NASA Astrophysics Data System (ADS)
Thompson, Jessica J.; Windschitl, Mark
Contemporary critiques of science education have noted that girls often fail to engage in science learning because the activities lack relevance for them, and they cannot "see themselves" in the work of science. Despite the empirical support for these claims, theory around the important connections between relevance, emerging self-identity, and engagement for girls remains underdeveloped. This qualitative, exploratory investigation examines engagement in science learning among five underachieving high school girls. Data sources include in-depth interviews, classroom observations, and teacher surveys. The girls were asked to describe engagement within three learning contexts: science class, a favorite class, and an extracurricular activity. From the girls' voices emerge three themes reflecting the centrality of self: "who I am," "who I am becoming," and "the importance of relationships." It is important that these themes of self and of identity negotiation are integrated with the ways these girls find learning personally relevant. One pattern of extracurricular engagement and two patterns of science engagement (integrated and situational) are described. This study attempts to expand the dialogue around the relationships between identity, relevance, and engagement among underachieving girls and suggests ways in which curriculum can be grounded in students' lives and developing identities.
Science Spots AR: A Platform for Science Learning Games with Augmented Reality
ERIC Educational Resources Information Center
Laine, Teemu H.; Nygren, Eeva; Dirin, Amir; Suk, Hae-Jung
2016-01-01
Lack of motivation and of real-world relevance have been identified as reasons for low interest in science among children. Game-based learning and storytelling are prominent methods for generating intrinsic motivation in learning. Real-world relevance requires connecting abstract scientific concepts with the real world. This can be done by…
Integration of Culturally Relevant Pedagogy into the Science Learning Progression Framework
ERIC Educational Resources Information Center
Bernardo, Cyntra
2017-01-01
This study integrated elements of culturally relevant pedagogy into a science learning progression framework, with the goal of enhancing teachers' cultural knowledge and thereby creating better teaching practices in an urban public high school science classroom. The study was conducted using teachers, an administrator, a science coach, and…
ERIC Educational Resources Information Center
Eick, Charles; Deutsch, Bill; Fuller, Jennifer; Scott, Fletcher
2008-01-01
Science teachers are always looking for ways to demonstrate the relevance of science to students. By connecting science learning to important societal issues, teachers can motivate students to both enjoy and engage in relevant science (Bennet, Lubben, and Hogarth 2007). To develop that connection, teachers can help students take an active role in…
Utilizing Shulman's Table of Learning to Understand Learning in Professional Health Science Programs
ERIC Educational Resources Information Center
Mortier, Teresa; Yatczak, Jayne
2016-01-01
Understanding student learning in health science professional programs is both timely and relevant and is the focus of this article. "The Table of Learning" by Lee Shulman (2002) provided a tool for an interdisciplinary reflection surrounding student learning in clinical laboratory science and occupational therapy. Utilizing the taxonomy…
ERIC Educational Resources Information Center
Ramirez, Olga; McCollough, Cherie A.; Diaz, Zulmaris
2016-01-01
The following describes a culturally relevant mathematics and science content program implemented by preservice teachers (PSTs) at Family Math/Science Learning Events (FM/SLEs) conducted through two different university programs in south Texas. These experiences are required course activities designed to inform PSTs of the importance of…
Campos, Fernando; Sola, Miguel; Santisteban-Espejo, Antonio; Ruyffelaert, Ariane; Campos-Sánchez, Antonio; Garzón, Ingrid; Carriel, Víctor; de Dios Luna-Del-Castillo, Juan; Martin-Piedra, Miguel Ángel; Alaminos, Miguel
2018-06-07
The students' conceptions of learning in postgraduate health science master studies are poorly understood. The aim of this study was to compare the factors influencing conceptions of learning in health sciences and non-health sciences students enrolled in postgraduate master programs in order to obtain information that may be useful for students and for future postgraduate programs. A modified version of the Learning Inventory Conception Questionnaire (COLI) was used to compare students' conception learning factors in 131 students at the beginning of their postgraduate studies in health sciences, experimental sciences, arts and humanities and social sciences. The present study demonstrates that a set of factors may influence conception of learning of health sciences postgraduate students, with learning as gaining information, remembering, using, and understanding information, awareness of duty and social commitment being the most relevant. For these students, learning as a personal change, a process not bound by time or place or even as acquisition of professional competences, are less relevant. According to our results, this profile is not affected by gender differences. Our results show that the overall conceptions of learning differ among students of health sciences and non-health sciences (experimental sciences, arts and humanities and social sciences) master postgraduate programs. These finding are potentially useful to foster the learning process of HS students, because if they are metacognitively aware of their own conception or learning, they will be much better equipped to self-regulate their learning behavior in a postgraduate master program in health sciences.
NASA Astrophysics Data System (ADS)
Kang, Jingoo; Keinonen, Tuula
2017-04-01
Since students have lost their interest in school science, several student-centered approaches, such as using topics that are relevant for students, inquiry-based learning, and discussion-based learning have been implemented to attract pupils into science. However, the effect of these approaches was usually measured in small-scale research, and thus, the large-scale evidence supporting student-centered approaches in general use is insufficient. Accordingly, this study aimed to investigate the effect of student-centered approaches on students' interest and achievement by analyzing a large-scale data set derived from Program for International Student Assessment (PISA) 2006, to add evidence for advocating these approaches in school science, and to generalize the effects on a large population. We used Finnish PISA 2006 data, which is the most recent data that measures science literacy and that contains relevant variables for the constructs of this study. As a consequence of the factor analyses, four teaching methods were grouped as student-centered approaches (relevant topic-based, open and guided inquiry-based, and discussion-based approaches in school science) from the Finnish PISA 2006 sample. The structural equation modeling result indicated that using topics relevant for students positively affected students' interest and achievement in science. Guided inquiry-based learning was also indicated as a strong positive predictor for students' achievement, and its effect was also positively associated with students' interest. On the other hand, open inquiry-based learning was indicated as a strong negative predictor for students' achievement, as was using discussion in school science. Implications and limitations of the study were discussed.
The Credentials of Brain-Based Learning
ERIC Educational Resources Information Center
Davis, Andrew
2004-01-01
This paper discusses the current fashion for brain-based learning, in which value-laden claims about learning are grounded in neurophysiology. It argues that brain science cannot have the authority about learning that some seek to give it. It goes on to discuss whether the claim that brain science is relevant to learning involves a category…
Cultural Memory Banking in Preservice Science Teacher Education
NASA Astrophysics Data System (ADS)
Handa, Vicente C.; Tippins, Deborah J.
2012-12-01
This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers and a science teacher educator/doctoral candidate formed a research team and documented community funds of knowledge relevant to science teaching and learning through their participation in a Community Immersion course. The study employed the use of the cultural memory banking as a meditational tool to analyze, make sense of, and represent interview, focus-group discussion, and observation data, among others, for the development of culturally relevant science lessons. Originally used as an anthropological tool to preserve cultural knowledge associated with the cultivation of indigenous plant varieties, the cultural memory banking, as adapted in science education, was used, both as a data collection and analytic tool, to locate relevant science at the intersection of community life. The research team developed a cultural memory bank exemplar, "Ginamos: The Stinky Smell that Sells," to highlight the learning experiences and meaning-making process of those involved in its development. Dilemmas and insights on the development and use of cultural memory banking were discussed with respect to issues of knowledge mining and mainstreaming of indigenous/local funds of knowledge, troubling the privileged position of Western-inspired nature of science.
ERIC Educational Resources Information Center
Frantz, Kyle
2007-01-01
Initiatives in education reform emphasize inquiry-based active learning and real-world relevance to increase science literacy nationwide. Active teaching and learning approaches yield rapid intellectual development and may increase interest and motivation to learn science. Incorporating the topic of drug use with neuroscience, biology, psychology,…
Science Education and Worldview
ERIC Educational Resources Information Center
Keane, Moyra
2008-01-01
Is there a place for Indigenous Knowledge in the science curriculum for a Zulu community in rural Kwa-Zulu Natal, South Africa? This article argues "yes," based on a participative research and development project that discovered relevant science learning in a Zulu community. Among community concerns for relevant factual and performative…
NASA Astrophysics Data System (ADS)
Salinas Barrios, Ivan Eduardo
I investigated linguistic patterns in middle school students' writing to understand their relevant embodied experiences for learning science. Embodied experiences are those limited by the perceptual and motor constraints of the human body. Recent research indicates student understanding of science needs embodied experiences. Recent emphases of science education researchers in the practices of science suggest that students' understanding of systems and their structure, scale, size, representations, and causality are crosscutting concepts that unify all scientific disciplinary areas. To discern the relationship between linguistic patterns and embodied experiences, I relied on Cognitive Linguistics, a field within cognitive sciences that pays attention to language organization and use assuming that language reflects the human cognitive system. Particularly, I investigated the embodied experiences that 268 middle school students learning about water brought to understanding: i) systems and system structure; ii) scale, size and representations; and iii) causality. Using content analysis, I explored students' language in search of patterns regarding linguistic phenomena described within cognitive linguistics: image schemas, conceptual metaphors, event schemas, semantical roles, and force-dynamics. I found several common embodied experiences organizing students' understanding of crosscutting concepts. Perception of boundaries and change in location and perception of spatial organization in the vertical axis are relevant embodied experiences for students' understanding of systems and system structure. Direct object manipulation and perception of size with and without locomotion are relevant for understanding scale, size and representations. Direct applications of force and consequential perception of movement or change in form are relevant for understanding of causality. I discuss implications of these findings for research and science teaching.
Culture Matters in Science Education
ERIC Educational Resources Information Center
Pang, Valerie Ooka; Lafferty, Karen Elizabeth; Pang, Jennifer M.; Griswold, Joan; Oser, Rick
2014-01-01
On the Saturday before Halloween, hundreds of students and their parents went from booth to booth participating in science activities at an annual Fall Festival and Learning Fair. The Fall Festival and Learning Fair is a valuable annual partnership where culturally relevant teaching engages each child in hands-on, standards-based science lessons.…
NASA Astrophysics Data System (ADS)
Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy
2017-12-01
In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards self-determining the sciences that are personally meaningful. Furthermore, tying sociocultural experiences with science learning helps generate sociopolitical awareness among students. We collected interview and observation data in an urban elementary classroom over one academic year to understand the value of urban students' sociocultural experiences in learning science and choosing science activities.
ERIC Educational Resources Information Center
Alozie, Nonye; Eklund, Jennifer; Rogat, Aaron; Krajcik, Joseph
2010-01-01
How can science instruction help students and teachers engage in relevant genetics content that stimulates learning and heightens curiosity? Project-based science can enhance learning and thinking in science classrooms. We describe how we use project-based science features as a framework for a genetics unit, discuss some of the challenges…
Science education and worldview
NASA Astrophysics Data System (ADS)
Keane, Moyra
2008-09-01
Is there a place for Indigenous Knowledge in the science curriculum for a Zulu community in rural Kwa-Zulu Natal, South Africa? This article argues "yes," based on a participative research and development project that discovered relevant science learning in a Zulu community. Among community concerns for relevant factual and performative knowledge, we found that culture and worldview are critical to community identity, to visioning educational outcomes, and to learning in school science. Cultural practices may contribute to pedagogy and curriculum; curriculum, in turn, may affirm cultural practices. Further, worldview needs to be understood as an aspect of knowledge creation. By understanding key aspects of an African worldview, science educators can contribute to both meaningful science education and community well-being. By fostering culture and worldview, a rural community can make a unique contribution to science education.
ERIC Educational Resources Information Center
Koedinger, Kenneth R.; Corbett, Albert T.; Perfetti, Charles
2012-01-01
Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of…
Internet-Based Science Learning: A Review of Journal Publications
ERIC Educational Resources Information Center
Lee, Silvia Wen-Yu; Tsai, Chin-Chung; Wu, Ying-Tien; Tsai, Meng-Jung; Liu, Tzu-Chien; Hwang, Fu-Kwun; Lai, Chih-Hung; Liang, Jyh-Chong; Wu, Huang-Ching; Chang, Chun-Yen
2011-01-01
Internet-based science learning has been advocated by many science educators for more than a decade. This review examines relevant research on this topic. Sixty-five papers are included in the review. The review consists of the following two major categories: (1) the role of demographics and learners' characteristics in Internet-based science…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Tsai, Chin-Chung; Chu, Hui-Chun; Kinshuk; Chen, Chieh-Yuan
2012-01-01
Fostering students' scientific inquiry competence has been recognised as being an important and challenging objective of science education. To strengthen the understanding of science theories or notations, researchers have suggested conducting some learning activities in the field via operating relevant devices. In a traditional infield scientific…
Game-Based Learning in Science Education: A Review of Relevant Research
ERIC Educational Resources Information Center
Li, Ming-Chaun; Tsai, Chin-Chung
2013-01-01
The purpose of this study is to review empirical research articles regarding game-based science learning (GBSL) published from 2000 to 2011. Thirty-one articles were identified through the Web of Science and SCOPUS databases. A qualitative content analysis technique was adopted to analyze the research purposes and designs, game design and…
From Aristotle to Today: Making the History and Nature of Science Relevant
ERIC Educational Resources Information Center
Sterling, Donna R.
2009-01-01
Students connect to science in multiple ways. For some students, learning how real people have developed and defended their scientific ideas makes science relevant and interesting. Tracking the changes in scientific thought over time can be fascinating for students as they see how scientists based their growing understanding on empirical data that…
Cognitive Science: Problem Solving And Learning For Physics Education
NASA Astrophysics Data System (ADS)
Ross, Brian H.
2007-11-01
Cognitive Science has focused on general principles of problem solving and learning that might be relevant for physics education research. This paper examines three selected issues that have relevance for the difficulty of transfer in problem solving domains: specialized systems of memory and reasoning, the importance of content in thinking, and a characterization of memory retrieval in problem solving. In addition, references to these issues are provided to allow the interested researcher entries to the literatures.
Sanchez, Christopher A
2012-02-01
Although previous research has demonstrated that performance on visuospatial assessments can be enhanced through relevant experience, an unaddressed question is whether such experience also produces a similar increase in target domains (such as science learning) where visuospatial abilities are directly relevant for performance. In the present study, participants completed either spatial or nonspatial training via interaction with video games and were then asked to read and learn about the geologic topic of plate tectonics. Results replicate the benefit of playing appropriate video games in enhancing visuospatial performance and demonstrate that this facilitation also manifests itself in learning science topics that are visuospatial in nature. This novel result suggests that visuospatial training not only can impact performance on measures of spatial functioning, but also can affect performance in content areas in which these abilities are utilized.
The Effect of Contextualized Conversational Feedback in a Complex Open-Ended Learning Environment
ERIC Educational Resources Information Center
Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam
2013-01-01
Betty's Brain is an open-ended learning environment in which students learn about science topics by teaching a virtual agent named Betty through the construction of a visual causal map that represents the relevant science phenomena. The task is complex, and success requires the use of metacognitive strategies that support knowledge acquisition,…
ERIC Educational Resources Information Center
Rodrigues, Susan
2006-01-01
This article describes a well-funded and well-equipped model of teacher professional development that encouraged the promotion of information-rich learning environments for learning science. A community of practice using face-to-face and electronic communication encouraged learning, and generated and ensured pedagogical change and innovation. The…
The Role of Cognitive Apprenticeship in Learning Science in a Virtual World
ERIC Educational Resources Information Center
Ramdass, Darshanand
2012-01-01
This article extends the discussion started by Margaret Beier, Leslie Miller, and Shu Wang's (2012) paper, "Science games and the development of possible selves". In this paper, I suggest that a theoretical framework based on a sociocultural theory of learning is critical in learning in a virtual environment. I will discuss relevant research on…
Towards Personalising Learning in School Science: Making This Learning More Relevant
ERIC Educational Resources Information Center
Prain, Vaughan; Waldrip, Bruce; Sbaglia, Rob; Lovejoy, Val
2017-01-01
In this paper, we report on a case study of how three teachers personalised learning in science through supporting a group of Year 8 students to engage in individual inquiry projects. The case study demonstrated how heavily transmissive teaching can be avoided by restructuring classes to optimise student group and individual work and timely…
Place-Based Science Teaching and Learning: 40 Activities for K-8 Classrooms
ERIC Educational Resources Information Center
Buxton, Cory A.; Provenzo, Eugene F., Jr.
2011-01-01
Grounded in theory and best-practices research, this practical text provides elementary and middle school teachers with 40 place-based activities that will help them to make science learning relevant to their students. This text provides teachers with both a rationale and a set of strategies and activities for teaching science in a local context…
Examining Curricular Integration Strategies To Optimize Learning Of The Anatomical Sciences
NASA Astrophysics Data System (ADS)
Lisk, Kristina Adriana Ayako
Background: Integration of basic and clinical science knowledge is essential to clinical practice. Although the importance of these two knowledge domains is well-recognized, successfully supporting the development of learners' integrated basic and clinical science knowledge, remains an educational challenge. In this dissertation, I examine curricular integration strategies to optimize learning of the anatomical sciences. Objectives: The studies were designed to achieve the following research aims: 1) to objectively identify clinically relevant content for an integrated musculoskeletal anatomy curriculum; 2) to examine the value of integrated anatomy and clinical science instruction compared to clinical science instruction alone on novices' diagnostic accuracy and diagnostic reasoning process; 3) to compare the effect of integrating and segregating anatomy and clinical science instruction along with a learning strategy (self-explanation) on novices' diagnostic accuracy. Methods: A modified Delphi was used to objectively select clinically relevant content for an integrated musculoskeletal anatomy curriculum. Two experimental studies were created to compare different instructional strategies to optimize learning of the curricular content. In both of these studies, novice learners were taught the clinical features of musculoskeletal pathologies using different learning approaches. Diagnostic performance was measured immediately after instruction and one-week later. Results: The results show that the Delphi method is an effective strategy to select clinically relevant content for integrated anatomy curricula. The findings also demonstrate that novices who were explicitly taught the clinical features of musculoskeletal diseases using causal basic science descriptions had superior diagnostic accuracy and a better understanding of the relative importance of key clinical features for disease categories. Conclusions: This research demonstrates how integration strategies can be applied at multiple levels of the curriculum. Further, this work shows the value of cognitive integration of anatomy and clinical science and it emphasizes the importance of purposefully linking the anatomical and clinical sciences in day-to-day teaching.
NASA Astrophysics Data System (ADS)
Stevens, Sally; Andrade, Rosi; Page, Melissa
2016-12-01
Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics (STEM) program, iSTEM, aimed at increasing engagement in STEM learning among Native American 3rd-8th grade students. A culturally relevant theoretical framework, Funds of Knowledge, informs the iSTEM program, a program based on the contention that the synergistic effect of a hybrid program combining two strategic approaches (1) in-school mentoring and (2) out-of-school informal science education experiences would foster engagement and interest in STEM learning. Students are paired with one of three types of mentors: Native American community members, university students, and STEM professionals. The iSTEM program is theme based with all program activities specifically relevant to Native people living in southern Arizona. Student mentees and mentors complete interactive flash STEM activities at lunch hour and attend approximately six field trips per year. Data from the iSTEM program indicate that the program has been successful in engaging Native American students in iSTEM as well as increasing their interest in STEM and their science beliefs.
ERIC Educational Resources Information Center
van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth
2015-01-01
This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students' perceptions of task relevance and self-efficacy. Given the under-representation of girls in science classrooms, special attention was given to…
Machine learning for science: state of the art and future prospects.
Mjolsness, E; DeCoste, D
2001-09-14
Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.
ERIC Educational Resources Information Center
Kim, Paul; Suh, Esther; Song, Donggil
2015-01-01
This exploratory study provides a deeper look into the aspects of students' experience from design-based learning (DBL) activities for fifth grade students. Using design-based research (DBR), this study was conducted on a series of science learning activities leveraging mobile phones with relevant applications and sensors. We observed 3 different…
ERIC Educational Resources Information Center
McCurdy, Susan M.; Zegwaard, Karsten E.; Dalgety, Jacinta
2013-01-01
Concept understanding, the development of analytical skills and a research mind set are explored through the use of academic tools common in a tertiary science education and relevant work-integrated learning (WIL) experiences. The use and development of the tools; laboratory book, technical report, and literature review are examined by way of…
ERIC Educational Resources Information Center
Ng, Wan; Nguyen, Van Thanh
2006-01-01
Making science relevant in students' learning is an important aspect of science education. This involves the ability to draw in examples from daily contexts to begin with the learning or to apply concepts learnt into familiar everyday phenomena that students observe and experience around them. Another important aspect of science education is the…
The role of cognitive apprenticeship in learning science in a virtual world
NASA Astrophysics Data System (ADS)
Ramdass, Darshanand
2012-12-01
This article extends the discussion started by Margaret Beier, Leslie Miller, and Shu Wang's (2012) paper, Science games and the development of possible selves. In this paper, I suggest that a theoretical framework based on a sociocultural theory of learning is critical in learning in a virtual environment. I will discuss relevant research on the application of various components of the sociocultural perspective of learning in classroom environments and the potential for applying them in virtual worlds. I propose that research in science education should explore the processes underlying cognitive apprenticeship and determine how these processes can be used in virtual environments to help students learn science successfully.
ERIC Educational Resources Information Center
Marshall, Jeff; Horton, Bob; Austin-Wade, Joyce
2007-01-01
When learning, students yearn for meaning, challenge, and relevance. Integrated learning fulfills these desires by limiting the compartmentalization of learning--providing a more coherent learning environment. Too often, mathematics and the physical sciences are taught as separate entities. Yet, many commonalities exist, especially between…
ERIC Educational Resources Information Center
Vavougios, Dionisios; Verevi, Alkistis; Papalexopoulos, Panagiotis F.; Verevi, Crystallia-Ioanna; Panagopoulou, Athanasia
2016-01-01
This article reviews 24 years of research focused on science education for students with learning and other disabilities. Our results are based on 53 articles from 2 relevant databases. We hereby present and discuss the results of the most popular topics investigated, which include: constructivism, exploratory learning, hands-on activities,…
Mars-Learning AN Open Access Educational Database
NASA Astrophysics Data System (ADS)
Kolankowski, S. M.; Fox, P. A.
2016-12-01
Schools across America have begun focusing more and more on science and technology, giving their students greater opportunities to learn about planetary science and engineering. With the development of rovers and advanced scientific instrumentation, we are learning about Mars' geologic history on a daily basis. These discoveries are crucial to our understanding of Earth and our solar system. By bringing these findings into the classroom, students can learn key concepts about Earth and Planetary sciences while focusing on a relevant current event. However, with an influx of readily accessible information, it is difficult for educators and students to find accurate and relevant material. Mars-Learning seeks to unify these discoveries and resources. This site will provide links to educational resources, software, and blogs with a focus on Mars. Activities will be grouped by grade for the middle and high school levels. Programs and software will be labeled, open access, free, or paid to ensure users have the proper tools to get the information they need. For new educators or those new to the subject, relevant blogs and pre-made lesson plans will be available so instructors can ensure their success. The expectation of Mars-Learning is to provide stress-free access to learning materials that falls within a wide range of curriculum. By providing a thorough and encompassing site, Mars-Learning hopes to further our understanding of the Red Planet and equip students with the knowledge and passion to continue this research.
A course designed for undergraduate biochemistry students to learn about cultural diversity issues.
Benore-Parsons, Marilee
2006-09-01
Biology, biochemistry, and other science students are well trained in science and familiar with how to conduct and evaluate scientific experiments. They are less aware of cultural issues or how these will impact their careers in research, education, or as professional health care workers. A course was developed for advanced undergraduate science majors to learn about diversity issues in a context that would be relevant to them, entitled "Diversity Issues in Health Care: Treatment and Research." Learning objectives included: developing awareness of current topics concerning diversity issues in health care; learning how research is carried out in health care, including pharmaceutical research, clinical trials, and social research; and learning about health care practices. Lectures and projects included readings on laboratory and clinical research, as well as literature on legal, race, gender, language, age, and income issues in health care research and clinical practice. Exams, papers, and a service learning project were used to determine the final course grade. Assessment indicated student understanding of diversity issues was improved, and the material was relevant. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
ERIC Educational Resources Information Center
Schwan, Stephan; Grajal, Alejandro; Lewalter, Doris
2014-01-01
Science museums, science centers, zoos, and aquariums (MCZAs) constitute major settings of science learning with unique characteristics of informal science education. Emphasis will be given to the analysis of four specific characteristics of MCZAs that seem relevant for educational research and practice, namely, conditions of mixed motives and…
Supporting pre-service science teachers in developing culturally relevant pedagogy
NASA Astrophysics Data System (ADS)
Krajeski, Stephen
This study employed a case study methodology to investigate a near-authentic intervention program designed to support the development of culturally relevant pedagogy and its impact on pre-service science teachers' notions of culturally relevant pedagogy. The unit of analysis for this study was the discourse of pre-service science teachers enrolled in a second semester science methods course, which was the site of the intervention program. Data for this study was collected from videos of classroom observations, audio recordings of personal interviews, and artifacts created by the pre-service science teachers during the class. To determine how effective science teacher certification programs are at supporting the development of culturally relevant pedagogy without an immersion aspect, two research questions were investigated: 1) How do pre-service science teachers view and design pedagogy while participating in an intervention designed to support the development of culturally relevant pedagogy? 2) How do pre-service science teachers view the importance of culturally relevant pedagogy for supporting student learning? How do their practices in the field change these initial views?
ERIC Educational Resources Information Center
Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy
2017-01-01
In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards…
NASA Astrophysics Data System (ADS)
Goldston, M. Jenice; Nichols, Sharon
2009-04-01
This study situated in a Southern resegregated Black middle school involved four Black teachers and two White science educators’ use of photonarratives to envision culturally relevant science pedagogy. Two questions guided the study: (1) What community referents are important for conceptualizing culturally relevant practices in Black science classrooms? and (2) How do teachers’ photonarratives serve to open conversations and notions of culturally relevant science practices? The research methodologically drew upon memory-work, Black feminism, critical theory, visual methodology, and narrative inquiry as “portraiture.” Issues of positionality and identity proved to be central to this work, as three luminaries portray Black teachers’ insights about supports and barriers to teaching and learning science. The community referents identified were associated with church and its oral traditions, inequities of the market place in meeting their basic human needs, and community spaces.
What Is "Agency"? Perspectives in Science Education Research
ERIC Educational Resources Information Center
Arnold, Jenny; Clarke, David John
2014-01-01
The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…
ERIC Educational Resources Information Center
Horak, Anne Karen
2013-01-01
The purpose of this study was to explore the impact of the Problem Based Learning (PBL) units developed by a large suburban school district in the mid-Atlantic for the middle school gifted science curriculum on: a) students' performance on standardized tests in middle school Science, as measured by a sample of relevant test questions from a…
ERIC Educational Resources Information Center
Zeleeva, Vera P.; Bykova, Svetlana S.; Varbanova, Silvia
2016-01-01
The relevance of the study is due to the importance of psychological and pedagogical support for students in university that would prevent difficulties in learning activities and increase adaptive capacity through the development of relevant personal traits. Therefore, this article is aimed at solving the problem of arranging psychological and…
ERIC Educational Resources Information Center
Stuckey, Marc; Eilks, Ingo
2014-01-01
This paper presents a study on tattooing as a topic for chemistry education. The selection of the topic was inspired by a newly suggested framework, which focuses on the question of relevance of science education. The aim of this case was to get evidence on how topics selected based on the suggested model of relevance of science education affect…
NASA Astrophysics Data System (ADS)
Pelch, Michael Anthony
STEM educational reform encourages a transition from instructor-centered passive learning classrooms to student-centered, active learning environments. Instructors adopting these changes incorporate research-validated teaching practices that improve student learning. Professional development that trains faculty to implement instructional reforms plays a key role in supporting this transition. Effective professional development features authentic, rigorous experiences of sufficient duration. We investigated changes in the teaching beliefs of college faculty resulting from their participation in InTeGrate project that guided them in the development of reformed instructional materials for introductory college science courses. A convergent parallel mixed methods design was employed using the Teacher Belief Interview, the Beliefs About Reformed Science Teaching and Learning survey and participants' reflections on their experience to characterize pedagogical beliefs at different stages of their professional development. Qualitative and quantitative data show a congruent change toward reformed pedagogical beliefs for the majority of participants. The majority of participants' TBI scores improved toward more student-centered pedagogical beliefs. Instructors who began with the most traditional pedagogical beliefs showed the greatest gains. Interview data and participants' reflections aligned with the characteristics of effective professional development. Merged results suggest that the most significant changes occurred in areas strongly influenced by situational classroom factors. Introductory geoscience courses play a crucial role in recruiting new geoscience majors but we know relatively little about how students' attitudes and motivations are impacted by their experiences in geoscience classes. Students' attitudes toward science and its relevance are complex and are dependent upon the context in which they encounter science. Recent investigations into the attitudes of geoscience students have provided evidence to support this observation. We sought to expand this data set to provide a broader characterization of students' attitudes. We examined students' attitudes about the nature of science and its relevance before and after taking an introductory geology course. To characterize students' attitudes, we employed two quantitative instruments: the revised Scientific Attitude Inventory and the Changes in Attitudes about the Relevance of Science survey. Results show a negative trend in students' attitudes about the nature of science while their attitudes about the relevance of science were more variable. Our data support the findings of previous studies showing only minimal change in students' attitudes about the nature of science and its relevance after taking an introductory science course. The data also highlighted several misconceptions about the nature of science that could have implications toward future investigations of how geoscience courses impact student attitudes about science. There is consensus among industrialized nations that it is important for its citizens and leaders to be scientifically literate. Therefore, it is important for the educational system to provide students with pertinent scientific knowledge, an understanding of the scientific processes, and the ability to evaluate scientific claims. Students' attitudes toward science and its relevance are important aspects of science literacy. We sought to determine if the repeated and explicit exposure to socioscientific issues through the use of InTeGrate course materials would result in positive changes to students' attitudes about the nature and relevance of science. We collected data on student attitudes using the revised Scientific Attitude Inventory and the Changes in Attitude about the Relevance of Science survey in a quasi-experimental design over four semesters of an introductory physical geology course. Results show that the emphasis of socioscientific issues can influence both students' attitudes about the nature of science and their perceptions on the relevance of science. Changes were observed in data from both STEM and non-STEM majors. These findings have implications about how we select content for introductory science courses in general, and proves the utility of designing geoscience lessons based around socioscientific issues.
NASA Astrophysics Data System (ADS)
Adjapong, Edmund S.
This dissertation explores the context of urban science education as it relates to the achievement and engagement of urban youth. This study provides a framework for Hip-Hop Pedagogy, an approach to teaching and learning anchored in the creative elements of Hip-Hop culture, in STEM as an innovative approach to teaching and learning demonstrates the effect that Hip-Hop Pedagogy, as a culturally relevant approach to teaching has on teaching and learning in an urban science classroom. This study establishes practical tools and approaches, which were formed from by theory and research that transcend the traditional monolithic approaches to teaching science. Participants in this study are middle school students who attend an urban school in one of the largest school systems in the country. This research showed that as result of utilizing Hip-Hop pedagogical practices, students reported that they developed a deeper understanding of science content, students were more likely to identify as scientists, and students were provided a space and opportunities to deconstruct traditional classroom spaces and structures.
Scaffolding scientific discussion using socially relevant representations in networked multimedia
NASA Astrophysics Data System (ADS)
Hoadley, Christopher M.
1999-11-01
How do students make use of social cues when learning on the computer? This work examines how students in a middle-school science course learned through on-line peer discussion. Cognitive accounts of collaboration stress interacting with ideas, while socially situated accounts stress the interpersonal context. The design of electronic environments allows investigation into the interrelation of cognitive and social dimensions. I use on-line peer discussion to investigate how socially relevant representations in interfaces can aid learning. First, I identify some of the variables that affect individual participation in on-line discussion, including interface features. Individual participation is predicted by student attitudes towards learning from peers. Second, I describe the range of group outcomes for these on-line discussions. There is a large effect of discussion group on learning outcomes which is not reducible to group composition or gross measures of group process. Third, I characterize how students (individually) construct understanding from these group discussions. Learning in the on-line discussions is shown to be a result of sustained interaction over time, not merely encountering or expressing ideas. Experimental manipulations in the types of social cues available to students suggest that many students do use socially relevant representations to support their understanding of multiple viewpoints and science reasoning. Personalizing scientific disputes can afford reflection on the nature of scientific discovery and advance. While there are many individual differences in how social representations are used by students in learning, overall learning benefits for certain social representations can be shown. This work has profound implications for design of collaborative instructional methods, equitable access to science learning, design of instructional technology, and understanding of learning and cognition in social settings.
"Think Bigger about Science": Using Twitter for Learning in the Middle Grades
ERIC Educational Resources Information Center
Becker, Ryan; Bishop, Penny
2016-01-01
This article examines the use of Twitter as a learning tool in a middle grades science classroom. Relevant research, the direct experience of the teacher leading this unique initiative, and the invaluable perspectives of his middle level students are included to inform interested stakeholders. Following a discussion of open versus closed digital…
Portable Technologies: Science Learning in Context. Innovations in Science Education and Technology.
ERIC Educational Resources Information Center
Tinker, Robert F., Ed.; Krajcik, Joseph S., Ed.
Education has traditionally studied the world by bringing it into the classroom. This method can result in situated learning that appears to students to have no relevance outside the classroom. Students acquire inert, decontextualized knowledge that they cannot apply to real problems. The obvious solution to this shortcoming is to reverse the…
Profiling Interest of Students in Science: Learning in School and Beyond
ERIC Educational Resources Information Center
Dierks, Pay O.; Höffler, Tim N.; Parchmann, Ilka
2014-01-01
Background: Interest is assumed to be relevant for students' learning processes. Many studies have investigated students' interest in science; most of them however have not offered differentiated insights into the structure and elements of this interest. Purpose: The aim of this study is to obtain a precise image of secondary school students'…
ERIC Educational Resources Information Center
Halpin, Myra J.; Hoeffler, Leanne; Schwartz-Bloom, Rochelle D.
2005-01-01
To help students learn science concepts, Pharmacology Education Partnership (PEP)--a science education program that incorporates relevant topics related to drugs and drug abuse into standard biology and chemistry curricula was developed. The interdisciplinary PEP curriculum provides six modules to teach biology and chemistry principles within the…
Math and science illiteracy: Social and economic impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, J.L.
1994-05-01
Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiatedmore » programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.« less
NASA Astrophysics Data System (ADS)
Elstad, Eyvind; Turmo, Are
2010-11-01
The purpose of this study is to explore students' self-regulation and teachers' influence in science and to examine interplay between ethnicity and gender. Analysis of data from seven Oslo schools (1112 sampled students in the first year of high school) shows that the ethnic minority students reported using learning strategies in science more intensively than ethnic majority students and they had a stronger motivation to learn science. Ethnic majority students are defined here as students who were born in Norway and have at least one parent born in Norway. The study also shows that minority students generally evaluate their science teacher's influence on their learning more positively than the majority. The strongest interplay effects between gender and ethnicity are found in students' perceptions of the relevance of science, as well as their degree of negative responses to the pressure to learn science.
What Scientists Say: Scientists' Views of Nature of Science and Relation to Science Context
ERIC Educational Resources Information Center
Schwartz, Renee; Lederman, Norman
2008-01-01
The purpose of this study is to examine practicing scientists' views of nature of science (NOS) and explore possible relationships between these views and science context. Science educators emphasize teaching NOS through inquiry-based learning experiences throughout science disciplines. Yet aspects of NOS that are agreed upon as relevant to…
How Science Fairs Foster Inquiry Skills and Enrich Learning
ERIC Educational Resources Information Center
Paul, Jürgen; Groß, Jorge
2017-01-01
Science competitions have continuing relevance for schools. The aim of the German youth science fair "Jugend forscht" is to encourage scientific thinking and inquiry methods such as experimentation. Three concrete examples of participating projects are given. We summarise the current state of research related to science competitions,…
Exploring Nature through a New Lens
ERIC Educational Resources Information Center
Deaton, Cynthia; Hardin, Catherine
2014-01-01
One way to encourage students to interact with science content and materials is to make science relevant and meaningful. By focusing on the school yard as the context for science lessons and activities, teachers can incorporate students' interest in learning outdoors and help students make connections between science content discussed in…
Reconceptualizing the Nature of Science for Science Education: Why Does it Matter?
ERIC Educational Resources Information Center
Dagher, Zoubeida R.; Erduran, Sibel
2016-01-01
Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school…
ERIC Educational Resources Information Center
Versprille, Ashley; Zabih, Adam; Holme, Thomas A.; McKenzie, Lallie; Mahaffy, Peter; Martin, Brian; Towns, Marcy
2017-01-01
Climate change is one of the most critical problems facing citizens today. Chemistry faculty are presented with the problem of making general chemistry content simultaneously relevant and interesting. Using climate science to teach chemistry allows faculty to help students learn chemistry content in a rich context. Concepts related to…
ERIC Educational Resources Information Center
Brotman, Jennie S.; Mensah, Felicia Moore; Lesko, Nancy
2010-01-01
Sexual health is a controversial science topic that has received little attention in the field of science education, despite its direct relevance to students' lives and communities. Moreover, research from other fields indicates that a great deal remains to be learned about how to make school learning about sexual health influence the real-life…
ERIC Educational Resources Information Center
Stevens, Sally; Andrade, Rosi; Page, Melissa
2016-01-01
Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics…
Designing for expansive science learning and identification across settings
NASA Astrophysics Data System (ADS)
Stromholt, Shelley; Bell, Philip
2017-10-01
In this study, we present a case for designing expansive science learning environments in relation to neoliberal instantiations of standards-based implementation projects in education. Using ethnographic and design-based research methods, we examine how the design of coordinated learning across settings can engage youth from non-dominant communities in scientific and engineering practices, resulting in learning experiences that are more relevant to youth and their communities. Analyses highlight: (a) transformative moments of identification for one fifth-grade student across school and non-school settings; (b) the disruption of societal, racial stereotypes on the capabilities of and expectations for marginalized youth; and (c) how youth recognized themselves as members of their community and agents of social change by engaging in personally consequential science investigations and learning.
NASA Astrophysics Data System (ADS)
Birmingham, Daniel; Smetana, Lara; Coleman, Elizabeth
2017-09-01
While a renewed national dialog promotes the importance of science education for future technological and economic viability, students must find science personally relevant to themselves and their communities if the goals set forth in recent reform movements are to be achieved. In this paper, we investigate how incorporating an ecological perspective to learning in teacher education, including opportunities to participate with science in connection to their everyday lives, influenced the ways in which elementary teacher candidates (TCs) envisioned learning and doing science and its potential role in their future classroom. We draw from data collected across three sections of a field-based elementary methods course focused on learning to teach science and social studies through inquiry. We argue that participating in an authentic interdisciplinary inquiry project impacted the ways in which TCs conceived of science, their identities as science learners and teachers and their commitments to bringing inquiry-based science instruction to their future classrooms. This paper addresses issues regarding access to quality science learning experiences in elementary classrooms through empowering TCs to build identities as science learners and teachers in order to impact conditions in their future classrooms.
ERIC Educational Resources Information Center
Rutledge, Michael L.; Mathis, Philip M.; Seipelt, Rebecca L.
2005-01-01
As students apply their knowledge of scientific concepts and of science as a method of inquiry, learning becomes relevant. This laboratory exercise is designed to foster students' understanding of the genetics of quantitative traits and of the nature of science as a method of inquiry by engaging them in a real-world business scenario. During the…
NASA Astrophysics Data System (ADS)
Ramalis, T. R.; Liliasari; Herdiwidjaya, D.
2016-08-01
The purpose this case study was to describe characteristic features learning activities in the domain of earth and space science. Context of this study is earth and space learning activities on three groups of student teachers prospective, respectively on the subject of the shape and size of Earth, land and sea breeze, and moon's orbit. The analysis is conducted qualitatively from activity data and analyze students doing project work, student worksheets, group project report documents, note and audio recordings of discussion. Research findings identified the type of abduction: theoretical models abduction, factual abduction, and law abduction during the learning process. Implications for science inquiry learning as well as relevant research were suggested.
ERIC Educational Resources Information Center
Adjapong, Edmund S.
2017-01-01
This dissertation explores the context of urban science education as it relates to the achievement and engagement of urban youth. This study provides a framework for Hip-Hop Pedagogy, an approach to teaching and learning anchored in the creative elements of Hip-Hop culture, in STEM as an innovative approach to teaching and learning demonstrates…
NASA Astrophysics Data System (ADS)
Eyles, C.; Symons, S. L.; Harvey, C. T.
2016-12-01
Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.
Cultural Memory Banking in Preservice Science Teacher Education
ERIC Educational Resources Information Center
Handa, Vicente C.; Tippins, Deborah J.
2012-01-01
This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers…
NASA Astrophysics Data System (ADS)
Jackson, Deborah C.; Johnson, Elizabeth D.
2013-09-01
The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.
An Investigation of the Effects of Authentic Science Experiences Among Urban High School Students
NASA Astrophysics Data System (ADS)
Chapman, Angela
Providing equitable learning opportunities for all students has been a persistent issue for some time. This is evident by the science achievement gap that still exists between male and female students as well as between White and many non-White student populations (NCES, 2007, 2009, 2009b) and an underrepresentation of female, African-American, Hispanic, and Native Americans in many science, technology, engineering, and mathematics (STEM) related careers (NCES, 2009b). In addition to gender and ethnicity, socioeconomic status and linguistic differences are also factors that can marginalize students in the science classroom. One factor attributed to the achievement gap and low participation in STEM career is equitable access to resources including textbooks, laboratory equipment, qualified science teachers, and type of instruction. Extensive literature supports authentic science as one way of improving science learning. However, the majority of students do not have access to this type of resource. Additionally, extensive literature posits that culturally relevant pedagogy is one way of improving education. This study examines students' participation in an authentic science experience and argues that this is one way of providing culturally relevant pedagogy in science classrooms. The purpose of this study was to better understand how marginalized students were affected by their participation in an authentic science experience, within the context of an algae biofuel project. Accordingly, an interpretivist approach was taken. Data were collected from pre/post surveys and tests, semi-structured interviews, student journals, and classroom observations. Data analysis used a mixed methods approach. The data from this study were analyzed to better understand whether students perceived the experience to be one of authentic science, as well as how students science identities, perceptions about who can do science, attitudes toward science, and learning of science practices were affected by participation in an authentic science experience. Findings indicated that participation in an authentic science experience has a positive effect on science identities, scientist perceptions, science attitudes, and learning of science and is one approach to mitigating the effects of marginalization in the science classroom. Additional findings indicated that a relationship between the authenticity of the experience and the outcomes (science identity, perceptions about who can do science, science attitudes, and learning of science). This study provides empirical evidence to support authentic science learning as a means of improving students' learning, attitudes, and identities with respect to science. This study endorses authentic science experiences for all students, marginalized included. This has implications for how we prepare future and support current science teachers. In addition, this study shows how this model can be used to effectively implement science, technology, engineering, and mathematics (STEM) education.
Koedinger, Kenneth R; Corbett, Albert T; Perfetti, Charles
2012-07-01
Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of high potential for generality, while explicitly identifying constraints of and opportunities for detailed analysis of the knowledge students may acquire in courses. Drawing on research across domains of science, math, and language learning, we illustrate the analyses of knowledge, learning, and instructional events that the KLI framework affords. We present a set of three coordinated taxonomies of knowledge, learning, and instruction. For example, we identify three broad classes of learning events (LEs): (a) memory and fluency processes, (b) induction and refinement processes, and (c) understanding and sense-making processes, and we show how these can lead to different knowledge changes and constraints on optimal instructional choices. Copyright © 2012 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Potter, Robert; Meisels, Gerry
2005-06-01
In a highly collaborative process we developed an introductory science course sequence to improve science literacy especially among future elementary and middle school education majors. The materials and course features were designed using the results of research on teaching and learning to provide a rigorous, relevant and engaging, standard based science experience. More than ten years of combined planning, development, implementation and assessment of this college science course sequence for nonmajors/future teachers has provided significant insights and success in achieving our goal. This paper describes the history and iterative nature of our ongoing improvements, changes in faculty instructional practice, strategies used to overcome student resistance, significant student learning outcomes, support structures for faculty, and the essential and informative role of assessment in improving the outcomes. Our experience with diverse institutions, students and faculty provides the basis for the lessons we have learned and should be of help to others involved in advancing science education.
The Way up, down under: Innovations Shape Learning at Science and Math School
ERIC Educational Resources Information Center
Bissaker, Kerry; Davies, Jim; Heath, Jayne
2011-01-01
Professor John Rice, a pioneer of the Australian Science and Mathematics School (ASMS), recognized that schools' curricula were at odds with the kind of science and mathematics driving the new economy. In addition to curriculum that lacked relevance to contemporary life, negative student attitudes and a shortage of qualified science and…
Science education through informal education
NASA Astrophysics Data System (ADS)
Kim, Mijung; Dopico, Eduardo
2016-06-01
To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.
Effects of Pre-reading Instructions on the Comprehension of Science Texts
NASA Astrophysics Data System (ADS)
Lyons, Yuna H.
This study examined how three different pre-reading (or relevance) instructions led to different learning outcomes for middle school students reading science texts on the topic of sweetness. The first was a generic instruction to read for understanding. The second prompted students to form a holistic explanation of the topic of sweetness, and the third instruction prompted students to focus on the core scientific principle of the relationship between structure and function. The latter two were specifically designed to align with science disciplinary goals. A comparison of the three treatments found that the generic instruction and the structure-function instruction led to better learning outcomes, measured by recall, short-answer performance questions, and a traditional multiple-choice/short-answer assessment. A qualitative analysis of the data also revealed some small yet notable differences in the recall pattern of students, such as an increased recall of key ideas for the structure-function instruction. This effect was seen predominantly for higher-skilled readers. The results suggest the possibility that relevance instructions targeting core ideas may help to orient students to the key ideas and explanations in scientific text, especially for higher-skilled readers, and indirectly highlights some of the challenges for students with less reading competencies. Overall, this study provides greater insight into how middle-school students read science texts, the effectiveness of instructor-provided relevance instructions in promoting (higher-level) comprehension of science texts, and implications for teachers on how to use texts in science instruction. Keywords: relevance instructions, pre-reading instructions, comprehension, science texts, middle school students, low- versus high-skilled readers.
A New Virtual and Remote Experimental Environment for Teaching and Learning Science
NASA Astrophysics Data System (ADS)
Lustigova, Zdena; Lustig, Frantisek
This paper describes how a scientifically exact and problem-solving-oriented remote and virtual science experimental environment might help to build a new strategy for science education. The main features are: the remote observations and control of real world phenomena, their processing and evaluation, verification of hypotheses combined with the development of critical thinking, supported by sophisticated relevant information search, classification and storing tools and collaborative environment, supporting argumentative writing and teamwork, public presentations and defense of achieved results, all either in real presence, in telepresence or in combination of both. Only then real understanding of generalized science laws and their consequences can be developed. This science learning and teaching environment (called ROL - Remote and Open Laboratory), has been developed and used by Charles University in Prague since 1996, offered to science students in both formal and informal learning, and also to science teachers within their professional development studies, since 2003.
On the necessity of U-shaped learning.
Carlucci, Lorenzo; Case, John
2013-01-01
A U-shaped curve in a cognitive-developmental trajectory refers to a three-step process: good performance followed by bad performance followed by good performance once again. U-shaped curves have been observed in a wide variety of cognitive-developmental and learning contexts. U-shaped learning seems to contradict the idea that learning is a monotonic, cumulative process and thus constitutes a challenge for competing theories of cognitive development and learning. U-shaped behavior in language learning (in particular in learning English past tense) has become a central topic in the Cognitive Science debate about learning models. Antagonist models (e.g., connectionism versus nativism) are often judged on their ability of modeling or accounting for U-shaped behavior. The prior literature is mostly occupied with explaining how U-shaped behavior occurs. Instead, we are interested in the necessity of this kind of apparently inefficient strategy. We present and discuss a body of results in the abstract mathematical setting of (extensions of) Gold-style computational learning theory addressing a mathematically precise version of the following question: Are there learning tasks that require U-shaped behavior? All notions considered are learning in the limit from positive data. We present results about the necessity of U-shaped learning in classical models of learning as well as in models with bounds on the memory of the learner. The pattern emerges that, for parameterized, cognitively relevant learning criteria, beyond very few initial parameter values, U-shapes are necessary for full learning power! We discuss the possible relevance of the above results for the Cognitive Science debate about learning models as well as directions for future research. Copyright © 2013 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Wilson, Kenesha; Copeland-Solas, Eddia; Guthrie-Dixon, Natalie
2016-01-01
Mind mapping was introduced as a culturally relevant pedagogy aimed at enhancing the teaching and learning experience in a general education, Environmental Science class for mostly Emirati English Language Learners (ELL). Anecdotal evidence suggests that the students are very artistic and visual and enjoy group-based activities. It was decided to…
Promoting interest and performance in high school science classes.
Hulleman, Chris S; Harackiewicz, Judith M
2009-12-04
We tested whether classroom activities that encourage students to connect course materials to their lives will increase student motivation and learning. We hypothesized that this effect will be stronger for students who have low expectations of success. In a randomized field experiment with high school students, we found that a relevance intervention, which encouraged students to make connections between their lives and what they were learning in their science courses, increased interest in science and course grades for students with low success expectations. The results have implications for the development of science curricula and theories of motivation.
Building Science-Relevant Literacy with Technical Writing in High School
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girill, T R
2006-06-02
By drawing on the in-class work of an on-going literacy outreach project, this paper explains how well-chosen technical writing activities can earn time in high-school science courses by enabling underperforming students (including ESL students) to learn science more effectively. We adapted basic research-based text-design and usability techniques into age-appropriate exercises and cases using the cognitive apprenticeship approach. This enabled high-school students, aided by explicit guidelines, to build their cognitive maturity, learn how to craft good instructions and descriptions, and apply those skills to better note taking and technical talks in their science classes.
ERIC Educational Resources Information Center
Brown, Julie C.
2017-01-01
Employing metasynthesis as a method, this study examined 52 empirical articles on culturally relevant and responsive science education in K-12 settings to determine the nature and scope of complementarity between culturally responsive and inquiry-based science practices (i.e., science and engineering practices identified in the National Research…
Tapping into the Resources on Our Doorstep
ERIC Educational Resources Information Center
Shaikh, Maha
2014-01-01
With the introduction of the new science curriculum in September 2014 in England, there is an even greater need to teach science that is real and relevant to the children. Bringing in support from external sources can give children hands-on science experiences with meaningful outcomes that will improve and enhance their learning. A wide-reaching…
Culturally Relevant Science Instruction of K-8 Teachers of American Indian Children
ERIC Educational Resources Information Center
Cloud, Karen L.
