERIC Educational Resources Information Center

    Hand, Brian; Cavagnetto, Andy; Chen, Ying-Chih; Park, Soonhye

    2016-01-01

    Given current concerns internationally about student performance in science and the need to shift how science is being learnt in schools, as a community, we need to shift how we approach the issue of learning and teaching in science. In the future, we are going to have to close the gap between how students construct and engage with knowledge in a…

  4. Collaborating on Climate: The Signs of the Land Camp as a Model for Meaningful Learning Between Indigenous Communities and Western Climate Scientists

    NASA Astrophysics Data System (ADS)

    Chase, M.; Brunacini, J.; Sparrow, E. B.

    2016-12-01

    As interest in Indigenous Knowledge (IK) grows, how can researchers ensure that collaboration is meaningful, relevant, and valuable for those involved? The Signs of the Land: Reaching Arctic Communities Facing Climate Change Camp is a collaborative project developed by the Association for Interior Native Educators (AINE), the International Arctic Research Center (IARC), and the PoLAR Partnership. Modeled on AINE's Elder Academy and supported by a grant from the National Science Foundation, the camp facilitates in-depth dialogue about climate change and explores causes, impacts, and solutions through the cultural lens of Alaska Native communities. The project integrates local observations, IK, and western climate science. Participants engage with Alaska Native Elders, local climate researchers, and learn about climate communication tools and resources for responding. Following camps in 2014 and 2016, project partners identified a variety of questions about the challenges and opportunities of the collaboration that will be discussed in this presentation. For instance, what does it mean to equitably integrate IK, and in what ways are Native communities able to participate in research project design, delivery, and evaluation? How are decisions made and consensus built within cultural practices, project goals, and funding expectations? How do opportunities available to Indigenous communities to engage with western climate science broaden understanding and response? And, how does the ability to connect with and learn from Alaska Native Elders affect motivation, engagement, and community action? Finally, what is the effect of learning about climate change in a cultural camp setting?

  5. Meanings teachers make of teaching science outdoors as they explore citizen science

    NASA Astrophysics Data System (ADS)

    Benavides, Aerin Benavides

    This descriptive case study examined the meanings public elementary school teachers (N = 13) made of learning to enact citizen science projects in their schoolyards in partnership with a local Arboretum. Utilizing Engestrom's (2001) framework of cultural-historical activity theory (CHAT), the Arboretum's outreach program for area Title 1 schools was viewed as an activity system composed of and acting in partnership with the teachers. The major finding was that teachers designed and mastered new ways of teaching (expansive learning) and transformed their citizen science activity to facilitate student engagement and learning. I highlight four important themes in teachers' expansive learning: (a) discussion, (b) inclusion, (c) integration, and (d) collaboration. Teacher learning communities formed when colleagues shared responsibilities, formed mentor/mentee relationships, and included student teachers and interns in the activity. This program could serve as a model for elementary school citizen science education, as well as a model for professional development for teachers to learn to teach science and Environmental Education outdoors.

  6. Enhancing Self-Efficacy in Elementary Science Teaching With Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-11-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in personal self-efficacy and outcome expectancy among teachers engaged in PLCs that featured Demonstration Laboratories, Lesson Study, and annual Summer Institutes. Significant changes favoring the experimental group were found on all quantitative measures of self-efficacy. Structured clinical interviews revealed that observed changes were largely attributable to a wide range of direct (mastery) and vicarious experiences, as well as emotional reinforcement and social persuasion.

  7. People with disabilities are facing increased hostility.

    PubMed

    Moon, Cath

    2012-02-22

    Community learning disability nurse Linda Phillips is to be commended for a comprehensive literature review on improving care for people with learning disabilities in hospital ( art&science February 8 ).

  8. A Place of Transformation: Lessons from the Cosmic Serpent Informal Science Education Professional Development Project

    NASA Astrophysics Data System (ADS)

    Peticolas, L.; Maryboy, N.; Begay, D.; Stein, J.; Valdez, S.; Paglierani, R.

    2012-08-01

    A cultural disconnect exists between Western scientists and educators and Native communities in terms of scientific worldviews and Indigenous ways of knowing. This cultural disconnect manifests itself in the lack of participation of Native Americans in Western science and a lack of appreciation by Western scientists of Native science. Our NSF-Funded project "Cosmic Serpent: Bridging Native and Western Learning in Museum Settings" set out to provide a way for informal science education practitioners and tribal museum practitioners to learn about these two worldviews in such a way as to inform their educational practice around these concepts. We began with a pilot workshop in year one of this four-year project. We then provided two week-long professional development workshops in three regions within the Western U.S., and culminated with a final conference for all participants. In total, the workshops served 162 participants, including 115 practitioners from 19 tribal museums and 41 science, natural history, and cultural museums; 23 tribal community members; and 24 "bridge people" with knowledge of both Indigenous and Western science. For this article, we focus on the professional and personal transformations around culture, knowledge, science, and worldviews that occurred as a part of this project. We evaluated the collaborative aspects of this grant between the Indigenous Education Institute; the Center for Science Education at the University of California, Berkeley; the Institute for Learning Innovation; Native Pathways; Association for Science and Technology Centers; and the National Museum of the American Indian. Using evaluation results, as well as our personal reflections, we share our learnings from a place of transformation. We provide lessons we learned with this project, which we hope others will find relevant to their own science education work.

  9. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alaa; Ahmed, Yasmin

    2015-04-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: https://vimeo.com/100427525

  10. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.

    2014-12-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: http://CleanAirEgypt.org

  11. Increasing Resilience Through Engagement In Sea Level Rise Community Science Initiatives.

    NASA Astrophysics Data System (ADS)

    Chilton, L. A.; Rindge, H.

    2017-12-01

    Science literate and engaged members of the public, including students, are critical to building climate resilient communities. USC Sea Grant facilitates programs that work to build and strengthen these connections. The Urban Tides Community Science Initiative (Urban Tides) and the Youth Exploring Sea Level Rise Science Program (YESS) engage communities across the boundaries of public engagement, K-12 education, and informal education. YESS is an experiential sea level rise education program that combines classroom learning, field investigations and public presentations. Students explore sea level rise using a new curricula, collect their own data on sea level rise, develop communication products, and present their findings to city governments, researchers, and others. Urban Tides engages community members, informal education centers, K-12 students, and local government leaders in a citizen science program photo- documenting extreme high tides, erosion and coastal flooding in Southern California. Images provide critical information to help calibrate scientific models used to identify locations vulnerable to damage from future sea level rise. These tools and information enable community leaders and local governments to set priorities, guidelines, and update policies as they plan strategies that will help the region adapt. The program includes a mobile app for data collection, an open database to view photos, a lesson plan, and community beach walks. Urban Tides has led to an increase in data and data-gathering capacity for regional scientists, an increase in public participation in science, and an increase in ocean and climate literacy among initiative participants. Both of these programs bring informed and diverse voices into the discussion of how to adapt and build climate resilient communities. USC Sea Grant will share impacts and lessons learned from these two unique programs.

  12. A study of the latent effects of family learning courses in science

    NASA Astrophysics Data System (ADS)

    Gennaro, Eugene D.; Hereid, Nancy; Ostlund, Karen

    It is well documented that students' exposure to science in the middle school is critical for their later selection of science courses, yet instruction time and course offerings in science during the middle school years are often limited. Out-of-School Science Experiences with funds from the National Science Foundation (DISE No. 07872) produced five short science courses intended for children in middle school grades (6, 7, and 8) and their parents that supplement normal science instruction based on topics that are integral to traditional science teaching. The courses were offered through Community Education programs and through informal science learning centers (e.g., zoos, museums, and planetariums). An added strength of the program is that it employs the family as a motivator and reinforcer in a cooperative learning venture. The study reported here is an attempt to determine participant reaction two to three years after having taken the courses, to the course experience, the influence that the courses had on subsequent learning behavior, and the relationship between parents and children.

  13. Preparing new nurses with complexity science and problem-based learning.

    PubMed

    Hodges, Helen F

    2011-01-01

    Successful nurses function effectively with adaptability, improvability, and interconnectedness, and can see emerging and unpredictable complex problems. Preparing new nurses for complexity requires a significant change in prevalent but dated nursing education models for rising graduates. The science of complexity coupled with problem-based learning and peer review contributes a feasible framework for a constructivist learning environment to examine real-time systems data; explore uncertainty, inherent patterns, and ambiguity; and develop skills for unstructured problem solving. This article describes a pilot study of a problem-based learning strategy guided by principles of complexity science in a community clinical nursing course. Thirty-five senior nursing students participated during a 3-year period. Assessments included peer review, a final project paper, reflection, and a satisfaction survey. Results were higher than expected levels of student satisfaction, increased breadth and analysis of complex data, acknowledgment of community as complex adaptive systems, and overall higher level thinking skills than in previous years. 2011, SLACK Incorporated.

  14. Conducting correlation seminars in basic sciences at KIST Medical College, Nepal

    PubMed Central

    2011-01-01

    KIST Medical College is a new medical school in Lalitpur, Nepal. In Nepal, six basic science subjects are taught together in an integrated organ system-based manner with early clinical exposure and community medicine. Correlation seminars are conducted at the end of covering each organ system. The topics are decided by the core academic group (consisting of members from each basic science department, the Department of Community Medicine, the academic director, and the clinical and program coordinators) considering the public health importance of the condition and its ability to include learning objectives from a maximum number of subjects. The learning objectives are decided by individual departments and finalized after the meeting of the core group. There are two student coordinators for each seminar and an evaluation group evaluates each seminar and presenter. Correlation seminars help students revise the organ system covered and understand its clinical importance, promote teamwork and organization, and supports active learning. Correlation seminars should be considered as a learning modality by other medical schools. PMID:22066033

  15. The effect of online collaborative learning on middle school student science literacy and sense of community

    NASA Astrophysics Data System (ADS)

    Wendt, Jillian Leigh

    This study examines the effects of online collaborative learning on middle school students' science literacy and sense of community. A quantitative, quasi-experimental pretest/posttest control group design was used. Following IRB approval and district superintendent approval, students at a public middle school in central Virginia completed a pretest consisting of the Misconceptions-Oriented Standards-Based Assessment Resources for Teachers (MOSART) Physical Science assessment and the Classroom Community Scale. Students in the control group received in-class assignments that were completed collaboratively in a face-to-face manner. Students in the experimental group received in-class assignments that were completed online collaboratively through the Edmodo educational platform. Both groups were members of intact, traditional face-to-face classrooms. The students were then post tested. Results pertaining to the MOSART assessment were statistically analyzed through ANCOVA analysis while results pertaining to the Classroom Community Scale were analyzed through MANOVA analysis. Results are reported and suggestions for future research are provided.

  16. CoCoRaHS (The Community Collaborative Rain, Hail and Snow Network): Analysis of Participant Survey Data to Uncover Learning through Participation

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.; Zimmerman, T.; Doesken, N. J.; Reges, H. W.; Newman, N.; Turner, J.; Schwalbe, Z.

    2010-12-01

    CoCoRaHS (The Community Collaborative Rain, Hail and Snow network) is based out of Fort Collins Colorado and is an extremely successful citizen science project with over 15,000 volunteers collecting valuable precipitation data. Forecasters and scientists use data from this dense network to illuminate and illustrate the high small-scale variability of precipitation across the nation. This presentation will discuss the results of a survey of CoCoRaHS participants as related to 1) citizen scientists’ motivation and learning; 2) the challenges of identifying how people learn science in citizen science projects; and 3) a potential research-based framework for how people learn through engaging in the data collection within in a citizen science project. A comprehensive survey of 14,500 CoCoRaHS observers was recently conducted to uncover participant perceptions of numerous aspects of the CoCoRaHS program, including its goal of increasing climate literacy. The survey yielded a response rate of over 50%, and included measures of motivation, engagement and learning. In relationship to motivation and learning, the survey revealed that most (57.1%) observers would make precipitation observations regardless of being a CoCoRaHS volunteer, therefore their motivation is related to their inherent level of interest in weather. Others are motivated by their desire to learn more about weather and climate, they want to contribute to a scientific project, they think its fun, and/or it provides a sense of community. Because so many respondents already had knowledge and interest in weather and climate, identifying how and what people learn through participating was a challenge. However, the narrow project focus of collecting and reporting of local precipitation assisted in identifying aspects of learning. For instance, most (46.4%) observers said they increased their knowledge about the local variability in precipitation even though they had been collecting precipitation data for many years. Because the focus of the survey was to solicit participant opinions and not question their content knowledge, we were limited in our ability to unpack the issue of how people learn while engaging in the project. The next phase of this study will use a theoretical framework shaped from research in the learning sciences and based on social cognition and conceptual change to question a small subset of the volunteers about the data they collect. Citizen science projects such as CoCoRaHS provide a win-win situation for project scientists and participants. Project scientists gather necessary data for their studies, and motivated participants gain skills and knowledge related to the science content and science practices employed in the project. We discuss how these survey results can be applied to similar projects where learning is a key goal for their volunteers. We also discuss pathways for future research to identify aspects of scientific learning in the context of citizen science projects.

  17. Science Curiosity in Learning Environments: Developing an Attitudinal Scale for Research in Schools, Homes, Museums, and the Community

    ERIC Educational Resources Information Center

    Weible, Jennifer L.; Zimmerman, Heather Toomey

    2016-01-01

    Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science…

  18. Stories, Proverbs, and Anecdotes as Scaffolds for Learning Science Concepts

    ERIC Educational Resources Information Center

    Mutonyi, Harriet

    2016-01-01

    Few research studies in science education have looked at how stories, proverbs, and anecdotes can be used as scaffolds for learning. Stories, proverbs, and anecdotes are cultural tools used in indigenous communities to teach children about their environment. The study draws on Bruner's work and the theory of border crossing to argue that stories,…

  19. "Small Science": Infants and Toddlers Experiencing Science in Everyday Family Life

    ERIC Educational Resources Information Center

    Sikder, Shukla; Fleer, Marilyn

    2015-01-01

    Vygotsky (1987) stated that the restructured form of everyday concepts learned at home and in the community interact with scientific concepts introduced in formal school settings, leading to a higher level of scientific thinking for school-aged children. But, what does this mean for the scientific learning of infants and toddlers? What kinds of…

  20. Conjecture Mapping: An Approach to Systematic Educational Design Research

    ERIC Educational Resources Information Center

    Sandoval, William

    2014-01-01

    Design research is strongly associated with the learning sciences community, and in the 2 decades since its conception it has become broadly accepted. Yet within and without the learning sciences there remains confusion about how to do design research, with most scholarship on the approach describing what it is rather than how to do it. This…

  1. Documenting the Emergence of "Speaking with Meaning" as a Sociomathematical Norm in Professional Learning Community Discourse

    ERIC Educational Resources Information Center

    Clark, Phillip G.; Moore, Kevin C.; Carlson, Marilyn P.

    2008-01-01

    We introduce the sociomathematical norm of "speaking with meaning" and describe its emergence in a professional learning community (PLC) of secondary mathematics and science teachers. We use "speaking with meaning" to reference specific attributes of individual communication that have been revealed to improve the quality of discourse among…

  2. Understanding the Complexity of Teacher Interaction in a Teacher Professional Learning Community

    ERIC Educational Resources Information Center

    Sjoer, Ellen; Meirink, Jacobiene

    2016-01-01

    In this study, we examine a professional learning community of primary school teachers developing a joint school-based curriculum for science and technology (S&T) education. Team meetings were observed over the course of one school year and the participating teachers and school head were interviewed. An essential factor in the team's…

  3. Revising the Experiential Learning Component of the Business Capstone Course at Delaware Technical Community College's George Campus

    ERIC Educational Resources Information Center

    Roux, June N.

    2017-01-01

    This Executive Position Paper examines the experiential learning component of the business capstone course at Delaware Technical Community College's George campus in Wilmington, Delaware. As a statewide institution of higher education, Delaware Tech offers associate of applied science degrees in practical, skills-based majors, including a number…

  4. Student Perceptions of a Successful Online Collaborative Learning Community

    ERIC Educational Resources Information Center

    Waugh, Michael L.; Su, Jian

    2016-01-01

    This paper shares the perceptions of a group of 11 successful online students regarding the value of the collaborative learning community that developed as part of their participation in the first cohort of the WebIT online Master of Science Degree in Instructional Technology program, at The University of Tennessee at Knoxville during 2008-2010.…

  5. "Space on Earth:" A Learning Community Integrating English, Math, and Science

    ERIC Educational Resources Information Center

    Fortna, Joanna; Sullivan, Jim

    2010-01-01

    Imagine a mathematics instructor and English instructor sharing an office; scribbled equations litter one desk, snatches of poetry the other. Our learning community, "Space on Earth," grew from conversations in just such an office where we bridged our own disciplinary gap and discovered a shared passion for helping students apply the concepts and…

  6. The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science

    ERIC Educational Resources Information Center

    Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.

    2015-01-01

    Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning…

  7. Bridging the Gap--Using Social Media to Bring Together Science and Families

    ERIC Educational Resources Information Center

    Tyler, Toby; Vanstone, Emma

    2017-01-01

    In this article, first Toby Tyler describes how using Twitter to engage the community and to pursue the ICE principle (Introduce, Consolidate, and Extend) to enhance learning has brought his school community closer together. Then, Emma Vanstone highlights how schools can draw on support for engaging children with science at home by using social…

  8. Where's the Chicken? Virtual Reality Brings Poultry Science to the Community College

    ERIC Educational Resources Information Center

    Kloepper, Marcia Owens; Zweiacher, Ed; Curtis, Pat; Evert, Amanda

    2010-01-01

    This article highlights how two institutions--Redlands Community College (RCC) and Auburn University--teamed up to create a virtual world called Eagle Island, where learners enter to learn all they need to know about poultry science. Eagle Island, located in Second Life, provides an opportunity to tour a real-life food processing…

  9. Mapping a Sustainable Future: Community Learning in Dialogue at the Science-Society Interface

    ERIC Educational Resources Information Center

    Barth, Matthias; Lang, Daniel J.; Luthardt, Philip; Vilsmaier, Ulli

    2017-01-01

    In 2015, the German Federal Ministry of Education and Research (BMBF) announced that the Science Year 2015 would focus on the "City of the Future". It called for innovative projects from cities and communities in Germany dedicated to exploring future options and scenarios for sustainable development. Among the successful respondents was…

  10. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  11. Promoting children's agency and communication skills in an informal science program

    NASA Astrophysics Data System (ADS)

    Wulf, Rosemary; Hinko, Kathleen; Finkelstein, Noah

    2013-01-01

    The Partnerships for Informal Science Education in the Community (PISEC) program at the University of Colorado Boulder brings together university and community institutions to create an environment where K-12 students join with university educators to engage in inquiry-based scientific practices after school. In our original framing, these afterschool activities were developed to reinforce the traditional learning goals of the classroom, including mastering scientific content, skills and processes. Recently, the primary focus of the PISEC curriculum has been shifted towards the development of students' scientific identity, an explicit objective of informal learning environments. The new curriculum offers students more activity choices, affords opportunities for scientific drawings and descriptions, and provides incentive for students to design their own experiments. We have analyzed student science notebooks from both old and new curricula and find that with the redesigned curriculum, students exhibit increased agency and more instances of scientific communication while still demonstrating substantial content learning gains.

  12. Learning the wrong lessons? Science and fisheries management in the Chesapeake Bay blue crab fishery.

    PubMed

    Beem, Betsi

    2012-05-01

    This paper argues that information produced and then taken up for policy decision making is a function of a complex interplay within the scientific community and between scientists and the broader policy network who are all grappling with issues in a complex environment with a high degree of scientific uncertainty. The dynamics of forming and re-forming the scientific community are shaped by political processes, as are the directions and questions scientists attend to in their roles as policy advisors. Three factors: 1) social construction of scientific communities, 2) the indeterminacy of science, and 3) demands by policy makers to have concrete information for decision making; are intertwined in the production and dissemination of information that may serve as the basis for policy learning. Through this process, however, what gets learned may not be what is needed to mitigate the problem, be complete in terms of addressing multiple causations, or be correct.

  13. Misconceptions Are “So Yesterday!”

    PubMed Central

    Maskiewicz, April Cordero; Lineback, Jennifer Evarts

    2013-01-01

    At the close of the Society for the Advancement of Biology Education Research conference in July 2012, one of the organizers made the comment: “Misconceptions are so yesterday.” Within the community of learning sciences, misconceptions are yesterday's news, because the term has been aligned with eradication and/or replacement of conceptions, and our knowledge about how people learn has progressed past this idea. This essay provides an overview of the discussion within the learning sciences community surrounding the term “misconceptions” and how the education community's thinking has evolved with respect to students’ conceptions. Using examples of students’ incorrect ideas about evolution and ecology, we show that students’ naïve ideas can provide the resources from which to build scientific understanding. We conclude by advocating that biology education researchers use one or more appropriate alternatives in place of the term misconception whenever possible. PMID:24006383

  14. Secrets of the Sediments: Using ANDRILL's Scientific Adventure on Ice to Transfer Climate Change Science to K-12 Audiences

    NASA Astrophysics Data System (ADS)

    Huffman, L. T.; Dahlman, L.; Frisch-Gleason, R.; Harwood, D.; Pound, K.; Rack, F.; Riesselman, C.; Trummel, E.; Tuzzi, E.; Winter, D.

    2008-12-01

    Antarctica's harsh environment and the compelling story of living and working there, provides the backdrop for hooking the interest of young learners on science research and the nature of science. By using the adventure stories of today's researcher-explorers, teachers accompanying the ANDRILL team have taken the technical science of drilling rock cores to understand the history of climate change and the advance and retreat of the Antarctic ice sheet, and translated it for non-technical audiences from K-12 school children, to adult community groups. In order to understand the important issues surrounding global climate change, members of the public need access to accurate and relevant information, high quality educational materials, and a variety of learning opportunities in different learning environments. By taking lessons learned from early virtual polar adventure learning expeditions like Will Steger's Trans-Antarctic Expedition, coupled with educators-in-the-field programs like TEA (Teachers Experiencing Antarctica and the Arctic), ARMADA and Polar Trec, ANDRILL's Education and Outreach Program has evolved into successful and far-reaching integrated education projects including 1) the ARISE (ANDRILL Research Immersion for Science Educators) Program, 2) Climate Change Student Summits, 3) the development of Flexhibit (flexible exhibit) teaching resources, 4) virtual online learning communities, and 5) partnering young researchers with teachers and classrooms. Formal evaluations indicate lasting interest in science studies on the part of students and an increase in teachers' scientific background knowledge.

  15. The Effect of an Energy Audit Service Learning Project on Student Perceptions of STEM Related Disciplines, Personal Behaviors/Actions towards the Environment, and Stewardship Skills

    NASA Astrophysics Data System (ADS)

    Gullo, Michael

    The purpose of this study was to investigate whether or not service learning could be considered an alternative teaching method in an environmental science classroom. In particular, the results of this research show whether an energy audit service learning project influenced student environmental awareness (knowledge of environmental issues, problems, and solutions), student personal actions/behaviors towards the environment, student perceptions and attitudes of science related careers, and community partnerships. Haines (2010) defines service learning as “a teaching and learning strategy that integrates meaningful community service with instruction and reflection to enrich the learning experience, teach civic responsibility, and strengthen communities” (p. 16). Moreover, service learning opportunities can encourage students to step out of their comfort zone and learn from hands-on experiences and apply knowledge obtained from lectures and classroom activities to real life situations. To add to the growing body of literature, the results of this study concluded that an energy audit service learning project did not have a measureable effect on student perceptions and attitudes of science related careers as compared to a more traditional teaching approach. However, the data from this study did indicate that an energy audit service learning project increased students personal actions/behaviors towards the environment more than a direct teaching approach.

  16. Professional development for university scientists around issues of equity and diversity: Investigating dissent within community

    NASA Astrophysics Data System (ADS)

    Bianchini, Julie A.; Hilton-Brown, Bryan A.; Breton, Therese D.

    2002-10-01

    We investigated the role of dissent in a community of university scientists, engineers, mathematicians, and social scientists engaged in a 2-year professional development project around issues of equity and diversity. Members of this teacher learning community explored issues related to gender and ethnicity in science education, and attempted to develop course materials and instructional strategies inclusive of students from underrepresented groups. We focused our attention on those professional development sessions (6 of the 19) devoted to a contentious yet integral topic in science education: the gendered and multicultural nature of science. We examined conversations initiated by a member's concerns to learn how dissent led (or failed to lead) to new insights into feminist science studies scholarship or to greater understanding of ways to address equity issues in undergraduate science education. We also explored how teacher learners' resulting views of feminist science studies scholarship informed (or failed to inform) changes in their own educational practices. From our qualitative analyses, we highlight the challenges in balancing respect for members' individual voices with collective progress toward project goals, and in structuring conversations initiated by dissent to provide adequate space for deliberation and movement toward deeper understanding of equity and excellence.

  17. The Frontera Collaboration: a preliminary report of health sciences librarians promoting evidence-based practice in U.S.-Mexico border communities.

    PubMed

    Cogdill, Keith W; Ambriz, Lorely; Billman, Brooke L; Carter, Kathleen V; Nail-Chiwetalu, Barbara; Trumble, Julie M; El-Khayat, Yamila M; Nuñez, Annabelle V

    2012-01-01

    This article reviews the formation of the Frontera Collaboration, a coalition of health sciences librarians serving clinicians and public health personnel in the U.S.-Mexico border region. Based on findings from an assessment of the target populations' learning needs, the Frontera Collaboration participants developed a shared set of training materials that have been used in pilot training sessions. The Frontera Collaboration's participants learned several lessons related to collaborative health information outreach and increased their understanding of the concerns and needs of clinicians and public health personnel serving border communities.

  18. Can Service Learning be a Component of the Geoscience PhD?

    NASA Astrophysics Data System (ADS)

    Nyquist, J. E.

    2008-12-01

    Service learning in the science and engineering has traditionally been conducted through student clubs, or student involvement with non-profit organizations such as Engineers Without Borders or Chemists Without Borders. The newly created foundation, Geoscientists Without Borders (GWB), demonstrates that the geoscience industry and professional societies are also increasingly interested in supporting philanthropic efforts. GWB proclaims that its role is to 11Connect universities and industries with communities in need through projects using applied geophysics to benefit people and the environment around the world." In 2007, NSF convened a workshop on Humanitarian Service Science and Engineering to examine research issues and how they are being addressed. Clearly, the scientific community is eager to increase its involvement. The graduate program of Temple University's Department of Earth and Environmental Science is planning to offer a PhD degree option starting in 2009. Temple University has a long history of service learning, and our department deliberating over how to make service learning a component of a geoscience PhD. Attempting to incorporate humanitarian project formally into a PhD degree program, however, raises a number of difficult questions: Is it possible to sustain a graduate program focused on research funding and publishable results while simultaneously pursuing projects of practical humanitarian benefit? Would such a program be more effective if designed in partnership with graduate studies in the social sciences? Will graduates be competitive in industry or as candidates for new faculty positions, and will such a degree open non-traditional employment opportunities within government and non-government agencies? We hope to answer these questions by studying existing degree programs, polling service learning groups and non-profit agencies, and organizing workshops and meeting sessions to discuss service learning with the geosciences community.

