Earthquake!: An Event-Based Science Module. Student Edition. Earth Science Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
ERIC Educational Resources Information Center
Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.
2010-01-01
This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in…
Tornado! An Event-Based Science Module. Student Edition. Meteorology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Volcano!: An Event-Based Science Module. Student Edition. Geology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Oil Spill! An Event-Based Science Module. Student Edition. Oceanography Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Toxic Leak!: An Event-Based Science Module. Student Edition. Groundwater Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for the middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Fire!: An Event-Based Science Module. Student Edition. Chemistry and Fire Ecology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Earthquake!: An Event-Based Science Module. Teacher's Guide. Earth Science Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science teachers to help their students learn about earthquakes and scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
Oil Spill!: An Event-Based Science Module. Teacher's Guide. Oceanography Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science or general science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
NASA Astrophysics Data System (ADS)
Arbi, Y. R.; Sumarmin, R.; Putri, D. H.
2018-04-01
The problem in the science learning process is the application of the scientific approach takes a long time in order to provide conceptual understanding to the students, there is no teaching materials that can measure students reasoning and thinking ability, and the assessment has not measured students reasoning and literacy skills.The effort can be done is to develop science technology society module indue science literacy assessment. The purpose of the research was to produce a module oriented society indue science science technology literacy assessment. The research is development research using Plomp model, consist of preliminary, prototyping, and assessment phase. Data collect by questionnare and documantion. The result there is science technology society module indue science literacy assessment is very valid.
Blight! An Event-Based Science Module. Teacher's Guide. Plants and Plant Diseases Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school life science or physical science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
Fire!: An Event-Based Science Module. Teacher's Guide. Chemistry and Fire Ecology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science or physical science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
Tornado! An Event-Based Science Module. Teacher's Guide. Meteorology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science teachers to help their students learn about problems with tornadoes and scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning,…
Volcano!: An Event-Based Science Module. Teacher's Guide. Geology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research,…
NASA Astrophysics Data System (ADS)
Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.
2010-06-01
This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in this particular field. In a quasi-experimental design (experimental-, control groups, and pre- and post-tests), secondary school students' attitudes (N = 365) towards modern biotechnology were measured by a questionnaire. Data were analysed using Chi-square tests. Significant differences were obtained between the control and experimental conditions. Results showed that the science module had a significant effect on attitudes, although predominantly towards a more supportive and not towards a more critical stance. It is discussed that offering a science module of this kind can indeed encourage students to become more aware of modern biotechnology, although promoting a more critical attitude towards modern biotechnology should receive more attention.
The introduction of an interprofessional education module: students' perceptions.
Cusack, Tara; O'Donoghue, Grainne
2012-01-01
The purpose of this study was to examine health science students' perceptions of an interprofessional education (IPE) module delivered by means of problem-based learning (PBL). Ninety-two students from four health science disciplines (medicine, physiotherapy, nursing and diagnostic imaging) elected to participate in this IPE PBL module. An evaluation was undertaken using a questionnaire with quantitative and qualitative components completed at the end of the module. Students were asked to evaluate aspects of the module relating to learning objectives, intellectual stimulation, resources, library information skills, work load and overall satisfaction. Open-ended questions asked students to comment on the best aspects of the module and areas for improvement. Quantitative data were analysed using SPSS version 18 and qualitative data using framework analysis methodology. Of the 92 students that participated in the module, 70 (78%) completed the questionnaire. Over 70% (n = 49) of students positively endorsed the module in terms of the statements posed. Overall satisfaction with the module was high, with 63 (91%) students reporting that they agreed or strongly agreed that they were satisfied with the module. Analysis of qualitative data revealed the following emerging themes in relation to the module: (1) collaboration (learning together with others from different professions); (2) structure (small group work, discussion, teamwork assessment procedures); and (3) content (problem diversity). The introduction of this IPE module for health science students was well received. Students valued the opportunity to work in small groups with individuals from other health science disciplines. Students highlighted module structure and content as being important elements for consideration when developing IPE. Further research is required in order to define whether improving communication and collaboration skills will ultimately lead to improved quality in patient care.
Bug Talk: A Learning Module on Insect Communication
ERIC Educational Resources Information Center
Bergman, Daniel J.
2008-01-01
The study of insects (entomology) can be used to stimulate students' interest in science and nature. It can develop students' understanding of fundamental science concepts, awareness of interdisciplinary connections, and mastery of science process skills. This teaching module provides opportunities for middle school students (Grades 5-8) to learn…
ERIC Educational Resources Information Center
Tufts, Mark; Higgins-Opitz, Susan B.
2014-01-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a…
ERIC Educational Resources Information Center
Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; San Miguel, Sandra
2015-01-01
This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students' aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of…
NASA Astrophysics Data System (ADS)
Davis, J. B.; Rigsby, C. A.; Muston, C.; Robinson, Z.; Morehead, A.; Stellwag, E. J.; Shinpaugh, J.; Thompson, A.; Teller, J.
2010-12-01
Graduate students and faculty at East Carolina University are working with area high schools to address the common science and mathematics deficiencies of many high school students. Project RaN (Reasoning about Nature), an interdisciplinary science/math/education research project, addresses these deficiencies by focusing on the history of science and the relationship between that history and modern scientific thought and practice. The geological sciences portion of project RaN has three specific goals: (1) to elucidate the relationships among the history of scientific discovery, the geological sciences, and modern scientific thought; (2) to develop, and utilize in the classroom, instructional modules that are relevant to the modern geological sciences curriculum and that relate fundamental scientific discoveries and principles to multiple disciplines and to modern societal issues; and (3) to use these activity-based modules to heighten students’ interest in science disciplines and to generate enthusiasm for doing science in both students and instructors. The educational modules that result from this linkage of modern and historical scientific thought are activity-based, directly related to the National Science Standards for the high school sciences curriculum, and adaptable to fit each state’s standard course of study for the sciences and math. They integrate historic sciences and mathematics with modern science, contain relevant background information on both the concept(s) and scientist(s) involved, present questions that compel students to think more deeply (both qualitatively and quantitatively) about the subject matter, and include threads that branch off to related topics. Modules on topics ranging from the density to cladistics to Kepler’s laws of planetary motion have been developed and tested. Pre- and post-module data suggest that both students and teachers benefit from these interdisciplinary historically based classroom experiences.
ERIC Educational Resources Information Center
Williams, Michelle; Linn, Marcia C.; Hollowell, Gail P.
2008-01-01
The Technology-Enhanced Learning in Science (TELS) center, a National Science Foundation-funded Center for Learning and Teaching, offers research-tested science modules for students in grades 6-12 (Linn et al. 2006). These free, online modules engage students in scientific inquiry through collaborative activities that include online…
Many Paths toward Discovery: A Module for Teaching How Science Works
ERIC Educational Resources Information Center
Price, Rebecca M.; Perez, Kathryn E.
2018-01-01
Improving students' understanding of how science works requires explicit instruction. Here, we test the efficacy of a module based on two previously published activities (the "Cube Puzzle" and the case study "Asteroids and Dinosaurs") that teach how science works to college science majors. Students also use the How Science…
Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College
NASA Astrophysics Data System (ADS)
Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.
2014-12-01
The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.
Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course
ERIC Educational Resources Information Center
Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.
2006-01-01
A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…
Development and Evaluation of an Undergraduate Science Communication Module
ERIC Educational Resources Information Center
Yeoman, Kay H.; James, Helen A.; Bowater, Laura
2011-01-01
This paper describes the design and evaluation of an undergraduate final year science communication module for the Science Faculty at the University of East Anglia. The module focuses specifically on science communication and aims to bring an understanding of how science is disseminated to the public. Students on the module are made aware of the…
Mthimunye, Katlego D T; Daniels, Felicity M
2017-10-26
The demand for highly qualified and skilled nurses is increasing in South Africa as well as around the world. Having a background in science can create a significant advantage for students wishing to enrol for an undergraduate nursing qualification because nursing as profession is grounded in scientific evidence. The aim of this study was to investigate the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. A quantitative research method using a cross-sectional predictive design was employed in this study. The participants included first year Bachelor of Nursing students enrolled at a university in the Western Cape, South Africa. Descriptive and inferential statistics were performed to analyse the data by using the IBM Statistical Package for Social Sciences versions 24. Descriptive analysis of all variables was performed as well as the Spearman's rank correlation test to describe the relationship among the study variables. Standard multiple linear regressions analysis was performed to determine the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. The results of this study showed that grade 12 physical science is not a significant predictor (p > 0.062) of performance in first year science modules. The multiple linear regression revealed that grade 12 mathematics and life science grades explained 37.1% to 38.1% (R2 = 0.381 and adj R2 = 0.371) of the variation in the first year science grade distributions. Based on the results of the study it is evident that performance in grade 12 mathematics (β = 2.997) and life science (β = 3.175) subjects is a significant predictor (p < 0.001) of the performance in first year science modules for student nurses at the university identified for this study.
Senior Science Enrichment Modules. S.S.T.A. Research Centre Report No. 58.
ERIC Educational Resources Information Center
Fedorak, Allen; And Others
Presented is a set of learning modules intended for teaching science to students in grades eleven and twelve. Each module incorporates problem solving using the scientific viewpoint and emphasizing the interface between science and society. The fifteen modules presented include the following topics: group dynamics; the value of science; a puzzle…
ERIC Educational Resources Information Center
Noroozi, Omid; Mulder, Martin
2017-01-01
This study aims to investigate the impacts of a digital learning module with guided peer feedback on students' domain-specific knowledge gain and their attitudinal change in the field of biotechnology and molecular life sciences. The extent to which the use of this module is appreciated by students is studied as well. A pre-test, post-test design…
NASA Astrophysics Data System (ADS)
Kurniasari, H.; Sukarmin; Sarwanto
2018-03-01
The purpose of this research are to analyze the the properness of contextual teaching and learning (CTL)-based science module for Junior High School for increasing students’ creativity and using CTL-based science module to increase students’ learning creativity. Development of CTL-based science module for Junior High School is Research and Development (R&D) using 4D Model consist of 4 steps: define, design, develop, and disseminate. Module is validated by 3 expert validators (Material, media, and language experts), 2 reviewer and 1 peer reviewer. . Based on the results of data analysis, it can be concluded that: the results of the validation, the average score of CTL-based science module is 88.28%, the value exceeded the value of the cut off score of 87.5%, so the media declared eligible for the study. Research shows that the gain creativity class that uses CTL-based science module has a gain of 0.72. Based on the results of the study showed that CTL-based science module effectively promotes creativity of students
The Contemporary Issues Module: Its Use in the Science Methods Class
ERIC Educational Resources Information Center
Kuhn, David J.
1973-01-01
Author conducts preservice education for science teachers by engaging students in modules stressing contemporary issues. Basic features of the modules include providing individualized instruction and stressing the interdisciplinary aspects of pure applied and social sciences. (PS)
NASA Astrophysics Data System (ADS)
Oktarina, K.; Lufri, L.; Chatri, M.
2018-04-01
Referring to primary data collected through observation and interview to natural science teachers and some students, it is found that there is no natural science teaching materials in the form of learning modules that can make learners learn independently, build their own knowledge, and construct good character in themselves. In order to address this problem, then it is developed natural science learning module oriented to constructivism with the contain of character education. The purpose of this study is to reconstruct valid module of natural science learning materials. This type of research is a development research using the Plomp model. The development phase of the Plomp model consists of 3 stages, namely 1) preliminary research phase, 2) development or prototyping phase, and 3) assessment phase. The result of the study shows that natural science learning module oriented to constructivism with the contain of character education for students class VIII of Yunior High School 11 Sungai Penuh is valid. In future work, practicality and effectiveness will be investigated.
Higgins-Opitz, Susan B; Tufts, Mark
2014-06-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. Copyright © 2014 The American Physiological Society.
Tufts, Mark
2014-01-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify “at-risk” students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. PMID:24913452
NASA Astrophysics Data System (ADS)
Farina, William J.; Bodzin, Alec M.
2017-12-01
Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified metaprinciples of science learning: making science accessible, making thinking visible, and promoting autonomy. Students in an introductory chemistry course at a large east coast university completed either an online module or traditional classroom instruction. Data from 99 students were analyzed and results showed significant knowledge growth in both online and traditional formats. For the online learning group, findings revealed positive student perceptions of their learning experiences, highly positive feedback for online science learning, and an interest amongst students to learn chemistry within an online environment.
Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; SanMiguel, Sandra
2015-01-01
This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students’ aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of science. The curriculum was developed by a research-based university program and has been put into practice in two early elementary classrooms in an urban school in the Midwest. An attitudinal rating survey and the Draw-A-Scientist Test (DAST) were used to assess pre to post changes in student attitudes toward science, perceptions of scientists, perceived relevance of science, and aspiration for science careers. Findings indicated that the implementation of this curriculum contributed positively to student attitudes toward science, decreased students’ stereotypical images of scientists, and increased student aspirations to become a scientist. PMID:26726271
NASA Astrophysics Data System (ADS)
Kavic, Michael; Wiita, P. J.; Benoit, M.; Magee, N.
2013-01-01
IMPRESS-Ed is a program designed to provide authentic summer research experiences in the space, earth, and atmospheric sciences for pre-service K-12 educators at Long Island University (LIU) and The College of New Jersey (TCNJ). In 2011 and 2012, the program involved five students and took place over eight weeks with recruitment occurring during the preceding academic year. The program was divided into two modules: A common core module and an individual mentored research experience. The common module consisted of three units focusing on data-driven pedagogical approaches in astrophysics, tectonophysics, and atmospheric science, respectively. The common module also featured training sessions in observational astronomy, and use of a 3D geowall and state of the art planetarium. Participants in the program are also offered the opportunity to utilize the available TCNJ facilities with their future students. The individual mentored research module matched student interests with potential projects. All five students demonstrated strong gains in earth and space science literacy compared to a baseline measurement. Each student also reported gaining confidence to incorporate data and research-driven instruction in the space and earth sciences into the K-12 STEM classroom setting. All five research projects were also quite successful: several of the students plan to continue research during the academic year and two students are presenting research findings as first authors here at AAS. Other research results are likely to be presented at this year's American Geophysical Union meeting.
NASA Astrophysics Data System (ADS)
Tate, Erika Dawn
School science instruction that connects to students' diverse home, cultural, or linguistic experiences can encourage lifelong participation in the scientific dilemmas that impact students' lives. This dissertation seeks effective ways to support high school students as they learn complex science topics and use their knowledge to transform their personal and community environments. Applying the knowledge integration perspective, I collaborated with education, science, and community partners to design a technology enhanced science module, Improving Your Community's Asthma Problem. This exemplar community science curriculum afforded students the opportunity to (a) investigate a local community health issue, (b) interact with relevant evidence related to physiology, clinical management, and environmental risks, and (c) construct an integrated understanding of the asthma problem in their community. To identify effective instructional scaffolds that engage students in the knowledge integration process and prepare them to participate in community science, I conducted 2 years of research that included 5 schools, 10 teachers, and over 500 students. This dissertation reports on four studies that analyzed student responses on pre-, post-, and embedded assessments. Researching across four design stages, the iterative design study investigated how to best embed the visualizations of the physiological processes breathing, asthma attack, and the allergic immune response in an inquiry activity and informed evidence-based revisions to the module. The evaluation study investigated the impact of this revised Asthma module across multiple classrooms and differences in students' prior knowledge. Combining evidence of student learning from the iterative and evaluation studies with classroom observations and teacher interviews, the longitudinal study explored the impact of teacher practices on student learning in years 1 and 2. In the final chapter, I studied how the Asthma module and students' local community influenced students as they integrated their ideas related to perspectives, evidence use, the consideration of tradeoffs, and localization to construct explanations and decision justifications regarding their community's asthma problem. In the end, this dissertation offers evidence that informs the future design of community science instruction that successfully engages students in the knowledge integration process and has implications for creating multiple opportunities for students to meaningfully participate in community science.
Physics, Dyslexia and Learning: A Collaboration for Disabled Students
NASA Astrophysics Data System (ADS)
Moskal, Barbara M.; Wright, Lyndsey; Taylor, P. C.
2014-03-01
Researchers have found that children with dyslexia reason differently with respect to language from those who do not have dyslexia. Dyslexic students' brains work differently than do students without dyslexia. Some researchers speculate that these differences provide dyslexic students with an advantage in science. The presentation will describe an outreach activity which developed and delivered instructional modules in physics to students in grades kindergarten through sixth. These modules were tested on thirty students who attended a summer camp designed for students who have been diagnosed with dyslexia. Eighty percent of students who have learning disabilities have dyslexia. Many of the students who attended this camp have experienced repeated failure in the traditional school system, which emphasizes literacy with little attention to science. A number of science and engineering professors collaborated with this camp to build instructional modules that were delivered one hour per day, during two weeks of this five week summer camp (ten hours of hands-on physics instruction). Both quantitative and qualitative data were collected with respect to the impact that this camp had on students' understanding and interests in science. The results of these efforts will be presented.
Science Alive!: Connecting with Elementary Students through Science Exploration.
Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin
2016-05-01
A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.
ERIC Educational Resources Information Center
Alelaimat, Abeer Rashed; Ghoneem, Khowla Abd Al Raheem
2012-01-01
This study aimed at revealing the effect of educational modules strategy on the direct and postponed study's achievement of seventh primary grade students in science, in comparison with the conventional approach. The sample of the study consists of (174) male and female students randomly chosen from schools in the city of Mafraq, students are…
ERIC Educational Resources Information Center
O'Brien, George, Ed.
This collection of instruction modules studies the interactions of science, technology, and society (STS) using five activity sets. The introduction module includes activities which show students the STS relationships in their world, develop good organizational skills, develop an understanding of who and what a scientist is, develop graphing…
ERIC Educational Resources Information Center
Sarquis, Mickey, Ed.
This monograph focuses on chemistry at the table and enables teachers to introduce their students to the concepts and processes of industrial chemistry and relate these concepts to the consumer products students encounter daily. This teacher resource module is organized into sections that provide information on how to use the resource module, how…
SENSE IT: Student Enabled Network of Sensors for the Environment using Innovative Technology
NASA Astrophysics Data System (ADS)
Hotaling, L. A.; Stolkin, R.; Kirkey, W.; Bonner, J. S.; Lowes, S.; Lin, P.; Ojo, T.
2010-12-01
SENSE IT is a project funded by the National Science Foundation (NSF) which strives to enrich science, technology, engineering and mathematics (STEM) education by providing teacher professional development and classroom projects in which high school students build from first principles, program, test and deploy sensors for water quality monitoring. Sensor development is a broad and interdisciplinary area, providing motivating scenarios in which to teach a multitude of STEM subjects, from mathematics and physics to biology and environmental science, while engaging students with hands on problems that reinforce conventional classroom learning by re-presenting theory as practical tools for building real-life working devices. The SENSE IT program is currently developing and implementing a set of high school educational modules which teach environmental science and basic engineering through the lens of fundamental STEM principles, at the same time introducing students to a new set of technologies that are increasingly important in the world of environmental research. Specifically, the project provides students with the opportunity to learn the engineering design process through the design, construction, programming and testing of a student-implemented water monitoring network in the Hudson and St. Lawrence Rivers in New York. These educational modules are aligned to state and national technology and science content standards and are designed to be compatible with standard classroom curricula to support a variety of core science, technology and mathematics classroom material. For example, while designing, programming and calibrating the sensors, the students are led through a series of tasks in which they must use core mathematics and physics theory to solve the real problems of making their sensors work. In later modules, students can explore environmental science and environmental engineering curricula while deploying and monitoring their sensors in local rivers. This presentation will provide an overview of the educational modules. A variety of sensors will be described, which are suitably simple for design and construction from first principles by high school students while being accurate enough for students to make meaningful environmental measurements. The presentation will also describe how the sensor building activities can be tied to core curricula classroom theory, enabling the modules to be utilized in regular classes by mathematics, science and computing teachers without disrupting their semester’s teaching goals. Furthermore, the presentation will address of the first two years of the SENSE IT project, during which 39 teachers have been equipped, trained on these materials, and have implemented the modules with around approximately 2,000 high school students.
Place-based Learning About Climate with Elementary GLOBE
NASA Astrophysics Data System (ADS)
Hatheway, B.; Gardiner, L. S.; Harte, T.; Stanitski, D.; Taylor, J.
2017-12-01
Place-based education - helping students make connections between themselves, their community, and their local environment - is an important tool to help young learners understand their regional climate and start to learn about climate and environmental change. Elementary GLOBE storybooks and learning activities allow opportunities for place-based education instructional strategies about climate. In particular, two modules in the Elementary GLOBE unit - Seasons and Climate - provide opportunities for students to explore their local climate and environment. The storybooks and activities also make connections to other parts of elementary curriculum, such as arts, geography, and math. Over the long term, place-based education can also encourage students to be stewards of their local environment. A strong sense of place may help students to see themselves as stakeholders in their community and its resilience. In places that are particularly vulnerable to the impacts of climate and environmental change and the economic, social, and environmental tradeoffs of community decisions, helping young students developing a sense of place and to see the connection between Earth science, local community, and their lives can have a lasting impact on how a community evolves for decades to come. Elementary GLOBE was designed to help elementary teachers (i.e., grades K-4) integrate Earth system science topics into their curriculum as they teach literacy skills to students. This suite of instructional materials includes seven modules. Each module contains a science-based storybook and learning activities that support the science content addressed in the storybooks. Elementary GLOBE modules feature air quality, climate, clouds, Earth system, seasons, soil, and water. New eBooks allow students to read stories on computers or tablets, with the option of listening to each story with an audio recording. A new Elementary GLOBE Teacher Implementation Guide, published in 2017, provides educators with information and strategies how Elementary GLOBE modules can be effectively applied in classrooms, how Elementary GLOBE modules are aligned with national standards, and how student literacy and science inquiry skills can be strengthened while learning about the Earth system.
A New Approach to Developing Interactive Software Modules Through Graduate Education
NASA Astrophysics Data System (ADS)
Sanders, Nathan E.; Faesi, Chris; Goodman, Alyssa A.
2014-06-01
Educational technology has attained significant importance as a mechanism for supporting experiential learning of science concepts. However, the growth of this mechanism is limited by the significant time and technical expertise needed to develop such products, particularly in specialized fields of science. We sought to test whether interactive, educational, online software modules can be developed effectively by students as a curriculum component of an advanced science course. We discuss a set of 15 such modules developed by Harvard University graduate students to demonstrate various concepts related to astronomy and physics. Their successful development of these modules demonstrates that online software tools for education and outreach on specialized topics can be produced while simultaneously fulfilling project-based learning objectives. We describe a set of technologies suitable for module development and present in detail four examples of modules developed by the students. We offer recommendations for incorporating educational software development within a graduate curriculum and conclude by discussing the relevance of this novel approach to new online learning environments like edX.
COMETS Science. Career Oriented Modules to Explore Topics in Science.
ERIC Educational Resources Information Center
Smith, Walter S.; And Others
COMETS Science (Career Oriented Modules to Explore Topics in Science) was developed to demonstrate to early adolescents that learning mathematics and science concepts can have payoff in a wide variety of careers and to encourage early adolescent students (grades 5-9), especially girls, to consider science-related careers. The program provides 24…
Science Alive!: Connecting with Elementary Students through Science Exploration†
Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin
2016-01-01
A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach. PMID:27158309
NASA Astrophysics Data System (ADS)
Gordon, E. S.
2011-12-01
Fitchburg State University has a diverse student population comprised largely of students traditionally underrepresented in higher education, including first-generation, low-income, and/or students with disabilities. Approximately half of our incoming students require developmental math coursework, but often enroll in science classes prior to completing those courses. Since our introductory geoscience courses (Oceanography, Meteorology, Geology, Earth Systems Science) do not have prerequisites, many students who take them lack basic math skills, but are taking these courses alongside science majors. In order to provide supplemental math instruction without sacrificing time for content, "The Math You Need, When You Need It (TMYN), a set of online math tutorials placed in a geoscience context, will be implemented in three of our introductory courses (Oceanography, Meteorology, and Earth Systems Science) during Fall, 2011. Students will complete 5-6 modules asynchronously, the topics of which include graphing skills, calculating rates, unit conversions, and rearranging equations. Assessment of quantitative skills will be tracked with students' pre- and post-test results, as well as individual module quiz scores. In addition, student assessment results from Oceanography will be compared to student data from Academic Year 2010-11, during which quantitative skills were evaluated with pre- and post-test questions, but students did not receive online supplemental instruction.
Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.
2003-01-01
Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. Cancer Cell Biology, an interactive, multimedia, problem-based module, focuses on how mutations in protooncogenes and tumor suppressor genes can lead to uncontrolled cell proliferation by engaging students as research scientists/physicians with the task of diagnosing the molecular basis of tumor growth for a group of patients. The process of constructing the module, which was guided by scientist and student feedback/responses, is described. The completed module and insights gained from its development are presented as a potential “multimedia pedagogy” for the development of other multimedia science learning environments. PMID:12822037
Outreach Education Modules on Space Sciences in Taiwan
NASA Astrophysics Data System (ADS)
Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen
2013-04-01
The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.
Noroozi, Omid; Mulder, Martin
2017-01-02
This study aims to investigate the impacts of a digital learning module with guided peer feedback on students' domain-specific knowledge gain and their attitudinal change in the field of biotechnology and molecular life sciences. The extent to which the use of this module is appreciated by students is studied as well. A pre-test, post-test design was used with 203 students who were randomly assigned to groups of three. They were asked to work on the digital module with the aim of exploring various perspectives, and the "pros and cons" on the topic of "Genetically Modified Organisms (GMOs)." The results suggest that the module can be used to foster students' domain-specific knowledge gain and their attitudinal change. Furthermore, the module was evaluated positively in terms of students' motivation and satisfaction with the learning experiences. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):31-39, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Miller, C J; Aiken, S A; Metz, M J
2015-02-01
There can be a disconnect between the level of content covered in undergraduate coursework and the expectations of professional-level faculty of their incoming students. Some basic science faculty members may assume that students have a good knowledge base in the material and neglect to appropriately review, whilst others may spend too much class time reviewing basic material. It was hypothesised that the replacement of introductory didactic physiology lectures with interactive online modules could improve student preparedness prior to lectures. These modules would also allow faculty members to analyse incoming student abilities and save valuable face-to-face class time for alternative teaching strategies. Results indicated that the performance levels of incoming U.S. students were poor (57% average on a pre-test), and students often under-predicted their abilities (by 13% on average). Faculty expectations varied greatly between the different content areas and did not appear to correlate with the actual student performance. Three review modules were created which produced a statistically significant increase in post-test scores (46% increase, P < 0.0001, n = 114-115). The positive results of this study suggest a need to incorporate online review units in the basic science dental school courses and revise introductory material tailored to students' strengths and needs.
Textile Science Leader's Guide. 4-H Textile Science.
ERIC Educational Resources Information Center
Scholl, Jan
This instructor's guide provides an overview of 4-H student project modules in the textile sciences area. The guide includes short notes explaining how to use the project modules, a flowchart chart showing how the project areas are sequenced, a synopsis of the design and content of the modules, and some program planning tips. For each of the…
General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum
NASA Astrophysics Data System (ADS)
Chan, M. A.; Kahmann-Robinson, J. A.
2012-12-01
The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.
Learning to Communicate Science: Stony Brook University's Approach
NASA Astrophysics Data System (ADS)
Bass, E.
2012-12-01
Stony Brook University offers an unusual series of short courses to help science graduate students learn to communicate more effectively about science with people outside their disciplines, including the public, public officials, potential funders and employers, students, the press, and colleagues in other fields. The courses include six 1-credit (14-hour) modules in oral and written communication that rely on practice and interactive feedback. More than 120 master's and PhD students, from more than 16 departments, have taken at least one of the courses since spring 2011. Most students who try one module end up taking two or three. An additional course for medical and nursing students was added in fall 2012. The courses are offered in the School of Journalism and were developed by the Center for Communicating Science (CCS). CCS was founded in 2009, with the participation of Alan Alda, the actor, writer, and longtime advocate for science, who is a Visiting Professor at Stony Brook. The Communicating Science courses have received strong institutional support and enthusiastic reviews. They are required by two programs, an MA in Marine Conservation and Policy and an Advanced Certificate in Health Communications. Two successive Provosts have subsidized course costs for PhD students, and Graduate School leaders are working to establish a steady funding stream to allow expansion of the program. Our aspiration at CCS is for every science graduate student to receive some training in communicating about science to the public. Several factors have helped in establishing the program: --CCS' multidisciplinary nature helped build support, with participation by faculty from across the campus, including not only the natural sciences, engineering, and medicine, but journalism, theatre arts, and the Writing Program, as well as nearby Brookhaven National Laboratory and Cold Spring Harbor Laboratory. --Before offering courses, CCS conducted all-day workshops and high-profile activities that generated interest and allowed students, postdocs, faculty and administrators to sample course material. --CCS structured the courses as "bite-size" modules to make them easier to take. Courses are given in the evening, in successive four- or five-week blocks, so a student can take one to six modules in a single semester. At the heart of the effort are two courses: Distilling Your Message, in which students practice speaking clearly, vividly and conversationally at different levels of complexity to different audiences, and Improvisation for Scientists, in which students use improvisational theater exercises to help connect more responsively with their audiences. This is not about acting. It is about paying dynamic attention to the audience, shifting the focus from what the student is saying to what the other person is receiving. Other modules deal with writing for the public; using social media, and connecting with the community. In addition to the 1-credit courses, science graduate students can take a 3-credit course examining how the media cover science and health issues. This course also is taken by students in the journalism MS program, which focuses on science, health and environmental reporting, part of Stony Brook University's multi-pronged effort to improve communication of science to the public.
A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy.
Stockwell, Stephanie B
2016-03-01
Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science-course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I) present an argument based on evidence, II) analyze science and scientists within a social context, and III) experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science-themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, "Nonscientists should do scientific research." Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement-like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science-themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values.
The use of high-frequency data to engage students in quantitative reasoning and scientific discourse
NASA Astrophysics Data System (ADS)
O'Reilly, C.; Meixner, T.; Bader, N.; Carey, C.; Castendyk, D.; Gougis-Darner, R.; Fuller, R.; Gibson, C.; Klug, J.; Richardson, D.; Stomberg, J.
2014-12-01
Scientists are increasingly using sensor-collected, high-frequency datasets to study environmental processes. To expose undergraduate students to similar experiences, our team has developed six classroom modules that utilize large, long-term, and sensor-based, datasets for science courses designed to: 1) Improve quantitative skills and reasoning; 2) Develop scientific discourse and argumentation; and 3) Increase student engagement in science. A team of ten interdisciplinary faculty from both private and public research universities and undergraduate institutions have developed flexible modules suitable for a variety of undergraduate courses. These modules meet a series of pedagogical goals that include: 1) Developing skills required to manipulate large datasets at different scales to conduct inquiry-based investigations; 2) Developing students' reasoning about statistical variation; and 3) Fostering desirable conceptions about the nature of environmental science. Six modules on the following topics are being piloted during the 2014-15 and 2015-16 academic years prior to broad dissemination: 1) Temporal stream discharge evaluation using USGS data; 2) Temporal stream nutrient loads and eutrophication risk using USGS and MCM-LTER data; 3) Climate change using NOAA weather and Vostok ice core data; 4) Lake ice-off dates using GLEON data; 5) Thermal dynamics in lakes using GLEON data; and 6) Lake metabolism dynamics using GLEON data. To assess achievement of the pedagogical goals, we will use pre/post questionnaires and video-recordings of students working on modules. Questionnaires will contain modified items from the Experimental Design Ability Test (Sirum & Humberg 2011), the Views on the Nature of Science questionnaire (Lederman et al. 2001), and a validated instrument to measure students' ideas about variation (Watson et al. 2003). Information gained from these assessments and recordings will allow us to determine whether our modules are effective at engaging students and increasing their quantitative skills. Feedback will also be used by the faculty to revise the modules before they are posted online for widespread dissemination in 2016. This project is funded by an NSF TUES grant.
NASA Astrophysics Data System (ADS)
Stwertka, C.; Blonquist, J.; Feener, D.
2010-12-01
A major communication gap exists between climate scientists, educators, and society. As a result, findings from climate research, potential implications of climate change, and possible mitigation strategies are not fully understood and accepted outside of the climate science community. A good way to begin bridging the gap is to teach climate science to students in public schools. TGLL (Think Globally, Learn Locally) is an NSF GK-12 program based at the University of Utah, which partners graduate students in the biological, geological and atmospheric sciences with middle and high school teachers in the Salt Lake City School District to improve the communication skills of Fellows and enhance inquiry-based science teaching and learning in the classroom. Each TGLL Fellow works in the same classroom(s) throughout the year, developing his or her scientific communication skills while providing teachers with content knowledge, resources, classroom support, and enhancing the experience of students such that science becomes an interesting and accessible tool for acquiring knowledge. The TGLL Fellows work closely as a group to develop inquiry-based teaching modules (a series of lessons) and a field trip that involve students in doing authentic science. Lessons are designed to apply national and Utah core curriculum concepts to broader scientific issues such as habitat alteration, pollution and disturbance, invasive species, and infectious disease, with the focus of the 2010-2011 school year being climate change. The TGLL Global Climate Change module contains lesson plans on climate temporal and spatial scales, temperature variation, energy balance, the carbon cycle, the greenhouse effect, climate feedback loops, anthropogenic climate change indicators, climate change consequences and impacts, and actions students can take to reduce greenhouse gas emissions. The capstone experience for the module is a “Backyard Climate Change” field trip to a local pristine canyon. Students will map and measure the carbon dioxide flux of various ecosystem components, measure the albedo of various surfaces, learn about micro-scale climates and atmospheric pollen transport, measure water and air quality, and observe habitat alteration. Through the module and fieldtrip, TGLL Fellows aim to build student and teacher knowledge about climate change and create lasting projects that are adapted into the core science curriculum.
A Subject Matter Expert View of Curriculum Development.
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Edgar, L. A.; Gaither, T. A.; Vaughan, R. G.
2017-12-01
In 2015, NASA selected for funding the PLANETS project: Planetary Learning that Advances the Nexus of Engineering, Technology, and Science. The PLANETS partnership develops planetary science and engineering curricula for out of classroom time (OST) education settings. This partnership is between planetary science Subject Matter Experts (SMEs) at the US Geological Survey (USGS), curriculum developers at the Boston Museum of Science (MOS) Engineering is Everywhere (EiE), science and engineering teacher professional development experts at Northern Arizona University (NAU) Center for Science Teaching and Learning (CSTL), and OST teacher networks across the world. For the 2016 and 2017 Fiscal Years, our focus was on creating science material for two OST modules designed for middle school students. We have begun development of a third module for elementary school students. The first model teaches about the science and engineering of the availability of water in the Solar System, finding accessible water, evaluating it for quality, treating it for impurities, initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. This module is described in more detail in the abstract by L. Edgar et al., Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration (233008) The second module involves the science and engineering of remote sensing in planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions, we include observation and measurement techniques and tools as well as collection and use of specific data of interest to scientists. This module is described in more detail in the abstract by R. Anderson et al., Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students (232683) The third module, described by R.G. Vaughan, Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves (262143), focuses on hazards in the Solar System and the engineering approach to designing space gloves to protect against those hazards.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Coll. of Education.