2017-01-01
American Indian/Alaska Native students are at the bottom of educational achievement, particularly in science where few American Indians enter into science, technology, engineering, and mathematics (STEM) careers. To meet the needs of American Indian students, teachers must understand the sociocultural nature of learning as it relates to students'…
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Phartiyal, P.; Mulvey, K.
2016-12-01
Federal government officials often rely on the research and advice of scientists to inform their decision making around climate change and other complex topics. Decision makers, however, are constrained by the time and accessibility needed to obtain and incorporate scientific information. At the same time, scientists have limited capacity and incentive to devote significant time to communicating their science to decision makers. The Union of Concerned Scientists has employed several strategies to produce policy-relevant scientific work and to facilitate engagement between scientists and decision makers across research areas. This talk will feature lessons learned and key strategies for science-informed decision making around climate change and other areas of the geosciences. Case studies will include conducting targeted sea level rise studies to inform rulemaking at federal agencies, bringing science to policy discussions on hydraulic fracturing, and leveraging the voice of the scientific community on specific policy proposals around climate change disclosure of companies. Recommendations and lessons learned for producing policy-relevant science and effectively communicating it with decision makers will be offered.
Integration of Culturally Relevant Pedagogy Into the Science Learning Progression Framework
NASA Astrophysics Data System (ADS)
Bernardo, Cyntra
This study integrated elements of culturally relevant pedagogy into a science learning progression framework, with the goal of enhancing teachers' cultural knowledge and thereby creating better teaching practices in an urban public high school science classroom. The study was conducted using teachers, an administrator, a science coach, and students involved in science courses in public high school. Through a qualitative intrinsic case study, data were collected and analyzed using traditional methods. Data from primary participants (educators) were analyzed through identification of big ideas, open coding, and themes. Through this process, patterns and emergent ideas were reported. Outcomes of this study demonstrated that educators lack knowledge about research-based academic frameworks and multicultural education strategies, but benefit through institutionally-based professional development. Students from diverse cultures responded positively to culturally-based instruction. Their progress was further manifested in better communication and discourse with their teacher and peers, and increased academic outcomes. This study has postulated and provided an exemplar for science teachers to expand and improve multicultural knowledge, ultimately transferring these skills to their pedagogical practice.
ERIC Educational Resources Information Center
DiLullo, Camille; Morris, Harry J.; Kriebel, Richard M.
2009-01-01
Understanding the relevance of basic science knowledge in the determination of patient assessment, diagnosis, and treatment is critical to good medical practice. One method often used to direct students in the fundamental process of integrating basic science and clinical information is problem-based learning (PBL). The faculty facilitated small…
ERIC Educational Resources Information Center
Quigley, Cassie; Trauth-Nare, Amy; Beeman-Cadwallader, Nicole
2015-01-01
The purpose of this paper is to describe the relevance of a qualitative methodology called portraiture for science education. Portraiture is a method of inquiry that blends art and science by combining the empirical aspects of inquiry with beauty and aesthetic properties. This method encompasses all aspects of a research study, including protocol,…
Learning Bridge: Curricular Integration of Didactic and Experiential Education
Arendt, Cassandra S.; Cawley, Pauline; Buhler, Amber V.; Elbarbry, Fawzy; Roberts, Sigrid C.
2010-01-01
Objectives To assess the impact of a program to integrate introductory pharmacy practice experiences with pharmaceutical science topics by promoting active learning, self-directed learning skills, and critical-thinking skills. Design The Learning Bridge, a curriculum program, was created to better integrate the material first-year (P1) students learned in pharmaceutical science courses into their introductory pharmacy practice experiences. Four Learning Bridge assignments required students to interact with their preceptors and answer questions relating to the pharmaceutical science material concurrently covered in their didactic courses. Assessment Surveys of students and preceptors were conducted to measure the effectiveness of the Learning Bridge process. Feedback indicated the Learning Bridge promoted students' interaction with their preceptors as well as development of active learning, self-directed learning, and critical-thinking skills. Students also indicated that the Learning Bridge assignments increased their learning, knowledge of drug information, and comprehension of relevant data in package inserts. Conclusion The Learning Bridge process integrated the didactic and experiential components of the curriculum, enhancing student learning in both areas, and offered students educational opportunities to interact more with their preceptors. PMID:20498741
Teaching the science of learning.
Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A
2018-01-01
The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.
Valid and Reliable Science Content Assessments for Science Teachers
NASA Astrophysics Data System (ADS)
Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn
2013-03-01
Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper describes multiple sources of validity and reliability (Cronbach's alpha greater than 0.8) evidence for physical, life, and earth/space science assessments—part of the Diagnostic Teacher Assessments of Mathematics and Science (DTAMS) project. Validity was strengthened by systematic synthesis of relevant documents, extensive use of external reviewers, and field tests with 900 teachers during assessment development process. Subsequent results from 4,400 teachers, analyzed with Rasch IRT modeling techniques, offer construct and concurrent validity evidence.
ERIC Educational Resources Information Center
Harper, Charlie
2017-01-01
An instructional coach argues that STEAM (science, technology, engineering, arts, and mathematics) programming combined with problem-based learning can offer rich academic experiences--and not just in science classrooms. He outlines relevant problem-based lesson ideas, and discusses ways school leaders can better support instructional practices…
NASA Astrophysics Data System (ADS)
Richardson, Anne E.
The urgent environmental issues of today require science-literate adults to engage in business and political decisions to create solutions. Despite the need, few adults have the knowledge and skills of science literacy. This doctoral dissertation is an analytical case study examining the science-learner identity development of Exploratorium Field Trip Explainers. Located in San Francisco, CA, the Exploratorium is a museum of science, art, and human perception dedicated to nurturing curiosity and exploration. Data collected included semi-structured interviews with sixteen former Field Trip Explainers, participant observation of the current Field Trip Explainer Program, and review of relevant documentation. Data analysis employed constant comparative analysis, guided by the communities of practice theoretical framework (Wenger, 1998) and the National Research Council's (2009) Six Strands of Science Learning. Findings of this research indicate that Exploratorium Field Trip Explainers participate in a community of practice made up of a diverse group of people that values curiosity and openness to multiple ways of learning. Many participants entered the Field Trip Explainer Program with an understanding of science learning as a rigid process reserved for a select group of people; through participation in the Field Trip Explainer community of practice, participants developed an understanding of science learning as accessible and a part of everyday life. The findings of this case study have implications for research, theory, and practice in informal adult science learning, access of non-dominant groups to science learning, and adult workplace learning in communities of practice.
Enhancing the Popularity and the Relevance of Science Teaching in Portuguese Science Classes
NASA Astrophysics Data System (ADS)
Galvão, Cecília; Reis, Pedro; Freire, Sofia; Almeida, Paulo
2011-11-01
PARSEL Project emerged from the urgent need to overcome the problem of lack of scientific literacy in the population, which should be a priority in a society where science occupies a central place. Indeed, nowadays for any citizen to participate in a responsible and informed way in society he has to be scientifically acknowledgeable. Nevertheless, not only are scientific levels low in the general population, but also there is an increasing number of students who avoid science and technology courses and related professions. Within this context, PARSEL aims at raising science and scientific courses' popularity and relevancy as well as at enacting teachers' professional development. In order to achieve these goals, the PARSEL group developed 54 pan-European modules, which were tested and evaluated by several teachers in several European countries and Israel. Teachers maintained a close relationship with the university, were highly encouraged to appropriate the modules and to adapt them to their local conditions and, also to discuss and share their experiences. In Portugal, modules were tested by a group of eight teachers, and their students. This paper presents data concerning teachers' evaluation. Data was collected by means of interviews, observation and written documents and reveals that teachers positively evaluated PARSEL's impact on their own professional development. Furthermore, they considered modules as well as the teaching-learning approach essential for making science learning relevant and popular for their students.
Learning with Web Tools, Simulations, and Other Technologies in Science Classrooms
NASA Astrophysics Data System (ADS)
Campbell, Todd; Wang, Shaing Kwei; Hsu, Hui-Yin; Duffy, Aaron M.; Wolf, Paul G.
2010-10-01
This position paper proposes the enhancement of teacher and student learning in science classrooms by tapping the enormous potential of information communication and technologies (ICTs) as cognitive tools for engaging students in scientific inquiry. This paper serves to challenge teacher-held assumptions about students learning science `from technology' with a framework and examples of students learning science `with technology'. Whereas a high percentage of students are finding their way in using ICTs outside of school, for the most part they currently are not doing so inside of school in ways that they find meaningful and relevant to their lives. Instead, the pedagogical approaches that are most often experienced are out-of-step with how students use ICTs outside of schools and are not supportive of learning framed by constructivism. Here we describe a theoretical and pedagogical foundation for better connecting the two worlds of students' lives: life in school and life outside of school. This position paper is in response to the changing landscape of students' lives. The position is transformative in nature because it proposes the use of cyber-enabled resources for cultivating and leveraging students new literacy skills by learning `with technology' to enhance science learning.
NASA Astrophysics Data System (ADS)
Gomes, Judith; Fleer, Marilyn
2017-07-01
There are a growing number of studies that have examined science learning for preschool children. Some research has looked into children's home experiences and some has focused on transition, practices, routines, and traditions in preschool contexts. However, little attention has been directed to the relationship between children's learning experiences at preschool and at home, and how this relationship can assist in the development of science concepts relevant to everyday life. In drawing upon Hedegaard's (Learning and child development, 2002) cultural-historical conception of motives and Vygotsky's (The collected works of L.S. Vygotsky: problems of general psychology, 1987) theory of everyday and scientific concept formation, the study reported in this paper examines one child, Jimmy (4.2 years), and his learning experiences at home and at preschool. Data gathering featured the video recording of 4 weeks of Jimmy's learning in play at home and at preschool (38.5 h), parent questionnaire and interviews, and researcher and family gathered video observations of home play with his parents (3.5 h). Findings show how a scientific motive develops through playful everyday learning moments at home and at preschool when scientific play narratives and resources are aligned. The study contributes to a more nuanced understanding of the science learning of young children and a conception of pedagogy that takes into account the reciprocity of home and school contexts for learning science.
NASA Astrophysics Data System (ADS)
Baron, Alex; Chen, Hsiao-Lan Sharon
2012-03-01
Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.
The Impact of an Interdisciplinary Space Program on Computer Science Student Learning
ERIC Educational Resources Information Center
Straub, Jeremy; Marsh, Ronald; Whalen, David
2015-01-01
Project-based learning and interdisciplinary projects present an opportunity for students to learn both technical skills and other skills which are relevant to their workplace success. This paper presents an assessment of the educational impact of the OpenOrbiter program, a student-run, interdisciplinary CubeSat (a type of small satellite with…
ERIC Educational Resources Information Center
Dionne, Suzanne
2012-01-01
Integrating art with literature and science enhances students' learning and retention. Whenever possible, the introduction of the author's art lessons include a relevant artist, such as Claude Monet. In this article, kindergartners paint a pond and learn how to make water lilies using colored tissue-paper squares. (Contains 4 resources.)
Collaborative online projects for English language learners in science
NASA Astrophysics Data System (ADS)
Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen
2013-12-01
This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.
Critical Debates in Teaching Research Methods in the Social Sciences
ERIC Educational Resources Information Center
Gunn, Andrew
2017-01-01
This paper explores some of the critical debates in social science research methods education and is set out in three parts. The first section introduces the importance and relevance of research methods to the social sciences. It then outlines the problems and challenges experienced in the teaching and learning of research methods, which are…
Scientizing and Cooking: Helping Middle-School Learners Develop Scientific Dispositions
ERIC Educational Resources Information Center
Clegg, Tamara; Kolodner, Janet
2014-01-01
We aim to understand how to help young people recognize the value of science in their lives and take initiative to see the world in scientific ways. Our approach has been to design "life-relevant" science-learning programs that engage middle-school learners in science through pursuit of personally meaningful goals. In this paper, we…
Wolves in the Wild: Using Current Issues to Make Science Relevant
ERIC Educational Resources Information Center
Post, Jennie; Sadler, Troy D.
2010-01-01
As teachers, one of our most important responsibilities is to help students develop dynamic and useful views of science. Using current issues to create learning experiences can help generate student interest in science and help students appreciate its significance in both personal and societal contexts. This article presents a lesson based on news…
Engaging in Science: A Feeling for the Discipline
ERIC Educational Resources Information Center
Jaber, Lama Z.; Hammer, David
2016-01-01
Most accounts of affect and motivation in the science education literature have discussed them as relevant to, but distinct from, disciplinary pursuits. These include Pintrich's seminal work on affective and motivational factors in learning science (P. R. Pintrich, 1999, 2003; P. R. Pintrich & E. De Groot, 1990; P. R. Pintrich, R. W. Marx,…
ERIC Educational Resources Information Center
Yager, Robert E.; Choi, AeRan; Yager, Stuart O.; Akcay, Hakan
2009-01-01
Fifteen 4th-, 5th-, and 6th-grade teachers from five school districts each taught two sections of science--one with a Science-Technology-Society (STS) approach and the other with a more traditional textbook approach in which basic science concepts were the major organizers. Local, current, and personally relevant issues provided the context and…
NASA Astrophysics Data System (ADS)
Ingram, Samantha Jones
The purpose of this study was to investigate the effects of the contextual learning method on science performance, attitudes toward science, and motivational factors that influence high school students to learn science. Gender differences in science performance and attitudes toward science were also investigated. The sample included four tenth-grade classes of African-American students enrolled in Chemistry I. All students were required to review for the Alabama High School Graduation Exam in Science. Students were administered a science pretest and posttest to measure science performance. A two-way analysis of covariance was performed on the test data. The results showed a main effect of contextual learning instruction on science achievement and no significant differences between females' and males' performance in science. The Science Attitude and the Alabama High School Graduation Exam (AHSGE) Review Class Surveys were administered to assess students' beliefs and attitudes toward science. The Science Attitude Survey results indicated a control effect in three subscales: perception of guardian's attitude, attitude toward success in science, and perception of teacher's attitude. No significant differences resulted between males and females in their beliefs about science from the attitude survey. However, students' attitudes toward science were more favorable in the contextual learning classes based on the results of the Review Class Survey. The survey data revealed that both males and females in the contextual classes had positive attitudes toward science and toward being active participants in the learning process. Qualitative data on student motivation were collected to examine the meaningfulness of the contextual learning content and materials. The majority of the students in the treatment (96%) and the control groups (86%) reported high interest in the lesson on Newton's three laws of motion. Both the treatment and the control groups indicated their interest ratings were a result of their prior experiences. This study shows that contextual learning instruction positively influences student motivation, interest, and achievement in science. Student achievement in science improved in the contextual learning classes as a result of increased interest due to learning that emphasized relevancy and purposeful meaning.
NASA Astrophysics Data System (ADS)
Jamil, Siti Zaheera Muhamad; Khairuddin, Raja Farhana Raja
2017-05-01
Graduates with good critical thinking and problem solving (CTPS) skills are likely to boost their employability to live in 21st century. The demands of graduates to be equipped with CTPS skills have shifted our education system in focusing on these elements in all levels of education, from primary, the secondary, and up to the tertiary education, by fostering interesting teaching and learning activities such as fieldwork activity in science classes. Despite the importance of the CTPS skills, little is known about whether students' interests in teaching and learning activities, such as fieldwork activity, have any influence on the students CTPS skills. Therefore, in this investigation, firstly to examine students interests in learning science through fieldwork activity. Secondly, this study examined whether the students' interest in learning science through fieldwork activity have affect on how the students employ CTPS skills. About 100 Diploma of Science students in Universiti Pendidikan Sultan Idris (UPSI) were randomly chosen to participate in this study. All of the participants completed a survey on how they find the fieldwork activity implemented in their science classes and it relevents towards their CTPS skills development. From our findings, majority of the students (91%) find that fieldwork activity is interesting and helpful in increasing their interest in learning science (learning factor) and accommodate their learning process (utility). Results suggest that students' interest on the fieldwork activity in science classes does have some influence on the students development of CTPS skills. The findings could be used as an initial guideline by incorporating students' interest on other teaching and learning activities that being implemented in science classes in order to know the impacts of these learning activities in enhancing their CTPS skills.
Perceptions versus Realities: Exploring Needs and Science Learning Outcomes In the Mississippi Delta
NASA Astrophysics Data System (ADS)
Fitts, Lacey S.
The Mississippi Delta (MS Delta) is a high-poverty region in northwestern Mississippi located between the Mississippi and Yazoo rivers. The Delta is home to sixteen rural counties with over seventy failing or underperforming schools. Many of these schools lack the resources necessary to ensure adequate opportunities for all students. Learning outcomes for the state are among the lowest in the nation, and scores in the rural Delta are far below the state average. Graduating seniors take the ACT college entrance exam, with about 10% of Mississippi seniors scoring as "college-ready" in science. The region has a critical shortage of science teachers, and many schools do not offer advanced science courses. This study assessed teachers' needs, identified key characteristics of the secondary science programs in which they teach, and sought to understand conditions affecting science learning outcomes. An inventory of science teachers' needs was administered to teachers in the region. The greatest needs were material resources, high quality training, and strategies for improving poor reading and problem-solving skills of students. Of the factors examined, the percentage of students receiving free lunch had the strongest correlation with science learning outcomes in the school, higher than access to resources, number of science courses offered, and level of self-reported teacher need. A three-tiered approach to improving science learning outcomes has been developed, emphasizing community relationships, targeted professional development, and relevant science curriculum.
NASA Astrophysics Data System (ADS)
Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn
2018-06-01
NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this presentation, learn how you can help contribute to the NASA’s Universe of Learning and take part in Science Briefings.
NASA Astrophysics Data System (ADS)
Darby-Hobbs, Linda
2013-02-01
There has been a recent push to reframe curriculum and pedagogy in ways that make school more meaningful and relevant to students' lives and perceived needs. This `relevance imperative' is evident in contemporary rhetoric surrounding quality education, and particularly in relation to the junior secondary years where student disengagement with schooling continues to abate. This paper explores how teachers translate this imperative into their mathematics and science teaching. Interview data and critical incidents from classroom practice are used to explore how six teachers attempted to make the subject matter meaningful for their students. Four `Categories of Meaning Making' emerged, highlighting key differences in how the nature of science and mathematics content constrained or enabled linkages between content and students' lifeworlds. While the teachers demonstrated a commitment to humanising the subject at some level, this analysis has shown that expecting teachers to make the curriculum relevant is not unproblematic because the meaning of relevance as a construct is complex, subject-specific, and embedded in understanding the human dimensions of learning, using, and identifying with, content. Through an examination of the construct of relevance and a humanistic turn in mathematics and science literature I argue for an expanded notion of relevance.
ERIC Educational Resources Information Center
Cherif, Abour H.; Verma, Sujata; Somervill, Christine
1998-01-01
Explains how to transfer a relevant written article into a learning activity involving active role play. Enables the development of critical thinking skills and helps to humanize science by highlighting its importance in everyday life. (DDR)
Mindful Learning: Why Attention Matters in Education
ERIC Educational Resources Information Center
Hassed, Craig
2016-01-01
Mindfulness is a generic skill with a wide range of applications relevant to education. These include fostering mental health; improving communication, empathy, and emotional development, improving physical health; and enhancing learning and performance. This article will give a brief overview of the science, practice, and philosophy of…
Interactive Taste Tests Enhance Student Learning
ERIC Educational Resources Information Center
Soh, Michael; Roth-Johnson, Elizabeth A.; Levis-Fitzgerald, Marc; Rowat, Amy
2015-01-01
If we could effectively engage students in general science curricula and lead them to recognize the everyday relevance of scientific concepts, we would significantly strengthen the understanding of science among our nation's future workforce. This article shows that increased levels of student cognition can be achieved through interactive taste…
Sex Differences in Science Learning: Closing the Gap through Animations
ERIC Educational Resources Information Center
Sanchez, Christopher A.; Wiley, Jennifer
2010-01-01
Males traditionally outperform females on measures of both visuospatial ability and science achievement. This experiment directly tests a manipulation designed to compensate for such differences through the presentation of relevant illustrations or animations to support the construction of understanding of a specific scientific phenomenon. Males…
Silencing of voices in a Swedish science classroom
NASA Astrophysics Data System (ADS)
Ramos de Robles, S. Lizette
2018-03-01
From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and learning of science. Next, I talk about the importance of taking into consideration the dialectic between agency and passivity as filters in order to understand what student silence may signify in science classes as well as in relation to their perceptions of assessment. I conclude with the importance of the teacher's role in developing formative assessment, along with the challenges in developing assessments which transform science education into a relevant field of knowledge for both students and society at large.
The perspectives and experiences of African American students in an informal science program
NASA Astrophysics Data System (ADS)
Bulls, Domonique L.
Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.
Collaborative learning in radiologic science education.
Yates, Jennifer L
2006-01-01
Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.
Game-Based Learning in Science Education: A Review of Relevant Research
NASA Astrophysics Data System (ADS)
Li, Ming-Chaun; Tsai, Chin-Chung
2013-12-01
The purpose of this study is to review empirical research articles regarding game-based science learning (GBSL) published from 2000 to 2011. Thirty-one articles were identified through the Web of Science and SCOPUS databases. A qualitative content analysis technique was adopted to analyze the research purposes and designs, game design and implementation, theoretical backgrounds and learning foci of these reviewed studies. The theories and models employed by these studies were classified into four theoretical foundations including cognitivism, constructivism, the socio-cultural perspective, and enactivism. The results indicate that cognitivism and constructivism were the major theoretical foundations employed by the GBSL researchers and that the socio-cultural perspective and enactivism are two emerging theoretical paradigms that have started to draw attention from GBSL researchers in recent years. The analysis of the learning foci showed that most of the digital games were utilized to promote scientific knowledge/concept learning, while less than one-third were implemented to facilitate the students' problem-solving skills. Only a few studies explored the GBSL outcomes from the aspects of scientific processes, affect, engagement, and socio-contextual learning. Suggestions are made to extend the current GBSL research to address the affective and socio-contextual aspects of science learning. The roles of digital games as tutor, tool, and tutee for science education are discussed, while the potentials of digital games to bridge science learning between real and virtual worlds, to promote collaborative problem-solving, to provide affective learning environments, and to facilitate science learning for younger students are also addressed.
Winstein, Carolee; Lewthwaite, Rebecca; Blanton, Sarah R.; Wolf, Lois B.; Wishart, Laurie
2016-01-01
This special interest article provides a historical framework with a contemporary case example that traces the infusion of the science of motor learning into neurorehabilitation practice. The revolution in neuroscience provided the first evidence for learning-dependent neuroplasticity and presaged the role of motor learning as critical for restorative therapies after stroke. The scientific underpinnings of motor learning have continued to evolve from a dominance of cognitive or information processing perspectives to a blend with neural science and contemporary social-cognitive psychological science. Furthermore, advances in the science of behavior change have contributed insights into influences on sustainable and generalizable gains in motor skills and associated behaviors, including physical activity and other recovery-promoting habits. For neurorehabilitation, these insights have tremendous relevance for the therapist–patient interactions and relationships. We describe a principle-based intervention for neurorehabilitation termed the Accelerated Skill Acquisition Program that we developed. This approach emphasizes integration from a broad set of scientific lines of inquiry including the contemporary fields of motor learning, neuroscience, and the psychological science of behavior change. Three overlapping essential elements—skill acquisition, impairment mitigation, and motivational enhancements—are integrated. PMID:24828523
NASA Astrophysics Data System (ADS)
Faria, Cláudia; Pereira, Gonçalo; Chagas, Isabel
2012-06-01
The activities presented in this paper are part of a wider project that investigates the effects of infusing the history of science in science teaching, toward students' learning and attitude. Focused on the work of D. Carlos de Bragança, King of Portugal from 1889 to 1908, and a pioneer oceanographer, the activities are addressed at the secondary Biology curriculum (grade 10, ages 15, 16). The proposed activities include a pre-visit orientation task, two workshops performed in a science museum and a follow-up learning task. In class, students have to analyse original historical excerpts of the king's work, in order to discuss and reflect about the nature of science. In the museum, students actively participate in two workshops: biological classification and specimen drawing. All students considered the project relevant for science learning, stating that it was important not only for knowledge acquisition but also for the understanding of the nature of science. As a final remark we stress the importance of creating activities informed by the history of science as a foundation for improving motivation, sustaining effective science teaching and meaningful science learning, and as a vehicle to promote a closer partnership between schools and science museums.
Optimizing biomedical science learning in a veterinary curriculum: a review.
Warren, Amy L; Donnon, Tyrone
2013-01-01
As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.
ERIC Educational Resources Information Center
Yu, Yuqing
2010-01-01
Socio-scientific issues have become increasingly important in Science-Technology-Society (STS) education as a means to make science learning more relevant to students' lives. This study used the e-waste issue as a context to investigate two aspects of socio-scientific decision-making: (1) the relationship between the nature of science (NOS)…
ERIC Educational Resources Information Center
Aidinopoulou, Vasiliki; Sampson, Demetrios G.
2017-01-01
The benefits of the flipped classroom (FC) model in students' learning are claimed in many recent studies. These benefits are typically accounted to the pedagogically efficient use of classroom time for engaging students in active learning. Although there are several relevant studies for the deployment of the FC model in Science, Technology,…
Vets and Videos: Student Learning from Context-Based Assessment in a Pre-Clinical Science Course
ERIC Educational Resources Information Center
Seddon, Jennifer
2008-01-01
To increase the perceived relevance of pre-clinical science courses to undergraduates, a context-based assessment item was introduced to a genetics course that occurs early within a five-year veterinary science programme. The aim was to make a direct link between genetic concepts and the future clinical profession of the students. In the…
ERIC Educational Resources Information Center
Salloum, Sara
2017-01-01
This conceptual paper aims to characterize science teachers' practical knowledge utilizing a virtue-based theory of knowledge and the Aristotelian notion of phronesis/practical wisdom. The article argues that a greater understanding of the concept of phronesis and its relevance to science education would enrich our understandings of teacher…
ERIC Educational Resources Information Center
Lopes, J. Bernardino; Costa, Nilza
2007-01-01
Modelling is an inherent process for the construction and use of science concepts that mobilize diverse specific competences. The aims of this work are to put forward a means of evaluating modelling competences that is relevant for physics teaching and science education research and to identify the potentials and constraints in the development of…
ERIC Educational Resources Information Center
Fleer, Marilyn; Adams, Megan; Gunstone, Richard; Hao, Yijun
2016-01-01
It has been reported that in cross-cultural contexts, Western science content is often not used in everyday practice, and the learning of science is often viewed as difficult and having no social meaning (e.g., Aikenhead & Michell, 2011). It is suggested that the cultural relevance of everyday family practices and Western constructions of…
What Makes Science Relevant?: Student Perceptions of Multimedia Case Learning in Ecology and Health
ERIC Educational Resources Information Center
Wolter, Bjorn H. K.; Lundeberg, Mary A.; Bergland, Mark
2013-01-01
The perception of science as boring is a major issue for teachers at all instructional levels. Tertiary classes especially suffer from a reputation for being dry, instructor-centered, and irrelevant to the lives of students. However, previous research has shown that science can be interesting to students if it is presented in such a manner as to…
Reflection Fosters Deep Learning: The 'Reflection Page & Relevant to You' Intervention
ERIC Educational Resources Information Center
Young, Mark R.
2018-01-01
Cognitive science indicates that the millennial generation's behavior of instant messaging and multitasking may provide inadequate cognitive capabilities for thoughtful processing of experiences that lead to deep learning. This study describes a teaching innovation that explicitly stimulates reflection and critical self-assessment, along with…
Using the GLOBE Program To Enhance Classroom Teaching.
ERIC Educational Resources Information Center
Ramey, Linda K.; Tomlin, James
The Wright State University Global Learning and Observations to Benefit the Environment (GLOBE) Franchise has developed a project to fill the need for direct, strong connections linking science, mathematics and technology to classroom curriculum and students' learning of integrated, relevant content. GLOBE is an international project that involves…
Transdisciplinary Learning and Teaching as Answers to Urban Sustainability Challenges
ERIC Educational Resources Information Center
Biberhofer, Petra; Rammel, Christian
2017-01-01
Purpose: This paper aims to explain the relevance of science-society interfaces and their potential for higher education institutions to engage stakeholders in supporting sustainable change in cities, via the transdisciplinary learning and teaching approach of the Regional Centre of Expertise on Education for Sustainable Development Vienna.…
Super Mileage Challenge: Combining Education and Fun!
ERIC Educational Resources Information Center
Thompson, Jim; Fitzgerald, Mike
2006-01-01
Beginning in 1996, key leaders in Indiana business, education, and industry, along with the Department of Education and the Indiana Math Science Technology Education Alliance recognized that creating an event that would showcase true integration of mathematics, science, and technology could make learning more relevant to the lives of students. The…
A Feminist Standpoint for Library and Information Science Education.
ERIC Educational Resources Information Center
Hannigan, Jane Anne
1994-01-01
Uses a feminist standpoint to correct inaccurate scholarship in curricula, pedagogy, and research in library and information science. Topics include feminist philosophy and its relevance to curricula revision, specific curricula changes, the significance of women's ways of learning to pedagogy, research needs and the role of subjectivity in…
Myerholtz, Linda; Schirmer, Julie; Carling, Mary Anne
2015-01-01
Beginning behavioral science faculty, who are critical residency program contributors, face significant immediate challenges that often diminish their effectiveness and increase the time it takes to translate and reformat their expertise into relevant and meaningful educational presentations. Residency program culture and competency-based learning are quite different from the educational objectives and teaching environments found in most behavioral health training programs. The goal of this article is to provide beginning behavior science faculty, who are typically on their own and learning on the job, with a guide to the core educational perspectives and skills required as well as key resources that are available to them. Since a significant portion of behavioral science faculty's teaching time revolves around small and large group presentations, our guide focuses on how to incorporate key strategies and resources into relevant, evidenced-based and, most importantly, effective behavioral health presentations for the program's resident physicians. Specifically, our recommendations include selection of content, methods of content organization, techniques for actively engaging resident physicians in discussing the significance of the topics, and descriptions of numerous Internet resources for the primary mental health topics that concern family medicine trainees. Finally, it is emphasized that the relevant and effective use of these recommendations is dependent upon the behavioral science faculty educator's first understanding and appreciating how physicians' think, speak, and prioritize information while caring for their patients. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Dong, Shaochun; Xu, Shijin; Lu, Xiancai
2009-06-01
Educators around the world are striving to make science more accessible and relevant to students. Online instructional resources have become an integral component of tertiary science education and will continue to grow in influence and importance over the coming decades. A case study in the iterative improvement of the online instructional resources provided for first-year undergraduates taking " Introductory Earth System Science" at Nanjing University in China is presented in this paper. Online instructional resources are used to conduct a student-centered learning model in the domain of Earth system science, resulting in a sustainable online instructional framework for students and instructors. The purpose of our practice is to make Earth system science education more accessible and exciting to students, changing instruction from a largely textbook-based teacher-centered approach to a more interactive and student-centered approach, and promoting the integration of knowledge and development of deep understanding by students. Evaluation on learning performance and learning satisfaction is conducted to identify helpful components and perception based on students' learning activities. The feedbacks indicate that the use of online instructional resources has positive impacts on mitigating Earth system science education challenges, and has the potential to promote deep learning.
The Priority of the Question: Focus Questions for Sustained Reasoning in Science
NASA Astrophysics Data System (ADS)
Lustick, David
2010-08-01
Science education standards place a high priority on promoting the skills and dispositions associated with inquiry at all levels of learning. Yet, the questions teachers employ to foster sustained reasoning are most likely borrowed from a textbook, lab manual, or worksheet. Such generic questions generated for a mass audience, lack authenticity and contextual cues that allow learners to immediately appreciate a question’s relevance. Teacher queries intended to motivate, guide, and foster learning through inquiry are known as focus questions. This theoretical article draws upon science education research to present a typology and conceptual framework intended to support science teacher educators as they identify, develop, and evaluate focus questions with their students.
NASA Astrophysics Data System (ADS)
Obrentz, Shari B.
As the number of college students studying science continues to grow, it is important to identify variables that predict their success. The literature indicates that motivation and learning strategy use facilitate science success. Research findings show these variables can change throughout a semester and differ by performance level, gender and ethnicity. However, significant predictors of performance vary by research study and by group. The current study looks beyond the traditional predictors of grade point averages, SAT scores and completion of advanced placement (AP) chemistry to consider a comprehensive set of variables not previously investigated within the same study. Research questions address the predictive ability of motivation constructs and learning strategies for success in introductory college chemistry, how these variables change throughout a semester, and how they differ by performance level, gender and ethnicity. Participants were 413 introductory college chemistry students at a highly selective university in the southeast. Participants completed the Chemistry Motivation Questionnaire (CMQ) and Learning Strategies section of the Motivated Strategies for Learning Questionnaire (MSLQ) three times during the semester. Self-efficacy, effort regulation, assessment anxiety and previous achievement were significant predictors of chemistry course success. Levels of motivation changed with significant decreases in self-efficacy and increases in personal relevance and assessment anxiety. Learning strategy use changed with significant increases in elaboration, critical thinking, metacognitive self-regulation skills and peer learning, and significant decreases in time and study management and effort regulation. High course performers reported the highest levels of motivation and learning strategy use. Females reported lower intrinsic motivation, personal relevance, self-efficacy and critical thinking, and higher assessment anxiety, rehearsal and organization. Self-efficacy predicted performance for males and females, while self-determination, help-seeking and time and study environment also predicted female success. Few differences in these variables were found between ethnicity groups. Self-efficacy positively predicted performance for Asians and Whites, and metacognitive self-regulation skills negatively predicted success for Other students. The results have implications for college science instructors who are encouraged to collect and utilize data on students' motivation and learning strategy use, promote both in science classes, and design interventions for specific students who need more support.
Dadich, Ann
2014-05-01
Workplace learning in continuing interprofessional education (CIPE) can be difficult to facilitate and evaluate, which can create a number of challenges for this type of learning. This article presents an innovative method to foster and investigate workplace learning in CIPE - citizen social science. Citizen social science involves clinicians as co-researchers in the systematic examination of social phenomena. When facilitated by an open-source online social networking platform, clinicians can participate via computer, smartphone, or tablet in ways that suit their needs and preferences. Furthermore, as co-researchers they can help to reveal the dynamic interplay that facilitates workplace learning in CIPE. Although yet to be tested, citizen social science offers four potential benefits: it recognises and accommodates the complexity of workplace learning in CIPE; it has the capacity to both foster and evaluate the phenomena; it can be used in situ, capturing and having direct relevance to the complexity of the workplace; and by advancing both theoretical and methodological debates on CIPE, it may reveal opportunities to improve and sustain workplace learning. By describing an example situated in the youth health sector, this article demonstrates how these benefits might be realised.
The relationship of science teachers' beliefs and practices
NASA Astrophysics Data System (ADS)
Varrella, Gary Frank
1997-10-01
The relationships between constructivist and Science-Technology-Society (STS) teaching practices and teachers beliefs are the focus of this dissertation. This study is founded on the premise that individual teacher's beliefs are strong indicators of their instructional choices and teaching habits. The basic research premise is: the more complete and complex the individuals' belief structure about constructivist and STS teaching, the more expert and consistent the teacher is in the complementary constructivist teaching practices. This triangulation study used quantitative and qualitative methods. Three instruments were used: the Science Classroom Observation Rubric and Teaching Practices Assessment Inventory, from the Expert Science Teacher Educational Evaluation Model (ESTEEM), and the Science Teacher Beliefs About the Learning Environment Rubric (developed by the author). The results yielded significant multiple regression analysis regarding the relationships between beliefs and practices in constructivist/STS science teaching not documented elsewhere. Statistically significant factors contributing to expertise included the value teachers placed on their students as individuals whose ideas and contributions to the class are important, teachers' commitment to work as partners with students in the learning environment, and the importance of context, i.e., instruction which is personally relevant and meaningful. No differences were found related to gender or total years of teaching experience. A cross-case methodology was used to explore data from open-ended interviews and for examination of teachers' written comments regarding their interactions with students in the learning environment. Expertise was also shown to be linked to teachers with a commitment to life-long learning and to years of participation/leadership by teachers in state and national reform movements. Qualitative data corroborated these findings, providing a rich and authentic background to the correlational results and analysis of key demographics. Most noteworthy were teachers' comments regarding partnerships with their students and the importance of instructional relevancy.
Fostering Adolescents' Value Beliefs for Mathematics with a Relevance Intervention in the Classroom
ERIC Educational Resources Information Center
Gaspard, Hanna; Dicke, Anna-Lena; Flunger, Barbara; Brisson, Brigitte Maria; Häfner, Isabelle; Nagengast, Benjamin; Trautwein, Ulrich
2015-01-01
Interventions targeting students' perceived relevance of the learning content have been shown to effectively promote student motivation within science classes (e.g., Hulleman & Harackiewicz, 2009). Yet, further research is warranted to understand better how such interventions should be designed in order to be successfully implemented in the…
Translating Knowledge: The role of Shared Learning in Bridging the Science-Application Divide
NASA Astrophysics Data System (ADS)
Moench, M.
2014-12-01
As the organizers of this session state: "Understanding and managing our future relation with the Earth requires research and knowledge spanning diverse fields, and integrated, societally-relevant science that is geared toward solutions." In most cases, however, integration is weak and scientific outputs do not match decision maker requirements. As a result, while scientific results may be highly relevant to society that relevance is operationally far from clear. This paper explores the use of shared learning processes to bridge the gap between the evolving body of scientific information on climate change and its relevance for resilience planning in cities across Asia. Examples related to understanding uncertainty, the evolution of scientific knowledge from different sources, and data extraction and presentation are given using experiences generated over five years of work as part of the Rockefeller Foundation supported Asian Cities Climate Change Resilience Network and other programs. Results suggest that processes supporting effective translation of knowledge between different sources and different applications are essential for the identification of solutions that respond to the dynamics and uncertainties inherent in global change processes.
Embedding Analogical Reasoning into 5E Learning Model: A Study of the Solar System
ERIC Educational Resources Information Center
Devecioglu-Kaymakci, Yasemin
2016-01-01
The purpose of this study was to investigate how the 5E learning model affects learning about the Solar System when an analogical model is utilized in teaching. The data were gathered in an urban middle school 7th grade science course while teaching relevant astronomy topics. The analogical model developed by the researchers was administered to 20…
ERIC Educational Resources Information Center
Jacobs, Cecelia; Smiley-Marquez, Carolyna
People generally learn best when information is presented to them in a culturally and socially relevant context or framework. This issue is addressed by the Science of Alcohol Curriculum for American Indians through the use of the Medicine Circle, a model that represents the concepts of wholeness, interconnectedness, and balance in a manner…
NASA Astrophysics Data System (ADS)
Albrecht, Nancy Jean
The gap between a student's home culture and that of classroom science may create challenges for students and families, especially those from recent immigrant cultures, including refugees. As a result, science learning in schools may require a form of cultural border crossing between home cultures and the culture of classroom science. Given this, as educators, how do we make these borders more porous for better science learning experiences? Using the frameworks of funds of knowledge, culturally relevant pedagogy, and socio-constructivism, this study focuses on the perspectives of Somali-American elders and parents about school science. Designed as an in-depth interview study, five purposefully selected participants were interviewed over a period of two years. The guiding questions for the study included: 1) What are the perceptions of Somali elders about school science? and 2) How do Somali elders believe science teaching and learning can facilitate Somali students' engagement in science?. Analysis of the interview data revealed that Somali-American adults have complicated perceptions of school science that include both conflicts and acceptance with current pedagogy and content. For example, science education was highly valued by both individuals and the Somali community, both as a way for individuals to attain economic prosperity and respect, but also as a way to lift up the Somali diaspora, both here and in their native homeland. On the other hand, science was also viewed as an abstract discipline with little connection to students' and families' everyday home lives. Moreover, due to the intrinsic role that Islam plays in traditional and contemporary Somali culture, several areas of science education, including geology, evolution and sex education, were viewed as problematic and unresolvable. Various potential areas of funds of knowledge and culturally relevant pedagogy were discussed including nutrition, food preparation and storage, health education, and vaccinations. The study discusses several implications for science teachers of Somali-American students including the need to be aware of the intrinsic relationship between Islam, as practiced by Somali-Americans, and everyday practices, including the possibility of cultural violence resulting from the conflicts between science teaching as practiced in the United States, and Somali-American students' beliefs. The study also discusses changes in pedagogy that are experienced by Somali-American families and students, and suggests ways to mitigate these differences. Finally, the study provides suggestions for the roles of science teachers, both in everyday teaching and learning and in their professional development practices, to make science more meaningful, accessible and engaging to Somali-American students and their families.
Teaching Chemistry at Indira Gandhi National Open University
ERIC Educational Resources Information Center
Fozdar, Bharat I.; Kumar, Lalita S.
2006-01-01
The Open Distance Learning (ODL) concept is fast becoming popular all over the world and it has a lot of relevance for a highly populated country like India. However, the most important aspect of this type of teaching-learning process is establishment of the credibility especially when the laboratory based science programmes are delivered from…
Counter-Mapping the Neighborhood on Bicycles: Mobilizing Youth to Reimagine the City
ERIC Educational Resources Information Center
Taylor, Katie Headrick; Hall, Rogers
2013-01-01
Personal mobility is a mundane characteristic of daily life. However, mobility is rarely considered an opportunity for learning in the learning sciences, and is almost never leveraged as relevant, experiential material for teaching. This article describes a social design experiment for spatial justice that focused on changes in the personal…
Real Integration--Where the Rubber Meets the Road
ERIC Educational Resources Information Center
Moye, Johnny J.
2011-01-01
Integration of core academics into career and technical education (CTE) is not new. Putting core academics into context, CTE courses provide an excellent platform for students to learn the relevance of science, technology, engineering, and mathematics (STEM) as well as literature, arts, and social studies. Students learn to use this information by…
Feet Wet, Hands Dirty: Engaging Students in Science Teaching and Learning with Stream Investigations
ERIC Educational Resources Information Center
Haines, Sarah
2016-01-01
Stream investigation and restoration projects offer unique experiential opportunities to engage students in outdoor learning experiences that are relevant to the communities in which they live. These experiences promote an understanding of watershed issues and establish positive attitudes and behaviors that benefit local watersheds and help to…
USDA-ARS?s Scientific Manuscript database
Considerable research provides evidence for the value of teaching science using enhanced context strategies. These strategies include making learning relevant to students by using real-world examples and problems as well as taking students out of the classroom to learn about the topic. Unfortunately...
Hydrostatic Pressure Project: Linked-Class Problem-Based Learning in Engineering
ERIC Educational Resources Information Center
Davis, Freddie J.; Lockwood-Cooke, Pamela; Hunt, Emily M.
2011-01-01
Over the last few years, WTAMU Mathematics, Engineering and Science faculty has used interdisciplinary projects as the basis for implementation of a linked-class approach to Problem-Based Learning (PBL). A project that has significant relevance to engineering statics, fluid mechanics, and calculus is the Hydrostatic Pressure Project. This project…
Teacher and Student Reflections on ICT-Rich Science Inquiry
ERIC Educational Resources Information Center
Williams, P. John; Otrel-Cass, Kathrin
2017-01-01
Background: Inquiry learning in science provides authentic and relevant contexts in which students can create knowledge to solve problems, make decisions and find solutions to issues in today's world. The use of electronic networks can facilitate this interaction, dialogue and sharing, and adds a new dimension to classroom pedagogy. Purpose: This…
Engaging Life-Sciences Students with Mathematical Models: Does Authenticity Help?
ERIC Educational Resources Information Center
Poladian, Leon
2013-01-01
Compulsory mathematics service units for the life sciences present unique challenges: even students who learn some specific skills maintain a negative attitude to mathematics and do not see the relevance of the unit towards their degree. The focus on authentic content and the presentation and teaching of global or qualitative methods before…
Student Interests--The German and Austrian ROSE Survey
ERIC Educational Resources Information Center
Elster, Doris
2007-01-01
ROSE (the Relevance of Science Education) is an international comparative study on the factors which influence learning in science. For this study, the interests, opinions and attitudes of young people were polled by using a standardised questionnaire. Initial data, empirically gathered from 1247 students at the end of lower secondary level in…
Measuring the Depth of an Impact Crater Using an Internal Shadow
ERIC Educational Resources Information Center
Scott, Robert; Xinrong, Shen; Mulley, Ian; Pan, Zili
2013-01-01
The introduction of a planetary science topic into teaching provides an opportunity for teachers to broaden the science base and offer an enrichment activity outside the National Curriculum. It enables students to undertake independent learning by engaging in a scientific investigation relevant to the real world. Here, more able students are given…
Reflections on providing sport science support for athletes with learning difficulties.
Hills, Laura; Utley, Andrea
2010-01-01
To highlight the benefits and the need for sport science support for athletes with learning difficulties, and to reflect on our experience of working with the GB squad for athletes with learning difficulties. A review of key and relevant literature is presented, followed by a discussion of the sport science support provision and the issues that emerged in working with athletes with learning difficulties. Pre- and post- physiological tests along with evaluations of athletes' potential to benefit from sport psychology support were conducted. The aim of these tests was to provide information for the athletes and the coaches on fitness levels, to use this information to plan future training, and to identify how well the performance could be enhanced. A case study is presented for one athlete, who had competed in distance events. The focus is the psychological support that was provided. It is clear that athletes with learning difficulties require the same type of sports science support as their mainstream peers. However, sport scientists will need to consider ways to extend their practice in order to provide the appropriate level of support.
Creating contextually authentic science in a low-performing urban elementary school
NASA Astrophysics Data System (ADS)
Buxton, Cory A.
2006-09-01
This article reports on a 2-year collaborate project to reform the teaching and learning of science in the context of Mae Jemison Elementary, the lowest performing elementary school in the state of Louisiana. I outline a taxonomy of authentic science inquiry experiences and then use the resulting framework to focus on how project participants interpreted and enacted ideas about collaboration and authenticity. The resulting contextually authentic science inquiry model links the strengths of a canonically authentic model of science inquiry (grounded in the Western scientific canon) with the strengths of a youth-centered model of authenticity (grounded in student-generated inquiry), thus bringing together relevant content standards and topics with critical social relevance. I address the question of how such enactments may or may not promote doing science together and consider the implications of this model for urban science education.
Michael Faraday on the Learning of Science and Attitudes of Mind
NASA Astrophysics Data System (ADS)
Crawford, Elspeth
The paper makes use of Michael Faraday's ideas about learning, in particular his thoughts about attitudes to the unknowns of science and the development of an attitude which improves scientific decision-making. An invented scenario involving nursery school children demonstrates some attitudes displayed there. Discussion of the scenario and variation in possible outcomes suggests that Faraday's views are relevant to scientific learning in general. The main thesis of the paper is that it is central to learning in science to acknowledge that there is an inner struggle involved in facing unknowns, and that empathy with the fears and expectations of learners is an essential quality if genuinely scientific thought is to develop. It is suggested, following Faraday, that understanding our own feelings while we teach is a pre-requisite to enabling such empathy and that only then will we be in a position to evaluate accurately whether or not our pupils are thinking scientifically.
Using texts in science education: cognitive processes and knowledge representation.
van den Broek, Paul
2010-04-23
Texts form a powerful tool in teaching concepts and principles in science. How do readers extract information from a text, and what are the limitations in this process? Central to comprehension of and learning from a text is the construction of a coherent mental representation that integrates the textual information and relevant background knowledge. This representation engenders learning if it expands the reader's existing knowledge base or if it corrects misconceptions in this knowledge base. The Landscape Model captures the reading process and the influences of reader characteristics (such as working-memory capacity, reading goal, prior knowledge, and inferential skills) and text characteristics (such as content/structure of presented information, processing demands, and textual cues). The model suggests factors that can optimize--or jeopardize--learning science from text.
NASA Astrophysics Data System (ADS)
Bottoms, SueAnn I.; Ciechanowski, Kathryn M.; Hartman, Brian
2015-12-01
Iterative cycles of enactment embedded in culturally and linguistically diverse contexts provide rich opportunities for preservice teachers (PSTs) to enact core practices of science. This study is situated in the larger Families Involved in Sociocultural Teaching and Science, Technology, Engineering and Mathematics (FIESTAS) project, which weaves together cycles of enactment, core practices in science education and culturally relevant pedagogies. The theoretical foundation draws upon situated learning theory and communities of practice. Using video analysis by PSTs and course artifacts, the authors studied how the iterative process of these cycles guided PSTs development as teachers of elementary science. Findings demonstrate how PSTs were drawing on resources to inform practice, purposefully noticing their practice, renegotiating their roles in teaching, and reconsidering "professional blindness" through cultural practice.
Horizontal integration of the basic sciences in the chiropractic curriculum.
Ward, Kevin P
2010-01-01
Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.
Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum
Ward, Kevin P.
2010-01-01
Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882
Learning in Authentic Earth and Planetary Contexts
NASA Astrophysics Data System (ADS)
Fergusson, J. A.; Oliver, C. A.
2006-12-01
A Virtual Field Trip project has been developed in collaboration with NASA Learning Technologies to allow students, internationally, to accompany scientists on a field trip to the Pilbara region of Western Australia to debate the relevance of ancient structures called stromatolites, to the origins of life on Earth and the search for life on Mars. The project was planned with the aim of exposing high school students to `science in the making', including exposure to the ongoing debate and uncertainties involved in scientific research. The development of the project stemmed from both research-based and anecdotal evidence that current science education programs are not providing secondary students with a good understanding of the processes of science. This study seeks to examine the effectiveness of student use of the tools to increase awareness of the processes of science and to evaluate the effectiveness of the tools in terms of student learning. The literature reports that there is a need for learning activities to be conducted within meaningful contexts. The virtual field trip tools create an environment that simulates key elements in the scientific process. Such an approach allows students to learn by doing, to work like scientists and apply their learning in an authentic context.