  19. The Sea Floor: A Living Learning Residential Community

    NASA Astrophysics Data System (ADS)

    Guentzel, J. L.; Rosch, E.; Stoughton, M. A.; Bowyer, R.; Mortensen, K.; Smith, M.

    2016-02-01

    Living learning communities are collaborations between university housing and academic departments designed to enhance the overall student experience by integrating classroom/laboratory learning, student life and extracurricular activities. At Coastal Carolina University, the residential community associated with the Marine Science program is known as the Sea Floor. Students selected to become members of the Sea Floor remain "in residence" for two consecutive semesters. These students are first-time freshman that share a common course connection. This course is usually Introduction to Marine Science (MSCI 111) or MSCI 399s, which are one credit field/laboratory centered internships. The common course connection is designed so residents can establish and maintain an educational dialog with their peers. Activities designed to enhance the students' networking skills and educational and social development skills include monthly lunches with marine science faculty and dinner seminars with guest speakers from academia, industry and government. Additionally, each semester several activities outside the classroom are planned so that students can more frequently interact with themselves and their faculty and staff partners. These activities include field trips to regional aquariums, local boat trips that include water sample collection and analysis, and an alternative spring break trip to the Florida Keys to study the marine environment firsthand. The resident advisor that supervises the Sea Floor is usually a sophomore or junior marine science major. This provides the residents with daily communication and mentoring from a marine science major that is familiar with the marine science program and residence life. Assessment activities include: a university housing community living survey, student interest housing focus groups, fall to spring and fall to fall retention, and evaluation of program advisors and program activities.

  20. "From the Beginning, I Felt Empowered": Incorporating an Ecological Approach to Learning in Elementary Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Birmingham, Daniel; Smetana, Lara; Coleman, Elizabeth

    2017-09-01

    While a renewed national dialog promotes the importance of science education for future technological and economic viability, students must find science personally relevant to themselves and their communities if the goals set forth in recent reform movements are to be achieved. In this paper, we investigate how incorporating an ecological perspective to learning in teacher education, including opportunities to participate with science in connection to their everyday lives, influenced the ways in which elementary teacher candidates (TCs) envisioned learning and doing science and its potential role in their future classroom. We draw from data collected across three sections of a field-based elementary methods course focused on learning to teach science and social studies through inquiry. We argue that participating in an authentic interdisciplinary inquiry project impacted the ways in which TCs conceived of science, their identities as science learners and teachers and their commitments to bringing inquiry-based science instruction to their future classrooms. This paper addresses issues regarding access to quality science learning experiences in elementary classrooms through empowering TCs to build identities as science learners and teachers in order to impact conditions in their future classrooms.

  1. Investigating Student Communities with Network Analysis of Interactions in a Physics Learning Center

    NASA Astrophysics Data System (ADS)

    Brewe, Eric; Kramer, Laird; O'Brien, George

    2009-11-01

    We describe our initial efforts at implementing social network analysis to visualize and quantify student interactions in Florida International University's Physics Learning Center. Developing a sense of community among students is one of the three pillars of an overall reform effort to increase participation in physics, and the sciences more broadly, at FIU. Our implementation of a research and learning community, embedded within a course reform effort, has led to increased recruitment and retention of physics majors. Finn and Rock [1997] link the academic and social integration of students to increased rates of retention. To identify these interactions, we have initiated an investigation that utilizes social network analysis to identify primary community participants. Community interactions are then characterized through the network's density and connectivity, shedding light on learning communities and participation. Preliminary results, further research questions, and future directions utilizing social network analysis are presented.

  2. Digital teaching tools and global learning communities.

    PubMed

    Williams, Mary; Lockhart, Patti; Martin, Cathie

    2015-01-01

    In 2009, we started a project to support the teaching and learning of university-level plant sciences, called Teaching Tools in Plant Biology. Articles in this series are published by the plant science journal, The Plant Cell (published by the American Society of Plant Biologists). Five years on, we investigated how the published materials are being used through an analysis of the Google Analytics pageviews distribution and through a user survey. Our results suggest that this project has had a broad, global impact in supporting higher education, and also that the materials are used differently by individuals in terms of their role (instructor, independent learner, student) and geographical location. We also report on our ongoing efforts to develop a global learning community that encourages discussion and resource sharing.

  3. Service-Learning in the Environmental Sciences for Teaching Sustainability Science

    NASA Astrophysics Data System (ADS)

    Truebe, S.; Strong, A. L.

    2016-12-01

    Understanding and developing effective strategies for the use of community-engaged learning (service-learning) approaches in the environmental geosciences is an important research need in curricular and pedagogical innovation for sustainability. In 2015, we designed and implemented a new community-engaged learning practicum course through the Earth Systems Program in the School of Earth, Energy and Environmental Sciences at Stanford University focused on regional open space management and land stewardship. Undergraduate and graduate students partnered with three different regional land trust and environmental stewardship organizations to conduct quarter-long research projects ranging from remote sensing studies of historical land use, to fire ecology, to ranchland management, to volunteer retention strategies. Throughout the course, students reflected on the decision-making processes and stewardship actions of the organizations. Two iterations of the course were run in Winter and Fall 2015. Using coded and analyzed pre- and post-course student surveys from the two course iterations, we evaluate undergraduate and graduate student learning outcomes and changes in perceptions and understanding of sustainability science. We find that engagement with community partners to conduct research projects on a wide variety of aspects of open space management, land management, and environmental stewardship (1) increased an understanding of trade-offs inherent in sustainability and resource management and (2) altered student perceptions of the role of scientific information and research in environmental management and decision-making. Furthermore, students initially conceived of open space as purely ecological/biophysical, but by the end of the course, (3) their understanding was of open space as a coupled human/ecological system. This shift is crucial for student development as sustainability scientists.

  4. Teachers' instructional goals for science practice: Identifying knowledge gaps using cultural-historical activity theory (CHAT)

    NASA Astrophysics Data System (ADS)

    Farrar, Cynthia Hamen

    In AP Biology, the course goal, with respect to scientific acts and reasoning, has recently shifted toward a reform goal of science practice, where the goal is for students to have a scientific perspective that views science as a practice of a community rather than a body of knowledge. Given this recent shift, this study is interested in the gaps that may exist between an individual teacher's instructional goal and the goals of the AP Biology course. A Cultural-Historical Activity Theory (CHAT) methodology and perspective is used to analyze four teachers' knowledge, practice, and learning. Teachers have content knowledge for teaching, a form of knowledge that is unique for teaching called specialized content knowledge. This specialized content knowledge (SCK) defines their instructional goals, the student outcomes they ultimately aim to achieve with their students. The study employs a cultural-historical continuum of scientific acts and reasoning, which represents the development of the AP Biology goal over time, to study gaps in their instructional goal. The study also analyzes the contradictions within their teaching practice and how teachers address those contradictions to shift their instructional practice and learn. The findings suggest that teachers have different interpretations of the AP Biology goals of science practice, placing their instructional goal at different points along the continuum. Based on the location of their instructional goal, different micro-communities of teachers exist along the continuum, comprised of teachers with a shared goal, language, and culture of their AP Biology teaching. The in-depth study of one teacher's AP Biology teaching, using a CHAT perspective, provides a means for studying the mechanisms that connect SCK to classroom actions and ultimately to instructional practice. CHAT also reveals the nature and importance of contradictions or cognitive dissonance in teacher learning and the types of support teachers need to recognize contradictions and to internalize and set their instructional goal, facilitating their learning. Without recognition of contradictions, some of these micro-communities are not aware that their instruction is not in line with the AP Biology goal of science practice. An in-depth look at teacher learning revealed the criticality of reflective practice and the need for an "expert" within a teacher's community to facilitate = learning and develop SCK to incorporate science practice in classroom instruction.

  5. Building Successful GitHub Communities

    NASA Astrophysics Data System (ADS)

    Smith, A.

    2014-12-01

    Building successful online communities is hard, whether it's in open source software or web-based citizen science. In this presentation I'll share some lessons learned and outline some techniques employed by successful open source projects.

  6. Exploration of an E-Learning Model to Foster Critical Thinking on Basic Science Concepts during Work Placements

    ERIC Educational Resources Information Center

    de Leng, Bas A.; Dolmans, Diana H. J. M.; Jobsis, Rijn; Muijtjens, Arno M. M.; van der Vleuten, Cees P. M.

    2009-01-01

    We designed an e-learning model to promote critical thinking about basic science topics in online communities of students during work placements in higher education. To determine the effectiveness and efficiency of the model we explored the online discussions in two case studies. We evaluated the quantity of the interactions by looking at…

  7. Exploring Identities to Deepen Understanding of Urban High School Students' Sexual Health Decision-Making

    ERIC Educational Resources Information Center

    Brotman, Jennie S.; Mensah, Felicia Moore; Lesko, Nancy

    2010-01-01

    Sexual health is a controversial science topic that has received little attention in the field of science education, despite its direct relevance to students' lives and communities. Moreover, research from other fields indicates that a great deal remains to be learned about how to make school learning about sexual health influence the real-life…

  8. Community-Based Service-Learning as a Source of Personal Self-Efficacy: Preparing Preservice Elementary Teachers to Teach Science for Diversity

    ERIC Educational Resources Information Center

    Cone, Neporcha

    2009-01-01

    Bandura (1997) contends that when compared to other sources of efficacy, mastery experiences, when presented appropriately, have the most powerful influence on self-efficacy. The purpose of this study was to investigate the effects of community-based service learning (CBSL) experiences on preservice elementary teachers' personal self-efficacy…

  9. Perspectives on Learning: Methodologies for Exploring Learning Processes and Outcomes

    ERIC Educational Resources Information Center

    Goldman, Susan R.

    2014-01-01

    The papers in this Special Issue were initially prepared for an EARLI 2013 Symposium that was designed to examine methodologies in use by researchers from two sister communities, Learning and Instruction and Learning Sciences. The four papers reflect a common ground in advances in conceptions of learning since the early days of the "cognitive…

  10. Middlesex Community College Geothermal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Jessie; Spaziani, Gina

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  11. Moon Zoo - Examples of Interesting Lunar Morphology

    NASA Astrophysics Data System (ADS)

    Cook, A. C.; Wilkinson, J.

    2012-09-01

    The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.

  12. CosmoQuest MoonMappers: Citizen Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Gay, P. L.; Antonenko, I.; Robbins, S. J.; Bracey, G.; Lehan, C.; Moore, J.; Huang, D.

    2012-09-01

    The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.

  13. Promoting student engagement in science: Interaction rituals and the pursuit of a community of practice

    NASA Astrophysics Data System (ADS)

    Olitsky, Stacy

    2007-01-01

    This study explores the relationship between interaction rituals, student engagement with science, and learning environments modeled on communities of practice based on an ethnographic study of an eighth grade urban magnet school classroom. It compares three interactional events in order to examine the classroom conditions and teacher practices that can foster successful interaction rituals (IRs), which are characterized by high levels of emotional energy, feelings of group membership, and sustained interest in the subject. Classroom conditions surrounding the emergence of successful IRs included mutual focus, familiar symbols and activity structures, the permissibility of some side-talk, and opportunities for physical and emotional entrainment. Sustained interest in the topic beyond the duration of the IR and an increase in students' helping each other learn occurred more frequently when the mutual focus consisted of science-related symbols, when there were low levels of risk for participants, when activities involved sufficient challenge and time, and when students were positioned as knowledgeable and competent in science. The results suggest that successful interaction rituals can foster student engagement with topics that may not have previously held interest and can contribute to students' support of peers' learning, thereby moving the classroom toward a community-of-practice model.

  14. Preparing Science Teachers for Culturally Diverse Students: Developing Cultural Literacy Through Cultural Immersion, Cultural Translators and Communities of Practice

    NASA Astrophysics Data System (ADS)

    Chinn, Pauline W. U.

    2006-09-01

    This three year study of P-12 professional development is grounded in sociocultural theories that hold that building knowledge and relationships among individuals from different cultural backgrounds entails joint activity toward common goals and cultural dialogues mediated by cultural translators. Sixty P-12 pre and in-service teachers in a year long interdisciplinary science curriculum course shared the goal of developing culturally relevant, standards-based science curricula for Native Hawai'ian students. Teachers and Native Hawai'ian instructors lived and worked together during a five day culture-science immersion in rural school and community sites and met several times at school, university, and community sites to build knowledge and share programs. Teachers were deeply moved by immersion experiences, learned to connect cultural understandings, e.g., a Hawai'ian sense of place and curriculum development, and highly valued collaborating with peers on curriculum development and implementation. The study finds that long term professional development providing situated learning through cultural immersion, cultural translators, and interdisciplinary instruction supports the establishment of communities of practice in which participants develop the cross-cultural knowledge and literacy needed for the development of locally relevant, place and standards-based curricula and pedagogy.

  15. Meeting Women's and Girls' Special Needs: "Gender-Sensitive" Environments and the Roadblocks Women Science Educators Face.

    ERIC Educational Resources Information Center

    Davis, Kathleen S.

    Groups and educators have sought to construct gender-sensitive learning environments for women and girls in science, thus providing them with opportunities to legitimately participate in the science and science education communities. Results of the study reported in this paper show that women science educators who work to provide such contexts…

  16. Bridging Scientific Expertise to Underserved Communities: Initiating and Sustaining Local STEM Outreach

    NASA Astrophysics Data System (ADS)

    Anderson, Tania; Kenney, Jessica; Maple, John

    2017-06-01

    This presentation will feature effective outreach strategies used to recruit, engage, and sustain student involvement from underserved communities in out-of-school science outreach programs. For example, one strategy is to partner with subject matter experts to provide your audience with a deeper understanding of and a unique perspective on current science. Join us to learn more about how you can initiate and sustain a STEM based program in your local community.

  17. Establishing a Community of Practice between an Elementary Educator and a Scientist as a Means of Professional Development

    NASA Astrophysics Data System (ADS)

    Dashoush, Nermeen

    This dissertation reports on an ethnographic study to examine and detail emerging practices in a community of practice comprised of an elementary teacher and a scientist (microbiologist). The study was conducted in order to design a model for professional development. It also aimed to contribute to the limited research involving elementary educators and their work with scientists. Furthermore, extra attention was given to understanding how both the elementary teacher and the scientist benefitted from their participation in the community of practice created from working together in teaching and learning science as a form of professional development. This was in accordance with a community of practice framework, which details that a healthy community is one without a perception of hierarchy among members (Wenger, 1998). The elementary teacher and scientist as participants collaborated in the creation of a science unit for an afterschool program. A wide variety of data was collected, including: interviews, transcribed meetings, and online journals from both participants. The data was coded for reoccurring themes surrounding practices and shifts in perception about science teaching and learning that emerged from this community of practice as professional development. The findings have implications for practices that could be used as a foundational structure in future collaborations involving elementary teachers and scientists for elementary science professional development.

  18. RITES: Online (Reaching In-Service Teachers With Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2002-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believe that the power of technology could not be effectively utilized unless it is grounded in new models of teaching and learning based on a student centered and project based curriculum, that increases opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believe the aforementioned ideas and points to be equally true for the inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses are delivered by distance learning via the university WebCt distance education system. Teachers are encouraged to use technology in their classrooms and to record their students' involvement in science activities with digital cameras. Teachers involved in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight the teachers in the roles of designer, researcher, and collaborator. As a result of our courses our teachers attain the following positive outcomes: 1) Teachers experience the inquiry approach to learning about the spheres of our earth. 2) Teachers become confident in using technology. 3) Teachers learn to work cooperatively in-groups and understand what their own students must feel. 4) Teachers find ways to obtain dynamic professional development and not leave their classrooms or homes. 5) Teachers develop relationships with other teachers that have an interest in teaching science and a learning community evolves.

  19. Evaluation of the Impact of an Active-Learning Introductory Gemology Studio Course on Community College Students

    NASA Astrophysics Data System (ADS)

    Shekoyan, V.; Scal, R.

    2014-12-01

    A new active learning introductory gemology studio course with a lab component has been created at Queensborough Community College with the support of NSF TUES grant. Various pedagogical techniques that have shown efficacy at 4-year colleges have been implemented and adopted to improve student learning and course retention as well as to stimulate their interest in science and in STEM careers. The course covered broad range of STEM topics central to the gemology curriculum, including concepts from geology, mineralogy, physics and chemistry. Lectures and labs were linked. Students' misconceptions were addressed via guided laboratory activities in a studio-learning environment. The course used peer-based learning and problem solving by creating student groups that discussed observations and measurements. Discussion groups were required to observe, synthesize, and evaluate data for presentations. The goal was to empower student learning and peer-based teaching and to recruit early career, often non-STEM students, to earth science. Students were often prompted to engage in self-reflections on their learning. In this presentation we will present the analysis of the evaluation of the course and its impact on community college students. Some of the evaluation tools we have used are pre- and post- knowledge surveys, science attitude and belief surveys as well as a Geological Interest instrument. Parallel sections of traditionally taught lecture-only courses (taught by the same instructor) were utilized as a control group in the analysis. The pedagogical implications of the analysis on instruction and course design will be discussed as well.

  20. Strengthening STEM Education through Community Partnerships

    PubMed Central

    Lopez, Colleen A.; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R.; Mothé, Bianca R.

    2017-01-01

    California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest. PMID:28725512

  1. Strengthening STEM Education through Community Partnerships.

    PubMed

    Lopez, Colleen A; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R; Mothé, Bianca R

    2016-01-01

    California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest.

  2. CosmoQuest: Building a Community of Skilled Citizen Science Contributors

    NASA Astrophysics Data System (ADS)

    Gay, P.; Lehan, C.; Bracey, G.; Durrell, P.; Komatsu, T.; Yamani, A.; Francis, M. R.

    2016-12-01

    The CosmoQuest Virtual Research Facility invites the public to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. CosmoQuest projects range in difficulty from simple crater and transient marking tasks to more complicated mapping tasks. To successfully engage contributors in creating usable results, training and validation are required. This is accomplished through activities that are designed to mirror the experiences students would have in a university, and include mentoring by team scientists, feedback on contributor efforts, seminars to learn about new science, and even formal classes to provide needed background. Recruitment is accomplished using new and social media, and planetarium and Science on the Sphere™ trailers and shows, and community is built through online and real-world collaboration spaces and events. In this presentation, we detail CosmoQuest's four-pronged approach of media recruitment, science education, citizen science, and community collaboration. We also discuss how it is leveraged to create a skilled collaboration of citizen scientists. Training and data validation activities will be be emphasized, with examples of both what can go right and lessons learned from when things go wrong. We conclude with strategies on how to utilize best practices in user interface design to create virtual experiences that allow major citizen science efforts to be scalable to large audiences.

  3. Locating Narratives in Postmodern Spaces: A Cyber Ethnographic Field Study of Informal Music Learning in Online Community

    ERIC Educational Resources Information Center

    Waldron, Janice

    2011-01-01

    Once an area of debate, there is now general consensus among media and social science researchers that online communities represent community in the traditional sense of the term, albeit with some important epistemological differences. If one considers online communities as genuine functioning communities situated in a legitimate cultural context,…

  4. How do marine and coastal citizen science experiences foster environmental engagement?

    PubMed

    Dean, Angela J; Church, Emma K; Loder, Jenn; Fielding, Kelly S; Wilson, Kerrie A

    2018-05-01

    Citizen science programs enable community involvement in scientific research. In addition to fostering greater science literacy, some citizen science programs aim to foster engagement in environmental issues. However, few data are available to indicate whether and how citizen science programs can achieve greater environmental engagement. We survey individuals choosing to attend one of seventeen reef citizen science events and examine the extent to which attendees reported three indicators of greater environmental engagement: (i) willingness to share information, (ii) increased support for marine conservation and citizen science, and (iii) intentions to adopt a new behavior. Most participants reported being willing to share information about reef conservation (91%) and described increased support for marine science and conservation (87%). Half of participants (51%) reported intentions to adopt a new conservation behavior. We found that key elements of the citizen science experience associated with these outcomes were learning about actions to protect reefs and coasts (procedural learning), experiencing surprise, and experiencing negative emotions about environmental problems. Excitement was also associated with positive outcomes, but only in participants who were less likely to see themselves as environmental, or were less frequent visitors to reefs and coasts. Importantly, the association between factual learning and environmental engagement outcomes was limited or negative. These findings suggest that the way citizen science experiences make people feel, may be more important for fostering future environmental engagement than factual-based learning. When designing citizen science programs for community members, these findings provide a reminder to not focus on provision of factual information alone, but to highlight environmental impacts while providing meaningful experiences and building environmental skills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  6. Investigating student communities with network analysis of interactions in a physics learning center

    NASA Astrophysics Data System (ADS)

    Brewe, Eric; Kramer, Laird; Sawtelle, Vashti

    2012-06-01

    Developing a sense of community among students is one of the three pillars of an overall reform effort to increase participation in physics, and the sciences more broadly, at Florida International University. The emergence of a research and learning community, embedded within a course reform effort, has contributed to increased recruitment and retention of physics majors. We utilize social network analysis to quantify interactions in Florida International University’s Physics Learning Center (PLC) that support the development of academic and social integration. The tools of social network analysis allow us to visualize and quantify student interactions and characterize the roles of students within a social network. After providing a brief introduction to social network analysis, we use sequential multiple regression modeling to evaluate factors that contribute to participation in the learning community. Results of the sequential multiple regression indicate that the PLC learning community is an equitable environment as we find that gender and ethnicity are not significant predictors of participation in the PLC. We find that providing students space for collaboration provides a vital element in the formation of a supportive learning community.

  7. Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)

    NASA Astrophysics Data System (ADS)

    Mohsen, Mona

    2009-04-01

    The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.

  8. STEM learning activity among home-educating families

    NASA Astrophysics Data System (ADS)

    Bachman, Jennifer

    2011-12-01

    Science, technology, engineering, and mathematics (STEM) learning was studied among families in a group of home-educators in the Pacific Northwest. Ethnographic methods recorded learning activity (video, audio, fieldnotes, and artifacts) which was analyzed using a unique combination of Cultural-Historical Activity Theory (CHAT) and Mediated Action (MA), enabling analysis of activity at multiple levels. Findings indicate that STEM learning activity is family-led, guided by parents' values and goals for learning, and negotiated with children to account for learner interests and differences, and available resources. Families' STEM education practice is dynamic, evolves, and influenced by larger societal STEM learning activity. Parents actively seek support and resources for STEM learning within their home-school community, working individually and collectively to share their funds of knowledge. Home-schoolers also access a wide variety of free-choice learning resources: web-based materials, museums, libraries, and community education opportunities (e.g. afterschool, weekend and summer programs, science clubs and classes, etc.). A lesson-heuristic, grounded in Mediated Action, represents and analyzes home STEM learning activity in terms of tensions between parental goals, roles, and lesson structure. One tension observed was between 'academic' goals or school-like activity and 'lifelong' goals or everyday learning activity. Theoretical and experiential learning was found in both activity, though parents with academic goals tended to focus more on theoretical learning and those with lifelong learning goals tended to be more experiential. Examples of the National Research Council's science learning strands (NRC, 2009) were observed in the STEM practices of all these families. Findings contribute to the small but growing body of empirical CHAT research in science education, specifically to the empirical base of family STEM learning practices at home. It also fills a current gap regarding STEM learning among home-educating families, a small, but growing part of society's STEM learning infrastructure for which little research exists.

  9. Learning to teach in a coteaching community of practice

    NASA Astrophysics Data System (ADS)

    Gallo-Fox, Jennifer

    2009-12-01

    As a result of the standards and accountability reforms of the past two decades, heightened attention has been focused upon student learning in the K-12 classrooms, classroom teacher practice, and teacher preparation. This has led to the acknowledgement of limitations of traditional field practicum and that these learning experiences are not well understood (Bullough et al., 2003; Clift & Brady, 2005). Alternative models for student teaching, including those that foster social learning experiences, have been developed. However, research is necessary to understand the implications of these models for preservice teacher learning. Drawing on sociocultural theoretical frameworks and ethnographic perspectives (Gee and Green, 1998), this qualitative research study examined the learning experiences of a cohort of eight undergraduate preservice secondary science teachers who cotaught with eight cooperating teachers for their full practicum semester. In this model, interns planned and taught alongside multiple cooperating teachers and other interns. This study centers on the social and cultural learning that occurred within this networked model and the ways that the interns developed as high school science teachers within a coteaching community of practice (Wenger, 1998). This study utilized the following data sources: Intern and cooperating teachers interviews, field observations, meeting recordings, and program documentation. Analysis focused on community and interpersonal planes of development (Rogoff, 1995) in order understand of the nature of the learning experiences and the learning that was afforded through participant interactions. Several conclusions were made after the data were analyzed. On a daily basis, the interns participated in a wide range of cultural practices and in the activities of the community. The coteaching model challenged the idiosyncratic nature of traditional student teaching models by creating opportunities to learn across various classroom contexts. In different classrooms, there were markedly different constructions of teacher practice and participant roles. The implementation of the coteaching model also resulted in the creation of an interconnected network of colleagues. In the resulting learning community, coteachers supported one another's developing practice and critically examined their shared practice.

  10. Collegiality and Better Science Teaching

    ERIC Educational Resources Information Center

    Weiser, Brenda

    2012-01-01

    For the past five years, teachers from four Houston-area school districts have joined together in a professional learning community (PLC) to improve their science teaching. Through the University of Houston-Clear Lake (UHCL) Regional Collaborative for Excellence in Science and Mathematics Teaching, the teachers strengthen content knowledge and…

  11. Talking Science

    ERIC Educational Resources Information Center

    Shwartz, Yael; Weizman, Ayelet; Fortus, David; Sutherland, LeeAnn; Merrit, Joi; Krajcik, Joe

    2009-01-01

    Science is a social process--one that involves particular ways of talking, reasoning, observing, analyzing, and writing, which often have meaning only when shared within the scientific community. Discussions are one of the best ways to help students learn to "talk science" and construct understanding in a social context. Since inquiry is an…

  12. The Role of University Science Faculty in Promoting Meaningful Educational Change Through Inservice Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Schuster, D. A.

    2005-12-01

    The role of university faculty in promoting meaningful educational change through inservice teacher professional development has long been theorized, but seldom modeled. Cordial relations and clear mutual goals shared between discipline specialists, such as university scientists and the K - 12 staff development communities, have not existed, and dysfunctional relationships between K-12 schools and the university over the past century have inhibited the solidification of these meaningful professional development partnerships. Our research suggest that inservice teachers tend to learn more about scientific processes in settings where they have the opportunity to interact and engage in an environment where opportunities for learning are promoted by participation and work with professionals in the sciences: University scientists that fostered collaborative flexible environments and treated teachers as professionals appear to have had greater impacts on teachers' learning about the creative, imaginative, social, and cultural aspect of science than the university scientists who treated teachers as technicians. Our work challenges many of the seminal studies and in-depth literature reviews of the last 15 years that assert that an explicit/reflective approach is most effective in promoting adequate conceptions of science among both prospective and practicing teachers. It should be noted, however, that all of these previous studies were conducted in the context of preservice elementary and secondary science methods courses and the process of generalizing these findings to practicing teachers appears to have occurred only in literature reviews and is not clearly substantiated in published research reports. Our study recommends that science teacher professional development should involve initiating inservice teachers into the ideas and practices of the scientific community. Teaching is a learning profession and professional development contexts need to assign teachers a certain amount of responsibility for their own learning. The work of science teaching cannot be accomplished without teacher learning, and teachers of science learn about scientific communities when scientists invite them to engage in the context of scientific practice. Unfortunately, numerous state and federal policies do not support science teachers as they seek to achieve these ends. Many of these policies push schools and universities to design professional development offerings that attempt to generate social capital in order to improve the school as an organization and do not the enrich the individual science teacher. However, these systems of professional development do not acknowledge that scientific knowledge is rapidly changing and K - 12 science teachers and curricula require continual renewal if they are to be accessible and relevant to students' lives. The university is uniquely situated to provide contexts through which inservice teachers can realize the "social and cultural embeddedness of scientific knowledge" (Lederman et. al., 2002).