This learning module is designed to integrate environmental education into ninth- and tenth-grade chemistry classes. This module and a companion social studies module were pilot tested in Gwinnett County, Georgia in classes of students, many of whom had learning disabilities. It emphasizes activity learning. The module is divided into four parts.…
NASA Astrophysics Data System (ADS)
Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.
2016-02-01
EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.
A photovoltaics module for incoming science, technology, engineering and mathematics undergraduates
NASA Astrophysics Data System (ADS)
Dark, Marta L.
2011-05-01
Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and mathematics (STEM) majors to physical phenomena, to develop quantitative literacy and communication skills, and to increase the students' interest in physics. The students investigated the performance of commercially available silicon semiconductors through experiments they designed, carried out and analysed. They fabricated and tested organic dye-based solar cells. This article describes the programme, the solar cell module, and presents some experimental results obtained by the students.
Murray, Nancy G.; Opuni, Kwame A.; Reininger, Belinda; Sessions, Nathalie; Mowry, Melanie M.; Hobbs, Mary
2011-01-01
This study tested the effectiveness of a middle-school, multi-media health-sciences educational program called HEADS UP in non-Asian–minority (Hispanic and African American), inner-city students. The program was designed to increase the number of non-Asian minority students entering the academic health-sciences pipeline. Students of Asian ethnicity were excluded because they are not underrepresented in science professions. The curriculum modules include video role-model stories featuring minority scientists and students, hands-on classroom activities, and teacher resources. The modules (evaluated from 2004-2007) were developed through collaboration among The University of Texas Health Sciences Center, the Spring Branch Independent School District, and the Health Museum, Houston. A quasi-experimental, two-group pre-test/post-test design was used to assess program effects on students' performance, interest, and confidence in their ability to perform well in science; fear of science; and confidence in their ability to pursue science-related careers. An intervention school was matched to a comparison school by test scores, school demographics, and student demographics. Then, pairs of sixth-grade students (428 students) were matched by fifth-grade scores in science and by gender, ethnicity, and poverty status (free or reduced lunch) and followed up for three years. At eighth grade, students from the intervention school scored significantly higher (F=12.38, p<0.001) on the Stanford 10 Achievement Test in science and reported higher interest in science (F=11.08, p<0.001) than their matched pairs from the comparison school. HEADS UP shows potential for improving inner-city minority middle school students' performance and interest in science and is an innovative example of translating health-sciences research to the community. PMID:19474564
ERIC Educational Resources Information Center
Carpi, Anthony
2001-01-01
Explains the advantages of using the World Wide Web as an educational tool and describes the Natural Science Pages project which is a teaching module involving Internet access and Web use and aiming to improve student achievement. (Contains 13 references.) (YDS)
Making Authentic Data Accessible: The Sensing the Environment Inquiry Module
ERIC Educational Resources Information Center
Griffis, Kathy; Thadani, Vandana; Wise, Joe
2008-01-01
We report on the development of a middle school life sciences inquiry module, Sensing the Environment. This "data-enriched" inquiry module includes a series of activities exploring the nature of science, photosynthesis, transpiration, and natural selection, which culminates in students' querying authentic environmental data to support a scientific…
NASA Astrophysics Data System (ADS)
Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Morton, E.
2010-12-01
Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop online course modules and self-directed learning resources aligned with the Essential Principles of Climate Science. Following a national needs assessment survey and a face to face workshop to pilot test topics, a suite of online modules is being developed suitable for self-directed learning by secondary science teachers. Modules are designed around concepts and topics in which teachers express the most interest and need for instruction. Module design also includes attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and is informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign. Modules and self-directed learning resources will be developed and disseminated in partnership with the National Science Digital Library (NSDL). This presentation introduces the needs assessment and pilot workshop data upon which the modules are based, and describes the modules that are available and in development.
Soil Water: Advanced Crop and Soil Science. A Course of Study.
ERIC Educational Resources Information Center
Miller, Larry E.
The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…
ERIC Educational Resources Information Center
Sarquis, Mickey, Ed.
This monograph focuses on the chemistry of cleaning and enables teachers to introduce their students to the concepts and processes of industrial chemistry and relate these concepts to the consumer products students encounter daily. This teacher resource module is organized into sections that provide information on how to use the resource module,…
ERIC Educational Resources Information Center
Sarquis, Mickey, Ed.
This monograph focuses on chemistry at the pharmacy and enables teachers to introduce their students to the concepts and processes of industrial chemistry and relate these concepts to the consumer products students encounter daily. This teacher resource module is organized into sections that provide information on how to use the resource module,…
ERIC Educational Resources Information Center
Sarquis, Mickey, Ed.
This monograph focuses on the chemistry of polymers and enables teachers to introduce their students to the concepts and processes of industrial chemistry and relate these concepts to the consumer products students encounter daily. This teacher resource module is organized into sections that provide information on how to use the resource module,…
ERIC Educational Resources Information Center
Sarquis, Mickey, Ed.
This monograph focuses on the chemistry of lipids and enables teachers to introduce their students to the concepts and processes of industrial chemistry and relate these concepts to the consumer products students encounter daily. This teacher resource module is organized into sections that provide information on how to use the resource module, how…
New Curricular Material for Science Classes: How Do Students Evaluate It?
NASA Astrophysics Data System (ADS)
Freire, Sofia; Faria, Cláudia; Galvão, Cecília; Reis, Pedro
2013-02-01
Living in an unpredictable and ever changing society demands from its' citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-European Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in order to make science classes more popular and relevant in the eyes of the students and as such to increase their interest with school science. The goal of this study was to understand how students evaluate those innovative modules. This paper presents data concerning 134 secondary students, collected through interviews, questionnaires and written documents. A quantitative analysis of the data collected through questionnaires was complemented by a qualitative analysis of the data collected by interviews and written documents. Results show that understanding the relationship between science and daily life, participating in practical activities based on problem solving and developing critical thinking and reasoning were the issues most valued by students.
Basic Science Training Program.
ERIC Educational Resources Information Center
Brummel, Clete
These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…
Earth System Science Education Modules
NASA Astrophysics Data System (ADS)
Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.
2009-12-01
The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific information into words that are understandable and useful for policy makers and other stakeholders. The inability of scientists to effectively communicate with the public has been highlighted as a major reason for the anti-science attitude of a large segment of the public. This module, unlike other ESSEA modules, addresses this problem by first, investigating a global change environmental problem using Earth System Science methodologies, then developing several solutions to that problem, and finally writing a position paper for the policy makers to use. These three hands-on, real-world modules that engage students in authentic research share similar goals: 1) to use global change data sets to examine controversial environmental problems; 2) to use an earth system science approach to understand the complexity of global problems; and 3) to help students understand the political complexity of environmental problems where there is a clash between economic and ecological problems. The curriculum will meet National Standards in science, geography, math, etc.
Bringing Global Climate Change Education to Alabama Middle School and High School Classrooms
NASA Astrophysics Data System (ADS)
Lee, M.; Mitra, C.; Percival, E.; Thomas, A.; Lucy, T.; Hickman, E.; Cox, J.; Chaudhury, S. R.; Rodger, C.
2013-12-01
A NASA-funded Innovations in Climate Education (NICE) Program has been launched in Alabama to improve high school and middle school education in climate change science. The overarching goal is to generate a better informed public that understands the consequences of climate change and can contribute to sound decision making on related issues. Inquiry based NICE modules have been incorporated into the existing course of study for 9-12 grade biology, chemistry, and physics classes. In addition, new modules in three major content areas (earth and space science, physical science, and biological science) have been introduced to selected 6-8 grade science teachers in the summer of 2013. The NICE modules employ five E's of the learning cycle: Engage, Explore, Explain, Extend and Evaluate. Modules learning activities include field data collection, laboratory measurements, and data visualization and interpretation. Teachers are trained in the use of these modules for their classroom through unique partnership with Alabama Science in Motion (ASIM) and the Alabama Math Science Technology Initiative (AMSTI). Certified AMSTI teachers attend summer professional development workshops taught by ASIM and AMSTI specialists to learn to use NICE modules. During the school year, the specialists in turn deliver the needed equipment to conduct NICE classroom exercises and serve as an in-classroom resource for teachers and their students. Scientists are partnered with learning and teaching specialists and lead teachers to implement and test efficacy of instructional materials, models, and NASA data used in classroom. The assessment by professional evaluators after the development of the modules and the training of teachers indicates that the modules are complete, clear, and user-friendly. The overall teacher satisfaction from the teacher training was 4.88/5.00. After completing the module teacher training, the teachers reported a strong agreement that the content developed in the NICE modules should be included in the Alabama secondary curriculum. Eventually, the NICE program has the potential to reach over 200,000 students when the modules are fully implemented in every school in the state of Alabama. The project can give these students access to expertise and equipment, thereby strengthening the connections between the universities, state education administrators, and the community.
Miller, Cynthia Jayne; Metz, Michael James
2015-12-01
Dental students often have difficulty understanding the importance of basic science classes, such as physiology, for their future careers. To help alleviate this problem, the aim of this study was to create and evaluate a series of video modules using simulated patients and custom-designed animations that showcase medical emergencies in the dental practice. First-year students in a dental physiology course formatively assessed their knowledge using embedded questions in each of the three videos; 108 to 114 of the total 120 first-year students answered the questions, for a 90-95% response rate. These responses indicated that while the students could initially recognize the cause of the medical emergency, they had difficulty in applying their knowledge of physiology to the scenario. In two of the three videos, students drastically improved their ability to answer high-level clinical questions at the conclusion of the video. Additionally, when compared to the previous year of the course, there was a significant improvement in unit exam scores on clinically related questions (6.2% increase). Surveys were administered to the first-year students who participated in the video modules and fourth-year students who had completed the course prior to implementation of any clinical material. The response rate for the first-year students was 96% (115/120) and for the fourth-year students was 57% (68/120). The first-year students indicated a more positive perception of the physiology course and its importance for success on board examinations and their dental career than the fourth-year students. The students perceived that the most positive aspects of the modules were the clear applications of physiology to real-life dental situations, the interactive nature of the videos, and the improved student comprehension of course concepts. These results suggest that online modules may be used successfully to improve students' perceptions of the basic sciences and enhance their ability to apply basic science content to clinically important scenarios.
NASA Astrophysics Data System (ADS)
Ziegler, L. B.; van Dusen, D.; Benedict, R.; Chojnacki, P. R.; Peach, C. L.; Staudigel, H.; Constable, C.; Laske, G.
2010-12-01
The Scripps Classroom Connection, funded through the NSF GK-12 program, pairs local high school teachers with Scripps Institution of Oceanography (SIO) graduate students in the earth and ocean sciences for their mutual professional development. An integral goal of the program is the collaborative production of quality earth science educational modules that are tested in the classroom and subsequently made freely available online for use by other educators. We present a brief overview of the program structure in place to support this goal and illustrate a module that we have developed on the Solid Earth & Plate Tectonics for a 9th grade Earth Science classroom. The unit includes 1) an exercise in constructing a geomagnetic polarity timescale which exposes students to authentic scientific data; 2) activities, labs, lectures and worksheets that support the scientific content; and 3) use of online resources such as Google Earth and interactive animations that help students better understand the concepts. The educational unit is being implemented in two separate local area high schools for Fall 2010 and we will report on our experiences. The co-operative efforts of teachers and scientists lead to educational materials which expose students to the scientific process and current science research, while teaching basic concepts using an engaging inquiry-based approach. In turn, graduate students involved gain experience communicating their science to non-science audiences.
Development and Evaluation of Food Safety Modules for K-12 Science Education
ERIC Educational Resources Information Center
Chapin, Travis K.; Pfuntner, Rachel C.; Stasiewicz, Matthew J.; Wiedmann, Martin; Orta-Ramirez, Alicia
2015-01-01
Career and educational opportunities in food science and food safety are underrecognized by K-12 students and educators. Additionally, misperceptions regarding nature of science understanding persist in K-12 students despite being emphasized as an important component of science education for over 100 y. In an effort to increase awareness…
A Series of MATLAB Learning Modules to Enhance Numerical Competency in Applied Marine Sciences
NASA Astrophysics Data System (ADS)
Fischer, A. M.; Lucieer, V.; Burke, C.
2016-12-01
Enhanced numerical competency to navigate the massive data landscapes are critical skills students need to effectively explore, analyse and visualize complex patterns in high-dimensional data for addressing the complexity of many of the world's problems. This is especially the case for interdisciplinary, undergraduate applied marine science programs, where students are required to demonstrate competency in methods and ideas across multiple disciplines. In response to this challenge, we have developed a series of repository-based data exploration, analysis and visualization modules in MATLAB for integration across various attending and online classes within the University of Tasmania. The primary focus of these modules is to teach students to collect, aggregate and interpret data from large on-line marine scientific data repositories to, 1) gain technical skills in discovering, accessing, managing and visualising large, numerous data sources, 2) interpret, analyse and design approaches to visualise these data, and 3) to address, through numerical approaches, complex, real-world problems, that the traditional scientific methods cannot address. All modules, implemented through a MATLAB live script, include a short recorded lecture to introduce the topic, a handout that gives an overview of the activities, an instructor's manual with a detailed methodology and discussion points, a student assessment (quiz and level-specific challenge task), and a survey. The marine science themes addressed through these modules include biodiversity, habitat mapping, algal blooms and sea surface temperature change and utilize a series of marine science and oceanographic data portals. Through these modules students, with minimal experience in MATLAB or numerical methods are introduced to array indexing, concatenation, sorting, and reshaping, principal component analysis, spectral analysis and unsupervised classification within the context of oceanographic processes, marine geology and marine community ecology.
Project EDDIE: Improving Big Data skills in the classroom
NASA Astrophysics Data System (ADS)
Soule, D. C.; Bader, N.; Carey, C.; Castendyk, D.; Fuller, R.; Gibson, C.; Gougis, R.; Klug, J.; Meixner, T.; Nave, L. E.; O'Reilly, C.; Richardson, D.; Stomberg, J.
2015-12-01
High-frequency sensor-based datasets are driving a paradigm shift in the study of environmental processes. The online availability of high-frequency data creates an opportunity to engage undergraduate students in primary research by using large, long-term, and sensor-based, datasets for science courses. Project EDDIE (Environmental Data-Driven Inquiry & Exploration) is developing flexible classroom activity modules designed to (1) improve quantitative and reasoning skills; (2) develop the ability to engage in scientific discourse and argument; and (3) increase students' engagement in science. A team of interdisciplinary faculty from private and public research universities and undergraduate institutions have developed these modules to meet a series of pedagogical goals that include (1) developing skills required to manipulate large datasets at different scales to conduct inquiry-based investigations; (2) developing students' reasoning about statistical variation; and (3) fostering accurate student conceptions about the nature of environmental science. The modules cover a wide range of topics, including lake physics and metabolism, stream discharge, water quality, soil respiration, seismology, and climate change. Assessment data from questionnaire and recordings collected during the 2014-2015 academic year show that our modules are effective at making students more comfortable analyzing data. Continued development is focused on improving student learning outcomes with statistical concepts like variation, randomness and sampling, and fostering scientific discourse during module engagement. In the coming year, increased sample size will expand our assessment opportunities to comparison groups in upper division courses and allow for evaluation of module-specific conceptual knowledge learned. This project is funded by an NSF TUES grant (NSF DEB 1245707).
"What's A Geoscientist Do?": A Student Recruitment And Education Tool
NASA Astrophysics Data System (ADS)
Hughes, C. G.
2015-12-01
Student perception of science, particularly the earth sciences, is not based on actual science jobs. Students have difficulty envisioning themselves as scientists, or in understanding the role of science in their lives as a result. Not all students can envision themselves as scientists when first enrolling in college. While student recruitment into geoscience programs starts before college enrollment at many universities, general education science requirements can act as a gateway into these majors as well. By providing students in general education science classes with more accurate insights into the scientific process and what it means to be a scientist, these classes can help students envision themselves as scientists. A short module, to be embedded within lectures, has been developed to improve recruitment from Clarion University's Introductory Earth Science classes entitled "What's A Geoscientist Do?". As this module aims to help students visualize themselves as geoscientists through examples, diversity of the examples is critical to recruiting students from underrepresented groups. Images and subjects within these modules are carefully selected to emphasize the fact that the geosciences are not, and should not be, the exclusive province of the stereotypical older, white, male scientist. Noteworthy individuals (e.g. John Wesley Powell, Roger Arliner Young) may be highlighted, or the discussion may focus on a particular career path (e.g. hydrologist) relevant to that day's material. While some students are initially attracted to the geosciences due to a love of the outdoors, many students have never spent a night outdoors, and do not find this aspect of the geosciences particularly appealing. "What's A Geoscientist Do?" has been designed to expose these students to the breadth of the field, including a number of geoscience jobs focused on laboratory (e.g. geochemistry) or computer (e.g. GIS, remote sensing, scientific illustration) work instead of focusing exclusively on fieldwork. As Clarion University students tend to be very job-oriented, information on careers includes average starting salaries with the hope of improving student's opinions of the position as possible future employment - helping students (and their families) realize they can support themselves in a geoscience career.
City Rocks and National Standards.
ERIC Educational Resources Information Center
Becker, Martin; Slattery, William; Finegan-Stoll, Colleen
1998-01-01
Presents a weeklong earth science module that allows students to explore the relationships between natural and manufactured materials. Relates rocks and minerals in the earth science curriculum to observations students make in their urban and suburban travels. (DDR)
A Project-Based Biologically-Inspired Robotics Module
ERIC Educational Resources Information Center
Crowder, R. M.; Zauner, K.-P.
2013-01-01
The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…
A Bioinformatics Module for Use in an Introductory Biology Laboratory
ERIC Educational Resources Information Center
Alaie, Adrienne; Teller, Virginia; Qiu, Wei-gang
2012-01-01
Since biomedical science has become increasingly data-intensive, acquisition of computational and quantitative skills by science students has become more important. For non-science students, an introduction to biomedical databases and their applications promotes the development of a scientifically literate population. Because typical college…
MacRae, Rhoda; Rooney, Kevin D; Taylor, Alan; Ritters, Katrina; Sansoni, Julita; Lillo Crespo, Manuel; Skela-Savič, Brigita; O'Donnell, Barbara
2016-07-01
Numerous international policy drivers espouse the need to improve healthcare. The application of Improvement Science has the potential to restore the balance of healthcare and transform it to a more person-centred and quality improvement focussed system. However there is currently no accredited Improvement Science education offered routinely to healthcare students. This means that there are a huge number of healthcare professionals who do not have the conceptual or experiential skills to apply Improvement Science in everyday practise. This article describes how seven European Higher Education Institutions (HEIs) worked together to develop four evidence informed accredited inter-professional Improvement Science modules for under and postgraduate healthcare students. It outlines the way in which a Policy Delphi, a narrative literature review, a review of the competency and capability requirements for healthcare professionals to practise Improvement Science, and a mapping of current Improvement Science education informed the content of the modules. A contemporary consensus definition of Healthcare Improvement Science was developed. The four Improvement Science modules that have been designed are outlined. A framework to evaluate the impact modules have in practise has been developed and piloted. The authors argue that there is a clear need to advance healthcare Improvement Science education through incorporating evidence based accredited modules into healthcare professional education. They suggest that if Improvement Science education, that incorporates work based learning, becomes a staple part of the curricula in inter-professional education then it has real promise to improve the delivery, quality and design of healthcare. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sheridan, Phillip M.; Szczepankiewicz, Steven H.; Mekelburg, Christopher R.; Schwabel, Kara M.
2011-01-01
The Canisius College Summer Science Camp is a successful and effective annual outreach program that specifically targets middle school students in an effort to increase their interest in science. Five broadly defined science topics are explored in a camp-like atmosphere filled with hands-on activities. A 2010 module focused on chemistry topics of…
Unlocking Resources: Self-Guided Student Explorations of Science Museum and Aquarium Exhibits
NASA Astrophysics Data System (ADS)
Kirkby, K. C.; Phipps, M.; Hamilton, P.
2010-12-01
Remarkably few undergraduate programs take full advantage of the rich resources provided by science museums, aquariums and other informal science education institutions. This is not surprising considering the logistical hurdles of class trips, but an even more fundamental barrier is that these institutions’ exhibit text seldom explicitly convey their information at a level suitable for undergraduate curriculum. Traditionally, this left the burden of interpretation on individual instructors, who rarely have the time to undertake it. To overcome these hurdles, the University of Minnesota has partnered with the Science Museum of Minnesota and Underwater Adventures Aquarium to test the efficacy of self-guided student explorations in revealing the rich data encoded in museum and aquarium exhibits. An initial module at the Science Museum of Minnesota focused on interpreting animal designs, specifically exploring how differences in dinosaur skeletal features reflected variations in the animals’ lifestyles. Students learn to interpret diet and lifestyle not only from characteristics of the skull and teeth, but also from variations in vertebrae and rib design or the relative proportion of limb elements. A follow-up module, based on exhibits at Underwater Adventures Aquarium focuses on interpreting energy flow through ecosystems from the behavior of living organisms. Students explore the information on lifestyle and diet that is encoded in a sturgeon’s ceaseless glide or a muskellunge’s poised stillness. These modules proved to be immensely popular with students. In classes with up to 500 students, half to two-thirds of the students volunteered to complete the modules, despite the additional expense and distances of up to 13 miles between the University and partner institutions. More importantly, quantitative assessment with pre-instruction and post-instruction surveys demonstrate that these ungraded, self-guided explorations match or exceed the efficacy of traditional graded lab instruction and completely eclipse the range of gains normally achieved by traditional lecture instruction. In addition, the modules accomplish the remarkable goal of integrating undergraduate earth science instruction into students’ social life. Over three-fourths of the students complete the explorations with friends or family who were not enrolled in the class, expanding the course to include a broader, more diverse, audience. A third module, currently in development, will use a walking tour of Saint Anthony Falls to highlight the impact of geological processes on human society. Students will explore the waterfalls’ evolution, its early interpretation by 18th and 19th century Dakota and Euro-America societies, as well as its subsequent social and economic impacts on human history. The outdoor nature of this self-guided exploration is a first step towards expanding the modules’ concept to integrate self-guided field trips into undergraduate earth science curriculums.
ScienceFEST: Preservice Teachers link Math and Science in Astronomy Lessons
NASA Astrophysics Data System (ADS)
DeMuth, N. H.; Kasabian, J.
2005-05-01
Funded by the National Science Foundation, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and middle school teachers design a comprehensive module in astronomy that is inquiry-based and reflects the national and state science standards. Project participants then teach their modules in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The session presenters will share some of the instructional materials developed by the college students and how their experiences in Science FEST have enhanced their pre-professional development. The project's website can be found at www.science-fest.org.
Tracking Student Progress Through an On-Line Astro101 Module
NASA Astrophysics Data System (ADS)
Howard, W. H., II; Hufnagel, B.
2004-05-01
We present an on-line module that helps introductory-level, non-science undergraduates extract information about neutron star binary star systems from X-ray light curves. The students interface directly with the High Energy Astrophysics Science Archive Research Center (HEASARC) data through CollegeHera. Hera is a new service offered by HEASARC that enables complete interactive analysis of archived data products (see the separate Lochner & Pence paper this meeting). One of the innovative features of this module is that it records detailed student progress and automatically reports this to the professor. As the student moves through the module, student answers to multiple choice and free response questions are recorded in a personal file on the server. This is an authenticated process. The student must fill out a registration form that includes their name, course, email, professor, and professor's email. This creates a session cookie for the student that stores the unique ID given to the user by the server. In turn, the unique ID is linked to the one file that records the student's responses. When the module is completed, a brief confirmation email is sent to the student, excluding the student's unique answers to discourage sharing with other students. Simultaneously, the professor entered during the registration receives an email with the student responses and their time of entry. PERL is used for all server-side programming, and form validation functions were written in JavaScript. A laptop with internet access will be available at the poster for participants to explore the module. Learning goals and other education information for the module are at a related paper in this meeting, Hufnagel, Lochner & Howard. This module required extensive cooperation with the Hera team, and was based on a module developed by James Lochner. Irina Nelson, formerly of the Office of University Programs at GSFC, conceived the overall project. Support for this work was provided by the Southeast Regional Clearinghouse (SERCH) and the Maryland Space Grant Consortium.
NASA Astrophysics Data System (ADS)
Gardiner, L. S.; Hatheway, B.; Taylor, J.; Chambers, L. H.; Stanitski, D.
2016-12-01
To address the dearth of climate education resources at the elementary level, we have developed a new module of Elementary GLOBE to showcase the science of climate change for young learners. Elementary GLOBE builds K-4 student understanding of the science concepts and the practices of science research. At the heart of each Elementary GLOBE module is a fiction storybook, describing how three kids investigate a science question. Accompanying classroom activities allow students to explore the science concepts in the book in more depth and in a context appropriate for young learners. The book for the Elementary GLOBE climate module, "What in the World Is Happening to Our Climate?," is the account of an adventure to explore climate change, how it is affecting melting glacial ice and sea level rise, and how climate change is a problem that can be solved. Three hands-on activities, which will be presented at this session, allow students to explore the topics in greater depth including differences between weather and climate, how sea level rise affects coastal areas, and how they can shrink their carbon footprint to help address recent climate change. Each activity includes instructions for teachers, background information, and activity sheets for students, and is aligned to the Next Generation Science Standards and Common Core Math and Language Arts Standards. The storybook and activities were field tested in classrooms and reviewed by climate and Earth system scientists as well as elementary education and climate education specialists and educators to ensure scientific accuracy and clear explanations, and that the resources are age appropriate and reflect the needs of the climate education community. Other Elementary GLOBE modules include the science of seasonal change, water, soil, clouds, aerosols, and Earth as a system. All Elementary GLOBE educational resources are freely available online (www.globe.gov/elementaryglobe).
CAN-DOO: The Climate Action Network through Direct Observations and Outreach
NASA Astrophysics Data System (ADS)
Taubman, B.; Sherman, J. P.; Perry, L. B.; Markham, J.; Kelly, G.
2011-12-01
The urgency of climate change demands a greater understanding of our climate system, not only by the leaders of today, but by the scientists, policy makers, and citizens of tomorrow. Unfortunately, a large segment of the population currently possesses inadequate knowledge of climate science. In direct response to a need for greater scientific literacy with respect to climate science, researchers from Appalachian State University's Appalachian Atmospheric Interdisciplinary Research (AppalAIR) group, with support from NASA, have developed CAN-DOO: the Climate Action Network through Direct Observations and Outreach. CAN-DOO addresses climate science literacy by 1) Developing the infrastructure for sustaining and expanding public outreach through long-term climate measurements capable of complementing existing NASA measurements, 2) Enhancing public awareness of climate science and NASA's role in advancing our understanding of the Earth System, and 3) Introducing Science, Technology, Engineering, and Mathematics principles to homeschooled, public school, and Appalachian State University students through applied climate science activities. Project partners include the Grandfather Mountain Stewardship Foundation, Pisgah Astronomical Research Institute, and local elementary schools. In partnership with Grandfather Mountain, climate science awareness is promoted through citizen science activities, interactive public displays, and staff training. CAN-DOO engages students by involving them in the entire scientific investigative process as applied to climate science. We introduce local elementary and middle school students, homeschooled students throughout North Carolina, and undergraduate students in a new Global Climate Change course and select other courses at Appalachian State University to instrument assembly, measurement techniques, data collection, hypothesis testing, and drawing conclusions. Results are placed in the proper context via comparisons with other student data products, local research-grade measurements, and NASA measurements. Several educational modules have been developed that address specific topics in climate science. The modules are scalable and have been successfully implemented at levels ranging from 2nd grade through first-year graduate as well as with citizen science groups. They also can be applied in user-desired segments to a variety of Earth Science units. In this paper, we will introduce the project activities and present results from the first year of observations and outreach, with a special emphasis on two of the developed modules, the surface energy balance and aerosol optical depth module.
Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations
NASA Astrophysics Data System (ADS)
Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.
2006-12-01
Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth, supporting improved student achievement in science and math, and enhancing environmental awareness. NASA provides the primary source of funding for GLOBE.
Enhancing the Popularity and the Relevance of Science Teaching in Portuguese Science Classes
NASA Astrophysics Data System (ADS)
Galvão, Cecília; Reis, Pedro; Freire, Sofia; Almeida, Paulo
2011-11-01
PARSEL Project emerged from the urgent need to overcome the problem of lack of scientific literacy in the population, which should be a priority in a society where science occupies a central place. Indeed, nowadays for any citizen to participate in a responsible and informed way in society he has to be scientifically acknowledgeable. Nevertheless, not only are scientific levels low in the general population, but also there is an increasing number of students who avoid science and technology courses and related professions. Within this context, PARSEL aims at raising science and scientific courses' popularity and relevancy as well as at enacting teachers' professional development. In order to achieve these goals, the PARSEL group developed 54 pan-European modules, which were tested and evaluated by several teachers in several European countries and Israel. Teachers maintained a close relationship with the university, were highly encouraged to appropriate the modules and to adapt them to their local conditions and, also to discuss and share their experiences. In Portugal, modules were tested by a group of eight teachers, and their students. This paper presents data concerning teachers' evaluation. Data was collected by means of interviews, observation and written documents and reveals that teachers positively evaluated PARSEL's impact on their own professional development. Furthermore, they considered modules as well as the teaching-learning approach essential for making science learning relevant and popular for their students.
Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.
2016-12-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions we include observation and measurement techniques and tools, as well as collection and use of specific data of interest to scientists. These two modules will be tested and refined based on educator and student feedback, with expected final release in late summer of 2017.
NASA Astrophysics Data System (ADS)
Hendrix, Rebecca; Eick, Charles; Shannon, David
2012-11-01
Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science System™ (FOSS) modules of sound (fourth grade) and solar energy (fifth grade) with the integration of creative drama activities in treatment classes. A 2 × 2 × (2) Mixed ANOVA was used to examine differences in the learning outcomes and attitudes toward science between groups (drama and non-drama) and grade levels (4th and 5th grades) over time (pre/post). Learning was measured using the tests included with the FOSS modules. A shortened version of the Three Dimension Elementary Science Attitude Survey measured attitudes toward science. Students in the drama treatment group had significantly higher learning gains ( F = 160.2, p < 0.001) than students in the non-drama control group with students in grade four reporting significantly greater learning outcomes ( F = 14.3, p < 0.001) than grade five. There was a significantly statistical decrease in student attitudes toward science ( F = 7.5, p < 0.01), though a small change. Creative drama was an effective strategy to increase science conceptual learning in this group of diverse elementary enrichment students when used as an active extension to the pre-existing inquiry-based science curriculum.
Michelsen, Gerd
2013-12-01
The Leuphana Semester at Leuphana University Lüneburg, together with the module "Science bears responsibility" demonstrate how innovative methods of teaching and learning can be combined with the topic of sustainable development and how new forms of university teaching can be introduced. With regard to module content, it has become apparent that, due to the complexity of the field of sustainability, a single discipline alone is unable to provide analyses and solutions. If teaching in higher education is to adequately deal with this complexity, then it is necessary to develop inter- and transdisciplinary approaches that go beyond a purely specialist orientation.
Education and Outreach on Space Sciences and Technologies in Taiwan
NASA Astrophysics Data System (ADS)
Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te
2014-05-01
The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.
A Modular Approach to Year 11 Science Courses
ERIC Educational Resources Information Center
Woolley, Terry G.
1976-01-01
Described is a secondary school science program which includes modularized courses in the earth science unified science, biology, chemistry, and physics. Students may continue in one science course or switch between courses upon completing modules. (SL)
Smith, Joshua J; Wiley, Emily A; Cassidy-Hanley, Donna M
2012-01-01
Tetrahymena has been a useful model in basic research in part due to the fact it is easy to grow in culture and exhibits a range of complex processes, all within a single cell. For these same reasons Tetrahymena has shown enormous potential as a teaching tool for fundamental principles of biology at multiple science education levels that can be integrated into K-12 classrooms and undergraduate and graduate college laboratory courses. These Tetrahymena-based teaching modules are inquiry-based experiences that are also effective at teaching scientific concepts, retaining students in science, and exciting students about the scientific process. Two learning communities have been developed that utilize Tetrahymena-based teaching modules. Advancing Secondary Science Education with Tetrahymena (ASSET) and the Ciliate Genomics Consortium (CGC) have developed modules for K-12 students and college-level curriculums, respectively. These modules range from addressing topics in ecology, taxonomy, and environmental toxicity to more advanced concepts in biochemistry, proteomics, bioinformatics, cell biology, and molecular biology. An overview of the current modules and their learning outcomes are discussed, as are assessment, dissemination, and sustainability strategies for K-12 and college-level curriculum. Copyright © 2012 Elsevier Inc. All rights reserved.
COMPRES Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students
NASA Astrophysics Data System (ADS)
Burnley, P. C.; Thomas, S.
2012-12-01
The Consortium for Materials Properties Research in Earth Sciences (COMPRES) is a community-based consortium whose goal is to advance and facilitate experimental high pressure research in the Earth Sciences. An important aspect of this goal is sharing our knowledge with the next generation of researchers. To facilitate this, we have created a group of web-based educational modules on mineral physics topics. The modules reside in the On Cutting Edge, Teaching Mineralogy collection on the Science Education Resource Center (SERC) website. Although the modules are designed to function as part of a full semester course, each module can also stand alone. Potential users of the modules include mineral physics faculty teaching "bricks and mortar" classes at their own institutions, or in distance education setting, mineralogy teachers interested in including supplementary material in their mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other sub-disciplines who wish to brush up on a mineral physics topic. We used the modules to teach an on-line course entitled "Introduction to Mineral Physics" during the spring 2012 semester. More than 20 students and postdocs as well as 15 faculty and senior scientists participated in the course which met twice weekly as a webinar. Recordings of faculty lectures and student-led discussions of journal articles are now available upon request and edited versions of the lectures will be incorporated into the educational modules. Our experience in creating the modules and the course indicates that the use of 1) community-generated internet-based resources and 2) webinars to enable shared teaching between faculty at different universities, has the potential to both enrich graduate education and create efficiencies for university faculty.;
An Interactive Computer Lab of the Galvanic Cell for Students in Biochemistry
ERIC Educational Resources Information Center
Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran
2018-01-01
We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as ?rG, ?rH, and ?rS that are calculated but not directly…
NASA Astrophysics Data System (ADS)
Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.
2017-12-01
The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.
Hays, Judith C; Davis, Jeffrey A; Miranda, Marie Lynn
2006-01-01
Environmental quality is a leading indicator of population health. Environmental health content has been integrated into the curriculum of an Accelerated Bachelor of Science in Nursing program for second-degree students through development of an environmental health nursing module for the final-semester community health nursing course. The module was developed through collaboration between two professional schools at Duke University (the School of Nursing and the Nicholas School of the Environment and Earth Sciences). It focused on the role of the built environment in community health and featured a mix of teaching strategies, including five components: (1) classroom lecture with associated readings, (2) two rounds of online small-group student discussions, (3) assessment of the built environment in local neighborhoods by student teams, (4) team presentation of the neighborhood assessments, and (5) individual student papers synthesizing the conclusions from all team presentations. The goal of the module was to provide nursing students with an organizing framework for integrating environmental health into clinical practice and an innovative tool for understanding community-level components of public health.
Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students
NASA Astrophysics Data System (ADS)
Burnley, P. C.; Thomas, S.; Honn, D. K.
2011-12-01
We are assembling a group of web-based educational modules for a course entitled "Introduction to Mineral Physics". Although the modules are designed to function as part of a full semester course, each module will also be able to stand alone. The modules are targeted at entry level graduate students and advanced undergraduate students. Learning outcomes for the course are being developed in consultation with educators throughout the mineral physics community. Potential users include mineral physicists teaching "bricks and mortar" graduate classes at their own institutions, mineral physicists teaching graduate classes in a distance education setting, mineralogy teachers interested in including supplementary material in their undergraduate mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other subdisciplines who wish to brush up on mineral physics topics. The modules reside on the Science Education Resource Center at Carleton College web site in the On the Cutting Edge - Teaching Mineralogy collection. Links to the materials will be posted on the Consortium for Materials Properties Research in Earth Sciences website. The modules will be piloted in a graduate level distance education course in mineral physics taught from UNLV during the spring 2012 semester. This course and others like it can address the current problems faced by faculty in state universities where rising minimum enrollments are making it difficult to teach a suitable graduate course to incoming students.
NASA Astrophysics Data System (ADS)
Olgin, J. G.; Güereque, M.; Pennington, D. D.; Everett, A.; Dixon, J. G.; Reyes, A.; Houser, P. I. Q.; Baker, J. A.; Stocks, E.; Ellins, K.
2015-12-01
The Geological Sciences department at the University of Texas at El Paso (UTEP) hosted the EarthTech outreach program - a one-week intensive summer camp for low-income, at-risk high school students. The EarthTech program engaged students in STEM activities from geological and environmental sciences. Developed and led by university student-mentors with guidance from a supervising faculty member, the course engaged Upward Bound students with lectures, interactive projects, and excursions to local ecological preserves and geological sites around El Paso, Texas. Topics covered plant and animal distribution and diversity, water and soil dynamics, evolution and paleontology, geohazards, and planetary science. Field trips were combined with hands-on activities, including activities from DIG Texas teaching modules. The NSF-funded DIG Texas Instructional Blueprints project is organizing vetted, high quality online educational resources and learning activities into teaching modules. The modules follow a storyline and demonstrate congruency with the Next Generation Science Standards. Selected DIG Texas resources were included in the daily curriculum to complement the field trip and other hands-on activities. EarthTech students created ESRI Online GIS story maps in which they showed the locations of the field trips, incorporated photographs they had taken, and provided written reflections about their camp experiences. The DIG Texas project evaluation collected survey and interview data from the university student mentors throughout the week to ascertain the efficacy of the program. This poster presentation will include an overview of the program, including examples of work and evaluation results.
The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.
2014-07-01
The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.
Health Instruction Packages: The Human Life Cycle.
ERIC Educational Resources Information Center
Yapundich, Eleanor F.; And Others
Text, illustrations, and exercises are utilized in these four learning modules to instruct health sciences students and other interested persons in the various stages of human development. The first module, designed by Eleanor Yapundich for associate degree nursing students learning about growth and development, examines the fundamental…
Polymer Chemistry. An Activity-Oriented Instructional Module. Volume 1. Bulletin 1840.
ERIC Educational Resources Information Center
Jones, Aline; And Others
This teaching module was developed by the project "Recent Developments in Science and Technology with Applications for Secondary Science Teaching." Premises about students and their learning and generalizations about content are described. Chapters included are: (1) "Introduction"; (2) "Monomers into Polymers"; (3) "Natural Polymers"; (4)…
Diagnostic Assessment of Preparedness of Level One Sports Science Students for Biomechanics Modules
ERIC Educational Resources Information Center
Dixon, Sharon J.
2005-01-01
The primary objective of this study was to investigate the use of a diagnostic test to assess the preparedness of level one students for a sports biomechanics module. During their first week at university, a cohort of 108 students completed a diagnostic test at the end of their first lecture in sports biomechanics, with no prior notice. Upon…
Development of a Support Environment for First Year Students Taking Materials Science/Engineering
ERIC Educational Resources Information Center
Laoui, Tahar; O'Donoghue, John
2008-01-01
This paper is based on the experience acquired in teaching materials science/engineering to first year university students. It has been observed that students struggle with some of the fundamental materials concepts addressed in the module/course. This applies to delivered lectures but extends to the incorporation of tutorial sessions provided…
ERIC Educational Resources Information Center
Halpin, Myra J.; Hoeffler, Leanne; Schwartz-Bloom, Rochelle D.
2005-01-01
To help students learn science concepts, Pharmacology Education Partnership (PEP)--a science education program that incorporates relevant topics related to drugs and drug abuse into standard biology and chemistry curricula was developed. The interdisciplinary PEP curriculum provides six modules to teach biology and chemistry principles within the…
Peer-Assisted Learning: Filling the Gaps in Basic Science Education for Preclinical Medical Students
ERIC Educational Resources Information Center
Sammaraiee, Yezen; Mistry, Ravi D.; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth
2016-01-01
In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United…
Ryan, M T; Mulholland, C W
2005-01-01
An electronic presentation of materials for a distance-learning immunology and pathology module from a postgraduate biomedical science course is evaluated. Two different electronic presentation formats for the delivery of the educational material to distance learners are assessed. Responses from users of this material highlighted a preference for a format that has a design tailored to distance learning. There was no significant difference in learning outcome between those taking the module on campus and by distance learning. This suggests that the prerequisites for entry, learning materials and direction given to the students studying by distance learning are adequate for these students to achieve the learning objectives outlined in the course. The evaluation also gave direction for areas within the (CAL) application that can be improved for future students.
A Bioethics Course for Biology and Science Education Students.
ERIC Educational Resources Information Center
Bryant, John; la Velle, Linda Baggott
2003-01-01
Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)
University Undergraduate Projects Can Enhance Sixth-Form Science Teaching
ERIC Educational Resources Information Center
James, Esther; Vinten, Claire; Wood, Eleanor; Merrick, Deborah
2011-01-01
All medical and veterinary students at the University of Nottingham carry out a third-year dissertation module. This module allows students to spend time experiencing contemporary research methods by engaging in research activities. In 2010, academic staff from the Medical and Veterinary Schools initiated educational research projects that enabled…
ERIC Educational Resources Information Center
Allery, Alan J.
In this unit, ten modules provide an open approach to science, offering a wide variety of activities and experiences that include aspects of Indian studies incorporated into the regular science curricula. The materials are intended for use in middle grades as part of a social studies program. The objectives of the unit are to develop students'…
Technology-Enhanced Learning in Science (TELS)
NASA Astrophysics Data System (ADS)
Linn, Marcia
2006-12-01
The overall research question addressed by the NSF-funded echnologyEnhanced Learning in Science (TELS) Center is whether interactive scientific visualizations embedded in high quality instructional units can be used to increase pre-college student learning in science. The research draws on the knowledge integration framework to guide the design of instructional modules, professional development activities, and assessment activities. This talk reports on results from the first year where 50 teachers taught one of the 12 TELS modules in over 200 classes in 16 diverse schools. Assessments scored with the knowledge integration rubric showed that students made progress in learning complex physics topics such as electricity, mechanics, and thermodynamics. Teachers encountered primarily technological obstacles that the research team was able to address prior to implementation. Powerful scientific visualizations required extensive instructional supports to communicate to students. Currently, TELS is refining the modules, professional development, and assessments based on evidence from the first year. Preliminary design principles intended to help research teams build on the findings will be presented for audience feedback and discussion.
The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy
NASA Astrophysics Data System (ADS)
DeWaters, J.; Powers, S. E.; Dhaniyala, S.
2014-12-01
Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content of and approach used in the project-based modules.
NASA Astrophysics Data System (ADS)
Antrakusuma, B.; Masykuri, M.; Ulfa, M.
2018-04-01
Evolution of Android technology can be applied to chemistry learning, one of the complex chemistry concept was solubility equilibrium. this concept required the science process skills (SPS). This study aims to: 1) Characteristic scientific based chemistry Android module to empowering SPS, and 2) Validity of the module based on content validity and feasibility test. This research uses a Research and Development approach (RnD). Research subjects were 135 s1tudents and three teachers at three high schools in Boyolali, Central of Java. Content validity of the module was tested by seven experts using Aiken’s V technique, and the module feasibility was tested to students and teachers in each school. Characteristics of chemistry module can be accessed using the Android device. The result of validation of the module contents got V = 0.89 (Valid), and the results of the feasibility test Obtained 81.63% (by the student) and 73.98% (by the teacher) indicates this module got good criteria.
EarthLabs: A National Model for Earth Science Lab Courses
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Dahlman, L.; Barstow, D.
2008-12-01
As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.
Instructional strategies to improve women's attitudes toward science
NASA Astrophysics Data System (ADS)
Newbill, Phyllis Leary
Although negative attitudes toward science are common among women and men in undergraduate introductory science classes, women's attitudes toward science tend to be more negative than men's. The reasons for women's negative attitudes toward science include lack of self-confidence, fear of association with social outcasts, lack of women role models in science, and the fundamental differences between traditional scientific and feminist values. Attitudes are psychological constructs theorized to be composed of emotional, cognitive, and behavioral components. Attitudes serve functions, including social expressive, value expressive, utilitarian, and defensive functions, for the people who hold them. To change attitudes, the new attitudes must serve the same function as the old one, and all three components must be treated. Instructional designers can create instructional environments to effect attitude change. In designing instruction to improve women's attitudes toward science, instructional designers should (a) address the emotions that are associated with existing attitudes, (b) involve credible, attractive women role models, and (c) address the functions of the existing attitudes. Two experimental instructional modules were developed based on these recommendations, and two control modules were developed that were not based on these recommendations. The asynchronous, web-based modules were administered to 281 undergraduate geology and chemistry students at two universities. Attitude assessment revealed that attitudes toward scientists improved significantly more in the experimental group, although there was no significant difference in overall attitudes toward science. Women's attitudes improved significantly more than men's in both the experimental and control groups. Students whose attitudes changed wrote significantly more in journaling activities associated with the modules. Qualitative analysis of journals revealed that the guidelines worked exactly as predicted for some students.
Making Controlled Experimentation More Informative in Inquiry Investigations
ERIC Educational Resources Information Center
McElhaney, Kevin Wei Hong
2010-01-01
This dissertation incorporates three studies that examine how the design of inquiry based science instruction, dynamic visualizations, and guidance for experimentation contribute to physics students' understanding of science. I designed a week-long, technology-enhanced inquiry module on car collisions that logs students' interactions with a…
NASA Astrophysics Data System (ADS)
Fuselier, Linda; Murphy, Claudia; Bender, Anita; Creel Falcón, Kandace
2015-01-01
Background and purpose:The purpose of this exploratory case study is to describe how scholars negotiated disciplinary divides to develop and communicate to their students an understanding of the basic features of scientific knowledge. Our goals were to examine boundary crossing in interdisciplinary collaboration and to assess the efficacy of adding science content to an introductory Women's Studies course. Sample:We studied a collaboration between faculty in Biology and Women's Studies and evaluated science modules in a Women's Studies course at a regional four-year university in the Midwestern USA. The study included 186 student participants over three semesters and four faculty from Philosophy, Women's Studies and Biology. Design and method:Women's Studies and Biology faculty collaborated to design and implement science content learning modules that included the case of women and science in an introductory Women's Studies course. Qualitative data collected from faculty participants in the form of peer debrief sessions and narrative reflections were used to examine the process of interdisciplinary collaboration. Students exposed to curriculum changes were administered pre- and post-lesson surveys to evaluate their understanding of issues faced by women in science careers, the nature of science, and interest in science studies. Data from collaborators, student journal reflections, and pre-/post-lesson surveys were considered together in an evaluation of how knowledge of science was understood and taught in a Women's Studies course over a longitudinal study of three semesters. Results:We found evidence of discipline-based challenges to interdisciplinarity and disciplinary boundary crossing among collaborators. Three themes emerged from our collaboration: challenges posed by disciplinary differences, creation of a space for interdisciplinary work, and evidence of boundary crossing. Student participants exhibited more prior knowledge of Women's Studies content than nature of science but showed learning in the areas of scientific literacy and the understanding of issues related to women in science careers. Student understanding of science content was enhanced by the participation of a woman scientist in the learning module. Conclusion:This case study illustrates how creating an inclusive space for interdisciplinary collaboration led to successful curriculum transformation and academic boundary crossing by faculty participants. Success is evident in the legacy of interdisciplinarity in the curriculum and learning gains by students. Use of a feminist science studies framework was successful at helping students learn about the influence of values on science and the tentative nature of scientific conclusions. It was less successful in teaching the distinction between science and other ways of knowing and the conception that science is an evidence-based approach to understanding the natural world. This study highlights the importance of interdisciplinary teams of faculty members collaborating to help students learn about science by modeling that there are multiple ways of knowing.
NASA's Global Climate Change Education (GCCE) Program: New modules
NASA Astrophysics Data System (ADS)
Witiw, M. R.; Myers, R. J.; Schwerin, T. G.
2010-12-01
In existence for over 10 years, the Earth System Science Educational Alliance (ESSEA) through the Institute of Global Environmental Strategies (IGES) has developed a series of modules on Earth system science topics. To date, over 80 educational modules have been developed. The primary purpose of these modules is to provide graduate courses for teacher education. A typical course designed for teachers typically consists of from three to five content modules and a primer on problem-based learning. Each module is designed to take three weeks in a normal university semester. Course delivery methods vary. Some courses are completed totally online. Others are presented in the classroom. Still others are delivered using a hybrid method which combines classroom meetings with online delivery of content. Although originally designed for teachers and education students, recent changes, provide a format for general education students to use these module. In 2009, under NASA’s Global Climate Change Education (GCCE) initiative, IGES was tasked to develop 16 new modules addressing the topic of climate change. Two of the modules recently developed under this program address the topics of sunspots and thermal islands. Sunspots is a problem-based learning module where students are provided resources and sample investigations related to sunspots. The history of sunspot observations, the structure of sunspots and the possible role sunspots may have in Earth’s climate are explored. Students are then asked to determine what effects a continued minimum in sunspot activity may have on the climate system. In Thermal Islands, the topic of urban heat islands is addressed. How heat islands are produced and the role of urban heat islands in exacerbating heat waves are two of the topics covered in the resources. In this problem-based learning module, students are asked to think of mitigating strategies for these thermal islands as Earth’s urban population grows over the next 50 years. These modules were successfully piloted with undergraduate students at Seattle Pacific University.
ERIC Educational Resources Information Center
Tsai, Chin-Chung; Liang, Jyh-Chong
2009-01-01
This study implemented an online peer assessment learning module to help 36 college students with the major of pre-school education to develop science activities for future instruction. Each student was asked to submit a science activity project for pre-school children, and then experienced three rounds of peer assessment. The effects of the…
Diversity and Periodicity: An Inorganic Chemistry Module. Teacher's Guide.
ERIC Educational Resources Information Center
Huheey, James; Sandoval, Amado
This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching inorganic chemistry. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified science. Contents include: (1) "Periodicity: A Chemical Calendar"; (2)…
Communities of Molecules: A Physical Chemistry Module. Teacher's Guide.
ERIC Educational Resources Information Center
DeVoe, Howard; Hearle, Robert
This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching physical chemistry. The material in this book can be integrated with the other modules in a sequence that helps students see that chemistry is a unified science. Contents include: (1) "Introduction of Physical Chemistry"; (2) "The…
NASA Astrophysics Data System (ADS)
Meixner, T.; Gougis, R.; O'Reilly, C.; Klug, J.; Richardson, D.; Castendyk, D.; Carey, C.; Bader, N.; Stomberg, J.; Soule, D. C.
2016-12-01
High-frequency sensor data are driving a shift in the Earth and environmental sciences. The availability of high-frequency data creates an engagement opportunity for undergraduate students in primary research by using large, long-term, and sensor-based, data directly in the scientific curriculum. Project EDDIE (Environmental Data-Driven Inquiry & Exploration) has developed flexible classroom activity modules designed to meet a series of pedagogical goals that include (1) developing skills required to manipulate large datasets at different scales to conduct inquiry-based investigations; (2) developing students' reasoning about statistical variation; and (3) fostering accurate student conceptions about the nature of environmental science. The modules cover a wide range of topics, including lake physics and metabolism, stream discharge, water quality, soil respiration, seismology, and climate change. In this presentation we will focus on a sequence of modules of particular interest to hydrologists - stream discharge, water quality and nutrient loading. Assessment results show that our modules are effective at making students more comfortable analyzing data, improved understanding of statistical concepts, and stronger data analysis capability. This project is funded by an NSF TUES grant (NSF DEB 1245707).
NASA Technical Reports Server (NTRS)
Brodell, Charles L.
1999-01-01
The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.
ERIC Educational Resources Information Center
Grant, Donna M.; Malloy, Alisha D.; Hollowell, Gail P.
2013-01-01
Twenty-nine rising high school 12th grade students participated in a 4-week summer program designed to increase their interest in science and technology. The program was a blend of hands-on biology, chemistry, and technology modules that addressed the global issue of obesity. Student groups developed websites to address obesity in one of five…
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, is on using modules in an environmental health training program. This informational document describes the prospective student, content and objectives of the modules, and how to select modules for use in an environmental health training…
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on using ionizing radiation detectors. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming and telling the function…
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on collecting industrial health information. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) collecting and organizing…
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on calibrating personal air monitoring devices. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming each part of the…
Development and Evaluation of a Mass Conservation Laboratory Module in a Microfluidics Environment
ERIC Educational Resources Information Center
King, Andrew C.; Hidrovo, Carlos H.
2015-01-01
Laboratory-based instruction is a powerful educational tool that engages students in Science, Technology, Engineering and Mathematics (STEM) disciplines beyond textbook theory. This is true in mechanical engineering education and is often used to provide collegiate-level students a hands-on alternative to course theory. Module-based laboratory…
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on performing analyses for waterborne bacteria. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming, sterilizing and…
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on obtaining heat stress measurements. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming and describing the…
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on collecting pests for identification. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) identifying the parts and…
Age Modulates Attitudes to Whole Body Donation among Medical Students
ERIC Educational Resources Information Center
Perry, Gary F.; Ettarh, Raj R.
2009-01-01
Managing a whole body donor program is necessary for facilitating a traditional dissection-based anatomy curriculum in medicine and health sciences. Factors which influence body donations to medical science can therefore affect dissection-based anatomy teaching. In order to determine whether age influences the attitudes of medical students to…
NASA Astrophysics Data System (ADS)
Kajiyama, Kosei
2016-04-01
Hiroshima University High School (HUHS) has devised and carried out overseas exchange programs on ESD issues for 7 years. These programs have been carried out as a part of a government-aided project called SSH (Super Science High School) *1. To start with, we had cooperative study program with a school in Germany in 2009, and next year with a school in Korea, and then gradually have expanded the cooperative schools. Since 2013, we have worked with schools in four countries; Korea, Thailand, Czech and Germany. Science lesson modules here refers to an assembly of a set of lessons, newly developed and improved for the project. These modules characteristically require the students to make decisions by themselves on given problems. In the course of the decision making, students learn what kind of data or facts should be presented as evidence and how they can make their decisions known to others. Among several modules we have designed, the one introduced here deals with the use of solar energy, which we carried out with a school in Korea in 2014-2015. It also includes lessons of the fuel cells using energy from hydrogen gas generated by solar cells. It aims to develop global human resources through carefully planned activities. First, the students of both schools make mixed groups and conduct experiments in physics, chemistry or biology on a given problem related to solar energy. Then they discuss in groups using data obtained from the experiments and through the Internet as evidence. After the thorough discussion, each group gives a presentation on their decision. The analysis of the presentations and the questionnaire to the students revealed the following points: 1) Students have come to have multidimensional perspectives on the utilization of solar energy. 2) Students have come to combine the results of different experiments when making decisions. 3) Students have developed flexible attitudes toward other cultures. 4) Students have developed communication skills in English. *1 SSH: Since 2002, the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) have designated schools that focus their education on science and math as Super Science High Schools and our school has been designated as one of SSH schools since 2003
C-MORE Professional Development Training Program for Graduate Students and Post-Docs
NASA Astrophysics Data System (ADS)
Bruno, B. C.; DeLeo, F.; Bottjer, D.; Jungbluth, S.; Burkhardt, B.; Hawco, N.; Boiteau, R.
2012-12-01
The Center for Microbial Oceanography: Research and Education (C-MORE) is a National Science Foundation-sponsored Science and Technology Center. C-MORE comprises six partner institutions: University of Hawaii (headquarters), Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Oregon State University, University of California at Santa Cruz and Monterey Bay Aquarium Research Institute. C-MORE's Professional Development Training Program is aimed at equipping graduate students and post-docs at all six institutions with the skills and experiences needed to maximize their potential and succeed in their professional careers. This program is administered through the C-MORE Education Office and was developed in close collaboration with graduate students, post-docs, and faculty. This program has formal but flexible requirements. There is only one required module (Outreach). The seven optional modules include: Science Communication, Leadership, Mentoring, Teaching, Research Exchange, Diversity and Proposal Writing. Masters students choose three optional modules; Ph.D. students and post-docs choose five. Most modules consist of a training component, followed by a practical component. All participants will are expected to complete program evaluations. Below are some examples of program offerings: Science Communication Module In partnership with the Communication Partnership for Science and the Sea, C-MORE organized three Science Communication workshops at the University of Hawaii, Monterey Bay Aquarium Research Institute and Massachusetts Institute of Technology. These workshops train participants to distill their research into language that is free of jargon and accessible to a general audience. After the training, participants are asked to produce a communication product based on their research, such as a magazine article, press release, podcast or a blog. Diversity Module To date, C-MORE has organized three teleconferences on diversity, attended by participants across the partner institutions. The first conference discussed two papers on racial and gender bias. The second conference examined the MIT gender equity study on faculty salaries. A key "take-home" message is that we all have biases and we need to recognize them in order to ensure fairness. Participants seemed surprised to learn that there is a body of literature of double-blind experiments showing that women have to be significantly better than men to get the same treatment. The most recent (June 2012) teleconference focused on individuals with disabilities, and was facilitated by the University of Hawaii Center for Disability Studies. Following the conferences, students are asked to participate in an event or serve on a committee aimed at broadening participation. For more information on these or other modules of C-MORE's Professional Development Training Program, please visit our web site: http://cmore.soest.hawaii.edu/education/grads-postdocs/index.htm
Technology-Enhanced Science Partnership Initiative: Impact on Secondary Science Teachers
NASA Astrophysics Data System (ADS)
Ng, Wan; Fergusson, Jennifer
2017-07-01
The issue of student disengagement in school science continues to pose a threat to lifting the participation rates of students undertaking STEM courses and careers in Australia and other countries globally. In Australia, several science initiatives to reverse the problem have been funded over the last two decades. Many of these initiatives involve partnerships with scientists, science educators and with industries, as is the case in this paper. The research in this paper investigated a recent partnership initiative between secondary science teachers, scientists and an educational technology company to produce science e-modules on adaptive learning platforms, enabling students to engage in personalised, inquiry-based learning and the investigation of real-world problems. One of the objectives of the partnership project was to build theoretical and pedagogical skills in teachers to deliver science by exposing them to new ways of engaging students with new digital tools, for example analytics. Using a mixed methods approach, the research investigated science teachers' pedagogical involvement in the partnership project and their perceptions of the project's impact on their teaching and students' learning. The findings indicate that the teachers believed that new technology could enhance their teaching and students' learning and that while their students were motivated by the online modules, there was still a need for scaffolding for many of the students. The effectiveness of this would depend on the teachers' ability to internalise the new technological and content knowledge resulting from the partnership and realign them with their existing pedagogical framework. The research is significant in identifying elements for successful partnership projects as well as challenges that need to be considered. It is significant in facilitating continuous discourse about new evidence-based pedagogical approaches to science education in engaging students to learn STEM subjects in a twenty-first century digitally connected future that is focused on learning at a personal level.
Hands-On Optics science camps and clubs
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Sparks, Robert T.; Pompea, Stephen M.
2007-06-01
Hands-On Optics (HOO) is a National Science Foundation funded program to bring optics education to traditionally underserved middle school students. We have developed six modules that teach students optics concepts through hands-on, inquiry-based activities. The modules have been used extensively in after-school and non-school settings such as in the Boys and Girls Clubs in South Tucson, Arizona and the Boys and Girls Club in Sells, Arizona on the Tohono O'odham reservation. We will describe these programs and the lessons learned in these settings. These modules also form the basis for a week-long optics camp that provides students with approximately 40 hours of instruction time in optics. We will provide an outline of the activities and concepts covered in the camp. These camps provide an ideal way to encourage interest in optics before career choices are developed.
NASA Astrophysics Data System (ADS)
Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.
2014-12-01
EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of how learners can engage in authentic research experiences using real data in the secondary science classroom. In this session you will receive a brief overview of the EarthLabs project, learn more about IODP Expedition 341, and see some of the resources that the module makes available to students to help them analyze the data.
Arctic Connections, an Interactive CD-ROM Program for Middle School Science
NASA Astrophysics Data System (ADS)
Elias, S. A.
2003-12-01
In this project we developed an interactive CD-ROM program for middle school students, accompanied by an interactive web site. The project was sponsored by a grant from the NSF ESIE Instructional Materials Development program. One of the major goals of this project was to involve middle school students in inquiry-based science education, using topics that are of interest to students in Arctic communities. Native Alaskan students have traditionally done poorly in science at the secondary level, and few have gone on to major in the sciences in college or to pursue scientific careers. Part of the problem is a perceived dichotomy between science and traditional Native ways of knowing about the natural world. Hence some students reject the scientific method as being foreign to their native culture. Our goal was to help bridge this cultural barrier, and to demonstrate to native students that the scientific method is not antithetical to their traditional way of life. The program uses story modules that discuss both scientific and Native ways of understanding, through the use of action-adventure stories and brief learning modules. The aim was to show students the relevance of science to their daily lives, and to convince them that scientific methods are a vital tool in solving major problems in arctic communities. Each action-adventure story contains a series of problems that the program user must solve through interactive participation, in order for the story to progress. The interactive elements include answering quiz questions correctly, measuring pH by comparing litmus paper colors, measuring archaeological artifact dimensions, finding the location of fossil bones in a photograph, and correctly identifying photographs of whale species, arctic plants, and fish. The stories contain a mixture of live-action film sequences and voice-over sketch art story boards. The ten modules include such topics as arctic flora and fauna (including terrestrial and sea mammals), arctic solar phenomena, the archaeology and ice-age history of Alaska, water quality, sea ice, permafrost, and climatology. The topics are designed to show connections between the past, present, and future of the Arctic, highlighting problems that can be addressed by scientific inquiry. The accompanying teacher's guide contains a series of hands-on experiments and additional learning materials for each module. The scientific information contained in the modules was refereed by a team of experts who have also volunteered to respond to student questions via e-mail. During the last three years, the program has been field tested in middle schools in Barrow, Kotzebue, Fairbanks, and Anchorage, Alaska. These tests have brought many suggestions for improvements from both teachers and students. The program is in its final evaluation phase, and will be available to schools early in 2004.
NASA Astrophysics Data System (ADS)
Holmes, Mark H.
2006-10-01
To help students grasp the intimate connections that exist between mathematics and its applications in other disciplines a library of interactive learning modules was developed. This library covers the mathematical areas normally studied by undergraduate students and is used in science courses at all levels. Moreover, the library is designed not just to provide critical connections across disciplines but to also provide longitudinal subject reinforcement as students progress in their studies. In the process of developing the modules a complete editing and publishing system was constructed that is optimized for automated maintenance and upgradeability of materials. The result is a single integrated production system for web-based educational materials. Included in this is a rigorous assessment program, involving both internal and external evaluations of each module. As will be seen, the formative evaluation obtained during the development of the library resulted in the modules successfully bridging multiple disciplines and breaking down the disciplinary barriers commonly found in their math and non-math courses.
BioSIGHT: Interactive Visualization Modules for Science Education
NASA Technical Reports Server (NTRS)
Wong, Wee Ling
1998-01-01
Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high-speed network capabilities. The BioSIGHT project at is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches toward the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students.
NASA Astrophysics Data System (ADS)
Steer, D. N.; McConnell, D. A.; Owens, K.
2001-12-01
Geoscience and education faculty at The University of Akron jointly developed a series of inquiry-based learning modules aimed at both non-major and major student populations enrolled in introductory geology courses. These courses typically serve 2500 students per year in four to six classes of 40-160 students each per section. Twelve modules were developed that contained common topics and assessments appropriate to Earth Science, Environmental Geology and Physical Geology classes. All modules were designed to meet four primary learning objectives agreed upon by Department of Geology faculty. These major objectives include: 1) Improvement of student understanding of the scientific method; 2) Incorporation of problem solving strategies involving analysis, synthesis, and interpretation; 3) Development of the ability to distinguish between inferences, data and observations; and 4) Obtaining an understanding of basic processes that operate on Earth. Additional objectives that may be addressed by selected modules include: 1) The societal relevance of science; 2) Use and interpretation of quantitative data to better understand the Earth; 3) Development of the students' ability to communicate scientific results; 4) Distinguishing differences between science, religion and pseudo-science; 5) Evaluation of scientific information found in the mass media; and 6) Building interpersonal relationships through in-class group work. Student pre- and post-instruction progress was evaluated by administering a test of logical thinking, an attitude toward science survey, and formative evaluations. Scores from the logical thinking instrument were used to form balanced four-person working groups based on the students' incoming cognitive level. Groups were required to complete a series of activities and/or exercises that targeted different cognitive domains based upon Bloom's taxonomy (knowledge, comprehension, application, analysis, synthesis and evaluation of information). Daily assessments of knowledge-level learning included evaluations of student responses to pre- and post-instruction conceptual test questions, short group exercises and content-oriented exam questions. Higher level thinking skills were assessed when students completed exercises that required the completion of Venn diagrams, concept maps and/or evaluation rubrics both during class periods and on exams. Initial results indicate that these techniques improved student attendance significantly and improved overall retention in the course by 8-14% over traditional lecture formats. Student scores on multiple choice exam questions were slightly higher (1-3%) for students taught in the active learning environment and short answer questions showed larger gains (7%) over students' scores in a more traditional class structure.
NASA Astrophysics Data System (ADS)
Rockwell, A.; Clark, R. D.; Stevermer, A.
2016-12-01
The study of observational science crosses all other subject areas and requires a new innovative paradigm: a collaboration of experts to create high quality, content-rich learning modules that will elevate the scientific literacy and technical competency of undergraduate and graduate students. This collaborative project will design, develop, and openly distribute a series of interactive, multimedia, online modules that can be effectively integrated into meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. The modules will address topics such as principles of instrumentation and measurement to the theory and practice of measuring a host of meteorological variables. The impact will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience. This project brings together the intellectual capital of the scientists and engineers of National Center for Atmospheric Research Earth Observing Laboratory as subject matter experts, the artistic talents and instructional design acumen of the COMET program, and the project leadership, vision, teaching expertise in instruments and observational science at Millersville University.
Integrating Computational Science Tools into a Thermodynamics Course
NASA Astrophysics Data System (ADS)
Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew
2018-01-01
Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.
Hands-on optics: an informal science education initiative
NASA Astrophysics Data System (ADS)
Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.
2007-09-01
The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.
Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R
2013-06-01
The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.
Technology and Society: A Futuristic Perspective. [Student's Guide.] Preparing for Tomorrow's World.
ERIC Educational Resources Information Center
Iozzi, Louis A.; And Others
This module is designed to provide students (grades 10-11) with experiences in examining how technology has changed our lives and in anticipating future changes. The module is divided into three sections. Role-playing simulations and readings are used in section 1 to examine the dynamic relationship between science/technology/society. Five…
Teaching CSD Graduate Students to Think Critically, Apply Evidence, and Write Professionally
ERIC Educational Resources Information Center
Grillo, Elizabeth U.; Koenig, Mareile A.; Gunter, Cheryl D.; Kim, Sojung
2015-01-01
The purpose of this study was to assess the effectiveness of teaching modules designed to enhance the use of critical thinking (CT), evidence-based practice (EBP), and professional writing (PW) skills by graduate students in communication sciences and disorders. Three single-session teaching modules were developed to highlight key features of CT,…
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on calibrating a respirable dust sampling device. Following guidelines for students and instructors and an introduction that explains what the student will learn, are three lessons: (1) naming each part of…
ERIC Educational Resources Information Center
Graham, Renee Williams; Dennis, Emily; Cornell, Marilyn
2013-01-01
Students in Mrs. Cornell's kindergarten class shared their observations about what happened when drops of water were placed on different types of wood. The students were engaging in a science lesson focusing on the observable properties of wood, an activity from the FOSS Wood and Paper science module. This lesson is one of many that Mrs. Cornell…
Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science
NASA Astrophysics Data System (ADS)
Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth
2011-12-01
The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the Spaceship Earth Scientist (SES) Module, featuring an Earth Scientist expert discussing the science seen in the presentation. Hands-on activities such as sea ice melting simulations will be held with participants. Results from these first pilot education experiences will be presented at the 2011 AGU.
Attitudes of Early Adolescents toward Science, Women in Science, and Science Careers.
ERIC Educational Resources Information Center
Erb, Thomas Owen
The study described is part of a larger project, Career Oriented Modules to Explore Topics in Science (COMETS), designed to integrate career education into the science curriculum. This study aimed to determine the attitudes of male and female students aged 10-16 toward scientists, science, women in science, careers in technical fields, and careers…
A MASSive Laboratory Tour. An Interactive Mass Spectrometry Outreach Activity for Children
NASA Astrophysics Data System (ADS)
Jungmann, Julia H.; Mascini, Nadine E.; Kiss, Andras; Smith, Donald F.; Klinkert, Ivo; Eijkel, Gert B.; Duursma, Marc C.; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M. A.
2013-07-01
It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips.
ERIC Educational Resources Information Center
Manner, Barbar; Beddard-Hess, Sharon; Daskalakis, Argy
2005-01-01
Subjects like Earth science often rely on "ready made" hands-on materials such as kits and modules to support understanding and science inquiry. However, sometimes the materials need adaptations to make sure they suit students' and teachers needs. As part of the Allegheny Schools Science Education and Technology (ASSET) program, the authors…
Science Careers in the Classroom.
ERIC Educational Resources Information Center
Smith, Walter S.
1983-01-01
Suggests systematically exposing early adolescents/middle school students to community people who use science in their work to demonstrate the value of science/mathematics study. Discusses activities related to classroom visits of resource personnel, sources of resource people, and Career Oriented Modules to Explore Topics in Science for grades…
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2016-10-01
How pre-service teachers (PST) develop pedagogical content knowledge (PCK) during science teacher education is an open research question. Our teacher education module, theoretically based on PCK, specifically combines biology PSTs' education with high school students' biology education and includes an innovative role change approach. Altogether, 41 PSTs each participated in three subsequent module days with students ( N = 823) from 50 classes. The module's content dealt with the syllabus topic Genetic Fingerprinting. During participation, the PSTs changed their role by assuming a student's role on the first day, a tutor's role on the second day, and a teacher's role on the third day. By quasi-experimentally administering pre- and delayed posttests, we qualitatively monitored, then content-analytically categorized, and finally quantitatively analyzed three specific PCK components. In contrast to a control group (which did not participate in the module), our treatment preferentially changed the PSTs' orientations toward teaching biology to a more student-centered orientation (both intra- and inter-group differences with medium effect sizes). Additionally, the PSTs who participated in the three modules days differed before and after module participation in how they addressed potential student learning difficulties and identified potential instructional strategies for avoiding these difficulties. The changes in these PCK components point to a step-by-step development of the PSTs' PCK. In this process, our participating PSTs assessed the importance of their three roles on the 3 days quite differently; most notably, we found one relationship between the teacher role and the PSTs' student-centeredness. We specifically discuss the potential and importance of our role change approach within science teacher education.