NASA Astrophysics Data System (ADS)
Thomson, Norman
2003-01-01
Using Keiyo (Kenya) knowledge, learning and oral narratives about snakes, the paper advances the argument that science educators have a pivotal role as orthographers in 'preserving and promoting science for all'. Linguists, and a growing number of scientists, realize that in processes of globalisation, many indigenous languages and cultures are facing extinction, especially languages that remain unwritten, such as the Keiyo language. Within these languages are several thousand years of indigenous science education that include knowledge, teaching and learning about local environments. Science educators are a missing link in the ongoing conversations between biologists, linguists and indigenous cultures. Today, it is also known that reptiles are at greater risk for extinction than amphibians. In an area noted for its reptiles (Kenya's Rift Valley), Keiyo elders and students (n = 748) were interviewed or given a questionnaire to determine indigenous names for snakes and how Keiyo oral narratives of snakes are used in teaching and learning. They provided names for 19 of 34 (55%) snake species and 278 narratives that include snakes. The data are being used to document Keiyo language and construct relevant written science curriculum materials for Keiyo children
British Journal of Biomedical Science in 2015: what have we learned?
Blann, Andrew; Nation, Brian
2016-01-01
In 2015, the British Journal of Biomedical Science published 47 reports on topics relating to the various disciplines within biomedical science. Of these, the majority were in infection science (15 in microbiology and two in virology) and blood science (seven in biochemistry, four in haematology, three in immunology and one in transplantation), with a smaller number in cellular sciences (four reports) and with one review across disciplines. The present report will summarise key aspects of these publications that are of greatest relevance to laboratory scientists.
The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers
NASA Astrophysics Data System (ADS)
Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu
2013-10-01
We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.
Building a Course on Global Sustainability using the grand challenges of Energy-Water-Climate
NASA Astrophysics Data System (ADS)
Myers, J. D.
2012-12-01
GEOL1600: Global Sustainability: Managing the Earth's Resources is a lower division integrated science course at the University of Wyoming that fulfills the university's science requirement. Course content and context has been developed using the grand challenge nexus of energy-water-and climate (EWC). The interconnection of these issues, their social relevance and timeliness has provided a framework that gives students an opportunity to recognize why STEM is relevant to their lives regardless of their ultimate professional career choices. The EWC nexus provides the filter to sieve the course's STEM content. It also provides an ideal mechanism by which the non-STEM perspectives important in grand challenge solutions can be seamlessly incorporated in the course. Through a combination of content and context, the relevance of these issues engage students in their own learning. Development of the course followed the Grand Challenge Scientific Literacy (GCSL) model independently developed by the author and two colleagues at the University of Wyoming. This course model stresses science principles centered on the nature of science (e.g., fundamental premises, habits of mind, critical thinking) and unifying scientific concepts (e.g., methods and tools, experimentation, modeling). Grand challenge principles identify the STEM and non-STEM concepts needed to understand the grand challenges, drawing on multiple STEM and non-STEM disciplines and subjects (i.e., economics, politics, unintended consequences, roles of stakeholders). Using the EWC nexus filter and building on the Grand Challenge Principles, specific content included in the course is selected is that most relevant to understanding the Grand Challenges, thereby stressing content depth over breadth. Because quantitative data and reasoning is critical to effectively evaluating challenge solutions, QR is a component of nearly all class activities, while engineering and technology aspects of grand challenges are explicitly stressed. Running concurrently through the course is a consideration of personal perspectives and their influence on student learning, particularly for controversial subjects. Organizationally, the course consists of three one hour lectures and a two hour lab each week. The lectures are used to introduce content and prepare the knowledge base students need for lab. Complementing traditional lectures are lecture worksheets (short activities applying topics previously presented in lecture) and lecture activities (more involved exercises that present a problem the students need to solve using previously learned scientific content and QR skills and tools). Labs focus on case studies set in global social contexts that are timely and relevant. Labs stress scientific skills (modeling groundwater flow) and also consider political and environmental issues, e.g. developing a policy to manage SO2 emissions from copper smelting. The ideas, concepts, educational materials and content developed in this course have been used as the basis for two Math Science Partnerships that have provided professional development for middle and high school science and math teachers and K-12 social, math and science teachers. These programs have worked with teachers to break down the barriers between disciplines and foster collaborative learning centered on socially relevant grand challenges.
ERIC Educational Resources Information Center
Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael
2012-01-01
In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or…
Empirical Estimation of Computer Animation as a Self-Study Material for Science Learning
ERIC Educational Resources Information Center
Tannu, Kirti
2009-01-01
The advent of technology is almost in the field of education for teaching -- learning and cannot be ignored. Students are exposed to superior quality product of advance technologies in other fields around them. In such a scenario whether chalk and black board education is relevant in today's multicoloured and multidimensional digital age? The…
ERIC Educational Resources Information Center
Sikder, Shukla
2015-01-01
The social situation of development (SSD) specific to each age determines regularly the whole picture of the child's life. Therefore, we need to learn about the whole context surrounding children relevant to their development. The focus of the study is to understand parent's views on infant-toddler's science concept formation in the family…
Fueling the Car of Tomorrow: An Alternative Fuels Curriculum for High School Science Classes
ERIC Educational Resources Information Center
Schumack, Mark; Baker, Stokes; Benvenuto, Mark; Graves, James; Haman, Arthur; Maggio, Daniel
2010-01-01
It is no secret that many high school students are fascinated with automobiles. The activities in "Fueling the Car of Tomorrow"--a free high school science curriculum, available online--(see "On the web")--capitalize on this heightened awareness and provide relevant learning opportunities designed to reinforce basic physics, chemistry, biology,…
Medical Mycology and the Chemistry Classroom: Germinating Student Interest in Organic Chemistry
ERIC Educational Resources Information Center
Bliss, Joseph M.; Reid, Christopher W.
2013-01-01
Efforts to provide active research context to introductory courses in basic sciences are likely to better engage learners and provide a framework for relevant concepts. A simple teaching and learning experiment was conducted to use concepts in organic chemistry to solve problems in the life sciences. Bryant University is a liberal arts university…
ERIC Educational Resources Information Center
Cremin, Teresa; Glauert, Esme; Craft, Anna; Compton, Ashley; Stylianidou, Fani
2015-01-01
In the light of the European Union's interest in creativity and innovation, this paper, drawing on data from the EU project Creative Little Scientists (2011-2014), explores the teaching and learning of science and creativity in Early Years education. The project's conceptual framework, developed from detailed analysis of relevant literatures,…
Edafe, Ovie; Brooks, William S; Laskar, Simone N; Benjamin, Miles W; Chan, Philip
2016-03-20
This study examines the perceived impact of a novel clinical teaching method based on FAIR principles (feedback, activity, individuality and relevance) on students' learning on clinical placement. This was a qualitative research study. Participants were third year and final year medical students attached to one UK vascular firm over a four-year period (N=108). Students were asked to write a reflective essay on how FAIRness approach differs from previous clinical placement, and its advantages and disadvantages. Essays were thematically analysed and globally rated (positive, negative or neutral) by two independent researchers. Over 90% of essays reported positive experiences of feedback, activity, individuality and relevance model. The model provided multifaceted feedback; active participation; longitudinal improvement; relevance to stage of learning and future goals; structured teaching; professional development; safe learning environment; consultant involvement in teaching. Students perceived preparation for tutorials to be time intensive for tutors/students; a lack of teaching on medical sciences and direct observation of performance; more than once weekly sessions would be beneficial; some issues with peer and public feedback, relevance to upcoming exam and large group sizes. Students described negative experiences of "standard" clinical teaching. Progressive teaching programmes based on the FAIRness principles, feedback, activity, individuality and relevance, could be used as a model to improve current undergraduate clinical teaching.
Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science
NASA Astrophysics Data System (ADS)
Cartwright, T. J.; Hogsett, M.
2009-05-01
Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion of scientific instruments such as GPS and probeware, fostered additional student interest in earth science. IDGE has shown to have a lasting effect on the participating students who learn from the experience that science is a dynamic field in need of creative minds who want to make discoveries. Through relevant inquiry, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award 0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.
Science Express: Out-of-Home-Media to Communicate Climate Change (Invited)
NASA Astrophysics Data System (ADS)
Lustick, D. S.; Lohmeier, J.; Chen, R.
2013-12-01
Science Express is an initiative to explore, develop, and test various approaches to using Out-of-Home-Media (OHM) to engage adults riding mass transit. To date, three projects represent this work: 1) Carbon Smarts Conference, 2) Cool Science, and 3) ScienceToGo.org. While the aim of each project is different, together they serve an immediate need to understand how OHM can be leveraged as an informal science learning medium. Using Climate Change as the content focus, each project is a variation on the theme of understanding mass transit as a form of mobile classroom for riders. The basic idea behind these initiatives is to engage individuals who do not necessarily read the science magazines, listen to science radio shows, or watch science programming on television. Science Express is about bringing the science learning opportunity to the audience during their daily routines. Mass Transit provides an ideal opportunity for engaging the disengaged in science learning since they represent a ';captive' audience while waiting at the bus stop, standing on the platform, riding inside the bus or train. These ';downtimes' present informal science educators with the opportunity to foster some science learning. With the advent of smartphone technology and its explosion in popularity among consumers, OHM is poised to offer riders a new kind of real time learning experience. The Science Express projects aim to understand the strengths and weaknesses of this new model for informal science learning so as to refine and improve its effectiveness at achieving desired goals. While the Science Express model for informal science learning could be used to foster understanding about any relevant scientific content, the research team chose to use Climate Change as the focus. Climate Change seemed like an obvious because of its timeliness, complexity, robust scientific foundation, and presence in popular media. Nearly all our riders have heard of 'Climate Change' or 'Global Warming', but a much smaller percentage actually understand the underlying science. In addition, riders appear to be very curious and want to know more about these issues.
Twelve tips for utilizing principles of learning to support medical education.
Cutting, Maris F; Saks, Norma Susswein
2012-01-01
Research in the cognitive sciences on learning and memory conducted across a range of domains, settings, and age groups has resulted in the identification and formulation of a set of generic learning principles. These learning principles have proven relevant and applicable to a wide range of learning situations in a variety of settings, and can be useful in supporting medical education. They can provide guidance to medical students for efficient and effective study, and can be helpful to faculty to support instructional planning and decisions relating to curriculum. This article discusses evidence-based principles of learning and their relationship to effective learning, teaching, pedagogy and curriculum development. We reviewed important principles of learning to determine those most relevant to improving medical student learning, guiding faculty toward more effective teaching, and in designing a curriculum. Our analysis has resulted in the articulation of key learning principles and specific strategies that are broadly applicable to medical school learning, teaching, and instructional planning. The twelve tips highlight principles of learning that can be effectively applied in the complex learning environment of medical education.
The Factors that Affect Science Teachers' Participation in Professional Development
NASA Astrophysics Data System (ADS)
Roux, Judi Ann
Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science teachers depend upon relevant professional development experiences to support their learning. In order to understand how to improve student learning in science, the learning of science teachers must also be understood. Previous research studies on teacher professional development have been conducted in other states, but Minnesota science teachers comprised a new and different population from those previously studied. The purpose of this two-phase mixed methods study was to identify the current types of professional development in which experienced, Minnesota secondary science teachers participated and the factors that affect their participation in professional development activities. The mixed-methods approach s utilized an initial online survey followed by qualitative interviews with five survey respondents. The results of the quantitative survey and the qualitative interviews indicated the quality of professional development experiences and the factors which affected the science teachers' participation in professional development activities. The supporting and inhibiting factors involved the availability of resources such as time and money, external relationships with school administrators, teacher colleagues, and family members, and personal intrinsic attributes such as desires to learn and help students. This study also describes implications for science teachers, school administrators, policymakers, and professional development providers. Recommendations for future research include the following areas: relationships between and among intrinsic and extrinsic factors, science-related professional development activities within local school districts, the use of formal and informal professional development, and the needs of rural science teachers compared to urban and suburban teachers.
Struggling to understand abstract science topics: a Roundhouse diagram-based study
NASA Astrophysics Data System (ADS)
Ward, Robin E.; Wandersee, James H.
2002-06-01
This study explored the effects of Roundhouse diagram construction on a previously low-performing middle school science student's struggles to understand abstract science concepts and principles. It is based on a metacognition-based visual learning model proposed by Wandersee in 1994. Ward and Wandersee introduced the Roundhouse diagram strategy and showed how it could be applied in science education. This article aims at elucidating the process by which Roundhouse diagramming helps learners bootstrap their current understandings to reach the intended meaningful understanding of complex science topics. The main findings of this study are that (a) it is crucial that relevant prior knowledge and dysfunctional alternative conceptions not be ignored during new learning if low-performing science students are to understand science well; (b) as the student's mastery of the Roundhouse diagram construction improved, so did science achievement; and (c) the student's apt choice of concept-related visual icons aided progress toward meaningful understanding of complex science concepts.
Integrated approaches to perceptual learning.
Jacobs, Robert A
2010-04-01
New technologies and new ways of thinking have recently led to rapid expansions in the study of perceptual learning. We describe three themes shared by many of the nine articles included in this topic on Integrated Approaches to Perceptual Learning. First, perceptual learning cannot be studied on its own because it is closely linked to other aspects of cognition, such as attention, working memory, decision making, and conceptual knowledge. Second, perceptual learning is sensitive to both the stimulus properties of the environment in which an observer exists and to the properties of the tasks that the observer needs to perform. Moreover, the environmental and task properties can be characterized through their statistical regularities. Finally, the study of perceptual learning has important implications for society, including implications for science education and medical rehabilitation. Contributed articles relevant to each theme are summarized. Copyright © 2010 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Scruggs, Thomas E.; Mastropieri, Margo A.
Although much research has been conducted on the learning characteristics of individuals with mental retardation, science learning of such individuals has received far less attention. In this investigation, students with mental retardation were observed over a 2-year period, in order to determine how the characteristics of mental retardation manifested themselves in the context of inquiry-oriented, hands-on science curriculum. Analysis of all relevant data sources, including observations and field notes, videotape and audiotape recordings, student products, and interviews, suggested that several characteristics commonly attributed to students with mild mental retardation were observed to interact with the science curriculum. These characteristics included attention, semantic memory, logical reasoning, and outerdirectedness. However, teachers were skilled at adapting instruction to meet the special needs of these learners. Implications for teaching science to students with mental retardation are provided.
ERIC Educational Resources Information Center
Gkouskou, Eirini; Tunnicliffe, Sue Dale
2017-01-01
?he nature of scientific research goes beyond the learning of concepts and basic manipulation to the key factors of engaging students in identifying relevant evidence and reflecting on its interpretation. It is argued that young children have the ability to acquire viable, realistic concepts of the living world when involved in relevant activities…
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Maryboy, N.; Begay, D.
2005-05-01
The strong relationships between Earth and sky in the worldviews of Native American people presents a wonderful opportunity for collaborations that can co-create compelling educational opportunities for both Native and non-Native learners. This paper will discuss the relationship among successful science education for Native Americans, standards-based science education, and informal science education. It will address some strategies for combining best practice in education with a deep cultural authenticity. Presenting astronomy in a culturally relevant and correct way is not only of value to the Native learner, but it is also of value to the non-Native learner because cultural relevance for Native people demands that science be presented via different learning modalities (e.g. visual, kinesthetic, tactile) and in a way that is more interconnected with other science and non-science disciplines. This kind of multi-modal and interdisciplinary approach is valuable and progressive for Non-native learners as well.
Competence-Based Pharmacy Education in the University of Helsinki
Katajavuori, Nina; Salminen, Outi; Vuorensola, Katariina; Huhtala, Helena; Vuorela, Pia; Hirvonen, Jouni
2017-01-01
In order to meet the expectations to act as an expert in the health care profession, it is of utmost importance that pharmacy education creates knowledge and skills needed in today’s working life. Thus, the planning of the curriculum should be based on relevant and up-to-date learning outcomes. In the University of Helsinki, a university wide curriculum reform called ‘the Big Wheel’ was launched in 2015. After the reform, the basic degrees of the university are two-cycle (Bachelor–Master) and competence-based, where the learning outcomes form a solid basis for the curriculum goals and implementation. In the Faculty of Pharmacy, this curriculum reform was conducted in two phases during 2012–2016. The construction of the curriculum was based on the most relevant learning outcomes concerning working life via high quality first (Bachelor of Science in Pharmacy) and second (Master of Science in Pharmacy) cycle degree programs. The reform was kicked off by interviewing all the relevant stakeholders: students, teachers, and pharmacists/experts in all the working life sectors of pharmacy. Based on these interviews, the intended learning outcomes of the Pharmacy degree programs were defined including both subject/contents-related and generic skills. The curriculum design was based on the principles of constructive alignment and new structures and methods were applied in order to foster the implementation of the learning outcomes. During the process, it became evident that a competence-based curriculum can be created only in close co-operation with the stakeholders, including teachers and students. Well-structured and facilitated co-operation amongst the teachers enabled the development of many new and innovative teaching practices. The European Union funded PHAR-QA project provided, at the same time, a highly relevant framework to compare the curriculum development in Helsinki against Europe-wide definitions of competences and learning outcomes in pharmacy education. PMID:28970441
Davis, Kierrynn; Brownie, Sonya; Doran, Frances; Evans, Sue; Hutchinson, Marie; Mozolic-Staunton, Beth; Provost, Stephen; van Aken, Rosalie
2012-03-01
The worldwide academic workforce is ageing. At the same time, health and human services workforces are expanding. The preparation of educators to fill gaps in expertise and to position the health sciences for future growth is an urgent need. The findings from a recent action learning project that aimed to enhance the professional growth and development of higher degree researcher student supervisors in a School of Health and Human Sciences are presented. Seven early career researchers and the facilitator met for two hours every two to three weeks over 4 months between April and July 2010, in a rural and regional university in New South Wales, Australia. The processes initiated were a combination of experiential knowledge, referral to relevant published reports, use of an effective supervision checklist, and critical conversations. Learning outcomes centered on higher degree management and supervision pedagogy, communities of practice, knowledge translation, and the establishment of a research culture. The contextual barriers and implications of the methodology and learning outcomes for the professional development of health and human science practitioners, researchers and educators is also discussed. © 2012 Blackwell Publishing Asia Pty Ltd.
NASA Astrophysics Data System (ADS)
Cervato, C.; Jach, J. Y.; Ridky, R.
2003-12-01
Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms of student demographics and socioeconomic variables (e.g., year in school, gender).
NASA Astrophysics Data System (ADS)
Kesidou, Sofia; Roseman, Jo Ellen
2002-08-01
The purposes of this study were to examine how well middle school programs support the attainment of key scientific ideas specified in national science standards, and to identify typical strengths and weaknesses of these programs using research-based criteria. Nine widely used programs were examined by teams of teachers and specialists in research on teaching and learning. Reviewers found that whereas key ideas were generally present in the programs, they were typically buried between detailed or even unrelated ideas. Programs only rarely provided students with a sense of purpose for the units of study, took account of student beliefs that interfere with learning, engaged students with relevant phenomena to make abstract scientific ideas plausible, modeled the use of scientific knowledge so that students could apply what they learned in everyday situations, or scaffolded student efforts to make meaning of key phenomena and ideas presented in the programs. New middle school science programs that reflect findings from learning research are needed to support teachers better in helping students learn key ideas in science. The criteria and findings from this study on the inadequacies in existing programs could serve as guidelines in new curriculum development.
NASA Astrophysics Data System (ADS)
Asefa, T.
2017-12-01
This case study presents the experiences of two of the most successful boundary organizations that are engaged in co-producing decision relevant climate information for water resources management. The Water Utilities Climate Alliance (www.wucaonline.org) is a coalition of 11 of the nation's largest water utilities with customers base over 50 million. Whereas Florida Water and Climate Alliance (www.floridaWCA.org) is a state level collaborative Learning network that is engaged in co-exploration and co-development of actionable climate science. Lesson learned from these two structurally different organizations will be shared.
ERIC Educational Resources Information Center
Arriassecq, Irene; Greca, Ileana Maria
2012-01-01
This paper discusses some topics that stem from recent contributions made by the History, the Philosophy, and the Didactics of Science. We consider these topics relevant to the introduction of the Special Relativity Theory (SRT) in high school within a contextualized approach. We offer an outline of a teaching-learning sequence dealing with the…
ERIC Educational Resources Information Center
Heddy, Benjamin C.; Sinatra, Gale M.
2013-01-01
Teaching and learning about complex scientific content, such as biological evolution, is challenging in part because students have a difficult time seeing the relevance of evolution in their everyday lives. The purpose of this study was to explore the effectiveness of the Teaching for Transformative Experiences in Science (TTES) model (Pugh, 2002)…
Toward an instructionally oriented theory of example-based learning.
Renkl, Alexander
2014-01-01
Learning from examples is a very effective means of initial cognitive skill acquisition. There is an enormous body of research on the specifics of this learning method. This article presents an instructionally oriented theory of example-based learning that integrates theoretical assumptions and findings from three research areas: learning from worked examples, observational learning, and analogical reasoning. This theory has descriptive and prescriptive elements. The descriptive subtheory deals with (a) the relevance and effectiveness of examples, (b) phases of skill acquisition, and (c) learning processes. The prescriptive subtheory proposes instructional principles that make full exploitation of the potential of example-based learning possible. Copyright © 2013 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Tibell, Lena A. E.; Harms, Ute
2017-01-01
Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In…
ERIC Educational Resources Information Center
Mensah, Felicia Moore
2011-01-01
In this article, the researcher discusses three elementary pre-service teachers' experiences in co-planning and co-teaching a Pollution Unit in a 4th-5th grade science classroom in New York City. The study makes use of microteaching papers, lesson plans, researcher classroom observations, interviews, and informal conversations to elicit lessons…
ERIC Educational Resources Information Center
Freire, Sofia; Baptista, Mónica; Freire, Ana
2016-01-01
Raising awareness about sustainability is an urgent need and as such education for sustainability has gained relevancy for the last decades. It is acknowledged that science education can work as an important context for educating for sustainability. The goal of the present paper is to describe a role-playing activity about the construction of a…
ERIC Educational Resources Information Center
Education Council, 2015
2015-01-01
There are many factors that affect student engagement in science, technology, engineering and mathematics (STEM). Underlying this are the views of the broader community--and parents in particular--about the relevance of STEM, and the approach to the teaching and learning of STEM from the early years and continuing throughout schooling. Connected…
Resident and student education in otolaryngology: A 10-year update on e-learning.
Tarpada, Sandip P; Hsueh, Wayne D; Gibber, Marc J
2017-07-01
E-learning, in its most rudimentary form, is the use of Internet-based resources for teaching and learning purposes. In surgical specialties, this definition encompasses the use of virtual patient cases, digital modeling, and online tutorials, as well as standardized video and imaging. As new technological frontiers rapidly emerge within otolaryngology, e-learning may be an effective alternative to traditional teaching. Here we present a systematic review of the literature assessing the efficacy of e-learning for otolaryngology education and a discussion of the relevance of these programs for both medical students and residents within the field. Systematic review. A systematic search of PubMed, Embase, Web of Science, and the Cochrane Library was conducted according to the guidelines defined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Twelve studies met inclusion criteria. These studies measured a range of outcomes from basic science anatomical knowledge to clinically relevant endpoints such as diagnostic accuracy. Nearly all of the studies reported greater satisfaction and/or significantly increased objective knowledge using the e-learning intervention compared to traditional techniques. E-learning proves to be a powerful alternative to standard teaching techniques within otolaryngology education for both residents and medical students. Future work should focus on validating specific e-learning programs and accessing long-term knowledge retention using these innovative platforms. NA Laryngoscope, 127:E219-E224, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Chinn, Pauline W. U.
2006-09-01
This three year study of P-12 professional development is grounded in sociocultural theories that hold that building knowledge and relationships among individuals from different cultural backgrounds entails joint activity toward common goals and cultural dialogues mediated by cultural translators. Sixty P-12 pre and in-service teachers in a year long interdisciplinary science curriculum course shared the goal of developing culturally relevant, standards-based science curricula for Native Hawai'ian students. Teachers and Native Hawai'ian instructors lived and worked together during a five day culture-science immersion in rural school and community sites and met several times at school, university, and community sites to build knowledge and share programs. Teachers were deeply moved by immersion experiences, learned to connect cultural understandings, e.g., a Hawai'ian sense of place and curriculum development, and highly valued collaborating with peers on curriculum development and implementation. The study finds that long term professional development providing situated learning through cultural immersion, cultural translators, and interdisciplinary instruction supports the establishment of communities of practice in which participants develop the cross-cultural knowledge and literacy needed for the development of locally relevant, place and standards-based curricula and pedagogy.
Teacher and student supports for implementation of the NGSS
NASA Astrophysics Data System (ADS)
Severance, Samuel
Through three articles, this dissertation examines the use of supports for implementing the Next Generation Science Standards (NGSS) within a large urban school district. Article one, titled Organizing for Teacher Agency in Curricular Co-design, examines the need for coherent curriculum materials that teachers' had a meaningful role in shaping and how the use of a co-design approach and specific tools and routines can help to address this need. Article two, titled Relevant Learning and Student Agency within a Citizen Science Design Challenge, examines the need for curriculum materials that provide students with learning experiences they find relevant and that expands their sense of agency and how a curriculum centered around a community-based citizen science design challenge can help achieve such an aim. Article three, titled Implementation of a Novel Professional Development Program to Support Teachers' Understanding of Modeling, examines the need for professional development that builds teachers' understanding of and skill in engaging their students in the practice of developing and using models and how a novel professional development program, the Next Generation Science Exemplar, can aid teachers in this regard by providing them with carefully sequenced professional development activities and specific modeling tools for use in the classroom.
NASA Astrophysics Data System (ADS)
Wisdom, Sonya L.
The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.
Researching the Real: Transforming the Science Fair through Relevant and Authentic Research
NASA Astrophysics Data System (ADS)
Davidson, Rosemary McBryan
This teacher research study documents the processes used to help students in an all-female, religious-based high school create science fair projects that are personally meaningful, scientifically sophisticated and up-to date in terms of science content. One-hundred sixteen young women in an honors chemistry class were introduced by their teacher to the methods used by science journalists when researching and crafting articles. The students then integrated these strategies into their science fair research through collaborative classroom activities designed by their teacher. Data collected during the process included audio and video tapes of classroom activities, student interviews, process work, finished projects, email conversations and the reflective journaling, annotated lesson plans, and memories of the lived experience by the teacher. The pedagogical changes which resulted from this project included the use of Read Aloud-Think Alouds (RATA) to introduce content and provide relevance, a discussion based topic selection process, the encouragement of relevant topic choices, the increased use of technology for learning activities and for sharing research, and an experimental design process driven by the student's personally relevant, topic choice. Built in feedback loops, provided by the teacher, peer editors and an outside editor, resulted in multiple revisions and expanded opportunities for communicating results to the community-at-large. Greater student engagement in science fair projects was evident: questioning for understanding, active involvement in decision making, collaboration within the classroom community, experience and expertise with reading, writing and the use of technology, sense of agency and interest in science related activities and careers all increased. Students communicated their evolving practices within the school community and became leaders who promoted the increased use of technology in all of their classes. Integrating journalistic practices into the research projects of these honors chemistry students also brought about positive changes in the attitude of the students toward science. The pedagogy implemented was successful at increasing the engagement of the participants in their own learning processes as well as increased interest in science. Moreover, the teacher researcher has expanded her skill set and is transitioning toward a more student-centered classroom. While this study focused on 116 honors chemistry students over the course of three years, it identified changes in practices that can be taken up and examined more broadly by science teachers who include science fairs as part of their curriculum.
NASA Astrophysics Data System (ADS)
Asrizal; Amran, A.; Ananda, A.; Festiyed; Khairani, S.
2018-04-01
Integrated science learning and literacy skills are relevant issues in Indonesian’s education. However, the use of the integrated science learning and the integration of literacy in learning cannot be implemented well. An alternative solution of this problem is to develop integrated science instructional material on pressure in daily life theme by integrating digital age literacy. Purpose of research is to investigate the effectiveness of the use of integrated science instructional material on pressure in daily life theme to improve knowledge competence, attitudes competence and literacy skills of students. This research was a part of development research which has been conducted. In the product testing stage of this research and development was used before and after design of treatment for one sample group. Instruments to collect the data consist of learning outcomes test sheet, attitude observation sheet, and performance assessment sheet of students. Data analysis techniques include descriptive statistics analysis, normality test, homogeneity test, and paired comparison test. Therefore, the important result of research is the use of integrated science instructional material on pressure in daily life theme is effective in scientific approach to improve knowledge competence, attitudes competence, and digital age literacy skills of grade VIII students at 95% confidence level.
ASCR Workshop on Quantum Computing for Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms formore » linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.« less
NASA Astrophysics Data System (ADS)
Kingir, Sevgi; Tas, Yasemin; Gok, Gulsum; Sungur Vural, Semra
2013-11-01
Background. There are attempts to integrate learning environment research with motivation and self-regulation research that considers social context influences an individual's motivation, self-regulation and, in turn, academic performance. Purpose. This study explored the relationships among constructivist learning environment perception variables (personal relevance, uncertainty, shared control, critical voice, student negotiation), motivational beliefs (self-efficacy, intrinsic interest, goal orientation), self-regulation, and science achievement. Sample. The sample for this study comprised 802 Grade 8 students from 14 public middle schools in a district of Ankara in Turkey. Design and methods. Students were administered 4 instruments: Constructivist Learning Environment Survey, Goal Achievement Questionnaire, Motivated Strategies for Learning Questionnaire, and Science Achievement Test. LISREL 8.7 program with SIMPLIS programming language was used to test the conceptual model. Providing appropriate fit indices for the proposed model, the standardized path coefficients for direct effects were examined. Results. At least one dimension of the constructivist learning environment was associated with students' intrinsic interest, goal orientation, self-efficacy, self-regulation, and science achievement. Self-efficacy emerged as the strongest predictor of both mastery and performance avoidance goals rather than the approach goals. Intrinsic value was found to be significantly linked to science achievement through its effect on self-regulation. The relationships between self-efficacy and self-regulation and between goal orientation and science achievement were not significant. Conclusion. In a classroom environment supporting student autonomy and control, students tend to develop higher interest in tasks, use more self-regulatory strategies, and demonstrate higher academic performance. Science teachers are highly recommended to consider these findings when designing their lessons. For the creation of such a learning environment, teachers can design open-ended inquiry activities in which students have opportunities to take responsibility, reflect on their views, and accomplish challenging tasks.
Developing Preservice Teachers' Knowledge of Science Teaching Through Video Clubs
NASA Astrophysics Data System (ADS)
Johnson, Heather J.; Cotterman, Michelle E.
2015-06-01
Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in Journal of Research in Science Teaching 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for teaching is a crucial and ongoing question for preservice teacher educators. Recently, video clubs are being explored as potential contexts for teacher learning (Barnhart & van Es in Teaching and Teacher Education 45:83-93, 2015; Sherin & Han in Teaching and Teacher Education 20:163-183, 2004). We hypothesized that pairing video clubs with student teaching experiences would provide a forum for preservice teachers to discuss issues relevant to their professional trajectory through exposure to models of peer teaching and opportunities to reflect on practice. In this study, we explored how secondary science preservice teachers used video club to restructure their overall science knowledge into science knowledge for teaching. Our findings suggest that video clubs allowed preservice teachers to access and leverage student thinking and instructional resources to deepen their understanding of science content and trajectories for science learning.
2013-01-01
Background Knowledge and understanding of basic biomedical sciences remain essential to medical practice, particularly when faced with the continual advancement of diagnostic and therapeutic modalities. Evidence suggests, however, that retention tends to atrophy across the span of an average medical course and into the early postgraduate years, as preoccupation with clinical medicine predominates. We postulated that perceived relevance demonstrated through applicability to clinical situations may assist in retention of basic science knowledge. Methods To test this hypothesis in our own medical student cohort, we administered a paper-based 50 MCQ assessment to a sample of students from Years 2 through 5. Covariates pertaining to demographics, prior educational experience, and the perceived clinical relevance of each question were also collected. Results A total of 232 students (Years 2–5, response rate 50%) undertook the assessment task. This sample had comparable demographic and performance characteristics to the whole medical school cohort. In general, discipline-specific and overall scores were better for students in the latter years of the course compared to those in Year 2; male students and domestic students tended to perform better than their respective counterparts in certain disciplines. In the clinical years, perceived clinical relevance was significantly and positively correlated with item performance. Conclusions This study suggests that perceived clinical relevance is a contributing factor to the retention of basic science knowledge and behoves curriculum planners to make clinical relevance a more explicit component of applied science teaching throughout the medical course. PMID:24099045
NASA Astrophysics Data System (ADS)
Akcay, Hakan
The purpose of this study was to determine the impact of an Science-Technology-Society (STS) course for preservice science teachers. The course was designed to change not only preservice science teachers' attitudes toward science, scientists and science courses, but also the awareness and use of STS/Constructivist approaches in teaching. It also focuses on changes in preservice science teachers regarding the effectiveness of an STS/Constructivist learning environment. Both qualitative and quantitative research methods were used with and a one-group pretest-posttest design. The instruments were administered to the preservice science teachers at the beginning of the semester as pre-tests and again at the end of the semester as post-tests. Data gathered from pre- and post-administration were analyzed for each of the instruments that provide answers to the research questions. The sample consists of forty-one pre-service science teachers who were enrolled in the Societal & Educational Applications of Biological Concepts course during the spring semester of the 2004 and 2005 academic years at the University of Iowa. The major findings for the study include the following: (1) Preservice science teachers showed significantly growth over the semester in their perceptions concerning STS/Constructivism, beliefs about science teaching and learning, and attitudes toward science and technology, and their implications for society. These significant changes were not affected by gender nor grade (elementary vs secondary) level. (2) Preservice science teachers gain in understanding of how students learn with STS/Constructivist approaches. They also increased their use of STS/Constructivist approaches which were developed and applied to teaching science for all students. (3) Preservice science teachers showed statistically significant growth toward an STS/Constructivist philosophy of science teaching and learning in terms of student actions in the classroom, as well as their increased understanding of science processes and content. (4) An STS/Constructivist approach provides student--centered learning environments that are relevant, motivational, and meaningful for preservice science teachers. Further, it encourages them to interact and to participate more actively in science classrooms.
Pedagogical Approaches to Diagnostic Imaging Education: A Narrative Review of the Literature
Linaker, Kathleen L.
2015-01-01
Objective The purpose of this study was to examine literature on how radiology is taught and learned by both radiology residents and undergraduates in the health professions. Methods A review of the literature was performed using relevant key words. Articles were retrieved through December 2012 using PubMed, ScienceDirect, ERIC, Proquest, and ICL databases along with a manual review of references. Results Of the 4716 unique abstracts reviewed by the author, 91 were found to be relevant to the purpose of this study. The literature retrieved reported pedagogical approaches to teaching radiology including the following: problem solving, technology as teacher, independent learning tools, visiting lectureships, case based teaching, and conferences. There was some exploration of the relative effectiveness of educational formats. Suggestions for future research identify 7 areas of relative consistency. Conclusion Radiology is a clinical skill that requires integration science, clinical information, clinical experiences, and information recorded on diagnostic imaging studies. The research in this area focuses on problem solving, the use of algorithm/scripts, introducing uncertainty in clinical scenarios, incorporating technology in learning environments, active learning techniques, and methods of independent learning. Although the literature in this area is still in its infancy, the research examining the relative effectiveness of these various educational formats is often contradictory, suggesting that this is a complex area of study with numerous factors influencing student learning. PMID:26770173
Faculty Development Program Models to Advance Teaching and Learning Within Health Science Programs
Lancaster, Jason W.; Stein, Susan M.; MacLean, Linda Garrelts; Van Amburgh, Jenny
2014-01-01
Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school. PMID:24954939
Faculty development program models to advance teaching and learning within health science programs.
Lancaster, Jason W; Stein, Susan M; MacLean, Linda Garrelts; Van Amburgh, Jenny; Persky, Adam M
2014-06-17
Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school.
ERIC Educational Resources Information Center
Ponzio, Richard; Russell, Thomas L.
This report is part of a paper set which focuses on a project designated as "Applying Research to Teacher Education (ARTE)." It reviews application possibilities of teacher effectiveness research in elementary classrooms to science teaching at the secondary level. Mills College (Oakland, California) was one of the sites involved in the…
NASA Astrophysics Data System (ADS)
McKenzie, L.; Versprille, A.; Towns, M.; Mahaffy, P.; Martin, B.; Kirchhoff, M.
2013-12-01
Global climate change is one of the most pressing environmental challenges facing humanity. Many of the important underlying concepts require mental models that are built on a fundamental understanding of chemistry, yet connections to climate science and global climate change are largely missing from undergraduate chemistry courses for science majors. In Visualizing the Chemistry of Climate Change (VC3Chem), we have developed and piloted a set of online modules that addresses this gap by teaching core chemistry concepts through the rich context of climate science. These interactive web-based digital learning experiences enable students to learn about isotopes and their relevance in determining historical temperature records, IR absorption by greenhouse gases, and acid/base chemistry and the impacts on changing ocean pH. The efficacy of these tools and this approach has been assessed through measuring changes in students' understanding about both climate change and core chemistry concepts.
Rabin, Borsika; Glasgow, Russell E
2015-01-01
We discuss the role of implementation science in cancer and summarize the need for this perspective. Following a summary of key implementation science principles and lessons learned, we review the literature on implementation of cancer prevention and control activities across the continuum from prevention to palliative care. We identified 10 unique relevant reviews, four of which were specific to cancer. Multicomponent implementation strategies were found to be superior to single-component interventions, but it was not possible to draw conclusions about specific strategies or the range of conditions across which strategies were effective. Particular gaps identified include the need for more studies of health policies and reports of cost, cost-effectiveness, and resources required. Following this review, we summarize the types of evidence needed to make research findings more actionable and discuss emerging implementation science opportunities for psychological research on cancer prevention and control. These include innovative study designs (i.e., rapid learning designs, simulation modeling, comparative effectiveness, pragmatic studies, mixed-methods research) and measurement science (i.e., development of context-relevant measures; practical, longitudinal measures to gauge improvement; cost-effectiveness data; and harmonized patient report data). We conclude by identifying a few grand challenges for psychologists that if successfully addressed would accelerate integration of evidence into cancer practice and policy more consistently and rapidly. PsycINFO Database Record (c) 2015 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Alenizi, Abdulaziz
The purpose of the study was to investigate the relevance of teachers in Kuwait when utilizing photographic aids in the classroom. Specifically, this study assessed learning outcomes of teachers amongst high school students in schools at Kuwait. The learning outcomes were then compared with teachers who are barred from using photographic aids. The research utilized a descriptive quantitative research design. The number of participants was limited to an acceptable number in the range of 250--300. Data were collected through a questionnaire and analyses were conducted using various types of statistical designs for interpretation, specifically Spearman correlation analysis. The study revealed that visual media such as images and photographs made it easy for the students to understand the concepts of science subjects, specifically biology, physics, and chemistry. Visual media should be included in the curriculum to enhance the comprehension level of students. The government of Kuwaiti, therefore, should to encourage the use of visual aids in schools to enhance learning. The research did not indicate a capacity of skills students and teachers can employ effectively when using visual aids. There also remains a gap between possessing the skills and applying them in the school. Benefits associated with visuals aids in teaching are evident in the study. With the adoption of audio-visual methods of learning, students are presented with opportunities to develop their own ideas and opinions, thus boosting their own interpersonal skills while at the same time questioning the authenticity and relevance of the concepts at hand. The major merit of audio-visual platforms in classroom learning is they cause students to break complex science concepts into finer components that can be easily understood.
Brooks, William S.; Laskar, Simone N.; Benjamin, Miles W.; Chan, Philip
2016-01-01
Objectives This study examines the perceived impact of a novel clinical teaching method based on FAIR principles (feedback, activity, individuality and relevance) on students’ learning on clinical placement. Methods This was a qualitative research study. Participants were third year and final year medical students attached to one UK vascular firm over a four-year period (N=108). Students were asked to write a reflective essay on how FAIRness approach differs from previous clinical placement, and its advantages and disadvantages. Essays were thematically analysed and globally rated (positive, negative or neutral) by two independent researchers. Results Over 90% of essays reported positive experiences of feedback, activity, individuality and relevance model. The model provided multifaceted feedback; active participation; longitudinal improvement; relevance to stage of learning and future goals; structured teaching; professional development; safe learning environment; consultant involvement in teaching. Students perceived preparation for tutorials to be time intensive for tutors/students; a lack of teaching on medical sciences and direct observation of performance; more than once weekly sessions would be beneficial; some issues with peer and public feedback, relevance to upcoming exam and large group sizes. Students described negative experiences of “standard” clinical teaching. Conclusions Progressive teaching programmes based on the FAIRness principles, feedback, activity, individuality and relevance, could be used as a model to improve current undergraduate clinical teaching. PMID:26995588
NASA Astrophysics Data System (ADS)
Peticolas, L.; Maryboy, N.; Begay, D.; Stein, J.; Valdez, S.; Paglierani, R.
2012-08-01
A cultural disconnect exists between Western scientists and educators and Native communities in terms of scientific worldviews and Indigenous ways of knowing. This cultural disconnect manifests itself in the lack of participation of Native Americans in Western science and a lack of appreciation by Western scientists of Native science. Our NSF-Funded project "Cosmic Serpent: Bridging Native and Western Learning in Museum Settings" set out to provide a way for informal science education practitioners and tribal museum practitioners to learn about these two worldviews in such a way as to inform their educational practice around these concepts. We began with a pilot workshop in year one of this four-year project. We then provided two week-long professional development workshops in three regions within the Western U.S., and culminated with a final conference for all participants. In total, the workshops served 162 participants, including 115 practitioners from 19 tribal museums and 41 science, natural history, and cultural museums; 23 tribal community members; and 24 "bridge people" with knowledge of both Indigenous and Western science. For this article, we focus on the professional and personal transformations around culture, knowledge, science, and worldviews that occurred as a part of this project. We evaluated the collaborative aspects of this grant between the Indigenous Education Institute; the Center for Science Education at the University of California, Berkeley; the Institute for Learning Innovation; Native Pathways; Association for Science and Technology Centers; and the National Museum of the American Indian. Using evaluation results, as well as our personal reflections, we share our learnings from a place of transformation. We provide lessons we learned with this project, which we hope others will find relevant to their own science education work.
NASA Astrophysics Data System (ADS)
Gulland, E.-K.; Veenendaal, B.; Schut, A. G. T.
2012-07-01
Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc) disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive learning resources and opportunities provided.
"Nuestra Tierra Dinamica" Global Climate Change STEM Education Fostering Environmental Stewardship
NASA Astrophysics Data System (ADS)
La Grave, M.; de Valenzuela, M.; Russell, R.
2012-12-01
CLUB ECO LÓGICO is a democratic and participatory program that provides active citizenship in schools and community, placing climate change into context for the Latino Community. The program's objectives focus on: 1. The Environment. Reducing the school and community impact on the environment through environmental footprint through stewardship actions. 2. Empowerment. Engaging participants through project and service learning and make decisions about how to improve their schools, their homes and their community's environment. 3. Community and Research Partnerships. Fostering collaborations with local community, stakeholders, government, universities, research organizations, and businesses that have expertise in environmental research, management, education and climate change. 4. Awareness. Increasing environmental and climate science knowledge of participants through STEM activities and hands-on access to technology. 5. Research and evaluation. Assessing the relevance of program activities through the engagement of the Latino community in planning and the effectiveness and impact of STEM activities through formative and summative evaluation. To address these objectives, the program has several inter related components in an after school setting: SUN EARTH Connections: Elementary (grades K to 2) students learn the basic climate change concepts through inquiry and hands on STEM activities. Bilingual 8 facilitators adapt relevant NASA educational resources for use in inquiry based, hands on activities. Drama and the arts provide unique experiences as well as play a key role in learning, participation and facilitation. GREEN LABS: Elementary students (grades 3 to 5) participate in stations where each Lab is staffed by at least two professionals: a College level fully bilingual Latin American Professional and a stakeholder representing either a research organization or other relevant environmental organization. Our current Green Lab themes include: Air, Soils, Water, Energy, Health, Waste and Communicating Science. Parental and Community Engagement: Family or Community Nights and community events showcasing student products, videos, and service learning projects in a bilingual format; and presentations by research scientists on climate and environmental science topics of interest to the Latino community. Our events have been highlighted on Univision television evening news, reaching Latinos across the state. Digital Story Telling: Our Video Lab involves Latino high school students who are trained as mentors, encouraged to research climate change topics, meet scientists and learn about video technology. By fall 2013, our HS Video Lab will mentor local middle school students. Throughout the year students take field trips to film and interview key scientists and educators. The project will share lessons learned concerning several issues: 1. What environmental and climate science issues are most relevant for Latinos; 2. What strategies are effective in engaging the Latino community in program planning and in engaging participation; 3. What approaches are effective in developing or adapting environmental and climate science education activities for Latino students and families; 4. How to develop effective partnerships with research and other environmental organizations; 5. How to develop culturally sensitive evaluation strategies.
OLIVER: an online library of images for veterinary education and research.
McGreevy, Paul; Shaw, Tim; Burn, Daniel; Miller, Nick
2007-01-01
As part of a strategic move by the University of Sydney toward increased flexibility in learning, the Faculty of Veterinary Science undertook a number of developments involving Web-based teaching and assessment. OLIVER underpins them by providing a rich, durable repository for learning objects. To integrate Web-based learning, case studies, and didactic presentations for veterinary and animal science students, we established an online library of images and other learning objects for use by academics in the Faculties of Veterinary Science and Agriculture. The objectives of OLIVER were to maximize the use of the faculty's teaching resources by providing a stable archiving facility for graphic images and other multimedia learning objects that allows flexible and precise searching, integrating indexing standards, thesauri, pull-down lists of preferred terms, and linking of objects within cases. OLIVER offers a portable and expandable Web-based shell that facilitates ongoing storage of learning objects in a range of media. Learning objects can be downloaded in common, standardized formats so that they can be easily imported for use in a range of applications, including Microsoft PowerPoint, WebCT, and Microsoft Word. OLIVER now contains more than 9,000 images relating to many facets of veterinary science; these are annotated and supported by search engines that allow rapid access to both images and relevant information. The Web site is easily updated and adapted as required.
Relevant Telecomputing Activities.
ERIC Educational Resources Information Center
Ross, Patricia
1995-01-01
Discusses the use of telecomputing in classrooms. Topics include telecomputing goals; use of the Internet; language arts and music FTP (file transfer protocol) sites; social studies FTP sites; science Telnet sites; social studies Telnet sites; skill building and learning processes; and instructional design. (LRW)
Teaching and Learning Science Through Song: Exploring the experiences of students and teachers
NASA Astrophysics Data System (ADS)
Governor, Donna; Hall, Jori; Jackson, David
2013-12-01
This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.
ERIC Educational Resources Information Center
Maralova, Tatyana P.; Filipenkova, Olesya G.; Galitskikh, Elena O.; Shulga, Tatiana I.; Sidyacheva, Natalya V.; Ovsyanik, Olga A.
2016-01-01
The relevance of the study is conditioned by the complexity of students' adaptation to learning at University due to the change of social environment, an alarming feelings about the precise self-determination, lack of knowledge in opportunities for self-expression in art, science, sport and public life. The purpose of the paper is to identify…
ERIC Educational Resources Information Center
Dagher, Zoubeida R.
2014-01-01
Using Mendel's laws as a case in point, the purpose of this paper is to bring historical and philosophical perspectives together to help students understand science as a human endeavor. Three questions as addressed: (1) how did the Mendelian scheme, principles, or facts become labeled as laws, (2) to what extent do Mendel's laws exhibit…
ERIC Educational Resources Information Center
Turner, Sarah; Ireson, Gren; Twidle, John
2010-01-01
The poor attitude of pupils towards science continues to be a topic of concern within secondary schools. This article considers research and highlights what we can learn as teachers to persevere in tackling the problem. Alongside this review, a case study was undertaken with a sample of year 7 pupils (ages 11-12) in English schools who reported…
NASA Astrophysics Data System (ADS)
Kumar, David Devraj; Dunn, Jessica
2018-03-01
Analysis of self-reflections of undergraduate education students in a project involving web-supported counterintuitive science demonstrations is reported in this paper. Participating students (N = 19) taught science with counterintuitive demonstrations in local elementary school classrooms and used web-based resources accessed via wireless USB adapters. Student reflections to seven questions were analyzed qualitatively using four components of reflection (meeting objectives/perception of learning, dynamics of pedagogy, special needs accommodations, improving teaching) deriving 27 initial data categories and 12 emergent themes. Overall the undergraduates reported meeting objectives, engaging students in pedagogically relevant learning tasks including, providing accommodations to students with special needs, and gaining practice and insight to improve their own teaching. Additional research is needed to arrive at generalizable findings concerning teaching with web-supported counterintuitive science demonstrations in elementary classrooms.
Learning physical descriptors for materials science by compressed sensing
NASA Astrophysics Data System (ADS)
Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias
2017-02-01
The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.
NASA Astrophysics Data System (ADS)
Huffman, L. T.; Dahlman, L.; Frisch-Gleason, R.; Harwood, D.; Pound, K.; Rack, F.; Riesselman, C.; Trummel, E.; Tuzzi, E.; Winter, D.
2008-12-01
Antarctica's harsh environment and the compelling story of living and working there, provides the backdrop for hooking the interest of young learners on science research and the nature of science. By using the adventure stories of today's researcher-explorers, teachers accompanying the ANDRILL team have taken the technical science of drilling rock cores to understand the history of climate change and the advance and retreat of the Antarctic ice sheet, and translated it for non-technical audiences from K-12 school children, to adult community groups. In order to understand the important issues surrounding global climate change, members of the public need access to accurate and relevant information, high quality educational materials, and a variety of learning opportunities in different learning environments. By taking lessons learned from early virtual polar adventure learning expeditions like Will Steger's Trans-Antarctic Expedition, coupled with educators-in-the-field programs like TEA (Teachers Experiencing Antarctica and the Arctic), ARMADA and Polar Trec, ANDRILL's Education and Outreach Program has evolved into successful and far-reaching integrated education projects including 1) the ARISE (ANDRILL Research Immersion for Science Educators) Program, 2) Climate Change Student Summits, 3) the development of Flexhibit (flexible exhibit) teaching resources, 4) virtual online learning communities, and 5) partnering young researchers with teachers and classrooms. Formal evaluations indicate lasting interest in science studies on the part of students and an increase in teachers' scientific background knowledge.