  13. School-Community Collaborations: Bringing Authentic Science into Schools

    ERIC Educational Resources Information Center

    Clark, John Cripps; Tytler, Russell; Symington, David

    2014-01-01

    There is increasing interest in collaborative arrangements between schools and community scientists to enhance student engagement with learning. We describe research in which we identify a wide range of such collaborations in Australia, and investigate through interviews with community participants their perspectives on the purposes of…

  14. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  15. Digital collaborative learning: identifying what students value

    PubMed Central

    Hemingway, Claire; Adams, Catrina; Stuhlsatz, Molly

    2015-01-01

    Digital technologies are changing the learning landscape and connecting classrooms to learning environments beyond the school walls.  Online collaborations among students, teachers, and scientists are new opportunities for authentic science experiences.  Here we present findings generated on PlantingScience ( www.plantingscience.org), an online community where scientists from more than 14 scientific societies have mentored over 14,000 secondary school students as they design and think through their own team investigations on plant biology.  The core intervention is online discourse between student teams and scientist mentors to enhance classroom-based plant investigations.  We asked: (1) what attitudes about engaging in authentic science do students reveal, and (2) how do student attitudes relate to design principles of the program? Lexical analysis of open-ended survey questions revealed that students most highly value working with plants and scientists.  By examining student responses to this cognitive apprenticeship model, we provide new perspectives on the importance of the personal relationships students form with scientists and plants when working as members of a research community. These perspectives have implications for plant science instruction and e-mentoring programs. PMID:26097690

  16. Digital collaborative learning: identifying what students value.

    PubMed

    Hemingway, Claire; Adams, Catrina; Stuhlsatz, Molly

    2015-01-01

    Digital technologies are changing the learning landscape and connecting classrooms to learning environments beyond the school walls.  Online collaborations among students, teachers, and scientists are new opportunities for authentic science experiences.  Here we present findings generated on PlantingScience ( www.plantingscience.org), an online community where scientists from more than 14 scientific societies have mentored over 14,000 secondary school students as they design and think through their own team investigations on plant biology.  The core intervention is online discourse between student teams and scientist mentors to enhance classroom-based plant investigations.  We asked: (1) what attitudes about engaging in authentic science do students reveal, and (2) how do student attitudes relate to design principles of the program? Lexical analysis of open-ended survey questions revealed that students most highly value working with plants and scientists.  By examining student responses to this cognitive apprenticeship model, we provide new perspectives on the importance of the personal relationships students form with scientists and plants when working as members of a research community. These perspectives have implications for plant science instruction and e-mentoring programs.

  17. Improving together: collaborative learning in science communication, ClimateSnack case study

    NASA Astrophysics Data System (ADS)

    Heuzé, C.; Reeve, M. A.

    2016-02-01

    Most scientists today recognize that science communication is an important part of the scientific process, yet science writing and communication are often taught outside the normal academic schedule. If universities offer such courses, they are generally intensive but short-term: the participants rarely complete a science communication course with an immediate and pressing need to apply these skills. So the skills fade, stalling real progress in science communication. Continuity is key to success! Whilst waiting for the academic system to truly integrate science communication, other methods can be tested. ClimateSnack / SciSnack is a new approach that aims to motivate scientists to develop their communication skills. It adopts a collaborative learning framework where scientists voluntarily form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online, where they are further discussed and improved by the global ClimateSnack community. This way, the participants learn and cement basic science communication skills. These skills are transferrable, and can be applied both to scientific articles and broader science media. Some writing groups are highly productive, while others exist no more. The reasons for success are here investigated with respect to issues both internal and external to the different groups, in particular leadership strategies. Possible further development, in particular using the online community, is suggested. ClimateSnack is one solution to fill the critical gap left by a lack of adequate teaching in early-career scientists' curriculum.

  18. Design Patterns for Learning and Assessment: Facilitating the Introduction of a Complex Simulation-Based Learning Environment into a Community of Instructors

    ERIC Educational Resources Information Center

    Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.

    2010-01-01

    Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are…

  19. Learning-style preferences of Latino/Hispanic community college students enrolled in an introductory biology course

    NASA Astrophysics Data System (ADS)

    Sarantopoulos, Helen D.

    Purpose. The purpose of this study was to identify, according to the Productivity Environment Preference Survey (PEPS) instrument, which learning-style domains (environmental, emotional, sociological, and physiological) were favored among Latino/Hispanic community college students enrolled in introductory biology classes in a large, urban community college. An additional purpose of this study was to determine whether statistically significant differences existed between the learning-style preferences and the demographic variables of age, gender, number of prior science courses, second language learner status, and earlier exposure to scientific information. Methodology. The study design was descriptive and ex post facto. The sample consisted of a total of 332 Latino/Hispanic students enrolled in General Biology 3. Major findings. The study revealed that Latino/Hispanic students enrolled in introductory biology at a large urban community college scored higher for the learning preference element of structure. Students twenty-five years and older scored higher for the learning preference elements of light, design, persistence, responsibility, and morning time (p <= 0.05). Females scored higher in the preference elements of (a) light, (b) temperature (warmth), (c) authority and (d) auditory (p <= 0.05). Significant differences were found for the elements of sound, warmth, motivation, several ways, and intake between the students with no prior science coursework and those who completed more than one (p <= 0.05). No significant learning-style preferences were found between second English language learners and those who learned English as their primary language (p <= 0.05). Students who frequently read science articles scored higher for the elements of motivation, persistence, responsibility, and tactile (p <= 0.05). Conclusions and recommendations. The conclusions were that Latino/Hispanic students need detailed guidance and clearly stated course objectives. The recommendations were: (1) College professors, counselors, and administrators must become aware of the Dunn learning-style model and instruments and on recent learning-style research articles on ethnically diverse groups of adult learners; and (2) Instructors should plan their instruction to incorporate the learning-style preferences of their students.

  20. Learning style and concept acquisition of community college students in introductory biology

    NASA Astrophysics Data System (ADS)

    Bobick, Sandra Burin

    This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous multiple regression indicated that demographic variables were significant positive predictors for Methodical, Deep and Elaborative Learning Styles. Stepwise multiple regression resulted in number of credits, Read Science and gender (female) as significant predictors of learning styles. The findings of this study emphasize the importance of learning styles in conceptual understanding of the gene and the correlation of nonformal exposure to science information with learning style and conceptual understanding.

  1. The Effect of Online Discussion Forums on Student Learning and Student Perception of Learning in a Science Course at the Community College Level

    ERIC Educational Resources Information Center

    Ryan, Rachel Syring

    2013-01-01

    Institutions of higher education are feeling the pressure to offer a greater number of courses through alternative methods of instructional delivery including hybrid and online courses in an attempt to meet the needs of their students. Among institutions of higher education, community colleges have become a forerunner in online education, in many…

  2. Exploring Students' Epistemological Knowledge of Models and Modelling in Science: Results from a Teaching/Learning Experience on Climate Change

    ERIC Educational Resources Information Center

    Tasquier, Giulia; Levrini, Olivia; Dillon, Justin

    2016-01-01

    The scientific community has been debating climate change for over two decades. In the light of certain arguments put forward by the aforesaid community, the EU has recommended a set of innovative reforms to science teaching such as incorporating environmental issues into the scientific curriculum, thereby helping to make schools a place of civic…

  3. The Loneliness of the Long-Distance Learner? Perspectives on the Creation of Community within Syracuse University's Master of Library Science-Independent Study Degree Program.

    ERIC Educational Resources Information Center

    Linden, Julie

    This paper presents a case study focusing on community among students in a distance learning program, the Syracuse University (New York) Master of Library Science-Independent Study Degree Program (MLS-ISDP). During July 1998, the researcher conducted interviews with Syracuse University faculty and staff involved in developing and administering the…

  4. California Community Colleges Family and Consumer Sciences: A Plan for the 21st Century Update, 1998.

    ERIC Educational Resources Information Center

    Mount San Antonio Coll., Walnut, CA.

    This update of the 1998 Plan for the 21st Century was designed to augment the California Community College Family and Consumer Sciences in the 21st Century packet, produced in 1996. It summarizes a variety of activities, products and events that have taken place over the past two years, and suggests resources and contacts for learning more about…

  5. The Costa Rica GLOBE (Global Learning and Observations to Benefit the Environment) Project as a Learning Science Environment

    NASA Astrophysics Data System (ADS)

    Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca

    2015-12-01

    GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old from public schools participate in science clubs outside of their regular school schedule. A comparison study was performed between different groups, in order to assess GLOBE's applicability as a learning science atmosphere and the motivation and interest it generates in students toward science. Internationally applied scales were used as tools for measuring such indicators, adapted to the Costa Rican context. The results provide evidence statistically significant that the students perceive the GLOBE atmosphere as an enriched environment for science learning in comparison with the traditional science class. Moreover, students feel more confident, motivated and interested in science than their peers who do not participate in the project. However, the results were not statistically significant in this last respect.

  6. The science between tsunami science and evacuation decisions

    NASA Astrophysics Data System (ADS)

    McCaughey, J.; Dewi, P. R.; Mundzir, I.; Rosemary, R.; Safrina, L.; Daly, P.; Patt, A.

    2014-12-01

    The science of rare natural hazards provides us an opportunity that our ancestors lacked: the chance to learn what hazards we could face, and how reliable any particular precursor may or may not be. Connecting hazard science to societal learning is far too complex a challenge for our intuitions to be of much use. Instead, we need to use evidence - the science of science communication - to identify what actually works. As practitioners, we first worked with NGOs and local governments in coastal Sumatran communities to develop tsunami evacuation guidance that is consistent with the science of tsunamis and suitable for the communities that face the threat. This work identified important practical questions that social science can address: how do people decide whether to evacuate, and how do hazard knowledge and experience influence this? How acceptable are false alarms? What modes of communicating tsunami science and its uncertainties may lead to greater willingness to evacuate, and greater acceptance of false alarms? Which parts of the vast body of research on communication, risk perception, and decision-making might be significant in these contexts? We are beginning research at the household level that will address these questions and feed back into our continuing science-communication practice.

  7. Science education through informal education

    NASA Astrophysics Data System (ADS)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  8. Partnering to enhance interprofessional service-learning innovations and addictions recovery.

    PubMed

    Mihalynuk, T V; Soule Odegard, P; Kang, R; Kedzierski, M; Johnson Crowley, N

    2007-11-01

    Service-learning programs are reported to benefit students, faculty, higher education institutions, community agencies and the relationships among these groups. An interprofessional service-learning paradigm may strengthen these benefits. Community settings can expose students to social and cultural determinants of health, in addition to those biomedical determinants more commonly addressed in health sciences curricula. These experiences can also enhance student understanding of the complexities underlying treatment and prevention of modern health problems, particularly chronic diseases. The purpose of this initiative was to create and deliver interprofessional service-learning innovations that would enhance student learning and addictions recovery. To address this initiative, the University of Washington's Health Science Partnerships in Interdisciplinary Clinical Education (HSPICE) and the Salvation Army Adult Rehabilitation Center (ARC) began a community-campus partnership in 1997. Innovations took into account student educational objectives established by HSPICE which included: participation in interdisciplinary teams, in conjunction with community partners to identify and reduce population-based health issues, realization and articulation of biases regarding issues faced by the participating community, acquiring an understanding of the broader determinants of health and developing an understanding of why the complexity of population health requires interdisciplinary strategies for cost effectiveness. Findings are reported from evaluations, needs assessments and ongoing feedback of men recovering from addictions, as applied to health education materials and presentations developed for the ARC. Future directions are highlighted, including the need for further research and evaluation efforts aimed at rigorously assessing cost savings and student knowledge, skills and cultural sensitivity, among others.

  9. The Practical Enactment of Adventure Learning: Where Will You AL@?

    ERIC Educational Resources Information Center

    Miller, Brant G.; Hougham, R. Justin; Eitel, Karla Bradley

    2013-01-01

    The Adventure Learning (AL) approach to designing and implementing learning experiences has great potential for practitioners. This manuscript delineates the practical enactment of AL to support the K-12 community, teacher educators, and residential environmental science program providers in the conceptualization and delivery of their own AL…

  10. 78 FR 22254 - Agency Information Collection Activities; Submission to the Office of Management and Budget for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... State Expanded Learning Time AGENCY: Institute of Education Sciences/National Center for Education... State Expanded Learning Time. OMB Control Number: 1850-NEW. Type of Review: a new collection... conduct semi-structured interviews with 21st Century Community Learning Centers (21st CCLC) state...

  11. Secondary Science Teachers Making Sense of Model-Based Classroom Instruction: Understanding the Learning and Learning Pathways Teachers Describe as Supporting Changes in Teaching Practice

    NASA Astrophysics Data System (ADS)

    Hvidsten, Connie J.

    Connie J. Hvidsten September 2016 Education Secondary Science Teachers Making Sense of Model-Based Classroom Instruction: Understanding the Learning and Learning Pathways Teachers Describe as Supporting Changes in Teaching Practice This dissertation consists of three papers analyzing writings and interviews of experienced secondary science teachers during and after a two-year professional development (PD) program focused on model-based reasoning (MBR). MBR is an approach to science instruction that provides opportunities for students to use conceptual models to make sense of natural phenomena in ways that are similar to the use of models within the scientific community. The aim of this research is to better understand the learning and learning pathways teachers identified as valuable in supporting changes in their teaching practice. To accomplish this aim, the papers analyze the ways teachers 1) ascribe their learning to various aspects of the program, 2) describe what they learned, and 3) reflect on the impact the PD had on their teaching practice. Twenty-one secondary science teachers completed the Innovations in Science Instruction through Modeling (ISIM) program from 2007 through 2009. Commonalities in the written reflections and interview responses led to a set of generalizable findings related to the impacts and outcomes of the PD. The first of the three papers describes elements of the ISIM program that teachers associated with their own learning. One of the most frequently mentioned PD feature was being in the position of an adult learner. Embedding learning in instructional practice by collaboratively developing and revising lessons, and observing the lessons in one-another's classrooms provided a sense of professional community, accountability, and support teachers reported were necessary to overcome the challenges of implementing new pedagogical practices. Additionally, teachers described that opportunities to reflect on their learning and connect their experiences to a larger literature base and rationale helped them negotiate the dissonance occurring as they tried new practices in their own classroom. Teachers associated these elements with learning about both science content and effective instructional pedagogy and producing a level of dissatisfaction with current understanding that motivated their persistence when met with obstacles or struggles. The second of the three papers analyzes what teachers said they learned in the ISIM program. Teachers' reported learning about scientific models, both how they are used in both the scientific community and how they can support students' classroom learning. Additionally, teachers mentioned learning more about the science they taught through interacting with models during the PD and learned more about effective teaching strategies. Teachers also reported learning about themselves as teachers and learners, as well as about the school and classroom contexts that shape their ability to implement new instructional practices. Finally, the third paper draws from interviews occurring a year or more after the program ended to identify how teachers reported changes in their classroom instruction resulting from their ISIM participation. Four of the teachers reported little or no change in classroom practice. Eight teachers described changes to their teaching to incorporate elements of the professional development, but who fell short of adopting model-based reasoning as a core feature of their classroom instruction. Nine teachers expressed a strong understanding of modeling instruction, and its ongoing influence on their classroom instruction.

  12. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    PubMed

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  13. Start a Science Club

    ERIC Educational Resources Information Center

    Bircher, Lisa; Sansenbaugher, Bonnie

    2015-01-01

    This article describes the benefits of high school science clubs, focusing on forging partnerships with local and regional organizations; the importance of a service-learning component; and how local science club activities bring students and community members together. The authors also address how educators can improve the work of the group to…

  14. MODIS Science Algorithms and Data Systems Lessons Learned

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.

    2009-01-01

    For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.

  15. Exploring Climate Science with WV Educators: A Regional Model for Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Ruberg, L. F.; Calinger, M.

    2014-12-01

    The National Research Council Framework for K-12 Science Literacy reports that children reared in rural agricultural communities, who experience regular interactions with plants and animals, develop more sophisticated understanding of ecology and biological systems than do urban and suburban children of the same age. West Virginia (WV) is a rural state. The majority of its residents live in communities of fewer than 2,500 people. Based on the features of the population being served and their unique strengths, this presentation focuses on a regional model for teacher professional development that addresses agricultural and energy vulnerabilities and adaptations to climate change in WV. The professional development model outlined shows how to guide teachers to use a problem-based learning approach to introduce climate data and analysis techniques within a scenario context that is locally meaningful. This strategy engages student interest by focusing on regional and community concerns. Climate science standards are emphasized in the Next Generation Science Standards, but WV has not provided its teachers with appropriate instructional resources to meet those standards. The authors addressed this need by offering a series of climate science education workshops followed by online webinars offered to WV science educators free of charge with funding by the West Virginia Space Grant Consortium. The authors report on findings from this series of professional development workshops conducted in partnership with the West Virginia Science Teachers Association. The goal was to enhance grades 5-12 teaching and learning about climate change through problem-based learning. Prior to offering the climate workshops, all WV science educators were asked to complete a short questionnaire. As Figure 1 shows, over 40% of the teacher respondents reported being confident in teaching climate science content. For comparison post workshops surveys measure teacher confidence in climate science instruction after the professional development sessions. In summary, this report describes how this professional approach can serve as a regional model to address the need for climate science literacy throughout Appalachia.

  16. Self-regulated Learning in a Hybrid Science Course at a Community College

    NASA Astrophysics Data System (ADS)

    Manuelito, Shannon Joy

    Community college students are attracted to courses with alternative delivery formats such as hybrid courses because the more flexible delivery associated with such courses provides convenience for busy students. In a hybrid course, face-to-face, structured seat time is exchanged for online components. In such courses, students take more responsibility for their learning because they assume additional responsibility for learning more of the course material on their own. Thus, self-regulated learning (SRL) behaviors have the potential to be useful for students to successfully navigate hybrid courses because the online components require exercise of more personal control over the autonomous learning situations inherent in hybrid courses. Self-regulated learning theory includes three components: metacognition, motivation, and behavioral actions. In the current study, this theoretical framework is used to examine how inducing self-regulated learning activities among students taking a hybrid course influence performance in a community college science course. The intervention for this action research study consisted of a suite of activities that engage students in self-regulated learning behaviors to foster student performance. The specific SRL activities included predicting grades, reflections on coursework and study efforts in course preparation logs, explanation of SRL procedures in response to a vignette, photo ethnography work on their personal use of SRL approaches, and a personalized study plan. A mixed method approach was employed to gather evidence for the study. Results indicate that community college students use a variety of self-regulated learning strategies to support their learning of course material. Further, engaging community college students in learning reflection activities appears to afford some students with opportunities to refine their SRL skills and influence their learning. The discussion focuses on integrating the quantitative and qualitative data and explanation of the findings using the SRL framework. Additionally, lessons learned, limitations, and implications for practice and research are discussed. Specifically, it is suggested that instructors can foster student learning in hybrid courses by teaching students to engage in SRL processes and behaviors rather than merely focusing on delivery of course content. Such SRL behaviors allow students to exercise greater control over the autonomous learning situations inherent in hybrid courses.

  17. Improved Student Learning through a Faculty Learning Community: How Faculty Collaboration Transformed a Large-Enrollment Course from Lecture to Student Centered

    ERIC Educational Resources Information Center

    Elliott, Emily R.; Reason, Robert D.; Coffman, Clark R.; Gangloff, Eric J.; Raker, Jeffrey R.; Powell-Coffman, Jo Anne; Ogilvie, Craig A.

    2016-01-01

    Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture…

  18. Science, School Science, and School: Looking at Science Learning in Classrooms from the Perspective of Basil Bernstein's Theory of the Structure of Pedagogic Discourse

    NASA Astrophysics Data System (ADS)

    Campbell, Ralph Ian

    This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic discourse becomes a problematic distinction. Regulative discourse is often more instructional and instructional discourse more instrumental in shaping roles and relationships within the learning community. This analysis suggests an agenda for future classroom research and the education of teachers, capitalizing on the SPD as heuristic and reevaluating the ways that social dynamics and structures for domain-specific learning interact in the realization of classroom learning.

  19. Creating a Partnering Community Aimed to Foster Climate Literacy in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Rutherford, D.; McNeal, K. S.; Smith, R.; Hare, D.; Nair, U. S.

    2011-12-01

    The Climate Literacy Partnership in the Southeast (CLiPSE) is a part of the Climate Change Education Program supported by the National Science Foundation (http://CLiPSE-project.org). The established CLiPSE partnership is dedicated to improving climate literacy in the southeast through crafting a shared vision and strategic plan among stakeholders that promotes scientific formal and informal educational resources, materials and programs; a diverse network of key partnering organizations throughout the Southeastern United States (SE US); and effective public dialogues that address diverse learners and audiences and supports learning of climate, climate change, and its relevance upon human and environmental systems. The CLiPSE project has been successful in creating partnerships with more than fifty key stakeholders that stem from a few key publics such as agriculture, education, leisure, religious organizations, and culturally diverse communities. These key publics in the SE US frequently consist of individuals that place great trust in local, private efforts, and CLiPSE has realized the importance of the role of the partnering organizations in providing information through a trusted source. A second unique characteristic of the SE US is the predominately conservative and Protestant citizenry in the region. Working with and through these communities enhances climate change education outreach to this citizenry. The CLiPSE project rests on solid climate science and learning science research in order to formulate an effective plan with desired learning outcomes of critical thinking and civil conversation through effective communication strategies. This paper will present the CLiPSE model in reaching the key publics that traditionally hold ideologies that are traditionally perceived as incompatible with climate change science. We will present the strategies utilized to bring together experts and researchers in climate science, learning science, and social science with practitioners and leaders of key stakeholder groups to formulate a shared climate change education plan in the SE US that is uniquely formatted for each target audience. We will also share what we have learned from interacting with the leaders of our partnering organizations in crafting effective messages for their audiences and addressing learners' affective and cognitive domains.

  20. Shifting Currents: Science Technology Society and Environment in Northern Ontario Schools

    ERIC Educational Resources Information Center

    Steele, Astrid

    2013-01-01

    The focus is on the practices of secondary science teachers in rural, resource-extraction-based communities in the boreal region of northern Ontario, Canada. In 2008 the Ontario Ministry of Education mandated that science teaching and learning should bring to the forefront consideration of the impacts of science on society and environment, and…

  1. A Multi-Year Study of the Impact of the Rice Model Teacher Professional Development on Elementary Science Teachers

    ERIC Educational Resources Information Center

    Diaconu, Dana Viorica; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn

    2012-01-01

    A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one…

  2. Visualizing Culturally Relevant Science Pedagogy Through Photonarratives of Black Middle School Teachers

    NASA Astrophysics Data System (ADS)

    Goldston, M. Jenice; Nichols, Sharon

    2009-04-01

    This study situated in a Southern resegregated Black middle school involved four Black teachers and two White science educators’ use of photonarratives to envision culturally relevant science pedagogy. Two questions guided the study: (1) What community referents are important for conceptualizing culturally relevant practices in Black science classrooms? and (2) How do teachers’ photonarratives serve to open conversations and notions of culturally relevant science practices? The research methodologically drew upon memory-work, Black feminism, critical theory, visual methodology, and narrative inquiry as “portraiture.” Issues of positionality and identity proved to be central to this work, as three luminaries portray Black teachers’ insights about supports and barriers to teaching and learning science. The community referents identified were associated with church and its oral traditions, inequities of the market place in meeting their basic human needs, and community spaces.

  3. Exploring women community college natural scientists' personal experience narratives through a subjectivist lens

    NASA Astrophysics Data System (ADS)

    Woods, Nancy Anne

    The thrust in education today is to encourage young women to enter nontraditional fields of study such as chemistry, physics, and biology. In order to better prepare the next generation of women scientists, then, we should examine the experiences of women participants already working within these areas. We can learn from their experiences. What motivated them toward science? What influenced them to become teachers? What brought them to the community college? If the premise is that we want more women involved in science, then one way to understand how to entice women into science would be to research those who are already there. This research project has two important findings, (1) women community college natural science instructors can experience issues of identity between their roles as scientists and teachers; (2) women community college natural science instructors value a different community structure compared to many of their male counterparts. This research lists several recommendations for future practice as well as recommendations for future research.

  4. How to Reach Decision Makers: Build a network of educators and practitioners with common goals

    NASA Astrophysics Data System (ADS)

    Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Gershunov, A.

    2013-12-01

    In San Diego County, the Climate Education Partners (CEP) includes climate scientists, science educators, behavioral scientists, environmental practitioners and community organizations that are dedicated to providing local decision makers (elected officials, business leaders, community leaders) with sound climate science learning opportunities and resources that promote informed decision making. Their work over the past three years has found that effective climate education programs are designed for specific audiences with tailored information that is relevant to them, while simultaneously building community efficacy, identity and values. An integrated approach that blends rigorous scientific facts, local climate change impact, and social science education theory is contributing towards the development of a cadre of engaged leaders and communities. To track project progress and to inform the project strategy, local Key Influentials are being interviewed to gauge their current understanding of climate change and their interest in either becoming messengers to their community or becoming the portal to their constituency. Innovation comes from productive collaboration. For this reason, CEP has been working with leading scientists (climatologists, hydrologists, meteorologists, ecologists), environmental groups, museums and zoos, media experts and government agencies (Water Authority, CalFire) to develop and refine a program of learning activities and resources geared specifically for Key Influentials. For example, a water tour has been designed to bring 25 key influential leaders in San Diego County to a dam, a pumping station and a reservoir and provide climate change facts, impacts and potential solutions to the critical issue of water supply for the San Diego Region. While learning local facts about the causes and impacts of climate change, participants also learn about what they can do (increasing efficacy), that they can be a part of a solution centered community (building identity), and that everything - the education and the use of this knowledge to promote informed decisions - is connected to doing what is best for the next generation (tying learning to values). In addition, CEP developed locally focused videos, one on heat waves and one on water resources, which are being experimentally tested for their impact on informed decision-making and utilized with various KI audiences. Climate Education Partners is finding that linking excellent science with healthy community partnerships is resulting in San Diego leaders and their communities making more informed decisions on how to adapt to climate change and preserve the quality of life enjoyed in San Diego for all future generations.

  5. Partnering Community Decision Makers with Early Career Scientists - The NASA DEVELOP Method for Dual Capacity Building

    NASA Astrophysics Data System (ADS)

    Ross, K. W.; Childs-Gleason, L. M.; Cripps, G. S.; Clayton, A.; Remillard, C.; Watkins, L. E.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.