The "art" of science communication in undergraduate research training
NASA Astrophysics Data System (ADS)
Fatemi, F. R.; Stockwell, J.; Pinheiro, V.; White, B.
2016-12-01
Student creation of well-designed and engaging visuals in science communication can enhance their deep learning while streamlining the transmission of information to their audience. However, undergraduate research training does not frequently emphasize the design aspect of science communication. We devised and implemented a new curricular component to the Lake Champlain NSF Research Experiences for Undergraduates (REU) program in Vermont. We took a holistic approach to communication training, with a targeted module in "art and science". Components to the module included: 1) an introduction to environmental themes in fine art, 2) a photography assignment in research documentation, 3) an overview of elements of design (e.g., color, typography, hierarchy), 4) a graphic design workshop using tools in Powerpoint, and 5) an introduction to scientific illustration. As part of the REU program, students were asked to document their work through photographs, and develop an infographic or scientific illustration complementary to their research. The "art and science" training culminated with a display and critique of their visual work. We report on student responses to the "art and science" training from exit interviews and survey questions. Based on our program, we identify a set of tools that mentors can use to enhance their student's ability to engage with a broad audience.
NASA Astrophysics Data System (ADS)
Kirby, Nicola F.; Dempster, Edith R.
2015-12-01
In South Africa, foundation programmes are a well-established alternative access route to tertiary science study for educationally disadvantaged students. Student access to, and performance in, one such foundation programme has been researched by the authors seeking opportunities to improve student retention. The biology module in particular has been recognised to place students at risk of failing the foundation programme, thereby reducing throughput into mainstream science programmes. This study uses decision tree analysis to provide a detailed description of foundation biology student performance so that points of weakness and opportunities for remedial action may be pinpointed. While students' alternative-entry selection scores have previously been found to most effectively account for performance in the programme as a whole, no similar positive relationship was identified for any subgroup of students in the foundation biology module. Conversely, academic language proficiency in the medium of instruction (English), formerly found to play no role in overall student performance, was revealed as primary in explaining achievement in foundation biology, most adversely affecting students rendered particularly vulnerable by an additional academic and/or socio-economic disadvantage. A pass in the stand-alone foundation academic literacy module did not necessarily correspond to a pass in biology. Compromised by educational disadvantage, compounded by a mismatch in programme selection criteria and inadequate academic literacy support, discipline-specific, fundamental literacy development in the biology curriculum is proposed to enable students towards epistemic access in the module. Pending this intervention, formal access to mainstream study is unlikely for the foundation students most at risk of failure.
Ocean Tracks: Investigating Marine Migrations in a Changing Ocean
NASA Astrophysics Data System (ADS)
Krumhansl, R.; Kochevar, R. E.; Aluwihare, L.; Bardar, E. W.; Hirsch, L.; Hoyle, C.; Krumhansl, K.; Louie, J.; Madura, J.; Mueller-Northcott, J.; Peach, C. L.; Trujillo, A.; Winney, B.; Zetterlind, V.; Busey, A.
2015-12-01
The availability of scientific data sets online opens up exciting new opportunities to raise students' understanding of the worlds' oceans and the potential impacts of climate change. The Oceans of Data Institute at EDC; Stanford University; and the Scripps Institution of Oceanography have been collaborating, with the support of three National Science Foundation grants over the past 5 years, to bring marine science data sets into high school and undergraduate classrooms. These efforts have culminated in the development of a web-based student interface to data from the Tagging of Pacific Predators (TOPP) program, NOAA's Global Drifter Program, and NASA Earth-orbiting satellites through a student-friendly Web interface, customized data analysis tools, multimedia supports, and course modules. Ocean Tracks (http://oceantracks.org), which incorporates design principles based on a broad range of research findings in fields such as cognitive science, visual design, mathematics education and learning science, focuses on optimizing students' opportunities to focus their cognitive resources on viewing and comparing data to test hypotheses, while minimizing the time spent on downloading, filtering and creating displays. Ocean Tracks allows students to display the tracks of elephant seals, white sharks, Bluefin tuna, albatross, and drifting buoys along with sea surface temperature, chlorophyll-A, bathymetry, ocean currents, and human impacts overlays. A graphing tool allows students to dynamically display parameters associated with the track such as speed, deepest daily dive and track tortuosity (curviness). These interface features allow students to engage in investigations that mirror those currently being conducted by scientists to understand the broad-scale effects of changes in climate and other human activities on ocean ecosystems. In addition to supporting the teaching of the Ocean and Climate Literacy principles, high school curriculum modules facilitate the teaching of content, practices and cross-cutting concepts in the Framework for K-12 Science Education. Undergraduate modules currently under development support the teaching of content related to marine productivity, ocean circulation and upwelling, animal-environment interactions, ocean ecosystems, and human impacts.
Ward, Jennifer Rhode; Clarke, H David; Horton, Jonathan L
2014-01-01
In response to the American Association for the Advancement of Science's Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors' courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated curricular modules based on undergraduate researchers' field and laboratory projects. Our goals were to 1) teach botanical concepts, from cells to ecosystems; 2) strengthen competencies in statistical analysis and scientific writing; 3) pique plant science interest; and 4) allow all undergraduates to contribute to genuine research. Our series of inquiry-centered exercises mitigated potential faculty barriers to adopting research-rich curricula, facilitating teaching/research balance by gathering publishable scholarly data during laboratory class periods. Student competencies were assessed with pre- and postcourse quizzes and rubric-graded papers, and attitudes were evaluated with pre- and postcourse surveys. Our revised curriculum increased students' knowledge and awareness of plant science topics, improved scientific writing, enhanced statistical knowledge, and boosted interest in conducting research. More than 300 classroom students have participated in our program, and data generated from these modules' assessment allowed faculty and students to present 28 contributed talks or posters and publish three papers in 4 yr. Future steps include analyzing the effects of repeated module exposure on student learning and creating a regional consortium to increase our project's pedagogical impact. © 2014 J. R. Ward et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Water Pollution, Environmental Science Curriculum Guide Supplement.
ERIC Educational Resources Information Center
McKenna, Harold J.
This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…
Klümper, Christian; Neunzehn, Jörg; Wegmann, Ute; Kruppke, Benjamin; Joos, Ulrich; Wiesmann, Hans Peter
2016-03-25
Biomedical science, especially biomaterials, is an expanding field in medicine. Universities are being challenged to gain the best students for a later academic career. Pre-university assessment of pupils has become crucial to reach this aim. Blended learning is an emerging paradigm for science education even though it has not yet been rigorously assessed, especially in the pupil/undergraduate situation. The aim of the study was to develop and preliminarily test a blended-learning system in biomedicine for university applicants. An internet-based blended-learning module in material science was developed in close collaboration between a university (Biomaterials Department, Dresden TU), a German Gymnasium and an internationally oriented medical college (IMC®, Münster). Forty pre-university students were taught by this learning module composed of school education and internet-based knowledge transfer and involved in the evaluation of the utility of this learning tool. Finally, the students took first-year university examinations in order to evaluate the success of this kind of education. The internet-based blended-learning module as a combination of e-learning tutorials and live online lectures which was applied in phase 3 of this study was developed on the basis of the findings of both pre-university studies. The results of the learning behavior regarding the number of invokes and the dwell time of the individual pages of the pre-university learning material, the results of the online evaluation and the results of the pre-phase examination were successively used to optimize the next phase. At the end of the pre-university learning, seven of eight participants were able to pass the first-year university examination followed by nationally accepted credit award. Internet-based blended-learning module proved to be suitable to prepare students for biomedical university education while also giving them the possibility to assess their qualifications for studying biomedicine and subsequent scientific careers. Moreover, the module can help universities to find the best students.
Developing Classroom Research Modules Through In Depth Understanding of the Research Process
NASA Astrophysics Data System (ADS)
Guilbert, K.; Soong, J.; Cotrufo, M.
2012-12-01
Students of low income families often have fewer opportunities, especially in regards to science, than their peers of higher socioeconomic upbringing. This opportunity deficit can stifle their interest in science before it begins. As an elementary teacher at a Title 1 school, I strive to enrich the scientific opportunities for my students. I gained exposure to soil science by participating in a litter decomposition experiment and the Summer Soil Institute at Colorado State University through an NSF funded Research Experience for Teachers program (RET). My participation in the RET provided me with the tools necessary to implement in depth research in my 5th grade classroom. A teacher's greatest tool is having a deep understanding of a topic prior to relaying it to students. This depth of knowledge needs to be coupled with a general understanding of the research process and techniques that are being used by contemporary scientists. Applying these ideas, I created a long-term decomposition module for my students that can be used as a model for teachers to create meaningful research opportunities for students.
Students' perceptions of laboratory science careers: changing ideas with an education module.
Haun, Daniel; Leach, Argie; Lawrence, Louann; Jarreau, Patsy
2005-01-01
To assess the effectiveness of a Web-based education module in changing students' perceptions of laboratory science careers. Perception was measured with a short examination and then a Web-based exercise was presented. Following the exercise, the test was administered again. Frequency data from the pre-test and post-test were compared for changes in perception. The correlated pre-test/post-test pairs were also examined for opinion changes and these were analyzed for significance. Large parochial high schools in New Orleans, Louisiana. A small team visited the schools during their appointed class times for biology. Study participants were high school biology students in grades 9-10. Two-hundred-forty-five students participated (149 male and 96 female). A Web-based exercise on blood film examination was presented to the students in a classroom setting (www.mclno.org/labpartners/index_03.htm). The exercise contained focused messages about: (1) the numbers of healthcare workers acquiring AIDS from on-the-job exposure and (2) common career paths available to the laboratory science workforce. The shift in perception of: What medical service generates the most diagnostic data. Which professional group performs laboratory tests. The risk of acquiring AIDS while working in the healthcare setting. Interest in a science-related career. How much education is required to work in a science-related field. The intervention significantly shifted perception in all areas measured except that of interest in a science-related career. Many students perceive that the risk of acquiring AIDS while working in the healthcare setting is "high". Web-based presentations and similar partnerships with science teachers can change perceptions that might lead to increased interest in clinical laboratory science careers.
NASA Astrophysics Data System (ADS)
Lilly, James Edward
This research evaluated the POWERFUL IDEAS IN PHYSICAL SCIENCE (PIiPS) curriculum model used to develop a physical science course taken by preservice elementary teachers. The focus was on the evaluation of discrepant events used to induce conceptual change in relation to students' ideas concerning heat, temperature, and specific heat. Both quantitative and qualitative methodologies were used for the analysis. Data was collected during the 1998 Fall semester using two classes of physical science for elementary school teachers. The traditionally taught class served as the control group and the class using the PIiPS curriculum model was the experimental group. The PIiPS curriculum model was evaluated quantitatively for its influence on students' attitude toward science, anxiety towards teaching science, self efficacy toward teaching science, and content knowledge. An analysis of covariance was performed on the quantitative data to test for significant differences between the means of the posttests for the control and experimental groups while controlling for pretest. It was found that there were no significant differences between the means of the control and experimental groups with respect to changes in their attitude toward science, anxiety toward teaching science and self efficacy toward teaching science. A significant difference between the means of the content examination was found (F(1,28) = 14.202 and p = 0.001), however, the result is questionable. The heat and energy module was the target for qualitative scrutiny. Coding for discrepant events was adapted from Appleton's 1996 work on student's responses to discrepant event science lessons. The following qualitative questions were posed for the investigation: (1) what were the ideas of the preservice elementary students prior to entering the classroom regarding heat and energy, (2) how effective were the discrepant events as presented in the PIiPS heat and energy module, and (3) how much does the "risk taking factor" associated with not telling the students the answer right away, affect the learning of the material. It was found that preservice elementary teachers harbor similar preconceptions as the general population according to the literature. The discrepant events used in this module of the PIiPS curriculum model met with varied results. It appeared that those students who had not successfully confronted their preconceptions were less likely to accept the new concepts that were to be developed using the discrepant events. Lastly, students had shown great improvement in content understanding and developed the ability to ask deep and probing questions.
Health Instruction Packages: Basic Sciences.
ERIC Educational Resources Information Center
Cathey, Barbara; And Others
Text, illustrations, and exercises are utilized in a set of nine learning modules designed to instruct nursing and allied health students in a variety of biological topics. The first module, by Barbara Cathey, discusses cell growth and the proliferation of cells in benign and malignant tumors. The second module, by Eugene Volz, describes the…
Southeast Asian Career Exploration Program.
ERIC Educational Resources Information Center
Podolske, Mel
This set of competency-based learning modules consists of four career exploration modules and three science modules for use with adults with limited English proficiency. The four career exploration models contain activities designed to introduce students to career opportunities and basic job skills and safety procedures in the following fields:…
NASA Astrophysics Data System (ADS)
Hams, J. E.; Uttal, L.; Hunter-Thomson, K.; Nachbar, S.
2010-12-01
This presentation highlights the implementation of the NOAA VOICES OF THE BAY education curriculum at a two-year college. The VOICES OF THE BAY curriculum provides students with an understanding of the marine ecology, economy, and culture of fisheries through three interdisciplinary modules that use hands-on activities while meeting a wide range of science, math, social science, and communications standards. In the BALANCE IN THE BAY module, students use critical-thinking skills and apply principles of ecosystem-based management to analyze data, debate and discuss their findings, and make decisions that recognize the complex dynamics associated with maintaining a balance in fisheries. Through role-playing, teamwork, and a little fate, the FROM OCEAN TO TABLE module provides students with an opportunity to get an insider’s view of what it takes to be an active stakeholder in a commercial fishery. In the CAPTURING THE VOICES OF THE BAY module, students research, plan, and conduct personal interviews with citizens of the local fishing community and explore the multiple dimensions of fisheries and how they inter-connect through the lives of those who live and work in the region. The VOICES OF THE BAY modules were introduced into the curriculum at Los Angeles Valley College during the Fall 2009 semester and are currently being used in the introductory Oceanography lecture, introductory Oceanography laboratory, and Environmental Science laboratory courses. Examples of curriculum materials being used (power point presentations, module worksheets and simulated fishing activities) will be presented. In addition, samples of completed student worksheets for the three interdisciplinary modules are provided. Students commented that their overall awareness and knowledge of the issues involved in sustainable fishing and managing fishery resources increased following completion of the VOICES OF THE BAY education curriculum. Students enrolled in the laboratory sections commented that the lab was more enjoyable than the typical lab exercises and the hands-on nature of the activity made the concept of sustainable fishing more real to them. The Office of National Marine Sanctuaries and the Monterey Bay National Marine Sanctuary sponsor professional development workshops to selected faculty to introduce the VOICES OF THE BAY fisheries education curriculum and assist with implementation in the classroom. Classroom materials are also available on the website http://sanctuaries.noaa.gov/education/voicesofthebay.html or by contacting voicesofthebay@noaa.gov.
ERIC Educational Resources Information Center
Chiang, Chia-Ling; Lee, Huei
2015-01-01
The worldview within indigenous people's traditional knowledge and western science can be a world of difference. In order to help indigenous students cross the gap and develop a sense of cultural identification. Taking Bunun, one of the Taiwanese indigenous tribes, as our subject, this study aims to develop a teaching module through Bunun's Millet…
A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy†
Stockwell, Stephanie B.
2016-01-01
Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science—course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I) present an argument based on evidence, II) analyze science and scientists within a social context, and III) experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science–themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, “Nonscientists should do scientific research.” Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement–like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science–themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values. PMID:27047600
ERIC Educational Resources Information Center
Georgia Univ., Athens. Coll. of Education.
This learning module is designed to integrate environmental education into ninth- and tenth-grade chemistry classes. This module and a companion social studies module were pilot tested in Gwinnett County, Georgia in 1975-76. The module is divided into four parts. Part one provides a broad overview of unit content and proposes questions to…
ERIC Educational Resources Information Center
Roff, Lori; Stringer, Lola
The food science course developed in Missouri combines basic scientific and mathematics principles in a hands-on instructional format as a part of the family and consumer sciences education curriculum. Throughout the course, students conduct controlled experiments and use scientific laboratory techniques and information to explore the biological…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, J.D.
1998-08-31
This project led to the development of an instructional module designed for use in high school biology classes. The module contains two major components. The first is an overview for teachers, which introduces the module, describes the Human Genome Project, and addresses issues in the philosophy of science and some of the ethical, legal, and social implications of research in genetics. It provides a survey of fundamental genetics concepts and of new, nontraditional concepts of inheritance. The second component provides six instructional activities appropriate for high school or introductory college students.
BioSIGHT: Interactive Visualization Modules for Science Education
NASA Technical Reports Server (NTRS)
Wong, Wee Ling
1998-01-01
Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science, Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students. Our collaborators include TERC, a research and education organization with extensive k-12 math and science curricula development from Cambridge, MA.; SRI International of Menlo Park, CA.; teachers and students from local area high schools (Newbury Park High School, USC's Family of Five schools, Chadwick School, and Pasadena Polytechnic High School).
ERIC Educational Resources Information Center
Stander, Julian; Dalla Valle, Luciana
2017-01-01
We discuss the learning goals, content, and delivery of a University of Plymouth intensive module delivered over four weeks entitled MATH1608PP Understanding Big Data from Social Networks, aimed at introducing students to a broad range of techniques used in modern Data Science. This module made use of R, accessed through RStudio, and some popular…
General Atomics Sciences Education Foundation Outreach Programs
NASA Astrophysics Data System (ADS)
Winter, Patricia S.
1997-11-01
Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].
NASA Astrophysics Data System (ADS)
Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.
2013-12-01
The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF's STEP Center in the geosciences. The module goals are: 1) Pre-service teachers will apply classification methods, testing procedures and interdisciplinary systems thinking to analyze and evaluate a relevant societal issue in the context of soils, 2) Pre-service teachers will design, develop, and facilitate a standards-based K-8 soils unit, incorporating a relevant broader societal issue that applies authentic geoscientific data, and incorporates geoscientific habits of mind. In addition, pre-service teachers will look toward the NGSS and align activities with content standards, systems thinking, and science and engineering practices. This poster will provide an overview of module development to date as well as a summary of pre-semester survey results indicating pre-service elementary teachers' ideas (beliefs, attitudes, preconceptions, and content knowledge) about teaching soils, and making science relevant in a K-8 classroom.
What Is Soil? Advanced Crop and Soil Science. A Course of Study.
ERIC Educational Resources Information Center
Miller, Larry E.
The course of study represents the first of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil management. Upon completing the two day lesson, the student will be able to define "soil", list the soil forming agencies, define and use soil terminology, and discuss soil formation and…
Soil Erosion: Advanced Crop and Soil Science. A Course of Study.
ERIC Educational Resources Information Center
Miller, Larry E.
The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…
Science FEST: Preservice Teachers link Math and Science in Astronomy Lessons
NASA Astrophysics Data System (ADS)
DeMuth, N. H.; Kasabian, J.; Hacking, P. B.
2005-12-01
Funded by the National Science Foundation and corporate sponsored by Northrop Grumman, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and secondary school teachers design a comprehensive module in astronomy that is inquiry-based and reflects national and state science standards. Project participants then teach their module in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The project's website can be found at www.science-fest.org.
High School Students’ Learning and Perceptions of Phylogenetics of Flowering Plants
Landis, Jacob B.; Crippen, Kent J.
2014-01-01
Basic phylogenetics and associated “tree thinking” are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K–12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in science, technology, engineering, and mathematics (STEM) outreach activities increase awareness of college and career options and highlight interdisciplinary fields of science research and augment the science curriculum. To aid in this effort, we designed a 6-h module in which students utilized 12 flowering plant species to generate morphological and molecular phylogenies using biological techniques and bioinformatics tools. The phylogenetics module was implemented with 83 high school students during a weeklong university STEM immersion program and aimed to increase student understanding of phylogenetics and coevolution of plants and pollinators. Student response reflected positive engagement and learning gains as evidenced through content assessments, program evaluation surveys, and program artifacts. We present the results of the first year of implementation and discuss modifications for future use in our immersion programs as well as in multiple course settings at the high school and undergraduate levels. PMID:25452488
Water: How Good is Good Enough? Teacher's Guide. Science Module (9th-10th Grade Chemistry).
ERIC Educational Resources Information Center
Georgia Univ., Athens. Coll. of Education.
This is a teacher's guide for a module designed to integrate environmental education into ninth- and tenth-grade chemistry classes. The module, pilot tested in Gwinnett County, Georgia in classes of students, many of whom had learning disabilities, emphasizes activity learning and considerable review. The module is divided into four parts. Part…
Engaging students in the sciences--the community college experience
NASA Astrophysics Data System (ADS)
Bushaw-Newton, K. L.
2015-12-01
In today's pedagogy, "STEM" is the four letter word and "STEAM" is the next big thing. How do we as professors translate our passion for our discipline and our research into practical, yet rigorous and applied, learning experiences for students? Foundation courses (e.g., 100 level) often have a mixture of majors and non-majors for any given discipline, thus confounding student engagement. Experiential learning provides students with opportunities to apply theory with application. In any given course, a suite of methods may need to be employed to attain the highest level of engagement. Northern Virginia Community College is a two-year institution with a strong commitment to the sciences. In this presentation, a variety of methods for student engagement will be discussed including: in-class assignments, modules in the laboratory as well as modules involving the campus, independent research experiences, and activities linking students with professionals in the area. Within the context of these methods, there will also be discussions on expectations, limitations, and successes as well as failures.
Ellaway, Rachel H; Bates, Amanda; Girard, Suzanne; Buitenhuis, Deanna; Lee, Kyle; Warton, Aidan; Russell, Steve; Caines, Jill; Traficante, Eric; Graves, Lisa
2014-07-01
Medical schools have tended to admit students with strong backgrounds in the biomedical sciences. Previous studies have shown that those with backgrounds in the social sciences can be as successful in medical school as those with science backgrounds. However, the experience of being a 'non-science' student over time has not been well described. A mixed-methods study was developed and run with the aim of elucidating the personal experiences of science and non-science students at our institution. Data were generated from a student survey that focused on participants' self-identification as science or non-science students, and on their sense of preparedness and stress, and from a series of student focus groups exploring participants' experiences of science and non-science issues in all aspects of their training. Descriptive statistics were generated for structured survey data. Focus group data and unstructured survey data were analysed to identify common themes. End-of-module and end-of-year examination data for the four class cohorts in the programme were also analysed to compare science and non-science student performance over time. There were clear differences between the experiences and performance of science and non-science students. We found dichotomies in students' self-reported sense of preparedness and stress levels, and marked differences in their examination performance, which diminished over time to converge around the third year of their studies. Combining science and non-science students in the same class affected the students to different extents and in different ways. The potential disruption of mixing science and non-science students diminished as their levels of performance converged. The psychosocial stress experienced by non-science students and the challenges it posed, in both their academic and their personal lives, have implications for how such students should be supported, and how curricula can be configured to afford quality learning for all medical students. © 2014 John Wiley & Sons Ltd.
EdVentures in Population Education. Teacher's Guide.
ERIC Educational Resources Information Center
Zero Population Growth, Inc., Washington, DC.
This kit contains 16 comprehensive activity modules that elementary and secondary teachers can use to introduce students to a wide range of population trends. The modules may also be used to introduce these trends to citizens in the community. Each module includes: (1) recommended educational level; (2) curriculum area (science, social studies,…
Module Cluster: UG - 001.00 (GSC) Urban Geography.
ERIC Educational Resources Information Center
Currier, Wade R.
This is one of several module clusters developed for the Camden Teacher Corps project. This module cluster is designed to introduce students to urban studies through the application of a geographic approach. Although geography shares with other social sciences many concepts and methods, it has contributed a distinctive set of viewpoints and a…
Collaborative Experiments Online in a Module Presented Globally
ERIC Educational Resources Information Center
Robinson, David J.
2011-01-01
A new module for Level 1 students called "Science Investigations" provides an introduction to practical work, in an on-line environment. Most of the activities in the module require observational or experimental work done at home, with only the field work being "virtual". The aim is to encourage practical and group work in an…
ERIC Educational Resources Information Center
Donovan, Edward P.
The major objective of this module is to help students understand how water from a source such as a lake is treated to make it fit to drink. The module, consisting of five major activities and a test, is patterned after Individualized Science Instructional System (ISIS) modules. The first activity (Planning) consists of a brief introduction and a…
NASA Astrophysics Data System (ADS)
Hanna, Philip; Allen, Angela; Kane, Russell; Anderson, Neil; McGowan, Aidan; Collins, Matthew; Hutchison, Malcolm
2015-07-01
This paper outlines a means of improving the employability skills of first-year university students through a closely integrated model of employer engagement within computer science modules. The outlined approach illustrates how employability skills, including communication, teamwork and time management skills, can be contextualised in a manner that directly relates to student learning but can still be linked forward into employment. The paper tests the premise that developing employability skills early within the curriculum will result in improved student engagement and learning within later modules. The paper concludes that embedding employer participation within first-year models can help relate a distant notion of employability into something of more immediate relevance in terms of how students can best approach learning. Further, by enhancing employability skills early within the curriculum, it becomes possible to improve academic attainment within later modules.
Integrating pharmacology topics in high school biology and chemistry classes improves performance
NASA Astrophysics Data System (ADS)
Schwartz-Bloom, Rochelle D.; Halpin, Myra J.
2003-11-01
Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g., drug abuse) to help high school students learn basic principles in biology and chemistry. High school biology and chemistry teachers were recruited for the study and they attended a 1-week workshop to learn how to integrate pharmacology into their teaching. Working with university pharmacology faculty, they also developed classroom activities. The following year, teachers field-tested the pharmacology modules in their classrooms. Students in classrooms using the pharmacology topics scored significantly higher on a multiple choice test of basic biology and chemistry concepts compared with controls. Very large effect sizes (up to 1.27 standard deviations) were obtained when teachers used as many as four modules. In addition, biology students increased performance on chemistry questions and chemistry students increased performance on biology questions. Substantial gains in achievement may be made when high school students are taught science using topics that are interesting and relevant to their own lives.
Project-based Modules from two STEM Learning Teams in Howard County, Maryland
NASA Astrophysics Data System (ADS)
Griffiths, L. N.; Bradley, L. A.
2011-12-01
In 2009, two Maryland school districts-Howard County Public School System and Prince George's County Public Schools-and the Goddard Space Flight Center of the National Aeronautics and Space Administration (NASA) partnered with the National Commission on Teaching and America's Future (NCTAF) to develop NASA 21st Century Learning Studios. In 2010, NCTAF expanded the program to include Learning Studios at two additional Maryland school districts (Anne Arundel County Public Schools and Baltimore County Public Schools), partnering with the United States Naval Academy and the University of Maryland. Overall, the focus of these Learning Studios is to combine the expertise of scientists with that of educators through Learning Teams to improve teaching and learning in science, technology, engineering and mathematics (STEM) fields, while delivering project-based modules to be implemented in other school districts. The focus of this paper is to summarize the experience and outcomes from two Learning Teams from the Howard County Public School System. STEM Learning Teams were established at Centennial High School and Hammond High School in Maryland. Each Team worked together for two years to create interdisciplinary units of study for their students with a focus on Earth Science. To maximize student interest, teachers worked with NASA scientists five times a year to develop four learning modules using practical examples and incorporating real scientific observations. A weathering and erosion module challenges students to collect appropriate field observations and determine erosion and deposition rates in a nearby lake. A plate tectonics module requires students to use measures of plate motion from the National Oceanic and Atmospheric Administration to estimate rates of convergence in southern Asia. A third module for lessons in climate change requires students to find open source climate data, determine changes in the atmosphere and estimate anthropogenic impacts. A follow-up exercise challenges students to find ways to alter their schools, homes and individual activities for reducing carbon footprints. A fourth module requires students to model solar and lunar eclipses in different ways, and to combine this understanding with the personal experiences of a NASA scientist. The intended outcomes from an implementation of these four modules are: to present real-world practical problems to be solved by the students; to expose students to areas of active research; and to expose students to careers in STEM. Such experience should improve their preparations for new opportunities after high school.
Fog Studies for University Students and High School Teachers
NASA Astrophysics Data System (ADS)
Witiw, M.; Ladochy, S.
2010-07-01
Over the past few years, fog studies have been introduced as part of courses in Earth system science for both university students and high school teachers at Seattle Pacific University. In the undergraduate course, about three hours are devoted to the study of fog starting with a discussion on sustainable water systems. This is followed by presentations on types of fog, the role of fog in the biosphere, biogeochemical cycles and fog, human influences on fog and fog intensity, and remote sensing of fog. We end with a description of fog collection. Fog education efforts increased for students when our campus was able to obtain fog collecting equipment from Richard Jagels at the University of Maine. The equipment included active and passive fog collectors as well as infrared-beam fog detectors. Two graduating students took on fog collection as their senior project. After setting up the newly acquired equipment, the students designed a fog collection project for the University’s Whidby Island location on Puget Sound, an area that experiences frequent advection fog. They built a passive fog detector and determined where to place it on the Island. Future projects planned include implementing a water system based upon fog collection on Whidby Island. We have also implemented a new module on fog for the Earth System Science Education Alliance (ESSEA) - The Camanchaca: Fog in the Earth System (available at: http://essea.strategies.org/module.php?module_id=54). Aspects of fog in the Earth system are discussed and participants are led to see the important role fog has throughout the Earth system. This module was successfully piloted as part of an Earth system science course for teachers offered in June-July, 2009.
System-on-Chip Design and Implementation
ERIC Educational Resources Information Center
Brackenbury, L. E. M.; Plana, L. A.; Pepper, J.
2010-01-01
The system-on-chip module described here builds on a grounding in digital hardware and system architecture. It is thus appropriate for third-year undergraduate computer science and computer engineering students, for post-graduate students, and as a training opportunity for post-graduate research students. The course incorporates significant…
NASA's planetary protection program as an astrobiology teaching module
NASA Astrophysics Data System (ADS)
Kolb, Vera M.
2005-09-01
We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.
Project VISION (Very Intensive Scientific Intercurricular On-Site Education
NASA Technical Reports Server (NTRS)
Roig, Gustavo A.
1999-01-01
Project VISION (Very Intensive Scientific Intercurricular On-Site Education) is a joint effort among NASA/John F. Kennedy Space Center, Florida International University, Universidad del Turabo, Miami-Dade County Public Schools and the Caguas/Gurabo Public Schools in Puerto Rico. The project's main mission is to institutionalize change among the elementary and middle school science and math teachers at participating schools so that their students receive continuously enriched instruction in the principles of science and math through the use of hands-on and minds-on experiments called learning modules. These leaming modules incorporate the national science and math education standards provided by the National Committee on Science Education Standards and Assessments and the National Council of Teachers of Mathematics, respectively. The use of learning modules that require hands-on and minds-on activities in a classroom setting garners great enthusiasm and motivation on the part of the target students for the understanding of the lesson's underlying math and science principles. With this enthusiasm and motivation, comes acceptance, attention, participation, discipline, acquiescence, and collaboration. Additionally, the use of hands-on activities may also require learning through a gamut of senses. Not only can the student use his/her eyes and ears during these activities, but most times, they can also use their senses of touch, smell, and taste, as well as intuition. Learning is, therefore, achieved using most or all the human senses. The combination of motivation/enthusiasm and the use of multiple senses creates an ideal environment conducive to leaming at a profound level.
ERIC Educational Resources Information Center
Hsu, Shun-Yi
An instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) was developed and applied to design an instructional module for grade 8 students in Taiwan, Republic of China. The CAG model was based on Piagetian theory and a concept model (Pella, 1975). The module developed for heat and temperature was…
Chemical Features of Soil: Advanced Crop and Soil Science. A Course of Study.
ERIC Educational Resources Information Center
Miller, Larry E.