The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum
NASA Astrophysics Data System (ADS)
Chue, Shien; Lee, Yew-Jin
2013-12-01
When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.
NASA Astrophysics Data System (ADS)
Minger, Mark Austin
Having fears and frustrations while studying science topics can lead to science anxiety for some individuals. For those who experience science learning anxiety, the reality is often poor performance, lowered self-esteem, anger, and avoidance of further science courses. Using an interpretive approach, this study captures the experiences of five self-reported science anxious students as they participate in an interdisciplinary science course at the University of Minnesota. A series of three in-depth interviews were conducted with five students who were enrolled in the "Our Changing Planet" course offered at the University of Minnesota. The interviews were transcribed verbatim, coded, and analyzed thematically. Four major themes emerged from the interviews. Two of the themes involve the realities of being a science anxious student. These focus on participants' experiences of feeling frustrated, anxious and incompetent when studying both math and science; and the experiences of trying to learn science content that does not seem relevant to them. The last two themes highlight the participants' perceptions of their experiences during the "Our Changing Planet" course, including how the course seemed different from previous science courses as well as their learning experiences in cooperative groups. After presenting the themes, with supporting quotations, each theme is linked to the related literature. The essence of the participants' science anxiety experiences is presented and practical implications regarding science anxious students are discussed. Finally, insights gained and suggestions for further research are provided.
NASA Astrophysics Data System (ADS)
Hariharan, Joya Reena
The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading skills rather than the internalization of knowledge or influencing attitudes. An interesting finding is that GED science materials do attend to the relevance of science in everyday life but students' appreciation of this depends on the strategies employed.
Metabolomics from the Lab to the Field: Lessons Learned Along the Way
Use of metabolomics in laboratory studies for chemical toxicity evaluation is fast becoming an established technique in environmental science, displaying excellent sensitivity, physiological relevance, and providing valuable information regarding toxic mode(s)-of-action. These qu...
Using NLM exhibits and events to engage library users and reach the community.
Auten, Beth; Norton, Hannah F; Tennant, Michele R; Edwards, Mary E; Stoyan-Rosenzweig, Nina; Daley, Matthew
2013-01-01
In an effort to reach out to library users and make the library a more relevant, welcoming place, the University of Florida's Health Science Center Library hosted exhibits from the National Library of Medicine's (NLM) Traveling Exhibition Program. From 2010 through 2012, the library hosted four NLM exhibits and created event series for each. Through reflection and use of a participant survey, lessons were learned concerning creating relevant programs, marketing events, and forming new partnerships. Each successive exhibit added events and activities to address different audiences. A survey of libraries that have hosted NLM exhibits highlights lessons learned at those institutions.
Using NLM Exhibits and Events to Engage Library Users and Reach the Community
Auten, Beth; Norton, Hannah F.; Tennant, Michele R.; Edwards, Mary E.; Stoyan-Rosenzweig, Nina; Daley, Matthew
2013-01-01
In an effort to reach out to library users and make the library a more relevant, welcoming place, the University of Florida’s Health Science Center Library hosted exhibits from the National Library of Medicine’s (NLM) Traveling Exhibition Program. From 2010 through 2012, the library hosted four NLM exhibits and created event series for each. Through reflection and use of a participant survey, lessons were learned concerning creating relevant programs, marketing events, and forming new partnerships. Each successive exhibit added events and activities to address different audiences. A survey of libraries that have hosted NLM exhibits highlights lessons learned at those institutions. PMID:23869634
NASA Astrophysics Data System (ADS)
Gensemer, Patricia S.
The purpose of this qualitative study was to learn from Hispanic nursing students regarding their experiences as participants in science learning. The participants were four female nursing students of Hispanic origin attending a small, rural community college in a southeastern state. The overarching question of this study was "In what ways does being Hispanic mediate the science-related learning and practices of nursing students?" The following questions more specifically provided focal points for the research: (1) In what ways do students perceive being Hispanic as relevant to their science education experiences? (a) What does it mean to be Hispanic in the participants' home community? (b) What has it meant to be Hispanic in the science classroom? (2) In what ways might students' everyday knowledge (at home) relate to the knowledge or ways of knowing they practice in the nursing school community? The study took place in Alabama, which offered a rural context where Hispanic populations are rapidly increasing. A series of four interviews was conducted with each participant, followed by one focus group interview session. Results of the study were re presented in terms of portrayals of participant's narratives of identity and science learning, and then as a thematic interpretation collectively woven across the individuals' narratives. Portraitures of each participant draw upon the individual experiences of the four nursing students involved in this study in order to provide a beginning point towards exploring "community" as both personal and social aspects of science practices. Themes explored broader interpretations of communities of practice in relation to guiding questions of the study. Three themes emerged through the study, which included the following: Importance of Science to Nurses, Crossing with a Nurturing and Caring Identity, and Different Modes of Participation. Implications were discussed with regard to participation in a community of practice and rethinking scientific literacy in terms of different modes of participation that are brought to the community of science learning.
NASA Astrophysics Data System (ADS)
Kelley, Sybil Schantz
This mixed-methods study combined pragmatism, sociocultural perspectives, and systems thinking concepts to investigate students' engagement, thinking, and learning in science in an urban, K-8 arts, science, and technology magnet school. A grant-funded school-university partnership supported the implementation of an inquiry-based science curriculum, contextualized in the local environment through field experiences. The researcher worked as co-teacher of 3 sixth-grade science classes and was deeply involved in the daily routines of the school. The purposes of the study were to build a deeper understanding of the complex interactions that take place in an urban science classroom, including challenges related to implementing culturally-relevant instruction; and to offer insight into the role educational systems play in supporting teaching and learning. The central hypothesis was that connecting learning to meaningful experiences in the local environment can provide culturally accessible points of engagement from which to build science learning. Descriptive measures provided an assessment of students' engagement in science activities, as well as their levels of thinking and learning throughout the school year. Combined with analyses of students' work files and focus group responses, these findings provided strong evidence of engagement attributable to the inquiry-based curriculum. In some instances, degree of engagement was found to be affected by student "reluctance" and "resistance," terms defined but needing further examination. A confounding result showed marked increases in thinking levels coupled with stasis or decrease in learning. Congruent with past studies, data indicated the presence of tension between the diverse cultures of students and the mainstream cultures of school and science. Findings were synthesized with existing literature to generate the study's principal product, a grounded theory model representing the complex, interacting factors involved in teaching and learning. The model shows that to support learning and to overcome cultural tensions, there must be alignment among three main forces or "causal factors": students, teaching, and school climate. Conclusions emphasize system-level changes to support science learning, including individualized support for students in the form of differentiated instruction; focus on excellence in teaching, particularly through career-spanning professional support for teachers; and attention to identifying key leverage points for implementing effective change.
Language used in interaction during developmental science instruction
NASA Astrophysics Data System (ADS)
Avenia-Tapper, Brianna
The coordination of theory and evidence is an important part of scientific practice. Developmental approaches to instruction, which make the relationship between the abstract and the concrete a central focus of students' learning activity, provide educators with a unique opportunity to strengthen students' coordination of theory and evidence. Therefore, developmental approaches may be a useful instructional response to documented science achievement gaps for linguistically diverse students. However, if we are to leverage the potential of developmental instruction to improve the science achievement of linguistically diverse students, we need more information on the intersection of developmental science instruction and linguistically diverse learning contexts. This manuscript style dissertation uses discourse analysis to investigate the language used in interaction during developmental teaching-learning in three linguistically diverse third grade classrooms. The first manuscript asks how language was used to construct ascension from the abstract to the concrete. The second manuscript asks how students' non-English home languages were useful (or not) for meeting the learning goals of the developmental instructional program. The third manuscript asks how students' interlocutors may influence student choice to use an important discourse practice--justification--during the developmental teaching-learning activity. All three manuscripts report findings relevant to the instructional decisions that teachers need to make when implementing developmental instruction in linguistically diverse contexts.
Bergman, Esther M; de Bruin, Anique B H; Vorstenbosch, Marc A T M; Kooloos, Jan G M; Puts, Ghita C W M; Leppink, Jimmie; Scherpbier, Albert J J A; van der Vleuten, Cees P M
2015-08-15
It is generally assumed that learning in context increases performance. This study investigates the relationship between the characteristics of a paper-patient context (relevance and familiarity), the mechanisms through which the cognitive dimension of context could improve learning (activation of prior knowledge, elaboration and increasing retrieval cues), and test performance. A total of 145 medical students completed a pretest of 40 questions, of which half were with a patient vignette. One week later, they studied musculoskeletal anatomy in the dissection room without a paper-patient context (control group) or with (ir)relevant-(un)familiar context (experimental groups), and completed a cognitive load scale. Following a short delay, the students completed a posttest. Surprisingly, our results show that students who studied in context did not perform better than students who studied without context. This finding may be explained by an interaction of the participants' expertise level, the nature of anatomical knowledge and students' approaches to learning. A relevant-familiar context only reduced the negative effect of learning the content in context. Our results suggest discouraging the introduction of an uncommon disease to illustrate a basic science concept. Higher self-perceived learning scores predict higher performance. Interestingly, students performed significantly better on the questions with context in both tests, possibly due to a 'framing effect'. Since studies focusing on the physical and affective dimensions of context have also failed to find a positive influence of learning in a clinically relevant context, further research seems necessary to refine our theories around the role of context in learning.
Classification-free threat detection based on material-science-informed clustering
NASA Astrophysics Data System (ADS)
Yuan, Siyang; Wolter, Scott D.; Greenberg, Joel A.
2017-05-01
X-ray diffraction (XRD) is well-known for yielding composition and structural information about a material. However, in some applications (such as threat detection in aviation security), the properties of a material are more relevant to the task than is a detailed material characterization. Furthermore, the requirement that one first identify a material before determining its class may be difficult or even impossible for a sufficiently large pool of potentially present materials. We therefore seek to learn relevant composition-structure-property relationships between materials to enable material-identification-free classification. We use an expert-informed, data-driven approach operating on a library of XRD spectra from a broad array of stream of commerce materials. We investigate unsupervised learning techniques in order to learn about naturally emergent groupings, and apply supervised learning techniques to determine how well XRD features can be used to separate user-specified classes in the presence of different types and degrees of signal degradation.
ERIC Educational Resources Information Center
Beigman Klebanov, Beata; Burstein, Jill; Harackiewicz, Judith M.; Priniski, Stacy J.; Mulholland, Matthew
2017-01-01
The integration of subject matter learning with reading and writing skills takes place in multiple ways. Students learn to read, interpret, and write texts in the discipline-relevant genres. However, writing can be used not only for the purposes of practice in professional communication, but also as an opportunity to reflect on the learned…
Science and Technology Education in the STES Context in Primary Schools: What Should It Take?
NASA Astrophysics Data System (ADS)
Zoller, Uri
2011-10-01
Striving for sustainability requires a paradigm shift in conceptualization, thinking, research and education, particularly concerning the science-technology-environment-society (STES) interfaces. Consequently, `STES literacy' requires the development of students' question asking, critical, evaluative system thinking, decision making and problem solving capabilities, in this context, via innovative implementable higher-order cognitive skills (HOCS)-promoting teaching, assessment and learning strategies. The corresponding paradigms shift in science and technology education, such as from algorithmic teaching to HOCS-promoting learning is unavoidable, since it reflects the social pressure, worldwide, towards more accountable socially- and environmentally-responsible sustainable development. Since most of the STES- and, recently STEM (science-technology-engineering-mathematics)-related research in science education has been focused on secondary and tertiary education, it is vital to demonstrate the relevance of this multifaceted research to the science and technology teaching in primary schools. Our longitudinal STES education-related research and curriculum development point to the very little contribution, if any, of the traditional science teaching to "know", to the development of students' HOCS capabilities. On the other hand, there appears to be a `general agreement', that the contemporary dominant lower-order cognitive skills (LOCS) teaching and assessment strategies applied in science and technology education are, in fact, restraining the natural curiosity and creativity of primary school (and younger?) pupils/children. Since creative thinking as well as evaluative system thinking, decision making, problem solving and … transfer constitute an integral part of the HOCS conceptual framework, the appropriateness of "HOCS promoting" teaching, and the relevance of science and technology, to elementary education in the STES context, is apparent. Therefore, our overriding guiding purpose was to provide any evidence-based research to the vital LOCS-to-HOCS paradigm shift in STES education. The findings of, and conclusions derived from our longitudinal research on HOCS development within STES-oriented and traditional education, suggest that both—science and technology education (STE) and STES education—are relevant to primary school education. Based on this, what it should take to insure success in this context, is thoroughly discussed.
Information empowerment: predeparture resource training for students in global health.
Rana, Gurpreet K
2014-04-01
The Taubman Health Sciences Library (THL) collaborates with health sciences schools to provide information skills instruction for students preparing for international experiences. THL enhances students' global health learning through predeparture instruction for students who are involved in global health research, clinical internships, and international collaborations. This includes teaching international literature searching skills, providing country-specific data sources, building awareness of relevant mobile resources, and encouraging investigation of international news. Information skills empower creation of stronger global partnerships. Use of information resources has enhanced international research and training experiences, built lifelong learning foundations, and contributed to the university's global engagement. THL continues to assess predeparture instruction.
RITES: Online (Reaching In-Service Teachers With Earth Sciences Online)
NASA Astrophysics Data System (ADS)
Baptiste, H.
2002-12-01
The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believe that the power of technology could not be effectively utilized unless it is grounded in new models of teaching and learning based on a student centered and project based curriculum, that increases opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believe the aforementioned ideas and points to be equally true for the inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses are delivered by distance learning via the university WebCt distance education system. Teachers are encouraged to use technology in their classrooms and to record their students' involvement in science activities with digital cameras. Teachers involved in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight the teachers in the roles of designer, researcher, and collaborator. As a result of our courses our teachers attain the following positive outcomes: 1) Teachers experience the inquiry approach to learning about the spheres of our earth. 2) Teachers become confident in using technology. 3) Teachers learn to work cooperatively in-groups and understand what their own students must feel. 4) Teachers find ways to obtain dynamic professional development and not leave their classrooms or homes. 5) Teachers develop relationships with other teachers that have an interest in teaching science and a learning community evolves.
NASA Astrophysics Data System (ADS)
Goodnough, Karen Catherine
2000-10-01
Since the publication of Frames of Mind: The Theory in Practice, multiple intelligences, theory (Gardner, 1983) has been used by practitioners in a variety of ways to make teaching and learning more meaningful. However, little attention has been focused on exploring the potential of the theory for science teaching and learning. Consequently, this research study was designed to: (1) explore Howard Gardner's theory of multiple intelligences (1983) and its merit for making science teaching and learning more meaningful; (2) provide a forum for teachers to engage in critical self-reflection about their theory and practice in science education; (3) study the process of action research in the context of science education; and (4) describe the effectiveness of collaborative action research as a framework for teacher development and curriculum development. The study reports on the experiences of four teachers (two elementary teachers, one junior high teacher, and one high school teacher) and myself, a university researcher-facilitator, as we participated in a collaborative action research project. The action research group held weekly meetings over a five-month period (January--May, 1999). The inquiry was a qualitative case study (Stake, 1994) that aimed to understand the perspectives of those directly involved. This was achieved by using multiple methods to collect data: audiotaped action research meetings, fieldnotes, semi-structured interviews, journal writing, and concept mapping. All data were analysed on an ongoing basis. Many positive outcomes resulted from the study in areas such as curriculum development, teacher development, and student learning in science. Through the process of action research, research participants became more reflective about their practice and thus, enhanced their pedagogical content knowledge (Shulman, 1987) in science. Students became more engaged in learning science, gained a greater understanding of how they learn, and experienced a science curriculum that was more relevant and personalized. In addition, the action research process provided a feasible and effective forum for both curriculum development and professional development.
Perceived relevance of oral biology by dental students.
Scheven, B A A
2012-02-01
This study investigated the perception that dental students have regarding the relevance of oral biology (OB) to dental education and dentistry in general. Moreover, this study analysed students' attitude towards OB learning approaches and resources. A questionnaire based on a Likert scale was used to survey pre-clinical/second (BDS2)- and final/fifth (BDS5)-year dental students at the School of Dentistry of the University of Birmingham (United Kingdom). In comparison, a small group of postgraduate specialist registrars were surveyed to evaluate the attitudes of practising dentists. The results show that all study groups expressed a high level of perceived relevance of OB to dentistry. Students' perception of OB for dental education, clinical training and practice also scored high. More than 40% of undergraduate students and about 55% of the postgraduates indicated a perceived change in their attitude towards OB with time characterised by increased appreciation of the subject. Lectures were considered as the most important teaching approach, whereas 'group poster projects' ranked lowest. Of the different study resources, lecture handouts received the overall highest importance score. The results indicate that dental students considered OB relevant for dental education and dentistry and suggest a positive attitude towards the subject. This study also suggested that dental students prefer teacher-centred/led teaching rather than student-directed learning of OB. The article addresses the role of OB and science-related research projects within the dental curriculum and discusses that close integration of basic sciences with dental education may enrich dental education and overall learning experience. © 2011 John Wiley & Sons A/S.
Krause, Mark A
2015-07-01
Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.
Seos - EARSEL'S Project on Science Education Through Earth Observation for High Schools
NASA Astrophysics Data System (ADS)
Reuter, R.
2011-09-01
SEOS is an initiative for using remote sensing in science education curricula in high schools funded under the 6th Framework Programme of the European Commission (EC). Eleven partners from several European countries, in cooperation with the European Space Agency (ESA) and teachers from European high schools, created e-learning tutorials for science students in high schools. The tutorials cover many disciplines such as physics, biology, geography, mathematics and engineering, emphasising the interdisciplinary character of remote sensing. They are the core element of the SEOS Learning Management System, allowing teachers to create their own courses, to distribute already available or new worksheets to the students for homework and to collect the results. Forums are available for teachers, students and other users to exchange information and discuss topics relevant for their study.
The effects of a problem-based learning digital game on continuing motivation to learn science
NASA Astrophysics Data System (ADS)
Toprac, Paul K.
The purpose of this study was to determine whether playing a problem-based learning (PBL) computer game, Alien Rescue III, would promote continuing motivation (CM) to learn science, and to explore the possible sources of CM. Another goal was to determine whether CM and interest to learn science in the classroom were identical constructs. CM was defined as the pursuit of academic learning goals in noninstructional contexts that were initially encountered in the classroom. Alien Rescue was played for a total of 9 hours in the seventh grade of a private middle school with 44 students, total, participating. The study used a design-based research approach that attempted to triangulate quantitative and qualitative methods. A science knowledge test, and two self-report questionnaires---one measuring motivation and one measuring CM---were administered preintervention, postintervention, and follow-up. Qualitative data was also collected, including student interviews, classroom observations, written responses, and a science teacher interview. Repeated measures ANOVAs were used to determine any significant changes in scores. A multiple regression analysis was used to explore whether a model of CM could be determined using the Eccles' expectancy-value achievement motivation model. The constant comparative method was used to obtain relevant information from the qualitative data. Based on contradictory quantitative and qualitative findings, results were mixed as to whether students exhibited an increase in CM to learn space science. Students continued to freely engage Alien Rescue during the mid-class break, but this does not strictly adhere to the definition of CM. However, many students did find space science more interesting than anticipated and developed increased desire to learn more in class, if not outside of class. Results also suggest that CM and interest in learning more in class are separate but related constructs. Finally, no satisfactory model emerged from the multiple regression analysis but based on students' interviews, continuing interest to learn is influenced by all the components of Eccles' expectancy-value model. Response effects may have confounded quantitative results. Discussion includes challenges of researching in classrooms, CM, and Eccles' motivational model, and the tension between PBL and game based approaches. Future design recommendations and research directions are provided.
NASA Astrophysics Data System (ADS)
Reuter, Jamie M.
The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to accurately recall initial predictions, as well as discriminate between the outcome of a scientific manipulation and their original predictions (i.e., to determine whether one's predictions were confirmed). Finally, this dissertation also explores the social context of learning science with peers in the preschool classroom. Due to little prior research in this area, it is currently unclear whether and how preschool children may benefit from working with peers on science activities in the classroom. This work aims to examine preschoolers' collaboration on a science learning activity, as well as the developmental function for such collaborative skills over the preschool years.
Evolving Roles For Teaching Assistants In Introductory Courses
NASA Astrophysics Data System (ADS)
Dunbar, R. W.; Egger, A. E.; Schwartz, J. K.
2008-12-01
As we bring new research-based learning approaches, curricular innovations, and student engagement practices into the introductory science classroom, expectations of teaching assistants (TAs) should have, and have, changed. Similarly, the 21st century teaching assistant has different expectations of us. Maintaining relevance in this context means bringing TAs into an integrated teaching team that supports effective learning for students and provides structured professional development opportunities for TAs. A number of support efforts on our campus, with counterparts at many other universities, seek to optimize the instructional impact of faculty and teaching assistants, thus opening the door to enhanced student engagement (e.g. the quality of effort students put forth, their persistence in science and/or engineering courses, and their perception of scientific relevance in everyday life). Among these efforts, School of Earth Sciences course development TAs work 1:1 in advance of the term with introductory course faculty to design exercises and course materials that meet clearly articulated student learning goals or pedagogical challenges. Throughout the process, TAs are mentored by the faculty as well as science pedagogy experts. Initially funded by a major teaching award, the School is now moving to institutionalize this successful program which has broadened the definition of the TA role. Another area of optimization, reflecting Shulman's concept of pedagogical content knowledge, is our campus mandate that TA development take place within a departmental, as well as general, context. Both Chemistry and Physics expect introductory course TAs to lead interactive, guided-inquiry or tutorial-style sections. Integrating these sections with lecture and positively reinforcing course goals requires TA buy-in and a set of pedagogical facilitation skills cultivated through course-specific training and active mentoring while teaching. To better support the mentoring process in these and other departments, the MinT (Mentors in Teaching) program provides resources and a learning community for advanced graduate students who mentor TAs. There is clearly more to do, but we have come a long way from sink or swim toward an enriched infrastructure of support for teaching and learning in the introductory science classroom.
Attitudes and intellectual development of further education science students
NASA Astrophysics Data System (ADS)
El-Farargy, Nancy Ibrahim
The world of teaching and learning in the sciences in the Further Education (FE) sector is relatively under-researched. This study, across Scottish FE colleges, has sought to define some of the key landmarks in the area of the sciences, looking specifically at the students and their college experiences by means of surveys, interviews and curriculum intervention. The study started from the issue, observed personally, of students finding the learning of chemistry for a nursing course as being problematic. The main aim was to explore the key issues of science in FE, focussing on problems and successes. The attitudes, intellectual development and self perceptions of students have all been considered. The study explores the attitudes and self perceptions of over 800 learners studying the sciences at ten Scottish colleges. Demographic data, prior learning experiences and current learning attitudes to science and learning were obtained by means of questionnaires and interviews. Intellectual development data was obtained using an adaptation of the Perry Scheme of Intellectual Development. Further interview data were obtained with participating students at various stages of their learning experiences. The results show that, in general, students have varied backgrounds, aspirations and reasons for learning in FE. The learning experiences obtained at college were, in general, viewed to be very positive. In addition, the participating lecturers in Further Education college classes were viewed in a very positive light. In most cases, attitudes towards students learning experiences at college were viewed more positively than at school level, this being a greater emphasis for biology than chemistry. In addition, the role of the teacher at school level could be seen clearly in developing positive attitudes to science. In relating this back to school experience, it was found that those who had positive attitudes to science at school level, correlated more with intentions of studying a specialist science at university, thus illustrating the importance of how studies in science is generated at an early age. In looking at learning in terms of the Perry Scheme, students in general had neutral to developed views towards themselves, the lecturer, assessment and towards the nature of scientific knowledge. The study highlighted that, in certain cases, assessment was perceived to have a more dualistic role and in general, was not age related. In looking at the relevancy of the college science lessons, chemistry was sometimes viewed as being irrelevant and difficult for some students in terms of their goals for the Abstract future. In light of this, it was decided to carry out an applications-led style chemistry curriculum intervention that was able to highlight the importance of chemistry in the context of their lives and needs. This was done by relating the material, wherever possible to prior knowledge held by the students from their school experiences, real life working practices or from their life experiences in general. The order, presentation and sequencing of materials were changed in order to reduce the perceived load on the working memory. In this manner, the learner can focus on important essential material without absorbing irrelevant material. It was found that the lecturer and participating students gave universal support to the new materials and teaching style. Students felt that the new materials were relevant and meaningful to their studies and life and felt it was a big difference from learning chemistry at school. In general, the majority of students were looking forward to more studies at university level. In conclusion, students perceive learning science in a further education college in a positive light. There may however, be a need to rethink the role of assessment and the curriculum style being offered. The study concluded by suggesting some of the main issues needing further consideration: issues related to working memory capacity as a rate determining step in learning, teaching those from a wide diversity of background in the sciences, the need for significant curriculum revisions and the greater use of application- led approaches, and the need to share research findings with lecturers. All of which are considered to be important for high quality learning.
NASA Astrophysics Data System (ADS)
Anderson, O. Roger
The rate of information processing during science learning and the efficiency of the learner in mobilizing relevant information in long-term memory as an aid in transmitting newly acquired information to stable storage in long-term memory are fundamental aspects of science content acquisition. These cognitive processes, moreover, may be substantially related in tempo and quality of organization to the efficiency of higher thought processes such as divergent thinking and problem-solving ability that characterize scientific thought. As a contribution to our quantitative understanding of these fundamental information processes, a mathematical model of information acquisition is presented and empirically evaluated in comparison to evidence obtained from experimental studies of science content acquisition. Computer-based models are used to simulate variations in learning parameters and to generate the theoretical predictions to be empirically tested. The initial tests of the predictive accuracy of the model show close agreement between predicted and actual mean recall scores in short-term learning tasks. Implications of the model for human information acquisition and possible future research are discussed in the context of the unique theoretical framework of the model.
Portrait of a science teacher as a bricoleur: A case study from India
NASA Astrophysics Data System (ADS)
Sharma, Ajay
2008-12-01
This paper presents a case study of science teaching in an eighth grade school classroom in India. It comes out of a larger ethnographic study done in 2005 that looked at how science was taught and learned in a rural government run middle school in the state of Madhya Pradesh in India. Subscribing to a sociocultural perspective, the paper presents a narrative account of how a science teacher negotiated and made use of the existing discourses that influenced his teaching practice to construct learning experiences for his students. It is a portrait of him as a bricoleur, engaged in making-do with what is of available to conform to prescriptive discursive norms as well as engage in situated, contingent and collaborative pedagogical improvisations with his students. Through a discursive analysis of Mr. Raghuvanshi's teaching practice, this paper presents his bricolage as a feature of everyday sociocultural practices, and as an instance of glocalization of decontextualized school science discourse. It also offers a case for creation and strengthening of material conditions that support enactment of teacher agency for construction of meaningful and relevant learning experiences for students. [InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.
NASA Astrophysics Data System (ADS)
Sparrow, E. B.
2003-12-01
The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole classes of students have engaged in and contributed data to science investigations. In Alaska, classes and individual students have conducted their own inquiry studies and have successfully presented their investigations and competed at science fairs and statewide high school science symposium and international conferences. Two students presented their research investigations at the GLOBE Learning Expedition in Croatia and four students presented their study at the GLOBE Arctic POPs Conference in Sweden. These students increased not only their understanding and knowledge of science but also in appreciation of people in other countries and their cultures. Friendships have also bloomed. The learning community in Alaska has expanded to include family and community members including Native elders (using OLCG), teachers, scientists and students from other countries. The following challenges remain: 1) getting funds to be able to provide GLOBE equipment and continuous support to GLOBE teachers and students throughout the year, 2) reaching teachers and students in remote areas, 3) rapid teacher turn-over rate in rural areas, 4) using inquiry-based pedagogies during GLOBE professional development workshops including the opportunity for teacher participants to conduct their own inquiries during the workshop, 5) time, school curriculum and national education requirement constraints, 6) involving school administrators, and more local scientists and community members, and 7) providing culturally relevant and responsive science education programs and life-long learning communities.
Transforming the Master's Degree in Human Development and Family Science
ERIC Educational Resources Information Center
Benson, Mark J.; Allen, Katherine R.; Few, April L.; Roberto, Karen A.; Blieszner, Rosemary; Meszaros, Peggy S.; Henderson, Tammy L.
2006-01-01
This study chronicles the transformation of a master's program from a traditional degree format to a more integrated, flexible, efficient, and relevant approach. The transformative strategies involve cohort learning, creative concentrations, portfolio documentation, and outreach presentation. Through integrating resources and goals, the new…
How Can Brain Research Inform Academic Learning and Instruction?
ERIC Educational Resources Information Center
Mayer, Richard E.
2017-01-01
This paper explores the potential of neuroscience for improving educational practice by describing the perspective of educational psychology as a linking science; providing historical context showing educational psychology's 100-year search for an educationally relevant neuroscience; offering a conceptual framework for the connections among…
Social and Environmental Justice in the Chemistry Classroom
ERIC Educational Resources Information Center
Lasker, Grace A.; Mellor, Karolina E.; Mullins, Melissa L.; Nesmith, Suzanne M.; Simcox, Nancy J.
2017-01-01
Despite advances in active learning pedagogy and other methods designed to increase student engagement in the chemistry classroom, retention and engagement issues still persist, particularly with respect to women and minorities underrepresented in STEM (science, technology, engineering, and mathematics) programs. Relevancy also remains elusive in…
A Space-Based Learning Service for Schools Worldwide
NASA Astrophysics Data System (ADS)
White, Norman A.; Gibson, Alan
2002-01-01
This paper outlines a scheme for international collaboration to enrich the use of space in school education, to improve students' learning about science and related subjects and to enhance the continuity of science-related studies after the age of 16. Guidelines are presented for the design of an on-line learning service to provide schools worldwide with:- interactive curriculum-related learning resources for teaching about space and through - access to a purpose-designed education satellite or satellites; - opportunities for hands-on work by students in out-of-school hours; - news about space developments to attract, widen and deepen initial interest among teachers - support services to enable teachers to make effective use of the learning service. The Learning Service is the product of almost twenty years of experience by a significant number of UK schools in experimenting with, and in using, satellites and space to aid learning; and over four years of study and development by the SpaceLink Learning Foundation - a private-sector, not- for-profit UK registered charity, which is dedicated to help in increasing both the supply of scientists and engineers and the public understanding of science. This initiative provides scope for, and could benefit from, the involvement of relevant/interested organisations drawn from different countries. The Foundation would be ready, from its UK base, to be among such a group of initiating organisations.
NASA Astrophysics Data System (ADS)
Monteiro, Anna Karina
Research acknowledges that if students are to be successful science, they must learn to navigate and cross cultural borders that exist between their own cultures and the subculture of science. This dissertation utilized a mixed methods approach to explore how inservice science teachers working in urban schools construct their ideas of and apply the concepts about the culture of science and cultural border crossing as relevant to the teaching and learning of science. The study used the lenses of cultural capital, social constructivism, and cultural congruency in the design and analysis of each of the three phases of data collection. Phase I identified the perspectives of six inservice science teachers on science culture, cultural border crossing, and which border crossing methods, if any, they used during science teaching. Phase II took a dialectical approach as the teachers read about science culture and cultural border crossing during three informal professional learning community meetings. This phase explored how teachers constructed their understanding of cultural border crossing and how the concept applied to the teaching and learning of science. Phase III evaluated how teachers' perspectives changed from Phase I. In addition, classroom observations were used to determine whether teachers' practices in their science classrooms changed from Phase I to Phase III. All three phases collected data through qualitative (i.e., interviews, classroom observations, and surveys) and quantitative (Likert items) means. The findings indicated that teachers found great value in learning about the culture of science and cultural border crossing as it pertained to their teaching methods. This was not only evidenced by their interviews and surveys, but also in the methods they used in their classrooms. Final conclusions included how the use of student capital resources (prior experiences, understandings and knowledge, ideas an interests, and personal beliefs), if supported by science practices and skills increases student cultural capital. With a greater cultural capital, the students experience cultural congruency between their cultures and the culture of science, enabling them to cross such borders in the science classroom. The implications such findings have on teacher training programs and professional development are discussed.
ERIC Educational Resources Information Center
Lee, Ahlam
2017-01-01
Background/Context: Because of the growing concern over the decline of bachelor degree recipients in the disciplines of science, technology, engineering, and math (STEM) in the U.S., several studies have been devoted to identifying the factors that affect students' STEM major choices. A majority of these studies have focused on factors relevant to…
Improving Health with Science: Exploring Community-Driven Science Education in Kenya
NASA Astrophysics Data System (ADS)
Leak, Anne Emerson
This study examines the role of place-based science education in fostering student-driven health interventions. While literature shows the need to connect science with students' place and community, there is limited understanding of strategies for doing so. Making such connections is important for underrepresented students who tend to perceive learning science in school as disconnected to their experiences out of school (Aikenhead, Calabrese-Barton, & Chinn, 2006). To better understand how students can learn to connect place and community with science and engineering practices in a village in Kenya, I worked with community leaders, teachers, and students to develop and study an education program (a school-based health club) with the goal of improving knowledge of health and sanitation in a Kenyan village. While students selected the health topics and problems they hoped to address through participating in the club, the topics were taught with a focus on providing opportunities for students to learn the practices of science and health applications of these practices. Students learned chemistry, physics, environmental science, and engineering to help them address the health problems they had identified in their community. Surveys, student artifacts, ethnographic field notes, and interview data from six months of field research were used to examine the following questions: (1) In what ways were learning opportunities planned for using science and engineering practices to improve community health? (2) In what ways did students apply science and engineering practices and knowledge learned from the health club in their school, homes, and community? and (3) What factors seemed to influence whether students applied or intended to apply what they learned in the health club? Drawing on place-based science education theory and community-engagement models of health, process and structural coding (Saldana, 2013) were used to determine patterns in students' applications of their learning. Students applied learning across health topics they identified as interesting and relevant to their community: hand-washing, disease-prevention, first aid, balanced diet, and water. Students' application of their learning was influenced by internal, external, and relational factors with the community, science education factors, and cultural factors. Some factors, which may have been barriers for students to apply their learning, were turned into supports via bridging strategies used by the students and teacher. Bridging strategies allowed students to connect between their place and science in meaningful ways in the classroom. These strategies were critical in bringing students' place into the classroom and enabling students to apply their learning toward place. The model resulting from the identified factors informed existing models for sociocultural considerations in community-based health interventions. The community-engagement applied practices of science (CAPS) model serves to conceptualize findings in this study and informs an integrated method for using community-engagement education as a stimuli for students to become cultural brokers and improve community health. In addition to focusing on teaching practices of science and encouraging students to apply their learning, this research suggests that bridging strategies can be used to connect science with a students' place in meaningful ways that serve both students and their local communities.
NASA Astrophysics Data System (ADS)
Powers, S. E.
2001-12-01
An NSF-funded project-based program was implemented by Clarkson University in 2000 to increase the interest and knowledge of middle school students in science, math and technology through the solution of an environmental problem that is relevant to their local school community. Clarkson students developed curricula for 7th and 8th grade science and technology classes and then worked with the middle school students throughout the year to reduce to transform solid waste into healthy soil for plant growth. The solution to this problem provided a vehicle to teach fundamental science and math content as well as the process of doing science and solving problems. Placing college science and engineering students in the classroom proved to be a great mechanism for engaging students in science topics and providing mentoring experiences that differ greatly from those that a practicing professional can provide. It is clear, however, that the students must be well prepared for this experience to maximize the benefits of university - school district partnership programs. The objective of this presentation will be to describe the training program that has been developed to prepare Clarkson students to work effectively in middle school classrooms. The Clarkson students are trained for their classroom experiences during the summer before they enter the classroom. They receive three credits for the training, curriculum development, and teaching efforts. It is expected that the students have the necessary background in science and technology to teach themselves the content and environmental relevance of the problem they will be teaching. Lectures and workshops focus on how to transform this knowledge into a project-based curriculum that meets the needs of the teachers, while also exciting the students. Lecture/workshops include: team work; components of an effective class and teacher; project planning and management; problem solving process; inquiry based learning, deductive/inductive learning; creating unit/lesson plan; defining learning objectives; incorporating mentoring into program; NYS standards and science exam; and, assessment techniques. Journals are used to encourage the fellows to reflect on their learning and own educational experiences. An evaluation of the program by both Clarkson students and their partner teachers indicated that this training was appropriate for the students to enter the classroom as professional scientists and engineers. Their classroom interaction skills improved throughout the year.
A New Approach to Developing Interactive Software Modules Through Graduate Education
NASA Astrophysics Data System (ADS)
Sanders, Nathan E.; Faesi, Chris; Goodman, Alyssa A.
2014-06-01
Educational technology has attained significant importance as a mechanism for supporting experiential learning of science concepts. However, the growth of this mechanism is limited by the significant time and technical expertise needed to develop such products, particularly in specialized fields of science. We sought to test whether interactive, educational, online software modules can be developed effectively by students as a curriculum component of an advanced science course. We discuss a set of 15 such modules developed by Harvard University graduate students to demonstrate various concepts related to astronomy and physics. Their successful development of these modules demonstrates that online software tools for education and outreach on specialized topics can be produced while simultaneously fulfilling project-based learning objectives. We describe a set of technologies suitable for module development and present in detail four examples of modules developed by the students. We offer recommendations for incorporating educational software development within a graduate curriculum and conclude by discussing the relevance of this novel approach to new online learning environments like edX.
Increasing High School Student Interest in Science: An Action Research Study
NASA Astrophysics Data System (ADS)
Vartuli, Cindy A.
An action research study was conducted to determine how to increase student interest in learning science and pursuing a STEM career. The study began by exploring 10th-grade student and teacher perceptions of student interest in science in order to design an instructional strategy for stimulating student interest in learning and pursuing science. Data for this study included responses from 270 students to an on-line science survey and interviews with 11 students and eight science teachers. The action research intervention included two iterations of the STEM Career Project. The first iteration introduced four chemistry classes to the intervention. The researcher used student reflections and a post-project survey to determine if the intervention had influence on the students' interest in pursuing science. The second iteration was completed by three science teachers who had implemented the intervention with their chemistry classes, using student reflections and post-project surveys, as a way to make further procedural refinements and improvements to the intervention and measures. Findings from the exploratory phase of the study suggested students generally had interest in learning science but increasing that interest required including personally relevant applications and laboratory experiences. The intervention included a student-directed learning module in which students investigated three STEM careers and presented information on one of their chosen careers. The STEM Career Project enabled students to explore career possibilities in order to increase their awareness of STEM careers. Findings from the first iteration of the intervention suggested a positive influence on student interest in learning and pursuing science. The second iteration included modifications to the intervention resulting in support for the findings of the first iteration. Results of the second iteration provided modifications that would allow the project to be used for different academic levels. Insights from conducting the action research study provided the researcher with effective ways to make positive changes in her own teaching praxis and the tools used to improve student awareness of STEM career options.
NASA Astrophysics Data System (ADS)
Treagust, David F.; Qureshi, Sheila S.; Vishnumolakala, Venkat Rao; Ojeil, Joseph; Mocerino, Mauro; Southam, Daniel C.
2018-04-01
Educational reforms in Qatar have seen the implementation of inquiry-based learning and other student-centred pedagogies. However, there have been few efforts to investigate how these adopted western pedagogies are aligned with the high context culture of Qatar. The study presented in this article highlights the implementation of a student-centred intervention called Process-Oriented Guided Inquiry Learning (POGIL) in selected independent Arabic government schools in Qatar. The study followed a theoretical framework composed of culturally relevant pedagogical practice and social constructivism in teaching and learning. A mixed method research design involving experimental and comparison groups was utilised. Carefully structured learning materials when implemented systematically in a POGIL intervention helped Grade 10 science students improve their perceptions of chemistry learning measured from pre- and post-tests as measured by the What Is Happening In this Class (WIHIC) questionnaire and school-administered achievement test. The study further provided school-based mentoring and professional development opportunities for teachers in the region. Significantly, POGIL was found to be adaptable in the Arabic context.
Learning about the Weather through an Integrated STEM Approach
ERIC Educational Resources Information Center
Serin, Gokhan
2014-01-01
Introducing concepts through an integrated science, technology, engineering and mathematics (STEM) approach can promote interest and motivation (Bennett, Lubben and Hogarth, 2007; Bybee, 2010). However, implementing such an approach effectively in a classroom setting, with relevant links, is a challenging task. Some concepts lend themselves more…
NASA Astrophysics Data System (ADS)
Lyford, M. E.; Myers, J. D.; Mayes, R. L.
2009-12-01
Numerous educational studies have documented serious shortcomings in student's quantitative reasoning (QR), understanding of science and ability to connect these to their daily lives. These have driven many reform efforts in teacher professional development. Historically, most of these efforts have focused on science or math and rarely on the science-society connection. For the past two years, a Wyoming Department of Education funded Math-Science Partnership (MSP) professional development program has created a collaboration of university and community college faculty and middle and high school teachers to address QR, science and social relevance in the context of energy and the environment. This professional development project is designed to: 1) improve teacher content knowledge (both in the sciences and math); 2) demonstrate the many social contexts in which science and QR are relevant and can be taught; 3) model effective science and QR classroom activities for teachers; 4) provide teachers with the opportunity to develop and test their own classroom materials; 5) foster the development of professional learning communities across the state; and 6) initiate discussions about curriculum across disciplinary boundaries. Over the course of four summer meetings, participants investigate a series of issues centered on energy and the environment, including transportation, electricity, biogeochemical cycles, Peak Oil, carbon sequestration and climate change. Each issue is approached in an interdisciplinary manner, where relevant aspects from the life sciences, earth sciences, chemistry and physics are addressed. An introductory presentation on the general theme kicks off each meeting to introduce the problem. Subsequent sessions are lead by faculty from the various scientific disciplines as well as math. During their sessions, university and community college faculty model active learning exercises for each issue. These activities weave together the relevant disciplinary scientific concepts, societal connections, and the quantitative skills students need to understand the issues from the perspective of an engaged but questioning citizen of a democracy. The project encourages multidisciplinary teams of teachers (science and math) from a school or district to work together to develop curricula that may span across courses and across grade levels within a school. During the meetings, teachers work in teams to develop activities tied to energy and the environment which they present to the entire group for feedback. During the course of the school year, teachers implement their activities and share their experiences with the whole group through online-meetings. To date, the program has worked with three teacher cohorts of 25-30 teachers each. Teachers in the program are drawn from both the math and science areas thereby initiating cross-disciplinary discourses that are rarely accommodated by current school organizational structures.
Alotaibi, Naser; Shayea, Abdulaziz; Nadar, Mohammed; Abu Tariah, Hashem
2015-01-01
To investigate the level of awareness of the occupational therapy profession among final-year health sciences students at Kuwait University. This study utilized a survey targeting final-year students in the Health Sciences Center at Kuwait University schools of medicine, pharmacy, dentistry, and allied health sciences. The survey addressed awareness of occupational therapy, its scope of practice, work environments, and preference for learning more about the profession. Of the 244 surveys distributed, 132 were returned, for a 54% response rate. The proportion of those who knew about occupational therapy ranged from 94% (radiologic science) to a low of 17% (medicine). Most respondents learned about occupational therapy from colleagues (77.1%), rather than from their academic programs (28.1%). RESULTS indicated that about one fifth of students (21.4%) were unsure about the role of occupational therapists as members of the health care team. Preferences for learning more about the profession were consistent with interprofessional opportunities, such as observing an occupational therapy session (64.5%) and attending a workshop (63.6%) or presentation (59.8%). Although most respondents had some awareness of occupational therapy, specifics about its scope of practice and relevance to the health care team were lacking. Preferences for learning more about occupational therapy were consistent with the current trend for interprofessional education in health care. Implications for interprofessional education are presented.
NASA Astrophysics Data System (ADS)
Garvin, Brittany A.
There have been numerous calls and efforts made to provide states, school districts, and communities needed financial support to increase and enhance access to and opportunities in Science, Technology, Engineering, and Math (STEM) related disciplines for marginalized populations (Tyson, Lee, & Hanson, 2007; Caldwell & Siwatu, 2003). As the challenge to better educate students of color and poor students intensifies, the need to provide equitable science learning experiences for all students aimed at scientific literacy and STEM also becomes critical. Thus the need to provide summer science enrichment programs where students engage in scientific experimentation, investigation, and critical thinking are vital to helping students who have been traditionally marginalized achieve success in school science and enter the science career pipeline. This mixed methods study examined the impact of a culturally responsive approach on student attitudes, interests in science education and STEM careers, and basic science content knowledge before and after participation in an upward bound summer program. Quantitative results indicated using a culturally responsive approach to teach science in an informal learning space significantly increases student achievement. Students receiving culturally responsive science instruction exhibited statistically significant increases in their posttest science scores compared to pretest science scores, M = 0.376, 95% CI [0.266, 0.487], t (10) = 7.610, p < 0.001. Likewise, students receiving culturally responsive science instruction had a significantly higher interest in science (M = 1.740, SD = 0.548) and STEM careers, M = 0.597, 95% CI [0.276, 0.919], p = 0.001. The qualitative data obtained in this study sought to gain a more in-depth understanding of the impact of a culturally responsive approach on students' attitudes, interests in science and STEM careers. Findings suggest providing students the opportunity to do and learn science utilizing a culturally responsive approach was much more beneficial to their overall science knowledge, as it allowed students to experience, understand, and connect to and through their science learning. Likewise, culturally responsive science instruction helped students to foster a more positive interest in science and STEM careers as it provided students the opportunity to do science in a meaningful and relevant way. Moreover, results revealed students receiving culturally responsive science instruction were able to see themselves represented in the curriculum and recognized their own strengths; as a result they were more validated and affirmed in and transformed by, their learning.
Science As A Second Language: Acquiring Fluency through Science Enterprises
NASA Astrophysics Data System (ADS)
Shope, R.; EcoVoices Expedition Team
2013-05-01
Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. EcoVoices takes students on field research expeditions within an urban natural area, the San Gabriel River Discovery Center. This project engages students in science enterprises focused on understanding ecosystems, ecosystem services, and the dynamics of climate change. A sister program, EcoVoces, has been launched in Mexico, in collaboration with the Universidad Loyola del Pacífico. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change: Explore { Diagnose, Design, Discuss } Use. 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Mimedia de la Ciencia, participatory enactment of science concepts using techniques of mime and improvisational theater. BACKGROUND: Science has become a vehicle for teaching reading, writing, and other communication skills, across the curriculum. This new emphasis creates renewed motivation for Scientists and Science Educators to work collaboratively to explore the common ground between acquiring science understanding and language acquisition theory. Language Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, reading for pleasure, conversing, discussing, where the focus is not specifically on language development, but on the activity, which is of interest to the participant. Language Learning is a formal education process, the language arts aspect of the school day: the direct teaching of reading, writing, grammar, spelling, and speaking. Fluency results primarily from language acquisition and secondarily from language learning. We can view the problem of science education and communication as similar to language acquisition. Science Learning is a formal education process, the school science aspect of the school day: the direct teaching of standards-aligned science content. Science Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, experimenting for pleasure, conversing, discussing, where the focus is not specifically on science content development, but on the inquiry activity, driven by the curiosity of the participant. Treating Science as a Second Language shifts the evaluation of science learning to include gauging the extent to which students choose to deepen their pursuit of science learning.
Learning to teach science in urban schools
NASA Astrophysics Data System (ADS)
Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea
2001-10-01
Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.
NASA Astrophysics Data System (ADS)
Numedahl, Paul Joseph
The purpose of this study was to gain an understanding of the effects an interactive-constructive teaching and learning approach, the use of children's literature in science teaching and parental involvement in elementary school science had on student achievement in and attitudes toward science. The study was done in the context of Science PALS, a professional development program for inservice teachers. An existing model for interactive-constructive elementary science was modified to include five model variables; student achievement, student attitudes, teacher perceptions, teacher performance, and student perceptions. Data were collected from a sample of 12 teachers and 260 third and fourth grade students. Data analysis included two components, (1) the examination of relationships between teacher performance, teacher perceptions, student achievement and attitudes, and (2) the verification of a model using path analysis. Results showed a significant correlation between teacher perceptions and student attitude. However, only one model path was significant; thus, the model could not be verified. Further examination of the significant model path was completed. Study findings included: (1) Constructivist notions of teaching and learning may cause changes in the traditional role relationship between teachers and students leading to negative student attitudes. (2) Children who perceive parental interest toward science education are likely to have a positive attitude toward science learning, increased self-confidence in science and possess accurate ideas concerning the nature of science. (3) Students who perceive science instruction as relevant are likely to possess a positive attitude toward science learning, increased self-confidence in science, and possess accurate ideas concerning the nature of science. (4) Students who perceive their classroom as aligning with constructivist principles are likely to possess a positive attitude toward science, an increased self-confidence in science, and possess accurate ideas concerning the nature of science. (5) The inclusion of children's literature in elementary school science promotes a positive attitude toward science, an increase in student self-confidence in science, and fosters accurate understandings of the nature of science. Recommendations focus on student change, constructivist pedagogy, use of literature in science, and parental involvement in science education.
From competencies to human interests: ways of knowing and understanding in medical education.
Kumagai, Arno K
2014-07-01
When considering the teaching and learning of topics of social relevance in medicine, such as professionalism, medical ethics, the doctor-patient relationship, and issues of diversity and social justice, one is tempted to ask, are the ways of knowing in these fields different from that in the biomedical and clinical sciences? Furthermore, given that the competency approach is dominant in medical education, one might also ask, is the competency model truly appropriate for all of the types of knowledge necessary to become a good physician? These questions are not merely academic, for they are at the core of how these subjects are taught, learned, and assessed.The goal of this article is threefold: first, to explore the nature of knowing and the educational goals in different areas of medicine and, in particular, those areas that have social relevance; second, to critically review the concept of competencies when applied to education in these areas; and third, to explore alternative strategies for teaching, learning, and assessment. This discussion reflects a view that the goal of education in areas of social relevance in medicine should be the enhancement of an understanding of-a deep and abiding connection with-the social responsibilities of the physician. Moving beyond competencies, this approach aspires toward the development of practical wisdom (phronesis) which, when embodied in the physician, links the knowledge and skills of the biomedical and clinical sciences with a moral orientation and call to action that addresses human interests in the practice of medicine.
Big Data and Machine Learning in Plastic Surgery: A New Frontier in Surgical Innovation.