    2017-12-01

    The NASA DEVELOP National Program carries out many projects every year with the goal of bringing the benefits of NASA Earth science to bear on decision-making challenges that are local in scale. Every DEVELOP project partners end users with early/transitioning science professionals. Many of these projects invited communities to consider NASA science data in new ways to help them make informed decisions. All of these projects shared three characteristics: they were rapid, nimble and risk-taking. These projects work well for some communities, but might best be suited as a feasibility studies that build community/institutional capacity towards eventual solutions. This presentation will discuss DEVELOP's lessons learned and best practices in conducting short-term feasibility projects with communities, as well as highlight several past successes.

  6. Land Cover Change Community-based Processing and Analysis System (LC-ComPS): Lessons Learned from Technology Infusion

    NASA Astrophysics Data System (ADS)

    Masek, J.; Rao, A.; Gao, F.; Davis, P.; Jackson, G.; Huang, C.; Weinstein, B.

    2008-12-01

    The Land Cover Change Community-based Processing and Analysis System (LC-ComPS) combines grid technology, existing science modules, and dynamic workflows to enable users to complete advanced land data processing on data available from local and distributed archives. Changes in land cover represent a direct link between human activities and the global environment, and in turn affect Earth's climate. Thus characterizing land cover change has become a major goal for Earth observation science. Many science algorithms exist to generate new products (e.g., surface reflectance, change detection) used to study land cover change. The overall objective of the LC-ComPS is to release a set of tools and services to the land science community that can be implemented as a flexible LC-ComPS to produce surface reflectance and land-cover change information with ground resolution on the order of Landsat-class instruments. This package includes software modules for pre-processing Landsat-type satellite imagery (calibration, atmospheric correction, orthorectification, precision registration, BRDF correction) for performing land-cover change analysis and includes pre-built workflow chains to automatically generate surface reflectance and land-cover change products based on user input. In order to meet the project objectives, the team created the infrastructure (i.e., client-server system with graphical and machine interfaces) to expand the use of these existing science algorithm capabilities in a community with distributed, large data archives and processing centers. Because of the distributed nature of the user community, grid technology was chosen to unite the dispersed community resources. At that time, grid computing was not used consistently and operationally within the Earth science research community. Therefore, there was a learning curve to configure and implement the underlying public key infrastructure (PKI) interfaces, required for the user authentication, secure file transfer and remote job execution on the grid network of machines. In addition, science support was needed to vet that the grid technology did not have any adverse affects of the science module outputs. Other open source, unproven technologies, such as a workflow package to manage jobs submitted by the user, were infused into the overall system with successful results. This presentation will discuss the basic capabilities of LC-ComPS, explain how the technology was infused, and provide lessons learned for using and integrating the various technologies while developing and operating the system, and finally outline plans moving forward (maintenance and operations decisions) based on the experience to date.

  7. Benefits of off-campus education for students in the health sciences: a text-mining analysis.

    PubMed

    Nakagawa, Kazumasa; Asakawa, Yasuyoshi; Yamada, Keiko; Ushikubo, Mitsuko; Yoshida, Tohru; Yamaguchi, Haruyasu

    2012-08-28

    In Japan, few community-based approaches have been adopted in health-care professional education, and the appropriate content for such approaches has not been clarified. In establishing community-based education for health-care professionals, clarification of its learning effects is required. A community-based educational program was started in 2009 in the health sciences course at Gunma University, and one of the main elements in this program is conducting classes outside school. The purpose of this study was to investigate using text-analysis methods how the off-campus program affects students. In all, 116 self-assessment worksheets submitted by students after participating in the off-campus classes were decomposed into words. The extracted words were carefully selected from the perspective of contained meaning or content. With the selected terms, the relations to each word were analyzed by means of cluster analysis. Cluster analysis was used to select and divide 32 extracted words into four clusters: cluster 1-"actually/direct," "learn/watch/hear," "how," "experience/participation," "local residents," "atmosphere in community-based clinical care settings," "favorable," "communication/conversation," and "study"; cluster 2-"work of staff member" and "role"; cluster 3-"interaction/communication," "understanding," "feel," "significant/important/necessity," and "think"; and cluster 4-"community," "confusing," "enjoyable," "proactive," "knowledge," "academic knowledge," and "class." The students who participated in the program achieved different types of learning through the off-campus classes. They also had a positive impression of the community-based experience and interaction with the local residents, which is considered a favorable outcome. Off-campus programs could be a useful educational approach for students in health sciences.

  8. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Lohwasser, Karin

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the discourse characteristics that create learning opportunities in teachers' PLCs. To this end, this study examined how middle school science teachers in three PLCs addressed science-for-teaching, and to what effect. Insight into discourse about content knowledge for teaching in PLCs has implications for the analysis, interpretation, and support of teachers' professional discourse, their collaborative learning, and consequently their improvement of practice. This dissertation looked closely at the hybrid space between teachers' knowledge of students, of teaching, and of science, and how this space was explored in the discourse among teachers, and between teachers and science experts. At the center of the study were observations of three 2-day PLC cycles in which participants worked together to improve the way they taught their curriculum. Two of the PLC cycles were supported, in part, by a science expert who helped the teachers explore the science they needed for teaching. The third PLC worked without such support. The following overarching questions were explored in the three articles of this dissertation: (1) What kind of science knowledge did teachers discuss in preparation for teaching? (2) How did the teachers talk about content knowledge for science teaching, and to what effect for their teaching practice? (3) How did collaborating teachers' discursive accountabilities provide opportunities for furthering the teachers' content knowledge for science teaching? The teachers' discourse during the 2-day collaboration cycles was analyzed and interpreted based on a sociocultural framework that included concepts from the practice-based theory of content knowledge for teaching developed by D. L. Ball, Thames, and Phelps (2008) and the Accountable Talk framework by Michaels, O'Connor, & Resnick (2008). The study's findings could provide justification for and ideas on how to provide targeted support for PLCs to make teachers' work on science knowledge more applicable to lesson planning, teaching, and student learning.

  9. Moving Beyond Misconceptions: A New Model for Learning Challenges in Cognition

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Slater, S. J.

    2011-12-01

    For over 40 years, the science education community has given its attention to cataloging the substantial body of "misconceptions" in individual's thinking about science, and to addressing the consequences of those misconceptions in the science classroom. Despite the tremendous amount of effort given to researching and disseminating information related to misconceptions, and the development of a theory of conceptual change to mitigate misconceptions, progress continues to be less than satisfying. An analysis of the literature and our own research has persuaded the CAPER Center for Astronomy and Physics Education Research to put forth model that will allow us to operate on students' learning difficulties in a more fruitful manner. Previously, much of the field's work binned erroneous student thinking into a single construct, and from that basis, curriculum developers and instructors addressed student misconceptions with a single instructional strategy. In contrast this model suggests that "misconceptions" are a mixture of at least four learning barriers: incorrect factual information, inappropriately applied mental algorithms (phenomenological primitives), insufficient cognitive structures (e.g. spatial reasoning), and affective/emotional difficulties. Each of these types of barriers should be addressed with an appropriately designed instructional strategy. Initial applications of this model to learning problems in the Earth & Space Sciences have been fruitful, suggesting that an effort towards categorizing persistent learning difficulties in the geosciences beyond the level of "misconceptions" may allow our community to craft tailored and more effective learning experiences for our students and the general public.

  10. Designing Higher Education Courses and other Professional Development to Engender Science Teachers' Enthusiasm to Embrace the New Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Welstead, C.; Forder, S. E.

    2014-12-01

    This presentation is an overview of best practices in the design of continuing education courses and professional development workshops for Science teachers to enable them to transition to the NGSS; to share their enthusiasm in a way that engages students and leads to increased student achievement; and to become change agents in their educational settings and in their communities, in order to garner widespread support for an inquiry-based, NGSS-based curriculum. Proposed strands for teacher preparation programmes include a focus on higher level conceptual thinking; problem-solving opportunities for learning; inquiry-based learning; experiential learning and fieldwork; the authentic and effective incorporation of technology in teaching and learning; integrated and cross-curricular teaching and learning; learning that supports diversity and equity; and the appropriate, reliable and valid assessment of understanding. A series of three courses has been developed to prepare teachers in a graduate programme for implementing an inquiry-based, standards-based Science curriculum that incorporates the above-mentioned strands.

  11. Emergence of a learning community: a transforming experience at the boundaries

    NASA Astrophysics Data System (ADS)

    Raia, Federica

    2013-03-01

    I narrate a process of transformation, a professional and personal journey framed by an experience that captured my attention shaping my interpretation and reflections. From a critical complexity framework I discuss the emergence of a learning community from the cooperation among individuals of diverse social and cultural worlds sharing the need to change a traditional professional development program structure and develop a new science education Masters Degree/Certification program. I zoom into the continual redefinition of the community, its evolution and complex interrelations among its participants and the emergence of a learning community as a boundary space having an emancipatory role and allowing growth and learning. I analyze the dialectical relationship between agents' behavior either impeding growth or having an emancipatory function of a mindful RelationalAct in a complex adaptive system framework.

  12. Co-Constructing Cultural Landscapes for Disciplinary Learning in and out of School: The Next Generation Science Standards and Learning Progressions in Action

    ERIC Educational Resources Information Center

    Córdova, Ralph A.; Balcerzak, Phyllis

    2016-01-01

    The authors of this study are teacher-researchers, the first is a university researcher and former third and fourth grade teacher, while the second author is a university-based science educator. They report findings from a community-based study that Ralph, the first author, and his students conducted across two academic years (2001-2003) in order…

  13. Science Meets Literacy and Art at the Library

    NASA Astrophysics Data System (ADS)

    LaConte, K. M.; Shipp, S. S.; Halligan, E.

    2011-12-01

    The Lunar and Planetary Institute's Explore! program is designed to engage and inspire children in Earth and space science in the library and other informal learning environments. Eight online thematic Explore! modules make up-to-date science accessible to rural communities - often where the library is the closest center of public learning - and other underserved audiences. The program prepares librarians to engage their communities in science through experiences with the modules, interactions with scientists, exploration of the resources available within the library learning environment, and development of local partnerships. Through hands-on science activities, art, and reading, Explore! reaches library patrons between the ages of 8 and 13 through librarian-led, locally facilitated programs across the nation. For example, NASA Lunar Science Institute research into lunar formation, evolution, and orbital dynamics are woven into a comic book that serves as a journal and art piece for participants in Marvel Moon programs (http://www.lpi.usra.edu/explore/marvelMoon). In another example, children compare cloud types and atmospheric structure on Earth and Jupiter, and then they consider artwork of Jupiter's clouds and the future discoveries of NASA's upcoming Juno mission as they write "Jovian Poetry" (http://www.lpi.usra.edu/explore/solar_system/activities/weatherStations). Explore! program facilitators are provided resources for making use of children's science books and local professional scientists and engineers.

  14. Finding Meaningful Roles for Scientists in science Education Reform

    NASA Astrophysics Data System (ADS)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  15. Minnesota 4-H Science of Agriculture Challenge: Infusing Agricultural Science and Engineering Concepts into 4-H Youth Development

    ERIC Educational Resources Information Center

    Rice, Joshua E.; Rugg, Bradley; Davis, Sharon

    2016-01-01

    Youth involved in 4-H projects have been engaged in science-related endeavors for years. Since 2006, 4-H has invested considerable resources in the advancement of science learning. The new Minnesota 4-H Science of Agriculture Challenge program challenges 4-H youth to work together to identify agriculture-related issues in their communities and to…

  16. Contested Domains of Science and Science Learning in Contemporary Native American Communities: Three Case Studies from a National Science Foundation Grant Titled, "Archaeology Pathways for Native Learners"

    ERIC Educational Resources Information Center

    Parent, Nancy Brossard

    2012-01-01

    This dissertation provides a critical analysis of three informal science education partnerships that resulted from a 2003-2006 National Science Foundation grant titled, "Archaeology Pathways for Native Learners" (ESI-0307858), hosted by the Mashantucket Pequot Museum and Research Center. This dissertation is designed to contribute to…

  17. A Second Chance: What can informal science learning institutions uniquely contribute to public inquiry about climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Bartels, D.

    2009-12-01

    The science of climate change is complicated. Even for adult audiences, scientific ideas such as non-linear modeling, probability and uncertainty, complexity and multivariate relationships, and the dynamic relationship between physical and human systems were not part of the typical curriculum for most of us in school. Moreover, many adults are invested in the myth that the aim of scientists is “truth-seeking” as opposed to finding the best interpretation that fits the best available empirical data. Science too often is presented even to adults as sets of answers and certainties. The forthcoming “Green Book” from the NSF Advisory Committee on Environmental Research and Education makes a novel recommendation that in these times adult environmental science literacy is as critical as education programs for K-12 and university students. Its reasoning is the stakes regarding the most pressing global environmental issues of our day—climate change chief among them—likely require such significant change in human behavior in the immediate term that it cannot wait for another generation of children to grow up. Practices and behaviors must change immediately. The report identifies the approximately 15,000 informal science learning institutions across the United States as the perfect adult science education delivery system to address this challenge. However, for the informal science learning community to engage this challenge most effectively, it must take care in its response given the complexity of the science, even for adults. It cannot perpetuate the idea of science as static and certain or separate itself from the social sciences. Yet the scientific community has very important stories to tell which have an immediate urgency to humankind. How do you explain the importance of uncertainty and science as a process while at the same time conveying confidence about scientific consensus where it exists? We will discuss ways of framing these important questions about adult learning and the science of climate change to assist scientists, informal science learning institutions and others increase the probability of enhanced credibility, understanding and action on the part of those of us beyond our school years.

  18. Contested Domains of Science and Science Learning in Contemporary Native American Communities: Three Case Studies from a National Science Foundation grant titled, "Archaeology Pathways for Native Learners"

    NASA Astrophysics Data System (ADS)

    Parent, Nancy Brossard

    This dissertation provides a critical analysis of three informal science education partnerships that resulted from a 2003-2006 National Science Foundation grant titled, "Archaeology Pathways for Native Learners" (ESI-0307858), hosted by the Mashantucket Pequot Museum and Research Center. This dissertation is designed to contribute to understandings of learning processes that occur within and at the intersection of diverse worldviews and knowledge systems, by drawing upon experiences derived from three disparate contexts: 1) The Navajo Nation Museum in Window Rock, Arizona; 2) The A:shiwi A:wan Museum and Heritage Center on the Zuni Reservation in Zuni, New Mexico; and 3) Science learning camps at the Mashantucket Pequot Museum and Research Center for Native youth of southern New England. While informal science education is increasingly moving toward decolonizing and cross-cutting institutional boundaries of learning through critical thinking and real-world applications, the construction of "science" (even within diverse contexts) continues to be framed within a homogenous, predominantly Euro-American perspective. This study analyzes the language of Western science employed in these partnerships, with particular attention to the use of Western/Native binaries that shape perceptions of Native peoples and communities, real or imagined. Connections are drawn to broader nation-state interests in education, science, and the global economy. The role of educational evaluation in these case studies is also critically analyzed, by questioning the ways in which it is constructed, conducted, and evaluated for the purposes of informing future projects and subsequent funding. This study unpacks problems of the dominant language of "expert" knowledge embedded in Western science discourse, and highlights the possibilities of indigenous knowledge systems that can inform Western science frameworks of education and evaluation. Ultimately, this study suggests that research methodologies and epistemologies that acknowledge and integrate indigenous ways of knowing can advance and broaden Western constructions of science, the academy, and educational research and praxis on a national and global scale.

  19. Literature-Based Scientific Learning: A Collaboration Model

    ERIC Educational Resources Information Center

    Elrod, Susan L.; Somerville, Mary M.

    2007-01-01

    Amidst exponential growth of knowledge, student insights into the knowledge creation practices of the scientific community can be furthered by science faculty collaborations with university librarians. The Literature-Based Scientific Learning model advances undergraduates' disciplinary mastery and information literacy through experience with…

  20. Learning in a Physics Classroom Community: Physics Learning Identity Construct Development, Measurement and Validation

    ERIC Educational Resources Information Center

    Li, Sissi L.

    2012-01-01

    At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning…

  1. Student Learning and the College Library: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Shklanka, Olga

    The purpose of this annotated bibliography is twofold: (1) to identify which educational and library science literature deals with the learning needs of college students in libraries, and (2) to identify the extent to which library services have been integrated into the educational objectives and learning practices of Canadian community colleges.…

  2. Serious Fun: Viewing Hobbyist Activities through a Learning Lens

    ERIC Educational Resources Information Center

    Liu, Chi-Chang; Falk, John H.

    2014-01-01

    This paper reviews a wide range of literature applicable to understanding why and how hobbyists learn. Of particular importance appear to be theories such as situated learning and communities of practice, but insights from the cognitive sciences related to expertise, motivation, and interest also emerged as important. The boundaries between formal…

  3. Conducting Research in a Medical Science Museum: Lessons Learned from Collaboration between Researchers and Museum Educators

    ERIC Educational Resources Information Center

    Durksen, Tracy L.; Martin, Andrew J.; Burns, Emma C.; Ginns, Paul; Williamson, Derek; Kiss, Julia

    2017-01-01

    Museums promote co-learning through the construction of a social community, one that involves personal, physical, and sociocultural contexts. As researchers and museum educators, we report some of our contextual reflections and recommendations that emerged from our collaborative learning experience of conducting research in a medical science…

  4. Making It Social: Considering the Purpose of Literacy to Support Participation in Making and Engineering

    ERIC Educational Resources Information Center

    Tucker-Raymond, Eli; Gravel, Brian E.; Wagh, Aditi; Wilson, Naeem; Manderino, Michael; Castek, Jill

    2016-01-01

    Digital literacies for disciplinary learning explores intersections of digital and disciplinary literacies across learning contexts such as community makerspaces and schools and examines learning across disciplines including the arts, engineering, science, social studies, language arts, and math. Columns will address work with both youth and…

  5. Cyberlearning Community Report: The State of Cyberlearning and The Future of Learning with Technology

    ERIC Educational Resources Information Center

    Ahn, June; Asbell-Clarke, Jodi; Berland, Matthew; Chase, Catherine; Enyedy, Noel; Fusco, Judith; Gardner, Shari; Grover, Shuchi; Halverson, Erica; Jona, Kemi; Lane, H. Chad; Martin, Wendy; Mercier, Emma; Moher, Tom; Ogan, Amy; Pinkard, Nichole; Polman, Joseph; Roschelle, Jeremy; Schank, Patricia; Taylor, Katie Headrick; Wilkerson, Michelle; Worsley, Marcelo

    2017-01-01

    Cyberlearning researchers envision and investigate the future of learning with technology. As of summer 2017, the Cyberlearning and Future Learning Technologies (CFTL) program of the National Science Foundation (NSF) had made 279 research grant awards. In addition, several hundred other NSF research projects have cyberlearning themes. Many of…

  6. Garden Mosaics

    ERIC Educational Resources Information Center

    Kennedy, Ann Marie; Krasny, Marianne E.

    2005-01-01

    This article describes Garden Mosaics, a program funded by the National Science Foundation. Garden Mosaics combines science learning with intergenerational mentoring, multicultural understanding, and community service. The program's mission is "connecting youth and elders to explore the mosaics of plants, people, and cultures in gardens, to learn…

  7. College Radio as a Mechanism for Participatory Learning: Exploring the Scope for Online Radio Based Learning among Undergraduates

    ERIC Educational Resources Information Center

    Ibrahim, Bahaeldin; Mishra, Naveen

    2016-01-01

    This paper explores the prospects of online college radio at Sur College of Applied Sciences, its need among students and the possible scope of its contributions to student learning, engagement and community service. It explores the method of developing a holistic mechanism to capture the possibilities of maximizing learning experience by…

  8. Family Science and Community-Based Learning: Using Speed Networking

    ERIC Educational Resources Information Center

    Payne, Pamela B.; Hubler, Daniel S.

    2017-01-01

    Students in Family Science often feel that they have an uphill battle to finding career opportunities that maximize their experiences from degree programs. The hallmark of successful programs in Family Science needs to be the development and maintenance of high-quality field experiences for students that align with national standards and…

  9. Team Experiences for Science and Social Studies Preservice Teachers.

    ERIC Educational Resources Information Center

    Burlbaw, Lynn M.; Borowiec, Jonathan B.; James, Robert K.

    2001-01-01

    Describes how senior-level, preservice teacher certification candidates in secondary science and social science methods classes work in teams to prepare instructional materials on a community-based issue (such as the effect of the deposition of arsenic in a creek and small city lake). Argues that such projects provide valuable learning experiences…

  10. Negligence Liability of K-12 Chemistry Teachers: The Need for Legal Balance and Responsible Action

    ERIC Educational Resources Information Center

    Zirkel, Perry A.; Barnes, Marianne B.

    2011-01-01

    The science education community promotes inquiry teaching and learning enhanced by the school laboratory experience, and this emphasis is reflected in state and national science education standards. However, science teachers, especially those in chemistry settings, have been known to avoid laboratory activities because of fear of legal liability…

  11. Students Designing Video Games about Immunology: Insights for Science Learning

    ERIC Educational Resources Information Center

    Khalili, Neda; Sheridan, Kimberly; Williams, Asia; Clark, Kevin; Stegman, Melanie

    2011-01-01

    Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a…

  12. Building a Community of Scholars: One University's Story of Students Engaged in Learning Science, Mathematics, and Engineering through a NSF S-STEM Grant

    ERIC Educational Resources Information Center

    Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Iannelli, Joe; Sirinterlikci, Arif; Semich, George; Bernauer, James

    2012-01-01

    The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…

  13. Collaborations in a Community of Practice Working to Integrate Engineering Design in Elementary Science Education

    ERIC Educational Resources Information Center

    Lehman, James D.; Kim, WooRi; Harris, Constance

    2014-01-01

    The new standards for K-12 science education in the United States call for science teachers to integrate engineering concepts and practices within their science teaching in order to improve student learning. To accomplish this, teachers need appropriate instructional materials as well as the knowledge and skills to effectively use them. This mixed…

  14. Open Science and eGEMs: Our Role in Supporting a Culture of Collaboration in Learning Health Systems.

    PubMed

    Holve, Erin

    2016-01-01

    "Open science" includes a variety of approaches to facilitate greater access to data and the information produced by processes of scientific inquiry. Recently, the health sciences community has been grappling with the issue of potential pathways and models to achieve the goals of open science-namely, to create and rapidly share reproducible health research. eGEMs' continued dedication to and milestones regarding the publication of innovative, useful, and timely research to help contribute to the push towards open science is discussed, as well as the EDM Forum's new data sharing platform, CIELO. Although strides have been made, there is still more work to be done to help health sciences community truly embrace open science.

  15. A Collaborative Diagonal Learning Network: The role of formal and informal professional development in elementary science reform

    NASA Astrophysics Data System (ADS)

    Cooke-Nieves, Natasha Anika

    Science education research has consistently shown that elementary teachers have a low self-efficacy and background knowledge to teach science. When they teach science, there is a lack of field experiences and inquiry-based instruction at the elementary level due to limited resources, both material and pedagogical. This study focused on an analysis of a professional development (PD) model designed by the author known as the Collaborative Diagonal Learning Network (CDLN). The purpose of this study was to examine elementary school teacher participants pedagogical content knowledge related to their experiences in a CDLN model. The CDLN model taught formal and informal instruction using a science coach and an informal educational institution. Another purpose for this research included a theoretical analysis of the CDLN model to see if its design enabled teachers to expand their resource knowledge of available science education materials. The four-month-long study used qualitative data obtained during an in-service professional development program facilitated by a science coach and educators from a large natural history museum. Using case study as the research design, four elementary school teachers were asked to evaluate the effectiveness of their science coach and museum educator workshop sessions. During the duration of this study, semi-structured individual/group interviews and open-ended pre/post PD questionnaires were used. Other data sources included researcher field notes from lesson observations, museum field trips, audio-recorded workshop sessions, email correspondence, and teacher-created artifacts. The data were analyzed using a constructivist grounded theory approach. Themes that emerged included increased self-efficacy; increased pedagogical content knowledge; increased knowledge of museum education resources and access; creation of a professional learning community; and increased knowledge of science notebooking. Implications for formal and informal professional development in elementary science reform are offered. It is suggested that researchers investigate collaborative coaching through the lenses of organizational learning network theory, and develop professional learning communities with formal and informal educators; and that professional developers in city school systems and informal science institutions work in concert to produce more effective elementary teachers who not only love science but love teaching it.

  16. Engaging in vocabulary learning in science: the promise of multimodal instruction

    NASA Astrophysics Data System (ADS)

    Townsend, Dianna; Brock, Cynthia; Morrison, Jennifer D.

    2018-02-01

    To a science 'outsider', science language often appears unnecessarily technical and dense. However, scientific language is typically used with the goal of being concise and precise, which allows those who regularly participate in scientific discourse communities to learn from each other and build upon existing scientific knowledge. One essential component of science language is the academic vocabulary that characterises it. This mixed-methods study investigates middle school students' (N = 59) growth in academic vocabulary as it relates to their teacher's instructional practices that supported academic language development. Students made significant gains in their production of general academic words, t(57) = 2.32, p = .024 and of discipline-specific science words, t(57) = 3.01, p = .004 in science writing. Results from the qualitative strand of this inquiry contextualised the students' learning of academic vocabulary as it relates to their teacher's instructional practices and intentions as well as the students' perceptions of their learning environment. These qualitative findings reveal that both the students and their teacher articulated that the teacher's intentional use of resources supported students' academic vocabulary growth. Implications for research and instruction with science language are shared.

  17. Get Involved in Education and Public Outreach! The Science Mission Directorate Science E/PO Forums Are Here to Help

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Hsu, B. C.; Peticolas, L. M.; Smith, D.; Meinke, B. K.

    2013-12-01

    NASA's Science Mission Directorate (SMD) Education and Public Outreach (E/PO) Forums help to engage, extend, support, and coordinate the efforts of the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. The Forums have been developing toolkits and pathways to support planetary, Earth, astrophysics, and heliophysics scientists who are - or who are interested in becoming - involved in E/PO. These tools include: 1) Pathways to learn about SMD and E/PO community announcements and opportunities, share news about E/PO programs, let the E/PO community know you are interested in becoming involved, and discover education programs needing scientist input and/or support. These pathways include weekly e-news, the SMD E/PO online community workspace, monthly community calls, conferences and meetings of opportunity. 2) Portals to help you find out what education resources already exist, obtain resources to share with students of all levels - from K-12 to graduate students, - and disseminate your materials. These include E/PO samplers and toolkits (sampling of resources selected for scientists who work with students, teachers, and the public), the one-stop shop of reviewed resources from the NASA Earth and space science education portfolio NASAWavelength.org, and the online clearinghouse of Earth and space science higher education materials EarthSpace (http://www.lpi.usra.edu/earthspace). 3) Connections to education specialists who can help you design and implement meaningful E/PO programs - small to large. Education specialists can help you understand what research says about how people learn and effective practices for achieving your goals, place your programs in context (e.g., Beyond IYA, Sun-Earth Day, launch events, 50 Years of Solar System Exploration, Earth Science Week), and get your programs and products disseminated. 4) Connections to education professionals to collaborate with you on educational programs, involve intended audience members as partners to guide your programs, reach a broader audience, and insure impact with external partners through the E/PO community contact database and workspace profiles, conferences, meetings, and SMD E/PO community annual retreats. Recently developed, the NASA SMD Scientist Speaker's Bureau (http://www.lpi.usra.edu/education/speaker) offers an online portal to connect scientists interested in getting involved in E/PO projects - giving public talks, classroom visits, and virtual connections - with audiences. Learn more about the Forums and the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  18. Citizen Science: Broadening Access and Engagement Through Community Partnerships, Aerospace Education and Water Quality Research

    NASA Astrophysics Data System (ADS)

    Johnson, M. A.