The course of study represents the fifth of six modules in advanced crop and soil science and introduces the agriculture student to chemical features of the soil. Upon completing the four day lesson, the student will be able to: (1) list macro- and micro-nutrients, (2) define pH and its effect on plants, (3) outline Cation Exchange of the soil,…
NASA Astrophysics Data System (ADS)
1996-06-01
Eight awards in chemistry curriculum development for FY1996 have been announced. One award, to a consortium centered at the University of California-Los Angeles, represents the fifth award in the Systemic Changes in the Undergraduate Chemistry Curriculum program. Although no proposals will be accepted in this program for either planning or full grants for FY1997, it is anticipated that proposals will be accepted in June of 1997 for projects that would adapt and adopt materials developed by the five funded consortia: Molecular Science centered at the University of California-Los Angeles; ChemLinks centered at Beloit College; MolecularChem Consortium centered at the University of California-Berkeley; Workshop Chemistry centered at CUNY City College; and New Traditions centered at the University of Wisconsin-Madison. Seven awards have been made in the Course and Curriculum Development program. This ongoing program continues to accept proposals in chemistry as usual. Systemic Changes in the Undergraduate Chemistry Curriculum Program Award. Molecular Science. Orville L. Chapman University of California-Los Angeles DUE 9555605 FY96 725,000 FY97 575,000, FY98 575,000 FY99 275,000, FY00 275,000 The UCLA-CSUF-Community College Alliance (24 area community colleges that have worked together for more than 15 years) proposes a sweeping restructuring of the lower division chemistry curriculum and the auxiliary learning and assessment processes. In forming our new curriculum, we reject the positivist approach to science education in favor of a constructivist approach that emphasizes problem solving and exploratory learning. We make this change in order to focus on the developing key skills, traits, and abilities of our students. Our new curriculum, the Molecular Science Curriculum, cuts across departments and disciplines to embrace all activities that involve the study of atoms and molecules. In particular, environmental science, materials science, and molecular life science have important positions in the lower-division chemistry curriculum. The new curriculum reflects accurately current practice in research and the chemical industry where growth is occurring in these new fields. Today information-technology-based learning enables a practical approach to discovery learning, which educational theorists have long favored. Students can learn science by doing science. In particular, we will produce problem-based modular learning units that define the molecular science curriculum; data sets organized for exploratory learning; prepackaged molecular, mathematical, and schematic models illustrating important principles and phenomena; and a client/server system that manages education. Client/server technology enables individualized courses and frees students from rigid time constraints. The learning units will be used immediately by several of the community colleges in technology programs, such as those for science technicians and hazardous materials technicians at Mount San Antonio CC. New assessment vehicles including cumulative electronic portfolios of group and individual work provide new insight into student development and potential. The project also addresses the preparation of primary and secondary science teachers by involving them as active participants in the lower division courses of the molecular science curriculum. At both UCLA and CSUF, these students will gain experience with the modules, associated learning methods, and electronic delivery system. These experiences should result in teachers with a practical perspective on science teaching as well as the ability to utilize current technology to direct learning activities. The electronic delivery system will allow students at UCLA to work with the science education faculty at CSUF to obtain certification. Since 1990 two high schools (Aliso Niguel and Crossroads) have become members of the Alliance. These schools have the facilities to expose students, experienced teachers, and future teachers to both the content and learning methods of the molecular science curriculum. Course and Curriculum Development Program Awards. Studio General Chemistry with Full Merging of the Laboratory and Classroom Experiences. Thomas M. Apple Rensselaer Polytechnic Institute DUE 9555069 114,000 A workshop general chemistry class is being developed that includes experimental work during every meeting. Lab work is merged with classroom discussion. Students working in groups are challenged to link their macroscopic observations to chemical principles. The merger of thirty-minute, concept-based discovery labs with discussion and lateral development material provides a unique perspective of chemistry. In modernizing the general chemistry curriculum, fewer topics are treated and the more esoteric aspects of physical chemistry that are inappropriate for freshmen are eliminated. More time is allocated to materials chemistry, organic and biological chemistry, and environmental science. The course material is organized into modules or case-studies that contain material that is developed with the specific aim of showing the relevance of the material to problems to which the students already have been exposed. Societal relevance is built into every module of the syllabus by incorporating laboratories, discussion and "lateral development" problems for each topic. Dynamic Visualization in Chemistry. James P. Birk Arizona State University DUE 9555098 175,000 This project will produce real images of chemical and physical changes occurring at the microscopic and atomic levels. These images, from different instruments (optical, electron, and scanning probe microscopes), will be captured electronically (video tapes and CD ROMs) and used in conjunction with molecular modeling as instructional aids in introductory chemistry courses. The objective is to introduce students to the relationships between macroscopic changes in materials and the corresponding changes in the arrangements of their atoms and molecules. The graphic images will be combined with interactive benchtop demonstrations and computer animations to produce dynamic visual instructional components (dynamic visualization modules, DVMs) for introductory chemistry courses. The existing instrumentation and modeling facilities required for the project are currently in place. Once developed the DVMs will be tested with approximately 4000 general chemistry students at Arizona State University and the Maricopa Community College system. There is a goal of national dissemination by a commercial publisher once the DVMs have been tested in the local environment. An Introductory Course in Modeling Dynamic Chemical and Ecological Systems. Joseph E. Earley Georgetown University DUE 9554932 99,996 An introductory course in modeling of dynamic systems, with special emphasis on chemical and ecological problems, will be developed. The target student population will be first- and second-year social science and humanities students, but upper division students and interested science majors will not be excluded. Rather than placing emphasis on mathematical methods and techniques used in modeling, attention will be centered on salient aspects of complex-system behavior as illustrated by models constructed using the commercially available software-package STELLA II. Relatively straightforward models dealing with chemical reactions will be used to introduce fundamental features of complex-system dynamics. Problems of ecological and demographic interest, at moderate level of difficulty, will then be covered. The origin and behavior of "deterministic chaos" will be treated using examples from both chemistry and ecology. In the last third of the course, students will work in small groups (or individually) developing their own models, each related to a specific problem of current interest, preferably in fields of the students' major academic interest. Opportunity will be provided for some outstanding students to use less "user-friendly" software such as ODEPACK to deal with models involving "stiff" differential equations. The last exercise of the course will be a poster session, at which individuals and groups will present their project models to other members of the class and to guests. The main aims of the course will be to facilitate development of the students' insight with respect to types of functioning to be expected of complex networks of relationships, and therefore in important natural systems, and also to engender an appreciation of the power and limitations of modeling techniques. VizChem-Visualizing Chemistry. Leonard W. Fine Columbia University DUE 9555122 209,000 Multimedia computer modules suitable for undergraduate chemistry lecture and laboratory courses are being designed. The modules are both content and skills oriented, interdisciplinary and multidimensional, and take full advantage of the benefits of simulation, computation, and visualization. They are being designed and created as tools for the teacher and for the student and are primarily directed at general chemistry, organic chemistry, physical chemistry, inorganic chemistry, and materials science. Module topics will include the next version of IR Tutor and applicable and important spectroscopies and diagnostic devices such as electronic absorption (UV-vis) and electronic emission (fluorescence and phosphorescence); proton and carbon-13 nuclear magnetic resonance; atomic absorption; thermal analysis; topics in polymer chemistry and materials science; and PCR technology. Secondary objectives of the project include: a broadening of the chemistry curriculum beyond traditional disciplinary boundaries, new undergraduate courses, enhanced effectiveness of teaching assistants, an expanded role for postdoctoral students in undergraduate education, and improved performance by classes of students. Connecting Undergraduate/Analytical Courses to Modern Analytical Chemistry. Thomas R. Gilbert Northeastern University DUE 9554906 200,000 Application modules in the form of projects and active learning techniques to provide a strong foundation in the principles of chemical measurement and to pique the interest of both chemistry majors and nonmajors will be developed for use in introductory analytical courses. The modules will address an analytical problem drawn from current research in biological, environmental, or materials science. Students will be responsible for proposing and evaluating analytical protocols to solve the problems: they will conduct workshops and design their own laboratory experiments. A multidisciplinary Advisory Council will guide the PIs in problem selection and module development. A two-week faculty workshop will provide training in the use of these modules. A World Wide Web home page will be used to distribute information about the modules and will allow users to share experiences using them. Modules will ultimately be distributed by a commercial publisher. Process Workshops for General Chemistry. David M. Hanson SUNY at Stony Brook DUE 9555142 150,000 The process skills needed by students will be addressed by developing innovations in both content and methodology to replace recitation sessions associated with large lecture courses by process workshops, specifically for introductory chemistry courses. The novel format involves process skills, student participation, and active learning at the forefront. Students will work in cooperative-learning groups on lessons that involve discovery learning, critical thinking, problem solving, reporting, and assessment. Computer-based technology will be used to provide personalized quizzes, and the workshop lessons will be transported to a computer network, multi-media format. The objectives of this project are to develop teaching strategies that support a successful cooperative-learning environment, develop lessons that enhance the understanding of concepts and promote learning and problem solving through the use of higher order thinking skills, develop lessons incorporating interdisciplinary and real world perspectives, enhance learning with computer-driven technology, develop process skills in key areas, promote positive attitudes toward chemistry and science, help students develop confidence in their ability to learn and perform well, create a supportive social environment that will encourage students to involve themselves seriously and successfully in learning, and promote a culture where the university is a community of learners. The transformation of recitation sessions into workshops introduces the missing element in large lecture courses. The lectures structure information and make it available to the students, and the workshops complement that component by facilitating the construction of understanding, the application of knowledge, and the development of process skills. Such development is extremely significant because introductory chemistry courses involve large numbers of students early in their college careers. Among other things, summer teaching and authoring institutes will be held to excite the interest of others in this approach and to share ideas on the methodology, strategies, and lesson content. Forensic Science: An Interactive Multimedia Laboratory Program to Enhance Introductory Chemistry (Science) Courses. Lawrence J. Kaplan Williams College DUE 9554875 234,539 While major changes have taken place in all areas of the natural sciences, introductory instruction in both the lecture hall and the laboratory has not changed significantly in many years. The PI instituted innovative teaching techniques in an elementary chemistry course called "Chemistry and Crime: From Sherlock Holmes to Modern Forensic Science" for the nonscience major. The techniques used in the laboratory have received national attention and many colleagues have instituted similar innovations. However, many institutions do not have the resources to develop laboratory programs along these lines and, as times have changed, are increasingly concerned with exposing the students to situations now recognized as potentially dangerous. Since the PI has proven that forensics can be used to spark interest in science and since it is given that young people are intrigued by computer graphics, it was decided to use computer-animated simulations to allow extensive, intensive investigation of scientific evidence collected at simulated crime scenes and studied using simulated scientific instruments. These animated modules will enhance not only the laboratory program in the forensic science course but also the programs in introductory science courses for majors. The PI will guide the development of the computer-animated modules, develop the story board and oversee the computer interfacing and the integration of the components into the curriculum. The actual modules will be created by Engineering Animation, Inc. EAI, using their Vislab software, is one of the premier computer animation companies in the world. It is anticipated that implementing this innovative and creative approach, as part of an overall multimedia program including actual laboratory experience, will enhance science education by stimulating interest and engendering enthusiasm instead of promoting the stereotype that science is boring and hard.
ERIC Educational Resources Information Center
Pilarz, Matthew
2013-01-01
For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was…
AIAA Educator Academy: The Space Weather Balloon Module
NASA Astrophysics Data System (ADS)
Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.
2013-12-01
Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each provided with an AIAA professional member as a mentor for themselves and/or their students. These curriculum modules, provided by AIAA are available to any K-12 teachers as well as EPO officers for use in formal or informal education settings.
Klupiec, C; Pope, S; Taylor, R; Carroll, D; Ward, M H; Celi, P
2014-07-01
To evaluate the effectiveness of online audiovisual materials to support the acquisition of animal handling skills by students of veterinary and animal science. A series of video clips (Livestock Handling modules) demonstrating livestock handling procedures was created and delivered online to students enrolled in the Faculty of Veterinary Science, University of Sydney. The effectiveness of these modules for supporting student learning was evaluated via an online survey. The survey also sought feedback on how students could be better prepared for handling livestock. The survey indicated that students found the videos a useful part of their learning experience, particularly by familiarising them with correct handling procedures and emphasising the importance of safety when handling livestock. Students also highlighted that online delivery supported flexible learning. Suggested improvements of the Livestock Handling modules centred around broadening the content of the videos and improving the user-friendliness of online access. Student feedback regarding how the Faculty could better prepare them for livestock handling was dominated by requests for more opportunities to practise animal handling using live animals. The Livestock Handling audiovisual tool is a valuable supplementary resource for developing students' proficiency in safe and effective handling of livestock. However, the results also clearly reveal a perception by students that more hands-on experience is required for acquisition of animal handling skills. These findings will inform future development of the Faculty's animal handling program. © 2014 Australian Veterinary Association.
Tsutsumi, Akizumi
2015-01-01
Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.
Learning through student-authored interactive media: A mixed methods exploration
NASA Astrophysics Data System (ADS)
Sakai-Miller, Sharon (Sam)
2009-12-01
The purpose of this study was to improve student achievement in science and proficiency in information and communication technologies (ICT), which are vital 21st century workforce skills. Instead of isolating the issues, the study proposed an integrated solution that applied the constructivist approach to help students learn about a unit in biology using three software applications to create interactive, self-correcting eModules within a two-week period. Research questions focused on the effectiveness of the instructional strategy, the experience of students authoring eModules, obstacles they encountered, and the role of the teacher. Fifty-one out of the possible 55 eleventh and twelfth grade students in the two Advanced Biology classes consented to participate in the study. A comparison of pre and post-test scores showed an average 547% improvement. Students with low initial scores of 10% or less improved an average of 1229%. Ten students (20%) went from 20% or below on the pre-test to 80% or above on the post-test, and were analyzed as a subgroup called "big gainers." Student journals and exit surveys were explored to understand the process students followed to develop eModules. The majority of student responses in the exit survey (85%) described the overall experience as a positive one. Journals showed how students were able to follow the process of creating a concept map using Inspiration software, converting the outline into a PowerPoint slide show, editing the slides and importing them into Adobe Captivate files, inserting self-correcting questions, completing their eModules, and submitting them to their teacher. Students identified obstacles they encountered to help them to problem solve and provided data for improving the instructional strategy. Addressing technology learning objectives within the context and pacing of a content area class was accomplished, but it required providing a collaborative learning environment, an appropriate task, mediating tools, and assessment. The data analysis suggests that the instructional strategy of student-authored eModules had a positive impact on learning science content and ICT proficiencies. Historically students have been consumers of interactive media or producers of presentational media. This study suggests that they will learn more when they are the authors of interactive media.
Murray, Nancy G; Opuni, Kwame A; Reininger, Belinda; Sessions, Nathalie; Mowry, Melanie M; Hobbs, Mary
2009-06-01
To test the effectiveness of a middle school, multimedia health sciences educational program called HEADS UP in non-Asian-minority (Hispanic and African American), inner-city students. The program designers hope to increase the number of these students entering the health sciences pipeline. The program includes video role-model stories featuring minority scientists and students, hands-on activities, and teacher resources. Collaborators from The University of Texas Health Science Center at Houston, Spring Branch Independent School District, and the Health Museum developed the modules. From 2004 to 2007, the authors used a quasi-experimental, two-group pretest/posttest design to assess program effects on students' performance and interest in science, their science self-efficacy, their fear of science, and their science-related careers self-efficacy. An independent third party matched the intervention school to a comparison school by test scores, school demographics, and student demographics and then matched pairs of sixth-grade students (N = 428) by fifth-grade science scores, gender, ethnicity, and participation in the free or reduced lunch program. The authors collected data on these students for three years. At eighth grade (2007), the intervention school students scored significantly higher (F = 12.38, P < .001) on the Stanford Achievement Test 10 in science and reported higher interest in science (F = 11.08, P < .001) than their matched, comparison-school pairs. Students in neither group reported an increase in their confidence to choose a science-related career, but students in one high-implementing teacher's class reported decreased fear of science. HEADS UP shows potential for improving inner-city, non-Asian-minority middle school students' performance and interest in science.
NASA Astrophysics Data System (ADS)
Moosavi, S. C.
2011-12-01
The NSF sponsored on-line math skills module series The Math You Need When You Need It (TMYN) was constructed to provide math skill development and support to introductory geoscience course instructors whose students science learning is often hindered by deficiencies in critical math skills. The on-line modules give instructors a mechanism for student-centered, skill-specific math tutorials, practice exercises and assessments outside regular class time. In principle, a student deficient in a skill such as graphing, calculating a best-fit line or manipulating and quantifying a concept such as density can use the appropriate TMYN module to identify their area of weakness, focus on developing the skill using geologically relevant examples, and get feedback reflecting their mastery of the skill in an asynchronous format just as the skill becomes critical to learning in the course. The asynchronous format allows the instructor to remain focused on the geoscience content during class time without diverting all students' attention to skill remediation needed by only a subset of the population. Such a blended approach prevents the progression of the class from being slowed by the need for remediation for some students while simultaneously not leaving those students behind. The challenge to geoscience educators comes in identifying the best strategy for implementing TMYN modules in their classrooms. This presentation contrasts the effectiveness of 2 strategies for implementing TMYN in an introductory Earth System Science class taken as a general education science lab requirement by lower division students at a community college. This course is typical of many such large general education courses in that lab instruction is provided by separate educators from the primary instructor in charge of the lecture, often creating 2 parallel and only dimly connected courses in the experience of many students. In case 1, TMYN was implemented in 3 of 4 lab sections by an adjunct lab instructor while the primary instructor made no mention or use of TMYN in lecture or in the remaining lab section. In case 2, the same instructors each taught independent lecture and lab (2) sections, with TMYN being fully integrated in the course of the first instructor while not mentioned in that of the second. The strengths and weaknesses of each approach both for faculty implementation and student learning are compared with important insights into how such modules should be implemented in lecture/lab courses with separate instructors.
NASA Astrophysics Data System (ADS)
Tong, V.
2011-12-01
There is a growing emphasis on the research-teaching nexus, and there are many innovative ways to incorporate research materials and methods in undergraduate teaching. Solar Physics is a cross-disciplinary subject and offers the ideal opportunity for research-enhanced teaching (1). In this presentation, I outline i) how student-led teaching of research content and methods is introduced in an undergraduate module in Solar Physics, and ii) how electronic learning and teaching can be used to improve students' learning of mathematical concepts in Solar Physics. More specifically, I discuss how research literature reviewing and reporting methods can be embedded and developed systematically throughout the module with aligned assessments. Electronic feedback and feedforward (2) are given to the students in order to enhance their understanding of the subject and improve their research skills. Other technology-enhanced teaching approaches (3) are used to support students' learning of the more quantitative components of the module. This case study is particularly relevant to a wide range of pedagogical contexts (4) as the Solar Physics module is taught to students following undergraduate programs in Geology, Earth Sciences, Environmental Geology as well as Planetary Science with Astronomy in the host Department. Related references: (1) Tong, C. H., Let interdisciplinary research begin in undergraduate years, Nature (2010) v. 463, p. 157. (2) Tong, V. C. H., Linking summative assessments? Electronic feedback and feedforward in module design, British Journal of Educational Technology (2011), accepted for publication. (3) Tong, V. C. H., Using asynchronous electronic surveys to help in-class revision: A case study, British Journal of Educational Technology (2011), doi:10.1111/j.1467-8535.2011.01207.x (4) Tong, V. C. H. (ed.), Geoscience Research and Education, Springer, Dordrecht (2012)
Engaging Undergraduates in Methods of Communicating Global Climate Change
NASA Astrophysics Data System (ADS)
Hall, C.; Colgan, M. W.; Humphreys, R. R.
2010-12-01
Global Climate Change has become a politically contentious issue in large part because of the failure of scientists to effectively communicate this complex subject to the general public. In a Global Change class, offered within a science department and therefore focused primarily on the underlying science, we have incorporated a citizen science module into the course to raise awareness among future scientists to the importance of communicating information to a broad and diverse audience. The citizen science component of this course focuses on how the predicted climate changes will alter the ecologic and economic landscape of the southeastern region. Helping potential scientists to learn to effectively communicate with the general public is particularly poignant for this predominate southern student body. A Pew Research Center for the People and the Press study found that less than 50% of Southerners surveyed felt that global warming is a very serious problem and over 30% of Southerners did not believe that there was any credible evidence that the Earth is warming. This interdisciplinary and topical nature of the course attracts student from a variety of disciplines, which provides the class with a cross section of students not typically found in most geology classes. This mixture provides a diversity of skills and interest that leads to success of the Citizen Science component. This learning approach was adapted from an education module developed through the Earth System Science Education Alliance and a newly developed component to that program on citizen science. Student teams developed several citizen science-related public service announcements concerning projected global change effects on Charleston and the South Carolina area. The scenario concerned the development of an information campaign for the City of Charleston, culminating with the student presentations on their findings to City officials. Through this real-life process, the students developed new strategies that inform their own means of communicating science, whether to the general public, to peers, or to other scientists. This course with the citizen science component serves as a model for other programs. Incorporating a communication aspect into science courses that revolve around complex but socially important topics, such as global climate change, is necessary in building the confidence in our science students to communicate effectively, imaginatively, and memorably. In addition, the students gain a deeper understanding and appreciation of the necessity to communicate to public audiences and the value of outreach to the community.
ERIC Educational Resources Information Center
Stevenson, R. D.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module and a comparison module are concerned with elementary concepts of thermodynamics as…
Form and Function: An Organic Chemistry Module. Teacher's Guide.
ERIC Educational Resources Information Center
Jarvis, Bruce; Mazzocchi, Paul; Hearle, Robert
This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching organic chemistry. In this book, the diverse field of organic chemistry modules is introduced. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified…
Self-Instructional Materials for Underprepared Science Students.
ERIC Educational Resources Information Center
Bedient, Douglas; And Others
1984-01-01
Some of the students in Southern Illinois University's introductory zoology course were deficient in certain skills. The design of self-instructional modules that would be educationally sound and help overcome some problems encountered in this course is discussed. (MLW)
Earth System Science Education Centered on Natural Climate Variability
NASA Astrophysics Data System (ADS)
Ramirez, P. C.; Ladochy, S.; Patzert, W. C.; Willis, J. K.
2009-12-01
Several new courses and many educational activities related to climate change are available to teachers and students of all grade levels. However, not all new discoveries in climate research have reached the science education community. In particular, effective learning tools explaining natural climate change are scarce. For example, the Pacific Decadal Oscillation (PDO) is a main cause of natural climate variability spanning decades. While most educators are familiar with the shorter-temporal events impacting climate, El Niño and La Niña, very little has trickled into the climate change curriculum on the PDO. We have developed two online educational modules, using an Earth system science approach, on the PDO and its role in climate change and variability. The first concentrates on the discovery of the PDO through records of salmon catch in the Pacific Northwest and Alaska. We present the connection between salmon abundance in the North Pacific to changing sea surface temperature patterns associated with the PDO. The connection between sea surface temperatures and salmon abundance led to the discovery of the PDO. Our activity also lets students explore the role of salmon in the economy and culture of the Pacific Northwest and Alaska and the environmental requirements for salmon survival. The second module is based on the climate of southern California and how changes in the Pacific Ocean , such as the PDO and ENSO (El Niño-Southern Oscillation), influence regional climate variability. PDO and ENSO signals are evident in the long-term temperature and precipitation record of southern California. Students are guided in the module to discover the relationships between Pacific Ocean conditions and southern California climate variability. The module also provides information establishing the relationship between climate change and variability and the state's water, energy, agriculture, wildfires and forestry, air quality and health issues. Both modules will be reviewed for inclusion on the ESSEA (Earth Systems Science Education Alliance) course module list. ESSEA is a NSF-funded organization dedicated to K-12 online Earth system science education.
High school students' learning and perceptions of phylogenetics of flowering plants.
Bokor, Julie R; Landis, Jacob B; Crippen, Kent J
2014-01-01
Basic phylogenetics and associated "tree thinking" are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K-12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in science, technology, engineering, and mathematics (STEM) outreach activities increase awareness of college and career options and highlight interdisciplinary fields of science research and augment the science curriculum. To aid in this effort, we designed a 6-h module in which students utilized 12 flowering plant species to generate morphological and molecular phylogenies using biological techniques and bioinformatics tools. The phylogenetics module was implemented with 83 high school students during a weeklong university STEM immersion program and aimed to increase student understanding of phylogenetics and coevolution of plants and pollinators. Student response reflected positive engagement and learning gains as evidenced through content assessments, program evaluation surveys, and program artifacts. We present the results of the first year of implementation and discuss modifications for future use in our immersion programs as well as in multiple course settings at the high school and undergraduate levels. © 2014 J. R. Bokor et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ERIC Educational Resources Information Center
Federal/Provincial Consumer Education and Plain Language Task Force (Canada).
Project Real World, a self-contained, activity-based Canadian consumer science program, provides students with systematic instruction in economic living skills. It gives students in grades 10-12 an orientation to the economic realities and opportunities in society. The program helps students function effectively within the rapidly changing…
ERIC Educational Resources Information Center
Federal/Provincial Consumer Education and Plain Language Task Force (Canada).
Project Real World, a self-contained, activity-based Canadian consumer science program, provides students with systematic instruction in economic living skills. It gives students in grades 10-12 an orientation to the economic realities and opportunities in society. The program helps students understand the marketplace; manage resources; apply…
ERIC Educational Resources Information Center
Federal/Provincial Consumer Education and Plain Language Task Force (Canada).
Project Real World, a self-contained, activity-based Canadian consumer science program, provides students with systematic instruction in economic living skills. It gives students in grades 10-12 an orientation to the economic realities and opportunities in society. The program helps students understand the marketplace; manage resources; apply…
ERIC Educational Resources Information Center
Federal/Provincial Consumer Education and Plain Language Task Force (Canada).
Project Real World, a self-contained, activity-based Canadian consumer science program, provides students with systematic instruction in economic living skills. It gives students in grades 10-12 an orientation to the economic realities and opportunities in society. The program helps students function effectively within the rapidly changing…
Integrated modular teaching in dermatology for undergraduate students: A novel approach
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-01-01
Context: Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. Aims: The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. Settings and Design: This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. Materials and Methods: A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. Results: It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Conclusions: Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation. PMID:25165641
Integrated modular teaching in dermatology for undergraduate students: A novel approach.
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-07-01
Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation.
Integrated Design for Geoscience Education with Upward Bound Students
NASA Astrophysics Data System (ADS)
Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.
2009-05-01
Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive implications of the project. On-line learning modules continue to expand the number impacted by the program. Through collaboration with both GLOBE headquarters and the GLOBE Country Coordinator, an international teacher workshop in Costa Rica provided GLOBE training and equipment necessary for a true GLOBE student collaborative project. IDGE continues to expand the impacts beyond the limited participants involved in the program. Overall, the preliminary results show sufficient data that IDGE is successful in: exposing students to an inquiry-based hands-on science experience; providing a positive challenging yet enjoyable science experience for students; providing a science experience which was different than their formal science class; enhancing or maintaining positive attitudes and habits of mind about science; improving some student perceptions of science, science processes, and the nature of science; increasing the number of students considering science careers; enhanced student understanding of the importance of science knowledge and coursework for everyone. Through the practice of field research and inquiry-based learning, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award #0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.
Exploring Energy with TOYS. Complete Lessons for Grades 4-8.
ERIC Educational Resources Information Center
Taylor, Beverley A. P.
The project Teaching Science with TOYS promotes toys as an ideal mechanism for science instruction, because they are an everyday part of the students' world and carry a user-friendly message. TOYS Teacher Resource Modules are collections of "TOYS" activities grouped around a topic or theme with supporting science content and pedagogical…
Exploring Matter with TOYS: Using and Understanding the Senses.
ERIC Educational Resources Information Center
1997
The project Teaching Science with TOYS promotes toys as an ideal mechanism for science instruction, because they are an everyday part of the students' world and carry a user-friendly message. TOYS Teacher Resource Modules are collections of "TOYS" activities grouped around a topic or theme with supporting science content and pedagogical…
Ground Water Studies. Earth Science Module for Grades 7-9.
ERIC Educational Resources Information Center
Baldwin, Roland L.; And Others
Earth science education needs to be relevant to students in order to make them aware of the serious problems facing the planet. In an effort to insure that this need is meet, the Denver Earth Science Project has set as one of their goals the development of new earth science curriculum materials for teachers. This document provides a collection of…
Biological Features of the Soil: Advanced Crop and Soil Science. A Course of Study.
ERIC Educational Resources Information Center
Miller, Larry E.
The course of study represents the third of six modules in advanced crop and soil science and introduces the agriculture student to biological features of soil. Upon completing the two day lesson, the student will: (1) realize the vast amount of life present in the soil, (2) be able to list representative animal and plant life in the soil by size,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno
1997-10-01
Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this programmore » to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.« less
Education modules using EnviroAtlas (#2)
Session Title #1: Exploration and Discovery through Maps: Teaching Science with Technology. Online maps have the power to spark student interest and bring students closer to their local natural environments. EnviroAtlas is an interactive, web-based tool that was designed by the...
Does STES-Oriented Science Education Promote 10th-Grade Students' Decision-Making Capability?
NASA Astrophysics Data System (ADS)
Levy Nahum, Tami; Ben-Chaim, David; Azaiza, Ibtesam; Herskovitz, Orit; Zoller, Uri
2010-07-01
Today's society is continuously coping with sustainability-related complex issues in the Science-Technology-Environment-Society (STES) interfaces. In those contexts, the need and relevance of the development of students' higher-order cognitive skills (HOCS) such as question-asking, critical-thinking, problem-solving and decision-making capabilities within science teaching have been argued by several science educators for decades. Three main objectives guided this study: (1) to establish "base lines" for HOCS capabilities of 10th grade students (n = 264) in the Israeli educational system; (2) to delineate within this population, two different groups with respect to their decision-making capability, science-oriented (n = 142) and non-science (n = 122) students, Groups A and B, respectively; and (3) to assess the pre-post development/change of students' decision-making capabilities via STES-oriented HOCS-promoting curricular modules entitled Science, Technology and Environment in Modern Society (STEMS). A specially developed and validated decision-making questionnaire was used for obtaining a research-based response to the guiding research questions. Our findings suggest that a long-term persistent application of purposed decision-making, promoting teaching strategies, is needed in order to succeed in affecting, positively, high-school students' decision-making ability. The need for science teachers' involvement in the development of their students' HOCS capabilities is thus apparent.
NASA Astrophysics Data System (ADS)
Egger, A. E.; Awad, A. A.; Baldwin, K. A.; Birnbaum, S. J.; Bruckner, M. Z.; DeBari, S. M.; Dechaine, J.; Ebert, J. R.; Gray, K. R.; Hauge, R.; Linneman, S. R.; Monet, J.; Thomas, J.; Varrella, G.
2014-12-01
As part of InTeGrate, teams of 3 instructors at 3 different institutions developed modules that help prepare pre-service teachers to teach Earth science aligned with the NGSS. Modules were evaluated against a rubric, which addresses InTeGrate's five guiding principles, learning objectives and outcomes, assessment and measurement, resources and materials, instructional strategies and alignment. As all modules must address one or more Earth-related grand challenge facing society, develop student ability to address interdisciplinary problems, improve student understanding of the methods of geoscience, use authentic geoscience data, and incorporate systems thinking, they align well with the NGSS. Once modules passed the rubric, they were tested by the authors in their classrooms. Testing included pre- and post-assessment of geoscience literacy and assessment of student learning towards the module goal; materials were revised based on the results of testing. In "Exploring Geoscience Methods with Secondary Education Students," pre-service science teachers compare geoscientific thinking with the classic (experimental) scientific method, investigate global climate change and its impacts on human systems, and prepare an interdisciplinary lesson plan that addresses geoscience methods in context of a socioscientific issue. In "Soils and Society," pre-service elementary teachers explore societal issues where soil is important, develop skills to describe and test soil properties, and create a standards-based Soils and Society Kit that consists of lessons and supporting materials to teach K-8 students about a soil-and-society issue. In "Interactions between Water, Earth's Surface, and Human Activity," students explore the effects of running water on shaping Earth's surface both over geologic time and through short-term flooding events, and produce a brochure to inform citizens of the impact of living near a river. The modules are freely available at http://serc.carleton.edu/integrate/teaching_materials/modules_courses.html and include Instructor Stories, where each author describes how they adapted the module to their teaching environment. The goal of showing different implementations of the materialst is to facilitate adoption and adaption beyond the team of authors.
Locating Asian Materials in the Meramec Library. Asian Studies Module.
ERIC Educational Resources Information Center
Finkelston, Candy
This curriculum guide introduces the different components of a library science course which provides students with the basic skills to search Asian sources and materials. The first part of the curriculum guide discusses the student objectives of the course, which is designed to provide students with expanded knowledge of searching CD-ROM programs…
Forest, Land, and Water: Understanding Our Natural Resources. Natural Resources Education Series.
ERIC Educational Resources Information Center
Sunal, Dennis; And Others
This curriculum consists of a Teacher's Guide and a series of 12 instructional modules, that are centered around concepts important in the study of national resource science. The modules are designed to supplement textbooks with activities for students in primary and middle grades (K-8). The titles of the modules are: (1) Natural History of a…
ERIC Educational Resources Information Center
Cowan, Christina E.
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…
ERIC Educational Resources Information Center
Cowan, Christina E.
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module explores some of the characteristics of aquatic organisms which can be…
NASA Astrophysics Data System (ADS)
Loukomies, Anni; Pnevmatikos, Dimitris; Lavonen, Jari; Spyrtou, Anna; Byman, Reijo; Kariotoglou, Petros; Juuti, Kalle
2013-12-01
This study aimed to design a teaching sequence for science education that enabled lower secondary school students to enhance their motivation towards science. Further, it looked to examine the way the designed teaching sequence affected students with different motivational profiles. Industry site visits, with embodied theory-based motivational features were included as part of the designed teaching sequence. The sequence was implemented in Finland and Greece with 54 participants, 27 from each country. Quantitative data was collected using the Evaluation of Science Inquiry Activities Questionnaire, based on the Intrinsic Motivation Inventory but did not map the expected outcomes. Interviews, however, showed that students with different motivational profiles found aspects within the module that met their psychological needs as explained by Self-Determination Theory. The results offer a perspective to adolescents' psychological needs along with some insights into how students mediate the way they value an activity in the context of science education.
Connecting with Teachers and Students through K-12 Outreach Activities
NASA Astrophysics Data System (ADS)
Chapman, Susan; Lindbo, David; Robinson, Clay
2014-05-01
The Soil Science Society of America has invested heavily in a significant outreach effort to reach teachers and students in the primary/secondary grades (K-12 grades in US/Canada) to raise awareness of soil as a critical resource. The SSSA K-12 committee has been charged with increasing interest and awareness of soil science as a scientific pursuit and career choice, and providing resources that integrate more information on soil science into biology, chemistry, physics, and earth science areas taught at multiple grade levels. Activities center around five main areas: assessment and standards, learning modules/lesson plans, website development, and books and materials, and partnership activities. Members (professionals and students) of SSSA are involved through committee participation, local events, materials review, and project development.
ERIC Educational Resources Information Center
Federal/Provincial Consumer Education and Plain Language Task Force (Canada).
Project Real World, a self-contained, activity-based Canadian consumer science program, provides students with systematic instruction in economic living skills. It gives students in grades 10-12 an orientation to the economic realities and opportunities in society. The program helps students function effectively within the rapidly changing…
ERIC Educational Resources Information Center
DeSantis, Larisa; DeSantis, Derek
2017-01-01
This article describes a lesson in which high school biology, ecology, environmental science, anatomy, and physiology students can devise hypotheses and test them with scientific data, identify unanswered questions, and design an additional study to answer those questions. This module connects students with exciting research and current science…
NASA Astrophysics Data System (ADS)
Mote, A. S.; Ellins, K. K.; Haddad, N.
2011-12-01
Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions. Collaboration and discussion among members of the EarthLabs team and partner teachers was instrumental to improving the quality of the EarthLabs modules and the professional development workshop. Furthermore, leading the workshop alongside other partner teachers gave me the confidence and experience to deliver professional development to my colleagues and introduce the newly developed EarthLabs modules to other teachers. In this session I will share my experiences and report on the successes, challenges, and lessons learned from being a part of the EarthLabs curriculum and professional development process.
NASA Astrophysics Data System (ADS)
Rose, R.; Aizenman, H.; Mei, E.; Choudhury, N.
2013-12-01
High School students interested in the STEM fields benefit most when actively participating, so I created a series of learning modules on how to analyze complex systems using machine-learning that give automated feedback to students. The automated feedbacks give timely responses that will encourage the students to continue testing and enhancing their programs. I have designed my modules to take the tactical learning approach in conveying the concepts behind correlation, linear regression, and vector distance based classification and clustering. On successful completion of these modules, students will learn how to calculate linear regression, Pearson's correlation, and apply classification and clustering techniques to a dataset. Working on these modules will allow the students to take back to the classroom what they've learned and then apply it to the Earth Science curriculum. During my research this summer, we applied these lessons to analyzing river deltas; we looked at trends in the different variables over time, looked for similarities in NDVI, precipitation, inundation, runoff and discharge, and attempted to predict floods based on the precipitation, waves mean, area of discharge, NDVI, and inundation.
Competency Based Modular Experiments in Polymer Science and Technology.
ERIC Educational Resources Information Center
Pearce, Eli M; And Others
1980-01-01
Describes a competency-based, modular laboratory course emphasizing the synthesis and characterization of polymers and directed toward senior undergraduate and/or first-year graduate students in science and engineering. One module, free-radical polymerization kinetics by dilatometry, is included as a sample. (CS)
Nursing faculty teaching a module in clinical skills to medical students: a Lebanese experience.