Kanevsky, Jonathan; Corban, Jason; Gaster, Richard; Kanevsky, Ari; Lin, Samuel; Gilardino, Mirko
2016-05-01
Medical decision-making is increasingly based on quantifiable data. From the moment patients come into contact with the health care system, their entire medical history is recorded electronically. Whether a patient is in the operating room or on the hospital ward, technological advancement has facilitated the expedient and reliable measurement of clinically relevant health metrics, all in an effort to guide care and ensure the best possible clinical outcomes. However, as the volume and complexity of biomedical data grow, it becomes challenging to effectively process "big data" using conventional techniques. Physicians and scientists must be prepared to look beyond classic methods of data processing to extract clinically relevant information. The purpose of this article is to introduce the modern plastic surgeon to machine learning and computational interpretation of large data sets. What is machine learning? Machine learning, a subfield of artificial intelligence, can address clinically relevant problems in several domains of plastic surgery, including burn surgery; microsurgery; and craniofacial, peripheral nerve, and aesthetic surgery. This article provides a brief introduction to current research and suggests future projects that will allow plastic surgeons to explore this new frontier of surgical science.
Hybrid discourse practice and science learning
NASA Astrophysics Data System (ADS)
Kamberelis, George; Wehunt, Mary D.
2012-09-01
In this article, we report on a study of how creative linguistic practices (which we call hybrid discourse practices) were enacted by students in a fifth-grade science unit on barn owls and how these practices helped to produce a synergistic micro-community of scientific practice in the classroom that constituted a fertile space for students (and the teacher) to construct emergent but increasingly legitimate and dynamic disciplinary knowledges and identities. Our findings are important for the ways in which they demonstrate (a) how students use hybrid discourse practices to self-scaffold their work within complex curricular tasks and when they are not completely sure about how to enact these tasks (b) how hybrid discourse practices can promote inquiry orientations to science, (c) how hybrid discourse practices index new and powerful forms of science pedagogy, and (d) how hybrid discourse practices are relevant to more global issues such as the crucial roles of language fluency and creativity, which are known prerequisites for advanced science learning and which aid students in developing skills that are necessary for entry into science and technology careers.
Top 20 Psychological Principles for PK-12 Education
ERIC Educational Resources Information Center
Lucariello, Joan M.; Nastasi, Bonnie K.; Dwyer, Carol; Skiba, Russell; DeMarie, Darlene; Anderman, Eric M.
2016-01-01
This article describes an initiative undertaken by a coalition of psychologists (Coalition for Psychology in Schools and Education) from the American Psychological Association (APA) to identify the top 20 principles from psychological science relevant to teaching and learning in the classroom. This article identifies these principles and their…
Arts-Infused Learning in Middle Level Classrooms
ERIC Educational Resources Information Center
Lorimer, Maureen Reilly
2011-01-01
To address arts education disparities in middle level schools, this paper explores evidence that infusing the visual and performing arts into language arts, math, science, and history/social studies courses is a pedagogical approach that meets the developmental needs of early adolescents and fosters a relevant, challenging, integrative, and…
Creating Futures Activity Cards and Teacher Guide.
ERIC Educational Resources Information Center
Klenzman, Elizabeth; Taylor, Paula
Teachers can use these learning activities to teach about the future in elementary and secondary social studies, science, math, language arts, and arts courses. The purpose of the activities is to help students practice creative-thinking skills, investigate problems relevant to their personal futures, experience the concept of change, and evaluate…
Biology in the Agriculture Classroom: A Descriptive Comparative Study
ERIC Educational Resources Information Center
Despain, Deric; North, Teresa; Warnick, Brian K.; Baggaley, John
2016-01-01
Agricultural education can take scientific topics to higher levels, emphasize scientific concepts, involve hands-on learning, and develop interrelationships with the other sciences, thus making the living and non-living world around them relevant for students, potentially supporting a STEM curriculum. As such, in 1996, Utah deemed agricultural…
Twisted Film, or: How I Learned to Stop the Movie and Teach the Truth
ERIC Educational Resources Information Center
Monfredo, William
2010-01-01
The 1996 blockbuster "Twister" both entertained and exasperated geographers. Misrepresentations and unsafe field practices resonated deeply; still, the film possesses relevance for educators. Science-based reviews illuminating on-screen inconsistencies and pseudoscience might surprise students accepting movies at face value. This article uses a…
Science Teachers' Analogical Reasoning
ERIC Educational Resources Information Center
Mozzer, Nilmara Braga; Justi, Rosária
2013-01-01
Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to…
Making Construals as a New Digital Skill for Learning
ERIC Educational Resources Information Center
Beynon, Meurig; Boyatt, Russell; Foss, Jonathan; Hall, Chris; Hudnott, Elizabeth; Russ, Steve; Sutinen, Erkki; Macleod, Hamish; Kommers, Piet
2015-01-01
Making construals is a practical approach to computing that was originally developed for and by computer science undergraduates. It is the central theme of an EU project aimed at disseminating the relevant principles to a broader audience. This involves bringing together technical experts in making construals and international experts in…
ERIC Educational Resources Information Center
Del Mod System, Dover, DE.
This autoinstructional unit deals with the identification of units of measure in the metric system and the construction of relevant conversion tables. Students in middle school or in grade ten, taking a General Science course, can handle this learning activity. It is recommended that high, middle or low level achievers can use the program.…
Considerations for Teaching Integrated STEM Education
ERIC Educational Resources Information Center
Stohlmann, Micah; Moore, Tamara J.; Roehrig, Gillian H.
2012-01-01
Quality Science, Technology, Engineering, and Mathematics (STEM) education is vital for the future success of students. Integrated STEM education is one way to make learning more connected and relevant for students. There is a need for further research and discussion on the knowledge, experiences, and background that teachers need to effectively…
Arctic Climate Connections Curriculum: A Model for Bringing Authentic Data into the Classroom
ERIC Educational Resources Information Center
Gold, Anne U.; Kirk, Karin; Morrison, Deb; Lynds, Susan; Sullivan, Susan Buhr; Grachev, Andrey; Persson, Ola
2015-01-01
Science education can build a bridge between research carried out by scientists and relevant learning opportunities for students. The Broader Impact requirements for scientists by funding agencies facilitate this connection. We propose and test a model curriculum development process in which scientists, curriculum developers, and classroom…
Epistemic Beliefs and Achievement Motivation in Early Adolescence
ERIC Educational Resources Information Center
Ricco, Robert; Pierce, Sara Schuyten; Medinilla, Connie
2010-01-01
This study seeks to establish the relevance of middle school students' naive beliefs about knowledge and learning in science to their achievement motivation in this domain. A predominantly Hispanic and lower-income sample of 459 middle school students (sixth through eighth grades) completed measures of epistemic beliefs along with several measures…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-17
... countries review current policy and develop informed education policy by providing accurate and relevant... principals to provide their perspectives on the state of education in their own countries. Both teacher and... Records Management Services, Office of Management, publishes this notice containing proposed information...
Scientific Aspects of Leonardo da Vinci's Drawings: An Interdisciplinary Model.
ERIC Educational Resources Information Center
Struthers, Sally A.
While interdisciplinary courses can help demonstrate the relevance of learning to students and reinforce education from different fields, they can be difficult to implement and are often not cost effective. An interdisciplinary art history course at Ohio's Sinclair Community College incorporates science into the art history curriculum, making use…
ERIC Educational Resources Information Center
Eraut, Michael; And Others
A research project evaluated the contribution of biological, behavioral, and social sciences to nursing and midwifery education programs in Britain. The study of scientific knowledge relevant to recently qualified nurses and midwives was confined to six topics: fluids, electrolytes, and renal systems; nutrition; acute pain; shock; stress; and…
Video and Visualization to Communicate Current Geoscience at Museums and Science Centers
NASA Astrophysics Data System (ADS)
Allen, L.; Trakinski, V.; Gardiner, N.; Foutz, S.; Pisut, D.
2012-12-01
Science Bulletins, a current-science video exhibition program produced by the American Museum of Natural History, was developed to communicate scientific concepts and results to a wide public and educator audience. Funded by a NOAA Environmental Literacy Grant and developed in collaboration with scientists, a series of Science Bulletins pieces mixes data visualization, video, and non-narrated text to highlight recent issues and findings relevant to short and long-term change in the Earth system. Some of the pieces have been evaluated with audiences to assess learning outcomes and improve practices. Videos, evaluation results, and multiplatform dissemination strategies from this series will be shared and discussed.
Heitmann, Patricia; Hecht, Martin; Scherer, Ronny; Schwanewedel, Julia
2017-01-01
Argumentation is considered crucial in numerous disciplines in schools and universities because it constitutes an important proficiency in peoples' daily and professional lives. However, it is unclear whether argumentation is understood and practiced in comparable ways across disciplines. This study consequently examined empirically how students perceive argumentation in science and (first) language lessons. Specifically, we investigated students' beliefs about the relevance of discourse and the role of facts . Data from 3,258 high school students from 85 German secondary schools were analyzed with multigroup multilevel structural equation modeling in order to disentangle whether or not differences in argumentation across disciplines exist and the extent to which variation in students' beliefs can be explained by gender and school track. Results showed that students perceived the role of facts as highly relevant for science lessons, whereas discursive characteristics were considered significantly less important. In turn, discourse played a central role in language lessons, which was believed to require less knowledge of facts . These differences were independent of students' gender. In contrast, school track predicted the differences in beliefs significantly. Our findings lend evidence on the existence of disciplinary school cultures in argumentation that may be the result of differences in teachers' school-track-specific classroom practice and education. Implications in terms of a teacher's role in establishing norms for scientific argumentation as well as the impact of students' beliefs on their learning outcomes are discussed.
Heitmann, Patricia; Hecht, Martin; Scherer, Ronny; Schwanewedel, Julia
2017-01-01
Argumentation is considered crucial in numerous disciplines in schools and universities because it constitutes an important proficiency in peoples' daily and professional lives. However, it is unclear whether argumentation is understood and practiced in comparable ways across disciplines. This study consequently examined empirically how students perceive argumentation in science and (first) language lessons. Specifically, we investigated students' beliefs about the relevance of discourse and the role of facts. Data from 3,258 high school students from 85 German secondary schools were analyzed with multigroup multilevel structural equation modeling in order to disentangle whether or not differences in argumentation across disciplines exist and the extent to which variation in students' beliefs can be explained by gender and school track. Results showed that students perceived the role of facts as highly relevant for science lessons, whereas discursive characteristics were considered significantly less important. In turn, discourse played a central role in language lessons, which was believed to require less knowledge of facts. These differences were independent of students' gender. In contrast, school track predicted the differences in beliefs significantly. Our findings lend evidence on the existence of disciplinary school cultures in argumentation that may be the result of differences in teachers' school-track-specific classroom practice and education. Implications in terms of a teacher's role in establishing norms for scientific argumentation as well as the impact of students' beliefs on their learning outcomes are discussed. PMID:28642727
The Virtual Learning Commons: Supporting Science Education with Emerging Technologies
NASA Astrophysics Data System (ADS)
Pennington, D. D.; Gandara, A.; Gris, I.
2012-12-01
The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of educators to be aware of resources that might be relevant to their classes. Even when aware, it can be difficult to understand enough about those resources to develop classroom materials. Often emerging data and technologies have little documentation, especially about their application. The VLC tackles this challenge by providing mechanisms for individuals and groups of educators to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design classes that leverage those resources; and c) develop course syllabi. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support educators in different ways: 1. Innovation Marketplace: supports users as they find others teaching similar courses, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports educators as they organize their thinking about the content of their class and related classes taught by others; 3. Curriculum Designer: supports educators as they generate a syllabus and find Web resources that are relevant. This presentation will discuss the innovation and learning theories that have informed design of the VLC, hypotheses about the use of emerging technologies to support innovation in classrooms, and will include a brief demonstration of these capabilities.
Science Teachers' Perceptions of the Relationship Between Game Play and Inquiry Learning
NASA Astrophysics Data System (ADS)
Mezei, Jessica M.
The implementation of inquiry learning in American science classrooms remains a challenge. Teachers' perceptions of inquiry learning are predicated on their past educational experiences, which means outdated methods of learning may influence teachers' instructional approaches. In order to enhance their understanding and ultimately their implementation of inquiry learning, teachers need new and more relevant models. This study takes a preliminary step exploring the potential of game play as a valuable experience for science teachers. It has been proposed that game play and inquiry experiences can embody constructivist processes of learning, however there has been little work done with science teachers to systematically explore the relationship between the two. Game play may be an effective new model for teacher education and it is important to understand if and how teachers relate game playing experience and knowledge to inquiry. This study examined science teachers' game playing experiences and their perceptions of inquiry experiences and evaluated teacher's recognition of learning in both contexts. Data was collected through an online survey (N=246) and a series of follow-up interviews (N=29). Research questions guiding the study were: (1) What is the nature of the relationship between science teachers' game experience and their perceptions of inquiry? (2) How do teachers describe learning in and from game playing as compared with inquiry science learning? and (3) What is the range of similarities and differences teachers articulate between game play and inquiry experiences?. Results showed weak quantitative links between science teachers' game experiences and their perceptions of inquiry, but identified promising game variables such as belief in games as learning tools, game experiences, and playing a diverse set of games for future study. The qualitative data suggests that teachers made broad linkages in terms of parallels of both teaching and learning. Teachers mostly articulated learning connections in terms of the active or participatory nature of the experiences. Additionally, a majority of teachers discussed inquiry learning in concert with inquiry teaching which led to a wider range of comparisons made based on the teacher's interpretation of inquiry as a pedagogical approach instead of focusing solely on inquiry learning. This study has implications for both research and practice. Results demonstrate that teachers are interested in game play as it relates to learning and the linkages teachers made between the domains suggests it may yet prove to be a fruitful analogical device that could be leveraged for teacher development. However, further study is needed to test these claims and ultimately, research that further aligns the benefits of game play experiences to teacher practice is encouraged in order to build on the propositions and findings of this thesis.
Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.
2014-12-01
There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time. We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.
NASA Astrophysics Data System (ADS)
Vann-Hamilton, Joy J.
Problem. A significant segment of the U.S. population, under-represented students, is under-engaged or disengaged in secondary science education. International and national assessments and various research studies illuminate the problem and/or the disparity between students' aspirations in science and the means they have to achieve them. To improve engagement and address inequities among these students, more contemporary and/or inclusive pedagogy is recommended. More specifically, multicultural science education has been suggested as a potential strategy for increased equity so that all learners have access to and are readily engaged in quality science education. While multicultural science education emphasizes the integration of students' backgrounds and experiences with science learning , multimedia has been suggested as a way to integrate the fundamentals of multicultural education into learning for increased engagement. In addition, individual characteristics such as race, sex, academic track and grades were considered. Therefore, this study examined the impact of multicultural science education, multimedia, and individual characteristics on under-represented students' engagement in secondary science. Method. The Under-represented Students Engagement in Science Survey (USESS), an adaptation of the High School Survey of Student Engagement, was used with 76 high-school participants. The USESS was used to collect pretest and posttest data concerning their types and levels of student engagement. Levels of engagement were measured with Strongly Agree ranked as 5, down to Strongly Disagree ranked at 1. Participants provided this feedback prior to and after having interacted with either the multicultural or the non-multicultural version of the multimedia science curriculum. Descriptive statistics for the study's participants and the survey items, as well as Cronbach's alpha coefficient for internal consistency reliability with respect to the survey subscales, were conducted. The reliability results prompted exploratory factory analyses, which resulted in two of the three subscale factors, cognitive and behavioral, being retained. One-within one-between subjects ANOVAs, independent samples t-test, and multiple linear regressions were also used to examine the impact of a multicultural science education, multimedia, and individual characteristics on students' engagement in science learning. Results. There were main effects found within subjects on posttest scores for the cognitive and behavioral subscales of student engagement. Both groups, using their respective versions of the multimedia science curriculum, reported increased engagement in science learning. There was also a statistical difference found for the experimental group at posttest on the measure of "online science was more interesting than school science." All five items unique to the posttest related to the multimedia variable were found to be significant predictors of cognitive and/or behavioral engagement. Conclusions. Engagement in science learning increased for both groups of participants; this finding is aligned with other significant research findings that more embracive and relevant pedagogies can potentially benefit all students. The significant difference found for the experimental group in relation to the multimedia usage was moderate and also may have reflected positive responses to other questions about the use of technology in science learning. As all five measures of multimedia usage were found to be significant predictors of student engagement in science learning, the indications were that: (a) technical difficulties did not impede engagement; (b) participants were better able to understand and visualize the physics concepts as they were presented in a variety of ways; (c) participants' abilities to use computers supported engagement; (d) participants in both groups found the online science curriculum more interesting compared to school science learning; and (e) the ability to immediately see the results of their work increased engagement in science learning.
Science-based occupations and the science curriculum: Concepts of evidence
NASA Astrophysics Data System (ADS)
Aikenhead, Glen S.
2005-03-01
What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.
Dental students' motivation and the context of learning.
Kristensen, Bettina Tjagvad; Netterstrom, Ingeborg; Kayser, Lars
2009-02-01
This qualitative study shows dental students' motives for choosing the dental education and how the motives influence their motivation at the first semester of study. Further the study demonstrates the relevance of the context of learning. This issue is of importance when planning a curriculum for the dental education. The material consists of interviews with eight dental students. The results show that dental students were focused on their future professional role, its practical dimensions and their future working conditions. Their motivation for choosing the dental education was found to influence their motivation for studying and their experience of the relevance of the first semester. The dental students who had co-education with the medical students at the first year of study missed a dental context and courses with clinically relevant contents. In conclusion, our data signify the importance of the context of learning. It is recommended that a future curriculum for the dental school should be designed in a way where basic science subjects are taught with both theoretically as well as practically oriented subjects and in a context which is meaningful for the students.
NASA Astrophysics Data System (ADS)
Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.
2013-12-01
The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive learning activities for planetary science will be explored. These lesson plans incorporate state of the art interactive pedagogy and current NASA Planetary Science materials.
Kullgren, Justin; Radhakrishnan, Rajan; Unni, Elizabeth; Hanson, Eric
2013-08-12
To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students' advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy.
Kullgren, Justin; Unni, Elizabeth; Hanson, Eric
2013-01-01
Objective. To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students’ advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Design. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Assessment. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Conclusions. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy. PMID:23966724
Horvath, Jared C; Donoghue, Gregory M
2016-01-01
In Education and the Brain: A Bridge Too Far, John Bruer argues that, although current neuroscientific findings must filter through cognitive psychology in order to be applicable to the classroom, with increased knowledge the neuroscience/education bridge can someday be built. Here, we suggest that translation cannot be understood as a single process: rather, we demonstrate that at least four different 'bridges' can conceivably be built between these two fields. Following this, we demonstrate that, far from being a matter of information lack, a prescriptive neuroscience/education bridge (the one most relevant to Bruer's argument) is a practical and philosophical impossibility due to incommensurability between non-adjacent compositional levels-of-organization: a limitation inherent in all sciences. After defining this concept in the context of biology, we apply this concept to the learning sciences and demonstrate why all brain research must be behaviorally translated before prescriptive educational applicability can be elucidated. We conclude by exploring examples of how explicating different forms of translation and adopting a levels-of-organization framework can be used to contextualize and beneficially guide research and practice across all learning sciences.
Horvath, Jared C.; Donoghue, Gregory M.
2016-01-01
In Education and the Brain: A Bridge Too Far, John Bruer argues that, although current neuroscientific findings must filter through cognitive psychology in order to be applicable to the classroom, with increased knowledge the neuroscience/education bridge can someday be built. Here, we suggest that translation cannot be understood as a single process: rather, we demonstrate that at least four different ‘bridges’ can conceivably be built between these two fields. Following this, we demonstrate that, far from being a matter of information lack, a prescriptive neuroscience/education bridge (the one most relevant to Bruer’s argument) is a practical and philosophical impossibility due to incommensurability between non-adjacent compositional levels-of-organization: a limitation inherent in all sciences. After defining this concept in the context of biology, we apply this concept to the learning sciences and demonstrate why all brain research must be behaviorally translated before prescriptive educational applicability can be elucidated. We conclude by exploring examples of how explicating different forms of translation and adopting a levels-of-organization framework can be used to contextualize and beneficially guide research and practice across all learning sciences. PMID:27014173
Simulation for Authentic Learning in Informal Education
Dupuis, Jason; Ludwig-Palit, DeDee
2016-01-01
In 2011, the Museum of Science and Industry in Chicago, Illinois embarked on the creation of a program that allows middle and high school students to explore community health issues using human patient simulation. MedLab was created to engage students in an authentic exploration of medical science, biology, and human anatomy, with a particular focus on how these fields apply to learners’ lives. The program content is made relevant through an emphasis on personal health, community health, and medical science career pathways. This article explores the development, implementation, use of technology, and outcomes of MedLab. PMID:27980372
Simulation for Authentic Learning in Informal Education.
Dupuis, Jason; Ludwig-Palit, DeDee
2016-01-01
In 2011, the Museum of Science and Industry in Chicago, Illinois embarked on the creation of a program that allows middle and high school students to explore community health issues using human patient simulation. MedLab was created to engage students in an authentic exploration of medical science, biology, and human anatomy, with a particular focus on how these fields apply to learners' lives. The program content is made relevant through an emphasis on personal health, community health, and medical science career pathways. This article explores the development, implementation, use of technology, and outcomes of MedLab.
NASA Astrophysics Data System (ADS)
Dutton, Gregory
Forensic science is a collection of applied disciplines that draws from all branches of science. A key question in forensic analysis is: to what degree do a piece of evidence and a known reference sample share characteristics? Quantification of similarity, estimation of uncertainty, and determination of relevant population statistics are of current concern. A 2016 PCAST report questioned the foundational validity and the validity in practice of several forensic disciplines, including latent fingerprints, firearms comparisons and DNA mixture interpretation. One recommendation was the advancement of objective, automated comparison methods based on image analysis and machine learning. These concerns parallel the National Institute of Justice's ongoing R&D investments in applied chemistry, biology and physics. NIJ maintains a funding program spanning fundamental research with potential for forensic application to the validation of novel instruments and methods. Since 2009, NIJ has funded over 179M in external research to support the advancement of accuracy, validity and efficiency in the forensic sciences. An overview of NIJ's programs will be presented, with examples of relevant projects from fluid dynamics, 3D imaging, acoustics, and materials science.
Basalt: Biologic Analog Science Associated with Lava Terrains
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.
2015-12-01
This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication & navigation packages, remote sensing, advanced science mission planning tools, and scientifically-relevant instrument packages to achieve the project goals.
VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi
2018-04-17
Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.
Design for learning - a case study of blended learning in a science unit.
Gleadow, Roslyn; Macfarlan, Barbara; Honeydew, Melissa
2015-01-01
Making material available through learning management systems is standard practice in most universities, but this is generally seen as an adjunct to the 'real' teaching, that takes place in face-to-face classes. Lecture attendance is poor, and it is becoming increasingly difficult to engage students, both in the material being taught and campus life. This paper describes the redevelopment of a large course in scientific practice and communication that is compulsory for all science students studying at our Melbourne and Malaysian campuses, or by distance education. Working with an educational designer, a blended learning methodology was developed, converting the environment provided by the learning management system into a teaching space, rather than a filing system. To ensure focus, topics are clustered into themes with a 'question of the week', a pre-class stimulus and follow up activities. The content of the course did not change, but by restructuring the delivery using educationally relevant design techniques, the content was contextualised resulting in an integrated learning experience. Students are more engaged intellectually, and lecture attendance has improved. The approach we describe here is a simple and effective approach to bringing this university's teaching and learning into the 21 (st) century.
Student Engagement: A Principle-Based Concept Analysis.
Bernard, Jean S
2015-08-04
A principle-based concept analysis of student engagement was used to examine the state of the science across disciplines. Four major perspectives of philosophy of science guided analysis and provided a framework for study of interrelationships and integration of conceptual components which then resulted in formulation of a theoretical definition. Findings revealed student engagement as a dynamic reiterative process marked by positive behavioral, cognitive, and affective elements exhibited in pursuit of deep learning. This process is influenced by a broader sociocultural environment bound by contextual preconditions of self-investment, motivation, and a valuing of learning. Outcomes of student engagement include satisfaction, sense of well-being, and personal development. Findings of this analysis prove relevant to nursing education as faculty transition from traditional teaching paradigms, incorporate learner-centered strategies, and adopt innovative pedagogical methodologies. It lends support for curricula reform, development of more accurate evaluative measures, and creation of meaningful teaching-learning environments within the discipline.
NASA Astrophysics Data System (ADS)
Crouch, Catherine H.; Heller, Kenneth
2014-05-01
We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.
AGU Public Affairs: How to Get Involved in Science Policy
NASA Astrophysics Data System (ADS)
Landau, E. A.; Hankin, E. R.; Uhlenbrock, K. M.
2012-12-01
AGU Public Affairs offers many ways for its members to get involved in science policy at different levels of participation, whether you would love to spend a year working as a resident science expert in a congressional office in Washington, D.C., or would rather simply receive email alerts about Earth and space science policy news. How you can get involved: Sign up for AGU Science Policy Alerts to receive the most relevant Earth and space science policy information delivered to your email inbox. Participate in one of AGU's Congressional Visits Days to speak with your legislators about important science issues. Attend the next AGU Science Policy Conference in spring 2013. Participate in events happening on Capitol Hill, and watch video of past events. Learn about AGU Embassy Lectures, where countries come together to discuss important Earth and space science topics. Learn how you can comment on AGU Position Statements. Apply to be an AGU Congressional Science Fellow, where you can work in a congressional office for one year and serve as a resident science expert, or to be an AGU Public Affairs Intern, where you can work in the field of science policy for three months. The AGU Public Affairs Team will highlight ways members can be involved as well as provide information on how the team is working to shape policy and inform society about the excitement of AGU science.
Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers
NASA Astrophysics Data System (ADS)
Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan
2018-05-01
Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.
Biomechanics Curriculum: Its Content and Relevance to Movement Sciences
ERIC Educational Resources Information Center
Hamill, Joseph
2007-01-01
While the National Association for Sport and Physical Education (NASPE) has outlined a number of learning outcomes for undergraduate biomechanics, there are a number of factors that can influence the curriculum in such courses. These factors create a situation that indeed can influence students and their attitude towards these classes.…
Living With and Learning about Radioactivity: A Comparative Conceptual Study.
ERIC Educational Resources Information Center
Alsop, Steve
2001-01-01
Documents a quasi-scientific comparative study of two groups of 'recent school leavers' in the UK. Studies non-science university undergraduates and explores whether people living with the immediacy and relevance of higher-than-average levels of radioactivity were more knowledgeable and emotionally detached than a similar group removed from this…
Teaching Critical Thinking through Media Literacy
ERIC Educational Resources Information Center
Sperry, Chris
2012-01-01
Today more than ever, students want their school experience to be relevant. They live and learn in a media-saturated environment where information abounds, but wisdom is often lacking. Teachers must tie their science curricula to students' real-life experiences: When their students see the utility of scientific thought and reason in helping them…
Drafting and Acting on Feedback Supports Student Learning when Writing Essay Assignments
ERIC Educational Resources Information Center
Freestone, Nicholas
2009-01-01
A diverse student population is a relatively recent feature of the higher education system in the United Kingdom. Consequently, it may be thought that more "traditional" types of assessment based around essay writing skills for science undergraduates may be of decreasing value and relevance to contemporary students. This article…
Harnessing Spatial Thinking to Support STEM Learning. OECD Education Working Papers, No. 161
ERIC Educational Resources Information Center
Newcombe, Nora
2017-01-01
Spatial intelligence concerns the locations of objects, their shapes, their relations, and the paths they take as they move. Recognition of spatial skills enriches the traditional educational focus on developing literacy and numerical skills to include a cognitive domain particularly relevant to achievement in science, technology, engineering and…
Student Conceptions about Energy in Biological Contexts
ERIC Educational Resources Information Center
Opitz, Sebastian T.; Blankenstein, Andreas; Harms, Ute
2017-01-01
The concept of energy serves biologists as a powerful analytical model to describe phenomena that occurs in the natural world. Due to the concept's relevance, educational standards of different countries identify energy as a core idea for the teaching and learning of biology and other science subjects. However, previous research on students'…
The Cognitive Relevance of Indigenous and Rural: Why Is It Critical to Survival?
ERIC Educational Resources Information Center
Kassam, Karim-Aly S.; Avery, Leanne M.; Ruelle, Morgan L.
2017-01-01
Using two case studies of children's knowledge, this paper sheds light on the value, diversity, and necessity of Indigenous and place-based knowledge to science and engineering curricula in rural areas. Rural contexts are rich environments for cultivating contextual knowledge, hence framing a critical pedagogy of teaching and learning. Indigenous…
Linking Science and Design and Technology
ERIC Educational Resources Information Center
Lunt, Julie; Lawrence, Liz
2010-01-01
Making connections between subjects to enhance learning and demonstrate relevance and application is not new, especially in primary education. Teaching through topics or themes has swung in and out of fashion and the use of literacy, numeracy and ICT skills across the curriculum is embedded in many schemes of work. However, the proposed New…
Ballen, Cissy J; Thompson, Seth K; Blum, Jessamina E; Newstrom, Nicholas P; Cotner, Sehoya
2018-01-01
Course-based undergraduate research experiences (CUREs) are a type of laboratory learning environment associated with a science course, in which undergraduates participate in novel research. According to Auchincloss et al. (CBE Life Sci Educ 2104; 13:29-40), CUREs are distinct from other laboratory learning environments because they possess five core design components, and while national calls to improve STEM education have led to an increase in CURE programs nationally, less work has specifically focused on which core components are critical to achieving desired student outcomes. Here we use a backward elimination experimental design to test the importance of two CURE components for a population of non-biology majors: the experience of discovery and the production of data broadly relevant to the scientific or local community. We found nonsignificant impacts of either laboratory component on students' academic performance, science self-efficacy, sense of project ownership, and perceived value of the laboratory experience. Our results challenge the assumption that all core components of CUREs are essential to achieve positive student outcomes when applied at scale.
A storied-identity analysis approach to teacher candidates learning to teach in an urban setting
NASA Astrophysics Data System (ADS)
Ibourk, Amal
While many studies have investigated the relationship between teachers' identity work and their developing practices, few of these identity focused studies have honed in on teacher candidates' learning to teach in an urban setting. Drawing upon narrative inquiry methodology and a "storied identity" analytic framework, I examined how the storied identities of science learning and becoming a science teacher shape teacher candidates' developing practice. In particular, I examined the stories of three interns, Becky, David, and Ashley, and I tell about their own experiences as science learners, their transitions to science teachers, and the implications this has for the identity work they did as they navigated the challenges of learning to teach in high-needs schools. Initially, each of the interns highlighted a feeling of being an outsider, and having a difficult time becoming a fully valued member of their classroom community in their storied identities of becoming a science teacher in the beginning of their internship year. While the interns named specific challenges, such as limited lab materials and different math abilities, I present how they adapted their lesson plans to address these challenges while drawing from their storied identities of science learning. My study reveals that the storied identities of becoming a science teacher informed how they framed their initial experiences teaching in an urban context. In addition, my findings reveal that the more their storied identities of science learning and becoming a science teacher overlapped, the more they leveraged their storied identity of science learning in order to implement teaching strategies that helped them make sense of the challenges that surfaced in their classroom contexts. Both Becky and Ashley leveraged their storied identities of science learning more than David did in their lesson planning and learning to teach. David's initial storied identity of becoming a science teacher revealed how he highlighted his struggle with navigating talkativeness in the class, but also his struggle being an authority figure in his classroom. At present, only Becky and Ashley pursued teaching in a high needs setting. A storied identity analysis provided as well an insight into their storied strategies, or the teaching strategies shaped by the stories the interns told about how they made sense of the challenges they faced in their teaching practice. There were five teaching strategies the interns named that were important in supporting their learning to teach were (1) building relationships with their students, (2) being resourceful and creative when faced with limited lab materials, (3) making science relevant to their students, (4) scaffolding their students in their learning, and (5) having a network of people as resources in helping them be better teachers and helping their students learn. Out of these five teaching strategies, I called those they named and highlighted as helping them teach in ways they valued and that connected back to their storied identity of science learning their storied strategies. Implications for further pushing storied identities as a tool for teacher educators to help pinpoint priorities that surface in teacher candidates' practice are discussed. An insight into the priorities that teacher candidates highlight in their practice as well as the storied strategies they name and use to deal with challenges that surface in their practice has potential in better helping teacher candidates navigate their developing practice.
RITES: Online (Reaching In-service Teachers with Earth Sciences Online)
NASA Astrophysics Data System (ADS)
Baptiste, H.
2003-12-01
The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believed that the power of technology could not be effectively utilized unless it was grounded in new models of teaching and learning based on a student centered and project based curriculum, that increased opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believed the aforementioned ideas and points to be equally true for the teacher candidates and inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses were delivered by distance learning via the university WebCt distance education system to teacher candidates (preservice teachers) and inservice teachers. Teacher candidates and inservice teachers were encouraged to use technology when involving their students in science inquiry activities and to record their students' involvement in science activities with digital cameras. Teacher candidates and inservice teachers involve in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight teacher candidates and inservice teachers in the roles of designer, researcher, and collaborator. Examples of student works will also be a part of the Power point presentation. As a result of our courses our teachers have attained the following positive outcomes: 1) Teacher candidates and inservice teachers are experiencing the inquiry approach to learning about the spheres of our earth. 2) Teacher candidates and inservice teachers are becoming confident in using technology. 3) Teacher candidates and inservice teachers are learning to work cooperatively in-groups and understand what their own students must feel. 4) Teacher candidates and inservice teachers are finding ways to obtain dynamic professional development and not leave their classrooms or homes. 5) Teacher candidates and inservice teachers are developing relationships with other teachers that have an interest in teaching science and a learning community is evolving.
STAR Library Education Network: a hands-on learning program for libraries and their communities
NASA Astrophysics Data System (ADS)
Dusenbery, P.
2010-12-01
Science and technology are widely recognized as major drivers of innovation and industry (e.g. Rising above the Gathering Storm, 2006). While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement and public understanding of STEM disciplines. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. Designed spaces, like libraries, allow lifelong, life-wide, and life-deep learning to take place though the research basis for learning in libraries is not as developed as other informal settings like science centers. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national education project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. This project will deepen our knowledge of informal/lifelong learning that takes place in libraries and establish a learning model that can be compared to the more established free-choice learning model for science centers and museums. The project includes the development of two STEM hands-on exhibits on topics that are of interest to library staff and their patrons: Discover Earth and Discover Tech. In addition, the project will produce resources and inquiry-based activities that libraries can use to enrich the exhibit experience. Additional resources will be provided through partnerships with relevant professional science and technology organizations (e.g. American Geophysical Union; National Academy of Engineering) that will provide speakers for host library events and webinars. Online and in-person workshops will be conducted for library staff with a focus on increasing content knowledge and improving facilitation expertise. This presentation will report on strategic planning activities for STAR-Net, a Community of Practice model, and the evaluation/research components of this national education program.
Clinical Correlations as a Tool in Basic Science Medical Education
Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.
2016-01-01
Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328
CosmoQuest Collaborative: Galvanizing a Dynamic Professional Learning Network
NASA Astrophysics Data System (ADS)
Cobb, Whitney; Bracey, Georgia; Buxner, Sanlyn; Gay, Pamela L.; Noel-Storr, Jacob; CosmoQuest Team
2016-10-01
The CosmoQuest Collaboration offers in-depth experiences to diverse audiences around the nation and the world through pioneering citizen science in a virtual research facility. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and citizens of all ages—to explore and make sense of our solar system and beyond. Leveraging human networks to expand NASA science, scaffolded by an educational framework that inspires lifelong learners, CosmoQuest engages citizens in analyzing and interpreting real NASA data, inspiring questions and defining problems.The QuestionLinda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] … [and] connected to teachers' collaborative work in professional learning community...." (2012) In light of that, what is the unique role CosmoQuest's virtual research facility can offer NASA STEM education?A Few AnswersThe CosmoQuest Collaboration actively engages scientists in education, and educators (and learners) in science. CosmoQuest uses social channels to empower and expand NASA's learning community through a variety of media, including science and education-focused hangouts, virtual star parties, and social media. In addition to creating its own supportive, standards-aligned materials, CosmoQuest offers a hub for excellent resources and materials throughout NASA and the larger astronomy community.In support of CosmoQuest citizen science opportunities, CQ initiatives (Learning Space, S-ROSES, IDEASS, Educator Zone) will be leveraged and shared through the CQPLN. CosmoQuest can be present and alive in the awareness its growing learning community.Finally, to make the CosmoQuest PLN truly relevant, it aims to encourage partnerships between scientists and educators, and offer "just-in-time" opportunities to support constituents exploring emerging NASA STEM education, from diverse educators to the curious learner of any age.
Students' perceptions of the relevance of mathematics in engineering
NASA Astrophysics Data System (ADS)
Flegg, Jennifer; Mallet, Dann; Lupton, Mandy
2012-09-01
In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.
Building Ocean Learning Communities: A COSEE Science and Education Partnership
NASA Astrophysics Data System (ADS)
Robigou, V.; Bullerdick, S.; Anderson, A.
2007-12-01
The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups including research scientists, formal and informal educators, business representatives, and non-profit groups to identify ocean-related problems, and develop solutions to share with their own communities. COSEE OLC practices and studies the skills of developing these collaborations.
Making Time for Spacetime: The Story of a National Science Cafe Effort
NASA Astrophysics Data System (ADS)
Redmond, Kendra; Chakrabarti, Anish
2012-03-01
Science Cafes are live and lively events that take place in casual settings such as coffeehouses or bars, are open to everyone, and feature an engaging conversation with a scientist about a compelling scientific topic. The Science Cafe movement in the United States is a grassroots effort to really engage the public in discussions about science and its relevance to society, inspired by the United Kingdom Cafe Scientifique organization. With support from NOVA and the related website sciencecafes.org, a number of Society of Physics Students chapters hosted local Cosmic Cafes (cosmic themed science cafes) in late 2011 and early 2012. This presentation will discuss the goals and models of the Science Cafe movement, the Cosmic Cafe effort, lessons learned, and how you can get involved.
[Regulatory science: modern trends in science and education for pharmaceutical products].
Beregovykh, V V; Piatigorskaia, N V; Aladysheva, Zh I
2012-01-01
This article reviews modern trends in development of new instruments, standards and approaches to drugs safety, efficacy and quality assessment in USA and EU that can be called by unique term--"regulatory science" which is a new concept for Russian Federation. New education programs (curricula) developed by USA and EU universities within last 3 years are reviewed. These programs were designed in order to build workforce capable to utilize science approach for drug regulation. The principal mechanisms for financing research in regulatory science used by Food and Drug Administration are analyzed. There are no such science and relevant researches in Russian Federation despite the high demand as well as needs for the system for higher education and life-long learning education of specialists for regulatory affairs (or compliance).
Turning K-12 Science Education Inside Out, Knocking Down Walls and Empowering the Disenchanted.
NASA Astrophysics Data System (ADS)
Lin, A. Y. M.
2016-12-01
For a 'user' there are several genres of citizen science activities one can enlist themselves in, from microtasked analytics to data collection. Often times design conversation for these efforts are focused around the goal of collecting high quality data for an urgent scientific question. However, there is much to be discussed around the opportunity to expand upon the interaction experience of the 'user'. This is particularly relevant in the integration of citizen science in the classroom. Here we explore the role of citizen science in formal K-12 science education through the lens of "Project Based Learning", examining design challenges in classroom adoption (including standards alignment) as well as interaction design focused around long term user/student motivation and engagement in the science exploration.
Holistic science: An understanding of science education encompassing ethical and social issues
NASA Astrophysics Data System (ADS)
Malekpour, Susan
Science has often been viewed, by the majority of our educators and the general public, as being objective and emotionless. Based on this view, our educators teach science in the same manner, objectively and in an abstract form. This manner of teaching has hindered our learners' ability for active learning and distanced them from the subject matter. In this action research, I have examined holistic science pedagogy in conjunction with a constructivism theory. In holistic science pedagogy, scientific knowledge is combined with subjective personal experiences and social issues. There is an interaction between student and scientific data when the student's context, relationships, and lived experiences that play a role in the scientific recognition of the world were incorporated into the learning process. In this pedagogical model, the factual content was viewed from the context of social and ethical implications. By empowering learners with this ability, science knowledge will no longer be exclusive to a select group. This process empowers the general population with the ability to understand scientific knowledge and therefore the ability to make informed decisions based on this knowledge. The goal was to make curriculum developers more conscious of factors that can positively influence the learning process and increase student engagement and understanding within the science classroom. The holistic approach to science pedagogy has enlightened and empowered our adult learners more effectively. Learners became more actively engaged in their own process of learning. Teachers must be willing to listen and implement student suggestions on improving the teaching/learning process. Teachers should be willing to make the effort in connecting with their students by structuring courses so the topics would be relevant to the students in relation to real world and social/ethical and political issues. Holistic science pedagogy strives for social change through the empowerment of adult learners with scientific knowledge. This research has demonstrated that learners can better understand the decision-making process and more easily relate their experiences, and therefore their knowledge, to social/political and ethical issues.
NASA Astrophysics Data System (ADS)
Lustick, D. S.; Lohmeier, J.; Chen, R. F.; Wilson, R.; Rabkin, D.; Thompson, S. R.
2015-12-01
How can an informal science learning project about climate change facilitate alliances among unlikely parties? We found a sweet spot of collaboration among private, public, and the non-profit sectors by borrowing strength and leveraging common interests. Using mass transit and out of home media, we created a diverse community around a learning campaign that starred an ostrich named "Ozzie." In 2013-14, ScienceToGo.org ran a series of 12 engaging posters and placards staring 'Ozzie the Ostrich' on the Massachusetts Bay Transit Authority's Red and Orange subway lines targeting a daily audience of 400,000+ riders. The curriculum was divided into three phases: reality, relevance, and hope. Phase I established the reality of climate change (3 months). Phase II helped T-riders appreciate the relevancy of climate change to the local environment of Boston (4 months). Phase III engaged Bostonians with an array of hopeful examples of how people, companies, and organizations are effectively creating a more sustainable future (5 months). The focus of this presentation will be on the relationships that emerged from the work that went into Phase III. Engaging urban populations with climate change science is a difficult challenge since cities seem so removed from the 'natural environment.' However, mass transit provides an inherent means of communicating environmental messages with a cross section of the urban population. Our team felt that any messaging curriculum for an urban subway system must complement the scary reality of a changing climate with hopeful solutions that exist for dealing with it effectively. Urban areas such as Boston must develop adaptation and mitigation strategies that will help them not only survive, but thrive in a changing environment. Making our audience aware of the amazing efforts in this area was the goal of Phase III. There were three parts to our efforts: the signage on the subway, above ground ostriches, and social events. During the presentation, we will describe ScienceToGo.org and explore the various theories that help explain why Phase III was successful at building alliances among more than three dozen diverse urban partners. Finally, we will conclude with some recommendations for how this work could improve and inform other urban informal science learning initiatives.
Köffler, N M; Kastl, G
2017-02-01
"Let's have the courage to train young doctors to conduct ophthalmic surgery!" - This is the final plea of this theoretical article, which appeals for greater collaboration between medical and educational sciences in the training of ophthalmic surgeons. It will be discussed whether surgery-based training is adequate, from the point of view of both medical knowledge and learning theory. Standard requirements for the specialist qualification in ophthalmic surgery are presented for Bavaria, Austria and Switzerland; these are then compared and contrasted with the experience-based practice of vocational training. Assuming that vocational training can be understood as providing the context for action-oriented learning, the relevance of procedural knowledge will be discussed for the development of practical surgical skills. A model for expertise in ophthalmic surgery will be outlined. Instructors' didactic skills and expertise will be discussed in relation to the requirements and guidelines for receiving the license to train assistants. In general, the article highlights the relevance of performance in learning surgery, and calls for the provision of sufficient possibilities to learn surgery in the course of assistant doctors' vocational training. This article addresses those who are involved in ophthalmologists' and ophthalmic surgeons' vocational training (e.g. medical instructors, medical associations, assistant doctors) and who welcome thought-provoking impulses from unfamiliar academic disciplines on key questions and concerns in practical vocational training. Georg Thieme Verlag KG Stuttgart · New York.
Knowledge Brokers in the Making: Opportunities to Connect Researchers and Stakeholders
NASA Astrophysics Data System (ADS)
Pennell, K. G.; Pennell, M. C.
2014-12-01
Environmental science and engineering graduate students often lack training on how to communicate with policy decision makers who are grappling with questions to which research is responding. They communicate directly with mutual experts, but are many times unable to engage with non-experts about their research, thereby limiting the reach and impact of their findings. This presentation highlights opportunities within environmental science and engineering research to create opportunities for researchers to hone skills as knowledge brokers, so they learn ways to meaningfully engage with a range of stakeholders. A knowledge broker is an individual who connects scientific experts and relevant stakeholders with meaningful and useable information. Recognizing that information must flow in multiple directions, the knowledge broker must quickly and effectively translate needs and questions using established relationships. It is these relationships, as well as the synthesis of scientific knowledge into useable information, on which the success of the knowledge broker lies. Using lessons learned, as well as communication science theory related to knowledge brokering, this presentation highlights training opportunities for knowledge brokers who are primarily educated in science and engineering fields, yet seek to engage with societally relevant stakeholders. We present case study examples of knowledge brokering within two large multi-disciplinary research centers. These centers provide unique experiences for researchers to build relationships with stakeholders, so that the scientific experts not only create novel research within their specific discipline, but also inform policy decision makers, community members and regulatory officials.
The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program
NASA Technical Reports Server (NTRS)
Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)
1995-01-01
NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.
Is Implicit Motor Learning Preserved after Stroke? A Systematic Review with Meta-Analysis
Kal, E.; Winters, M.; van der Kamp, J.; Houdijk, H.; Groet, E.; van Bennekom, C.; Scherder, E.
2016-01-01
Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients’ automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved post-stroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts. PMID:27992442
NASA Astrophysics Data System (ADS)
McWright, Cynthia Nicole
For decades science educators and educational institutions have been concerned with the status of science content being taught in K-12 schools and the delivery of the content. Thus, educational reformers in the United States continue to strive to solve the problem on how to best teach science for optimal success in learning. The constructivist movement has been at the forefront of this effort. With mandatory testing nationwide and an increase in science, technology, engineering, and mathematics (STEM) jobs with little workforce to fulfill these needs, the question of what to teach and how to teach science remains a concern among educators and all stakeholders. The purpose of this research was to determine if students' chemistry knowledge and interest can be increased by using the 5E learning cycle in a middle school with a high population of English language learners. The participants were eighth-grade middle school students in a large metropolitan area. Students participated in a month-long chemistry unit. The study was a quantitative, quasi-experimental design with a control group using a traditional lecture-style teaching strategy and an experimental group using the 5E learning cycle. Students completed a pre-and post-student attitude in science surveys, a pretest/posttest for each mini-unit taught and completed daily exit tickets using the Expert Science Teaching Educational Evaluation Model (ESTEEM) instrument to measure daily student outcomes in main idea, student inquiry, and relevancy. Analysis of the data showed that there was no statistical difference between the two groups overall, and all students experienced a gain in content knowledge overall. All students demonstrated a statistically significant difference in their interest in science class, activities in science class, and outside of school. Data also showed that scores in writing the main idea and writing inquiry questions about the content increased over time.
Feminist Group Process in Seminar Classes: Possibilities and Challenges
ERIC Educational Resources Information Center
Barrett, Betty J.
2009-01-01
In this essay, I describe my experience applying the principles of feminist group process in a senior level social science course. I begin by providing an overview of feminist pedagogy as an approach to teaching and learning and discuss the relevance of feminist group process within this model. I then highlight the core components of feminist…
Impact of an Inquiry Unit on Grade 4 Students' Science Learning
ERIC Educational Resources Information Center
Di Mauro, María Florencia; Furman, Melina
2016-01-01
This paper concerns the identification of teaching strategies that enhance the development of 4th grade students' experimental design skills at a public primary school in Argentina. Students' performance in the design of relevant experiments was evaluated before and after an eight-week intervention compared to a control group, as well as the…
Students' Perceptions of the Relevance of Mathematics in Engineering
ERIC Educational Resources Information Center
Flegg, Jennifer; Mallet, Dann; Lupton, Mandy
2012-01-01
In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, "Education for Civil…
ERIC Educational Resources Information Center
Arrieta, Diane; Brunnick, Barbara; Plocharczyk, Leah
2015-01-01
As academic libraries struggle to remain relevant when technological advancements and electronic resources threaten to make them obsolete, libraries are learning to re-invent themselves by molding and adapting staff skills to cultivate innovative outreach programs. The Science Outreach Committee of the John D. MacArthur Campus library at Florida…
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Bartolone, L.; Eisenhamer, B.; Lawton, B. L.; Schultz, G. R.; Peticolas, L.; Schwerin, T.; Shipp, S.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team
2013-06-01
Advancing scientific literacy and strengthening the Nation’s future workforce through stimulating, informative, and effective learning experiences are core principles of the NASA Science Mission Directorate (SMD) education and public outreach (E/PO) program. To support and coordinate its E/PO community in offering a coherent suite of activities and experiences that effectively meet the needs of the education community, NASA SMD has created four Science Education and Public Outreach Forums (Astrophysics, Planetary Science, Heliophysics, Earth Science). Forum activities include: professional development to raise awareness of the existing body of best practices and educational research; analysis and cataloging of SMD-funded education materials with respect to AAAS Benchmarks for Science Literacy; Working Groups that assemble needs assessment and best practices data relevant to Higher Education, K-12 Formal Education, and Informal Science Education audiences; and community collaborations that enable SMD E/PO community members to develop new partnerships and to learn and share successful strategies and techniques. This presentation will highlight examples of Forum and community-based activities related to astronomy education and teacher professional development, within the context of the principles articulated within the NRC Framework for K-12 Science Education and the Next Generation Science Standards. Among these are an emerging community of practice for K-12 educators and online teacher professional development and resources that incorporate misconception research and authentic experiences with NASA Astrophysics data.