    2016-12-01

    We applied a new approach to the design and development of citizen science learning opportunities to enhance outreach to diverse student populations, while advancing water quality research and aerospace education. This collaborative approach to informal science, technology, engineering, and math (STEM) and aerospace education required innovative partnerships between private general aviation pilots, researchers, teachers, and students. This research explored the development of active partnerships required to facilitate community engaged science, with an emphasis on increased participation of women and girls and people of color, while creating new exploratory pathways for broadening access to and engagement in STEM learning experiences. We developed an outreach program through collaborative planning with local schools to create new STEM learning experiences based upon basic aerospace education concepts and an existing water quality research project designed to track harmful algal blooms (HAB) that can produce toxins called cyanobacteria, also known as blue-green algae, which can impact drinking, fishing, and recreational waters. General aviation pilots functioning as citizen scientists obtained high-resolution aerial images while flying over potentially impacted waters. Aerial data was made available to teachers and students, as well as researchers participating in the existing water quality program lead by NASA Glenn Research Center. Teachers used the images and results to educate in climate change and the dangers of HAB. Students were able to compare aerial data with their own observations, and also gained experience in aeronautical science through field trips to local airports, hands-on experience with private research aircraft, specialized equipment used for data collection, and advanced ground instruction from research pilots. As a result of reaching out to local educators serving diverse student populations and facilitating collaborative planning, we successfully created new educational opportunities with active partnerships between formal educational institutions and informal citizen science research programs, which broadened access to and engagement in aerospace education and STEM learning experiences in our local community.

  19. Engaging Scientists in NASA Education and Public Outreach: K - 12 Formal Education

    NASA Astrophysics Data System (ADS)

    Bartolone, Lindsay; Smith, D. A.; Eisenhamer, B.; Lawton, B. L.; Universe Professional Development Collaborative, Multiwavelength; NASA Data Collaborative, Use of; SEPOF K-12 Formal Education Working Group; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the K - 12 Formal Education community. Members of the K - 12 Formal Education community include classroom educators, homeschool educators, students, and curriculum developers. The Forums’ efforts for the K - 12 Formal Education community include a literature review, appraisal of educators’ needs, coordination of audience-based NASA resources and opportunities, professional development, and support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K - 12 Formal Education community based upon mutual needs and interests.

  20. Professional learning communities (PLCs) for early childhood science education

    NASA Astrophysics Data System (ADS)

    Eum, Jungwon

    This study explored the content, processes, and dynamics of Professional Learning Community (PLC) sessions. This study also investigated changes in preschool teachers' attitudes and beliefs toward science teaching after they participated in two different forms of PLCs including workshop and face-to-face PLC as well as workshop and online PLC. Multiple sources of data were collected for this study including participant artifacts and facilitator field notes during the PLC sessions. The participants in this study were eight teachers from NAEYC-accredited child care centers serving 3- to 5-year-old children in an urban Midwest city. All teachers participated in a workshop entitled, "Ramps and Pathways." Following the workshop, the first group engaged in face-to-face PLC sessions and the other group engaged in online PLC sessions. Qualitative data were collected through audio recordings, online archives, and open-ended surveys. The teachers' dialogue during the face-to-face PLC sessions was audiotaped, transcribed, and analyzed for emerging themes. Online archives during the online PLC sessions were collected and analyzed for emerging themes. Four main themes and 13 subthemes emanated from the face-to-face sessions, and 3 main themes and 7 subthemes emanated from the online sessions. During the face-to-face sessions, the teachers worked collaboratively by sharing their practices, supporting each other, and planning a lesson together. They also engaged in inquiry and reflection about their science teaching and child learning in a positive climate. During the online sessions, the teachers shared their thoughts and documentation and revisited their science teaching and child learning. Five themes and 15 subthemes emanated from the open-ended survey responses of face-to-face group teachers, and 3 themes and 7 subthemes emanated from the open-ended survey responses of online group teachers. Quantitative data collected in this study showed changes in teachers' attitudes and beliefs toward science teaching. Face-to-face group teachers' comfort with planning and doing different science activities increased significantly after the workshop and after the combination of workshop and face-to-face PLC. This study contributes to the research about various forms of professional development and their process and outcome in early childhood science education and informs early childhood professional communities of creative ways to improve science teaching and learning.

  1. Case-based pedagogy as a context for collaborative inquiry in the Philippines

    NASA Astrophysics Data System (ADS)

    Arellano, Elvira L.; Barcenal, Tessie L.; Bilbao, Purita P.; Castellano, Merilin A.; Nichols, Sharon; Tippins, Deborah J.

    2001-05-01

    The purpose of this study was to investigate the potential for using case-based pedagogy as a context for collaborative inquiry into the teaching and learning of elementary science. The context for this study was the elementary science teacher preparation program at West Visayas State University on the the island of Panay in Iloilo City, the Philippines. In this context, triple linguistic conventions involving the interactions of the local Ilonggo dialect, the national language of Philipino (predominantly Tagalog) and English create unique challenges for science teachers. Participants in the study included six elementary student teachers, their respective critic teachers and a research team composed of four Filipino and two U.S. science teacher educators. Two teacher-generated case narratives serve as the centerpiece for deliberation, around which we highlight key tensions that reflect both the struggles and positive aspects of teacher learning that took place. Theoretical perspectives drawn from assumptions underlying the use of case-based pedagogy and scholarship surrounding the community metaphor as a referent for science education curriculum inquiry influenced our understanding of tensions at the intersection of re-presentation of science, authority of knowledge, and professional practice, at the intersection of not shared language, explicit moral codes, and indigenization, and at the intersection of identity and dilemmas in science teaching. Implications of this study are discussed with respect to the building of science teacher learning communities in both local and global contexts of reform.

  2. The Community Mentoring REU: A Novel Paradigm for Research Experiences for Undergraduates Programs

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry; Maierhofer, Lara; Kobulnicky, Carol; Dale, Daniel A.

    2018-01-01

    Research Experience for Undergraduates programs were conceived to promote entry of college students into STEM disciplines. Evidence suggests that participating in REUs increases interest in STEM, conveys skills leading to STEM jobs and graduate study, increases science self-efficacy, builds professional networks for young scientists, and cultivates identity as a scientist. Nevertheless, the factors that mediate desired outcomes are still poorly understood, and persistence of negative mentoring experiences among REU participants motivates the design and study of novel approaches to preparing future STEM professionals. During five summers spanning 2012-2016 we implemented a "Community Mentoring" paradigm at the University of Wyoming's 10-week Astronomy REU program. In contrast to "traditional model (TM)" REUs that pair a single senior scientist mentor with a single junior mentee, community mentoring (CM) unites 6-8 undergraduates with 3-5 faculty (perhaps assisted by a graduate student or postdoc) on a collaborative team addressing a single science goal. In CM, students have access to a pool of mentors and a peer group reading the same literature, working in a common location, sharing equipment (in this case the WIRO 2.3 meter telescope), sharing data, and learning the same analysis skills. The community interacts daily, modeling the highly collaborative nature of modern scientific teams. Our study used an electronic survey consisting of 24 questions to compare a cohort of 28 CM students to a national control group of 77 students who conducted REUs elsewhere during the same period, typically under the TM. CM students report a significantly higher level of "learning from their peers", "learning to work on a science team", and "sense of community" compared to the TM cohort. The CM cohort also reports a higher overall level of satisfaction with the REU and a lower level of negative experiences, such as finding it difficult to get time with a mentor. This talk will review other lessons learned in five years of community mentoring as it describes an alternative paradigm for REUs.

  3. The evolution of a science teacher: An autobiography

    NASA Astrophysics Data System (ADS)

    Vincent, Daniel E.

    This qualitative study explores the experiences of a science teacher as he seeks to understand the foundations of his pedagogy, his view of learning, and his role as a teacher. By using the autobiographical style of currere, the author investigates the significant events of his educational journey and describes the transformation that occurred while teaching science in secondary schools. The author discovers how his instructional methods were intimately linked to his perception of the content and nature of science, how his interactions with others within a learning community challenged him to grow professionally, and how his educational metaphors helped him make sense of teaching, learning, and life. By telling his story, the author/researcher was able to use his transformed notions of how people learn to construct personal meaning about his own educational foundations and pedagogical perspectives, and in turn, give others a story within which they might find their own personal meaning.

  4. The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences

    USDA-ARS?s Scientific Manuscript database

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identify management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning m...

  5. How Informed Are Informal Educators?

    ERIC Educational Resources Information Center

    Lederman, Norman G.; Niess, Margaret L.

    1998-01-01

    Explores current reforms in both mathematics and science education that emphasize the importance of learning in informal settings. Suggests that informal education must include planned and purposeful attempts to facilitate students' understanding of mathematics and science in community settings other than the local school. (Author/CCM)

  6. Perceptions versus Realities: Exploring Needs and Science Learning Outcomes In the Mississippi Delta

    NASA Astrophysics Data System (ADS)

    Fitts, Lacey S.

    The Mississippi Delta (MS Delta) is a high-poverty region in northwestern Mississippi located between the Mississippi and Yazoo rivers. The Delta is home to sixteen rural counties with over seventy failing or underperforming schools. Many of these schools lack the resources necessary to ensure adequate opportunities for all students. Learning outcomes for the state are among the lowest in the nation, and scores in the rural Delta are far below the state average. Graduating seniors take the ACT college entrance exam, with about 10% of Mississippi seniors scoring as "college-ready" in science. The region has a critical shortage of science teachers, and many schools do not offer advanced science courses. This study assessed teachers' needs, identified key characteristics of the secondary science programs in which they teach, and sought to understand conditions affecting science learning outcomes. An inventory of science teachers' needs was administered to teachers in the region. The greatest needs were material resources, high quality training, and strategies for improving poor reading and problem-solving skills of students. Of the factors examined, the percentage of students receiving free lunch had the strongest correlation with science learning outcomes in the school, higher than access to resources, number of science courses offered, and level of self-reported teacher need. A three-tiered approach to improving science learning outcomes has been developed, emphasizing community relationships, targeted professional development, and relevant science curriculum.

  7. Factors that Influence Community College Students' Interest in Science Coursework

    NASA Astrophysics Data System (ADS)

    Sasway, Hope

    There is a need for science education research that explores community college student, instructor, and course characteristics that influence student interest and motivation to study science. Increasing student enrollment and persistence in STEM is a national concern. Nearly half of all college graduates have passed through a community college at some point in their higher education. This study at a large, ethnically diverse, suburban community college showed that student interest tends to change over the course of a semester, and these changes are related to student, instructor, and course variables. The theoretical framework for this study was based upon Adult Learning Theory and research in motivation to learn science. Adult Learning Theory relies heavily on self-directed learning and concepts of andragogy, or the art and science of teaching adults. This explanatory sequential mixed-methods case study of student course interest utilized quantitative data from 639 pre-and post-surveys and a background and personal experience questionnaire. The four factors of the survey instrument (attention, relevance, confidence, and satisfaction) were related to motivation and interest by interviewing 12 students selected through maximum variation sampling in order to reach saturation. Qualitative data were collected and categorized by these factors with extrinsic and intrinsic themes emerging from personal and educational experiences. Analysis of covariance showed student characteristics that were significant included age and whether the student already held a post-secondary degree. Significant instructor characteristics included whether the instructor taught full- or part-time, taught high school, held a doctoral degree, and had pedagogical training. Significant course characteristics included whether the biology course was a major, elective, or service course; whether the course had a library assignment; and high attrition rate. The binary logistic regression model showed six significant variables that predicted increased student interest: older students, previous degree holders, students that took courses at night rather than during the daytime, students who were taught by instructors who taught high school, instructors who taught part-time, and students who had a non-STEM major. Methodological triangulation ensured that the research questions were adequately addressed, as qualitative data corroborated and provided insights for quantitative results. These findings imply that interventions such as implementation of professional development, specifically in andragogical training for instructors and support personnel, are necessary in order to properly address the needs of community college students. Policy makers need to ensure that proper academic and financial counseling systems are in place for students enrolled in these science courses. Students were affected by past experiences and required support from others in order to increase their interest and motivation to study science. This study will inform efforts to help community college students persist in the pipeline to join in the STEM workforce or transfer to four-year colleges.

  8. Advancing STEM Career and Learning through Civic Engagement

    ERIC Educational Resources Information Center

    Xie, Yichun

    2014-01-01

    The Mayor's Youth Technology Corps (MYTC)--Creating Safe Communities through Information Technology Training in Homeland Security Applications (2008-2012)--offered a collaboration of resources, supports, and opportunities for strengthening science, technology, engineering, and mathematics (STEM) education efforts in an underserved community, the…

  9. Field-based education and indigenous knowledge: Essential components of geoscience education for native American communities

    NASA Astrophysics Data System (ADS)

    Riggs, Eric M.

    2005-03-01

    The purpose of this study is to propose a framework drawing on theoretical and empirical science education research that explains the common prominent field-based components of the handful of persistent and successful Earth science education programs designed for indigenous communities in North America. These programs are primarily designed for adult learners, either in a postsecondary or in a technical education setting and all include active collaboration between local indigenous communities and geoscientists from nearby universities. Successful Earth science curricula for indigenous learners share in common an explicit emphasis on outdoor education, a place and problem-based structure, and the explicit inclusion of traditional indigenous knowledge in the instruction. Programs sharing this basic design have proven successful and popular for a wide range of indigenous cultures across North America. We present an analysis of common field-based elements to yield insight into indigenous Earth science education. We provide an explanation for the success of this design based in research on field-based learning, Native American learning styles research, and theoretical and empirical research into the nature and structure of indigenous knowledge. We also provide future research directions that can test and further refine our understanding of best practices in indigenous Earth science education.

  10. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    NASA Astrophysics Data System (ADS)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  11. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Community Collaborations

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Lawton, B. L.; Bartolone, L.; Schultz, G. R.; Blair, W. P.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum is one of four scientist-educator teams that support NASA's Science Mission Directorate and its nationwide education and public outreach community in increasing the coherence, efficiency, and effectiveness of their education and public outreach efforts. NASA Astrophysics education and outreach teams collaborate with each other through the Astrophysics Forum to place individual programs in context, connect with broader education and public outreach activities, learn and share successful strategies and techniques, and develop new partnerships. This poster highlights examples of collaborative efforts designed to engage youth and adults across the full spectrum of learning environments, from public outreach venues, to centers of informal learning, to K-12 and higher education classrooms. These include coordinated efforts to support major outreach events such as the USA Science and Engineering Festival; pilot "Astro4Girls" activities in public libraries to engage girls and their families in science during Women’s History Month; and a pilot "NASA's Multiwavelength Universe" online professional development course for middle and high school educators. Resources to assist scientists and Astro101 instructors in incorporating NASA Astrophysics discoveries into their education and public outreach efforts are also discussed.

  12. Taking a Scientific Approach to Science Teaching

    NASA Astrophysics Data System (ADS)

    Pollock, S.

    2011-09-01

    It is now well-documented that traditionally taught, large-scale introductory science courses often fail to teach our students the basics. In fact, these same courses have been found to teach students things we don't intend. Building on a tradition of research, the physics and astronomy education research communities have been investigating the effects of educational reforms at the undergraduate level for decades. Both within these scientific communities and in the fields of education, cognitive science, psychology, and other social sciences, we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students. This presentation will discuss a variety of effective classroom practices, (with an emphasis on peer instruction, "clickers," and small group activities), the surrounding educational structures, and examine assessments which indicate when and why these do (and sometimes do not) work. After a broad survey of education research, we will look at some of the exciting theoretical and experimental developments within this field that are being conducted at the University of Colorado. Throughout, we will consider research and practices that can be of value in both physics and astronomy classes, as well as applications to teaching in a variety of environments.

  13. Scientists in the making: An ethnographic investigation of scientific processes as literate practice in an elementary classroom

    NASA Astrophysics Data System (ADS)

    Crawford, Teresa Jo

    This study explored the issue of literacy in science by examining how the social and academic literate practices in an elementary classroom formed the basis for learning across the curriculum, with a specific focus on the disciplinary field of science. Through the study of classroom interaction, issues related to student knowledge and ability were addressed as they pertain to scientific literacy in the context of science education reform. The theoretical framework guiding this study was drawn from sociocultural studies of scientific communities and interactional ethnography in education. To investigate the literate practices of science in a school setting, data were collected over a two-year period with the same teacher in her third grade and then her fourth/fifth grade classroom. Data were collected through participant observation in the form of fieldnotes, video data, interviews, and various artifacts (e.g., writings, drawings, teaching protocols). Using ethnographic and sociolinguistic methods of analysis this work examined classroom members' discursive practices to illustrate the role that discourse plays in creating opportunities for engagement in, and access to, scientific knowledge. These analyses revealed that the discursive actions and practices among members of this classroom shaped a particular type of learning environment that was process-oriented and inquiry based. It was shown that this learning environment afforded opportunities for students to engage in the processes of science outside the official, planned curriculum, often leading to whole class scientific investigations and discussions. Additionally, within this classroom community students were able to draw on multiple discourses to display their knowledge of scientific concepts and practices. Overall, this study found that the literate practices of this classroom community, as they were socially constructed among members, contributed to opportunities for students to practice science and demonstrate scientific literacy.

  14. Technology-Enhanced Physics Programme for Community-Based Science Learning: Innovative Design and Programme Evaluation in a Theme Park

    NASA Astrophysics Data System (ADS)

    Tho, Siew Wei; Chan, Ka Wing; Yeung, Yau Yuen

    2015-10-01

    In this study, a new physics education programme is specifically developed for a famous theme park in Hong Kong to provide community-based science learning to her visitors, involving her three newly constructed rides. We make innovative use of digital technologies in this programme and incorporate a rigorous evaluation of the learning effectiveness of the programme. A total of around 200 students from nine local secondary schools participated in both the physics programme and its subsequent evaluation which consists of a combination of research and assessment tools, including pre- and post-multiple-choice tests, a questionnaire survey and an interview as specifically developed for this programme, or adopted from some well-accepted research instruments. Based on the evaluation of students' academic performance, there are two educationally significant findings on enhancing the students' physics learning: (a) traditionally large gender differences in physics performance and interest of learning are mostly eliminated; and (b) a less-exciting ride called the aviator (instead of the most exciting roller-coaster ride) can induce the largest learning effect (or gain in academic performance) amongst teenagers. Besides, findings from the questionnaire survey and interviews of participants are reported to reveal their views, perceptions, positive and negative comments or feedback on this programme which could provide valuable insights for future development of other similar community-based programmes.

  15. Building a Community of Scholars: One University's Story of Students Engaged in Learning Science, Mathematics, and Engineering through a NSF S-STEM Grant--Part II

    ERIC Educational Resources Information Center

    Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Sirinterlikci, Arif

    2015-01-01

    The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…

  16. Aligning Teaching to Learning: A 3-Year Study Examining the Embedding of Language and Argumentation into Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Hand, Brian; Norton-Meier, Lori A.; Gunel, Murat; Akkus, Recai

    2016-01-01

    How can classrooms become communities of inquiry that connect intellectually challenging science content with language-based activities (opportunities to talk, listen, read, and write) especially in settings with diverse populations? This question guided a 3-year mixed-methods research study using the Science Writing Heuristic (SWH) approach in…

  17. "Active Science": Integrating Physical Activity and Science Learning into the Afterschool Environment

    ERIC Educational Resources Information Center

    Finn, Kevin E.; Yan, Zi; McInnis, Kyle J.

    2015-01-01

    Background: Afterschool programs offer significant opportunities to increase physical activity levels and improve academic performance of children. Purpose: This study assessed an innovative approach to embed physical activity into science lessons in an afterschool community setting. Methods: Participants were 47 boys and girls (age = 10.8 ± 0.7…

  18. Science Communication Through Art: Objectives, Challenges, and Outcomes.

    PubMed

    Lesen, Amy E; Rogan, Ama; Blum, Michael J

    2016-09-01

    The arts are becoming a favored medium for conveying science to the public. Tracking trending approaches, such as community-engaged learning, alongside challenges and goals can help establish metrics to achieve more impactful outcomes, and to determine the effectiveness of arts-based science communication for raising awareness or shaping public policy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Makerspaces in the Library: Science in a Student's Hands

    ERIC Educational Resources Information Center

    Julian, Kristi D.; Parrott, Deborah J.

    2017-01-01

    Makerspaces supply a venue for students to construct a variety of real-world products at the collegiate level using science and technology standards. The maker movement is sweeping the science learning community by storm in the library setting with remarkable success. The maker movement provides an opportunity to transform the library into a…

  20. Indigenous Elementary Students' Science Instruction in Taiwan: Indigenous Knowledge and Western Science

    ERIC Educational Resources Information Center

    Lee, Huei; Yen, Chiung-Fen; Aikenhead, Glen S.

    2012-01-01

    This preliminary ethnographic investigation focused on how Indigenous traditional wisdom can be incorporated into school science and what students learned as a result. Participants included community elders and knowledge keepers, as well as 4th grade (10-year-old) students, all of Amis ancestry, an Indigenous tribe in Taiwan. The students'…

  1. Living Learning Communities: An Intervention in Keeping Women Strong in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Belichesky, Jennifer

    2013-01-01

    The purpose of this study was to expand on the current research pertaining to women in science, technology, engineering, and mathematics (STEM) majors, better understand the experiences of undergraduate women in the sciences, identify barriers to female persistence in their intended STEM majors, and understand the impact of the STEM co-educational…

  2. Learning in and about rural places: Connections and tensions between students' everyday experiences and environmental quality issues in their community

    NASA Astrophysics Data System (ADS)

    Zimmerman, Heather Toomey; Weible, Jennifer L.

    2017-03-01

    Guided by sociocultural perspectives on the importance of place as a resource for learning, we investigated 14- and 15-year old students' understandings of their community and water quality during a school-based watershed unit. Methods included a theory-driven thematic analysis of field notes and video transcripts from four biology classrooms, a qualitative and quantitative analysis of 67 pairs of matched pre- and post-intervention mindmaps, and a content analysis of 73 student reflections. As they learned about water quality, learners recognized the relevance of the watershed's health to the health of their community. Students acknowledged the impacts of local economically driven activities (e.g., natural gas wells, application of agrichemicals) and leisure activities (e.g., boating, fishing) on the watershed's environmental health. As students learned in and about their watershed, they experienced both connections and tensions between their everyday experiences and the environmental problems in their community. The students suggested individual sustainability actions needed to address water quality issues; however, the students struggled to understand how to act collectively. Implications of rural experiences as assets to future environmental sciences learning are discussed as well as the implications of educational experiences that do not include an advocacy component when students uncover environmental health issues. We suggest further consideration is needed on how to help young people develop action-oriented science knowledge, not just inert knowledge of environmental problems, during place-based education units.

  3. Help Yourself, Help Your Students

    ERIC Educational Resources Information Center

    Luft, Julie A.; Bang, EunJin; Hewson, Peter W.

    2016-01-01

    Science teachers often participate in professional development programs (PDPs) to improve their students' learning. They sign up for workshops, institutes, university classes, or professional learning communities to gain knowledge and new instructional practices and to find colleagues with whom to discuss their teaching. But with so many options…

  4. Enlarging the STEM pipeline working with youth-serving organizations

    NASA Astrophysics Data System (ADS)

    Porro, I.

    2005-12-01

    The After-School Astronomy Project (ASAP) is a comprehensive initiative to promote the pursuit of science learning among underrepresented youth. To this end ASAP specifically aims at building the capacity of urban community-based centers to deliver innovative science out-of-school programming to their youth. ASAP makes use of a modular curriculum consisting of a combination of hands-on activities and youth-led explorations of the night sky using MicroObservatory. Through project-based investigations students reinforce learning in astronomy and develop an understanding of science as inquiry, while also develop communication and computer skills. Through MicroObservatory students gain access to a network of educational telescopes, that they control over the Internet, software analysis tools and an online community of users. An integral part of ASAP is to provide professional development opportunities for after-school workers. This promotes a self-sustainable implementation of ASAP long-term and fosters the creation of a cadre of after-school professionals dedicated to facilitating science-based programs.

  5. RITES: Online (Reaching In-service Teachers with Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2003-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believed that the power of technology could not be effectively utilized unless it was grounded in new models of teaching and learning based on a student centered and project based curriculum, that increased opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believed the aforementioned ideas and points to be equally true for the teacher candidates and inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses were delivered by distance learning via the university WebCt distance education system to teacher candidates (preservice teachers) and inservice teachers. Teacher candidates and inservice teachers were encouraged to use technology when involving their students in science inquiry activities and to record their students' involvement in science activities with digital cameras. Teacher candidates and inservice teachers involve in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight teacher candidates and inservice teachers in the roles of designer, researcher, and collaborator. Examples of student works will also be a part of the Power point presentation. As a result of our courses our teachers have attained the following positive outcomes: 1) Teacher candidates and inservice teachers are experiencing the inquiry approach to learning about the spheres of our earth. 2) Teacher candidates and inservice teachers are becoming confident in using technology. 3) Teacher candidates and inservice teachers are learning to work cooperatively in-groups and understand what their own students must feel. 4) Teacher candidates and inservice teachers are finding ways to obtain dynamic professional development and not leave their classrooms or homes. 5) Teacher candidates and inservice teachers are developing relationships with other teachers that have an interest in teaching science and a learning community is evolving.

  6. Building Sustainable Research Engagements: Lessons Learned from Research with Schools

    ERIC Educational Resources Information Center

    Vukotich, Charles J., Jr.; Cousins, Jennifer; Stebbins, Samuel

    2014-01-01

    Engaged scholarship, translational science, integrated research, and interventionist research, all involve bringing research into a practical context. These usually require working with communities and institutions, and often involve community based participatory research. The article offers practical guidance for engaged research. The authors…

  7. Evolving Best Practice in Learning About Air Quality and Climate Change Science in ACCENT

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2008-12-01

    Learning about air quality and climate change science has developed into a transdisciplinary impact generator, moulded by academic-stakeholder partnerships, where complementary skills and competences lead to a culture of dialogue, mutual learning and decision-making. These sweeping changes are mirrored in the evolving best practice within the European Network of Excellence on Atmospheric Composition Change (ACCENT). The Training and Education Programme in ACCENT pursues an integrated approach and innovative avenues to sharing knowledge and communicating air quality and climate change science to various end-user groups, including teachers, policy makers, stakeholders, and the general public. Early career scientists are involved in the process, and are trained to acquire new knowledge in a variety of learning communities and environments. Here, examples of both the open system of teaching within ACCENT training workshops for early career scientists, and the engagement of non-academic audiences in the joint learning process are presented.

  8. Building a Science Communication Culture: One Agency's Approach

    NASA Astrophysics Data System (ADS)

    DeWitt, S.; Tenenbaum, L. F.; Betz, L.