Abdallah, Bahia; Irani, Jihad; Sailian, Silva Dakessian; Gebran, Vicky George; Rizk, Ursula
2014-01-01
Nursing faculty teaching medical students a module in clinical skills is a relatively new trend. Collaboration in education among medical and nursing professions can improve students' performance in clinical skills and consequently positively impact the quality of care delivery. In 2011, the Faculty of Medicine in collaboration with the Faculty of Health Sciences at the University of Balamand, Beirut, Lebanon, launched a module in clinical skills as part of clinical skills teaching to first-year medical students. The module is prepared and delivered by nursing faculty in a laboratory setting. It consists of informative lectures as well as hands-on clinical practice. The clinical competencies taught are hand-washing, medication administration, intravenous initiation and removal, and nasogastric tube insertion and removal. Around sixty-five medical students attend this module every year. A Likert scale-based questionnaire is used to evaluate their experience. Medical students agree that the module provides adequate opportunities to enhance clinical skills and knowledge and favor cross-professional education between nursing and medical disciplines. Most of the respondents report that this experience prepares them better for clinical rotations while increasing their confidence and decreasing anxiety level. Medical students highly appreciate the nursing faculties' expertise and perceive them as knowledgeable and resourceful. Nursing faculty participating in medical students' skills teaching is well perceived, has a positive impact, and shows nurses are proficient teachers to medical students. Cross professional education is an attractive model when it comes to teaching clinical skills in medical school.
The Application of Community Service Learning in Science Education
ERIC Educational Resources Information Center
Ng, Betsy Ling-Ling
2012-01-01
Learning of science has been traditionally conducted in classrooms or in the form of lectures. Science education is usually context-specific learning as students are taught a particular module of content in class. In problem-based learning, they are provided with examples of problems in which they learn how to solve these types of problems.…
Preparing Teachers to Support the Development of Climate Literate Students
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Ellins, K. K.; Bardar, E. W.; Youngman, E.; Dunlap, C.; Lockwood, J.; Mote, A. S.; McNeal, K.; Libarkin, J. C.; Lynds, S. E.; Gold, A. U.
2014-12-01
The EarthLabs climate project includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at increasing high school teachers' and students' understanding of the factors that shape our planet's climate. The project has developed four new modules which focus on climate literacy and which are part of the larger Web based EarthLabs collection of Earth science modules. Climate related themes highlighted in the new modules include the Earth system with its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. EarthLabs climate modules use two central strategies to help students navigate the multiple challenges inherent in understanding climate science. The first is to actively engage students with the content by using a variety of learning modes, and by allowing students to pace themselves through interactive visualizations that address particularly challenging content. The second strategy, which is the focus of this presentation, is to support teachers in a subject area where few have substantive content knowledge or technical skills. Teachers who grasp the processes and interactions that give Earth its climate and the technical skills to engage with relevant data and visualizations are more likely to be successful in supporting students' understanding of climate's complexities. This presentation will briefly introduce the EarthLabs project and will describe the steps the project takes to prepare climate literate teachers, including Web based resources, teacher workshops, and the development of a cadre of teacher leaders who are prepared to continue leading the workshops after project funding ends.
Modularization--A Road to Relevance?
ERIC Educational Resources Information Center
Palow, William P.
This paper describes a modular program at a community college for instructing non-science majors in college algebra. The two-course sequence is comprised of four modules each and successful completion of a module is required before a student proceeds to the next. Placement, grading policies, and scheduling are all discussed. A formative evaluation…
Online Student Learning and Earth System Processes
NASA Astrophysics Data System (ADS)
Mackay, R. M.
2002-12-01
Many students have difficulty understanding dynamical processes related to Earth's climate system. This is particularly true in Earth System Science courses designed for non-majors. It is often tempting to gloss over these conceptually difficult topics and have students spend more study time learning factual information or ideas that require rather simple linear thought processes. Even when the professor is ambitious and tackles the more difficult ideas of system dynamics in such courses, they are typically greeted with frustration and limited success. However, an understanding of generic system concepts and processes is quite arguably an essential component of any quality liberal arts education. We present online student-centered learning modules that are designed to help students explore different aspects of Earth's climate system (see http://www.cs.clark.edu/mac/physlets/GlobalPollution/maintrace.htm for a sample activity). The JAVA based learning activities are designed to: be assessable to anyone with Web access; be self-paced, engaging, and hands-on; and make use of past results from science education research. Professors can use module activities to supplement lecture, as controlled-learning-lab activities, or as stand-alone homework assignments. Acknowledgement This work was supported by NASA Office of Space Science contract NASW-98037, Atmospheric and Environmental Research Inc. of Lexington, MA., and Clark College.
NASA Astrophysics Data System (ADS)
Chegwidden, D.; Mote, A. S.; Manley, J.; Ledley, T. S.; Haddad, N.; Ellins, K.; Lynds, S. E.
2016-02-01
Texas is a state that values and supports an Earth Science curriculum, and as an experienced educator in Texas, I find it crucial to educate my students about the various Ocean Science careers that exist and also be able to use the valuable data that is obtained in a core sample from the ocean floor. "Climate Detective" is an EarthLabs module that is supported by TERC and International Ocean Discovery Program (IODP) Expedition 341. This module contains hands-on activities, many opportunities to interpret actual data from a core sample, and collaborative team skills to solve a problem. Through the module, students are able to make real connections with scientists when they understand various roles aboard the JOIDES Resolution. Students can also visually experience real-time research via live video streaming within the research vessel. In my classroom, the use of the "Climate Detective" not only establishes a beneficial relationship between teacher and marine scientists, but such access to the data also helps enhance the climate-related concepts and explanatory procedures involved in obtaining reports. Data is applied to a challenge question for all student groups to answer at the end of the module. This Project-based learning module emphasizes different forms of evidence and requires that learners apply different inquiry approaches to build the knowledge each one needs to acquire, as they become climate-literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's systems and climate change. In addition, this experience has led me to become an advocate who promotes vigorous classroom discussion among my students; additionally, I am encouraged to collaborate with other educators through the delivery of professional development across the state of Texas. Regularly, I connect with scientists in my classroom and such connection truly enriches not only my personal knowledge, but also provides a foundational understanding for my students.
ERIC Educational Resources Information Center
Stevenson, R. D.
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes heat transfer processes involved in the exchange of heat…
ERIC Educational Resources Information Center
Kirby, Nicola F.; Dempster, Edith R.
2015-01-01
In South Africa, foundation programmes are a well-established alternative access route to tertiary science study for educationally disadvantaged students. Student access to, and performance in, one such foundation programme has been researched by the authors seeking opportunities to improve student retention. The biology module in particular has…
ERIC Educational Resources Information Center
Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.
2003-01-01
Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. "Cancer Cell Biology," an interactive, multimedia,…
ERIC Educational Resources Information Center
Gonda, Rebecca L.; DeHart, Kyle; Ashman, Tia-Lynn; Legg, Alison Slinskey
2015-01-01
Achieving a deep understanding of the many topics covered in middle school biology classes is difficult for many students. One way to help students learn these topics is through scenario-based learning, which enhances students' performance. The scenario-based problem-solving module presented here, "The Strawberry Caper," not only…
Engineering a Classroom Discussion.
ERIC Educational Resources Information Center
Smith, Walter E.
1983-01-01
Describes physical science activities that civil/mechanical engineers (serving as resource persons) can use with students during units on force, work, center of gravity, simple machines, and other basic mechanics concepts. Activities are adapted from Career Oriented Modules to Explore Topics in Science for grades 5-9 (COMETS). (Author/JN)
NASA Astrophysics Data System (ADS)
Doser, D. I.; Villalobos, J. I.; Henry, I. E.
2014-12-01
InTeGrate (Interdisciplinary Teaching about Earth for a Sustainable Future) has developed teaching modules that focus on Earth sustainability and Earth-centered societal issues. We have begun to implement modules on climate change, earth materials and freshwater into introductory geology and environmental science courses taught at the University of Texas at El Paso (UTEP), El Paso Community College (EPCC) and local early college high schools (ECHS) for classes of 20 to 220 students. Our eventual goal is to insure students taking introductory classes at any institution will be exposed to comparable content and be similarly prepared for advanced courses. Our initial results suggest that the modules' use of case studies and analysis of authentic data sets are very appealing to our student body (over 70% Hispanic). Since many students do not speak English at home, they were challenged by vocabulary presented in some modules. Modules containing glossaries and extensive background material (such as concept maps and annotated figures) proved very helpful to these students. The use of pre-activity quizzes insured that the students had mastered basic concepts needed for in-class activities. Modifications required to teach these modules in larger classes included condensing materials and reducing the amount of color figures to save paper and printer costs, streamlining dissemination/collection of in-class group assignments, and adapting assignments such as jigsaws and gallery walks to the confines of a large lecture hall with fixed seating. Student reflections indicated students were able to make connections to societal issues and retain these ideas through the end of the courses.
Using a Module-based Laboratory To Incorporate Inquiry into a Large Cell Biology Course
2005-01-01
Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin–La Crosse was undertaken to allow student involvement in experimental design, emphasize data collection and analysis, make connections to the “big picture,” and increase student interest in the field. Multiweek laboratory modules were developed as a method to establish an inquiry-based learning environment. Each module utilizes relevant techniques to investigate one or more questions within the context of a fictional story, and there is a progression during the semester from more instructor-guided to more open-ended student investigation. An assessment tool was developed to evaluate student attitudes regarding their lab experience. Analysis of five semesters of data strongly supports the module format as a successful model for inquiry education by increasing student interest and improving attitude toward learning. In addition, student performance on inquiry-based assignments improved over the course of each semester, suggesting an improvement in inquiry-related skills. PMID:16220145
Guided-Inquiry Lessons Raise Scores on the Sixth Grade Georgia Science Test
NASA Astrophysics Data System (ADS)
Page, Purlie M.
At the local level, G Middle School has the highest district-wide percentage of 6th grade science students who are not meeting standards. It is imperative that G middle school take corrective action to reduce the number of students failing to meet state science standards. Dewey's theory of conceptual framework, which involves knowledge constructed on a person's personal experience and mind activity through active forms of learning, guided this study. The goal of the study was to determine whether inquiry-based science modules produce greater 6th grade science achievement, as measured by an equivalent instrument of the science section of the Georgia Criterion-Referenced Competency Test, when compared to traditional instruction among eastern Georgia 6th graders. The sample consisted of 230 students in the nonintervention group and 119 students in the intervention group. All students were from intact classes. At the end of the intervention, an independent t test was conducted to analyze the scores. According to the study t test, (t = 12.33, df = 304.56, p < 0.05), the difference between the means was statistically significant. This project's potential impact on social change includes increasing student motivation towards, comprehension of, and interest in science concepts. At the local level, these inquiry lessons can be shared with science teachers across grade levels and within the district to improve county-wide science scores. An increase in student interest and comprehension of science concepts could ultimately lead to the United States producing more students in the fields of science, technology, engineering, and mathematics (STEM) education.
ERIC Educational Resources Information Center
McFarland, E. L.; And Others
1978-01-01
Describes the development and operation of a college biophysics course as well as the educational materials used, the structure of the modules and the performance of the students. Also discusses the economics of such a flexible system of instruction. (GA)
Teaching the Scientific Method: It's All in the Perspective
ERIC Educational Resources Information Center
Ayers, James M.; Ayers, Kathleen M.
2007-01-01
A three unit module of inquiry, including morphological comparison, cladogram construction, and data mining has been developed to teach students the nature of experimental science. Students generate angiosperm morphological data, form cladistic hypotheses, then mine taxonomic, bioinformatic and historical data from many sources to replicate and…
Nelson, Kären C.; Marbach-Ad, Gili; Keller, Michael; Fagan, William F.
2010-01-01
There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses. PMID:20810959
Thompson, Katerina V; Nelson, Kären C; Marbach-Ad, Gili; Keller, Michael; Fagan, William F
2010-01-01
There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses.
Student-generated e-learning for clinical education.
Isaacs, Alex N; Nisly, Sarah; Walton, Alison
2017-04-01
Within clinical education, e-learning facilitates a standardised learning experience to augment the clinical experience while enabling learner and teacher flexibility. With the shift of students from consumers to creators, student-generated content is expanding within higher education; however, there is sparse literature evaluating the impact of student-developed e-learning within clinical education. The aim of this study was to implement and evaluate a student-developed e-learning clinical module series within ambulatory care clinical pharmacy experiences. Three clinical e-learning modules were developed by students for use prior to clinical experiences. E-learning modules were created by fourth-year professional pharmacy students and reviewed by pharmacy faculty members. A pre-/post-assessment was performed to evaluate knowledge comprehension before and after participating in the e-learning modules. Additionally, a survey on student perceptions of this educational tool was performed at the end of the clinical experience. There is sparse literature evaluating the impact of student-developed e-learning within clinical education RESULTS: Of the 31 students eligible for study inclusion, 94 per cent participated in both the pre- and post-assessments. The combined post-assessment score was significantly improved after participating in the student-developed e-learning modules (p = 0.008). The student perception survey demonstrated positive perceptions of e-learning within clinical education. Student-generated e-learning was able to enhance knowledge and was positively perceived by learners. As e-learning continues to expand within health sciences education, students can be incorporated into the development and execution of this educational tool. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lambert, J. L.; Bleicher, R. E.; Edwards, A.; Henderson, A.
2012-12-01
In science education, climate change is an issue that is especially useful for teaching concepts spanning several fields of science, as well the nature and practices of science. In response, we are developing a NASA-funded curriculum, titled Climate Science Investigations (CSI): South Florida, that teaches high school and first-year undergraduate level students how to analyze and use scientific data answer questions about climate change. To create an effective curriculum, we integrated lessons learned from our educational research conducted within our elementary science methods courses (Lambert, Lindgren, & Bleicher, 2012). For the past few years, we have been integrating climate science in our courses as a way to teach standards across several science disciplines and assessing our preservice teachers' gains in knowledge over the semesters. More recently, given the media attention and reports on the public's shift in opinion toward being more skeptical (Kellstedt, Zahran, & Vedlitz, 2008; Washington & Cook, 2011), we have assessed our students' perceptions about climate change and implemented strategies to help students use evidence-based scientific argumentation to address common claims of climate skeptics. In our elementary science methods courses, we framed climate change as a crosscutting theme, as well as a core idea, in the Next Generation Science Standards. We proposed that the issue and science of climate change would help preservice teachers not only become more interested in the topic, but also be more prepared to teach core science concepts spanning several disciplines (physical, life, and earth sciences). We also thought that highlighting the "practice of scientific inquiry" by teaching students to develop evidence-based arguments would help the preservice teachers become more analytical and able to differentiate scientific evidence from opinions, which could ultimately influence their perceptions on climate change. Lessons learned from our preservice teachers' conceptions and perceptions about climate change, as well as the difficulties in engaging in evidence-based argumentation, have informed and enhanced the framework for development of the CSI: South Florida curriculum. The modules are sequenced according to the proposed learning progression. First, students are introduced to the nature of science and Earth's energy balance. Students then investigate the temporal and spatial temperature data to answer the question of whether Earth is warming. Students also compare natural and anthropogenic causes of climate change, investigate the various observed and projected consequences of climate change in the fourth module, and examine ways to mitigate the effects of and adapt to climate change. Finally, students learn how to refute skeptics' claims by providing counter evidence and reasoning of why the skeptics' claim is not the appropriate explanation. This paper describes our conceptual framework for teaching students how to address the skeptics' claims using the content learned in the CSI: South Florida curriculum and evidence-based argumentation.
Clarke, H. David; Horton, Jonathan L.
2014-01-01
In response to the American Association for the Advancement of Science's Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors’ courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated curricular modules based on undergraduate researchers’ field and laboratory projects. Our goals were to 1) teach botanical concepts, from cells to ecosystems; 2) strengthen competencies in statistical analysis and scientific writing; 3) pique plant science interest; and 4) allow all undergraduates to contribute to genuine research. Our series of inquiry-centered exercises mitigated potential faculty barriers to adopting research-rich curricula, facilitating teaching/research balance by gathering publishable scholarly data during laboratory class periods. Student competencies were assessed with pre- and postcourse quizzes and rubric-graded papers, and attitudes were evaluated with pre- and postcourse surveys. Our revised curriculum increased students’ knowledge and awareness of plant science topics, improved scientific writing, enhanced statistical knowledge, and boosted interest in conducting research. More than 300 classroom students have participated in our program, and data generated from these modules’ assessment allowed faculty and students to present 28 contributed talks or posters and publish three papers in 4 yr. Future steps include analyzing the effects of repeated module exposure on student learning and creating a regional consortium to increase our project's pedagogical impact. PMID:25185223
ERIC Educational Resources Information Center
Sarquis, Jerry; Hogue, Lynn; Sarquis, Mickey; Woodward, Linda
The project Teaching Science with TOYS promotes toys as an ideal mechanism for science instruction, because they are an everyday part of the students' world and carry a user-friendly message. TOYS Teacher Resource Modules are collections of "TOYS" activities grouped around a topic or theme with supporting science content and pedagogical…
Increasing High School Student Interest in Science: An Action Research Study
NASA Astrophysics Data System (ADS)
Vartuli, Cindy A.
An action research study was conducted to determine how to increase student interest in learning science and pursuing a STEM career. The study began by exploring 10th-grade student and teacher perceptions of student interest in science in order to design an instructional strategy for stimulating student interest in learning and pursuing science. Data for this study included responses from 270 students to an on-line science survey and interviews with 11 students and eight science teachers. The action research intervention included two iterations of the STEM Career Project. The first iteration introduced four chemistry classes to the intervention. The researcher used student reflections and a post-project survey to determine if the intervention had influence on the students' interest in pursuing science. The second iteration was completed by three science teachers who had implemented the intervention with their chemistry classes, using student reflections and post-project surveys, as a way to make further procedural refinements and improvements to the intervention and measures. Findings from the exploratory phase of the study suggested students generally had interest in learning science but increasing that interest required including personally relevant applications and laboratory experiences. The intervention included a student-directed learning module in which students investigated three STEM careers and presented information on one of their chosen careers. The STEM Career Project enabled students to explore career possibilities in order to increase their awareness of STEM careers. Findings from the first iteration of the intervention suggested a positive influence on student interest in learning and pursuing science. The second iteration included modifications to the intervention resulting in support for the findings of the first iteration. Results of the second iteration provided modifications that would allow the project to be used for different academic levels. Insights from conducting the action research study provided the researcher with effective ways to make positive changes in her own teaching praxis and the tools used to improve student awareness of STEM career options.
Brains Rule!: A Model Program for Developing Professional Stewardship among Neuroscientists
ERIC Educational Resources Information Center
Zardetto-Smith, Andrea M.; Mu, Keli; Carruth, Laura L.; Frantz, Kyle J.
2006-01-01
Brains Rule! Neuroscience Expositions, funded through a National Institute on Drug Abuse Science Education Drug Abuse Partnership Award, has developed a successful model for informal neuroscience education. Each Exposition is a "reverse science fair" in which neuroscientists present short neuroscience teaching modules to students. This…
Respiration and Photosynthesis: A Teaching Module. Occasional Paper No. 90.
ERIC Educational Resources Information Center
Bishop, Beth A.; And Others
Designed to address the major conceptual problems associated with respiration and photosynthesis, this module can be used with high school students or college nonscience majors including those in elementary education. It is one in a series developed by the project Overcoming Critical Barriers to Learning in Nonmajors' Science Courses. The…
ERIC Educational Resources Information Center
Barrett, Bradford S.; Moran, Angela L.; Woods, John E.
2014-01-01
Background: Given the continued need to educate the public on both the meteorological and engineering hazards posed by the severe winds of a tornado, an interdisciplinary science, technology, engineering, and mathematics (STEM) module designed by the faculty from the Oceanography and Mechanical Engineering Departments at the United States Naval…
Educational Modules in Tissue Engineering Based on the "How People Learn" Framework
ERIC Educational Resources Information Center
Birol, Gulnur; Liu, Shu Q.; Smith, H. David; Hirsch, Penny
2006-01-01
This paper describes an educational package for use in tertiary level tissue engineering education. Current learning science principles and theory were employed in the design process of these educational tools. Each module started with a challenge statement designed to motivate students and consisted of laboratory exercises centered on the "How…
Resources and Wastes. In-Service Package for Volunteer Workshop Leaders.
ERIC Educational Resources Information Center
Miiller, Marnie
Designed to be used as a supplementary teaching aid for subjects such as science, social studies, and environmental education, this packet of modules contains materials related to waste and waste management for secondary level students. Each of the eight modules consists of a teacher's page, background information, references, questions, projects,…
Intermolecular Forces as a Key to Understanding the Environmental Fate of Organic Xenobiotics
ERIC Educational Resources Information Center
Casey, Ryan E.; Pittman, Faith A.
2005-01-01
A module that can be incorporated into chemistry or environmental science classes at the high school or undergraduate level is described. The module is divided into a series of segments, each of which incorporates several concepts and results in students making significant predictions about the behavior of organic xenobiotics.
ERIC Educational Resources Information Center
Hanna, Philip; Allen, Angela; Kane, Russell; Anderson, Neil; McGowan, Aidan; Collins, Matthew; Hutchison, Malcolm
2015-01-01
This paper outlines a means of improving the employability skills of first-year university students through a closely integrated model of employer engagement within computer science modules. The outlined approach illustrates how employability skills, including communication, teamwork and time management skills, can be contextualised in a manner…
NASA Astrophysics Data System (ADS)
Hill, C. N.; Schools, H.; Research Team Members
2012-12-01
This presentation will report on a classroom pilot study in which we teamed with school teachers in four middle school classes to develop and deploy course modules that connect the real-world to virtual forms of laboratory experiments.The broad goal is to help students realize that seemingly complex Earth system processes can be connected to basic properties of the planet and that this can be illustrated through idealized experiment. Specifically the presentation will describe virtual modules based on on-demand cloud computing technologies that allow students to test the notion that pole equator gradients in radiative forcing together with rotation can explain characteristic patterns of flow in the atmosphere. The module developed aligns with new Massachusetts science standard requirements regarding understanding of weather and climate processes. These new standards emphasize an appreciation of differential solar heating and a qualitative understanding of the significance of rotation. In our preliminary classroom pilot studies we employed pre and post evaluation tests to establish that the modules had increased student knowledge of phenomenology and terms. We will describe the results of these tests as well as results from anecdotal measures of student response. This pilot study suggests that one way to help make Earth science concepts more tractable to a wider audience is through virtual experiments that distill phenomena down, but still retain enough detail that students can see the connection to the real world. Modern computer technology and developments in research models appear to provide an opportunity for more work in this area. We will describe some follow-up possibilities that we envisage.
NASA Astrophysics Data System (ADS)
Oluwoye, J.
2017-12-01
The American Meteorological Society (AMS) reported that our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, technology, engineering, and mathematics (STEM) and is especially acute in the small number of minority college students majoring in the geosciences. The purpose of this paper is to report on how the author engages Alabama A&M University (AAMU) students in STEM transportation science. Specifically, the objective is to develop a conceptual framework of engaging minority students in transportation concentration in the department of community and regional planning. The students were involved in writing a research paper on direct and indirect climate change impacts on transportation and also involved in classroom discussions during a wk14 module on overview of transportation suitability: climate change and environment. The paper concludes with minority needs to gain access to STEM and participation of minority students in field and site analysis.
The development of a low-cost laser communication system for the classroom
NASA Astrophysics Data System (ADS)
Sparks, Robert T.; Pompea, Stephen M.; Walker, Constance E.
2007-06-01
Hands-On Optics (HOO) is a National Science Foundation funded program to bring optics education to underserved middle school students. We have developed the culminating module (Module 6) on laser communication. Students learn how lasers can be modulated to carry information. The main activity of this module is the construction of a low-cost laser communication system. The system can be built using parts readily available at a local electronics store for approximately US $60. The system can be used to transmit a person's voice or music from sources such as an mp3 player or radio over a distance of 350 feet. We will provide detailed plans on how to build the system in this paper.
Curriculum optimization of College of Optical Science and Engineering
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui
2017-08-01
The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.
Quantitative Experiments to Explain the Change of Seasons
ERIC Educational Resources Information Center
Testa, Italo; Busarello, Gianni; Puddu, Emanuella; Leccia, Silvio; Merluzzi, Paola; Colantonio, Arturo; Moretti, Maria Ida; Galano, Silvia; Zappia, Alessandro
2015-01-01
The science education literature shows that students have difficulty understanding what causes the seasons. Incorrect explanations are often due to a lack of knowledge about the physical mechanisms underlying this phenomenon. To address this, we present a module in which the students engage in quantitative measurements with a photovoltaic panel to…
Social Science Instructional Modules Workshop.
ERIC Educational Resources Information Center
Nelson, Elizabeth; Nelson, Edward
The five instructional packages in this collection were created by faculty members in the California State Universities to introduce students--and even faculty--to the easy steps involved in working with computers in instructional settings. Designed for students and faculty in entry-level courses who have little or no background in quantitative…
Intersecting Epistemologies: First-Year Students' Knowledge Discourses in a Political Science Module
ERIC Educational Resources Information Center
Niven, Penelope
2011-01-01
This paper identifies the epistemological values of novice students and their lecturers in terms of a "farming" metaphor. It argues that each occupy essentially different kinds of epistemological "farms", involving different "crops" and "methods", and lecturers often fail to provide effective access to their…
New Uses for a Familiar Technology: Introducing Mobile Phone Polling in Large Classes
ERIC Educational Resources Information Center
Voelkel, Susanne; Bennett, Daimark
2014-01-01
We have introduced a real-time polling system to support student engagement and feedback in four large Level 1 and 2 modules in Biological Sciences. The audience response system makes use of a technology that is ubiquitous and familiar to the students. To participate, students send text messages using their mobile phones or send a message via…
ERIC Educational Resources Information Center
Resendes, Karen K.
2015-01-01
Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular…
Teaching Earth System Science Using Climate Educational Modules Based on NASA and NOAA Resources
NASA Astrophysics Data System (ADS)
Ramirez, P. C.; LaDochy, S.; Patzert, W. C.; Willis, J. K.
2011-12-01
The Earth System Science Education Alliance (ESSEA) recently developed a set of climate related educational modules to be used by K-12 teachers. These modules incorporate recent NASA and NOAA resources in Earth Science education. In the summer of 2011, these modules were tested by in-service teachers in courses held at several college campuses. At California State University, Los Angeles, we reviewed two climate modules: The Great Ocean Conveyer Belt and Abrupt Climate Change (http://essea.strategies.org/module.php?module_id=148) and Sulfur Dioxide: Its Role in Climate Change (http://essea.strategies.org/module.php?module_id=168). For each module, 4-6 teachers formed a cohort to complete assignments and unit assessments and to evaluate the effectiveness of the module for use in their classroom. Each module presented the teachers with a task that enabled them to research and better understand the science behind the climate related topic. For The Great Ocean Conveyer Belt, teachers are tasked with evaluating the impacts of the slowing or stopping of the thermohaline circulation on climate. In the same module teachers are charged with determining the possibilities of an abrupt climate shift during this century such as happened in the past. For the Sulfur Dioxide module teachers investigated the climate implications of the occurrence of several major volcanic eruptions within a short time period, as well as the feasibility of using sulfates to geoengineer climate change. In completing module assignments, teachers must list what they already know about the topic as well as formulate questions that still need to be addressed. Teachers then model the related interactions between spheres comprising the earth system (atmosphere-lithosphere, for example) to evaluate possible environmental impacts. Finally, teachers applied their research results to create lesson plans for their students. At a time when climate change and global warming are important topics in science education, these climate modules provide valuable learning experiences and resources for K-12 teachers.
Zebrafish as a Model System for Environmental Health Studies in the Grade 9–12 Classroom
Hesselbach, Renee; Carvan, Michael John; Goldberg, Barbara; Berg, Craig A.; Petering, David H.
2014-01-01
Abstract Developing zebrafish embryos were used as a model system for high school students to conduct scientific investigations that reveal features of normal development and to test how different environmental toxicants impact the developmental process. The primary goal of the module was to engage students from a wide range of socio-economic backgrounds, with particular focus on underserved inner-city high schools, in inquiry-based learning and hands-on experimentation. In addition, the module served as a platform for both teachers and students to design additional inquiry-based experiments. In this module, students spawned adult zebrafish to generate developing embryos, exposed the embryos to various toxicants, then gathered, and analyzed data obtained from control and experimental embryos. The module provided a flexible, experimental framework for students to test the effects of numerous environmental toxicants, such as ethanol, caffeine, and nicotine, on the development of a model vertebrate organism. Students also observed the effects of dose on experimental outcomes. From observations of the effects of the chemical agents on vertebrate embryos, students drew conclusions on how these chemicals could impact human development and health. Results of pre-tests and post-tests completed by participating students indicate statistically significant changes in awareness of the impact of environmental agents on fish and human beings In addition, the program's evaluator concluded that participation in the module resulted in significant changes in the attitude of students and teachers toward science in general and environmental health in particular. PMID:24941301
Drosophila genetics in the classroom.
Sofer, W; Tompkins, L
1994-01-01
Drosophila has long been useful for demonstrating the principles of classical Mendelian genetics in the classroom. In recent years, the organism has also helped students understand biochemical and behavioral genetics. In this connection, this article describes the development of a set of integrated laboratory exercises and descriptive materials--a laboratory module--in biochemical genetics for use by high-school students. The module focuses on the Adh gene and its product, the alcohol dehydrogenase enzyme. Among other activities, students using the module get to measure alcohol tolerance and to assay alcohol dehydrogenase activity in Adh-negative and -positive flies. To effectively present the module in the classroom, teachers attend a month-long Dissemination Institute in the summer. During this period, they learn about other research activities that can be adapted for classroom use. One such activity that has proved popular with teachers and students utilizes Drosophila to introduce some of the concepts of behavioral genetics to the high-school student. By establishing closer interactions between high-school educators and research scientists, the gulf between the two communities can begin to be bridged. It is anticipated that the result of a closer relationship will be that the excitement and creativity of science will be more effectively conveyed to students.
NASA Astrophysics Data System (ADS)
Hart, Quyen N.
2015-01-01
We present a successful model for organizing a small University-sponsored summer camp that integrates astronomy and physics content with other science disciplines and computer programming content. The aim of our science and technology camp is to engage middle school students in a wide array of critical thinking tasks and hands-on activities centered on science and technology. Additionally, our program seeks to increase and maintain STEM interest among children, particularly in under-represented populations (e.g., Hispanic, African-American, women, and lower socioeconomic individuals) with hopes of decreasing disparities in diversity across many STEM fields.During this four-day camp, organized and facilitated by faculty volunteers, activities rotated through many STEM modules, including optics, telescopes, circuit building, computer hardware, and programming. Specifically, we scaffold camp activities to build upon similar ideas and content if possible. Using knowledge and skills gained through the AAS Astronomy Ambassadors program, we were able to integrate several astronomy activities into the camp, leading students through engaging activities, and conduct educational research. We present best practices on piloting a similar program in a university environment, our efforts to connect the learning outcomes common across all the modules, specifically in astronomy and physics, outline future camp activities, and the survey results on the impact of camp activities on attitudes toward science, technology, and science careers.
Data-driven Inquiry in Environmental Restoration Studies
NASA Astrophysics Data System (ADS)
Zalles, D. R.; Montgomery, D. R.
2008-12-01
Place-based field work has been recognized as an important component of geoscience education programs for engaging students. Field work helps students appreciate the spatial extent of data and the systems operating in a locale. Data collected in a place has a temporal aspect that can be explored through representations such as photographs and maps and also though numerical data sets that capture characteristics of place. Yet, experiencing authentic geoscience research in an educational setting requires going beyond fieldwork: students must develop data literacy skills that will enable them to connect abstract representations of spatio-temporal data with place. Educational researchers at SRI International led by Dr. Daniel Zalles, developer of inquiry-based geoscience curricula, and geoscientists at the University of Washington (UW) led by Dr. David Montgomery, Professor of Earth and Space Sciences, are building educational curriculum modules that help students make these connections. The modules concern the environmental history of the Puget Sound area in Washington State and its relevance for the American Indians living there. This collaborative project relies on environmental data collected in the Puget Sound Regional Synthesis Model (PRISM) and Puget Sound River History Project. The data sets are being applied to inquiry-based geoscience investigations at the undergraduate and high school level. The modules consist of problem-based units centered on the data sets, plus geographic and other data representations. The modules will rely on educational "design patterns" that characterize geoscientific inquiry tasks. Use of design patterns will enable other modules to be built that align to the modes of student thinking and practice articulated in the design patterns. The modules will be accompanied by performance assessments that measure student learning from their data investigations. The design principles that drive this project have already been used effectively in a prior SRI project reported about at AGU 2007 called Data Sets and Inquiry in Geoscience Education. The modules are being readied for pilot-testing with undergraduate students in a new environmental history course at the University of Washington and with students taking science courses in high schools serving American Indian students in the Puget Sound area. This NSF-funded project is contributing to our knowledge base about how students can become more engaged and more skilled in geoscience inquiry and data analysis and what variations in educational supports and expectations need to exist to build successful experiences for the students with the materials. It is also expanding our knowledge of how to better connect place-based education to inquiry tasks that expand students" quantitative reasoning skills. Lastly, it is providing a model of how scientists can work effectively with educational researchers to provide educational outlets for their research. We will report on the progress of the project so far, which is in its first year of funding.
ERIC Educational Resources Information Center
Gee, Maureen
1975-01-01
Discusses three kits developed by museums in British Columbia for use in rural classrooms. The science kit on marine biology consists of modules which included specimens, books, audiovisual materials and student activities. (BR)
ERIC Educational Resources Information Center
Kirby, N. F.; Dempster, E. R.
2011-01-01
The Centre for Science Access Foundation Programme at the University of KwaZulu-Natal provides alternative access to tertiary science studies to educationally disadvantaged students. The philosophical basis for this Programme is that of constructivism, as adopted by the original Science Foundation Programme (SFP) which was initiated in 1991 on the…
Inquiring with Geoscience Datasets: Instruction and Assessment
NASA Astrophysics Data System (ADS)
Zalles, D.; Quellmalz, E.; Gobert, J.
2005-12-01
This session will describe a new NSF-funded project in Geoscience education, Inquiring with Geoscience Data Sets. The goals of the project are to (1) Study the impacts on student learning of Web-based supplementary curriculum modules that engage secondary-level students in inquiry projects addressing important geoscience problems using an Earth System Science approach. Students will use technologies to access real data sets in the geosciences and to interpret, analyze, and communicate findings based on the data sets. The standards addressed will include geoscience concepts, inquiry abilities in NSES and Benchmarks for Science Literacy, data literacy, NCTM standards, and 21st-century skills and technology proficiencies (NETTS/ISTE). (2) Develop design principles, specification templates, and prototype exemplars for technology-based performance assessments that provide evidence of students' geoscientific knowledge and inquiry skills (including data literacy skills) and students' ability to access, use, analyze, and interpret technology-based geoscience data sets. (3) Develop scenarios based on the specification templates that describe curriculum modules and performance assessments that could be developed for other Earth Science standards and curriculum programs. Also to be described in the session are the project's efforts to differentiate among the dimensions of data literacy and scientific inquiry that are relevant for the geoscience discplines, and how recognition and awareness of the differences can be effectively channelled for the betterment of geoscience education.
College-Mentored Polymer/Materials Science Modules for Middle and High School Students
ERIC Educational Resources Information Center
Lorenzini, Robert G.; Lewis, Maurica S.; Montclare, Jin Kim
2011-01-01
Polymers are materials with vast environmental and economic ramifications, yet are generally not discussed in secondary education science curricula. We describe a program in which college mentors develop and implement hands-on, polymer-related experiments to supplement a standard, state regents-prescribed high school chemistry course, as well as a…
New Curricular Material for Science Classes: How Do Students Evaluate It?