Teens Discovering Science in the News: An Opportunity for Scientists to Communicate
NASA Astrophysics Data System (ADS)
Hall, Michelle; Mayhew, Michael
2010-05-01
Teens Discussing Science in the News: An Opportunity for Scientists to Communicate We have developed a program directed by teens and for teens to discuss current science and technology topics in the news. Modeled after the international Café Scientifique program for adults, we combine a social atmosphere with discussion of controversial topics to challenge teens to think about how science affects their lives. Our approach is for short story telling presentations during which the speaker identifies a single important idea and scientific principle to communicate. A good speaker will leave the audience with a dilemma or controversy to discuss, and with further opportunities to learn. A good speaker does not take him/herself too seriously and will work to fully engage the audience on the things that they can relate to. We integrate trivia quizzes at the beginning or the presenter questions the audience about assumptions they have about the topic. These techniques allow the presenter to gauge the knowledge level of the audience, while keeping them engaged and processing new information. We incorporate hands on learning from building model fuel cell cars, to analyzing the science in popular movies, to using Google Earth and remote sensing imagery to spy. Controversial topics such as geoengineering the climate, the role of nuclear energy and nuclear weapons, the future of hydrogen fuel cells/cars, carbon sequestration, and the nexus of water, climate and energy are often presented within a scientific, economic and social or political framework because science is only part of the solution. What we have learned is that teens begin to see science everywhere in their lives. We commonly hear the youth say - I did not know that is what geoscientists did! They learn to appreciate and can put the science they learn in school within a more relevant context. They like the challenge of finding solutions, but turn off to presentations on topics that seem to have no good solutions and speakers who talk down to them. And they begin to better understand what science is and that scientists are interesting people.
Developing an NGSS Pedagogy for Climate Literacy and Energy Awareness Using the CLEAN Collection
NASA Astrophysics Data System (ADS)
Manning, C. L. B.; Taylor, J.; Oonk, D.; Sullivan, S. M.; Kirk, K.; Niepold, F., III
2017-12-01
The Next Generation Science Standards and A Framework for K-12 Science Education have introduced us to 3-dimensional science instruction. Together, these provide infinite opportunities to generate interesting problems inspiring instruction and motivating student learning. Finding good resources to support 3-dimensional learning is challenging. The Climate Literacy and Energy Awareness Network (CLEAN) as a comprehensive source of high-quality, NGSS-aligned resources that can be quickly and easily searched. Furthermore, teachers new to NGSS are asked to do the following: synthesize high quality, scientifically vetted resources to engage students in relevant phenomena, problems and projects develop place-awareness for where students live and learn encourage data analysis, modeling, and argumentation skills energize students to participate in finding possible solutions to the problems we face. These challenges are intensified when teaching climate science and energy technology, some of the most rapidly changing science and engineering fields. Educators can turn to CLEAN to find scientifically and pedagogically vetted resources to integrate into their lessons. In this presentation, we will introduce the newly developed Harmonics Planning Template, Guidance Videos and Flowchart that guide the development of instructionally-sound, NGSS-style units using the CLEAN collection of resources. To illustrate the process, three example units will be presented: Phenology - a place-based investigation, Debating the Grid - a deliberation on optimal energy grid solutions, and History of Earth's Atmosphere and Oceans - a data-rich collaborative investigation.
Gopalan, Vinod; Dissabandara, Lakal; Nirthanan, Selvanayagam; Forwood, Mark R; Lam, Alfred King-Yin
2016-09-01
Human cadavers offer a great opportunity for histopathology students for the learning and teaching of tissue pathology. In this study, we aimed to implement an integrated learning approach by using cadavers to enhance students' knowledge and to develop their skills in gross tissue identification, handling and dissection techniques. A total of 35 students enrolled in the undergraduate medical science program participated in this study. A 3-hour laboratory session was conducted that included an active exploration of cadaveric specimens to identify normal and pathological tissues as well as tissue dissection. The majority of the students strongly agreed that the integration of normal and morbid anatomy improved their understanding of tissue pathology. All the students either agreed or strongly agreed that this laboratory session was useful to improve their tissue dissection and instrument handling skills. Furthermore, students from both cohorts rated the session as very relevant to their learning and recommended that this approach be added to the existing histopathology curriculum. To conclude, an integrated cadaver-based practical session can be used effectively to enhance the learning experience of histopathology science students, as well as improving their manual skills of tissue treatment, instrument handling and dissection. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Why Sketching May Aid Learning From Science Texts: Contrasting Sketching With Written Explanations.
Scheiter, Katharina; Schleinschok, Katrin; Ainsworth, Shaaron
2017-10-01
The goal of this study was to explore two accounts for why sketching during learning from text is helpful: (1) sketching acts like other constructive strategies such as self-explanation because it helps learners to identify relevant information and generate inferences; or (2) that in addition to these general effects, sketching has more specific benefits due to the pictorial representation that is constructed. Seventy-three seventh-graders (32 girls, M = 12.82 years) were first taught how to either create sketches or self-explain while studying science texts. During a subsequent learning phase, all students were asked to read an expository text about the greenhouse effect. Finally, they were asked to write down everything they remembered and then answer transfer questions. Strategy quality during learning was assessed as the number of key concepts that had either been sketched or mentioned in the self-explanations. The results showed that at an overall performance level there were only marginal group differences. However, a more in-depth analysis revealed that whereas no group differences emerged for students implementing either strategy poorly, the sketching group clearly outperformed the self-explanation group for students who applied the strategies with higher quality. Furthermore, higher sketching quality was strongly related to better learning outcomes. Thus, the study's results are more in line with the second account: Sketching can have a beneficial effect on learning above and beyond generating written explanations; at least, if well deployed. Copyright © 2017 Cognitive Science Society, Inc.
Second Language Experience Facilitates Statistical Learning of Novel Linguistic Materials.
Potter, Christine E; Wang, Tianlin; Saffran, Jenny R
2017-04-01
Recent research has begun to explore individual differences in statistical learning, and how those differences may be related to other cognitive abilities, particularly their effects on language learning. In this research, we explored a different type of relationship between language learning and statistical learning: the possibility that learning a new language may also influence statistical learning by changing the regularities to which learners are sensitive. We tested two groups of participants, Mandarin Learners and Naïve Controls, at two time points, 6 months apart. At each time point, participants performed two different statistical learning tasks: an artificial tonal language statistical learning task and a visual statistical learning task. Only the Mandarin-learning group showed significant improvement on the linguistic task, whereas both groups improved equally on the visual task. These results support the view that there are multiple influences on statistical learning. Domain-relevant experiences may affect the regularities that learners can discover when presented with novel stimuli. Copyright © 2016 Cognitive Science Society, Inc.
Design for learning – a case study of blended learning in a science unit
Gleadow, Roslyn; Macfarlan, Barbara; Honeydew, Melissa
2015-01-01
Making material available through learning management systems is standard practice in most universities, but this is generally seen as an adjunct to the ‘real’ teaching, that takes place in face-to-face classes. Lecture attendance is poor, and it is becoming increasingly difficult to engage students, both in the material being taught and campus life. This paper describes the redevelopment of a large course in scientific practice and communication that is compulsory for all science students studying at our Melbourne and Malaysian campuses, or by distance education. Working with an educational designer, a blended learning methodology was developed, converting the environment provided by the learning management system into a teaching space, rather than a filing system. To ensure focus, topics are clustered into themes with a ‘question of the week’, a pre-class stimulus and follow up activities. The content of the course did not change, but by restructuring the delivery using educationally relevant design techniques, the content was contextualised resulting in an integrated learning experience. Students are more engaged intellectually, and lecture attendance has improved. The approach we describe here is a simple and effective approach to bringing this university’s teaching and learning into the 21 st century. PMID:26594348
[Acquiring Science English: A Plan and System Are Needed].
Foong, Foo Wah
2018-01-01
Literary English is different from science English (SE) and pharmaceutical science English (PSE). Therefore, a totally new approach was adopted for students to learn PSE at Kyoto Pharmaceutical University (KPU). In 2012, a 4-year program for teaching PSE was proposed, and a stepwise-stepup tertiary science English education (SSTSEE) system was introduced at KPU. The system provides a novel form of PSE teaching that stretches from year 1 to 4, where the PSE level progresses to higher levels of learning with each passing academic year. With the launch of the SSTSEE system, relevant science-educated staff were provided with training and were also requested to study the syllabi of the respective academic years to write textbooks with the appropriate PSE content for their respective levels. From 2012 to 2015, textbooks and curricula for 4 year academic levels were developed and published to meet the needs for PSE learning at each academic level. Based on results of the SSTSEE system, year 1 students acquired the SE basics, and year 2 students applied the SE basics acquired. In years 3 and 4, students further pursued and developed their PSE ability. Additionally, students participated actively in developing skills in the reading, listening, writing, and speaking of SE/PSE. Active-plus-deep learning prompted students in developing those skills using illustrations, posters, and power-point slideshow presentations. By year 4, average achievers had established an independent level of competency in reading, listening, speaking, and writing PSE. Moreover, the SSTSEE system accommodated students timely in developing communication skills for practical fieldwork (clerkships) at pharmacies/hospitals in year 5 and for their future endeavors.
Science as a Second Language: Acquiring Fluency through Science Enterprises
NASA Astrophysics Data System (ADS)
Shope, R. E.
2012-12-01
Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, exploration, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. We explore a series of science enterprise tools that have been developed and implemented in the context of informal science education projects that have reached over 10,000 urban youth in the Greater Los Angles area over the past six years. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change; 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Science Mimes, participatory enactment of science understanding. Practical examples of Science Enterprises will be presented, including a range of projects: Watershed Ecology; Astrobiology; Mars Rovers; Planetary Science; Icy Worlds. BACKGROUND: Language Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, reading for pleasure, conversing, discussing, where the focus is not specifically on language development, but on the activity, which is of interest to the participant. Language Learning is a formal education process, the language arts aspect of the school day: the direct teaching of reading, writing, grammar, spelling, and speaking. Fluency results primarily from language acquisition and secondarily from language learning. We can view the problem of science education and communication as similar to language acquisition. Science Learning is a formal education process, the school science aspect of the school day: the direct teaching of standards-aligned science content. Science Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, experimenting for pleasure, conversing, discussing, where the focus is not specifically on science content development, but on the inquiry activity, driven by the curiosity of the participant. Comprehensible input refers to the premise that we acquire language in the midst of activity when we understand the message; that is, when we understand what we hear or what we read or what we see. Acquisition is caused by comprehensible input as it occurs in the midst of a rich environment of language activity while doing something of interest to the learner. Providing comprehensible input is not the same as oversimplifying or "dumbing down." It is devising ways to create conditions where the interest of the learner is piqued.
NASA Astrophysics Data System (ADS)
Niepold, F.; Byers, A.
2009-12-01
The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.
NASA Astrophysics Data System (ADS)
Ales, Jo Dale Hill
2000-12-01
This exploratory study examined three instructional strategies used with female high school biology students. The relative contributions of the strategies to student understanding of microbiology and motivation in science were analyzed. The science education community targeted underachievement in science by implementing changes in content and practices (NRC, 1996). Research suggested that teachers facilitate learnirig environments based on human constructivism (Mintzes, Wandersee, & Novak, 1997) that is rooted in meaningful learning theory (Ausubel, Novak & Hanesian, 1978). Teachers were advised to use both visual and verbal instructional strategies (Paivio, 1983) and encourage students to construct understandings by connecting new experiences to prior knowledge. The American Society for Microbiology supports the study of microorganisms because of their prominence in the biosphere (ASK 1997). In this study, two participating teachers taught selected microbiology concepts while focused on the cutting edge science of biofilms. Biology students accessed digitized biofilm images on an ASM web page and adapted them into products, communicated with biofilm researchers, and adapted a professional-quality instructional video for cross-age teaching. The study revealed improvements in understanding as evidenced on a written test; however, differences in learnirig outcomes were not significant. Other data, including student journal reflections, observations of student interactions, and student clinical interviews indicate that students were engaged in cutting edge science and adapted biofilm images in ways that increased understanding of microbiology (with respect to both science content and as a way of knowing) and motivation. An ASM CD-ROM of the images did not effectively enhance learning and this study provides insights into what could make it more successful. It also identifies why, in most cases, students' E-mail communication with biofilm researchers was unsuccessful. The positive experiences of successful students indicate that teacher management could maximize the benefits of experiencing cutting edge science this way. Cutting edge science can be used to make science more relevant to students, enhance science learning, and insure a more scientifically literate society. Cross-age teachers effectively adapted an instructional video, communicated science, and increased their understanding of selected microbiology concepts and self-confidence. They also increased or maintained their motivation to study science.
NASA Astrophysics Data System (ADS)
Ward, Robin Eichel
This research explored the effects of Roundhouse diagram construction and use on meaningful learning of science concepts in a 6th-grade science classroom. This investigation examined the transformation of students' science concepts as they became more proficient in constructing Roundhouse diagrams, what problems students encountered while constructing Roundhouse diagrams, and how choices of iconic images affected their progress in meaningfully learning science concepts as they constructed a series of Roundhouse diagrams. The process of constructing a Roundhouse diagram involved recognizing the learner's relevant existing concepts, evaluating the central concepts for a science lesson and breaking them down into their component parts, reconstructing the learner's conceptual framework by reducing the amount of detail efficiently, reviewing the reconstruction process, and linking each key concept to an iconic image. The researcher collected and analyzed qualitative and quantitative data to determine the effectiveness of the Roundhouse diagram. Data included field notes, observations, students' responses to Roundhouse diagram worksheets, students' perceptions from evaluation sheets, students' mastery of technique sheets, tapes and transcripts of students' interviews, student-constructed Roundhouse diagrams, and documentation of science grades both pre- and post-Roundhouse diagramming. This multiple case study focused on six students although the whole class was used for statistical purposes. Stratified purposeful sampling was used to facilitate comparisons as well as week-by-week comparisons of students' science grades and Roundhouse diagram scores to gain additional insight into the effectiveness of the Roundhouse diagramming method. Through participation in constructing a series of Roundhouse diagrams, middle school students gained a greater understanding of science concepts. Roundhouse diagram scores improved over time during the 10-week Roundhouse diagramming session. Students' science scores improved as they became more proficient in constructing the Roundhouse diagrams. The major problems associated with constructing Roundhouse diagrams were extracting the main ideas from the textbook, understanding science concepts in terms of whole/part relationships, paraphrasing sentences effectively, and sequencing events in an accurate order. A positive relationship existed for the case study group based on students' choices and drawings of iconic images and the meaningful learning of science concepts.
Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort
NASA Astrophysics Data System (ADS)
de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.
2011-12-01
The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during which 20 participants have been involved and significant feedback has been received.
Drafting and acting on feedback supports student learning when writing essay assignments.
Freestone, Nicholas
2009-06-01
A diverse student population is a relatively recent feature of the higher education system in the United Kingdom. Consequently, it may be thought that more "traditional" types of assessment based around essay writing skills for science undergraduates may be of decreasing value and relevance to contemporary students. This article describes a study in which the process of feedback on, and associated redrafting of, an essay was closely supervised to improve essay writing skills and subsequent exam performance. The results of this study show that students can significantly improve their learning and academic performance, as assessed by final examination mark, by a process that more closely mimics a "real-world" situation of review and redrafting. Additionally, the data show that students benefit from feedback only when this is used appropriately by the student. The article also discusses the continuing importance and relevance of essay writing skills so that writing, and acting upon feedback to do with that writing, remains an integral part of the process of learning.
Developing a constructivist learning environment in online postsecondary science courses
NASA Astrophysics Data System (ADS)
Hackworth, Sylvester N.
This Delphi study addressed the concerns of postsecondary educators regarding the quality of education received by postsecondary science students who receive their instruction online. This study was framed with the constructivist learning theory and Piaget's and Dewey's cognitive development theories. The overarching question addressed a gap in research literature surrounding the pedagogical practices that could be successfully applied to future postsecondary online science education. The panel consisted of 30 experts in the area of online postsecondary education. Qualitative data from the initial seed questions were used to create a Likert-type survey to seek consensus of the themes derived from participant responses. Participants reached agreement on six items: apply constructivism to science curricula, identify strengths and challenges of online collegiate students, explicate students' consequences due to lack of participation in discussion forums, ensure that online course content is relevant to students' lives, reinforce academic integrity, and identify qualities face-to-face collegiate science instructors need when transitioning to online science instructors. The majority of participants agreed that gender is not an important factor in determining the success of an online collegiate science student. There was no consensus on the efficacy of virtual labs in an online science classroom. This study contributes to positive social change by providing information to new and struggling postsecondary science teachers to help them successfully align their instruction with students' needs and, as a result, increase students' success.
NASA Astrophysics Data System (ADS)
Bannier, Betsy J.
2015-06-01
Highly relevant for academic study among K-12 educators and the higher education faculty who train pre-service teachers, Diversity and equity in science education highlights three interrelated issues impacting science education in the United States. First, complicated dynamics related to the large and increasing population of English language learning (ELL) students are discussed. Second, the realities of standardized test scores are comparatively explored, both within and beyond the United States. Third, the politics of accountability in education are vigorously discussed. Okhee Lee and Cory A. Buxton weave through the contexts of politics, education, science, and culture to expand existing discourse about how to best educate our nation's children.
Everyday science & science every day: Science-related talk & activities across settings
NASA Astrophysics Data System (ADS)
Zimmerman, Heather
To understand the development of science-related thinking, acting, and learning in middle childhood, I studied youth in schools, homes, and other neighborhood settings over a three-year period. The research goal was to analyze how multiple everyday experiences influence children's participation in science-related practices and their thinking about science and scientists. Ethnographic and interaction analysis methodologies were to study the cognition and social interactions of the children as they participated in activities with peers, family, and teachers (n=128). Interviews and participant self-documentation protocols elucidated the participants' understandings of science. An Everyday Expertise (Bell et al., 2006) theoretical framework was employed to study the development of science understandings on three analytical planes: individual learner, social groups, and societal/community resources. Findings came from a cross-case analysis of urban science learners and from two within-case analyses of girls' science-related practices as they transitioned from elementary to middle school. Results included: (1) children participated actively in science across settings---including in their homes as well as in schools, (2) children's interests in science were not always aligned to the school science content, pedagogy, or school structures for participation, yet children found ways to engage with science despite these differences through crafting multiple pathways into science, (3) urban parents were active supporters of STEM-related learning environments through brokering access to social and material resources, (4) the youth often found science in their daily activities that formal education did not make use of, and (5) children's involvement with science-related practices can be developed into design principles to reach youth in culturally relevant ways.
Category transfer in sequential causal learning: the unbroken mechanism hypothesis.
Hagmayer, York; Meder, Björn; von Sydow, Momme; Waldmann, Michael R
2011-07-01
The goal of the present set of studies is to explore the boundary conditions of category transfer in causal learning. Previous research has shown that people are capable of inducing categories based on causal learning input, and they often transfer these categories to new causal learning tasks. However, occasionally learners abandon the learned categories and induce new ones. Whereas previously it has been argued that transfer is only observed with essentialist categories in which the hidden properties are causally relevant for the target effect in the transfer relation, we here propose an alternative explanation, the unbroken mechanism hypothesis. This hypothesis claims that categories are transferred from a previously learned causal relation to a new causal relation when learners assume a causal mechanism linking the two relations that is continuous and unbroken. The findings of two causal learning experiments support the unbroken mechanism hypothesis. Copyright © 2011 Cognitive Science Society, Inc.
Callanan, Maureen; Cervantes, Christi; Loomis, Molly
2011-11-01
We consider research and theory relevant to the notion of informal learning. Beginning with historical and definitional issues, we argue that learning happens not just in schools or in school-aged children. Many theorists have contrasted informal learning with formal learning. Moving beyond this dichotomy, and away from a focus on where learning occurs, we discuss five dimensions of informal learning that are drawn from the literature: (1) non-didactive, (2) highly socially collaborative, (3) embedded in meaningful activity, (4) initiated by learner's interest or choice, and (5) removed from external assessment. We consider these dimensions in the context of four sample domains: learning a first language, learning about the mind and emotions within families and communities, learning about science in family conversations and museum settings, and workplace learning. Finally, we conclude by considering convergences and divergences across the different literatures and suggesting areas for future research. WIREs Cogni Sci 2011 2 646-655 DOI: 10.1002/wcs.143 For further resources related to this article, please visit the WIREs website. Copyright © 2011 John Wiley & Sons, Ltd.
Supporting Teachers Learning Through the Collaborative Design of Technology-Enhanced Science Lessons
NASA Astrophysics Data System (ADS)
Kafyulilo, Ayoub C.; Fisser, Petra; Voogt, Joke
2015-12-01
This study used the Interconnected Model of Professional Growth (Clarke & Hollingsworth in Teaching and Teacher Education, 18, 947-967, 2002) to unravel how science teachers' technology integration knowledge and skills developed in a professional development arrangement. The professional development arrangement used Technological Pedagogical Content Knowledge as a conceptual framework and included collaborative design of technology-enhanced science lessons, implementation of the lessons and reflection on outcomes. Support to facilitate the process was offered in the form of collaboration guidelines, online learning materials, exemplary lessons and the availability of an expert. Twenty teachers participated in the intervention. Pre- and post-intervention results showed improvements in teachers' perceived and demonstrated knowledge and skills in integrating technology in science teaching. Collaboration guidelines helped the teams to understand the design process, while exemplary materials provided a picture of the product they had to design. The availability of relevant online materials simplified the design process. The expert was important in providing technological and pedagogical support during design and implementation, and reflected with teachers on how to cope with problems met during implementation.
Preparing Science Teachers for the future
NASA Astrophysics Data System (ADS)
Stein, Fredrick
2002-04-01
What will teachers need in the future to be successful? What will "successful" mean in the future? Are the teaching approaches learned 40 years ago still relevant for tomorrow's classrooms? Will technology really change the way physics is taught (K-16)? Will we close the performance gap between students of differing ethnicity? Are schools of education rising to the challenge to answer these questions? Can college and university physics departments rise to the challenge of presenting physics to all students in an engaging manner? What can the APS, in partnership with AAPT and AIP, do to find the answers and provide strategies to improve the science preparation of future teachers? PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. The compelling evidence produced from Physics Education Research warrants this approach. A National Science Foundation grant of 5.76 million and a 498 thousand grant from the Fund for the Improvement of Postsecondary Education support PhysTEC, its partners and activities. http://www.phystec.org/
Teaching science to science teachers: Lessons taught and lessons learned
NASA Astrophysics Data System (ADS)
Douglas, E. M.; Hashimoto-Martell, E. A.; Balicki, S.; Oglavie, D. R.
2009-12-01
The Boston Science Partnership has created a comprehensive set of graduate courses that immerse teachers in the science topics most relevant to their teaching practices. In these courses, teachers become students of science, developing their conceptual understandings through scientific inquiry. All courses are co-taught by a university faculty and teacher leaders from the Boston Public Schools. Each course provides contextual linkages between the science content and the standards-based curriculum of the Boston Public School district. One of the most relevant science topics to teachers and students of all disciplines is climate change. This served as the overarching theme for our course delivered during summer 2008 and 2009. This course focused on weather and the pivotal role that water and solar radiation play in the exchange of energy at the Earth's surface. Basic concepts such as the behavior of gases, energy flow, density changes, phase changes, heat capacities, and thermal convection were applied to examine short-term weather and water dynamics and longer-term impacts on global warming and climate change. The course was designed to embrace the 7E learning cycle and instructional model, as proposed by Eisenkraft in his landmark 2003 Science Teacher article. This inquiry-based instructional model builds upon prior conceptions and engages the learner in activities in which they begin to construct meaning of a concept prior to being given an explanation. Each day focused on an essential topic related to weather and climate change, and experiential learning was our main objective. There were many successes and challenges with our course. Twenty-five participants were enrolled, and all had different background knowledge and skill sets. Additionally, their level of teaching varied greatly, from K-12, so the level of depth with which to learn the content in order to bring it back to their classrooms varied a great deal as well. Therefore differentiating instruction for our diverse participants was a constant challenge for us as instructors. In summer 2008, the course was organized so that fundamentals (chemistry, heat transfer, convection, physics) were taught in the first week and then applied in broader topics (water cycle, carbon cycle, weather and precipitation) in the second week. Learning these fundamentals was challenging for many teachers. Furthermore, the organization of topics caused frustration because there was not enough connection to the broader concepts of the course. In summer 2009, we rearranged the topics and interwove fundamentals with contextual topics within each week. We found this approach to be more successful in engaging and educating the teachers. The most successful activities were often the simplest to organize. Valuable instructional strategies included daily assessments in the form of morning quizzes, keeping a class website with all course materials, and centering the major project of the course around a lesson that teachers would design for their particular context. We saw a dramatic improvement in pre- and post-assessment test scores, with the class average increasing from 58% (pre-test) to 95% (post-test).
NASA Astrophysics Data System (ADS)
Bostick, B. C.; Newton, R.; Vincent, S.; Peteet, D. M.; Sambrotto, R.; Schlosser, P.; Corbett, E.
2015-12-01
Conventional instruction in science often proceeds from the general to the specific and from text to action. Fundamental terminologies, concepts, and ideas that are often abstract are taught first and only after such introductory processes can a student engage in research. Many students struggle to find relevance when presented information without context specific to their own experiences. This challenge is exacerbated for students whose social circles do not include adults who can validate scientific learning from their own experiences. Lamont-Doherty's Secondary School Field Research Program inverts the standard paradigm and places small groups of students in research projects where they begin by performing manageable tasks on complex applied research projects. These tasks are supplemented with informal mentoring and relevant articles (~1 per week). Quantitative metrics suggest the approach is highly successful—most participants report a dramatic increase in their enthusiasm for science, 100% attend college, and approximately 50% declare majors in science or technology. We use one project, the construction of a microbial battery, to illustrate this novel model of science learning and argue that it should be considered a best practice for project-based science education. The goal of this project was to build a rechargeable battery for a mobile phone based on a geochemical cycle, to generate and store electricity. The students, mostly from ethnic groups under-represented in the STEM fields, combined concepts and laboratory methods from biology, chemistry and physics to isolate photosynthetic bacteria from a natural salt marsh, and made an in situ device capable of powering a light bulb. The younger participants had been exposed to neither high school chemistry nor physics at the start of the project, yet they were able to use the project as a platform to deepen their science knowledge and their desire for increased participation in formal science education.
Experiencing biodiversity as a bridge over the science-society communication gap.
Meinard, Yves; Quétier, Fabien
2014-06-01
Drawing on the idea that biodiversity is simply the diversity of living things, and that everyone knows what diversity and living things mean, most conservation professionals eschew the need to explain the many complex ways in which biodiversity is understood in science. On many biodiversity-related issues, this lack of clarity leads to a communication gap between science and the general public, including decision makers who must design and implement biodiversity policies. Closing this communication gap is pivotal to the ability of science to inform sound environmental decision making. To address this communication gap, we propose a surrogate of biodiversity for communication purposes that captures the scientific definition of biodiversity yet can be understood by nonscientists; that is, biodiversity as a learning experience. The prerequisites of this or any other biodiversity communication surrogate are that it should have transdisciplinary relevance; not be measurable; be accessible to a wide audience; be usable to translate biodiversity issues; and understandably encompass biodiversity concepts. Biodiversity as a learning experience satisfies these prerequisites and is philosophically robust. More importantly, it can effectively contribute to closing the communication gap between biodiversity science and society at large. © 2013 Society for Conservation Biology.
Big Ideas in Volcanology-a new way to teach and think about the subject?
NASA Astrophysics Data System (ADS)
Rose, W. I.
2011-12-01
As intense work with identifying and presenting earth science to middle school science teachers in the MiTEP project advances, I have realized that tools used to connect with teachers and students of earth science in general and especially to promote higher levels of learning, should be advantageous in graduate teaching as well. In my last of 40 years of teaching graduate volcanology, I have finally organized the class around ideas based on Earth Science Literacy Principles and on common misconceptions. As such, I propose and fully explore the twelve "big ideas" of volcanology at the rate of one per week. This curricular organization highlights the ideas in volcanology that have major impact beyond volcanology itself and explores the roots and global ramifications of these ideas. Together they show how volcanology interfaces with the science world and the "real" world or how volcanologists interface with "real" people. In addition to big ideas we explore difficult and misunderstood concepts and the public misconceptions associated with each. The new organization and its focus on understanding relevant and far reaching concepts and hypotheses provides a refreshing context for advanced learning. It is planned to be the basis for an interactive website.
Teaching Sustainability from a Scientific Standpoint at the Introductory Level
NASA Astrophysics Data System (ADS)
Campbell-Stone, E.; Myers, J. D.
2008-12-01
In recent decades, humankind has recognized that current levels of resource utilization are seriously impacting our planet's life support systems and threatening the ability of future generations to provide for themselves. The concept of sustainability has been promoted by a variety of national and international organizations as a method to devise ways to adjust humanity's habits and consumption to levels that can be maintained over the long term, i.e. sustained. Courses on sustainability are being offered at many universities and colleges, but most are taught outside of science departments; they are often designed around policy concerns or focus primarily on environmental impacts while neglecting the science of sustainability. Because the three foundations necessary to implement sustainability are sustainability governance, sustainability accounting, and sustainability science, it is imperative that science departments play an active role in preparing citizens and professionals for dealing with sustainability issues. The geosciences are one of the scientific disciplines that offer a logical foundation from which to teach sustainability science. Geoscientists can also offer a unique and relevant geologic perspective on sustainability issues. The authors have developed an introductory, interdisciplinary course entitled 'Global Sustainability: Managing Earth's Resources' that integrates scientific disciplines in the examination of real world sustainability issues. In-depth understanding of physical, Earth and biological science principles are necessary for students to identify the limits and constraints imposed on important issues facing modern society, e.g. water, energy, population growth, etc. This course exposes students to all the scientific principles that apply directly to sustainability. The subject allows the instructors to present open-ended, multifaceted and complex problems relevant to today's industrialized and globalized world, and it encourages students to think critically about global, national, and local issues. The course utilizes a lecture/lab format; lecture concentrates on the content of sustainability and lab offers students an opportunity to apply what they have learned to actual case studies (context). Students follow a variety of Earth resources from formation to extraction to processing to production to disposal/recycling. At each stage, students examine the relevant science, economics, policies, and environmental impact. Sustainability issues clearly demonstrate the relevance of scientific content and quantitative reasoning to real-world problems of energy, pollution, water, and climate change, and they also provide meaning and context to critical thinking and problem-solving. The integrated and interdisciplinary approach builds bridges between the natural and social sciences and benefits both STEM (Science, Technology, Engineering and Mathematics) and non-STEM students. Non-STEM students learn through practice and application how science, engineering and technology are fundamental to solving many of the problems societies face, and STEM students discover that those fields cannot operate independently from issues of culture, economics, and politics. By having STEM and non-STEM students work in groups on global sustainability problems, the course helps to lower the barriers between the disciplines and promotes comprehensive and multifaceted examination of societal issues at many levels.
Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory
NASA Technical Reports Server (NTRS)
Linde, Charlotte
2005-01-01
Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.
Says Who?: Students Apply Their Critical-Analysis Skills to Fight Town Hall
ERIC Educational Resources Information Center
Trimarchi, Ruth
2002-01-01
For some time the author looked for a tool to let students apply what they are learning about critical analysis in the science classroom to a relevant life experience. The opportunity occurred when a proposal to use environmentally friendly cleaning products in town buildings appeared on the local town meeting agenda. Using a copy of the proposal…
ERIC Educational Resources Information Center
Kirch, Susan A.; Ma, Jasmine Y.
2016-01-01
The interaction analysis presented by Kim and Roth examines nine students, their teachers, the learning task and materials in a mixed second and third grade science classroom during the school day. In the research narrative readers are introduced to two resourceful and creative groups of students as they work on a task assigned by their…
Night Gallery: An Innovative Multimedia Strategy for Delivering a General Microbiology Lecture
ERIC Educational Resources Information Center
Dahl, John; Mixter, Phil
2008-01-01
In delivering a core science course to pre-health-related majors, the authors sought ways to engage students, make material relevant to life-long learning, and present it in a memorable way. Their goals were to present scientific content fused with history, ethics, public policy, and art in such a way that the students would be provided a unique…
ERIC Educational Resources Information Center
Bhangu, Aneel; Boutefnouchet, Tarek; Yong, Xu; Abrahams, Peter; Joplin, Ruth
2010-01-01
Today's medical students are faced with numerous learning needs. Continuously developing curricula have reduced time for basic science subjects such as anatomy. This study aimed to determine the students' views on the relevance of anatomy teaching, anatomical knowledge, and the effect these have on their career choices. A Likert scale…
Stereoscopic Vascular Models of the Head and Neck: A Computed Tomography Angiography Visualization
ERIC Educational Resources Information Center
Cui, Dongmei; Lynch, James C.; Smith, Andrew D.; Wilson, Timothy D.; Lehman, Michael N.
2016-01-01
Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching…
Pisa testing. A global educational race?
NASA Astrophysics Data System (ADS)
Sjøberg, Svein
2017-10-01
The OECD's PISA project is not an educational project. It is a political project and has to be understood as an instrument of power. PISA is normative, it tells what young people should learn, regardless of the nations' culture, nature, traditions and values. The battle to improve PISA rankings may conflict with our work to make science relevant, contextualized, interesting and motivating for young learners.
NASA Astrophysics Data System (ADS)
Lujan, Vanessa Beth
This study is a qualitative narrative analysis on the importance and relevance of the ethnic and gender identities of 17 Latino/a (Hispanic) college students in the biological sciences. This research study asks the question of how one's higher education experience within the science pipeline shapes an individual's direction of study, attitudes toward science, and cultural/ethnic and gender identity development. By understanding the ideologies of these students, we are able to better comprehend the world-makings that these students bring with them to the learning process in the sciences. Informed by life history narrative analysis, this study examines Latino/as and their persisting involvement within the science pipeline in higher education and is based on qualitative observations and interviews of student perspectives on the importance of the college science experience on their ethnic identity and gender identity. The findings in this study show the multiple interrelationships from both Latino male and Latina female narratives, separate and intersecting, to reveal the complexities of the Latino/a group experience in college science. By understanding from a student perspective how the science pipeline affects one's cultural, ethnic, or gender identity, we can create a thought-provoking discussion on why and how underrepresented student populations persist in the science pipeline in higher education. The conditions created in the science pipeline and how they affect Latino/a undergraduate pathways may further be used to understand and improve the quality of the undergraduate learning experience.
NASA Astrophysics Data System (ADS)
Koch, Melissa; Gorges, Torie
2016-10-01
Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.
Campbell-Voytal, Kimberly; Daly, Jeanette M; Nagykaldi, Zsolt J; Aspy, Cheryl B; Dolor, Rowena J; Fagnan, Lyle J; Levy, Barcey T; Palac, Hannah L; Michaels, LeAnn; Patterson, V Beth; Kano, Miria; Smith, Paul D; Sussman, Andrew L; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria
2015-12-01
Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN-specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice-based research. The participatory nature of "sense-making" moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the "sense-making" process. © 2015 Wiley Periodicals, Inc.
Daly, Jeanette M.; Nagykaldi, Zsolt J.; Aspy, Cheryl B.; Dolor, Rowena J.; Fagnan, Lyle J.; Levy, Barcey T.; Palac, Hannah L.; Michaels, LeAnn; Patterson, V. Beth; Kano, Miria; Smith, Paul D.; Sussman, Andrew L.; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria
2015-01-01
Abstract Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN‐specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice‐based research. The participatory nature of “sense‐making” moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the “sense‐making” process. PMID:26602516
NASA Astrophysics Data System (ADS)
Lewis, E. S.; Gehrke, G. E.
2017-12-01
In a historical moment where the legitimacy of science is being questioned, it is essential to make science more accessible to the public. Active participation increases the legitimacy of projects within communities (Sidaway 2009). Creating collaborations in research strengthens not only the work by adding new dimensions, but also the social capital of communities through increased knowledge, connections, and decision making power. In this talk, Lewis will discuss how engagement at different stages of the scientific process is possible, and how researchers can actively develop opportunities that are open and inviting. Genuine co-production in research pushes scientists to work in new ways, and with people from different backgrounds, expertise, and lived experiences. This approach requires a flexible and dynamic balance of learning, sharing, and creating for all parties involved to ensure more meaningful and equitable participation. For example, in community science such as that by Public Lab, the community is at the center of scientific exploration. The research is place-based and is grounded in the desired outcomes of community members. Researchers are able to see themselves as active participants in this work alongside community members. Participating in active listening, developing plans together, and using a shared language built through learning can be helpful tools in all co-production processes. Generating knowledge is powerful. Through genuine collaboration and co-creation, science becomes more relevant. When community members are equitable stakeholders in the scientific process, they are better able to engage and advocate for the changes they want to see in their communities. Through this talk, session attendees will learn about practices that promote equitable participation in science, and hear examples of how the community science process engages people in both the knowledge production, and in the application of science.
NASA Astrophysics Data System (ADS)
Taylor, J.
2013-12-01
Numerous science organizations, such as NASA, offer educational outreach activities geared towards after school. For some programs, the primary goal is to grow students' love of science. For others, the programs are also intended to increase academic achievement. For those programs looking to support student learning in out-of-school time environments, aligning the program with learning during the classroom day can be a challenge. The Institute for Education Sciences, What Works Clearinghouse, put together a 'Practice Guide' for maximizing learning time beyond the regular school day. These practice guides provide concrete recommendations for educators supported by research. While this guide is not specific to any content or subject-area, the recommendations provided align very well with science education. After school science is often viewed as a fun, dynamic environment for students. Indeed, one of the recommendations to ensure time is structured according to students' needs is to provide relevant and interesting experiences. Given that our after school programs provide such creative environments for students, what other components are needed to promote increased academic achievement? The recommendations provided to academic achievement, include: 1. Align Instruction, 2. Maximize Attendance and Participation, 3. Adapt Instruction, 4. Provide Engaging Experiences, and 5. Evaluate Program. In this session we will examine these five recommendations presented in the Practice Guide, discuss how these strategies align with science programs, and examine what questions each program should address in order to provide experiences that lend themselves to maximizing instruction. Roadblocks and solutions for overcoming challenges in each of the five areas will be presented. Jessica Taylor will present this research based on her role as an author on the Practice Guide, 'Improving Academic Achievement in Out-of-School Time' and her experience working in various informal science programs for NASA.
NASA Astrophysics Data System (ADS)
Schuster, D. A.
2005-12-01
The role of university faculty in promoting meaningful educational change through inservice teacher professional development has long been theorized, but seldom modeled. Cordial relations and clear mutual goals shared between discipline specialists, such as university scientists and the K - 12 staff development communities, have not existed, and dysfunctional relationships between K-12 schools and the university over the past century have inhibited the solidification of these meaningful professional development partnerships. Our research suggest that inservice teachers tend to learn more about scientific processes in settings where they have the opportunity to interact and engage in an environment where opportunities for learning are promoted by participation and work with professionals in the sciences: University scientists that fostered collaborative flexible environments and treated teachers as professionals appear to have had greater impacts on teachers' learning about the creative, imaginative, social, and cultural aspect of science than the university scientists who treated teachers as technicians. Our work challenges many of the seminal studies and in-depth literature reviews of the last 15 years that assert that an explicit/reflective approach is most effective in promoting adequate conceptions of science among both prospective and practicing teachers. It should be noted, however, that all of these previous studies were conducted in the context of preservice elementary and secondary science methods courses and the process of generalizing these findings to practicing teachers appears to have occurred only in literature reviews and is not clearly substantiated in published research reports. Our study recommends that science teacher professional development should involve initiating inservice teachers into the ideas and practices of the scientific community. Teaching is a learning profession and professional development contexts need to assign teachers a certain amount of responsibility for their own learning. The work of science teaching cannot be accomplished without teacher learning, and teachers of science learn about scientific communities when scientists invite them to engage in the context of scientific practice. Unfortunately, numerous state and federal policies do not support science teachers as they seek to achieve these ends. Many of these policies push schools and universities to design professional development offerings that attempt to generate social capital in order to improve the school as an organization and do not the enrich the individual science teacher. However, these systems of professional development do not acknowledge that scientific knowledge is rapidly changing and K - 12 science teachers and curricula require continual renewal if they are to be accessible and relevant to students' lives. The university is uniquely situated to provide contexts through which inservice teachers can realize the "social and cultural embeddedness of scientific knowledge" (Lederman et. al., 2002).
Teaching professionalism in science courses: anatomy to zoology.
Macpherson, Cheryl C
2012-02-01
Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboğlu, Canan
2013-08-01
Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society, economy, and international politics. One article discusses a new thermonuclear reactor, and the second one is about depleted uranium and its danger for health. 189 first-year undergraduate physics and primary education Greek students were given one of the two articles each, and asked to answer a number of accompanying questions dealing with knowledge that is part of the Greek high school curriculum. The study was repeated with 272 first-year undergraduate physics, physics education, science education, and primary education Turkish students. Acceptable or partially acceptable answers were provided on average by around 20 % of Greek and 11 % of Turkish students, while a large proportion (on the average, around 50 % of Greek and 27 % of Turkish students) abstained from answering the questions. These findings are disappointing, but should be seen in the light of the limited or no coverage of the relevant learning material in the Greek and the Turkish high-school programs. Student conceptual difficulties, misconceptions and implications for research and high school curricula are discussed.
Atlantis, Evan; Cheema, Birinder S
2015-03-01
: Audience response system (ARS) technology is a recent innovation that is increasingly being used by health educators to improve learning outcomes. Equivocal results from previous systematic review research provide weak support for the use of ARS for improving learning outcomes at both short and long terms. This review sought to update and critically review the body of controlled experimental evidence on the use of ARS technology on learning outcomes in health students and professionals. This review searched using all identified keywords both electronic databases (CINAHL, Embase, ERIC, Medline, Science Direct, Scopus, and Web of Science) and reference lists of retrieved articles to find relevant published studies for review, from 2010 to April 2014. A descriptive synthesis of important study characteristics and effect estimates for learning outcomes was done. Three controlled trials in 321 participants from the United States were included for review. ARS knowledge retention scores were lower than the control group in one study, higher than control group provided that immediate feedback was given about each question in one study, and equivalent between intervention and control groups in another study. There is an absence of good quality evidence on effectiveness of ARS technologies for improving learning outcomes in health students and professionals.
Feature highlighting enhances learning of a complex natural-science category.
Miyatsu, Toshiya; Gouravajhala, Reshma; Nosofsky, Robert M; McDaniel, Mark A
2018-04-26
Learning naturalistic categories, which tend to have fuzzy boundaries and vary on many dimensions, can often be harder than learning well defined categories. One method for facilitating the category learning of naturalistic stimuli may be to provide explicit feature descriptions that highlight the characteristic features of each category. Although this method is commonly used in textbooks and classrooms, theoretically it remains uncertain whether feature descriptions should advantage learning complex natural-science categories. In three experiments, participants were trained on 12 categories of rocks, either without or with a brief description highlighting key features of each category. After training, they were tested on their ability to categorize both old and new rocks from each of the categories. Providing feature descriptions as a caption under a rock image failed to improve category learning relative to providing only the rock image with its category label (Experiment 1). However, when these same feature descriptions were presented such that they were explicitly linked to the relevant parts of the rock image (feature highlighting), participants showed significantly higher performance on both immediate generalization to new rocks (Experiment 2) and generalization after a 2-day delay (Experiment 3). Theoretical and practical implications are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
2005-01-01
Active learning and research-oriented activities have been increasingly used in smaller, specialized science courses. Application of this type of scientific teaching to large enrollment introductory courses has been, however, a major challenge. The general microbiology lecture/laboratory course described has been designed to incorporate published active-learning methods. Three major case studies are used as platforms for active learning. Themes from case studies are integrated into lectures and laboratory experiments, and in class and online discussions and assignments. Students are stimulated to apply facts to problem-solving and to learn research skills such as data analysis, writing, and working in teams. This course is feasible only because of its organizational framework that makes use of teaching teams (made up of faculty, graduate assistants, and undergraduate assistants) and Web-based technology. Technology is a mode of communication, but also a system of course management. The relevance of this model to other biology courses led to assessment and evaluation, including an analysis of student responses to the new course, class performance, a university course evaluation, and retention of course learning. The results are indicative of an increase in student engagement in research-oriented activities and an appreciation of real-world context by students. PMID:15917873
Connecting cognition and consumer choice.
Bartels, Daniel M; Johnson, Eric J
2015-02-01
We describe what can be gained from connecting cognition and consumer choice by discussing two contexts ripe for interaction between the two fields. The first-context effects on choice-has already been addressed by cognitive science yielding insights about cognitive process but there is promise for more interaction. The second is learning and representation in choice where relevant theories in cognitive science could be informed by consumer choice, and in return, could pose and answer new questions. We conclude by discussing how these two fields of research stand to benefit from more interaction, citing examples of how interfaces of cognitive science with other fields have been illuminating for theories of cognition. Copyright © 2014 Elsevier B.V. All rights reserved.
Lessons Learned in Science Operations for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Young, K. E.; Graff, T. G.; Reagan, M.; Coan, D.; Evans, C. A.; Bleacher, J. E.; Glotch, T. D.
2017-01-01
The six Apollo lunar surface missions represent the only occasions where we have conducted scientific operations on another planetary surface. While these six missions were successful in bringing back valuable geologic samples, technology advances in the subsequent forty years have enabled much higher resolution scientific activity in situ. Regardless of where astronauts next visit (whether it be back to the Moon or to Mars or a Near Earth Object), the science operations procedures completed during this mission will need to be refined and updated to reflect these advances. We have undertaken a series of operational tests in relevant field environments to understand how best to develop the new generation of science operations procedures for planetary surface exploration.
Educating the Next Generation of Geoscientists: Strategies for Formal and Informal Settings
NASA Astrophysics Data System (ADS)
Burrell, S.
2013-12-01
ENGAGE, Educating the Next Generation of Geoscientists, is an effort funded by the National Science Foundation to provide academic opportunities for members of underrepresented groups to learn geology in formal and informal settings through collaboration with other universities and science organizations. The program design tests the hypothesis that developing a culture of on-going dialogue around science issues through special guest lectures and workshops, creating opportunities for mentorship through informal lunches, incorporating experiential learning in the field into the geoscience curriculum in lower division courses, partnership-building through the provision of paid summer internships and research opportunities, enabling students to participate in professional conferences, and engaging family members in science education through family science nights and special presentations, will remove the academic, social and economic obstacles that have traditionally hindered members of underrepresented groups from participation in the geosciences and will result in an increase in geoscience literacy and enrollment. Student feedback and anecdotal evidence indicate an increased interest in geology as a course of study and increased awareness of the relevance of geology everyday life. Preliminary statistics from two years of program implementation indicate increased student comprehension of Earth science concepts and ability to use data to identify trends in the natural environment.
Using Oceanography to Support Active Learning
NASA Astrophysics Data System (ADS)
Byfield, V.
2012-04-01
Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from satellites and Argo floats - all combined with background information about the Ocean. Many also aim to inspire and enthuse, by bringing in the human and personal, for example through blogs and Q/A sessions. This presentation takes a look at what has worked, and what may perhaps have been a little less successful.
Are UK undergraduate Forensic Science degrees fit for purpose?
Welsh, Charles; Hannis, Marc
2011-09-01
In October 2009 Skills for Justice published the social research paper 'Fit for purpose?: Research into the provision of Forensic Science degree programmes in UK Higher Education Institutions.' The research engaged employers representing 95% of UK Forensic Science providers and 79% of UK universities offering Forensic Science or Crime Scene degree programmes. In addition to this, the research collected the views of 430 students studying these degrees. In 2008 there were approximately 9000 people working in the Forensic Science sector in the UK. The research found that the numbers of students studying Forensic Science or Crime Scene degrees in the UK have more than doubled since 2002-03, from 2191 in to 5664 in 2007-08. Over the same period there were twice as many females as males studying for these degrees. The research concluded that Forensic Science degree programmes offered by UK universities were of a good quality and they provided the student with a positive learning experience but the content was not relevant for Forensic Science employers. This echoed similar research by the former Government Department for Innovation, Universities and Skills on graduates from wider science, technology, engineering and mathematics degree programmes. The research also found that 75% of students studying Forensic Science or Crime Scene degrees expected to have a career in the Forensic Science sector, meaning that ensuring these courses are relevant for employers is a key challenge for universities. This paper reflects on the original research and discusses the implications in light of recent government policy. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Utah Science Activities, Update 2010
,
2010-01-01
The U.S. Geological Survey (USGS), a bureau of the U.S. Department of the Interior, serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS has become a world leader in the natural sciences thanks to our scientific excellence and responsiveness to society's needs. This newsletter describes some of the current and recently completed USGS earth-science activities in Utah. As an unbiased, multi-disciplinary science organization that focuses on biology, geography, geology, and water, we are dedicated to the timely, relevant, and impartial study of the landscape, our natural resources, and the natural hazards that threaten us. Learn more about our goals and priorities for the coming decade in the USGS Science Strategy at http://www.usgs.gov/science_strategy/ .
Earth Science Teaching Strategies Used in the International Polar Year
NASA Astrophysics Data System (ADS)
Sparrow, E. B.
2009-04-01
There are many effective methods for teaching earth science education that are being successfully used during the fourth International Polar Year (IPY). Relevance of IPY and the polar regions is better understood using a systems thinking approach used in earth science education. Changes in components of the earth system have a global effect; and changes in the polar regions will affect the rest of the world regions and vice versa. Teaching strategies successfully used for primary, secondary, undergraduate and graduate student earth science education and IPY education outreach include: 1) engaging students in earth science or environmental research relevant to their locale; 2) blending lectures with research expeditions or field studies, 3) connecting students with scientists in person and through audio and video conferencing; 4) combining science and arts in teaching, learning and communicating about earth science and the polar regions, capitalizing on the uniqueness of polar regions and its inhabitants, and its sensitivity to climate change; and 5) integrating different perspectives: western science, indigenous and community knowledge in the content and method of delivery. Use of these strategies are exemplified in IPY projects in the University of the Arctic IPY Higher Education Outreach Project cluster such as the GLOBE Seasons and Biomes project, the Ice Mysteries e-Polar Books: An Innovative Way of Combining Science and Literacy project, the Resilience and Adaptation Integrative Graduate Education and Research Traineeship project, and the Svalbard Research Experience for Undergraduates project.
NASA Astrophysics Data System (ADS)
Hanson, E. W.; Burakowski, E. A.