    2014-12-01

    Science communication does not have to be a solitary practice. And yet, many scientists go about it alone and with little support from their peers and organizations. To strengthen community and build support for science communicators, NASA designed a training course aimed at two goals: 1) to develop individual scientists' communication skills, and 2) to begin to build a science communication culture at the agency. NASA offered a pilot version of this training course in 2014: the agency's first multidisciplinary face-to-face learning experience for science communicators. Twenty-six Earth, space and life scientists from ten field centers came together for three days of learning. They took part in fundamental skill-building exercises, individual development planning, and high-impact team projects. This presentation will describe the course design and learning objectives, the experience of the participants, and the evaluation results that will inform future offerings of communication training for NASA scientists and others.

  9. Capturing Parents' Individual and Institutional Interest Toward Involvement in Science Education

    NASA Astrophysics Data System (ADS)

    Kaya, Sibel; Lundeen, Cynthia

    2010-11-01

    Parents are generally less involved in their children’s science education (as compared to reading and mathematics) due to low self-efficacy and a lack of home-school communication. This study examined parental interest and attitudes in science as well as the nature of parent-to-child questioning during an interactive home, school, and community collaboration in the southeastern United States. Study results, compiled from observations, exit surveys, and interviews revealed largely positive family interactions and attitudes about science learning and increased parental interest toward involvement in elementary science. Parents frequently used productive questioning techniques during activities. These results imply that successful home, school, and community partnerships may elevate levels of parental participation in their children’s science education and the parents’ perception of themselves as being competent in assisting in science.

  10. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    PubMed

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  11. Educational Innovations in Academic Medicine and Environmental Trends

    PubMed Central

    Irby, David M; Wilkerson, LuAnn

    2003-01-01

    Fifteen educational innovations in academic medicine are described in relation to 5 environmental trends. The first trend, demands for increased clinical productivity, has diminished the learning environment, necessitating new organizational structures to support teaching, such as academies of medical educators, mission-based management, and faculty development. The second trend is multidisciplinary approaches to science and education. This is stimulating the growth of multidisciplinary curricular design and oversight along with integrated curricular structures. Third, the science of learning advocates the use of case-based, active learning methods; learning communities such as societies and colleges; and instructional technology. Fourth, shifting views of health and disease are encouraging the addition of new content in the curriculum. In response, theme committees are weaving content across the curriculum, new courses are being inserted into curricula, and community-based education is providing learning experiences outside of academic medical centers. Fifth, calls for accountability are leading to new forms of performance assessment using objective structured clinical exams, clinical examination exercises, simulators, and comprehensive assessment programs. These innovations are transforming medical education. PMID:12795736

  12. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: an Exploratory Study

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-08-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.

  13. Engaging Citizens In Discussions of Coastal Climate ChangeTwo examples of place-based research that engaged community members will be presented. Lessons learned in how to engage community members and working with high school students and hands-on learning across generations can provide insights into social and ecosystem change will be shared.

    NASA Astrophysics Data System (ADS)

    Kruger, L. E.; Johnson, A. C.

    2017-12-01

    By engaging community members as research partners, people become not just the subject of the story, they become storytellers as well. Participatory community-based research that engages community residents in gathering and sharing their lived experiences is instrumental in connecting people to each other and their forests and forest science and helpful when confronted by change. Two examples of place-based research that engaged community members as researchers will be presented. What factors led to collaborative outcomes that integrated citizen-informed knowledge with scientific knowledge? What lessons were learned in how best to engage community members? How did working with high school students draw even hesitant members of the community to participate? By strengthening bonds between students and their communities, both natural and social environments, we can provide young people with opportunities to better understand how they fit into the greater community and their natural environment. Hands-on learning that explores experiences in nature across generations can benefit communities, especially youth, and can provide insights into social and ecosystem change.

  14. Show Me the Evidence: How a Unit Challenge Can Support Middle School Teachers and Students in Investigating Climate Change Using Real-World Data and Science Practices

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Tubman, S.; Grazul, K.; Bluth, G.; Huntoon, J. E.

    2017-12-01

    Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned integrated science middle school curriculum and associated teacher professional learning program that addresses all performance expectations for the 6-8 grade-band. The Mi-STAR instructional model is a unit- and lesson-level model that scaffolds students in using science practices to investigate scientific phenomena and apply engineering principles to address a real-world challenge. Mi-STAR has developed an 8th grade unit on climate change based on the Mi-STAR instructional model and NGSS performance expectations. The unit was developed in collaboration with Michigan teachers, climate scientists, and curriculum developers. The unit puts students in the role of advisers to local officials who need an evidence-based explanation of climate change and recommendations about community-based actions to address it. Students discover puzzling signs of global climate change, ask questions about these signs, and engage in a series of investigations using simulations and real data to develop scientific models for the mechanisms of climate change. Students use their models as the basis for evidence-based arguments about the causes and impacts of climate change and employ engineering practices to propose local actions in their community to address climate change. Dedicated professional learning supports teachers before and during implementation of the unit. Before implementing the unit, all teachers complete an online self-paced "unit primer" during which they assume the role of their students as they are introduced to the unit challenge. During this experience, teachers experience science as a practice by using real data and simulations to develop a model of the causes of climate change, just as their students will later do. During unit implementation, teachers are part of a professional learning community led by a teacher facilitator in their local area or school. This professional learning community serves as a resource both for implementing student-directed pedagogy and for the development of content knowledge. Eight teachers pilot tested the unit with more than 500 students in spring 2017, and teachers who participated in the first professional learning cohort are currently implementing the unit around Michigan.

  15. SOARS: Significant Opportunities in Atmospheric Research and Science

    NASA Astrophysics Data System (ADS)

    Windham, T. L.; Hagan, M. E.

    2001-05-01

    SOARS, a model program, has developed a unique mutli-year mentoring and learning community to support, teach, and guide college students from diverse backgrounds. SOARS is dedicated to increasing the number of African American, American Indian, and Hispanic/Latino students enrolled in master's and doctoral degree programs in the atmospheric and related sciences with the goal of supporting the development of a diverse, internationally competitive and globally engaged workforce within the scientific community. Since its 1996 inception, 51 undergraduates have participated. All 51 completed or are on schedule to complete their undergraduate degrees with a major in an atmospheric or related science. Currently 17 protégés are in graduate programs. Eight have completed M.S. degrees; two are Ph.D. candidates. SOARS has a retention rate of 82 percent. The SOARS learning community provides multi-year programing for protégés that includes educational and research opportunities, mentoring, career counseling and guidance, and the possibility of financial support for a graduate level program. Protégés spend their summers at NCAR, participate in ongoing research projects, an eight week scientific writing and communication workshop, and scientific seminars. They benefit from long-term mentoring from respected scientists and professionals, learn about career opportunities, practice leadership and are encouraged to complete a graduate program in an atmospheric or related science. In this presentation we highlight the SOARS program structure and objectives with particular emphasis on the mentoring model that is fundamental to SOARS. We conclude with a summary of SOARS protégés' contributions to the broader scientific community which include oral and poster presentations at national and regional scientific conferences, as well as co-authorship of refereed journal articles.

  16. Advocating for equitable science-learning opportunities for girls in an urban city youth club and the roadblocks faced by women science educators

    NASA Astrophysics Data System (ADS)

    Davis, Kathleen S.

    2002-02-01

    This article reports on a study that examined the obstacles women science educators faced as they facilitated Explorers, an after-school science program for girls aged 6-12. The program aimed to provide girls with opportunities to legitimately participate in science activity. Explorers was one of several programs offered by the Foothills City Youth Club (FCYC) in a racially diverse urban center in the Southwestern United States. The youth club was meant to serve the needs of children and youth in that community. Through analysis of field notes, interviews, and documents, the social structures and forces that impeded the implementation of practices and the acquisition of capital are described. They include: (a) inadequate funding and community support, (b) conflicting beliefs between FCYC leaders and community leaders about the needs of boys and girls, and 3) inequitable decision-making structures of the community. Underlying beliefs, structures, and practices within the community weakened the FCYC in many ways, interrupted the leadership's attempts to meet their goals as they worked with the community's children, and brought to the surface issues of bias and oppression.

  17. Merging Social Networking Environments and Formal Learning Environments to Support and Facilitate Interprofessional Instruction

    PubMed Central

    King, Sharla; Greidanus, Elaine; Carbonaro, Michael; Drummond, Jane; Patterson, Steven

    2009-01-01

    This study describes the redesign of an interprofessional team development course for health science students. A theoretical model is hypothesized as a framework for the redesign process, consisting of two themes: 1) the increasing trend among post-secondary students to participate in social networking (e.g., Facebook, Second Life) and 2) the need for healthcare educators to provide interprofessional training that results in effective communities of practice and better patient care. The redesign focused on increasing the relevance of the course through the integration of custom-designed technology to facilitate social networking during their interprofessional education. Results suggest that students in an educationally structured social networking environment can be guided to join learning communities quickly and access course materials. More research and implementation work is required to effectively develop interprofessional health sciences communities in a combined face-to-face and on-line social networking context. PMID:20165519

  18. Merging social networking environments and formal learning environments to support and facilitate interprofessional instruction.

    PubMed

    King, Sharla; Greidanus, Elaine; Carbonaro, Michael; Drummond, Jane; Patterson, Steven

    2009-04-28

    This study describes the redesign of an interprofessional team development course for health science students. A theoretical model is hypothesized as a framework for the redesign process, consisting of two themes: 1) the increasing trend among post-secondary students to participate in social networking (e.g., Facebook, Second Life) and 2) the need for healthcare educators to provide interprofessional training that results in effective communities of practice and better patient care. The redesign focused on increasing the relevance of the course through the integration of custom-designed technology to facilitate social networking during their interprofessional education. Results suggest that students in an educationally structured social networking environment can be guided to join learning communities quickly and access course materials. More research and implementation work is required to effectively develop interprofessional health sciences communities in a combined face-to-face and on-line social networking context.

  19. An inclusive Research Education Community (iREC): Impact of the SEA-PHAGES program on research outcomes and student learning.

    PubMed

    Hanauer, David I; Graham, Mark J; Betancur, Laura; Bobrownicki, Aiyana; Cresawn, Steven G; Garlena, Rebecca A; Jacobs-Sera, Deborah; Kaufmann, Nancy; Pope, Welkin H; Russell, Daniel A; Jacobs, William R; Sivanathan, Viknesh; Asai, David J; Hatfull, Graham F

    2017-12-19

    Engaging undergraduate students in scientific research promises substantial benefits, but it is not accessible to all students and is rarely implemented early in college education, when it will have the greatest impact. An inclusive Research Education Community (iREC) provides a centralized scientific and administrative infrastructure enabling engagement of large numbers of students at different types of institutions. The Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) is an iREC that promotes engagement and continued involvement in science among beginning undergraduate students. The SEA-PHAGES students show strong gains correlated with persistence relative to those in traditional laboratory courses regardless of academic, ethnic, gender, and socioeconomic profiles. This persistent involvement in science is reflected in key measures, including project ownership, scientific community values, science identity, and scientific networking. Copyright © 2017 the Author(s). Published by PNAS.

  20. An inclusive Research Education Community (iREC): Impact of the SEA-PHAGES program on research outcomes and student learning

    PubMed Central

    Hanauer, David I.; Graham, Mark J.; Betancur, Laura; Bobrownicki, Aiyana; Cresawn, Steven G.; Garlena, Rebecca A.; Jacobs-Sera, Deborah; Kaufmann, Nancy; Pope, Welkin H.; Russell, Daniel A.; Jacobs, William R.; Sivanathan, Viknesh; Asai, David J.

    2017-01-01

    Engaging undergraduate students in scientific research promises substantial benefits, but it is not accessible to all students and is rarely implemented early in college education, when it will have the greatest impact. An inclusive Research Education Community (iREC) provides a centralized scientific and administrative infrastructure enabling engagement of large numbers of students at different types of institutions. The Science Education Alliance–Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) is an iREC that promotes engagement and continued involvement in science among beginning undergraduate students. The SEA-PHAGES students show strong gains correlated with persistence relative to those in traditional laboratory courses regardless of academic, ethnic, gender, and socioeconomic profiles. This persistent involvement in science is reflected in key measures, including project ownership, scientific community values, science identity, and scientific networking. PMID:29208718

  1. Youth Science Ambassadors: Connecting Indigenous communities with Ocean Networks Canada tools to inspire future ocean scientists and marine resource managers

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Hoeberechts, M.; Hale, C.; McLean, M. A.

    2017-12-01

    This presentation describes Ocean Networks Canada's (ONC) Youth Science Ambassador Program. The Youth Science Ambassadors are a growing network of youth in Canadian coastal communities whose role is to connect ocean science, ONC data, and Indigenous knowledge. By directly employing Indigenous youth in communities in which ONC operates monitoring equipment, ONC aims to encourage wider participation and interest in ocean science and exploration. Further, the Youth Science Ambassadors act as role models and mentors to other local youth by highlighting connections between Indigenous and local knowledge and current marine science efforts. Ocean Networks Canada, an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories as well as community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. Youth Science Ambassadors are part of the Learning and Engagement team whose role includes engaging Indigenous communities and schools in ocean science through ONC's K-12 Ocean Sense education program. All of the data collected by ONC are freely available over the Internet for non-profit use, including disaster planning, community-based decision making, and education. The Youth Science Ambassadors support collaboration with Indigenous communities and schools by facilitating educational programming, encouraging participation in ocean data collection and analysis, and fostering interest in ocean science. In addition, the Youth Science Ambassadors support community collaboration in decision-making for instrument deployment locations and identify ways in which ONC can help to address any areas of concern raised by the community. This presentation will share the successes and challenges of the Youth Science Ambassador program in engaging both rural and urban Indigenous communities. We will share activities and experiences, discuss how we have adapted to meet the needs of each community, and outline ideas we have for the future development of the program.

  2. Community Resilience Informed by Science and Experience (C-RISE)

    NASA Astrophysics Data System (ADS)

    Young Morse, R.; Peake, L.; Bowness, G.

    2017-12-01

    The Gulf of Maine Research Institute is developing an interactive learning experience that engages participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and the changes we see now and that are predicted for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through the connection to the challenge of city planning in our harbor communities. We are leveraging the ESRI Story Maps platform to build rich visualization-based narratives that feature NOAA maps, data and tools. Our program participants work in teams to navigate the content and participate in facilitated group discussions led by our educators. Based on the adult learning experience and in concert with new content being developed for the LabVenture program around the theme of Climate Change, we will develop a learning experience for 5th and 6th graders.Our goal is to immerse 1000+ adults from target communities in Greater Portland region as well as 8000+ middle school students from throughout the state in the experience.

  3. Preservice Teachers' Learning to Plan Intellectually Challenging Tasks

    ERIC Educational Resources Information Center

    Kang, Hosun

    2017-01-01

    This study explores how and under which conditions preservice secondary science teachers (PSTs) engage in effective planning practices that incorporate intellectually challenging tasks into lessons. Drawing upon a situative perspective on learning, eight PSTs' trajectories of participation in communities of practice are examined with a focus on…

  4. Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation.

    PubMed

    Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia

    2016-06-01

    Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. © 2016 Society for Conservation Biology.

  5. Architecting Learning Continuities for Families Across Informal Science Experiences

    NASA Astrophysics Data System (ADS)

    Perin, Suzanne Marie

    By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family's choice that they associated with science learning. Some families were asked to use a set of activities during their study visits based on the practices of science (National Research Council, 2012), which were delivered via smartphone app or on paper cards. I use design-based research, video data analysis and interaction analysis to examine how families build connections between informal science learning settings. Chapter 2 outlines the research-based design process of creating activities for families that fostered connections across multiple learning settings, regardless of the topical content of those settings. Implications of this study point to means for linking everyday family social practices such as questioning, observing, and disagreeing to the practices of science through activities that are not site-specific. The next paper delves into aesthetic experience of science learning, and I use video interaction analysis and linguistic analysis to show how notions of beauty and pleasure (and their opposites) are perfused throughout learning activity. Designing for aesthetic experience overtly -- building on the sensations of enjoyment and pleasure in the learning experience -- can motivate those who might feel alienated by the common conception of science as merely a dispassionate assembly of facts, discrete procedures or inaccessible theory. The third paper, a case study of a family who learns about salmon in each of the sites they visit, highlights the contributions of multiple sites of learning in an ecological view of learning. Finally, the dissertations' conclusion highlights the broad implications for conceiving of the many varied learning settings in a community as an educational infrastructure, and reflections on using aesthetic experience for broadening participation the sciences through the design of informal environments.

  6. 3-D Teaching of Climate Change: An innovative professional learning model for K-12 teachers

    NASA Astrophysics Data System (ADS)

    Stapleton, M.; Wolfson, J.; Sezen-Barrie, A.

    2017-12-01

    In spite of the presumed controversy over the evidence for climate change, the recently released Next Generation Science Standards (NGSS) for K-12 include a focus on climate literacy and explicitly use the term `climate change.' In addition to the increased focus on climate change, the NGSS are also built upon a new three dimensional framework for teaching and learning science. Three dimensional learning has students engaging in scientific and engineering practices (Dimension 1), while using crosscutting concepts (Dimension 2) to explore and explain natural phenomena using disciplinary core ideas (Dimension 3). The adoption of these new standards in many states across the nation has created a critical need for on-going professional learning as in-service science educators begin to implement both climate change instruction and three dimensional teaching and learning in their classrooms. In response to this need, we developed an innovative professional learning model for preparing teachers to effectively integrate climate change into their new curriculum and engage students in three dimensional learning. Our professional learning model utilized ideas that have emerged from recent science education research and include: a) formative assessment probes for three dimensional learning that monitor students' progress; b) collaboration with scientists with expertise in climate science to understand the domain specific ways of doing science; and c) development of a community of practice for in-service teachers to provide feedback to each other on their implementation. In this poster presentation, we will provide details on the development of this professional learning model and discuss the affordances and challenges of implementing this type of professional learning experience.

  7. An Interdisciplinary Approach to Success for Underrepresented Students in STEM

    ERIC Educational Resources Information Center

    Goonewardene, Anura U.; Offutt, Christine A.; Whitling, Jacqueline; Woodhouse, Donald

    2016-01-01

    To recruit underrepresented students with demonstrated financial need into STEM disciplines, Lock Haven University established the interdisciplinary Nano Scholars Program, offering National Science Foundation-funded scholarships, academic support, and social support. Small cohort sizes, a student-led science learning community (the Nano Club), and…

  8. Biology Education in the United States: The Unfinished Century.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2002-01-01

    Adresses five themes basic to biology education: (1) increased recognition of advances in the science of learning; (2) implementation of scientific ideas and technological innovations; (3) incorporation of science- and technology-related issues; (4) elaboration of global perspectives; and (5) professional community and civil discourse. (MM)

  9. Rural Science Education as Social Justice

    ERIC Educational Resources Information Center

    Eppley, Karen

    2017-01-01

    What part can science education play in the dismantling of obstacles to social justice in rural places? In this Forum contribution, I use "Learning in and about Rural Places: Connections and Tensions Between Students' Everyday Experiences and Environmental Quality Issues in their Community" (Zimmerman and Weible 2016) to explicitly…

  10. Social controversy belongs in the climate science classroom

    NASA Astrophysics Data System (ADS)

    Walsh, Elizabeth M.; Tsurusaki, Blakely K.

    2014-04-01

    Scientists, educators and stakeholders are grappling with how to best approach climate change education for diverse audiences, a task made difficult due to persistent social controversy. This Perspective examines how sociocultural learning theories can inform the design and implementation of climate change education experiences for learners with varied understandings of and attitudes towards climate change. The literature demonstrates that explicitly addressing learners' social and community experiences, values and knowledge supports understandings of and increased concern about climate change. Science learning environments that situate climate change in its social context can support conceptual understandings, shift attitudes and increase the participation of diverse communities in responding to climate change. Examples are provided of successful programmes that attend to social dimensions and learners' previous experiences, including experiences of social controversy.

  11. The motivations and experiences of students enrolled in online science courses at the community college

    NASA Astrophysics Data System (ADS)

    Ghosh, Urbi

    An important question in online learning involves how to effectively motivate and retain students in science online courses. There is a dearth of research and knowledge about the experiences of students enrolled in online science courses in community colleges which has impeded the proper development and implementation of online courses and retention of students in the online environment. This study sought to provide an understanding of the relationships among each of the following variables: self-efficacy, task value, negative-achievement emotions, self-regulation learning strategies (metacognition), learning strategy (elaboration), and course satisfaction to student's performance (course final grade). Bandura's social-cognitive theory was used as a framework to describe the relationships among students' motivational beliefs (perceived task value, self-efficacy, and self-regulation) and emotions (frustration and boredom) with the dependent variables (elaboration and overall course satisfaction). A mixed-method design was used with a survey instrumentation and student interviews. A variety of science online courses in biology, genetics, astronomy, nutrition, and chemistry were surveyed in two community colleges. Community colleges students (N = 107) completed a questionnaire during enrollment in a variety of online science online courses. Upon course completion, 12 respondents were randomly selected for follow-up in-depth interviews. Multiple regression results from the study indicate perceived task value and self-regulatory learning strategies (metacognition) were as important predictors for students' use of elaboration, while self-efficacy and the number of prior online courses was not significant predictors for students' elaboration when all four predictors were included. Frustration was a significant negative predictor of overall course satisfaction, and boredom unexpectedly emerged as a positive predictor when frustration was also in the model. In addition, the correlations indicated that elaboration and overall course satisfaction were not significantly related to participants' course grade (performance). Furthermore, five major themes emerged from the students' experiences: the role of personal dispositions, academic challenge, self-regulated learning, student communication, and the negative emotions that shaped student experiences. In particular, negative emotions most experienced by students were found to be anxiety, stress, frustration and confusion. In total, results from this study implicate an important role of emotions such as frustration in students' overall course satisfaction and the importance of task value. Students' career aspirations and direct use of the course content were more likely to report greater use of elaboration strategies. Finally, this research also found that students self-regulated their learning in the online environment on a variety of levels.

  12. Simulation for Authentic Learning in Informal Education

    PubMed Central

    Dupuis, Jason; Ludwig-Palit, DeDee

    2016-01-01

    In 2011, the Museum of Science and Industry in Chicago, Illinois embarked on the creation of a program that allows middle and high school students to explore community health issues using human patient simulation. MedLab was created to engage students in an authentic exploration of medical science, biology, and human anatomy, with a particular focus on how these fields apply to learners’ lives. The program content is made relevant through an emphasis on personal health, community health, and medical science career pathways. This article explores the development, implementation, use of technology, and outcomes of MedLab. PMID:27980372

  13. Simulation for Authentic Learning in Informal Education.

    PubMed

    Dupuis, Jason; Ludwig-Palit, DeDee

    2016-01-01

    In 2011, the Museum of Science and Industry in Chicago, Illinois embarked on the creation of a program that allows middle and high school students to explore community health issues using human patient simulation. MedLab was created to engage students in an authentic exploration of medical science, biology, and human anatomy, with a particular focus on how these fields apply to learners' lives. The program content is made relevant through an emphasis on personal health, community health, and medical science career pathways. This article explores the development, implementation, use of technology, and outcomes of MedLab.

  14. The impact of professional development on classroom teaching for science educators participating in a long term community of practice

    NASA Astrophysics Data System (ADS)

    Jensen, Aaron C.

    Efforts to modify and improve science education in the United States have seen minimal success (Crawford, 2000; Borko & Putman, 1996; Puntambekar, Stylianou & Goldstein, 2007; Lustick, 2011). One important reason for this is the professional development that teachers go through in order to learn about and apply these new ideas is generally of poor quality and structured incorrectly for long-term changes in the classroom (Little, 1993; Fullen, 1996; Porter, 2000; Jeanpierre, Oberhauser, & Freeman, 2005). This grounded theory study explores a science community of practice and how the professional development achieved through participation in that community has effected the instruction of the teachers involved, specifically the incorporation of researched based effective science teaching instructional strategies. This study uses personal reflection papers written by the participants, interviews, and classroom observations to understand the influence that the science community of practice has had on the participants. Results indicate that participation in this science community of practice has significant impact on the teachers involved. Participants gained greater understanding of science content knowledge, incorporated effective science instructional strategies into their classroom, and were able to practice both content knowledge and strategies in a non-threatening environment thus gaining a greater understanding of how to apply them in the classrooms. These findings motivate continued research in the role that communities of practice may play in teacher professional develop and the effectiveness of quality professional development in attaining long-term, sustained improvement in science education.

  15. Earth System Science Education for the 21st Century: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.

    2005-12-01

    Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.

  16. NASA’s Universe of Learning: Connecting Scientists, Educators, and Learners

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Lestition, Kathleen; Squires, Gordon K.; Greene, W. M.; Biferno, Anya A.; Cominsky, Lynn R.; Goodman, Irene; Walker, Allyson; Universe of Learning Team

    2017-01-01

    NASA’s Universe of Learning (UoL) is one of 27 competitively awarded education programs selected by NASA’s Science Mission Directorate (SMD) in its newly restructured education effort. Through these 27 programs, SMD aims to infuse NASA science experts and content more effectively and efficiently into learning environments serving audiences of all ages. UoL is a unique partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University that will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of partners to advance SMD education objectives. External evaluation is provided through a partnership with Goodman Research Group and Cornerstone Evaluation Associates. The multi-institutional team is working to develop and deliver a unified, consolidated and externally evaluated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Cosmic Origins, Physics of the Cosmos, and Exoplanet Exploration themes. Products and programs focus on out-of-school-time learning environments and include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; and producing resources for special needs and underserved/underrepresented audiences. The UoL team also works with a network of partners to provide professional learning experiences for informal educators, pre-service educators, and undergraduate instructors. This presentation will provide an overview of the UoL team’s approach to partnering scientists and educators to engage learners in Astrophysics discoveries and data; progress to date; and pathways for science community involvement.

  17. Describing students of the African Diaspora: Understanding micro and meso level science learning as gateways to standards based discourse

    NASA Astrophysics Data System (ADS)

    Lehner, Ed

    2007-04-01

    In much of the educational literature, researchers make little distinction between African-American students and students of the African Diaspora who immigrated to the United States. Failing to describe these salient student differences serves to perpetuate an inaccurate view of African-American school life. In today's large cities, students of the African Diaspora are frequently learning science in settings that are devoid of the resources and tools to fully support their success. While much of the scholarship unites these disparate groups, this article details the distinctive learning culture created when students from several groups of the African Diaspora learn biology together in a Brooklyn Suspension Center. Specifically this work explains how one student, Gabriel, functions in a biology class. A self-described black-Panamanian, Gabriel had tacitly resigned to not learning science, which then, in effect, precluded him from any further associated courses of study in science, and may have excluded him from the possibility of a science related career. This ethnography follows Gabriel's science learning as he engaged in cogenerative dialogue with teachers to create aligned learning and teaching practices. During the 5 months of this research, Gabriel drew upon his unique lifeworld and the depth of his hybridized cultural identity to produce limited, but nonetheless important demonstrations of science. Coexistent with his involvement in cogenerative dialogue, Gabriel helped to construct many classroom practices that supported a dynamic learning environment which produced small yet concrete examples of standards based biology. This study supports further investigation by the science education community to consider ways that students' lifeworld experiences can serve to structure and transform the urban science classroom.

  18. Bringing Science to Life for Students, Teachers and the Community

    NASA Astrophysics Data System (ADS)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  19. The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.