ERIC Educational Resources Information Center
Freire, Sofia; Faria, Claudia; Galvao, Cecilia; Reis, Pedro
2013-01-01
Living in an unpredictable and ever changing society demands from its' citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-European Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in…
Biomedical Technology. Innovations: The Social Consequences of Science and Technology Program.
ERIC Educational Resources Information Center
McInerney, Joseph D.; And Others
This module is part of an interdisciplinary program designed to educate the general citizenry regarding the issues of science/technology/society that have important consequences for both present and future social policies. Specifically, the program provides an opportunity for students to assess the effects of selected technological innovations in…
NASA Astrophysics Data System (ADS)
Kellagher, E.; Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Cires Education Outreach
2011-12-01
Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop content knowledge and knowledge of effective teaching strategies in climate education among secondary science teachers. ICEE resources are aligned with the Essential Principles of Climate Science. Building upon a needs assessment and face to face workshop, ICEE resources include iTunesU videos, an ICEE 101 resource site with videos and peer-reviewed learning activities, and a moderated online forum. Self-directed modules and an online course are being developed around concepts and topics in which teachers express the most interest and need for instruction. ICEE resources include attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and are informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign.
ERIC Educational Resources Information Center
Kadiam, Subhash Chandra Bose S. V.; Mohammed, Ahmed Ali; Nguyen, Duc T.
2010-01-01
In this paper, we describe an approach to analyze 2D truss/Frame/Beam structures under Flash-based environment. Stiffness Matrix Method (SMM) module was developed as part of ongoing projects on a broad topic "Students' Learning Improvements in Science, Technology, Engineering and Mathematics (STEM) Related Areas" at Old Dominion…
Devising and Implementing a Business Proposal Module: Constraints and Compromises
ERIC Educational Resources Information Center
Flowerdew, Lynne
2010-01-01
This article describes the design and implementation of a business proposal module for final-year science students at a tertiary institution in Hong Kong. It is argued that in the needs analysis process, the present situation analysis (PSA), that is, personal information about the learners and factors which may affect their learning, is just as if…
ERIC Educational Resources Information Center
Siritunga, Dimuth; Navas, Vivian; Diffoot, Nanette
2012-01-01
Early involvement of students in hands-on research experiences are known to demystify research and promote the pursuit of careers in science. But in large enrollment departments such opportunities for undergraduates to participate in research are rare. To counteract such lack of opportunities, inquiry-based laboratory module in plant tissue…
ERIC Educational Resources Information Center
Stevenson, R. D.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This report describes concepts presented in another module called "The First Law of…
ERIC Educational Resources Information Center
Levin, Michael; Gallucci, V. F.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes the application of irreversible thermodynamics to biology. It begins with…
A Comparison of Astronomy/Science Attitudes Among Students and Secondary Teachers
NASA Astrophysics Data System (ADS)
Kareva, Anna; Miller, S.; Foster, A.; James, C. R.
2014-01-01
The Astronomy Summer School of East Texas was designed to address the needs of rural schools in the Walker County region of East Texas. This region is populated by poorer schools with fewer science resources and underperforming students on standardized tests, resulting in many of the school districts being rated as “academically unacceptable”. The goal of the workshop was to provide a suite of active learning modules to regional 6 - 12 grade teachers, which they can then use in their classrooms to actively engage their students in the use of real science data. As part of the workshop, we administered Zeilik’s pre/post attitude survey towards astronomy/science to assess whether the participant’s attitudes changed over the course of the two-week workshop. While we found no statistically significant shift in attitudes, we were surprised at some of the attitudes that secondary science teachers held. We will summarize their attitudes and compare them with attitude data gathered from their students, along with those of college students enrolled in introductory astronomy courses at Sam Houston State University. With this data, we will present the differences in attitudes with age between middle school, high school and college students, along with difference in attitudes between teachers and students. This project is supported by the NASA Science Mission Directorate Education and Public Outreach for Earth and Space Science (EPOESS), which is part of the Research Opportunities in Space and Earth Sciences (ROSES), Grant Number NNX12AH11G.
NASA Astrophysics Data System (ADS)
Varma, Keisha; Linn, Marcia C.
2012-08-01
In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called Global Warming: Virtual Earth. In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw conclusions about how individual variables effect changes in the Earth's temperature. They also carry out inquiry activities to make connections between scientific processes, the socio-scientific issues, and ideas presented in the media. Results show that participating in the unit increases students' understanding of the science. We discuss how students integrate their ideas about global climate change as a result of using virtual experiments that allow them to explore meaningful complexities of the climate system.
Evaluating a Modeling Curriculum by Using Heuristics for Productive Disciplinary Engagement
Passmore, Cynthia
2010-01-01
The BIO2010 report provided a compelling argument for the need to create learning experiences for undergraduate biology students that are more authentic to modern science. The report acknowledged the need for research that could help practitioners successfully create and reform biology curricula with this goal in mind. Our objective in this article was to explore how a set of six design heuristics could be used to evaluate the potential of curricula to support productive learning experiences for science students. We drew on data collected during a long-term study of an undergraduate traineeship that introduced students to mathematical modeling in the context of modern biological problems. We present illustrative examples from this curriculum that highlight the ways in which three heuristics—instructor role-modeling, holding students to scientific norms, and providing students with opportunities to practice these norms—consistently supported learning across the curriculum. We present a more detailed comparison of two different curricular modules and explain how differences in student authority, problem structure, and access to resources contributed to differences in productive engagement by students in these modules. We hope that our analysis will help practitioners think in more concrete terms about how to achieve the goals set forth by BIO2010. PMID:20810958
Combining Content and Elements of Communication into an Upper-Level Biochemistry Course
ERIC Educational Resources Information Center
Whittington, Carli P.; Pellock, Samuel J.; Cunningham, Rebecca L.; Cox, James R.
2014-01-01
This report describes how a science communication module was incorporated into an advanced biochemistry course. Elements of communication were taught synergistically with biochemistry content in this course in an effort to expose students to a variety of effective oral communication strategies. Students were trained to use these established…
Communities of Molecules: A Physical Chemistry Module.
ERIC Educational Resources Information Center
DeVoe, Howard
This book is one in the series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…
Kids as Airborne Mission Scientists: Designing PBL To Inspire Kids.
ERIC Educational Resources Information Center
Koszalka, Tiffany A.; Grabowski, Barbara L.; Kim, Younghoon
Problem-based learning (PBL) has great potential for inspiring K-12 learning. KaAMS, a NASA funded project and an example of PBL, was designed to help teachers inspire middle school students to learn science. The students participate as scientists investigating environmental problems using NASA airborne remote sensing data. Two PBL modules were…
ERIC Educational Resources Information Center
Collins, Eva-Maria S.; Calhoun, Tessa R.
2014-01-01
This article presents the combination of three enhanced educational approaches for training future scientists. These methods incorporate skills generally not introduced in the freshman year: student-led blackboard introductions; the writing of scientific papers; and the design, execution, and presentation of an independent lab module. We tested…
Construction of Student Groups Using Belbin: Supporting Group Work in Environmental Management
ERIC Educational Resources Information Center
Smith, Mark; Polglase, Giles; Parry, Carolyn
2012-01-01
Belbin team role self and observer perceptions were applied to a large cohort (145) of Geography, Earth and Environmental Sciences undergraduates in a module assessed through two separate group projects. Students self-selected groups for the first project; for the second, groups were more "balanced." Results show slight improvement in…
Hands-On Classroom Photolithography Laboratory Module to Explore Nanotechnology
ERIC Educational Resources Information Center
Stelick, Scott J.; Alger, William H.; Laufer, Jesse S.; Waldron, Anna M.; Batt, Carl A.
2005-01-01
Nanotechnology is an area of significant interest and can be used as a motivator for students in subject areas including physics, chemistry, and life sciences. A 5X reducer system and associated lesson plan was used to provide students a hands-on exposure to the basic principles of photolithography and microscale circuit fabrication.
Diversity and Periodicity: An Inorganic Chemistry Module.
ERIC Educational Resources Information Center
Huheey, James
This book is one in a series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…
Coastal Ecosystems. Project CAPE Teaching Module [with Student Materials].
ERIC Educational Resources Information Center
Cowal, Michael; And Others
Intended for grades K-2, this science unit on coastal ecosystems aids teachers in helping students to: (1) identify marine organisms; (2) learn their basic characteristics; and (3) understand the web of interdependence among organisms of the same habitat. The teacher's guide is divided into four sections. The first section gives background…
Form and Function: An Organic Chemistry Module.
ERIC Educational Resources Information Center
Jarvis, Bruce; Mazzocchi, Paul
This book is one in the series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…
Stanley, A G; Jackson, D; Barnett, D B
2005-01-01
Collaboration between the medical school at Leicester and a local pharmaceutical company, AstraZeneca, led to the design and implementation of an optional third year special science skills module teaching medical students about drug discovery and development. The module includes didactic teaching about the complexities of the drug discovery process leading to development of candidate drugs for clinical investigation as well as practical experience of the processes involved in drug evaluation preclinically and clinically. It highlights the major ethical and regulatory issues concerned with the production and testing of novel therapies in industry and the NHS. In addition it helps to reinforce other areas of the medical school curriculum, particularly the understanding of clinical study design and critical appraisal. The module is assessed on the basis of a written dissertation and the critical appraisal of a drug advertisement. This paper describes the objectives of the module and its content. In addition we outline the results of an initial student evaluation of the module and an assessment of its impact on student knowledge and the opinion of the pharmaceutical industry partner. This module has proven to be popular with medical students, who acquire a greater understanding of the work required for drug development and therefore reflect more favourably on the role of pharmaceutical companies in the UK. PMID:15801942
Media in teaching college level nutrition. Is it effective and efficient?
Short, S H
1975-06-01
Several techniques have been used, studied, and tested to teach nutrition at Syracuse University. One self-paced course in nutrition and food science tutors students completely through audio tapes integrated with films, slides, video tapes, discussion groups, laboratory manual, and computer-assisted instruction. Evaluation is by computerized tests given after each module at the student's discretion. Compressed-speech tapes are used to increase learning efficiency. Dietetic, nutrition, nursing, and pre-medical students are taught nutrition via these methods for selected modules, but they mainly learn by lectures supplemented by pertinent films, slides, transparencies, television commercials, telectures, videotapes, and simulations. Multi-media "happenings" are presented which gain students' attention and change attitudes while imparting nutritional information which is well retained.
Innovations in making EarthScope science and data accessible (Invited)
NASA Astrophysics Data System (ADS)
Pratt-Sitaula, B. A.; Butler, R. F.; Whitman, J. M.; Granshaw, F. D.; Lillie, R. J.; Hunter, N.; Cronin, V. S.; Resor, P. G.; Olds, S. E.; Miller, M. S.; Walker, R.; Douglas, B. B.
2013-12-01
EarthScope is a highly complex technical and scientific endeavor. Making results from EarthScope accessible to the general public, educators, all levels of students, and even geoscience professionals from other disciplines is a very real challenge that must be overcome to realize EarthScope's intended broader impacts of contributing 'to the mitigation of risks from geological hazards ... and the public's understanding of the dynamic Earth.' Here we provided several case examples of how EarthScope science can be effectively communicated and then scaled to reach different or larger audiences. One approach features providing professional development regarding EarthScope and geohazard science to non-university educators who then scale up the impact by communicating to hundreds or even thousands of students and general public members each. EarthScope-funded Teachers on the Leading Edge (TOTLE) ran workshops 2008-2010 for 120 Pacific Northwest teachers and community college educators who subsequently communicated EarthScope and geohazards science to >30,000 students and >1500 other adults. Simultaneously EarthScope's National Office at Oregon State University was running workshops for park interpreters who have since reached >>100,000 park visitors. These earlier projects have served as the foundation for the new Cascadia EarthScope Earthquake and Tsunami Education Program (CEETEP), which is currently running joint workshops for coastal Oregon and Washington teachers, interpreters, and emergency management educators. The other approach featured here is UNAVCO's scaled efforts to make Plate Boundary Observatory (PBO) and other geodetic data more accessible to introductory and majors-level geoscience students and faculty. Initial projects included development of a Teaching Geodesy website on the Science Education Research Center (SERC) and development of teaching modules and activities that use PBO data. Infinitesimal strain analysis using GPS data is a 1-2 week module for majors-level structural geology or geophysics courses that is now published on SERC and UNAVCO websites. Simpler exercises using PBO data have been beta-tested for introductory courses as well. Now UNAVCO has received NSF-funding to develop four more modules (two each for introductory and majors-level) that will feature PBO and other geodetic data. The goal is for these four to serve as the foundation for an ultimate collection of >10 modules.
Assessing an effective undergraduate module teaching applied bioinformatics to biology students
2018-01-01
Applied bioinformatics skills are becoming ever more indispensable for biologists, yet incorporation of these skills into the undergraduate biology curriculum is lagging behind, in part due to a lack of instructors willing and able to teach basic bioinformatics in classes that don’t specifically focus on quantitative skill development, such as statistics or computer sciences. To help undergraduate course instructors who themselves did not learn bioinformatics as part of their own education and are hesitant to plunge into teaching big data analysis, a module was developed that is written in plain-enough language, using publicly available computing tools and data, to allow novice instructors to teach next-generation sequence analysis to upper-level undergraduate students. To determine if the module allowed students to develop a better understanding of and appreciation for applied bioinformatics, various tools were developed and employed to assess the impact of the module. This article describes both the module and its assessment. Students found the activity valuable for their education and, in focus group discussions, emphasized that they saw a need for more and earlier instruction of big data analysis as part of the undergraduate biology curriculum. PMID:29324777
Chiang, Harry; Robinson, Lucy C; Brame, Cynthia J; Messina, Troy C
2013-01-01
Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems. Computer simulations of molecular events can now be accomplished quickly and with standard computer technology. Also, simulation software is freely available for most computing platforms, and online support for the novice user is ample. We have therefore created a molecular dynamics laboratory module to enhance undergraduate student understanding of molecular events underlying organismal phenotype. This module builds on a previously described project in which students use site-directed mutagenesis to investigate functions of conserved sequence features in members of a eukaryotic protein kinase family. In this report, we detail the laboratory activities of a MD module that provide a complement to phenotypic outcomes by providing a hypothesis-driven and quantifiable measure of predicted structural changes caused by targeted mutations. We also present examples of analyses students may perform. These laboratory activities can be integrated with genetics or biochemistry experiments as described, but could also be used independently in any course that would benefit from a quantitative approach to protein structure-function relationships. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Veglio, E.; Graves, L. W.; Bank, C. G.
2014-12-01
We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.
ERIC Educational Resources Information Center
McConnell, Mary C.; And Others
This module is part of an interdisciplinary program designed to educate the general citizenry regarding the issues of science/technology/society that have important consequences for both present and future social policies. Specifically, the program provides an opportunity for students to assess the effects of selected technological innovations in…
ERIC Educational Resources Information Center
Singer, J. David
Offering a new approach to college publishing, the sample module presented here serves as an example of a basic unit from University Programs. Typical modules (each 16 to 64 pages), directed toward graduate and undergraduate students, provide original statements on central concepts, principles, theories, or problems in a particular discipline and…
ERIC Educational Resources Information Center
Hatheway, W. H.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Specifically, this module develops a method for calculating the exchange of heat between an…
ERIC Educational Resources Information Center
Simpson, James R.
This module is part of a series on Physical Processes in Terrestrial and Aquatic Ecosystems. The materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process.…
Nuclear Forensics for High School Science
NASA Astrophysics Data System (ADS)
Mader, Catherine; Doss, Heide; Plisch, Monica; Isola, Drew; Mirakovitz, Kathy
2011-04-01
We developed an education module on nuclear forensics, designed for high school science classrooms. The lessons include a mix of hands-on activities, computer simulations, and written exercises. Students are presented with realistic scenarios designed to develop their knowledge of nuclear science and its application to nuclear forensics. A two-day teacher workshop offered at Hope College attracted 20 teachers. They were loaned kits to implement activities with their students, and each teacher spent 3--7 days on the lessons. All who reported back said they would do it again and would share the lessons with colleagues. Many said that access to equipment and ready-made lessons enabled them to expand what they taught about nuclear science and introduce nuclear forensics. A few teachers invited guest speakers to their classroom, which provided an excellent opportunity to share career information with students. We acknowledge generous support from the Department of Homeland Security and the AIP Meggars Award.
Preparing teachers to address climate change with project-based instructional modules
NASA Astrophysics Data System (ADS)
Powers, S. E.; DeWaters, J.; Small, M.; Dhaniyala, S.
2012-12-01
Clarkson University's Project-Based Global Climate Change Education project funded by NASA has created and disseminated several instructional modules for middle and high school teachers. The modules were developed by a team of teachers and university students and faculty. Fundamental to these inquiry-based modules are questions about climate change or mitigation efforts, use of real-world data to explore historical climate changes, and review of IPCC model results to understand predictions of further changes over the next century. As an example, the Climate Connections module requires middle school students to investigate a geographic region, learn about the culture and likely carbon footprint, and then acquire and analyze data sets of historical and predicted temperature changes. The findings are then interpreted in relation to the impact of these changes on the region's culture. NOAA, NASA, IPCC and DOE databases are used extensively. The inquiry approach and core content included in these modules are well aligned with the new Framework for K-12 Science Education. The climate change science in these modules covers aspects of the disciplinary core subjects (dimension 3) and most of the cross cutting concepts (dimension 2). Our approach for inquiry and analysis are also authentic ways to include most of the science and engineering practices (dimension 1) included in the framework. Dissemination of the modules to teachers in New York State has been a joint effort by NYSERDA (New York State Energy Research and Development Authority) and Clarkson. Half-day and full-day workshops and week-long institutes provided opportunities to either introduce the modules and the basics of finding and using temperature data, or delve into the science concepts and integration of the modules into an instructional plan. A significant challenge has been identified by the workshop instructors - many science teachers lack the skills necessary to fully engage in the science and engineering practices required for dimension 1 of the Framework for K-12 Science Education. Downloading data, using a spreadsheet to plot and analyze data and calculating basic statistical parameters are new skills for many of the teachers with whom we have worked. But our teacher professional development opportunities have been effective. 23 teachers attended the intensive one or two week-long institutes. A pre- and post-climate literacy survey administered to these teachers showed statistically significant gains (p <0.01) in their climate change content knowledge and attitudes. For example, the percentage of teachers who agreed or strongly agreed to the statement "Life on earth will continue without major disruptions only if we take immediate and drastic action to reduce global warming" increased from 52% to 90% (pre, post). Changes in responses to the behavior items were not significant. Presentation of this work will include a brief introduction to the instructional modules and climate literacy assessment as a basis for identifying the prerequisite skill sets needed by science teachers to effectively incorporate new content and engineering practices through projects that require accessing and analyzing real-world climate change and mitigation data.
From The Horse's Mouth: Engaging With Geoscientists On Science
NASA Astrophysics Data System (ADS)
Katzenberger, J.; Morrow, C. A.; Arnott, J. C.
2011-12-01
"From the Horse's Mouth" is a project of the Aspen Global Change Institute (AGCI) that utilizes selected short video clips of scientists presenting and discussing their research in an interdisciplinary setting at AGCI as the core of an online interactive set of learning modules in the geosciences for grades 9-12 and 1st and 2nd year undergraduate students. The video archive and associated material as is has limited utility, but here we illustrate how it can be leveraged for educational purposes by a systematic mining of the resource integrated with a variety of supplemental user experiences. The project furthers several broad goals to: (a) improve the quality of formal and informal geoscience education with an emphasis on 9-12 and early undergraduate, (b) encourage and facilitate the engagement of geoscientists to strengthen STEM education by leveraging AGCI's interdisciplinary science program for educational purposes, (c) explore science as a human endeavor by providing a unique view of how scientists communicate in a research setting, potentially stimulating students to consider traditional and non-traditional geoscience careers, (d) promote student understanding of scientific methodology and inquiry, and (e) further student appreciation of the role of science in society, particularly related to understanding Earth system science and global change. The resource material at the core of this project is a videotape record of presentation and discussion among leading scientists from 35 countries participating in interdisciplinary workshops at AGCI on a broad array of geoscience topics over a period of 22 years. The unique archive represents approximately 1200 hours of video footage obtained over the course of 43 scientific workshops and 62 hours of public talks. The full spectrum of material represents scientists active on all continents with a diverse set of backgrounds and academic expertise in both natural and social sciences. We report on the video database resource, our data acquisition protocols, conceptual design for the learning modules, excerpts from the video archive illustrating both geoscience content utilized in educational module development and examples of video clips that explore the process of science and its nature as a human endeavor. A prototype of the user interface featuring a navigational strategy, a discussion of both content and process goals represented in the pilot material and its use in both formal and informal settings are presented.
Earth System Science Education Alliance (ESSEA) IPY Modules
NASA Astrophysics Data System (ADS)
Blaney, L. S.; Myers, R. J.; Schwerin, T.
2008-12-01
The Earth System Science Education Alliance (ESSEA) is a National Science Foundation-supported program implemented by the Institute for Global Environmental Strategies (IGES) to improve the quality of geoscience instruction for pre-service, middle, and high school teachers. ESSEA increases teachers' access to quality materials, standards-based instructional methods and content knowledge. With additional support from NASA, the ESSEA program is being enhanced to reflect emphasis on the International Polar Year. From 1999-2005 the ESSEA program was based on a trio of online courses (for elementary, middle, and high school teachers), the courses have been used by 40 faculty at 20 institutions educating over 1,700 teachers in Earth system science. Program evaluation of original course participants indicated that the courses had significant impact on teachers Earth system content knowledge and beliefs about teaching and learning. Seventeen of the original participating institutions have continued to use the courses and many have developed new programs that incorporate the courses in Earth science education opportunities for teachers. Today the ESSEA program lists nearly 40 colleges and universities as participants. With NASA support, the K-4 course and modules have been revised to include topics and resources focusing on the International Polar Year. Additional modules examining the changes in black carbon, ice sheets and permafrost have been added for middle and high school levels. The new modules incorporate geoscience data and analysis tools into classroom instruction. By exploring IPY related topics and data, participating teachers and their students will develop new understandings about the interactions and dependencies of the Earth spheres and our polar regions. Changes in climate, air, water, and land quality and animal and plant populations make the news everyday. The ESSEA IPY modules will help teachers inform rather than frighten their students as they learn more about the characteristics and importance of our polar regions. One goal of IPY 2007-2008 is to increase the awareness, understanding and interest of school-age children in polar conditions and research. The inclusion of polar topics in the ESSEA courses and modules contributes to the achievement of that goal.
AIAA Educator Academy: Enriching STEM Education for K-12 Students
NASA Astrophysics Data System (ADS)
Slagle, E.; Bering, E. A.; Longmier, B. W.; Henriquez, E.; Milnes, T.; Wiedorn, P.; Bacon, L.
2012-12-01
Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based engineering challenges to improve critical thinking skills and enhance problem solving skills. The Mars Rover Celebration Curriculum Module is designed for students in grades 3-8. Throughout this module, students learn about Mars and the solar system. Working with given design criteria, students work in teams to do basic research about Mars that will determine the operational objectives and structural features of their rover. Then, students participate in the design and construction of a model of a mock-up Mars Rover to carry out a specific science mission on the surface of Mars. At the end of this project, students have the opportunity to participate in a regional capstone event where students share their rover designs and what they have learned. The Electric Cargo Plan Curriculum Module is designed for students in grades 6-12. Throughout this module, students learn about aerodynamics and the four forces of flight. Working individually or in teams, students design and construct an electrically-powered model aircraft to fly a tethered flight of at least one lap without cargo, followed by a second tethered flight of one lap carrying as much cargo as possible. At the end of this project, students have the opportunity to participate in a regional capstone event where students share what they have learned and compete with their different cargo plane designs. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each provided with an AIAA professional member as a mentor for themselves and/or their students. These curriculum modules, provided by AIAA are available to any K-12 teachers as well as EPO officers for use in formal or informal education settings.
NASA Astrophysics Data System (ADS)
Slattery, W.; Antonucci, C.; Myers, R. J.
2013-12-01
The National Science Foundation funded project K-12 Students, Teachers, Parents, Administrators and Higher Education Faculty: Partners Helping Rural Disadvantaged Students Stay on the Pathway to a Geoscience Career is a research-based proof of concept track 1 pilot project that tests the effectiveness of an innovative model for simultaneous K-12 teacher professional development, student learning and workforce development. The project builds a network of science experiences designed to keep eighth and ninth grade students from the Ripley, Union, Lewis, Huntington (RULH) Ohio school district on the path to a geoscience career. During each summer of the ongoing two-year project teams of RULH students, parents, teachers, administrators and college faculty traveled to the facilities of the New Jersey Sea Grant Consortium at Sandy Hook, New Jersey to study science from an Earth system perspective. Teachers had the opportunity to engage in professional development alongside their students. Parents participated in the science activities alongside their children. Administrators interacted with students, parents and their teachers and saw them all learning science in an engaging, collaborative setting. During the first academic year of the project professional development was provided to RULH teachers by a team of university scientists and geoscience educators from the Earth System Science Education Alliance (ESSEA), a National Science Foundation funded project. Teachers selected for professional development were from science disciplines, mathematics, language arts and civics. The teachers selected, taught and assessed ESSEA Earth system science modules to all eighth and ninth grade students, not just those that were selected to go on the summer trips to New Jersey. In addition, all ninth grade RULH students had the opportunity to take a course that includes Earth system science concepts that will earn them both high school and college science credits. Professional development will continue through the 2013-2014 academic year. Formative assessment of the ongoing project indicates that students, teachers, parents and school administrators rank their experiences highly and that students are motivated to continue on the path to geoscience careers.
Quantitative experiments to explain the change of seasons
NASA Astrophysics Data System (ADS)
Testa, Italo; Busarello, Gianni; Puddu, Emanuella; Leccia, Silvio; Merluzzi, Paola; Colantonio, Arturo; Moretti, Maria Ida; Galano, Silvia; Zappia, Alessandro
2015-03-01
The science education literature shows that students have difficulty understanding what causes the seasons. Incorrect explanations are often due to a lack of knowledge about the physical mechanisms underlying this phenomenon. To address this, we present a module in which the students engage in quantitative measurements with a photovoltaic panel to explain changes to the sunray flow on Earth’s surface over the year. The activities also provide examples of energy transfers between the incoming radiation and the environment to introduce basic features of Earth’s climate. The module was evaluated with 45 secondary school students (aged 17-18) and a pre-/post-test research design. Analysis of students’ learning outcomes supports the effectiveness of the proposed activities.
NASA Astrophysics Data System (ADS)
Hargis, Jace
This study examined the effects of two different instructional formats on Internet WebPages in an informal learning environment. The purpose of this study is to (a) identify optimal instructional formats for on-line learning; (b) identify the relationship between post-assessment scores and the student's gender, age or racial identity; (c) examine the effects of verbal aptitudes on learning in different formats; (d) identify relationships between computer attitudes and achievement; and (e) identify the potential power for self-regulated learning and self-efficacy on Internet WebPages. Two learning strategy modules were developed; a constructivist and an objectivist instruction module. The study program consisted of an on-line consent form; a computer attitude survey; a Motivated Strategies for Learning Questionnaire; a verbal aptitude test; a pre-assessment; instructional directions followed by the instructional module and a post-assessment. The study tested 145 post-secondary science and engineering participants from the University of Florida. Participants were randomly assigned to one of two treatment groups or a control in a pretest/posttest design. An analysis of covariance with general linear models was used to account for effects of individual difference variables and aptitude treatment interaction (ATI). This statistical procedure was used to determine the relationships among the dependent variable, the achievement on each of the formats and the independent variables, attitudes, gender, racial identity, verbal aptitudes, and self-regulated learning/self-efficacy. Significant results at alpha = .05 were found for none of these variables. However, a linear prediction of age shows that older participants scored higher on the post-assessment after completing the objectivist module. Although there were no significant differences between the learning format and the variables, there was a difference between the modules and the control. Therefore, it is possible that regardless of characteristics, science and engineering students can learn on-line technical material.
NASA Astrophysics Data System (ADS)
Rockwell, A.; Clark, R. D.; Stevermer, A.
2017-12-01
The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.
The Heart of Matter: A Nuclear Chemistry Module.
ERIC Educational Resources Information Center
Viola, Vic
This book is one in a series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…
A Workshop for Developing Learning Modules for Science Classes Based on Biogeochemical Research
ERIC Educational Resources Information Center
Harrington, James M.; Gardner, Terrence G.; Amoozegar, Aziz; Andrews, Megan Y.; Rivera, Nelson A.; Duckworth, Owen W.
2013-01-01
A challenging aspect of educating secondary students is integrating complex scientific concepts related to modern research topics into lesson plans that students can relate to and understand at a basic level. One method of encouraging the achievement of learning outcomes is to use real-world applications and current research to fuel student…
ERIC Educational Resources Information Center
Smith, James R.; Chungh, Melleisha K.; Sadouq, Sara; Kandiah, Asarthan
2017-01-01
The objective of this study was to enquire how the chemistry experience of pharmacy students can be enhanced and how the virtual learning environment (VLE) for chemistry-related pharmacy modules might be improved. All Master of Pharmacy students at the University of Portsmouth United Kingdom were asked to complete a project-designed online…
ERIC Educational Resources Information Center
Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.
2016-01-01
The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…
Curriculum for Junior High School Students: Dairy Food Consumption Self-Efficacy
ERIC Educational Resources Information Center
Pobocik, Rebecca S.; Haar, Christine M.; Dawson, Erin E.; Coleman, Priscilla; Bakies, Karen
2009-01-01
A nutrition education module for a family and consumer sciences curriculum was developed and evaluated with junior high school students (n = 63) using a quasi-experimental design. The multivariate interaction between time of measurement and intervention was significant, F (2, 50) = 8.68, p = 0.001.The univariate interaction between pre and post…
ERIC Educational Resources Information Center
Huang, Kun; Chen, Ching-Huei; Wu, Wen-Shiuan; Chen, Wei-Yu
2015-01-01
This study investigated how question prompts and feedback influenced knowledge acquisition and cognitive load when learning Newtonian mechanics within a web-based multimedia module. Participants were one hundred eighteen 9th grade students who were randomly assigned to one of four experimental conditions, forming a 2 x 2 factorial design with the…
Use of PharmaCALogy Software in a PBL Programme to Teach Nurse Prescribing
ERIC Educational Resources Information Center
Coleman, Iain P. L.; Watts, Adam S.
2007-01-01
Pharmacology is taught on a dedicated module for nurse prescribers who have a limited physical science background. To facilitate learning a problem-based approach was adopted. However, to enhance students' knowledge of drug action a PharmaCALogy software package from the British Pharmacological Society was used. Students were alternately given a…
Human Growth: Guide to a Healthier You. A Middle School Science Curriculum. Instructor's Manual.
ERIC Educational Resources Information Center
Huba, Jeanne C.; Crow, Tracy L.
This instructor's manual contains information and activities related to human growth processes. The curriculum focuses on choices students can make for a healthy lifestyle and is based on the most up-to-date research about human growth and development. Students generate and test their hypotheses throughout each of five modules which include…
Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha
2012-03-12
To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.
NASA Astrophysics Data System (ADS)
Goelzer, J.; Varner, R. K.; Levergood, R.; Sullivan, F.; Palace, M. W.; Haney, J. F.; Rock, B. N.; Smith, C. W.
2017-12-01
The month long residential Marine and Environmental Science research program for high school students at the University of New Hampshire connects students with university researchers. This educational program provides upper level high school students who are considering majors in the earth and environmental sciences with the opportunity to perform field work and conduct authentic research. This year's program introduced students to four modules exploring topics ranging from forest ecology to island ecosystems. The unifying theme between modules was the use of spectroscopy and remote sensing as a method of assessing the characteristics of ecosystems. Students constructed their own photometers utilizing eight specific Light Emitting Diodes (LEDs) spanning a wavelength range from 400 to 1200 nm. An Ultra Violet (UV) LED, four visible LEDs, and three different infrared LEDs were selected to detect light reflected by plant pigments and tissues. Students collected data using their photometers and compared results to an actual Analytical Spectral Device (ASD) reflectance data, mounted eight photometers on an unmanned aerial system (UAS) to collect forest canopy data and collected data from island rock pools. The students compared their photometer readings to data collected using a fluorometer to identify the presence of phycocyanin produced by cyanobacteria and chlorophyll produced by algae in the rock pools. Students found that the photometer data were comparable to the ASD data for several wavelengths, but recommended several changes. It was determined that to be useful for forest health assessment, two of the three infrared LEDs had the incorrect gain settings, and that for rock pool studies, the infrared LEDs were not necessary. Based on the student findings, we will refine the photometers for next year's program. The photometers constructed this summer will be utilized in high schools classes during the 2017-2018 school year. This low cost project will bring what is normally a university level STEM experience into the high school classroom with university faculty, students and staff collaborating with high school teachers and students.
NASA Astrophysics Data System (ADS)
Browning, S.
2014-12-01
The Math You Need (TMYN) modules were introduced at Baylor University in fall 2012 to address issues of math anxiety common among freshmen non-majors completing their lab science requirement, and to reduce lab time spent reviewing basic math concepts. Modules and associated assessment questions commonly use geoscience examples to illustrate the mathematical principles involved, reinforcing topics addressed in lab. Large enrollments in the course selected for these modules necessitate multiple graduate teaching assistants in the lab, making the online nature of the modules and minimal required involvement of the teaching assistants even more valuable. Students completed three selected modules before encountering associated topics in lab, as well as a pre and post-test to gauge improvement. This presentation will review lessons learned and changes made in the first two years of TMYN at Baylor. Results indicate continued increases in mean pre to post test scores (e.g. 3.2% in fall 2012 to 11.9% in spring 2014), percentage of student pre to post- test improvement (59% in fall 2012 to 72% in spring 2014) and student participation (95 in fall 2012 to 186 in spring 2014). Continued use of these modules is anticipated.
A Blended Learning Experience for Teaching Microbiology
Sancho, Pilar; Corral, Ricardo; Rivas, Teresa; González, María Jesús; Chordi, Andrés
2006-01-01
Objectives To create a virtual laboratory system in which experimental science students could learn required skills and competencies while overcoming such challenges as time limitations, high cost of resources, and lack of feedback often encountered in a traditional laboratory setting. Design A blended learning experience that combines traditional practices and e-learning was implemented to teach microbiological methods to pharmacy students. Virtual laboratory modules were used to acquire nonmanual skills such as visual and mental skills for data reading, calculations, interpretation of the results, deployment of an analytical protocol, and reporting results. Assesment Learning achievement was evaluated by questions about microbiology case-based problems. Students' perceptions were obtained by assessment questionnaire. Conclusion By combining different learning scenarios, the acquisition of the necessary but otherwise unreachable competences was achieved. Students achieved similar grades in the modules whose initiation was in the virtual laboratory to the grades they achieved with the modules whose complete or partial initiation took place in the laboratory. The knowledge acquired was satisfactory and the participants valued the experience. PMID:17149449
NASA Astrophysics Data System (ADS)
Judge, S. A.; Wilson, T. J.