2014-12-01
For much of the northern United States, the months surrounding the winter solstice are times of increased darkness, low temperatures, and frozen landscapes. It's a time when many high school science educators, who otherwise would venture outside with their classes, hunker down and are wary of the outdoors. However, a plethora of learning opportunities lies just beyond the classroom. Working collaboratively, a high school science teacher and a snow scientist have developed multiple activities to engage students in the scientific process of collecting, analyzing and interpreting the winter world using snow data to (1) learn about the insulative properties of snow, and (2) to learn about the role of snow cover on winter climate through its reflective properties while participating in a volunteer network that collects snow depth, albedo (reflectivity), and density data. These outdoor field-based snow investigations incorporate Next Generation Science Standards (NGSS) and disciplinary core ideas, including ESS2.C: The roles of water in Earth's surface processes and ESS2.D: Weather and Climate. Additionally, the lesson plans presented address Common Core State Standards (CCSS) in Mathematics, including the creation and analysis of bar graphs and time series plots (CCSS.Math.HSS-ID.A.1) and xy scatter plots (CCSS.Math.HSS-ID.B.6). High school students participating in the 2013/2014 snow sampling season described their outdoor learning experience as "authentic" and "hands-on" as compared to traditional class indoors. They emphasized that learning outdoors was essential to their understanding of underlying content and concepts because they "learn through actual experience."
NASA Astrophysics Data System (ADS)
Larsen, Kristine
2017-01-01
The Disciplinary Core Ideas (DCI) of the Next Generation Science Standards (NGSS) are grouped into the broad disciplinary areas of Physical Sciences, Life Sciences, Earth and Space Sciences, and Engineering, Technology and Application of Science, and feature learning progressions based on endpoint targets for each grade band. Since the Middle School DCIs build on the expected learning achievements to be reached by the end of Fifth Grade, and High School DCI similarly build on the expected learning achievements expected for the end of Eighth Grade, the Middle School grade band is of particular importance as the bridge between the Elementary and High School curriculum. In states where there is not a special Middle School Certification many of these science classes are taught by teachers prepared to teach at the Elementary level (and who may have limited content background). As a result, some pre-service and in-service teachers have expressed reduced self-confidence in both their own science content knowledge and their ability to apply it in the NGSS-based classroom, while decades of research has demonstrated the pervasiveness of science misconceptions among teachers. Thus the adoption of NGSS has the potential to drive talented teachers out of the profession who feel that they are ill-prepared for this sweeping transition. The key is providing rigorous education in both content and pedagogy for pre-service teachers and quality targeted professional development for in-service teachers. This report focuses on the Middle School Space Sciences grade band DCIs and presents research on specific difficulties, misconceptions and uncertainties with the material demonstrated by pre-service education students over the past four years in a required university science content course, as well as two year-long granted workshop series for current Middle School teachers. This information is relevant to the development of both new content courses aligned with NGSS for pre-service teachers and professional development for in-service teachers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillings, Neil; Wenk, Laura
Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achievesmore » this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is compatible with existing state curriculum frameworks and produces students who understand and are positively inclined toward science. Funds from this Department of Energy grant supported three projects that involved K-16 science outreach: 1. Teaching Issues and Experiments in Ecology (TIEE). TIEE a peer-reviewed online journal and curriculum resource for postsecondary science teachers. 2. The Collaboration for Excellence in Science Education (CESE). CESE is a partnership with the Amherst, Massachusetts school system to foster the professional development of science teachers, and to perform research on student learning in the sciences and on teacher change. The project draws on Hampshire's long experience with inquiry-oriented and interdisciplinary education, as well as on its unique strengths in cognitive science. The project is run as design research, working with teachers to improve their practices and studying student and/or teacher outcomes. 3. Day in the Lab. Grant funds partially supported the expansion of the ongoing science outreach activities of the School of Natural Science. These activities are focused on local districts with large minority enrollments, including the Amherst, Holyoke and Springfield Public School Districts, and the Pioneer Valley Performing Arts Charter School (PVPA). Each of the three projects supported by the grant met or exceeded its goals. In part, the successes we met were due to continuity and communication among the staff of the programs. At the beginning of the CESE project, a science outreach coordinator was recruited. He worked throughout the grant period along with a senior researcher and the project's curriculum director. Additionally, the director and an undergraduate student conducted research on teacher change. The science outreach coordinator acted as a liaison among Hampshire College, the school districts, and a number of local businesses and agencies, providing organizational support, discussion facilitation, classroom support for teachers, and materials purchase. His presence in the schools kept teachers engaged and supported. He also brought the PVPA Charter School into the project. He worked closely with the educational outreach coordinator at Hampshire who oversaw the Day in the Lab program. Together, they have ensured the continuity of support to the schools through the use and placement of student interns. Finally, the director and coordinators worked with the Hitchock Center for the Environment to bring the two science professional development efforts in Amherst together. The joint development of workshops for elementary teachers was extremely successful. A major reason for the successes of the CESE program was the strength of the teacher outreach team and the sheer number of hours spent building relationships, talking about teaching and learning, planning projects, developing curriculum, and working with experts throughout the Pioneer Valley.« less
Creating a Partnering Community Aimed to Foster Climate Literacy in the Southeastern United States
NASA Astrophysics Data System (ADS)
Rutherford, D.; McNeal, K. S.; Smith, R.; Hare, D.; Nair, U. S.
2011-12-01
The Climate Literacy Partnership in the Southeast (CLiPSE) is a part of the Climate Change Education Program supported by the National Science Foundation (http://CLiPSE-project.org). The established CLiPSE partnership is dedicated to improving climate literacy in the southeast through crafting a shared vision and strategic plan among stakeholders that promotes scientific formal and informal educational resources, materials and programs; a diverse network of key partnering organizations throughout the Southeastern United States (SE US); and effective public dialogues that address diverse learners and audiences and supports learning of climate, climate change, and its relevance upon human and environmental systems. The CLiPSE project has been successful in creating partnerships with more than fifty key stakeholders that stem from a few key publics such as agriculture, education, leisure, religious organizations, and culturally diverse communities. These key publics in the SE US frequently consist of individuals that place great trust in local, private efforts, and CLiPSE has realized the importance of the role of the partnering organizations in providing information through a trusted source. A second unique characteristic of the SE US is the predominately conservative and Protestant citizenry in the region. Working with and through these communities enhances climate change education outreach to this citizenry. The CLiPSE project rests on solid climate science and learning science research in order to formulate an effective plan with desired learning outcomes of critical thinking and civil conversation through effective communication strategies. This paper will present the CLiPSE model in reaching the key publics that traditionally hold ideologies that are traditionally perceived as incompatible with climate change science. We will present the strategies utilized to bring together experts and researchers in climate science, learning science, and social science with practitioners and leaders of key stakeholder groups to formulate a shared climate change education plan in the SE US that is uniquely formatted for each target audience. We will also share what we have learned from interacting with the leaders of our partnering organizations in crafting effective messages for their audiences and addressing learners' affective and cognitive domains.
Stardust-next : Lessons Learned from a Comet Flyby Mission
NASA Technical Reports Server (NTRS)
Wolf, Aron A.; Larson, Timothy; Thompson, Paul; McElrath, Timothy; Bhaskaran, Shyam; Chesley, Steven; Klaasen, Kenneth P.; Cheuvront, Allan
2012-01-01
The Stardust-NExT (New Exploration of Tempel) mission, a follow-on to the Stardust prime mission, successfully completed a flyby of comet Tempel-1 on 2/14/11. However there were many challenges along the way, most significantly low propellant margin and detection of the comet in imagery later than antici-pated. These challenges and their ramifications forced the project to respond with flexibility and ingenuity. As a result, the flyby at an altitude of 178 km was nearly flawless, accomplishing all its science objectives. Lessons learned on Stardust-NExT may have relevance to other spacecraft missions.
Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.
2014-01-01
Geomorphological Fieldwork addresses a topic that always remains popular within the geosciences and environmental science. More specifically, the volume conveys a growing legacy of field-based learning for young geomorphologists that can be used as a student book for field-based university courses and postgraduate research requiring fieldwork or field schools. The editors have much experience of field-based learning within geomorphology and extend this to physical geography. The topics covered are relevant to basic geomorphology as well as applied approaches in environmental and cultural geomorphology. The book integrates a physical-human approach to geography, but focuses on physical geography and geomorphology from an integrated field-based geoscience perspective.
Educational gaming in the health sciences: systematic review.
Blakely, Gillian; Skirton, Heather; Cooper, Simon; Allum, Peter; Nelmes, Pam
2009-02-01
This paper is a report of a review to investigate the use of games to support classroom learning in the health sciences. One aim of education in the health sciences is to enable learners to develop professional competence. Students have a range of learning styles and innovative teaching strategies assist in creating a dynamic learning environment. New attitudes towards experiential learning methods have contributed to the expansion of gaming as a strategy. A search for studies published between January 1980 and June 2008 was undertaken, using appropriate search terms. The databases searched were: British Education Index, British Nursing Index, The Cochrane Library, CINAHLPlus, Medline, PubMed, ERIC, PsychInfo and Australian Education Index. All publications and theses identified through the search were assessed for relevance. Sixteen papers reporting empirical studies or reviews that involved comparison of gaming with didactic methods were included. The limited research available indicates that, while both traditional didactic methods and gaming have been successful in increasing student knowledge, neither method is clearly more helpful to students. The use of games generally enhances student enjoyment and may improve long-term retention of information. While the use of games can be viewed as a viable teaching strategy, care should be exercised in the use of specific games that have not been assessed objectively. Further research on the use of gaming is needed to enable educators to gaming techniques appropriately for the benefit of students and, ultimately, patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, B.
Family science is an informal science education program designed to teach science skills by having children and parents learn and enjoy science together. Aimed at addressing the underrepresentation of women and ethnic and racial minorities in science-based careers, FAMILY SCIENCE involves parents and children in kindergarten through eighth grade in science activities that demonstrate the role science plays in their daily life and future. Family involvement is the key to the program`s effectiveness. Family classes are usually offered in a series of one- to two-hour class meetings for parents and their children after school, evenings, and weekends. During classes, parentsmore » and children work in pairs and small groups to solve problems, work cooperatively, and talk science. The activities provide experiences for the entire family that build skills, confidence, and interest in science. In addition, guest speakers and career activities illustrate for parents in the workforce the significance of math and science in their own jobs, and for kids, it highlights the diversity of jobs and the relevance of math and science.« less
Non-traditional approaches to teaching GPS online
NASA Astrophysics Data System (ADS)
Matias, A.; Wolf, D. F., II
2009-12-01
Students are increasingly turning to the web for quality education that fits into their lives. Nonetheless, online learning brings challenges as well as a fresh opportunity for exploring pedagogical practices not present on traditional higher education programs, particularly in the sciences. A team of two dozen Empire State College-State University of New York instructional designers, faculty, and other staff are working on making science relevant to non-majors who may initially have anxiety about general education science courses. One of these courses, GPS and the New Geography, focuses on how Global Positioning System (GPS) technology provides a base for inquiry and scientific discovery from a range of environmental issues with local, regional, and global scope. GPS and the New Geography is an introductory level course developed under a grant supported by the Charitable Leadership Foundation. Taking advantage of the proliferation of tools currently available for online learning management systems, we explore current trends in Web 2.0 applications to aggregate and leverage data to create a nontraditional, interactive learning environment. Using our best practices to promote on-line discussion and interaction, these tools help engage students and foster deep learning. During the 15-week term students learn through case studies, problem-based exercises, and the use of scientific data; thus, expanding their spatial literacy and gain experience using real spatial technology tools to enhance their understanding of real-world issues. In particular, we present how the use of Mapblogs an in-house developed blogging platform that uses GIS interplaying with GPS units, interactive data presentations, intuitive visual working environments, harnessing RSS feeds, and other nontraditional Web 2.0 technology has successfully promoted active learning in the virtual learning environment.
ERIC Educational Resources Information Center
Miller Juve, Amy Katrina
2012-01-01
The science and technology of medicine is evolving and changing at a fast pace. With these rapid advances, it is paramount that physicians maintain a level of medical knowledge that is current and relevant to their practice in order to address the challenges of patient care and safety. One way physicians can maintain a level of medical knowledge…
ERIC Educational Resources Information Center
Houle, Meredith E.; Barnett, G. Michael
2008-01-01
The emerging field of urban ecology has the potential to engage urban youth in the practices of scientists by studying a locally relevant environmental problem. To this end, we are developing curriculum modules designed to engage students in learning science through the use of emerging information technology. In this paper, we describe the impact…
Anatomy of BioJS, an open source community for the life sciences.
Yachdav, Guy; Goldberg, Tatyana; Wilzbach, Sebastian; Dao, David; Shih, Iris; Choudhary, Saket; Crouch, Steve; Franz, Max; García, Alexander; García, Leyla J; Grüning, Björn A; Inupakutika, Devasena; Sillitoe, Ian; Thanki, Anil S; Vieira, Bruno; Villaveces, José M; Schneider, Maria V; Lewis, Suzanna; Pettifer, Steve; Rost, Burkhard; Corpas, Manuel
2015-07-08
BioJS is an open source software project that develops visualization tools for different types of biological data. Here we report on the factors that influenced the growth of the BioJS user and developer community, and outline our strategy for building on this growth. The lessons we have learned on BioJS may also be relevant to other open source software projects.
Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers
Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; Labrake, Cynthia; Kopp, Sacha
2016-01-01
Due to their potential impact on students' cognitive and non-cognitive outcomes, the negative attitudes towards science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of pre-service elementary teachers with the goal of improving their attitudes before they begin their professional lives as classroom teachers. Specifically, this study builds on a small body of research to examine whether exposure to inquiry-based science content courses that actively involve students in the collaborative process of learning and discovery can promote a positive change in attitudes towards science across several different dimensions. To examine this issue, surveys and administrative data were collected from over 200 students enrolled in the Hands on Science (HoS) program for pre-service teachers at the University of Texas at Austin, as well as more than 200 students in a comparison group enrolled in traditional lecture-style classes. Quantitative analyses reveal that after participating in HoS courses, pre-service teachers significantly increased their scores on scales measuring confidence, enjoyment, anxiety, and perceptions of relevance, while those in the comparison group experienced a decline in favorable attitudes to science. These patterns offer empirical support for the attitudinal benefits of inquiry-based instruction and have implications for the future learning opportunities available to students at all education levels. PMID:27667862
The Virtual Learning Commons (VLC): Enabling Co-Innovation Across Disciplines
NASA Astrophysics Data System (ADS)
Pennington, D. D.; Gandara, A.; Del Rio, N.
2014-12-01
A key challenge for scientists addressing grand-challenge problems is identifying, understanding, and integrating potentially relevant methods, models and tools that that are rapidly evolving in the informatics community. Such tools are essential for effectively integrating data and models in complex research projects, yet it is often difficult to know what tools are available and it is not easy to understand or evaluate how they might be used in a given research context. The goal of the National Science Foundation-funded Virtual Learning Commons (VLC) is to improve awareness and understanding of emerging methodologies and technologies, facilitate individual and group evaluation of these, and trace the impact of innovations within and across teams, disciplines, and communities. The VLC is a Web-based social bookmarking site designed specifically to support knowledge exchange in research communities. It is founded on well-developed models of technology adoption, diffusion of innovation, and experiential learning. The VLC makes use of Web 2.0 (Social Web) and Web 3.0 (Semantic Web) approaches. Semantic Web approaches enable discovery of potentially relevant methods, models, and tools, while Social Web approaches enable collaborative learning about their function. The VLC is under development and the first release is expected Fall 2014.
Concept mapping enhances learning of biochemistry.
Surapaneni, Krishna M; Tekian, Ara
2013-03-05
Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.
Concept mapping enhances learning of biochemistry
Surapaneni, Krishna M.; Tekian, Ara
2013-01-01
Background Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Methods Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Results Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13–8.28 vs. 12.33–13.93, p<0.001). The students gave high positive ratings for the innovative course (93–100% agreement). Conclusion The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry. PMID:23464600
Concept mapping enhances learning of biochemistry.
Surapaneni, KrishnaM; Tekian, Ara
2013-01-01
Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.
What is the problem in problem-based learning in higher education mathematics
NASA Astrophysics Data System (ADS)
Dahl, Bettina
2018-01-01
Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge where the application in society is not always obvious. Does mathematics, including pure mathematics, fit into a PBL curriculum? This paper argues that it does for two reasons: (1) PBL resembles the working methods of research mathematicians. (2) The concept of society includes the society of researchers to whom theoretical mathematics is relevant. The paper describes two cases of university PBL projects in mathematics; one in pure mathematics and the other in applied mathematics. The paper also discusses that future engineers need to understand the world of mathematics as well as how engineers fit into a process of fundamental-research-turned-into-applied-science.
Lessons of Researcher-Teacher Co-design of an Environmental Health Afterschool Club Curriculum
NASA Astrophysics Data System (ADS)
Hundal, Savreen; Levin, Daniel M.; Keselman, Alla
2014-06-01
This paper addresses the impact of teachers' beliefs about argumentation and their community of practice framed views of teaching on co-designing an environmental health afterschool club curriculum with researchers. Our team collaborated with a group of four middle school teachers, asking them to co-design a club that would facilitate (1) students' understanding of environmental health, (2) use of electronic resources, and (3) argumentation skills. The process included researcher-led sessions emphasizing the importance of argumentation to science and teacher-led curriculum design sessions. The qualitative analysis of the meetings and teacher interview transcripts suggests that while teachers viewed argumentation as important, its practice was relegated to the background by the focus on student engagement and perceived logistical and systemic constraints. The paper concludes that in addition to stressing relevance of argumentation to science learning, researchers involved in co-design need to emphasize the potential of argumentation to engage students and to fit into science curriculum. The analysis also reveals teacher-participants' views of environmental health as an important area of middle school education, relevant to students' lives, linkable to the existing curriculum, essential for informed citizenship, and capable of inspiring interest in science. These findings underscore the importance of integrating environmental health into science education and advocating for its inclusion in informal and formal educational settings.
Leadbeatter, Delyse; Gao, Jinlong
2018-04-01
Learning basic science forms an essential foundation for oral health therapy and dentistry, but frequently students perceive it as difficult, dry, and disconnected from clinical practice. This perception is encouraged by assessment methods that reward fact memorization, such as objective examinations. This study evaluated use of a learner-centered assessment portfolio designed to increase student engagement with basic science in an oral health therapy program at the University of Sydney, Australia. The aim of this qualitative study based on focus groups was to investigate students' engagement with basic science courses following introduction of the portfolio. Three assessments were conducted in three subsequent semesters: one based on students' interest in everyday phenomena (one student, for example, explored why she had red hair); the second focussed on scientific evidence and understanding of systemic diseases; and the third explored relations between oral and general health. Students were encouraged to begin with issues from their personal experience or patient care, to focus on what they were curious about, and to ask questions they really cared about. Each student prepared a written report and gave an oral presentation to the entire cohort. After the portfolios were completed, the authors held focus groups with two cohorts of students (N=21) in 2016 and analyzed the results using Zepke's framework for student engagement research. The results showed that the students successfully interweaved personal experience into their studies and that it provided significant motivation for learning. The students described their learning in terms of connection to themselves, their peer community, and their profession. Many additional benefits were identified, from increased student engagement in all courses to appreciation of the relevance of basic science. The findings should encourage dental and allied dental educators to reconsider the effects of assessments and seek integrative methods to help students engage in meaningful knowledge production and understand that what they are learning goes beyond acquisition of scientific facts.
Scientific field training for human planetary exploration
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.
2010-05-01
Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.
Scientific evaluation of an intra-curricular educational kit to foster inquiry-based learning (IBL)
NASA Astrophysics Data System (ADS)
Debaes, Nathalie; Cords, Nina; Prasad, Amrita; Fischer, Robert; Euler, Manfred; Thienpont, Hugo
2014-07-01
Society becomes increasingly dependent on photonics technologies; however there is an alarming lack of technological awareness among secondary school students. They associate photonics with experiments and components in the class room that seem to bear little relevance to their daily life. The Rocard Report [5] highlights the need for fostering students' scientific skills and technological awareness and identifies inquiry based learning (IBL) as a means to achieve this. Students need to actively do science rather than be silent spectators. The `Photonics Explorer' kit was developed as an EU funded project to equip teachers, free-of-charge, with educational material designed to excite, engage and educate European secondary school students using guided inquiry based learning techniques. Students put together their own experiments using up-to-date versatile components, critically interpret results and relate the conclusions to relevant applications in their daily life. They work hands-on with the material, thus developing and honing their scientific and analytical skills that are otherwise latent in a typical class room situation. A qualitative and quantitative study of the impact of the kit in the classroom was undertaken with 50 kits tested in 7 EU countries with over 1500 students in the local language. This paper reports on the results of the EU wide field tests that show the positive impact of the kit in raising the self-efficacy, scientific skills and interest in science among students and the effectiveness of the kit in implementing IBL strategies in classrooms across EU.
Bringing the Great American Solar Eclipse to West Virginia
NASA Astrophysics Data System (ADS)
Keesee, A. M.; Williamson, K.; Robertson-Honecker, J.
2017-12-01
West Virginia experienced up to 90% coverage during the Great American Solar Eclipse on August 21st. To reach the greatest number of West Virginians, we targeted educators and the 4-H program to provide those community leaders with the tools to help students learn about and safely view the eclipse. We developed a website that consolodated relevant eclipse activities, fact sheets, and outreach videos to train educators and others in the public about the science of the eclipse and how to view a partial eclipse safely. The 4-H Summer Experiement used at all 4-H summer camps and events was designed to focus on the eclipse. We distributed over 20,000 custom designed eclipse glasses. These were distributed to teachers through an online request system and to 4-H members involved in summer activities. We hosted a pre-eclipse event on the campus of West Virginia University for the public to learn about the science of the eclipse, relevant research being conducted at the university, and provide tips for safe viewing. Student volunteers were available on campus during the day of the eclipse to hand out glasses and answer questions. We will present the results of our outreach and events as well as lessons learned for the 2024 eclipse. Support for this project was provided by the WVU Department of Physics and Astronomy, WVU Extension, the WV Space Grant Consortium, a WVU internal grant, the Green Bank Observatory, and individual supporters of a crowdfunding campaign.
NASA Astrophysics Data System (ADS)
Visintainer, Tammie Ann
This research explores trajectories of developing the practices of and identification with science for high school students of color as they participate in summer science research programs. This study examines students' incoming ideas of what science is (i.e. science practices) and who does/can do science and how these ideas shift following program participation. In addition, this study explores the aspects of students' identities that are most salient in the science programs and how these aspects are supported or reimagined based on the program resources made available. This research utilizes four main data sources: 1) pre and post program student surveys, 2) pre and post program focal student interviews, 3) scientist instructor interviews, and 4) program observations. Findings show that students' ideas about what science is (i.e. science practices) and who can do science shifted together through participation in the practices of science. Findings illustrate the emergence of an identity generative process: that engaging in science practices (e.g. collecting data) and the accompanying program resources generated new possibilities for students (e.g. capable science learner). Findings show that the program resources made available for science practices determined how the practices "functioned" for students. Furthermore, findings document links between an instructor's vision, the design of program resources that engage students in science practices, and students' learning and identity construction. For example, a mentor that employed a politically relevant and racially conscious lens made unique resources available that allowed students to identify as capable science learners and agents of change in their community. This research shows that youth of color can imagine and take up new possibilities for who they can be in science when their science and racial identities are supported in science programs. Findings highlight the need to re-center race in research involving science identity construction for youth of color. Findings from this research inform the design of learning environments that create multiple pathways for learning and identity construction in science. Findings can be applied to the creation of opportunities in science programs, classrooms and teacher education that foster successful and meaningful engagement with science practices and empower youth of color as capable learners, doers, and changes agents in science.
NASA Astrophysics Data System (ADS)
Drndarski, Marina
2015-04-01
Every 21st century student is expected to develop science literacy skills. As this is not part of Serbian national curriculum yet, we decided to introduce it with this project. Experiment-o-mania provides students to experience science in different and exciting way. It makes opportunity for personalized learning offering space and time to ask (why, where, how, what if) and to try. Therefore, we empower young people with skills of experimenting, and they love science back. They ask questions, make hypothesis, make problems and solve them, make mistakes, discuss about the results. Subsequently this raises the students' interest for school curriculum. This vision of science teaching is associated with inquiry-based learning. Experiment-o-mania is the unique and recognizable teaching methodology for the elementary school Drinka Pavlović, Belgrade, Serbia. Experiment-o-mania implies activities throughout the school year. They are held on extra class sessions, through science experiments, science projects or preparations for School's Days of science. Students learn to ask questions, make observations, classify data, communicate ideas, conduct experiments, analyse results and make conclusions. All science teachers participate in designing activities and experiments for students in Experiment-o-mania teaching method. But they are not alone. Teacher of fine arts, English teachers and others also take part. Students have their representatives in this team, too. This is a good way to blend knowledge among different school subject and popularize science in general. All the experiments are age appropriate and related to real life situations, local community, society and the world. We explore Fibonacci's arrays, saving energy, solar power, climate change, environmental problems, pollution, daily life situations in the country or worldwide. We introduce great scientists as Nikola Tesla, Milutin Milanković and sir Isaac Newton. We celebrate all relevant international days, weeks, months or years (this year, 2015. the students will prepare opera science for celebrate the International Year of Light and International Year of Soils). Experiment-o-mania makes science teaching and learning exciting for teachers as well as for students. The acquisition of this kind of teaching method (and its frequency) empowers students and become self-regulated learners, independent, to creatively solve problems, to innovate, to truly understand and appreciate science and to better understand themselves and the world around them.
NASA Astrophysics Data System (ADS)
Beechie, T. J.; Snover, A. K.
2014-12-01
Natural resource managers often ask scientists to answer questions that cannot be answered, and scientists commonly offer research that is not useful to managers. To produce management-relevant science, managers and scientists must communicate clearly to identify research that is scientifically doable and will produce results that managers find useful. Scientists might also consider that journals with high impact scores are rarely used by managers, while managers might consider that publishing in top tier journals is important to maintain scientific credentials. We offer examples from climate change and river restoration research, in which agency scientists and managers worked together to identify key management questions that scientists could answer and which could inform management. In our first example, we describe how climate scientists worked with agency staff to develop guidance for selecting appropriate climate change scenarios for use in ecological impacts assessments and Endangered Species Act decision making. Within NOAA Fisheries, agency researchers provide science to guide agency managers, and a key question has been how to adapt river restoration efforts for climate change. Based on discussions with restoration practitioners and agency staff, we developed adaptation guidance that summarizes current science to lead managers to develop climate-resilient restoration plans, as well as maps of population vulnerability for endangered steelhead. From these experiences we have learned that collaborative definition of relevant and producible knowledge requires (1) iterative discussions that go beyond simply asking managers what they need or scientists what they can produce, and (2) candid conversation about the intended applications and potential limitations of the knowledge.
The role of emotion in the learning and transfer of clinical skills and knowledge.
McConnell, Meghan M; Eva, Kevin W
2012-10-01
Medical school and residency are emotional experiences for trainees. Most research examining emotion in medicine has focused on negative moods associated with physician burnout and poor quality of life. However, positive emotional states also may have important influences on student learning and performance. The authors present a review of the literature on the influence of emotion on cognition, specifically how individuals learn complex skills and knowledge and how they transfer that information to new scenarios. From September 2011 to February 2012, the authors searched Medline, PsycInfo, GoogleScholar, ERIC, and Web of Science, as well as the reference lists of relevant articles, for research on the interaction between emotion, learning, and knowledge transfer. They extracted representative themes and noted particularly relevant empirical findings. The authors found articles that show that emotion influences various cognitive processes that are involved in the acquisition and transfer of knowledge and skills. More specifically, emotion influences how individuals identify and perceive information, how they interpret it, and how they act on the information available in learning and practice situations. There are many ways in which emotions may influence medical education. Researchers must further explore the implications of these findings to ensure that learning is not treated simply as a rational, mechanistic process but that trainees are effectively prepared to perform under a wide range of emotional conditions.
NASA Astrophysics Data System (ADS)
Dohn, Niels Bonderup; Dohn, Nina Bonderup
2017-12-01
The sciences are often perceived by students as irrelevant as they do not see the content of science as related to their daily lives. Web 2.0-mediated activities are characterized by user-driven content production, collaboration, and multi-way communication. It has been proposed that employing Web 2.0 in educational activities will promote richer opportunities for making learning personally meaningful, collaborative, and socially relevant. Since Facebook is already in use among youths, it potentially provides a communicative link between educational content and students' lives. The present study was conducted as a case study to provide an inductive, explorative investigation of whether and how the integration of Facebook into upper secondary biology can affect interest in biology and participation in learning communication. The results indicate that the coupling of formal and informal communication practices on Facebook serves to maintain interest and open up new learning possibilities while at the same time creating barriers to communication. These barriers are due to distractions, ethical issues, and a certain depreciation of the activities ensuing from the everydayness of Facebook as a communication platform. In conclusion, use of Facebook as an educational platform is not clearly good or bad.
Socioscientific Argumentation of Pre-Service Teachers about Genetically Modified Organisms
NASA Astrophysics Data System (ADS)
Herawati, D.; Ardianto, D.
2017-09-01
This study aims to investigate socioscientific argumentation of pre-service teachers of science and non-science major regarding Genetically Modified Organisms (GMOs) issue. We used descriptive study and involved second-year pre-service teachers from two major, 28 pre-service science teachers (PSTs) and 28 pre-service non-science teachers (PNSTs) as participants. Paper and pencil test was administered in order to obtain the data of PSTs’ and PNSTs’ argument about GMOs. All of the data were analyzed by descriptive analysis. We applied Toulmin Argumentation Pattern (TAP) as a basic framework to identify the argumentation component. The result showed that both PSTs and PNSTs were able to propose an argument with a claim, data, and/or warrant.. Most of their argument contain data which provided in the text, without any further reasoning or relevant scientific knowledge. So, the coherency between argumentation component in both PSTs and PNSTs was limited. However, PSTs are more able to propose coherent arguments than PNSTs. These findings indicated that educational background and learning experiences may influence to pre-service teacher argumentation in the context of GMOs. Beside that, teaching and learning process which focused on the socioscientific issues is necessary to develop pre-service teachers’ argumentation
How to be Cautious but Open to Learning: Time to Update Biotechnology and GMO Legislation.
Hansson, Sven Ove
2016-08-01
Precautionary measures to protect human health and the environment should be science based. This implies that they should be directed at a potential danger for which there is credible scientific evidence (although that evidence need not be conclusive). Furthermore, protective measures should be updated as relevant science advances. This means that decisionmakers should be prepared to strengthen the precautionary measures if the danger turns out to be greater than initially suspected, and to reduce or lift them, should the danger prove to be smaller. Most current legislation on agricultural biotechnology has not been scientifically updated. Therefore, it reflects outdated criteria for identifying products that can cause problems. Modern knowledge in genetics, plant biology, and ecology has provided us with much better criteria that risk analysts can use to identify the potentially problematic breeding projects at which precautionary measures should be directed. Legislation on agricultural biotechnology should be scientifically updated. Furthermore, legislators should learn from this example that regulations based on the current state of science need to have inbuilt mechanisms for revisions and adjustments in response to future developments in science. © 2016 Society for Risk Analysis.
The National Climate Assessment: A Treasure Trove for Education, Communications and Outreach
NASA Astrophysics Data System (ADS)
McCaffrey, M.; Berbeco, M.; Connolly, R.; Niepold, F., III; Poppleton, K. L. I.; Cloyd, E.; Ledley, T. S.
2014-12-01
Required by Congress under the Global Change Act of 1990 to inform the nation on the findings of current climate research, the Third U.S. National Climate Assessment (NCA), released in May 2014, is a rich resource for climate change education, communications and outreach (ECO). Using a website design with mobile applications in mind, NCA takes advantage of mobile learning technology which is revolutionizing how, when and where learning occurs. In an effort to maximize the "teachable moments" inherent in the assessment, a community of experts from the National Center for Science Education and the CLEAN Network, working under the auspices of the National Climate Assessment Network (NCAnet) Education Affinity Group, have developed a series of NCA Learning Pathways that match key NCA messages and resources with reviewed educational materials and trusted online information sources, thereby adding pedagogical depth to the assessment. The NCA Learning Pathways, which focus on the regional chapters of the report, are designed make climate change science more local, human, relevant and, if properly framed by educators and communicators, hopeful for learners. This paper touches on the challenges and opportunities of infusing climate education, communications and outreach into curriculum and society, and details the development and content of NCA Learning Pathways, which are available online through NOAA's Climate.gov website: http://www.climate.gov/teaching
“Brevity is the Soul of Wit”: Use of a Stepwise Project to Teach Concise Scientific Writing
Cyr, Nicole E.
2017-01-01
Skillful writing is essential for professionals in science and medicine. Consequently, many undergraduate institutions have adjusted their curriculum to include in-depth instruction and practice in writing for students majoring in the sciences. In neuroscience, students are often asked to write a laboratory report in the style of a primary scientific article or a term paper structured like a review article. Typically, students write section by section and build up to the final draft of a complete paper. In this way, students learn how to write a scientific paper. While learning to write such a paper is important, this is not the only type of written communication relevant to scientific careers. Here, I describe a stepwise writing project aimed to improve editing, succinctness, and the ability to synthesize the literature. Furthermore, I provide feedback from the students, and discuss the advantages and challenges of this project. PMID:29371841
King, Sharla; Greidanus, Elaine; Carbonaro, Michael; Drummond, Jane; Patterson, Steven
2009-01-01
This study describes the redesign of an interprofessional team development course for health science students. A theoretical model is hypothesized as a framework for the redesign process, consisting of two themes: 1) the increasing trend among post-secondary students to participate in social networking (e.g., Facebook, Second Life) and 2) the need for healthcare educators to provide interprofessional training that results in effective communities of practice and better patient care. The redesign focused on increasing the relevance of the course through the integration of custom-designed technology to facilitate social networking during their interprofessional education. Results suggest that students in an educationally structured social networking environment can be guided to join learning communities quickly and access course materials. More research and implementation work is required to effectively develop interprofessional health sciences communities in a combined face-to-face and on-line social networking context. PMID:20165519
King, Sharla; Greidanus, Elaine; Carbonaro, Michael; Drummond, Jane; Patterson, Steven
2009-04-28
This study describes the redesign of an interprofessional team development course for health science students. A theoretical model is hypothesized as a framework for the redesign process, consisting of two themes: 1) the increasing trend among post-secondary students to participate in social networking (e.g., Facebook, Second Life) and 2) the need for healthcare educators to provide interprofessional training that results in effective communities of practice and better patient care. The redesign focused on increasing the relevance of the course through the integration of custom-designed technology to facilitate social networking during their interprofessional education. Results suggest that students in an educationally structured social networking environment can be guided to join learning communities quickly and access course materials. More research and implementation work is required to effectively develop interprofessional health sciences communities in a combined face-to-face and on-line social networking context.
Welling, Leigh; Seielstad, George; McClurg, Pat; Fagre, Daniel B.
2000-01-01
In the last two decades alone, the U.S. and large portions of the world have witnessed what can be aptly be described as an explosion of scientific information and technological innovations that has permeated almost every aspect of our lives. Given these trends, it is clear that science and the understanding of science are becoming increasingly more relevant and essential to decision-makers and the decision-making process. Every environmental issue confronting society has an undisputed scientific underpinning. Understanding the implications of the science underpinning issues of particular importance to the health and well being of society constitutes the basis for making more informed and enlightened decisions. However obvious this linkage may be, many factors continue to serve as impediments to the broader understanding and incorporation of science into policy- and decision-making processes, as perhaps is best exemplified by the case of climate science.
Meta-Design and the Triple Learning Organization in Architectural Design Process
NASA Astrophysics Data System (ADS)
Barelkowski, Robert
2017-10-01
The paper delves into the improvement of Meta-Design methodology being the result of implementation of triple learning organization. Grown from the concept of reflective practice, it offers an opportunity to segregate and hierarchize both criteria and knowledge management and at least twofold application. It induces constant feedback loops recharging the basic level of “design” with second level of “learning from design” and third level of “learning from learning”. While learning from design reflects the absorption of knowledge, structuralization of skills, management of information, learning from learning gives deeper understanding and provides axiological perspective which is necessary when combining cultural, social, and abstract conceptual problems. The second level involves multidisciplinary applications imported from many engineering disciplines, technical sciences, but also psychological background, or social environment. The third level confronts these applications with their respective sciences (wide extra-architectural knowledge) and axiological issues. This distinction may be represented in difference between e.g. purposeful, systemic use of participatory design which again generates experience-by-doing versus use of disciplinary knowledge starting from its theoretical framework, then narrowed down to be relevant to particular design task. The paper discusses the application in two cases: awarded competition proposal of Digital Arts Museum in Madrid and BAIRI university building. Both cases summarize the effects of implementation and expose the impact of triple-loop knowledge circles onto design, teaching the architect or helping them to learn how to manage information flows and how to accommodate paradigm shifts in the architectural design process.
Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†
Bonney, Kevin M.
2015-01-01
Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses. PMID:25949753
Haslam, Catherine; Wagner, Joseph; Wegener, Signy; Malouf, Tania
2017-01-01
Errorless learning has demonstrated efficacy in the treatment of memory impairment in adults and older adults with acquired brain injury. In the same population, use of elaborative encoding through supported self-generation in errorless paradigms has been shown to further enhance memory performance. However, the evidence base relevant to application of both standard and self-generation forms of errorless learning in children is far weaker. We address this limitation in the present study to examine recall performance in children with brain injury (n = 16) who were taught novel age-appropriate science and social science facts through the medium of Skype. All participants were taught these facts under conditions of standard errorless learning, errorless learning with self-generation, and trial-and-error learning after which memory was tested at 5-minute, 30-minute, 1-hour and 24-hour delays. Analysis revealed no main effect of time, with participants retaining most information acquired over the 24-hour testing period, but a significant effect of condition. Notably, self-generation proved more effective than both standard errorless and trial-and-error learning. Further analysis of the data revealed that severity of attentional impairment was less detrimental to recall performance under errorless conditions. This study extends the literature to provide further evidence of the value of errorless learning methods in children with ABI and the first demonstration of the effectiveness of self-generation when delivered via the Internet.
Case study teaching method improves student performance and perceptions of learning gains.
Bonney, Kevin M
2015-05-01
Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses.
Preparing for the workplace: fostering generic attributes in allied health education programs.
Higgs, J; Hunt, A
1999-01-01
Allied health curricula need to extend beyond the learning of discipline-specific skills to encompass broader learning goals. In particular, the acquisition of generic skills is necessary to enable graduates to function more competently and confidently within their rapidly changing work, professional, and societal environments. In health sciences education particularly, the rate of change in practice and education is rapid and unprecedented. If educators focus on components of the curriculum rather than the entire learning experience, they are likely to significantly limit the students' acquisition of such generic skills. To achieve the desired generic skills outcomes, an overarching, integrated, and consistently applied curriculum strategy is advocated. This article considers a number of such strategies relevant to allied health education.
Alsharif, Naser Z; Galt, Kimberly A
2008-04-15
To evaluate an instructional model for teaching clinically relevant medicinal chemistry. An instructional model that uses Bloom's cognitive and Krathwohl's affective taxonomy, published and tested concepts in teaching medicinal chemistry, and active learning strategies, was introduced in the medicinal chemistry courses for second-professional year (P2) doctor of pharmacy (PharmD) students (campus and distance) in the 2005-2006 academic year. Student learning and the overall effectiveness of the instructional model were assessed. Student performance after introducing the instructional model was compared to that in prior years. Student performance on course examinations improved compared to previous years. Students expressed overall enthusiasm about the course and better understood the value of medicinal chemistry to clinical practice. The explicit integration of the cognitive and affective learning objectives improved student performance, student ability to apply medicinal chemistry to clinical practice, and student attitude towards the discipline. Testing this instructional model provided validation to this theoretical framework. The model is effective for both our campus and distance-students. This instructional model may also have broad-based applications to other science courses.
Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report
NASA Astrophysics Data System (ADS)
Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.
2011-12-01
This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.
NASA Astrophysics Data System (ADS)
O'Connor, Brendan Harold
This dissertation is a linguistic ethnography of a high school Astronomy/Oceanography classroom in southern Arizona, where an exceptionally promising, novice, white science teacher and mostly Mexican-American students confronted issues of identity and difference through interactions both related and unrelated to science learning. Through close analysis of video-recorded, naturally-occurring interaction and rich ethnographic description, the study documents how a teacher and students accomplished everyday classroom life, built caring relationships, and pursued scientific inquiry at a time and in a place where nationally- and locally-circulating discourses about immigration and race infused even routine interactions with tension and uncertainty. In their talk, students appropriated elements of racializing discourses, but also used language creatively to "speak back" to commonsense notions about Mexicanness. Careful examination of science-related interactions reveals the participants' negotiation of multiple, intersecting forms of citizenship (i.e., cultural and scientific citizenship) in the classroom, through multidirectional processes of language socialization in which students and the teacher regularly exchanged expert and novice roles. This study offers insight into the continuing relevance of racial, cultural, and linguistic identity to students' experiences of schooling, and sheds new light on classroom discourse, teacher-student relationships, and dimensions of citizenship in science learning, with important implications for teacher preparation and practice.
Children and their 4-H animal projects: How children use science in agricultural activity
NASA Astrophysics Data System (ADS)
Emo, Kenneth Roy
Many children are introduced to science through informal educational programs. 4-H, an educational youth program, has a history of introducing scientific practices into agriculture. The purpose of this ethnographically-driven case study is to examine how science informs the actions of children raising market animals in a 4-H project. For two years the researcher collected data on 4-H children with market animal projects. Observations, interviews, and artifacts gathered are interpreted using the framework of activity theory. This study provides evidence for how the context of an activity system influences individual actions. Rules developed by the organization guide the actions of children to incorporate physical and psychological tools of science into their project to achieve the object: producing animals of proper weight and quality to be competitive in the county fair. Children learn the necessary actions from a community of practitioners through which expertise is distributed. Children's learning is demonstrated by the way their participation in their project changes with time, from receiving assistance from others to developing expertise in which they provide assistance to others. The strength of this educational experience is how children apply specific tools of science in ways that provide meaning and relevancy to their 4-H activity.
Science and technology convergence: with emphasis for nanotechnology-inspired convergence
NASA Astrophysics Data System (ADS)
Bainbridge, William S.; Roco, Mihail C.
2016-07-01
Convergence offers a new universe of discovery, innovation, and application opportunities through specific theories, principles, and methods to be implemented in research, education, production, and other societal activities. Using a holistic approach with shared goals, convergence seeks to transcend existing human limitations to achieve improved conditions for work, learning, aging, physical, and cognitive wellness. This paper outlines ten key theories that offer complementary perspectives on this complex dynamic. Principles and methods are proposed to facilitate and enhance science and technology convergence. Several convergence success stories in the first part of the 21st century—including nanotechnology and other emerging technologies—are discussed in parallel with case studies focused on the future. The formulation of relevant theories, principles, and methods aims at establishing the convergence science.
NASA Astrophysics Data System (ADS)
Savasci, Funda; Berlin, Donna F.
2012-02-01
Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and documents. Using an inductive analytic approach, results suggested that the teachers embraced constructivism, but classroom observations did not confirm implementation of these beliefs for three of the four teachers. The most preferred constructivist components were personal relevance and student negotiation; the most perceived component was critical voice. Shared control was the least preferred, least perceived, and least observed constructivist component. School type, grade, student behavior/ability, curriculum/standardized testing, and parental involvement may influence classroom practice.
Bakr, Mahmoud M; Thompson, C Mark; Massadiq, Magdalena
2017-07-01
Basic science courses are extremely important as a foundation for scaffolding knowledge and then applying it in future courses, clinical situations as well as in a professional career. Anatomical sciences, which include tooth morphology, oral histology, oral embryology, and head and neck anatomy form a core part of the preclinical courses in dental technology programs. In this article, the importance and relevance of anatomical sciences to dental personnel with no direct contact with patients (dental technicians) and limited discipline related contact with patients (dental prosthetists) is highlighted. Some light is shed on the role of anatomical sciences in the pedagogical framework and its significance in the educational process and interprofessional learning of dental technicians and prosthetists using oral biology as an example in the dental curriculum. To conclude, anatomical sciences allow dental technicians and prosthetists to a gain a better insight of how tissues function, leading to a better understanding of diagnosis, comprehensive treatment planning and referrals if needed. Patient communication and satisfaction also increases as a result of this deep understanding of oral tissues. Anatomical sciences bridge the gap between basic science, preclinical, and clinical courses, which leads to a holistic approach in patient management. Finally, treatment outcomes are positively affected due to the appreciation of the macro and micro structure of oral tissues. Anat Sci Educ 10: 395-404. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
Juty, Nick; Blomberg, Niklas; Burdett, Tony; Conlin, Tom; Conte, Nathalie; Courtot, Mélanie; Deck, John; Dumontier, Michel; Fellows, Donal K.; Gonzalez-Beltran, Alejandra; Gormanns, Philipp; Grethe, Jeffrey; Hastings, Janna; Hériché, Jean-Karim; Hermjakob, Henning; Ison, Jon C.; Jimenez, Rafael C.; Jupp, Simon; Kunze, John; Laibe, Camille; Le Novère, Nicolas; Malone, James; Martin, Maria Jesus; McEntyre, Johanna R.; Morris, Chris; Muilu, Juha; Müller, Wolfgang; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Sariyar, Murat; Snoep, Jacky L.; Soiland-Reyes, Stian; Stanford, Natalie J.; Swainston, Neil; Washington, Nicole; Williams, Alan R.; Wimalaratne, Sarala M.; Winfree, Lilly M.; Wolstencroft, Katherine; Goble, Carole; Mungall, Christopher J.; Haendel, Melissa A.; Parkinson, Helen
2017-01-01
In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines. PMID:28662064
McMurry, Julie A; Juty, Nick; Blomberg, Niklas; Burdett, Tony; Conlin, Tom; Conte, Nathalie; Courtot, Mélanie; Deck, John; Dumontier, Michel; Fellows, Donal K; Gonzalez-Beltran, Alejandra; Gormanns, Philipp; Grethe, Jeffrey; Hastings, Janna; Hériché, Jean-Karim; Hermjakob, Henning; Ison, Jon C; Jimenez, Rafael C; Jupp, Simon; Kunze, John; Laibe, Camille; Le Novère, Nicolas; Malone, James; Martin, Maria Jesus; McEntyre, Johanna R; Morris, Chris; Muilu, Juha; Müller, Wolfgang; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Sariyar, Murat; Snoep, Jacky L; Soiland-Reyes, Stian; Stanford, Natalie J; Swainston, Neil; Washington, Nicole; Williams, Alan R; Wimalaratne, Sarala M; Winfree, Lilly M; Wolstencroft, Katherine; Goble, Carole; Mungall, Christopher J; Haendel, Melissa A; Parkinson, Helen
2017-06-01
In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.
NASA Astrophysics Data System (ADS)
Marshall, R. H.; Gabrys, R.
2016-12-01
NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.
NASA Astrophysics Data System (ADS)
Clark, J.; Bloom, N.
2017-12-01
Data driven design practices should be the basis for any effective educational product, particularly those used to support STEM learning and literacy. Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center, and the Museum of Science Boston are partners in developing, piloting, and researching the impact of three out of school time units. Two units are for middle grades youth and one is for upper elementary aged youth. The presentation will highlight the data driven development process of the educational products used to provide support for educators teaching these curriculum units. This includes how data from the project needs assessment, curriculum pilot testing, and professional support product field tests are used in the design of products for out of school time educators. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings. Examples of the tiers of support will be provided.
NASA Astrophysics Data System (ADS)
Chehbouni, G.; Goodrich, D.; Kustas, B.; Sorooshian, S.; Shuttleworth, J.; Richter, H.
2008-12-01
The Monsoon'90 Experiment conducted at the USDA-ARS Walnut Gulch Experimental Watershed in southeast Arizona was the start of a long arc of subsequent experiments and research that were larger, longer-term, more international, more interdisciplinary, and led to more direct integration of science for decision making and watershed management. In this era, much of our research and science must be more directly relevant to decision-makers and natural resource managers as they increasingly require sophisticated levels of expert findings and scientific results (e.g. interdisciplinary) to make informed decisions. Significant effort beyond focused, single disciplinary research is required conduct interdisciplinary science typical in large scale field experiments. Even greater effort is required to effectively integrate our research across the physical and ecological sciences for direct use by policy and decision makers. This presentation will provide an overview of the evolution of this arc of experiments and long-term projects into a mature integrated science and decision making program. It will discuss the transition in project focus from science and research for understanding; through science for addressing a need; to integrated science and policy development. At each stage the research conducted became more interdisciplinary, first across abiotic disciplines (hydrology, remote sensing, atmospheric science), then by merging abiotic and biotic disciplines (adding ecology and plant physiology), and finally a further integration of economic and social sciences with and policy and decision making for resource management. Lessons learned from this experience will be reviewed with the intent providing guidance to ensure that the resulting research is socially and scientifically relevant and will not only result in cutting edge science but will also directly address the needs of policy makers and resource managers.
Zoller, U; Scholz, R W
2004-01-01
Given the current world state of affairs, striving for sustainability and the consequent paradigm shift: growth-to-sustainable development, correction-to-prevention and options selection-to-options generation: the corresponding paradigm shift in science-technology-environment-society (STES) education is unavoidable. Accordingly, the essence of the current reform in STES education, worldwide, is a purposed effort to develop students' higher-order cognitive skills (HOCS) capability; i.e., question-asking, critical system thinking, decision making and problem solving, at the expense of the "delivery" of lower-order cognitive skills (LOCS)-oriented knowledge. This means a paradigm shift from the contemporary prevalent LOCS algorithmic teaching to HOCS evaluative learning and HOCS-promoting courses, curricula, teaching strategies and assessment methodologies, leading, hopefully to evaluative thinking and transfer. Following the formulation of selected relevant axioms, major paradigm shift in STES research and education for sustainability have been identified. The consequent shift, in the STES context, from disciplinary to inter- and transdisciplinary learning, in science technology and environmental engineering education is discussed, followed by selected examples of successfully implemented HOCS-promoting courses, and assessment methodologies. It is argued, that transferable "HOCS learning" for sustainability can and should be done.