  20. Engaging a Rural Community with Science through a Science Café

    NASA Astrophysics Data System (ADS)

    Adams, P. E.

    2012-12-01

    Public awareness about science and science issues is often lacking in the general community; in a rural community there are even fewer options for an interested person to engage with others on science topics. One approach to address this issue is through the use of the Science Café model of citizen science at the local level. The Science Café concept, for the United States, originated in Boston (http://www.sciencecafes.org/). Science Café events are held in informal settings, such as restaurants, pubs, or coffee houses with presentations being provided by experts on the subject. The format is designed to promote discussion and questions. Fort Hays State University Science and Mathematics Institute (SMEI), located in Hays, KS, is now in its fifth year of hosting a science café in a community of 20,000 people. The program in Hays started as a grassroots effort from an area high school teacher asking SMEI to organize and support the program. Attendance at the Science Café has range from 14 to 75 people (fire code capacity!), with an average attendance of 30 people. The audience for our Science Café has been citizens, college students, high school students, and university faculty. The presenters at the Hays Science Café have ranged from scientists to engineers, high school students to hobbyists. Our topics have ranged from searching for life in the universe, wind energy, paleo-life in Kansas, climate change, honey bees, and planetary science. The program has developed a strong following in the community and has led to the formation of additional Science Café programs in Kansas. Selection of topics is based on community interest and timeliness. Publicity occurs through posters, e-mail, and social media outlets. Participants have found the sessions to be of interest and a place to learn more about the world and become informed about issues in the news. The Science Café in Hays has had a positive impact on the community.

  1. CosmoQuest: Galvanizing a Dynamic, Inclusive Professional Learning Network

    NASA Astrophysics Data System (ADS)

    Cobb, W. H.; Buxner, S.; Bracey, G.; Noel-Storr, J.; Gay, P.; Graff, P. V.

    2016-12-01

    The CosmoQuest Virtual Research Facility offers experiences to audiences around the nation and globally through pioneering citizen science. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and individuals of all ages—to explore and make sense of our solar system and beyond. Scaffolded by an educational framework that inspires 21stCentury learners, CosmoQuest engages people—you, me!—in analyzing and interpreting real NASA data, inspiring questions and defining problems. Linda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] …; [and] connected to teachers' collaborative work in professional learning community...." (2012). In light of that, what can CosmoQuest offer NASA STEM education as a virtual research facility? CosmoQuest engages scientists with learners, and learners with science. As a virual research facility, its focal point must be its online platform. CosmoQuest empowers and expands community through a variety of social channels, including science and education-focused hangouts, podcasts, virtual star parties, and social media. In addition to creating standards-aligned materials, CosmoQuest channels are a hub for excellent resources throughout NASA and the larger astronomical community. In support of CosmoQuest citizen science opportunities, the process and outcomes of CosmoQuest initiatives will be leveraged and shared. Thus, CosmoQuest will be present and alive in the awareness of its growing community. Finally, to make CosmoQuest truly relevant, partnerships between scientists and educators are encouraged and facilitated, and "just-in-time" opportunities to support constituents exploring emerging NASA STEM education and new NASA data will be offered, engaging audiences ranging from diverse educators to the curious learner of any age.

  2. Strategies, Use, and Impact of Social Media for Supporting Teacher Community within Professional Development: The Case of One Urban STEM Program

    ERIC Educational Resources Information Center

    Rosenberg, Joshua M.; Greenhalgh, Spencer P.; Wolf, Leigh Graves; Koehler, Matthew J.

    2017-01-01

    This paper examines the use of social media to foster community connections within the MSU Urban Science, Technology, Engineering, and Mathematics (STEM) program. We describe the strategies employed by the program and the technologies employed by instructors to provide support, build community, and showcase learning. We highlight three particular…

  3. Translanguaging in a Latin@ Bilingual Community: Negotiations and Mediations in a Dual-Language Classroom

    ERIC Educational Resources Information Center

    Garza, Armando; Langman, Juliet

    2014-01-01

    Considering a Latin@ fifth-grade dual-language classroom (Spanish/English) as a community of practice, this paper explores how a bilingual teacher and her bilingual students, as members of such community, utilize translanguaging (García, 2009) as a learning and teaching tool in social studies and science classes. In this particular classroom, the…

  4. Integrating World Views, Knowledge and Venues in Climate Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Brunacini, J.; Pfirman, S. L.

    2015-12-01

    The Reaching Arctic Communities Facing Climate Change Project integrates traditional and western knowledge and observations in climate science to facilitate dialog and learning among Alaska Native adults about climate change and its impacts on the environment and on Alaskan communities. In one of the models we have tested, the informal education took place at a 4-day camp by the Tanana River in Fairbanks, Alaska. Participants included Alaska Native elders, leaders, educators and natural resource managers, community members and university scientists. Results of pre/post camp surveys showed increased awareness of scientific and technical language used in climate science, improved ability to locate resources, tools, and strategies for learning about climate change, enhanced capacity to communicate climate change in a relevant way to their audiences and communities, confirmed the value of elders in helping them understand, respond and adapt to climate change, and that the camp setting facilitated an in-depth discussion and sharing of knowledge. The camp also enhanced the awareness about weather, climate and the environment of the camp facilitators who also noticed a shift in their own thinking and behavior. After the camp one participant who is an educator shared some of the hands-on tools developed by Polar Learning and Responding Climate Change Education Partnership project and used at the camp, with her 6th grade students, with the other teachers in her school and also at a state conference. Another shared what she learned with her family and friends as well as at a conference sponsored by her faith community where she was an invited speaker. Another camp was scheduled for this past summer but was cancelled due to some unforeseen weather/climate related events. A camp is planned for early summer in 2016; however other models of reaching the adult Native populations in a similar culturally responsive manner as the camps will also be explored and tested.

  5. New Media and Models for Engaging Under-Represented Students in Science

    NASA Astrophysics Data System (ADS)

    Mayhew, Laurel M.; Finkelstein, Noah D.

    2008-10-01

    We describe the University of Colorado Partnerships for Informal Science Education in the Community (PISEC) program in which university students participate in classroom and after school science activities with local precollege children. Across several different formal and informal educational environments, we use new technological tools, such as stop action motion (SAM) movies [1] to engage children so that they may develop an understanding of science through play and "show and tell". This approach provides a complementary avenue for reaching children who are otherwise underrepresented in science and under-supported in more formal educational settings. We present the model of university community partnership and demonstrate its utility in a case study involving an African American third grade student learning about velocity and acceleration.

  6. The effect of cooperative learning on the attitudes toward science and the achievement of students in a non-science majors' general biology laboratory course at an urban community college

    NASA Astrophysics Data System (ADS)

    Chung-Schickler, Genevieve C.

    The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L. Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (nsb1 = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (nsb2 = 19) (at the beginning and end of the term). Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group on TOSRA scale two and biology knowledge. ANCOVAs did not indicate any significant differences on the post mean scores of the TOSRA or biology knowledge adjusted by differences in the pretest mean scores. Analysis of the research data did not show any significant correlation between attitudes toward science and biology knowledge.

  7. Outdoor Learning and Sustainability Education

    ERIC Educational Resources Information Center

    Fleming, Margaret; Dawson, Richard

    2013-01-01

    A shared conference presentation describes two ways of bringing education for sustainable development into education. The first part concentrated on putting science into outdoor learning backed up by a series of mind-mapping activities. The second was about linking schools with their surrounding communities to develop ways of working together. An…

  8. Culturally Responsive Mathematics and Science Education for Native Students.

    ERIC Educational Resources Information Center

    Nelson-Barber, Sharon; Estrin, Elise Trumbull

    This monograph addresses concerns about mathematics and science instruction and educational outcomes for Native students. The sociocultural contexts of schooling and community come together in particular ways to influence how Native children learn and, consequently, their life outcomes. It is important to look beyond the performance of individual…

  9. Green Action through Education: A Model for Fostering Positive Attitudes about STEM

    ERIC Educational Resources Information Center

    Wheland, Ethel R.; Donovan, William J.; Dukes, J. Thomas; Qammar, Helen K.; Smith, Gregory A.; Williams, Bonnie L.

    2013-01-01

    This paper describes an innovative collaboration between instructors of non-STEM (science, technology, engineering, and mathematics) courses and scientists who teach STEM courses in the GATE (Green Action Through Education) learning community. The scientists in this project presented engaging science--in such diverse locations as a sewage…

  10. Assessment of Learning in Health Sciences Education: MLT Case Study

    ERIC Educational Resources Information Center

    Mugimu, Christopher Byalusaago; Mugisha, Wilson Rwandembo

    2017-01-01

    Assessment in health sciences education has become an extremely critical issue in recent years, given the rapidly changing disease patterns and behavioral changes in communities among diverse cultural and economic contexts of patients. Globally, there is increasing demand for highly qualified contemporary healthcare professionals. Subsequently,…

  11. Outdoor Adventures: Tracking Eastern Box Turtles

    ERIC Educational Resources Information Center

    Somers, Ann Berry; Matthews, Catherine E.; Bennett, Kristin R.; Seymour, Sarah; Rucker, John

    2003-01-01

    A thematic and hands-on approach to learning ensures that students develop a deeper understanding and retain information longer. Bouillion and Gomez (2001) argue that real-world problems and school-community partnerships help engage students to connect with school science. When there is a disconnect between the activities of school science and…

  12. Teaching Building Science with Simulations

    ERIC Educational Resources Information Center

    Hatherly, Amanda

    2017-01-01

    Teaching building science to community college students can be challenging given both the macro (houses change subject to varying seasons) and the micro (heat transfer, moisture movement) level of the topics taught. Simulations and games can provide a way of learning material that can otherwise be difficult for students to understand. In this…

  13. Learning Science as Explorers: Historical Resonances, Inventive Instruments, Evolving Community

    ERIC Educational Resources Information Center

    Cavicchi, Elizabeth

    2014-01-01

    Doing science as explorers, students observe, wonder and question the unknown, stretching their experience. To engage students as explorers depends on their safety in expressing uncertainty and taking risks. I create these conditions in my university seminar by employing critical exploration in the classroom, a pedagogy developed by Eleanor…

  14. Community Partnerships for Fostering Student Interest and Engagement in STEM

    ERIC Educational Resources Information Center

    Watters, James J.; Diezmann, Carmel M.

    2013-01-01

    The foundations of Science, Technology, Engineering and Mathematics (STEM) education begins in the early years of schooling when students encounter formal learning experiences primarily in mathematics and science. Politicians, economists and industrialists recognise the importance of STEM in society, and therefore a number of strategies have been…

  15. Learning from Learners: Family and Consumer Sciences Professionals in International Settings

    ERIC Educational Resources Information Center

    Keino, Leah C.

    2007-01-01

    Family and consumer sciences professionals' contribute to the well-being of individuals, families, and communities through work in and support of international efforts. However, limited literature is available on professionals' challenges when working in such settings. In this article, the author offers one professional's insights into working…

  16. Exciting Students through VEX Robotic Competitions

    ERIC Educational Resources Information Center

    Robinson, Trevor P.; Stewardson, Gary A.

    2012-01-01

    Robotic competitions continue to gain popularity in the educational community as a way to engage students in hands-on learning that can raise a student's interest in science, technology, engineering, and mathematics. In 1992, For Inspiration and Recognition of Science and Technology (FIRST) held its first competition and presented a style of…

  17. The Teaching and Learning of Biological Evolution.

    ERIC Educational Resources Information Center

    Kyle, William C., Jr., Ed.

    1994-01-01

    Evolution education is of increasing interest to the science education community. This special issue of the "Journal of Research in Science Teaching" has been devoted to the subject of evolution. The following articles are included: (1) "Evolution: Biological Education's Under-Researched Unifying Theme" by Catherine L. Cummins, Sherry S. Demastes,…

  18. Preparing Students for Science in the Face of Social Controversy

    ERIC Educational Resources Information Center

    Bramschreiber, Terry; Westmoreland, David

    2015-01-01

    Science educators often teach topics that are largely resolved in the scientific community yet remain controversial in broader society. In such cases, students may perceive the teacher as biased. We present two exercises that foster more objective learning about the scientific underpinnings of socially controversial topics. The first exercise…

  19. Affective Objectives in Community College Science.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    Science teachers need to stress several kinds of objectives in teaching and learning. One kind, cognitive, receives major emphasis by teachers. In addition to vital facts and concepts, pupils should also acquire major generalizations. And, in addition to facts, concepts, and generalizations, pupils also need to be able to think critically.…

  20. Dynamic Leadership, Character Education Form New FCS Class

    ERIC Educational Resources Information Center

    Watkins, Carol Ann

    2007-01-01

    In this article, the author describes the leadership class that she created for the family and consumer sciences (FCS) department. The class, "Family & Consumer Sciences Issues & Applications," focused on family and community action for improved quality of life. It included in-depth laboratory experiences, service learning activities, and the…

  1. Bringing Planetary Data into Learning Environments: A Community Effort

    NASA Astrophysics Data System (ADS)

    Shipp, S.; Higbie, M.; Lowes, L.

    2005-12-01

    Recognizing the need to communicate scientific findings, and the power of using real planetary data in educational settings to engage students in Earth and space science in meaningful ways, the South Central Organization of Researchers and Educators and the Solar System Exploration Education Forum, part of NASA's Science Mission Directorate's Support Network, have established the Planetary Data in Education (PDE) Initiative. The Initiative strives to: 1) Establish a collaborative community of educators, education specialists, curriculum developers, tool developers, learning technologists, scientists, and data providers to design and develop educationally appropriate products; 2) Build awareness in the broader educational and scientific community of existing programs, products, and resources; 3) Address issues hindering the effective use of planetary data in formal and informal educational settings; and 4) Encourage partnerships that leverage the community's expertise The PDE community has hosted two conferences exploring issues in using data in educational settings. The community recognizes that data are available through venues such as the Planetary Data Systems (PDS), but not in a format that the end-user in a formal or informal educational setting can digest; these data are intended for the scientific audience. Development of meaningful educational programs using planetary data requires design of appropriate learner interfaces and involvement of data providers, product developers, learning technologists, scientists, and educators. The PDE community will participate in the development of Earth Exploration Toolbooks during the DLESE Data Services Workshop and will host a workshop in the summer of 2006 to bring together small groups of educators, data providers, and learning technologists, and scientists to design and develop products that bring planetary data into educational settings. In addition, the PDE community hosts a Web site that presents elements identified as needed by the community, including examples of planetary data use in education, recommendations for program development, links to data providers, opportunities for collaboration, pertinent research, and a Web portal to access educational resources using planetary data on the DLESE Web site.

  2. The fundamentals of integrating service in a post-licensure RN to BSN program.

    PubMed

    Washington-Brown, Linda; Ritchie, Arlene

    2014-01-01

    Integrating service in a post-licensure registered nurse to bachelor of science in nursing (RN to BSN) program provides licensed registered nurse (RN) students the opportunity to learn, develop, and experience different cultures while serving the community and populations in need (McKinnon & Fitzpatrick, 2012). Service to the community, integrated with academic learning can be applied in a wide variety of settings, including schools, universities, and community faith-based organizations. Academic service-learning (ASL) can involve a group of students, a classroom, or an entire school. In the RN to BSN program, the authors use a student-directed service learning approach that integrates service-learning throughout the curriculum. RN students are introduced to service-learning at program orientation prior to the start of classes and receive reinforcement and active engagement throughout the curriculum. The students and volunteer agencies receive and give benefits from the services provided and the life lessons gained through mentorship, education, and hands-on experiences.

  3. A Kindergarten Teacher Bringing Science to a Community

    ERIC Educational Resources Information Center

    Theis, Becky; Galindo, Ed; Shockey, Tod

    2014-01-01

    The National Aeronautical and Space Administration (NASA) sponsored professional development of educators in the NASA Summer of Innovation (SOI) program. The Idaho, Montana, and Utah (IMU-SOI) program worked with educators and students from thirteen Native American communities. The summer sessions were focused on problem based learning and…

  4. Children Go Bonkers about Bugs

    ERIC Educational Resources Information Center

    Fielding, Sue; Jones, Meriel

    2014-01-01

    Learning outside the classroom is an objective in primary education in the UK and an ideal way to introduce science. School grounds, allotments, community farms and sports areas, parks, nature reserves and community woodlands can be accessed in both urban and rural areas. These provide accessible spaces that can be used inexpensively throughout…

  5. Metaphorical Duality: High School Subject Departments as Both Communities and Organizations

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John

    2007-01-01

    This article investigates the metaphorical duality that exists when school subject departments are concurrently conceptualized as both communities and organizations. Employing a narrative methodology, we use the metaphorical duality to examine the manner in which science teachers negotiate two key aspects of their work; professional learning and…

  6. Annals of Community-Oriented Education, Volume 3, Part I, 1990.

    ERIC Educational Resources Information Center

    Engel, C., Ed.; And Others

    This collection gathers together several papers reflecting the state of the art in the development of community-based programs in health sciences education. Titles and authors are as follows: "Issues in Implementing a Problem-Based Learning Curriculum at the University of Sherbrooke" (Jacques E. Des Marchais; Bertrand Dumais);…

  7. Climate Voices: Bridging Scientist Citizens and Local Communities across the United States

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Ristvey, J. D., Jr.

    2016-12-01

    Based out of the University Corporation for Atmospheric Research (UCAR), the Climate Voices Science Speakers Network (climatevoices.org) has more than 400 participants across the United States that volunteer their time as scientist citizens in their local communities. Climate Voices experts engage in nonpartisan conversations about the local impacts of climate change with groups such as Rotary clubs, collaborate with faith-based groups on climate action initiatives, and disseminate their research findings to K-12 teachers and classrooms through webinars. To support their participants, Climate Voices develops partnerships with networks of community groups, provides trainings on how to engage these communities, and actively seeks community feedback. In this presentation, we will share case studies of science-community collaborations, including meta-analyses of collaborations and lessons learned.

  8. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    NASA Astrophysics Data System (ADS)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated that the experience validated their science and science-related career choices. Results imply that these changes have the potential to strengthen the undergraduate pursuit of science-related careers and will contribute positive influences to our education system and society at large.

  9. Latina girls' identities-in-practice in 6th grade science

    NASA Astrophysics Data System (ADS)

    Tan, Edna

    Inequalities and achievement gaps in science education among students from different racial and socioeconomic backgrounds as well as between genders in the United States are due to not just access to resources, but also to the incongruence between identities of school science with identities salient to minority students. Minority girls are especially portrayed to be estranged from prototypical school science Discourse, often characterized as white, middle class, and masculine. This dissertation, based on a two-year ethnographic study in an urban middle school in New York City, describes the authoring of novel identities-in-practice of minority girls in a 6th grade science classroom. The findings indicate that minority girls draw from out-of-school identities salient to them to author novel identities-in-practice in the various figured worlds of the 6th grade science classroom. Through taking such authorial stances, minority girls exhibit agency in negotiating for wider boundaries in their school science participation and broker for hybrid spaces of school science where the school science Discourse was destabilized and challenged to be more inclusive of everyday funds of knowledge and Discourses important to the students. The findings also highlight the dialectic relationship between an individual students' learning and participation and the school science community-of-practice and the implications such a relationship has on the learning of both individual students and the collective community-of-practice. From year one findings, curricular adaptations were enacted, with teacher and student input, on lessons centering on food and nutrition. The adapted curriculum specifically solicited for nontraditional funds of knowledge and Discourse from students and were grounded strongly in relevance to students' out of school lives. The hybrid spaces collectively brokered for by the community-of-practice were transformed in three ways: physically, politically, and, pedagogically. Overall, the results from the study indicate that minority girls are not only successful in border crossing but in brokering for new worlds of science, and highlights the importance of incorporating nontraditional funds and Discourses and the important roles played by the community-of-practice as a whole to reshape the landscape of school science in genuine pursuit of the education goal "science for all".

  10. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    NASA Astrophysics Data System (ADS)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other institutions are also volunteering to be mentors. Second, each student will participate in the GLOBE-FLEXE pilot program that involves comparing environmental conditions of local environments to those of extreme environments, like hydrothermal vents in the deep sea. This real-world science program is being coordinated through the FLEXE Project Office at Penn State University, and the GLOBE Program Office in Boulder, Co. We will spend 18 class periods collecting local weather data and analyzing meteorological data from around the world, writing scientific reports, and peer reviewing other students reports. The NHMFL is a sponsor of the Communtiy Classroom Consortium in Tallahassee that is has funded a grant for equipment needed to conduct the data collection portion of this process. Finally, the students will share their research with other students, parents, teachers, and scientists at a school science fair in the fall, and a scientific poster session in the spring. The NHMFL will be supplying judges for the two sessions. They will also be offering the use of their facilities at the laboratory in the spring. Scientists from the lab will mingle with the students, discuss their research, and critique and encourage the young scientists at the first annual Middle School Research Symposium in May, 2008.

  11. The MMS Science Data Center: Operations, Capabilities, and Resource.

    NASA Astrophysics Data System (ADS)

    Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.

    2015-12-01

    The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.

  12. NASA's astrophysics archives at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  13. The perspectives of nonscience-major students on success in community college biology

    NASA Astrophysics Data System (ADS)

    Kim-Rajab, Oriana Sharon

    With more than 36% of nonscience-major community college students unable to successfully complete their general life science courses, graduation and transfer rates to four-year universities are negatively affected. Many students also miss important opportunities to gain some level of science proficiency. In an effort to address the problem of poor science achievement, this research project determined which factors were most significantly related to student success in a community college biology course. It also aimed to understand the student perspectives on which modifications to the course would best help them in the pursuit of success. Drawing heavily on the educational psychology schools of thought on motivation and self-efficacy of science learning, this study surveyed and interviewed students on their perceptions of which factors were related to success in biology and the changes they believed were needed in the course structure to improve success. The data revealed that the primary factors related to student success are the students' study skills and their perceived levels of self-efficacy. The findings also uncovered the critical nature of the professor's role in influencing the success of the students. After assessing the needs of the community college population, meaningful and appropriate curriculum and pedagogical reforms could be created to improve student learning outcomes. This study offered recommendations for reforms that can be used by science practitioners to provide a more nurturing and inspiring environment for all students. These suggestions revolved around the role of the instructor in influencing the self-efficacy and study skills of students. Providing more opportunities for students to interact in class, testing more frequently, establishing peer assistance programs, managing better the course material, and making themselves more available to students were at the forefront of the list. Examples of the potential benefits of increasing community college science success rates include improvement of student transfer rates and better preparation for employment. Because of the increasing importance of science in this modern age, improving science success rates can also have long-lasting positive effects on students' abilities to make decisions about their health, the economy, and to be productive citizens within our science-oriented society.

  14. Application of FrontPage 98 to the Development of Web Sites for the Science Division and the Center for the Advancement of Learning and Teaching (CALT) at Anne Arundel Community College.

    ERIC Educational Resources Information Center

    Bird, Bruce

    This paper discusses the development of two World Wide Web sites at Anne Arundel Community College (Maryland). The criteria for the selection of hardware and software for Web site development that led to the decision to use Microsoft FrontPage 98 are described along with its major components and features. The discussion of the Science Division Web…

  15. Development of the Test Of Astronomy STandards (TOAST) Assessment Instrument

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.; Slater, S. J.

    2008-05-01

    Considerable effort in the astronomy education research (AER) community over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing the AER discipline so that researchers could establish the initial knowledge state of students as well as to attempt measure some of the impacts of innovative instructional interventions. Unfortunately, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. This was not done in oversight, but rather as a result of the relative youth of AER as a discipline. Now that several important science education reform documents exist and are generally accepted by the AER community, we are in a position to develop, validate, and disseminate a new assessment instrument which is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. In response, researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science & Math Teaching Center (UWYO SMTC) have designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for courses with learning goals tightly aligned to the consensus goals of our community.

  16. Partners in Science: A Suggested Framework for Inclusive Research

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2012-12-01

    Public participation in scientific research, also known as citizen science, is effective on many levels: it produces sound, publishable science and data, helps participants gain scientific knowledge and learn about the methods and practices of modern science, and can help communities advance their own priorities. Unfortunately, the demographics of citizen science programs do not reflect the demographics of the US; in general people of color and less affluent members of society are under-represented. To understand the reasons for this disparity, it is useful to look to the broader research about participation in science in a variety of informal and formal settings. From this research, the causes for unequal participation in science can be grouped into three broad categories: accessibility challenges, cultural differences, and a gap between scientific goals and community priorities. Many of these challenges are addressed in working with communities to develop an integrated program of scientific research, education, and community action that addresses community priorities and invites community participation at every stage of the process from defining the question to applying the results. In the spectrum of ways to engage the public in scientific research, this approach of "co-creation" is the most intensive. This talk will explore several examples of co-creation of science, including collaborations with tribal communities around climate change adaptation, work in the Louisiana Delta concerning land loss, and the link between weather and disease in Africa. We will articulate some of the challenges of working this intensively with communities, and suggest a general framework for guiding this kind of work with communities. This model of intensive collaboration at every stage is a promising one for adding to the diversity of citizen science efforts. It also provides a powerful strategy for science more generally, and may help us diversify our field, ensure the use and usability of our science, and help strengthen public support for and acceptance of scientific results.

  17. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    PubMed

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2017-05-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC is an e-learning platform that empowers the biomedical community to develop, launch and share open training materials. It deploys hands-on software training toolboxes through virtualization technologies such as Amazon EC2 and Virtualbox. The BBDTC facilitates migration of courses across other course management platforms. The framework encourages knowledge sharing and content personalization through the playlist functionality that enables unique learning experiences and accelerates information dissemination to a wider community.

  18. Living Learning Communities: An Intervention in Keeping Women Strong in Science, Technology, Engineering, and Mathematics

    NASA Astrophysics Data System (ADS)

    Belichesky, Jennifer

    The purpose of this study was to expand on the current research pertaining to women in science, technology, engineering, and mathematics (STEM) majors, better understand the experiences of undergraduate women in the sciences, identify barriers to female persistence in their intended STEM majors, and understand the impact of the STEM co-educational Living Learning Community (LLC) model on female persistence. This study employed a mixed-methods approach that was grounded in standpoint methodology. The qualitative data were collected through focus groups and one-on-one interviews with the female participants and was analyzed through a critical feminist lens utilizing standpoint methodology and coded utilizing inductive analysis. The quantitative data were collected and analyzed utilizing a simple statistical analysis of key academic variables indicative of student success: cumulative high school GPAs, SAT scores, first year cumulative GPAs, freshman persistence patterns in the intended major, and freshman retention patterns at the university. The findings of this study illustrated that the co-educational LLC model created an inclusive academic and social environment that positively impacted the female participants' experiences and persistence in STEM. The findings also found the inclusion of men in the community aided in the demystification of male superiority in the sciences for the female participants. This study also highlighted the significance of social identity in the decision making process to join a science LLC.

  19. 2020 Vision: Envisioning a new generation of STEM learning research

    NASA Astrophysics Data System (ADS)

    Dierking, Lynn D.; Falk, John H.

    2016-03-01

    In this issue, we have compiled six original papers, outcomes from the U.S. National Science Foundation (US-NSF)-funded REESE (Research and Evaluation on Education in Science and Engineering) 2020 Vision: The Next Generation of STEM Learning Research project. The purpose of 2020 Vision was to re-envision the questions and frameworks guiding STEM research in the twenty-first century, given that notions of learning have changed significantly in the last decade. The papers present diverse research principles that emerged from an initial 2020 Vision conference at Oregon State University (OSU), were then vetted more broadly with the science education community nationally and internationally, and presented in a public 2020 Vision symposium series also at OSU. Individually and as a group, these papers argue that if STEM learning is lifelong, life-wide and life-deep, research designs need to cut across the diverse settings and investigate the multiple contexts and media in which learners live and interact. Authors call for research paradigms that holistically reflect questions of the "what, when, where, why, how and with whom" of STEM learning. Associated Forum papers respond and expand the conversation by critically examining the recommended research principles and in some cases, challenging both authors and editors to think even more broadly. Two Key Contributor pieces highlight the contributions of researchers who have helped to push on these research boundaries, advancing science education research nationally and internationally. A final synthesis paper, a case study of research being conducted in a diverse, under-resourced community in Portland, Oregon provides one example of how the 2020 Vision research principles might be integrated into a comprehensive STEM learning research study.

  20. Improved Student Learning through a Faculty Learning Community: How Faculty Collaboration Transformed a Large-Enrollment Course from Lecture to Student Centered.

    PubMed

    Elliott, Emily R; Reason, Robert D; Coffman, Clark R; Gangloff, Eric J; Raker, Jeffrey R; Powell-Coffman, Jo Anne; Ogilvie, Craig A

    2016-01-01

    Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning. © 2016 E. R. Elliott et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Lesson Study-Building Communities of Learning Among Pre-Service Science Teachers

    NASA Astrophysics Data System (ADS)

    Hamzeh, Fouada

    Lesson Study is a widely used pedagogical approach that has been used for decades in its country of origin, Japan. It is a teacher-led form of professional development that involves the collaborative efforts of teachers in co-planning and observing the teaching of a lesson within a unit for evidence that the teaching practices used help the learning process (Lewis, 2002a). The purpose of this research was to investigate if Lesson Study enables pre-service teachers to improve their own teaching in the area of science inquiry-based approaches. Also explored are the self-efficacy beliefs of one group of science pre-service teachers related to their experiences in Lesson Study. The research investigated four questions: 1) Does Lesson Study influence teacher preparation for inquiry-based instruction? 2) Does Lesson Study improve teacher efficacy? 3) Does Lesson Study impact teachers' aspiration to collaborate with colleagues? 4) What are the attitudes and perceptions of pre-service teachers to the Lesson Study idea in Science? The 12 participants completed two pre- and post-study surveys: STEBI- B, Science Teaching Efficacy Belief Instrument (Enochs & Riggs, 1990) and ASTQ, Attitude towards Science Teaching. Data sources included student teaching lesson observations, lesson debriefing notes and focus group interviews. Results from the STEBI-B show that all participants measured an increase in efficacy throughout the study. This study added to the body of research on teaching learning communities, professional development programs and teacher empowerment.

  2. Effectiveness of place-based science curriculum projects situated in Hawaiian and Western cultural institutions at an urban high school in Hawai'i

    NASA Astrophysics Data System (ADS)

    Kuwahara, Jennifer Leslie Hoof

    Place-based education is a multidisciplinary and experiential approach to learning that utilizes a local environment or community. This study examined the influences of place attachment and cultural affiliation in the school on student experience and learning in a place-based science course, as well as the course's potential influence on environmentally responsible behaviors. The participants attended an urban high school on O'ahu, Hawai'i. By understanding student reaction to experience in both Western- and Hawaiian-centered classes, this study contributes to the literature on place-based education in relation to how differences in cultural affiliation in a school setting can have varying impacts on place attachment, science literacy, and environmental responsibility. A comparative case study was conducted with students enrolled in the Hawaiian Academy and non-academy students. Analysis of a pre- and post-survey and science content assessments, student documents, field notes, and interview transcripts suggested place-based science has both similar and different impacts on students depending on cultural affiliation within the school. Students in the Hawaiian Academy, as a whole, showed stronger science literacy and environmental responsibility than students in the non-Hawaiian Academy class. However, non-Hawaiian Academy students showed increased place attachment in a spiritual sense. Reactions from both groups suggest a need for smaller learning communities that promote a unity of knowledge rather than distinct courses and disciplines.

  3. Creating a Learning Community for Solutions to Climate Change

    NASA Astrophysics Data System (ADS)

    Bloom, A. J.; Benedict, B. A.; Blockstein, D. E.; Hassenzahl, D. M.; Hunter, A.; Jorgensen, A. D.; Pfirman, S. L.

    2011-12-01

    The rapidly evolving and interdisciplinary nature of climate change presents a challenge to colleges and universities as they seek to educate undergraduate students. To address this challenge, the National Council for Science and the Environment (NCSE) with NSF funding is creating a nationwide cyber-enabled learning community called CAMEL (Climate, Adaptation, and Mitigation e-Learning). CAMEL engages experts in science, policy and decision-making, education, and assessment in the production of a virtual toolbox of curricular resources designed for teaching climate change causes, consequences, and solutions. CAMEL is: ? Developing cyberinfrastructure that supports and promotes the creation of materials and community; ? Generating materials for the Encyclopedia of Earth, a site averaging 50,000 views per day; ? Ensuring that materials developed and shared are founded on the best available scientific information and follow the most appropriate educational practices; ? Assisting faculty at institutions of higher education across the United States as they create, improve, test, and share resources for teaching students not only how to diagnose climate change problems, but also to identify and effect solutions; ? Evaluating the determinants of successful community building using cybermedia. The community and resultant content range from general education to upper division courses for students in a variety of majors. At the center of the community are the 160 colleges and universities represented in NCSE's Council of Environmental Deans and Directors. Members of this group represent recognized expertise in virtually all areas of this project. A team with substantial experience with evaluating innovative initiatives in STEM education is administering the evaluation component.

  4. A Constructive Reframing of Student Roles and Systems Learning in Medical Education Using a Communities of Practice Lens.

    PubMed

    Gonzalo, Jed D; Thompson, Britta M; Haidet, Paul; Mann, Karen; Wolpaw, Daniel R

    2017-12-01

    Health systems are in the midst of a transformation that is being driven by a variety of forces. This has important implications for medical educators because clinical practice environments play a key role in learning and professional development, and evolving health systems are beginning to demand that providers have "systems-ready" knowledge, attitudes, and skills. Such implications provide a clear mandate for medical schools to modify their goals and prepare physicians to practice flexibly within teams and effectively contribute to the improvement of health care delivery. In this context, the concepts of value-added medical education, authentic student roles, and health systems science are emerging as increasingly important. In this Article, the authors use a lens informed by communities of practice theory to explore these three concepts, examining the implications that the communities of practice theory has in the constructive reframing of educational practices-particularly common student roles and experiences-and charting future directions for medical education that better align with the needs of the health care system. The authors apply several key features of the communities of practice theory to current experiential roles for students, then propose a new approach to students' clinical experiences-value-added clinical systems learning roles-that provides students with opportunities to make meaningful contributions to patient care while learning health systems science at the patient and population level. Finally, the authors discuss implications for professional role formation and anticipated challenges to the design and implementation of value-added clinical systems learning roles.

  5. Design of environmental education module towards the needs of aboriginal community learning

    NASA Astrophysics Data System (ADS)

    Dasman, Siti Mariam; Yasin, Ruhizan Mohammad

    2017-05-01

    Non-formal education (NFE) refers to a program that is designed for personal and social education for learners to improve the level of skills and competencies outside formal educational curriculum. Issues related to geography and environment of different Aboriginal communities with other communities play an important role in determining the types and methods that should be made available to the minority community groups. Thus, this concept paper is intended to cater for educational environment through the design and development of learning modules based on non-formal education to the learning of Aboriginal community. Methods and techniques in the design and construction of the modules is based on the Design and Development Research (DDR) that was based on instructional design model of Morrison, Kemp and Ross which is more flexible and prioritizes the needs and characteristics of learners who were involved in the learning modules of the future. The discussion is related to the module development which is suitable to the learning needs of the community and there are several recommendations which may be applied in the implementation of this approach. In conclusion, the community of Orang Asli should be offered the same education as other communities but it is important to distinguish acceptance of learning techniques or approaches used in the education system to meet their standards. The implications of this concept paper is to meet the educational needs of the environment which includes a few aspects of science and some learning activities using effective approaches such as playing and building their own knowledge of meaning.

  6. Partnership Brings Educational Exhibits, Events, and Resources from Seven National Research Laboratories to the Public in a New Retail Center: The Wonders of Science at Twenty Ninth Street Project

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R.; Carbone, L.; Vangundy, S.; Adams, L.; Becker, K.; Cobabe-Ammanns, E.; Curtis, L.; Dusenbery, P.; Foy, R.; Himes, C.; Howell, C.; Knight, C.; Morehouse, R.; Koch, L.; O'Brian, T.; Rooney, J.; Schassburger, P.

    2006-12-01

    Federally Funded Research and Development Centers and universities are challenged to disseminate their educational resources to national audiences, let alone to find ways to collaborate with each other while engaging with the schools and public in their local communities. A unique new partnership involving seven world renowned research laboratories and a commercial land developer in the Denver Metropolitan is celebrating the unveiling of exhibits, web kiosk portals, and public science education events in a shopping mall. The October 2006 opening of the Twenty Ninth Street retail sales center (formerly Crossroad Mall) in Boulder, Colorado, has revitalized 60 acres in the heart of the city. It offers outdoor plazas that accommodate science education installations and lab-sponsored public events. The goal of the partnership is to celebrate the long-standing contributions of research laboratories to the community, increase awareness of each institution's mission, and entice visitors of all ages to learn more about science, mathematics, engineering, technology and related educational opportunities and careers. We describe how the public is responding to the Wonders of Science at Twenty Ninth Street, summarize lessons learned about this ambitious science education collaboration, and plans to sustain public and the K-12 community interest into the future. Partners in the Wonders of Science at Twenty Ninth Street include the JILA at the University of Colorado, the National Center for Atmospheric Research, National Institute for Science and Technology, National Oceanic and Atmospheric Administration, National Renewable Energy Laboratory, the University of Colorado's Laboratory for Atmospheric and Space Physics, Space Science Institute, and Westcor, the shopping mall's developer.

  7. Restoration Science in New York Harbor: It takes a (large, diverse and engaged) village

    NASA Astrophysics Data System (ADS)

    Newton, R.; Birney, L.; Janis, S.; Groome, M.; Palmer, M.; Bone, E.; O'Neil, J. M.; Hill, J.; Dennison, W.; Malinowski, P.; Kohne, L.; Molina, M.; Moore, G.; Woods, N.

    2015-12-01

    The Curriculum + Community Enterprise for Restoration Science (CCE-RS) facilitates partnerships between scientists and middle school educators on ecological restoration and environmental monitoring projects. The educational model is designed to wrap around the student, including classroom instruction, field science, after-school programs and engagement with the student's community. Its pillars include: a teacher training fellowship at Pace University, student curriculum, a digital platform, afterschool and summer mentoring, and community exhibits. The digital platform includes a tablet app tailored to the project's field protocols and linked to a database shared across schools and partnering institutions. Through the digital platform, data is integrated into a single citizen-science monitoring project, teachers share curriculum and best practices, and students link directly to their peers at other schools. Curriculum development has been collaborative between scientists, science education specialists, and secondary school teachers. The CCE-RS is rooted in project-based learning: the New York Harbor School has engaged high school students in environmental monitoring and oyster restoration in the Harbor for about the last decade. The science partners (U. of Maryland and Columbia) have been working with students and other citizen scientists in outdoor science over about the last decade. Local partners in outside-the-classroom education include the New York Academy of Sciences, The River Project, which will provide field education services, and Good Shepherd Services, which provides after-school programming in schools serving primarily poor families. Scientists on the project engage directly with teachers and informal educators in curriculum development and citizen-science outreach. We present the lessons learned from our first cohort of Fellows, the pedagogical model, and the digital platform, which is extensible to other ecological restoration settings.

  8. Communicating Climate Change: Lessons Learned from a Researcher-Museum Collaboration †

    PubMed Central

    Parker, Christopher T.; Cockerham, Debbie; Foss, Ann W.

    2018-01-01

    The need for science education and outreach is great. However, despite the ever-growing body of available scientific information, facts are often misrepresented to or misunderstood by the general public. This can result in uninformed decisions that negatively impact society at both individual and community levels. One solution to this problem is to make scientific information more available to the public through outreach programs. Most outreach programs, however, focus on health initiatives, STEM programs, or young audiences exclusively. This article describes a collaboration between the Research and Learning Center at the Fort Worth Museum of Science and History and an interdisciplinary team of researchers from the Dallas–Fort Worth (DFW) metroplex area. The collaboration was a pilot effort of a science communication fellowship and was designed to train researchers to effectively convey current science information to the public with a focus on lifelong learning. We focus on the broader idea of a university-museum collaboration that bridges the science communication gap as we outline the process of forming this collaboration, lessons we learned from the process, and directions that can support future collaborations. PMID:29904536

  9. The Intersection of Science and Politics

    NASA Astrophysics Data System (ADS)

    Kim, Elias

    2016-03-01

    Politics and science often seem at odds. However, important political issues like climate change, cybersecurity, and space exploration require the input of both communities. To create the best possible policies, there must be a dialogue between politicians and scientists. SPS and John Mather gave me the opportunity to be part of this dialogue. Through the Mather Policy Internship, I worked for the House Committee on Energy and Commerce, which has jurisdiction over telecom, health care, energy supply, and other technical areas. I worked with the technology and communications subcommittee, conducting research on cybersecurity, spectrum auctions, and the internet of things. It is clear that even the commercial side of science would benefit from the help of the science community. My background gave me an edge over the other interns; I didn't need to learn what it meant for there to be signals of different wavelength. Most importantly, I learned what it will take to pursue a career in science policy. For the number of physics undergrads who do not wish to pursue a pure physics career, science policy is a strong option. Scientists bring a rigorous, fact-based approach that might benefit the political world as a whole. Thanks to SPS, AIP, and the John and Jane Mather Foundation for Science and the Arts.

  10. The Process of Science Communications at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in operation for nearly two years. Serving scientists in Earth Science, Microgravity Science, and Space Science. Critical features of the design are illustrated, and essential skills required to operate the process are defined. Measures of success will also be presented.

  11. The Community for Data Integration (CDI): Building Knowledge, Networks, and Integrated Science Capacity

    NASA Astrophysics Data System (ADS)

    Hsu, L.

    2017-12-01

    In 2009, the U.S. Geological Survey determined that a focused effort on data integration was necessary to capture the full scientific potential of its topically and geographically diverse data assets. The Community for Data Integration was established to fill this role, and an emphasis emerged on grassroots learning and solving of shared data integration and management challenges. Now, eight years later, the CDI has grown to over 700 members and runs monthly presentations, working groups, special training events, and an annual USGS-wide grants program. With a diverse membership of scientists, technologists, data managers, program managers, and others, there are a wide range of motivations and interests competing to drive the direction of the community. Therefore, an important role of the community coordinators is to prioritize member interests while valuing and considering many different viewpoints. To do this, new tools and mechanisms are frequently introduced to circulate information and obtain community input and feedback. The coordinators then match community interests with opportunities to address USGS priorities. As a result, the community has facilitated the implementation of USGS-wide data policies and data management procedures, produced guidelines and lessons learned for technologies like mobile applications and use of semantic web technologies, and developed technical recommendations to enable integrated science capacity for USGS leadership.

  12. Identifying Estonian Stakeholder Views as the Bases for Designing Science Teachers' In-Service Course Which Support Promotion of Competence Based Curriculum Goals

    ERIC Educational Resources Information Center

    Laius, A.; Post, A.; Rannikmäe, M.

    2015-01-01

    This study solicits views about the goals of science education from a range of stakeholders within the science education community and society. It also compares students' needs, expressed through stakeholder expectations, with the current learning situation of gymnasium graduates. The study uses a Delphi method to solicit views with 111…

  13. A Legacy of Leadership and Lessons Learned: Results from the Rural Systemic Initiatives for Improving Mathematics and Science Education

    ERIC Educational Resources Information Center

    Harmon, Hobart L.; Smith, Keith

    2007-01-01

    This report pays tribute to the National Science Foundation's (NSF) Rural Systemic Initiatives (RSIs), an investment of more than $140 million to improve mathematics and science education in some of rural America's most impoverished communities. The report illustrates the impact of NSF's RSI program on a national scale. Each RSI planned a project…

  14. Identity and science learning in African American students in informal science education contexts

    NASA Astrophysics Data System (ADS)

    James, Sylvia M.

    2007-12-01

    Science education researchers are recognizing the need to consider identity and other sociocultural factors when examining causes of the science achievement gap for African American students. Non-school settings may hold greater promise than formal schooling to promote identities that are conductive to science learning in African Americans. This mixed-methods study explored the relationship between participation in out-of-school-time (OST) science enrichment programs and African American middle and high school students' racial and ethnic identity (RED, social identity as science learners, and achievement. Pre-post questionnaires used a previously validated model of REI combined with an original subscale that was developed to measure social identity as science learners. Case studies of two programs allowed for an analysis of the informal learning setting. The treatment group (N = 36) consisted of African American middle and high school students in five OST science programs, while the control group (N = 54) students were enrolled in science classes in public schools in the mid-Atlantic region. Results of a t-test of independent means indicated that there was no significant difference between the treatment and control group on measures of REI or science identity. However, the treatment group earned significantly higher science grades compared to the control group, and an ANOVA revealed a significant relationship between science identity and the intention to pursue post-secondary science studies. Although not significant, MANOVA results indicated that students who participated in OST programs exhibited gradual increases in RD and science identity over time according to grade level and gender. Follow-up analysis revealed significant relationships between awareness of racism, gender, and length of time in OST programs. The case studies illustrated that a unique community of practice exists within the OST programs. Access to authentic science learning experiences, youth development, social interactions, and relationships with staff emerged as key elements of successful science enrichment programs, Collectively, the results suggest that informal learning settings are supportive environments for science learning. Further study is needed to examine the pattern of increasing REI and science identity over time, the impact of youth development and agency, and potential implications for science in school and informal learning contexts.

  15. Stop, Collaborate, and Listen: Lessons Learned from Collaborating with a Houston Environmental Justice Organization

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Arellano, Y.; Phartiyal, P.

    2016-12-01

    Scientists are increasingly showing interest in conducting research at the community level, yet community groups often struggle with lack of access to scientific information. Collaborations between the two are mutually beneficial: scientists can include assessment of societal implications in their research, and community-specific scientific evidence can be used by local groups to inform public decisions that benefit community interests. Recognizing the need for and utility of such partnerships, the Center for Science and Democracy at the Union of Concerned Scientists, a science-based policy and advocacy organization, partnered with Texas Environmental Justice Advocacy Services (TEJAS), an environmental justice organization based in Manchester in Houston, to provide the technical support and resources needed to strengthen TEJAS' advocacy work. Working closely with TEJAS, we connected community members with local experts, developed educational products to inform community members about environmental health risks in their neighborhoods, published a report highlighting chemical safety issues in the community, and assisted in constructing a community survey to assess residents' health concerns. The products were created with the intention of raising the profile of these issues with local government and regional EPA officials. This talk will discuss the projects done in collaboration with TEJAS, as well as important lessons learned that offer insight into best practices for other organizations and technical experts to partner with community groups on local projects.

  16. Teaching Controversial Topics to Skeptical High School Students

    NASA Astrophysics Data System (ADS)

    Ford, K. S.

    2012-12-01

    Tennessee passes the "Monkey Bill" (HB 0368, SB 0893), North Carolina's state government passes a law to criminalize reference in state documents to scientific models that predict sea level rise to reach at least one meter by the next century, and public concern still lags far behind the scientific community's concern on climate change. The American public and even science teachers across the country seem to have lost faith in the ability of the scientific community to unify a strong message about several important scientific lessons, including global warming in particular. This lack of a unified message has weakened the ability of science teachers to effectively teach the lesson of global warming. For science teachers in strongly conservative areas of the country, it is much easier to omit difficult topics and avoid angering parents and school board members. Teachers who do feel strongly about scientifically proven, yet publically controversial topics CAN teach these topics in conservative areas by confirming students' belief systems by being honest and open about motivations surrounding both sides of controversial topics, and by using vocabulary that avoids triggering negative perceptions about these controversial topics. For true learning and change of preconceived opinion to take place, it is important for students to come to the understanding in their own minds in an open and safe learning environment instead of having the message "preached" to them, which only serves to make them feel unintelligent and defensive if they disagree. This presentation will include lessons learned from a practicing science teacher who works in a community that overwhelmingly disputes the validity of human impacts on climate change.

  17. The EarthConnections San Bernardino Alliance: Addressing Diversity in the Geosciences Using a Collective Impact Model

    NASA Astrophysics Data System (ADS)

    McGill, S. F.; Benthien, M. L.; Castillo, B. A.; Fitzsimmons, J.; Foutz, A.; Keck, D.; Manduca, C. A.; Noriega, G. R.; Pandya, R. E.; Taber, J. J.; Vargas, B.

    2017-12-01

    The EarthConnections San Bernardino Alliance is one of three regional alliances supported by the national EarthConnections Collective Impact Alliance, funded by a pilot grant from the National Science Foundation INCLUDES program. All three of the regional alliances share a common vision, focused on developing a diverse geoscience workforce through connecting existing programs and institutions into regional pathways that support and guide students from engagement at an early age with Earth science linked to issues facing the local community, through the many steps and transitions to geoscience-related careers. The San Bernardino Alliance began with collaboration between one university, one community college and one high school and also includes the Southern California Earthquake Center as well as professional geologists in the region. Based on discussions at an opening round table event, the Alliance has chosen to capitalize on existing geology student clubs and deeply engaged faculty and alumni at the founding high school, community college and university members of the Alliance to plan joint field trips, service learning projects, guest speakers, and visits to dinner meetings of the local professional societies for students at participating institutions at various stages along the pathway. The underlying motivation is to connect students to their peers and to mentors at institutions that represent the next step on the pathway, as well as to expose them to careers in geology and to geoscience issues that impact the local community. A second type of intervention we are planning is to promote high quality teaching in introductory Earth science courses at the university, community college and high school levels, including the development of high school honors courses in Earth science. To this end we are hosting an NAGT traveling workshop focused on using active learning and societally relevant issues to develop engaging introductory geoscience courses. This teaching workshop will also serve as an opportunity to expand our alliance to include additional educational institutions in the region. We are also planning interviews with local community leaders to identify geoscience issues of local importance that could become a focus for joint service learning projects for students at various stages along the pathway.

  18. Social learning within a community of practice: Investigating interactions about evaluation among zoo education professionals.

    PubMed

    Khalil, Kathayoon; Ardoin, Nicole M; Wojcik, Deborah

    2017-04-01

    The accessibility and ubiquity of zoos and aquariums-which reach over 700 million people worldwide annually-make them critical sites for science and environmental learning. Through educational offerings, these sites can generate excitement and curiosity about nature and motivate stewardship behavior, but only if their programs are high quality and meet the needs of their audiences. Evaluation is, therefore, critical: knowing what works, for whom, and under what conditions must be central to these organizations. Yet, many zoo and aquarium educators find evaluation to be daunting, and they are challenged to implement evaluations and/or use the findings iteratively in program development and improvement. This article examines how zoo education professionals engage with one another in a learning community related to evaluation. We use a communities of practice lens and social network analysis to understand the structure of this networked learning community, considering changes over time. Our findings suggest that individuals' roles in a networked learning community are influenced by factors such as communicative convenience and one's perceptions of others' evaluation expertise, which also contribute to forming and sustaining professional relationships. This study illuminates how project-based professional networks can become communities of practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Power of Large Scale Partnerships to Increase Climate Awareness and Literacy Around the World

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Andersen, T. J.; Wegner, K.

    2016-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international science and education program that connects a network of communities around the world and gives them the opportunity to participate in data collection and the scientific process, and contribute meaningfully to our understanding of the Earth system and global environment. In the last few years, there has been an infusion of energy in the program as a result of a change to a more community focus. GLOBE was one of the first attempts at a citizen science program at the K-12 level proposed on a global scale. An initial ramp-up of the program was followed by the establishment of a network of partners in countries and within the U.S. One hundred and seventeen countries have participated in the program since its establishment in 1994. These countries are divided into six regions: Africa (23 countries); Asia and Pacific (18); Europe and Eurasia (41); Latin America and Caribbean (20); Near East and North Africa (13); and North America (2). The community within these regions has reached a maturity level that allows it to organize its own science campaigns ranging from aerosols to phenology…all of which increase awareness of climate issues. In addition, some countries within the regions have established science fairs, GLOBE proved to be the impetus for these fairs. The program's partnership network provides students and teachers with a platform for learning about climate issues in their local and global environment, as well as providing scientists with a network to organize data collection and analysis campaigns. Within the U.S., over 130 educational organizations (universities, science museums, nature centers) are members of a partner network divided into six geographical areas: Northwest; Midwest; Northeast and Mid-Atlantic; Southeast; Southwest; and Pacific. For the first time ever, the U.S. held GLOBE science fairs with considerable input and support from the community, the U.S. Partner Forum members, and U.S. Country Coordinator. GLOBE students exhibited their research and learned about climate issues at these fairs. GLOBE has evolved in 20 years and its strength is the community of partners that has helped moved climate literacy forward on a global scale.

  20. The negotiation of meaning and exercise of power in professional learning communities: An investigation of middle school science teachers

    NASA Astrophysics Data System (ADS)

    Mclaughlin, Cheryl Althea

    A professional learning community (PLC) typically consists of practitioners who systematically examine and problematize their practice with the intention of development and improvement. The collaborative practices inherent in PLCs mirror the way scientists work together to develop new theories, and are particularly valuable for science teachers who could draw from these experiences to improve the quality of student learning. Gaps in the science education literature support the need for research to determine how interactions within PLCs support science teacher development. Additionally, issues of power that may constrain or encourage meaningful interactions are largely overlooked in PLC studies. This qualitative study examines, from a Foucauldian perspective, interactions within a PLC comprising middle school science teachers preparing to implement reform curriculum. Specifically, the study analyzes interactions within the PLC to determine opportunities created for professional learning and development. Audiotaped transcripts of teacher interactions were analyzed using discourse analysis building tasks designed to identify opportunities for learning and to examine the exercise of power within the PLCs. The discourse analytical tools integrated theories of Gee (2011) and Foucault (1972), and were used to deconstruct and interrogate the data. The events were subsequently reconstructed through the lens of social constructivism and Foucault theories on power. The findings identified several processes emerging from the interactions that contributed to the negotiation of an understanding of the reform curriculum. These include reflection on practice, reorganization of cognitive structures, reinvention of practice, and refinement of instructional strategies. The findings also indicated that the exercise of power by entities both external to, and within the PLCs influenced the process of meaning negotiation among the science teachers. The consensus achieved by the teachers reflected knowledge constructed by science education discourses external to the PLC, which regulated understandings emerging from the interactions. Additionally, some teachers, through their actions, exercised power in ways that hindered rather than enhanced constructive dialogue in PLCs. The exercise of power by external institutions was nevertheless necessary to set the stage for the series of actions, the outcome of which facilitated constructive dialogue among science teachers who were implementing the reform curriculum.

Top