NASA Astrophysics Data System (ADS)
Cone, Christina Schull
Elementary education has become increasingly divided into subjects and focused on the demand for high math and reading scores. Consequently, teachers spend less time devoted to science and art instruction. However, teaching art and science is crucial to developing creative and rational thinking, especially for observation and questioning skills. In this study, third grade students attending an urban school in Portland, Oregon received instruction of an art strategy using observational and quantifying drawing techniques. This study examines, "Will an art strategy observing the local environment help students make observations and ask questions?" and "In what ways are student learning and perspectives of science affected by the art strategy?" The independent variable is the art strategy developed for this study. There are three dependent variables: quality of student observations, quality of questions, and themes on student learning and perspectives of science. I predicted students would develop strong observation and questioning skills and that students would find the strategy useful or have an increased interest in science. The art scores were high for relevance and detail, but not for text. There were significant correlations between art scores and questions. Interviews revealed three themes: observations create questions, drawing is helpful and challenging, and students connected to science. By examining science through art, students were engaged and created strong observations and questions. Teachers need to balance unstructured drawing time with scaffolding for optimal results. This study provides an integrated science and art strategy that teachers can use outdoors or adapt for the classroom.
Science teaching in science education
NASA Astrophysics Data System (ADS)
Callahan, Brendan E.; Dopico, Eduardo
2016-06-01
Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.
The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)
NASA Astrophysics Data System (ADS)
Keller, T.
2010-12-01
The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.
Do Biology Majors Really Differ from Non–STEM Majors?
Cotner, Sehoya; Thompson, Seth; Wright, Robin
2017-01-01
Recent calls to action urge sweeping reform in science education, advocating for improved learning for all students—including those majoring in fields beyond the sciences. However, little work has been done to characterize the differences—if any exist—between students planning a career in science and those studying other disciplines. We describe an attempt to clarify, in broad terms, how non–STEM (science, technology, engineering, and mathematics) majors differ from life sciences majors, and how they are similar. Using survey responses and institutional data, we find that non–STEM majors are not unilaterally science averse; non–STEM majors are more likely than biology majors to hold misconceptions about the nature of science, yet they are not completely ignorant of how science works; non–STEM majors are less likely than biology majors to see science as personally relevant; and non–STEM majors populations are likely to be more diverse—with respect to incoming knowledge, perceptions, backgrounds, and skills—than a biology majors population. We encourage science educators to consider these characteristics when designing curricula for future scientists or simply for a well-informed citizenry. PMID:28798210
Walsh, Matthew M; Gluck, Kevin A; Gunzelmann, Glenn; Jastrzembski, Tiffany; Krusmark, Michael
2018-06-01
The spacing effect is among the most widely replicated empirical phenomena in the learning sciences, and its relevance to education and training is readily apparent. Yet successful applications of spacing effect research to education and training is rare. Computational modeling can provide the crucial link between a century of accumulated experimental data on the spacing effect and the emerging interest in using that research to enable adaptive instruction. In this paper, we review relevant literature and identify 10 criteria for rigorously evaluating computational models of the spacing effect. Five relate to evaluating the theoretic adequacy of a model, and five relate to evaluating its application potential. We use these criteria to evaluate a novel computational model of the spacing effect called the Predictive Performance Equation (PPE). Predictive Performance Equation combines elements of earlier models of learning and memory including the General Performance Equation, Adaptive Control of Thought-Rational, and the New Theory of Disuse, giving rise to a novel computational account of the spacing effect that performs favorably across the complete sets of theoretic and applied criteria. We implemented two other previously published computational models of the spacing effect and compare them to PPE using the theoretic and applied criteria as guides. Copyright © 2018 Cognitive Science Society, Inc.
Students' preferences for different contexts for learning science
NASA Astrophysics Data System (ADS)
Choi, Jung-Suk; Song, Jinwoong
1996-09-01
The reasons for students' preferences for different contexts were investigated by surveying 379 high school students (Year 11) in Taegu, Korea. Students were asked to select the most preferred and the least preferred context out of six presented contexts and to write reasons for their selections. The method of systemic network analysis was used to analyse students' written responses. It was shown that students' preferences were largely influenced by their perceptions of the relevance and the psychological effects which such contexts would have. In particular, the similarity to textbooks, the relevance to real life and the novelty of the contexts were shown to be the most important factors affecting students' preferences.
An Internship Model for Culturally Relevant Success for Native American High School Students
NASA Astrophysics Data System (ADS)
Nall, J.; Graham, E. M.
2004-12-01
Culturally relevant educational practices can be challenging to implement in the workplace. In an effort to support equity in access to undergraduate internship opportunities for Native American students, NASA Jet Propulsion Laboratory's (JPL) Education Office, Minority Education Initiatives offers a unique approach to supporting students from Native American reservation high schools in Washington State to participate in eight-week technical (Science, Technology, Engineering and Mathematics related) summer internships. This talk will address the Alliance for Learning and Vision for Americans (ALVA) program's twelve years of success based on four programmatic principals, annual review and the critical support of scientists and engineers.
Light-based science and technologies and human civilization: an optical course for general education
NASA Astrophysics Data System (ADS)
Li, Xiaotong; Wang, Kaiwei; Yang, Qing; Si, Ke
2017-08-01
Starting from 2015, a general education course named "Light-based science and technologies and human civilization" has been offered in Zhejiang University. We try to give a humanism view angle to observe optics and optical engineering, and combine them with the relationship of human and the nature, the development of human society and human health. In this course we introduce different historical periods of light-based science and technologies, the great optical researchers, the typical research methods, advantages, academic discussions and the relationship with human civilization. The relevant cross-fields of learning and Nobel Prize winners are also included. This course provides the students with the typical examples about how academic revolution influences the world development, and also with humanism sight which exceeds the range of science and technologies themselves.
Planetary Science Educational Materials for Out-of-School Time Educators
NASA Astrophysics Data System (ADS)
Barlow, Nadine G.; Clark, Joelle G.
2017-10-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings.
ERIC Educational Resources Information Center
Hodson, Derek
2014-01-01
This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…
UNESCO active learning approach in optics and photonics leads to significant change in Morocco
NASA Astrophysics Data System (ADS)
Berrada, K.; Channa, R.; Outzourhit, A.; Azizan, M.; Oueriagli, A.
2014-07-01
There are many difficulties in teaching science and technology in developing countries. Several different teaching strategies have to be applied in these cases. More specifically, for developing countries competencies in teaching science in the introductory classroom has attracted much attention. As a specific example we will consider the Moroccan system. In most developing countries everything is moving so slowly that the progress stays static for development. Also, any change needs time, effort and engagement. In our case we discovered that many teachers feel uncomfortable when introducing new teaching methods and evaluation in classes at introductory physics. However, the introduction of an Active Learning in our curricula showed difficulties that students have in understanding physics and especially concepts. Students were interested in having Active Learning courses much more than passive and traditional ones. Changing believes on physical phenomena and reality of the world students become more attractive and their way of thinking Science changed. The main philosophy of fostering modern hands-on learning techniques -adapted to local needs and availability of teaching resources- is elaborated. The Active Learning program provides the teachers with a conceptual evaluation instrument, drawn from relevant physics education research, giving teachers an important tool to measure student learning. We will try to describe the UNESCO Chair project in physics created in 2010 at Cadi Ayyad University since our first experience with UNESCO ALOP program. Many efforts have been done so far and the project helps now to develop more national and international collaborations between universities and Regional Academies of Education and Training. As a new result of these actions and according to our local needs, the translation of the ALOP program into Arabic is now available under the auspice of UNESCO and encouragement of international partners SPIE, ICTP, ICO and OSA.
Six Myths About Spatial Thinking
NASA Astrophysics Data System (ADS)
Newcombe, Nora S.; Stieff, Mike
2012-04-01
Visualizations are an increasingly important part of scientific education and discovery. However, users often do not gain knowledge from them in a complete or efficient way. This article aims to direct research on visualizations in science education in productive directions by reviewing the evidence for widespread assumptions that learning styles, sex differences, developmental stages, and spatial language determine the impact of visualizations on science learning. First, we examine the assumption that people differ in their verbal versus visual learning style. Due to the lack of rigorous evaluation, there is no current support for this distinction. Future research should distinguish between two different kinds of visual learning style. Second, we consider the belief that there are large and intractable sex differences in spatial ability resultant from immutable biological reasons. Although there are some spatial sex differences (in some types of spatial tests although not all), there is actually only very mixed support for biological causation. Most important, there is conclusive evidence that spatial skills can be improved through training and education. Third, we explore educators' use of Piaget's ideas about spatial development to draw conclusions about 'developmental appropriateness'. However, recent research on spatial development has focused on identifying sequences that begin with early starting points of skill, and spatial education is possible in some form at all ages. Fourth, although spatial language does not determine spatial thought, it does frame attention in a way that can have impact on learning and understanding. We examine the empirical support for each assumption and its relevance to future research on visualizations in science education.
NASA Astrophysics Data System (ADS)
Gold, A. U.; Ledley, T. S.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Niepold, F.; Fox, S.; Howell, C. D.; Lynds, S. E.
2010-12-01
The topic of climate change permeates all aspects of our society: the news, household debates, scientific conferences, etc. To provide students with accurate information about climate science and energy awareness, educators require scientifically and pedagogically robust teaching materials. To address this need, the NSF-funded Climate Literacy & Energy Awareness Network (CLEAN) Pathway has assembled a new peer-reviewed digital collection as part of the National Science Digital Library (NSDL) featuring teaching materials centered on climate and energy science for grades 6 through 16. The scope and framework of the collection is defined by the Essential Principles of Climate Science (CCSP 2009) and a set of energy awareness principles developed in the project. The collection provides trustworthy teaching materials on these socially relevant topics and prepares students to become responsible decision-makers. While a peer-review process is desirable for curriculum developer as well as collection builder to ensure quality, its implementation is non-trivial. We have designed a rigorous and transparent peer-review process for the CLEAN collection, and our experiences provide general guidelines that can be used to judge the quality of digital teaching materials across disciplines. Our multi-stage review process ensures that only resources with teaching goals relevant to developing climate literacy and energy awareness are considered. Each relevant resource is reviewed by two individuals to assess the i) scientific accuracy, ii) pedagogic effectiveness, and iii) usability/technical quality. A science review by an expert ensures the scientific quality and accuracy. Resources that pass all review steps are forwarded to a review panel of educators and scientists who make a final decision regarding inclusion of the materials in the CLEAN collection. Results from the first panel review show that about 20% (~100) of the resources that were initially considered for inclusion passed final review. Reviewer comments are recorded as annotations to enhance the resources in the collection and help educators with the implementation in their curriculum. CLEAN launched the first collection of digital educational resources about climate science and energy awareness in November 2010. The final CLEAN collection will include ≥500 resources and will also provide the alignment with the Benchmarks for Science Literacy and the NAAEE Excellence in Environmental Education Guidelines for Learning through the interactive NSDL strandmaps. We will present the first user feedback to this new collection.
2005-01-01
Students are most motivated and learn best when they are immersed in an environment that causes them to realize why they should learn. Perhaps nowhere is this truer than when teaching the biological sciences to engineers. Transitioning from a traditionally mathematics-based to a traditionally knowledge-based pedagogical style can challenge student learning and engagement. To address this, human pathologies were used as a problem-based context for teaching knowledge-based cell biological mechanisms. Lectures were divided into four modules. First, a disease was presented from clinical, economic, and etiological standpoints. Second, fundamental concepts of cell and molecular biology were taught that were directly relevant to that disease. Finally, we discussed the cellular and molecular basis of the disease based on these fundamental concepts, together with current clinical approaches to the disease. The basic science is thus presented within a “shrink wrap” of disease application. Evaluation of this contextual technique suggests that it is very useful in improving undergraduate student focus and motivation, and offers many advantages to the instructor as well. PMID:15917872
Science and Sandy: Lessons Learned
NASA Astrophysics Data System (ADS)
Werner, K.
2013-12-01
Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.
Inquiry based learning with a virtual microscope
NASA Astrophysics Data System (ADS)
Kelley, S. P.; Sharples, M.; Tindle, A.; Villasclaras-Fernández, E.
2012-12-01
As part of newly funded initiative, the Wolfson OpenScience Laboratory, we are linking a tool for inquiry based learning, nQuire (http://www.nquire.org.uk) with the virtual microscope for Earth science (http://www.virtualmicroscope.co.uk) to allow students to undertake projects and gain from inquiry based study thin sections of rocks without the need for a laboratory with expensive petrological microscopes. The Virtual Microscope (VM) was developed for undergraduate teaching of petrology and geoscience, allowing students to explore rock hand specimens and thin sections in a browser window. The system is based on HTML5 application and allows students to scan and zoom the rocks in a browser window, view in ppl and xpl conditions, and rotate specific areas to view birefringence and pleochroism. Importantly the VM allows students to gain access to rare specimens such as Moon rocks that might be too precious to suffer loss or damage. Experimentation with such specimens can inspire the learners' interest in science and allows them to investigate relevant science questions. Yet it is challenging for learners to engage in scientific processes, as they may lack scientific investigation skills or have problems in planning their activities; for teachers, managing inquiry activities is a demanding task (Quintana et al., 2004). To facilitate the realization of inquiry activities, the VM is being integrated with the nQuire tool. nQuire is a web tool that guides and supports students through the inquiry process (Mulholland et al., 2011). Learners are encouraged to construct their own personally relevant hypothesis, pose scientific questions, and plan the method to answer them. Then, the system enables users to collect and analyze data, and share their conclusions. Teachers can monitor their students' progress through inquiries, and give them access to new parts of inquiries as they advance. By means of the integration of nQuire and the VM, inquiries that involve collecting data through a microscope can be created and supported. To illustrate the possibilities of these tools, we have designed two inquiries that engage learners in the study of Moon rock samples under the microscope, starting from general questions such as comparison of Moon rocks or determining the origin of meteorites. One is aimed at undergraduate Geology students; the second has been conceived for the general public. Science teachers can reuse these inquiries, adapt them as they need, or create completely new inquiries using nQuire's authoring tool. We will report progress and demonstrate the combination of these two on-line tools to create an open educational resource allowing educators to design and run science inquiries for Earth and planetary science in a range of settings from schools to universities. Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., et al. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337-386. Mulholland, P., Anastopoulou, S., Collins, T., FeiBt, M., Gaved, M., Kerawalla, L., Paxton, M., et al. (2011). nQuire: Technological support for personal inquiry learning. IEEE Transactions on Learning Technologies. First published online, December 5, 2011, http://doi.ieeecomputersociety.org/10.1109/TLT.2011.32.
Designing pedagogy incorporating executive function.
Wasserman, Theodore
2013-01-01
The National Academy of Neuropsychology defines clinical neuropsychology as "a sub-field of psychology concerned with the applied science of brain-behavior relationships. Clinical neuropsychologists use this knowledge in the assessment, diagnosis, treatment, and/or rehabilitation of patients across the lifespan with neurological, medical, neurodevelopmental and psychiatric conditions, as well as other cognitive and learning disorders" (National Academy of Neuropsychology, 2011 ). Pediatric neuropsychologists have long been concerned about another area of functionality, making their recommendations educationally relevant. This article describes accommodated metacognitive instruction, a pedagogy based on cognitive neuropsychological principles of learning and used to instruct college faculty on a methodology for teaching in all-inclusive environments.
NASA Astrophysics Data System (ADS)
Halversen, C.; Apple, J. K.; McDonnell, J. D.; Weiss, E.
2014-12-01
The Next Generation Science Standards (NGSS) call for 5th grade students to "obtain and combine information about ways individual communities use science ideas to protect Earth's resources and environment". Achieving this, and other objectives in NGSS, will require changes in the educational system for both students and teachers. Teachers need access to high quality instructional materials and continuous professional learning opportunities starting in pre-service education. Students need highly engaging and authentic learning experiences focused on content that is strategically interwoven with science practices. Pre-service and early career teachers, even at the secondary level, often have relatively weak understandings of the complex Earth systems science required for understanding climate change and hold alternative ideas and naïve beliefs about the nature of science. These naïve understandings cause difficulties in portraying and teaching science, especially considering what is being called for in NGSS. The ACLIPSE program focuses on middle school pre-service science teachers and education faculty because: (1) the concepts that underlie climate change align well with the disciplinary core ideas and practices in NGSS for middle grades; and (2) middle school is a critical time for capturing students interest in science as student engagement by eighth grade is the most effective predictor of student pursuit of science in high school and college. Capturing student attention at this age is critical for recruitment to STEM careers and lifelong climate literacy. THE ACLIPSE program uses cutting edge research and technology in ocean observing systems to provide educators with new tools to engage students that will lead to deeper understanding of the interactions between the ocean and climate systems. Establishing authentic, meaningful connections between indigenous and place-based, and technological climate observations will help generate a more holistic perspective on climate change and demonstrate that observing systems can enhance understanding. ACLIPSE materials strive to translate research about climate change effectively into understandable narratives of real world phenomena using ocean data, creating meaningful pathways into ocean-climate science for students in ALL communities.
Making sense of biologists' teaching: Two case studies of beliefs and discourse practices
NASA Astrophysics Data System (ADS)
Fifield, Steven James
1999-09-01
Undergraduate science courses are often criticized for their overemphasis of content coverage, neglect of inquiry approaches, and misrepresentation of the nature of science. Because conventional courses are influential models for future science teachers, they are often viewed as impediments to K--12 science education reform. To effectively modify how professors teach, we first need to better understand their beliefs and practices as teachers. This is an interpretive study of how two biology professors (Jim and Sue) make sense of their classroom practices in an introductory undergraduate course. Interviews are used to analyze their beliefs about teaching, learning, and science. Discourse analysis of lectures on classical genetics is used to examine their classroom practices as situated constructions of scientific knowledge. The two professors' held distinct beliefs about teaching and learning that were intricately interwoven with their beliefs about science. Jim's beliefs were largely consistent with conventional approaches to introductory science courses. He thought that introductory courses support the development of knowledge and skills that students need before they can engage in scientific inquiry. Sarah was critical of these conventional approaches. She valued courses that foster active learning and focus on applications of biology that are relevant to students' lives. But she could not enact many of her beliefs due to situational constraints associated with the course. Instead she viewed her efforts to help students succeed in a conventional course as a way to resist her colleagues' expectations that most students cannot do well in science. Discourse analysis of the professors' lectures revealed that they both relied on narratives to represent concepts in classical genetics. These narratives of concepts were distinct from other narrative forms in technical and popular presentations of biology. The relationship among these professors' beliefs and classroom practices suggest that what scientists' believe and do as teachers should be understood as dimensions of the nature of science. From this perspective, for some science professors, science education reform may entail not simply using different instructional strategies, but doing and thinking about science in radically new ways. The implications of this perspective for educational reform are discussed.
Models as Relational Categories
NASA Astrophysics Data System (ADS)
Kokkonen, Tommi
2017-11-01
Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other hand, recent research within cognitive science has examined the learning of so-called relational categories. Relational categories are categories whose membership is determined on the basis of the common relational structure. In this theoretical paper, I argue that viewing models as relational categories provides a well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling within MBL (using ready-made models, constructive modeling, and generative modeling) and discern the related cognitive aspects brought forward by the reinterpretation of models as relational categories. I will argue that relational knowledge is vital in learning novel models and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchical knowledge of experts. Lastly, I will examine how the format of external representations may affect the learning of models and the relevant relations. The nature of the learning mechanisms underlying students' mental representations of models is an interesting open question to be examined. Furthermore, the ways in which the expert-like knowledge develops and how to best support it is in need of more research. The discussion and conceptualization of models as relational categories allows discerning students' mental representations of models in terms of evolving relational structures in greater detail than previously done.
Jones, Nancy L.; Peiffer, Ann M.; Lambros, Ann; Eldridge, J. Charles
2013-01-01
Purpose A process evaluation was conducted to assess whether the newly developed Problem-Based Learning (PBL) curriculum designed to teach professionalism and ethics to biomedical graduate students was achieving its objectives. The curriculum was chosen to present realistic cases and issues in the practice of science, to promote skill development and to acculturate students to professional norms of science. Method The perception to which the objectives for the curriculum and courses were being reached was assessed using 5-step Likert-scaled questions, open-ended questions and interviews of students and facilitators. Results Process evaluation indicated that both facilitators and students perceived course objectives were being met. For example, active learning was preferred over lectures; both faculty and students percieved that the curriculum increased their understanding of norms, role obligations, and responsibilities of professional scientists; their ability to identify ethical situations was increased; skills in moral reasoning and effective group work were developed. Conclusions Information gathered was used to improve course implementation and instructional material. For example, a negative perception as an “ethics” course was addressed by redesigning case debriefing activities that reinforced learning objectives and important skills. Cases were refined to be more engaging and relevant for students, and facilitators were given more specific training and resources for each case. The PBL small group strategy can stimulate an environment more aware of ethical implications of science and increase socialization and open communication about professional behavior. PMID:20663754
NASA Astrophysics Data System (ADS)
Russell, R. M.; Johnson, R. M.; Gardiner, E. S.; Bergman, J. J.; Genyuk, J.; Henderson, S.
2004-12-01
Interactive visualizations can be powerful tools for helping students, teachers, and the general public comprehend significant features in rich datasets and complex systems. Successful use of such visualizations requires viewers to have, or to acquire, adequate expertise in use of the relevant visualization tools. In many cases, the learning curve associated with competent use of such tools is too steep for casual users, such as members of the lay public browsing science outreach web sites or K-12 students and teachers trying to integrate such tools into their learning about geosciences. "Windows to the Universe" (http://www.windows.ucar.edu) is a large (roughly 6,000 web pages), well-established (first posted online in 1995), and popular (over 5 million visitor sessions and 40 million pages viewed per year) science education web site that covers a very broad range of Earth science and space science topics. The primary audience of the site consists of K-12 students and teachers and the general public. We have developed several interactive visualizations for use on the site in conjunction with text and still image reference materials. One major emphasis in the design of these interactives has been to ensure that casual users can quickly learn how to use the interactive features without becoming frustrated and departing before they were able to appreciate the visualizations displayed. We will demonstrate several of these "user-friendly" interactive visualizations and comment on the design philosophy we have employed in developing them.
NASA Astrophysics Data System (ADS)
Hughes, Roxanne M.; Nzekwe, Brandon; Molyneaux, Kristen J.
2013-10-01
Currently, there are policy debates regarding the efficacy and legality of single sex formal and informal education programs. This issue is particularly poignant in science education due to the historical marginalization of women in these fields. This marginalization has resulted in women being positioned as a stigmatized group within many science, technology, engineering, and mathematics (STEM) related fields. Research points to adolescence as the age where this sense of marginalization begins to develop. As a result, policy responses have utilized various frameworks such as: increased access for women, changing pedagogy to address women's learning styles, changing the language and culture of science to prevent marginalization of stigmatized groups, and finally exploring the role that individual identity plays in the marginalization of women. This study adds to the policy debate as it applies to single sex education by comparing middle school participants' STEM identity formation during two informal science learning environments (an all girls' STEM camp and a co-educational STEM camp). Additionally, this study focuses on the influence of camp activities within two informal science education programs: particularly the provision of role models and authentic STEM research activities, as means to improve STEM identity and make these fields relevant to the lives of middle school students. The results indicate that both camps improved girls' STEM identities. These findings suggest that the single sex environment is not as important to STEM identity as the pedagogy used within the program.
Sciencetogo.Org: Using Humor to Engage a Public Audience with the Serious Issue of Climate Change
NASA Astrophysics Data System (ADS)
Lustick, D. S.; Lohmeier, J.; Chen, R. F.; Rabkin, D.; Wilson, R.
2014-12-01
A team of educators, scientists, and communication experts from multiple universities as well as a Science museum will report on the impact of ScienceToGo.org, which is an Out of Home Multi-Media (OHMM) exhibit targeting adults riding a major subway system. The campaign's goal is to design, implement, and study the efficacy of an OHMM model for free choice science learning about our changing climate. Subway riders represent a diverse and captive audience with most of them spending an average of one hour a day in the subway system. Through the use of specially designed OHMM such as train placards, platform posters, and virtual resources the campaign engages a potential audience of 500,000 riders/day with opportunities to learn climate change science informally. The primary goal of the ScienceToGo.org campaign is to engage, entertain, and educate the adult subway riding community in major U.S. city about climate change as a real, relevant, and solvable local challenge. A naturalistic quasi-experimental inquiry employing a mixed methodology approach best describes our research design with half of the subway system exposed to the project signage (experimental group) and the other half not being exposed to the project signage (control group). To identify possible outcomes, data was collected in the several forms: survey, analytic data associated with website, social media, web app, focus groups, and observations. This campaign is an example of how an individual's daily routine may be enhanced with an informal science learning opportunity. We see an urgent need to improve both the public's engagement with climate change science and to the profile of climate change science in formal education settings. The campaign makes deliberate use of humor and fun to engage a public and diverse audience with the serious issue of climate change. The research that will be presented will reveal some of the strengths and weaknesses of this strategy when communicating science to a diverse audience. Overall, the preponderance of evidence indicates that humor and fun are effective at engaging riders on mass transit. Mass transit spaces represent a promsing medium for further exploration and development when it comes to informal learning about climate change science.
Evaluating and redesigning teaching learning sequences at the introductory physics level
NASA Astrophysics Data System (ADS)
Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José
2017-12-01
In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed according to our proposal relate to learning progressions. An iterative methodology for evaluating and redesigning the teaching and learning sequence (TLS) is presented. The proposed assessment strategy focuses on three aspects: (a) evaluation of the activities of the TLS, (b) evaluation of learning achieved by students in relation to the intended objectives, and (c) a document for gathering the difficulties found when implementing the TLS to serve as a guide to teachers. Discussion of this guide with external teachers provides feedback used for the TLS redesign. The context of our implementation and evaluation is an innovative calculus-based physics course for first-year engineering and science degree students at the University of the Basque Country.
Learning Science and the Science of Learning. Science Educators' Essay Collection.
ERIC Educational Resources Information Center
Bybee, Rodger W., Ed.
This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…
NASA Astrophysics Data System (ADS)
Cook, H. M.
2014-12-01
I teach an Earth Science course, designed as an introductory science class that also fulfills the Earth Science requirement for pre-service teachers preparing to take their state content exam. This course provides an introduction to astronomy, geology, oceanography, and meteorology. By design, the class is content-heavy. Despite this, with so many current environmental and societal issues directly tied to the Earth Sciences, it is essential to address contemporary problems and to educate students about the changes and challenges in the world around them. I have made a commitment to doing this by incorporating relevant societal and environmental issues into every topic and every class session. While this may sound basic, doing so requires diligence and research. For example, when teaching about weathering and erosion, I discuss soils, soil quality and erosion, and the impact this has on our global food supply. A hands-on mineral activity lends itself to looking at the energy and waste involved in ore extraction. A lecture on ocean circulation results in an opportunity to analyze the consequences of the interruption of this pattern due to global warming. Through this approach, students are provided with necessary content; furthermore, by linking traditional content to modern issues on a regular basis, students see the relevance of what they are learning and become more aware of the environmental issues facing society today. Student evaluations indicate that this approach has been successful: 100% of students reported that they learned a great deal from the course, and 100% of students agreed that the quality of the course was high. In addition, prior to the class 55.8% of the students indicated interested in the content; whereas, after the course 88.6% indicated interest, with strong interest in the content increasing from 16.3% to 41%.
Finding faults: analogical comparison supports spatial concept learning in geoscience.
Jee, Benjamin D; Uttal, David H; Gentner, Dedre; Manduca, Cathy; Shipley, Thomas F; Sageman, Bradley
2013-05-01
A central issue in education is how to support the spatial thinking involved in learning science, technology, engineering, and mathematics (STEM). We investigated whether and how the cognitive process of analogical comparison supports learning of a basic spatial concept in geoscience, fault. Because of the high variability in the appearance of faults, it may be difficult for students to learn the category-relevant spatial structure. There is abundant evidence that comparing analogous examples can help students gain insight into important category-defining features (Gentner in Cogn Sci 34(5):752-775, 2010). Further, comparing high-similarity pairs can be especially effective at revealing key differences (Sagi et al. 2012). Across three experiments, we tested whether comparison of visually similar contrasting examples would help students learn the fault concept. Our main findings were that participants performed better at identifying faults when they (1) compared contrasting (fault/no fault) cases versus viewing each case separately (Experiment 1), (2) compared similar as opposed to dissimilar contrasting cases early in learning (Experiment 2), and (3) viewed a contrasting pair of schematic block diagrams as opposed to a single block diagram of a fault as part of an instructional text (Experiment 3). These results suggest that comparison of visually similar contrasting cases helped distinguish category-relevant from category-irrelevant features for participants. When such comparisons occurred early in learning, participants were more likely to form an accurate conceptual representation. Thus, analogical comparison of images may provide one powerful way to enhance spatial learning in geoscience and other STEM disciplines.
Profiling interest of students in science: Learning in school and beyond
NASA Astrophysics Data System (ADS)
Dierks, Pay O.; Höffler, Tim N.; Parchmann, Ilka
2014-05-01
Background:Interest is assumed to be relevant for students' learning processes. Many studies have investigated students' interest in science; most of them however have not offered differentiated insights into the structure and elements of this interest. Purpose:The aim of this study is to obtain a precise image of secondary school students' interest for school and out-of-school learning opportunities, both formal and informal. The study is part of a larger project on measuring the students' Individual Concept about the Natural Sciences (ICoN), including self-efficacy, beliefs and achievements next to interest variables. Sample:Next to regular school students, a specific cohort will be analyzed as well: participants of science competitions who are regarded as having high interest, and perhaps different interest profiles than regular students. In the study described here, participants of the International Junior Science Olympiad (N = 133) and regular students from secondary schools (N = 305), age cohorts 10 to 17 years, participated. Design and methods:We adapted Holland's well-established RIASEC-framework to analyze if and how it can also be used to assess students' interest within science and in-school and out-of-school (leisure-time and enrichment) activities. The resulting questionnaire was piloted according to quality criteria and applied to analyze profiles of different groups (boys - girls, contest participants - non-participants). Results:The RIASEC-adaption to investigate profiles within science works apparently well for school and leisure-time activities. Concerning the interest in fostering measures, different emphases seem to appear. More research in this field needs to be done to adjust measures better to students' interests and other pre-conditions in the future. Contrasting different groups like gender and participation in a junior science contest uncovered specific interest profiles. Conclusions:The instrument seems to offer a promising approach to identify different interest profiles for different environments and groups of students. Based on the results, further studies will be carried out to form a solid foundation for the design of enrichment measures.
NASA Astrophysics Data System (ADS)
Hodson, Derek
2014-10-01
This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that recognize key differences in learning goals and criticizes the common assertion that 'current wisdom advocates that students best learn science through an inquiry-oriented teaching approach' on the grounds that conflating the distinction between learning by inquiry and engaging in scientific inquiry is unhelpful in selecting appropriate teaching/learning approaches.
Monitoring Seasons Through Global Learning Communities
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Robin, J. H.; Jeffries, M. O.; Gordon, L. S.; Verbyla, D. L.; Levine, E. R.
2006-12-01
Monitoring Seasons through Global Learning Communities (MSTGLC) is an inquiry- and project-based project that monitors seasons, specifically their interannual variability, in order to increase K-12 students' understanding of the Earth system by providing teacher professional development in Earth system science and inquiry, and engaging K-12 students in Earth system science research relevant to their local communities that connect globally. MSTGLC connects GLOBE students, teachers, and communities, with educators and scientists from three integrated Earth systems science programs: the International Arctic Research Center, and NASA Landsat Data Continuity and Terra Satellite Missions. The project organizes GLOBE schools by biomes into eight Global Learning Communities (GLCs) and students monitor their seasons through regional based field campaigns. The project expands the current GLOBE phenology network by adapting current protocols and making them biome-specific. In addition, ice and mosquito phenology protocols will be developed for Arctic and Tropical regions, respectively. Initially the project will focus on Tundra and Taiga biomes as phenological changes are so pronounced in these regions. However, our long-term goal is to determine similar changes in other biomes (Deciduous Forest, Desert, Grasslands, Rain Forest, Savannah and Shrubland) based upon what we learn from these two biomes. This project will also contribute to critically needed Earth system science data such as in situ ice, mosquito, and vegetation phenology measurements for ground validations of remotely sensed data, which are essential for regional climate change impact assessments. Additionally it will contribute environmental data critical to prevention and management of diseases such as malaria in Asian, African, and other countries. Furthermore, this project will enable students to participate in the International Polar Year (IPY) (2007-2009) through field campaigns conducted by students in polar regions, and web chats between IPY scientists and GLOBE students from all eight GLCs that include non-polar countries.
Exploring Metacogntive Visual Literacy Tasks for Teaching Astronomy
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Slater, S.; Dwyer, W.
2010-01-01
Undoubtedly, astronomy is a scientific enterprise which often results in colorful and inspirational images of the cosmos that naturally capture our attention. Students encountering astronomy in the college classroom are often bombarded with images, movies, simulations, conceptual cartoons, graphs, and charts intended to convey the substance and technological advancement inherent in astronomy. For students who self-identify themselves as visual learners, this aspect can make the science of astronomy come alive. For students who naturally attend to visual aesthetics, this aspect can make astronomy seem relevant. In other words, the visual nature that accompanies much of the scientific realm of astronomy has the ability to connect a wide range of students to science, not just those few who have great abilities and inclinations toward the mathematical analysis world. Indeed, this is fortunate for teachers of astronomy, who actively try to find ways to connect and build astronomical understanding with a broad range of student interests, motivations, and abilities. In the context of learning science, metacognition describes students’ self-monitoring, -regulation, and -awareness when thinking about learning. As such, metacognition is one of the foundational pillars supporting what we know about how people learn. Yet, the astronomy teaching and learning community knows very little about how to operationalize and support students’ metacognition in the classroom. In response, the Conceptual Astronomy, Physics and Earth sciences Research (CAPER) Team is developing and pilot-testing metacogntive tasks in the context of astronomy that focus on visual literacy of astronomical phenomena. In the initial versions, students are presented with a scientifically inaccurate narrative supposedly describing visual information, including images and graphical information, and asked to assess and correct the narrative, in the form of peer evaluation. To guide student thinking, students are provided with a scaffolded series of multiple-choice questions highlighting conceptual aspects of the prompt.
Machine Learning Approaches to Increasing Value of Spaceflight Omics Databases
NASA Technical Reports Server (NTRS)
Gentry, Diana
2017-01-01
The number of spaceflight bioscience mission opportunities is too small to allow all relevant biological and environmental parameters to be experimentally identified. Simulated spaceflight experiments in ground-based facilities (GBFs), such as clinostats, are each suitable only for particular investigations -- a rotating-wall vessel may be 'simulated microgravity' for cell differentiation (hours), but not DNA repair (seconds) -- and introduce confounding stimuli, such as motor vibration and fluid shear effects. This uncertainty over which biological mechanisms respond to a given form of simulated space radiation or gravity, as well as its side effects, limits our ability to baseline spaceflight data and validate mission science. Machine learning techniques autonomously identify relevant and interdependent factors in a data set given the set of desired metrics to be evaluated: to automatically identify related studies, compare data from related studies, or determine linkages between types of data in the same study. System-of-systems (SoS) machine learning models have the ability to deal with both sparse and heterogeneous data, such as that provided by the small and diverse number of space biosciences flight missions; however, they require appropriate user-defined metrics for any given data set. Although machine learning in bioinformatics is rapidly expanding, the need to combine spaceflight/GBF mission parameters with omics data is unique. This work characterizes the basic requirements for implementing the SoS approach through the System Map (SM) technique, a composite of a dynamic Bayesian network and Gaussian mixture model, in real-world repositories such as the GeneLab Data System and Life Sciences Data Archive. The three primary steps are metadata management for experimental description using open-source ontologies, defining similarity and consistency metrics, and generating testing and validation data sets. Such approaches to spaceflight and GBF omics data may soon enable unique insight into which measured phenomena correlate to biological mechanisms that are truly affected by spaceflight conditions; which are most likely to be confounded by other variables; and which are insufficiently characterized, significantly increasing existing and future science return from ISS and spaceflight missions.
Christophel, Eva; Schnotz, Wolfgang
2017-01-01
Women are still underrepresented in engineering courses although some German universities offer separate women’s engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners’ mental effort decreased if they had more strategic competences. On the other hand, female learners’ mental effort increased if they had more arithmetic-operative competences. All in all, female learners seem to be more sensitive to differences in their strategic and arithmetic-operative competences regarding their mental effort. These results imply that the implementation of separate women’s engineering courses could be an interesting approach. PMID:29114234
Christophel, Eva; Schnotz, Wolfgang
2017-01-01
Women are still underrepresented in engineering courses although some German universities offer separate women's engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners' mental effort decreased if they had more strategic competences. On the other hand, female learners' mental effort increased if they had more arithmetic-operative competences. All in all, female learners seem to be more sensitive to differences in their strategic and arithmetic-operative competences regarding their mental effort. These results imply that the implementation of separate women's engineering courses could be an interesting approach.
The Human Terrain System: Operationally Relevant Social Science Research in Iraq and Afghanistan
2015-12-01
my own studies; I have learned from them that scholarship is, indeed, a collective enterprise. Dr. Martin Bayly, Dr. Aliki Karapliagou, Andrea Coles...Division Colonel Martin Schweitzer’s initial positive assessment of AF1 in October 2007 (quoted by The New York Times) credited the team with re- ducing... Martin Schweitzer’s claim in congressional testimony concerning the quantitative reduction in kinetic activity. In February 2008, after
NASA Astrophysics Data System (ADS)
Salloum, Sara
2017-06-01
This conceptual paper aims to characterize science teachers' practical knowledge utilizing a virtue-based theory of knowledge and the Aristotelian notion of phronesis/practical wisdom. The article argues that a greater understanding of the concept of phronesis and its relevance to science education would enrich our understandings of teacher knowledge, its development, and consequently models of teacher education. Views of teacher knowledge presented in this paper are informed by philosophical literature that questions normative views of knowledge and argues for a virtue-based epistemology rather than a belief-based one. The paper first outlines general features of phronesis/practical wisdom. Later, a virtue-based view of knowledge is described. A virtue-based view binds knowledge with moral concepts and suggests that knowledge development is motivated by intellectual virtues such as intellectual sobriety, perseverance, fairness, and humility. A virtue-based theory of knowledge gives prominence to the virtue of phronesis/practical wisdom, whose primary function is to mediate among virtues and theoretical knowledge into a line of action that serves human goods. The role of phronesis and its relevance to teaching science are explained accordingly. I also discuss differences among various characterizations of practical knowledge in science education and a virtue-based characterization. Finally, implications and further questions for teacher education are presented.
Goldina, Anna; Weeks, Ophelia I.
2014-01-01
To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course called Science Café. In this course, undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Café course emphasizes development of science communication skills early, at the undergraduate level, and empowers students to use their science knowledge in everyday interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field. PMID:24839510
Goldina, Anna; Weeks, Ophelia I
2014-05-01
To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course called Science Café. In this course, undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Café course emphasizes development of science communication skills early, at the undergraduate level, and empowers students to use their science knowledge in everyday interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.
Teacher and student perspectives on motivation within the high school science classroom
NASA Astrophysics Data System (ADS)
Pickens, Melanie Turnure
The purpose of this study was to investigate teacher and student perspectives on the motivation of high school science students and to explore specific motivational strategies used by teachers as they attempt to enhance student motivation. Four science teachers took part in an initial audio-taped interview, classroom observations with debriefing conversations, and a final audio-taped interview to discuss findings and allow member checking for data triangulation and interpretation. Participating teachers also took part in a final focus group interview. Student participants from each teacher's class were given a Likert style anonymous survey on their views about motivation and learning, motivation in science class, and specific motivational strategies that emerged in their current science class. This study focused on effective teaching strategies for motivation commonly used by the four teachers and on specific teaching strategies used by two of these four teachers in different tracks of science classes. The intent was to determine not only what strategies worked well for all types of science classes, but also what specific motivational approaches were being used in high and low tracked science classes and the similarities and differences between them. This approach provided insight into the differences in motivating tracked students, with the hope that other educators in specific tracks might use such pedagogies to improve motivation in their own science classrooms. Results from this study showed that science teachers effectively motivate their students in the following ways: Questioning students to engage them in the lesson, exhibiting enthusiasm in lesson presentations, promoting a non-threatening environment, incorporating hands-on activities to help learn the lesson concepts, using a variety of activities, believing that students can achieve, and building caring relationships in the classroom. Specific to the higher tracked classroom, effective motivational strategies included: Use of teacher enthusiasm, promoting a non-threatening class atmosphere, and connecting the adolescent world to science. In the lower tracked classroom, specific effective strategies were: Encouraging student-student dialogue, making lessons relevant using practical applications, building student self-confidence, and using hands-on inquiry activities. Teachers who incorporate such strategies into their classrooms regardless of the track will likely increase motivation and also enhance learning for all students.
NASA Astrophysics Data System (ADS)
Halversen, C.; McDonnell, J. D.; Apple, J. K.; Weiss, E. L.
2016-02-01
Two university courses, 1) Promoting Climate Literacy and 2) Climate and Data Literacy, developed by the University of California Berkeley provide faculty across the country with course materials to help their students delve into the science underlying global environmental change. The courses include culturally responsive content, such as indigenous and place-based knowledge, and examine how people learn and consequently, how we should teach and communicate science. Promoting Climate Literacy was developed working with Scripps Institution of Oceanography, University of Washington, and Western Washington University. Climate and Data Literacy was developed with Rutgers University and Padilla Bay National Estuarine Research Reserve, WA. The Climate and Data Literacy course also focuses on helping students in science majors participating in U-Teach programs and students in pre-service teacher education programs gain skills in using real and near-real time data through engaging in investigations using web-based and locally-relevant data resources. The course helps these students understand and apply the scientific practices, disciplinary concepts and big ideas described in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). This course focuses on students interested in teaching middle school science for three reasons: (1) teachers often have relatively weak understandings of the practices of science, and of complex Earth systems science and climate change; (2) the concepts that underlie climate change align well with the NGSS; and (3) middle school is a critical time for promoting student interest in science and for recruitment to STEM careers and lifelong climate literacy. This course is now being field tested in a number of U-Teach programs including Florida State University, Louisiana State University, as well as pre-service teacher education programs at California State University East Bay, and Western Washington University. The Promoting Climate Literacy course is focused on graduate and undergraduate science students interested in learning how to more effectively communicate climate science, while participating in outreach opportunities with the public. The course has been disseminated through a workshop for faculty at 17 universities.
A Study of Cognitive Load for Enhancing Student’s Quantitative Literacy in Inquiry Lab Learning
NASA Astrophysics Data System (ADS)
Nuraeni, E.; Rahman, T.; Alifiani, D. P.; Khoerunnisa, R. S.
2017-09-01
Students often find it difficult to appreciate the relevance of the role of quantitative analysis and concept attainment in the science class. This study measured student cognitive load during the inquiry lab of the respiratory system to improve quantitative literacy. Participants in this study were 40 11th graders from senior high school in Indonesia. After students learned, their feelings about the degree of mental effort that it took to complete the learning tasks were measured by 28 self-report on a 4-point Likert scale. The Task Complexity Worksheet were used to asses processing quantitative information and paper based test were applied to assess participants’ concept achievements. The results showed that inquiry instructional induced a relatively low mental effort, high processing information and high concept achievments.
Ahead of the game: the use of gaming to enhance knowledge of psychopharmacology.
Beek, Terra S; Boone, Cheryl; Hubbard, Grace
2014-12-01
Experiential teaching strategies have the potential to more effectively help students with critical thinking than traditional lecture formats. Gaming is an experiential teaching-learning strategy that reinforces teamwork, interaction, and enjoyment and introduces the element of play. Two Bachelor of Science in Nursing students and a clinical instructor created a Jeopardy!(®)-style game to enhance understanding of psychopharmacology, foster student engagement in the learning process, and promote student enjoyment during clinical postconference. The current article evaluates the utility, relevance, and effectiveness of gaming using a Jeopardy!(®)-style format for the psychiatric clinical setting. Students identified the strengths of this learning activity as increased awareness of knowledge deficits, as well as the reinforcement of existing knowledge and the value of teamwork. Copyright 2014, SLACK Incorporated.
Fisher, Anna V; Godwin, Karrie E; Seltman, Howard
2014-07-01
A large body of evidence supports the importance of focused attention for encoding and task performance. Yet young children with immature regulation of focused attention are often placed in elementary-school classrooms containing many displays that are not relevant to ongoing instruction. We investigated whether such displays can affect children's ability to maintain focused attention during instruction and to learn the lesson content. We placed kindergarten children in a laboratory classroom for six introductory science lessons, and we experimentally manipulated the visual environment in the classroom. Children were more distracted by the visual environment, spent more time off task, and demonstrated smaller learning gains when the walls were highly decorated than when the decorations were removed. © The Author(s) 2014.
Machine learning bandgaps of double perovskites
Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.
2016-01-01
The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance. PMID:26783247
Du changement conceptuel a la complexification conceptuelle dans l'apprentissage des sciences
NASA Astrophysics Data System (ADS)
Belanger, Michel
Science learning has often been thought as a replacement process; learners' spontaneous ideas must be replaced by scientific ones. Many learning models in science education were formulated in this way (at least implicitly). But theses spontaneous ideas proved to be more resistant than initially thought. Several researchers concluded that students often possess an odd combination of intuitive and scientific ideas. Generally, the phenomenon of "multiple conceptions" refers to students having a repertoire of different conceptions, each associated with a context of relevance. A number of researchers in science education constructed models of this phenomenon, but none included a systematic treatment of what we consider one of its most important aspects: the fact that these multiple conceptions are not isolated within the cognitive structure, but integrated into a whole in many ways. This whole constitute a complex of conceptions, whence our utilisation of the expression "conceptual complexification" to designate this form of learning. Using ideas in the conceptual change literature and in philosophy of science, we propose five kinds of cognitive structures that could play an intermediary role between alternative conceptions, allowing the management of their multiplicity: descriptive, evaluative, explicative, transformative, and decisional. In the empirical section of the research, we explore specifically decisional structures, which are responsible for the selection of one conception of the repertoire. In order to do so, we submitted two series of tasks to eight collegial and undergraduate students in two situations. In the first tasks, subjects are asked to explain three phenomena (one biological and two physical) to fictive audiences of various ages (6 to 15 years old). In the second tasks, students' understanding of the quantum version of the Young's interference experiment is probed in order study their understanding of the demarcation between quantum and classical mechanics. In these two situations, students appear to make use of two different strategies for selecting between alternative conceptions. Many topics of science education are briefly touched in this research. The conceptual complexification model that we propose could constitute an interesting theoretical framework for their future study. Keywords: conceptual change, multiple conceptions, conceptual complexification, quantum mechanic learning, popularization, history of science.
Early Career Summer Interdisciplinary Team Experiences and Student Persistence in STEM Fields
NASA Astrophysics Data System (ADS)
Cadavid, A. C.; Pedone, V. A.; Horn, W.; Rich, H.
2015-12-01
STEPS (Students Targeting Engineering and Physical Science) is an NSF-funded program designed to increase the number of California State University Northridge students getting bachelor's degrees in the natural sciences, mathematics, engineering and computer science. The greatest loss of STEM majors occurs between sophomore and junior- years, so we designed Summer Interdisciplinary Team Experience (SITE) as an early career program for these students. Students work closely with a faculty mentor in teams of ten to investigate regionally relevant problems, many of which relate to sustainability efforts on campus or the community. The projects emphasize hands-on activities and team-based learning and decision making. We report data for five years of projects, qualitative assessment through entrance and exit surveys and student interviews, and in initial impact on retention of the participants.
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael
2012-06-01
Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.
NASA Astrophysics Data System (ADS)
Oman, Auna
This action research project investigated fourth grade students¡¦ motivation to learn science using a digital science techbook. Participants in the study included 29 fourth grade students in two different classrooms. One classroom of 16 students used a digital science techbook to learn science while the other classroom of 13 students used a traditional paper science textbook to learn science. Students in both classrooms answered five sets of questions regarding their experience using a digital science techbook and a paper science techbook to understand science, find science information, solve science problems, learn science, and assess learning science was fun. Results were compiled and coded based on positive and negative responses to conditions. A chi-square was used to analyze the ordinal data. Overall differences between techbooks vs. textbook were significant, X2 (1, N = 29) = 23.84, p = .000, justifying further examination of individual survey items. Three items had statistically significant difference for finding science information, solving science problems, and learning science. A gender difference was also found in one item. Females preferred to use paper science textbooks to understand science, while males preferred digital techbooks to learn science. The fourth graders in this study indicated that digital techbooks were a powerful learning tool for increasing interest, excitement and learning science. Even though students reported paper science textbooks as easy to use, they found using digital science techbooks a far more appealing way to learn science.
Impact of Virtual Patients as Optional Learning Material in Veterinary Biochemistry Education.
Kleinsorgen, Christin; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Branitzki-Heinemann, Katja; Kankofer, Marta; Mándoki, Míra; Adler, Martin; Tipold, Andrea; Ehlers, Jan P
2018-01-01
Biochemistry and physiology teachers from veterinary faculties in Hannover, Budapest, and Lublin prepared innovative, computer-based, integrative clinical case scenarios as optional learning materials for teaching and learning in basic sciences. These learning materials were designed to enhance attention and increase interest and intrinsic motivation for learning, thus strengthening autonomous, active, and self-directed learning. We investigated learning progress and success by administering a pre-test before exposure to the virtual patients (vetVIP) cases, offered vetVIP cases alongside regular biochemistry courses, and then administered a complementary post-test. We analyzed improvement in cohort performance and level of confidence in rating questions. Results of the performance in biochemistry examinations in 2014, 2015, and 2016 were correlated with the use of and performance in vetVIP cases throughout biochemistry courses in Hannover. Surveys of students reflected that interactive cases helped them understand the relevance of basic sciences in veterinary education. Differences between identical pre- and post-tests revealed knowledge improvement (correct answers: +28% in Hannover, +9% in Lublin) and enhanced confidence in decision making ("I don't know" answers: -20% in Hannover, -7.5% in Lublin). High case usage and voluntary participation (use of vetVIP cases in Hannover and Lublin >70%, Budapest <1%; response rates in pre-test 72% and post-test 48%) indicated a good increase in motivation for the subject of biochemistry. Despite increased motivation, there was only a weak correlation between performance in final exams and performance in the vetVIP cases. Case-based e-learning could be extended and generated cases should be shared across veterinary faculties.
Machine learning methods in chemoinformatics
Mitchell, John B O
2014-01-01
Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160
NASA Astrophysics Data System (ADS)
Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.
2005-05-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.