2005-12-01
The International Polar Year (IPY) provides an excellent opportunity for highlighting polar research in education. The ultimate goal of our outreach and education program is to develop a series of modules that are focused on societally-relevant topics being investigated in Antarctic earth science, while teaching basic geologic concepts that are standard elements of school curricula. For example, we envision a university-level, undergraduate, introductory earth science class with the entire semester/quarter laboratory program focused on polar earth science research during the period of the International Polar Year. To attain this goal, a series of modules will be developed, including inquiry-based exercises founded on imagery (video, digital photos, digital core scans), GIS data layers, maps, and data sets available from OSU research groups. Modules that highlight polar research are also suitable for the K-12 audience. Scaleable/grade appropriate modules that use some of the same data sets as the undergraduate modules can be outlined for elementary through high school earth science classes. An initial module is being developed that focuses on paleoclimate data. The module provides a hands-on investigation of the climate history archived in both ice cores and sedimentary rock cores in order to understand time scales, drivers, and processes of global climate change. The paleoclimate module also demonstrates the types of polar research that are ongoing at OSU, allowing students to observe what research the faculty are undertaking in their respective fields. This will link faculty research with student education in the classroom, enhancing learning outcomes. Finally, this module will provide a direct link to U.S. Antarctic Program research related to the International Polar Year, when new ice and sedimentary rock cores will be obtained and analyzed. As a result of this laboratory exercise, the students will be able to: (1) Define an ice core and a sedimentary rock core. (Knowledge) (2) Identify climate indicators in each type of core by using digital core images. These include layers of particulate material (such as volcanic tephra) in ice cores and layers of larger grains (such as ice-rafted debris) in sedimentary rock cores. (Knowledge) (3) Describe how cores are taken in extreme environments, such as Antarctica. (Comprehension) (4) Use actual data from proxies in the ice and sedimentary records to graph changes through time in the cores. (Application) (5) Recognize variances in data sets that might illustrate periods of climate change. (Analysis) (6) Integrate data results from several proxies in order to construct a climate record for both ice cores and sedimentary rock cores. (Synthesis) (7) Interpret both the ice core and sedimentary rock core records to ascertain the effectiveness of both of these tools in archiving climate records. (Evaluation)
Minuti, Aurelia; Sorensen, Karen; Schwartz, Rachel; King, Winifred S; Glassman, Nancy R; Habousha, Racheline G
2018-01-01
This article describes the development of a flipped classroom instructional module designed by librarians to teach first- and second-year medical students how to search the literature and find evidence-based articles. The pre-class module consists of an online component that includes reading, videos, and exercises relating to a clinical case. The in-class sessions, designed to reinforce important concepts, include various interactive activities. The specifics of designing both components are included for other health sciences librarians interested in presenting similar instruction. Challenges encountered, particularly in the live sessions, are detailed, as are the results of evaluations submitted by the students, who largely enjoyed the online component. Future plans are contingent on solving technical problems encountered during the in-class sessions.
NASA Astrophysics Data System (ADS)
Ramien, Natalie; Loebman, S. R.; Player, V.; Larson, A.; Torcolini, N. B.; Traverse, A.
2011-01-01
Currently astronomy learning is heavily geared towards visual aids; however, roughly 10 million people in North America are sight impaired. Every student should have access to meaningful astronomy curriculum; an understanding of astronomy is an expectation of national and state science learning requirements. Over the last ten years, Noreen Grice has developed Braille and large print astronomy text books aimed at sight impaired learners. We build upon Grice's written work and present here a five day lesson plan that integrates 2D reading with 3D activities. Through this curriculum, students develop an intuitive understanding of astronomical distance, size, composition and lifetimes. We present five distinct lesson modules that can be taught individually or in a sequential form: the planets, our sun, stars, stellar evolution and galaxies. We have tested these modules on sight impaired students and report the results here. Overall, we find the work presented here lends itself equally well to a week long science camp geared toward middle school sight impaired taught by astronomers or as supplemental material integrated into a regular classroom science curriculum. This work was made possible by a 2007 Simple Effective Education and Dissemination (SEED) Grant For Astronomy Researchers, Astronomical Society of the Pacific through funds provided by the Planck Mission, Jet Propulsion Laboratory, California Institute of Technology.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- NASA Node 2 module sits inside the Space Station Processing Facility highbay with its new name, Harmony, revealed. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
Prunuske, Amy J; Henn, Lisa; Brearley, Ann M; Prunuske, Jacob
Medical education increasingly involves online learning experiences to facilitate the standardization of curriculum across time and space. In class, delivering material by lecture is less effective at promoting student learning than engaging students in active learning experience and it is unclear whether this difference also exists online. We sought to evaluate medical student preferences for online lecture or online active learning formats and the impact of format on short- and long-term learning gains. Students participated online in either lecture or constructivist learning activities in a first year neurologic sciences course at a US medical school. In 2012, students selected which format to complete and in 2013, students were randomly assigned in a crossover fashion to the modules. In the first iteration, students strongly preferred the lecture modules and valued being told "what they need to know" rather than figuring it out independently. In the crossover iteration, learning gains and knowledge retention were found to be equivalent regardless of format, and students uniformly demonstrated a strong preference for the lecture format, which also on average took less time to complete. When given a choice for online modules, students prefer passive lecture rather than completing constructivist activities, and in the time-limited environment of medical school, this choice results in similar performance on multiple-choice examinations with less time invested. Instructors need to look more carefully at whether assessments and learning strategies are helping students to obtain self-directed learning skills and to consider strategies to help students learn to value active learning in an online environment.
Teaching calculus using module based on cooperative learning strategy
NASA Astrophysics Data System (ADS)
Arbin, Norazman; Ghani, Sazelli Abdul; Hamzah, Firdaus Mohamad
2014-06-01
The purpose of the research is to evaluate the effectiveness of a module which utilizes the cooperative learning for teaching Calculus for limit, derivative and integral. The sample consists of 50 semester 1 students from the Science Programme (AT 16) Sultan Idris Education University. A set of questions of related topics (pre and post) has been used as an instrument to collect data. The data is analyzed using inferential statistics involving the paired sample t-test and the independent t-test. The result shows that students have positive inclination towards the modulein terms of understanding.
ERIC Educational Resources Information Center
Farina, William J., Jr.; Bodzin, Alec M.
2018-01-01
Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified…
Education through Fiction: Acquiring Opinion-Forming Skills in the Context of Genomics
ERIC Educational Resources Information Center
Knippels, Marie-Christine P. J.; Severiens, Sabine E.; Klop, Tanja
2009-01-01
The present study examined the outcomes of a newly designed four-lesson science module on opinion-forming in the context of genomics in upper secondary education. The lesson plan aims to foster 16-year-old students' opinion-forming skills in the context of genomics and to test the effect of the use of fiction in the module. The basic hypothesis…
ERIC Educational Resources Information Center
Stevenson, R. D.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Several modules in the thermodynamic series considered the application of the First Law to…
Teaching as Coaching: A Case Study of Awareness and Learning in Engineering Education
ERIC Educational Resources Information Center
Gynnild, Vidar; Holstad, Anders; Myrhaug, Dag
2007-01-01
This paper presents a number of case studies in Oceanography, an optional module in the third/fourth year of a Master of Science programme at Norwegian University of Science and Technology. The main objective was to gain more thorough insights into student learning by examining two sets of individual oral examinations. In addition, all students…
ERIC Educational Resources Information Center
Singer, Kerri Patrick; Foutz, Tim; Navarro, Maria; Thompson, Sidney
2015-01-01
Engineers today need both engineering knowledge and social science knowledge to solve complex problems. However, most people have a traditional view of engineering as a field dominated by math and science foci, with little social consequence. This study examined and compared perceptions about engineering from Freshmen taking three different First…
ERIC Educational Resources Information Center
Hse, Shun-Yi
1991-01-01
The development of an instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) is described. A module developed for heat and temperature was administered to test its effects by comparing its use with the same unit in the New Physical Science Curriculum (NPSC). The methodology, results, and discussion…
Efficacy of a Meiosis Learning Module Developed for the Virtual Cell Animation Collection.
Goff, Eric E; Reindl, Katie M; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G; Schroeder, Noah L; White, Alan R
2017-01-01
Recent reports calling for change in undergraduate biology education have resulted in the redesign of many introductory biology courses. Reports on one common change to course structure, the active-learning environment, have placed an emphasis on student preparation, noting that the positive outcomes of active learning in the classroom depend greatly on how well the student prepares before class. As a possible preparatory resource, we test the efficacy of a learning module developed for the Virtual Cell Animation Collection. This module presents the concepts of meiosis in an interactive, dynamic environment that has previously been shown to facilitate learning in introductory biology students. Participants ( n = 534) were enrolled in an introductory biology course and were presented the concepts of meiosis in one of two treatments: the interactive-learning module or a traditional lecture session. Analysis of student achievement shows that students who viewed the learning module as their only means of conceptual presentation scored significantly higher ( d = 0.40, p < 0.001) than students who only attended a traditional lecture on the topic. Our results show the animation-based learning module effectively conveyed meiosis conceptual understanding, which suggests that it may facilitate student learning outside the classroom. Moreover, these results have implications for instructors seeking to expand their arsenal of tools for "flipping" undergraduate biology courses. © 2017 E. E. Goff et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Education for sustainable development - Resources for physics and sciences teachers
NASA Astrophysics Data System (ADS)
Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan
2016-03-01
With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.
Water Exploration: An Online High School Water Resource Education Program
NASA Astrophysics Data System (ADS)
Ellins, K. K.; McCall, L. R.; Amos, S.; McGowan, R. F.; Mote, A.; Negrito, K.; Paloski, B.; Ryan, C.; Cameron, B.
2010-12-01
The Institute for Geophysics at The University of Texas at Austin and 4empowerment.com, a Texas-based for-profit educational enterprise, teamed up with the Texas Water Development Board to develop and implement a Web-based water resources education program for Texas high school students. The program, Water Exploration uses a project-based learning approach called the Legacy Cycle model to permit students to conduct research and build an understanding about water science and critical water-related issues, using the Internet and computer technology. The three Legacy Cycle modules in the Water Exploration curriculum are: Water Basics, Water-Earth Dynamics and People Need Water. Within each Legacy Cycle there are three different challenges, or instructional modules, laid out as projects with clearly stated goals for students to carry out. Each challenge address themes that map to the water-related “Big Ideas” and supporting concepts found in the new Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science. As students work through a challenge they follow a series of steps, each of which is associated (i.e., linked online) with a manageable number of corresponding, high quality, research-based learning activities and Internet resources, including scholarly articles, cyber tools, and visualizations intended to enhance understanding of the concepts presented. The culmination of each challenge is a set of “Go Public” products that are the students’ answers to the challenge and which serve as the final assessment for the challenge. The “Go Public” products are posted to a collaborative workspace on the Internet as the “legacy” of the students’ work, thereby allowing subsequent groups of students who take the challenge to add new products. Twenty-two science educators have been trained on the implementation of the Water Exploration curriculum. A graduate student pursuing a master’s degree in science education through The University of Texas’ UTEACH program is conducting research to track the teachers’ implementation of Water Exploration and assess their comfort with cyber-education through classroom observations, students and teacher surveys, and evaluation of students’ “Go Public” products.
NASA Astrophysics Data System (ADS)
Liu, Yuling; Wang, Xiaoping; Zhu, Yuhui; Fei, Lanlan
2017-08-01
This paper introduces a Comprehensively Functional Integrated Management Information System designed for the Optical Engineering Major by the College of Optical Science and Engineering, Zhejiang University, which combines the functions of teaching, students learning, educational assessment and management. The system consists of 5 modules, major overview, online curriculum, experiment teaching management, graduation project management and teaching quality feedback. The major overview module introduces the development history, training program, curriculums and experiment syllabus and teaching achievements of optical engineering major in Zhejiang University. The Management Information System is convenient for students to learn in a mobile and personalized way. The online curriculum module makes it very easy for teachers to setup a website for new curriculums. On the website, teachers can help students on their problems about the curriculums in time and collect their homework online. The experiment teaching management module and the graduation project management module enables the students to fulfill their experiment process and graduation thesis under the help of their supervisors. Before students take an experiment in the lab, they must pass the pre-experiment quiz on the corresponding module. After the experiment, students need to submit the experiment report to the web server. Moreover, the module contains experiment process video recordings, which are very helpful to improve the effect of the experiment education. The management of the entire process of a student's graduation program, including the project selection, mid-term inspection, progress report of every two weeks, final thesis, et al, is completed by the graduation project management module. The teaching quality feedback module is not only helpful for teachers to know whether the education effect of curriculum is good or not, but also helpful for the administrators of the college to know whether the design of syllabus is reasonable or not. The Management Information System changes the management object from the education results to the entire education processes. And it improves the efficiency of the management. It provides an effective method to promote curriculum construction management by supervision and evaluation, which improves students' learning outcomes and the quality of curriculums. As a result, it promotes the quality system of education obviously.
Arino de la Rubia, Leigh S
2012-09-01
The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.
Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.
2014-12-01
As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.
ERIC Educational Resources Information Center
Siritunga, Dimuth; Montero-Rojas, Maria; Carrero, Katherine; Toro, Gladys; Velez, Ana; Carrero-Martinez, Franklin A.
2011-01-01
Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students' interest in pursuing a research career. In this paper, we present a model for the implementation of…
ERIC Educational Resources Information Center
Eichler, Jack F.; Peeples, Junelyn
2016-01-01
In the face of mounting evidence revealing active learning approaches result in improved student learning outcomes compared to traditional passive lecturing, there is a growing need to change the way instructors teach large introductory science courses. However, a large proportion of STEM faculty continues to use traditional instructor-centered…
ERIC Educational Resources Information Center
Lucas, K. C.; Dippenaar, S. M.; Du Toit, P. H.
2014-01-01
Summative assessment qualifies the achievement of a student in a particular field of specialization at a given time. Questions should include a range of cognitive levels from Bloom's taxonomy and be consistent with the learning outcomes of the module in question. Furthermore, a holistic approach to assessment, such as the application of the…
ERIC Educational Resources Information Center
Brittle, Seth W.; Baker, Joshua D.; Dorney, Kevin M.; Dagher, Jessica M.; Ebrahimian, Tala; Higgins, Steven R.; Pavel Sizemore, Ioana E.
2015-01-01
The increased worldwide exploitation of nanomaterials has reinforced the importance of introducing nanoscale aspects into the undergraduate and graduate curriculum. To meet this need, a novel nano-laboratory module was developed and successfully performed by science and engineering students. The main goal of the experiment was to accurately…
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2013-02-01
This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and cognitive achievement were examined using a pre-post-follow-up design. Participants of our day-long module Genetic Fingerprinting were 409 twelfth-graders. During the module instructional phases (pre-lab, theoretical, experimental, and interpretation phases), we measured the students' mental effort (ME) as an index of CL. By clustering the students' module-phase-specific ME pattern, we found three student CL clusters which were independent of the module instructional phases, labeled as low-level, average-level, and high-level loaded clusters. Additionally, we found two student CL clusters that were each particular to a specific module phase. Their members reported especially high ME invested in one phase each: within the pre-lab phase and within the interpretation phase. Differentiating the clusters, we identified uncertainty tolerance, prior experience in experimentation, epistemic interest, and prior knowledge as relevant learner characteristics. We found relationships to cognitive achievement, but no relationships to the examined laboratory variables. Our results underscore the importance of pre-lab and interpretation phases in hands-on teaching in science education and the need for teachers to pay attention to these phases, both inside and outside of outreach laboratory learning settings.
Designing high-quality interactive multimedia learning modules.
Huang, Camillan
2005-01-01
Modern research has broadened scientific knowledge and revealed the interdisciplinary nature of the sciences. For today's students, this advance translates to learning a more diverse range of concepts, usually in less time, and without supporting resources. Students can benefit from technology-enhanced learning supplements that unify concepts and are delivered on-demand over the Internet. Such supplements, like imaging informatics databases, serve as innovative references for biomedical information, but could improve their interaction interfaces to support learning. With information from these digital datasets, multimedia learning tools can be designed to transform learning into an active process where students can visualize relationships over time, interact with dynamic content, and immediately test their knowledge. This approach bridges knowledge gaps, fosters conceptual understanding, and builds problem-solving and critical thinking skills-all essential components to informatics training for science and medicine. Additional benefits include cost-free access and ease of dissemination over the Internet or CD-ROM. However, current methods for the design of multimedia learning modules are not standardized and lack strong instructional design. Pressure from administrators at the top and students from the bottom are pushing faculty to use modern technology to address the learning needs and expectations of contemporary students. Yet, faculty lack adequate support and training to adopt this new approach. So how can faculty learn to create educational multimedia materials for their students? This paper provides guidelines on best practices in educational multimedia design, derived from the Virtual Labs Project at Stanford University. The development of a multimedia module consists of five phases: (1) understand the learning problem and the users needs; (2) design the content to harness the enabling technologies; (3) build multimedia materials with web style standards and human factors principles; (4) user testing; (5) evaluate and improve design.
Natural science modules with SETS approach to improve students’ critical thinking ability
NASA Astrophysics Data System (ADS)
Budi, A. P. S.; Sunarno, W.; Sugiyarto
2018-05-01
SETS (Science, Environment, Technology and Society) approach for learning is important to be developed for middle school, since it can improve students’ critical thinking ability. This research aimed to determine feasibility and the effectiveness of Natural Science Module with SETS approach to increase their critical thinking ability. The module development was done by invitation, exploration, explanation, concept fortifying, and assessment. Questionnaire and test performed including pretest and posttest with control group design were used as data collection technique in this research. Two classes were selected randomly as samples and consisted of 32 students in each group. Descriptive data analysis was used to analyze the module feasibility and t-test was used to analyze their critical thinking ability. The results showed that the feasibility of the module development has a very good results based on assessment of the experts, practitioners and peers. Based on the t-test results, there was significant difference between control class and experiment class (0.004), with n-gain score of control and the experiment class respectively 0.270 (low) and 0.470 (medium). It showed that the module was more effective than the textbook. It was able to improve students’ critical thinking ability and appropriate to be used in learning process.
Taking "The Math You Need When You Need It" Modules Beyond Introductory Geology Courses
NASA Astrophysics Data System (ADS)
Baer, E. M.; Wenner, J. M.; Burn, H. E.
2012-12-01
"The Math You Need, When You Need It" (TMYN) modules are finding use well beyond the courses for which they were originally written. However, faculty survey responses indicate that the modules are used in similar ways, suggesting that the overall design of the modules is effective. TMYN modules are online resources designed to help students develop quantitative skills in conjunction with introductory geology courses. Since 2010, 29 faculty members at 26 institutions used these asynchronous resources at in 68 different courses nationwide, impacting about 3000 students. After each use of the modules, instructors responded to a survey about their use of the modules and the impact on each course and student cohort. Of the 29 instructors, 16 responded with a total of 36 implementations, a 52% response rate. Survey responses indicate use of TMYN modules in classes well beyond their original design. The modules were originally designed for students in introductory geology classes, especially those targeted at non-geoscience majors. Sixty-nine percent (22/32) of TMYN courses included introductory geology courses such as Physical Geology, Earth System Science and Environmental Geology. The remainder of courses included multiple uses in oceanography and meteorology courses and more specialized geoscience courses such as geomorphology, structural geology and hydrology. Surveys suggest that only 63% of courses that used TMYN (20/32) were targeted to students in general education courses. Nine percent (3/32) of courses were targeted to STEM majors and 19% (6/32) were specifically targeted to geoscience majors, including upper-level courses. Despite the wide variety of institutions, instructors, classes, and student educational goals, faculty incorporated the modules into their curriculum in as originally designed, indicating that the overall design of the modules is effective. Twenty-two respondents indicate that modules were assigned immediately prior to using a skill in the classroom (either in lab exercises or a lecture period). Almost all instructors employed pre- and posttests to gauge learning. More than ¾ of survey respondents introduced the modules within the first week of class. In all but one instance, students were instructed to complete an online quiz immediately after working through the online modules and most (77%) designed these post-module quizzes as formative assessments allowing at least 3 attempts. The grades on these modules contributed to students' grades but were relatively low stakes with 88% reporting that the modules contributed to less than 10% of a student's course grade. Given the use beyond the introductory geology classroom and the similarity of the use of these modules in a wide variety of courses, it appears that the design of the modules is sound. However, previous studies have indicated that mathematical skills are not easily transferred (e.g. Bassok. and Holyoak, 1989) suggesting the adaptation of the modules for use outside the geosciences.
End of life care skills are essential for all students.
Stapleton, Vanessa; Holland, Dan
2009-09-09
Further to the art&science article, 'An educational programme for end of life care in an acute setting' (August 12), I agree that modules on communication and bereavement are needed at all stages of nurse training.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left) and Commander Pam Melroy stand in front of the Node 2 module with it's new name, Harmony, unveiled. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
2007-03-15
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility, William Gerstenmaier, NASA's associate administrator for Space Operations, talks to members of the media during a ceremony to unveil the Node 2 module's new name, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Commander Pam Melroy speaks to members of the press and guests during a ceremony to unveil the new name of NASA's Node 2 module, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
Brodeur, J. J.; Maclachlan, J. C.; Bagg, J.; Chiappetta-Swanson, C.; Vine, M. M.; Vajoczki, S.
2013-12-01
Geospatial literacy -- the ability to conceptualize, capture, analyze and communicate spatial phenomena -- represents an important competency for 21st Century learners in a period of 'Geospatial Revolution'. Though relevant to in-course learning, these skills are often taught externally, placing time and resource pressures on the service providers - commonly libraries - that are relied upon to provide instruction. The emergence of online and blended modes of instruction has presented a potential means of increasing the cost-effectiveness of such activities, by simultaneously reducing instructional costs, expanding the audience for these resources, and addressing student preferences for asynchronous learning and '24-7' access. During 2011 and 2012, McMaster University Library coordinated the development, implementation and assessment of blended learning modules for geospatial literacy instruction in first-year undergraduate Social Science courses. In this paper, we present the results of a comprehensive mixed-methods approach to assess the efficacy of implementing blended learning modules to replace traditional (face-to-face), library-led, first-year undergraduate geospatial literacy instruction. Focus groups, personal interviews and an online survey were used to assess modules across dimensions of: student use, satisfaction and accessibility requirements (via Universal Instructional Design [UID] principles); instructor and teaching staff perception of pedagogical efficacy and instructional effectiveness; and, administrator cost-benefit assessment of development and implementation. Results showed that both instructors and students identified significant value in using the online modules in a blended-learning setting. Reaffirming assumptions of students' '24/7' learning preferences, over 80% of students reported using the modules on a repeat basis. Students were more likely to use the modules to better understand course content than simply to increase their grade in the course, which demonstrates applicability of the modules beyond a strict surface-learning approach. Instructors felt that giving students access to these modules increased flexibility in how in-class time was used, reduced student anxiety in busy lab sessions, and increased the effectiveness of face-to-face instruction and summative assessments. Though instructors perceived little to no change in grades as a result of the migration to blended-learning instruction, students overwhelmingly perceived a positive impact on their learning, as over 75% felt that the modules improved their geospatial literacy skills and general understanding in the course. Cost-benefit analyses proved challenging, as administrators struggled to estimate the true costs of both traditional instruction and module development. Recommendations for future module modification exposed the competing expectations of generalizing content to increase applicability and cost-effectiveness, versus tailoring modules to specific course content.
ERIC Educational Resources Information Center
Riskin, Steve R.
This paper discusses the results of an experimental, non-traditional university class in sociology in which students produced an interactive multimedia module in a social science subject area using a computer system that allowed instant access to film, sound, television, images, and text. There were no constraints on the selection of media, or the…
Munir, Ahmed R; Prem, Kumar D
2016-03-01
There is a growing awareness among teachers in the complementary and alternative medicine (CAM) disciplines that a formal training in educational methodology can improve their performance as teachers and student evaluators. The Training of Trainers programs conducted by Rajiv Gandhi University of Health Sciences, Karnataka, in the previous years have brought about a transformation among the teachers who attended those programs. Also the teachers were witness to a changing perception among students towards teachers who adapt innovative teaching/assessment strategies. This report illustrates an innovative training activity that was adapted to design a reference model that can be developed as an operational model for large-scale execution. Teachers who are under the affiliated CAM Institutions in Rajiv Gandhi University of Health Sciences, Karnataka, participated in a three-month 'Short Course in Educational Methodology'. This program was delivered on distance learning mode. The course was organised into four modules. Study material was provided for each of the module in the form of a study guide and related reference articles in electronic form. There were three contact programs - Induction and Introduction that also addressed overview of entire course and the subject matter of Module 1, and this was at the beginning of the course, first contact program to address the learner needs of Modules 2 and 3 and second contact program for the contents in Module 4. The participants were engaged during the entire course duration with interactive contact programs, self-study and application of concepts in their teaching/assessment practices, submission of assignments online, and microteaching presentation and peer review. The documentation and raw data generated during the course of training were used to generate an operational model for training of university teachers of health sciences faculty in general and teachers of CAM disciplines in particular. Establishing a model of training for university teachers who are engaged in health sciences education provides a strong platform to realise the roles of teacher, evolve as a conscientious and committed teacher and infuse their learners with passion and commitment to become competent in their professional performance.
2011-01-01
Background Paintings have been used in Medical Humanities modules in Nepal at Manipal College of Medical Sciences and KIST Medical College. Detailed participant feedback about the paintings used, the activities carried out, problems with using paintings and the role of paintings in future modules has not been previously done. Hence the present study was carried out. Methods The present module for first year medical students was conducted from February to August 2010 at KIST Medical College, Nepal. Paintings used were by Western artists and obtained from the Literature, Arts and Medicine database. The activities undertaken by the students include answering the questions 'What do you see' and 'What do you feel' about the painting, creating a story of 100 words about the scene depicted, and interpreting the painting using role plays and poems/songs. Feedback was not obtained about the last two activities. In August 2010 we obtained detailed feedback about the paintings used. Results Seventy-eight of the 100 students (78%) participated. Thirty-four students (43.6%) were male. The most common overall comments about the use of paintings were "they helped me feel what I saw" (12 respondents), "enjoyed the sessions" (12 respondents), "some paintings were hard to interpret" (10 respondents) and "were in tune with module objectives" (10 respondents). Forty-eight (61.5%) felt the use of western paintings was appropriate. Suggestions to make annotations about paintings more useful were to make them shorter and more precise, simplify the language and properly introduce the artist. Forty-one students (52.6%) had difficulty with the exercise 'what do you feel'. Seventy-four students (94.9%) wanted paintings from Nepal to be included. Conclusions Participant response was positive and they were satisfied with use of paintings in the module. Use of more paintings from Nepal and South Asia can be considered. Further studies may be required to understand whether use of paintings succeeded in fulfilling module objectives. PMID:21385427
NASA Astrophysics Data System (ADS)
Gallagher, L.; Morse, M.; Maxwell, R. M.
2017-12-01
The Integrated GroundWater Modeling Center (IGWMC) at Colorado School of Mines has, over the past three years, developed a community outreach program focusing on hydrologic science education, targeting K-12 teachers and students, and providing experiential learning for undergraduate and graduate students. During this time, the programs led by the IGWMC reached approximately 7500 students, teachers, and community members along the Colorado Front Range. An educational campaign of this magnitude for a small (2 full-time employees, 4 PIs) research center required restructuring and modularizing of the outreach strategy. We refined our approach to include three main "modules" of delivery. First: grassroots education delivery in the form of K-12 classroom visits, science fairs, and teacher workshops. Second: content development in the form of lesson plans for K-12 classrooms and STEM camps, hands-on physical and computer model activities, and long-term citizen science partnerships. Lastly: providing education/outreach experiences for undergraduate and graduate student volunteers, training them via a 3-credit honors course, and instilling the importance of effective science communication skills. Here we present specific case studies and examples of the successes and failures of our three-pronged system, future developments, and suggestions for entities newly embarking on an earth science education outreach campaign.
ERIC Educational Resources Information Center
Houle, Meredith E.; Barnett, G. Michael
2008-01-01
The emerging field of urban ecology has the potential to engage urban youth in the practices of scientists by studying a locally relevant environmental problem. To this end, we are developing curriculum modules designed to engage students in learning science through the use of emerging information technology. In this paper, we describe the impact…
A role of decision-making competency in science learning utilizing a social valuation framework
NASA Astrophysics Data System (ADS)
Katsuo, Akihito
2005-11-01
The role of decision-making in learning performance has been an occasional topic in the research literature in science education, but rarely has it been a central issue in the field. Nonetheless, recent studies regarding the topic in several fields other than education, such as cognitive neuroscience and social choice theory, indicate the fundamental importance(s) of the topic. This study focuses on a possible role of decision-making in science learning. Initially the study was designed to probe the decision-making ability of elementary school children with a modified version of the Iowa Gambling Task (IGT). The experiment involved six Montessori 3rd and 4th grade students as the experimental group and eight public school 3rd and 4th grade students as the control group. The result of the modified IGT revealed a tendency in choice trajectories favoring children at the Montessori school. However, the probabilistic value went below the statistically significant level set by the U test. A further study focused on the impact of better decision-making ability revealed in the first experiment on performances with a science learning module that emphasized collective reasoning. The instruction was based on a set of worksheets with multiple choices on which students were asked to make predictions with and to provide supportive arguments regarding outcomes of experiments introduced in the worksheet. Then the whole class was involved with a real experiment to see which choice was correct. The findings in the study indicated that the Montessori students often obtained higher scores than non-Montessori students in making decision with a tendency of consistency in terms of their choices of the alternatives on the worksheets. The findings of the experiments were supported by a correlational analysis that was performed at the end of study. Although no statistically significant correlations were found, there was a tendency for positively associative shifts between the scores of the modified IGT and the scores for the performances on the science module for the Montessori students.
Mexican Identification. Project Mexico.
ERIC Educational Resources Information Center
Castellano, Rita
This document presents an outline and teacher's guide for a community college-level teaching module in Mexican identification, designed for students in introductory courses in the social sciences. Although intended specifically for cultural anthropology, urban anthropology, comparative social organization and sex roles in cross-cultural…
Education modules using EnviroAtlas
Proposal #1: Exploration and Discovery through Maps: Teaching Science with Technology (Elementary)Online maps have the power to bring students closer to their local natural environments. EnviroAtlas is an interactive, web-based tool that was designed by the EPA and its partners ...
Humane Education: Science, Technology, and Society in the English Classroom.
ERIC Educational Resources Information Center
Emeigh, Tonya Huber
1988-01-01
Presents "Beastly Thoughts," a holistic writing module designed to involve students in decision-making processes about socially relevant issues regarding animals. Provides 48 activities for investigation and lists 33 references for possible book reviews. Includes 38 references. (MVL)
Nurturing Soft Skills Among High School Students Through Space Weather Competition
NASA Astrophysics Data System (ADS)
Abdullah, Mardina; Abd Majid, Rosadah; Bais, Badariah; Syaidah Bahri, Nor
2016-07-01
Soft skills fulfill an important role in shaping an individual's personality. It is of high importance for every student to acquire adequate skills beyond academic or technical knowledge. The objective of this project was to foster students' enthusiasm in space science and develop their soft skills such as; interpersonal communication, critical thinking and problem-solving, team work, lifelong learning and information management, and leadership skills. This is a qualitative study and the data was collected via group interviews. Soft skills development among high school students were nurtured through space weather competition in solar flare detection. High school students (16 to 17 years old) were guided by mentors consisting of science teachers to carry out this project based on a module developed by UKM's researchers. Students had to acquire knowledge on antenna development and construct the antenna with recyclable materials. They had to capture graphs and identify peaks that indicate solar flare. Their findings were compared to satellite data for verification. They also presented their work and their findings to the panel of judges. After observation, it can be seen that students' soft skills and interest in learning space science had become more positive after being involved in this project.
Using EarthLabs to Enhance Earth Science Curriculum in Texas
NASA Astrophysics Data System (ADS)
Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.
2012-12-01
As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by being an active participant in the EarthLabs curriculum review, implementation and professional development process.
Resendes, Karen K
2015-01-01
Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular biology course that couples inquiry-based experimental design with extensive scientific writing was designed at Westminster College to expose first year students to these concepts early in their undergraduate career. In the module students used scientific literature to design and then implement an experiment on the effect of cellular stress on protein expression in HeLa cells. In parallel the students developed a research paper in the style of the undergraduate journal BIOS to report their results. HeLa cells were used to integrate the research experience with the Westminster College "Next Chapter" first year program, in which the students explored the historical relevance of HeLa cells from a sociological perspective through reading The Immortal Life of Henrietta Lacks by Rebecca Skloot. In this report I detail the design, delivery, student learning outcomes, and assessment of this module, and while this exercise was designed for an introductory course at a small primarily undergraduate institution, suggestions for modifications at larger universities or for upper division courses are included. Finally, based on student outcomes suggestions are provided for improving the module to enhance the link between teaching students skills in experimental design and execution with developing student skills in information literacy and writing. © 2015 The International Union of Biochemistry and Molecular Biology.
21st Century Learning Skills Embedded in Climate Literacy Teacher Professional Development
NASA Astrophysics Data System (ADS)
Myers, R. J.; Schwerin, T. G.; Blaney, L.
2011-12-01
Trilling and Fadel's "21st Century Learning Skills" defines a vision of how to infuse an expanded set of skills, competencies and flexibilities into the classroom. Among these skills are global awareness, health and environmental literacy. The authors contend that in order for our students to compete, they will need critical thinking and problem solving skills, communication and collaboration, and creativity and innovation. Students will also need to be digital savvy. This poster outlines a program of preparing teachers to implement inquiry-based modules that allow students to exercise hypothetical deductive reasoning to address climate literacy issues such as: the Dust Bowl, thermohaline circulation, droughts, the North Atlantic Oscillation, climate variability and energy challenges. This program is implemented through the Earth System Science Education Alliance. ESSEA supports the educational goal of "attracting and retaining students in science careers" and the associated goal of "attracting and retaining students in science through a progression of educational opportunities for students, teachers and faculty." ESSEA provides long-duration educator professional development that results in deeper content understanding and confidence in teaching global climate change and science disciplines. The target audience for this effort is pre-service and in-service K-12 teachers. The ESSEA program develops shared educational resources - including modules and courses - that are based on NASA and NOAA climate science and data. The program is disseminated through the ESSEA Web site: http://essea.courses.strategies.org. ESSEA increases teachers' access to high-quality materials, standards-based instructional methods and content knowledge. Started in 2000 and based on online courses for K-12 teachers, ESSEA includes the participation of faculty at 45 universities and science centers. Over 3,500 pre- and in-service K-12 teachers have completed ESSEA courses. In addition to 21st Century learning skills, the ESSEA program is based on the urgent need for professional development for pre- and in-service teachers of Earth science. The Revolution in Earth and Space Science Education (2001) cites the Glenn Report saying "...the way to interest children in mathematics and science is through teachers who are not only enthusiastic about their subjects, but who are also steeped in their disciplines and who have the professional training - as teachers - to teach those subjects well. Nor is this teacher training simply a matter of preparation; it depends just as much - or even more - on sustained, high-quality professional development" (p. 1). This treatise states that Earth and space sciences are in the greatest need for professional development. Teachers find themselves inadequately qualified to teach science and find that professional development is not available or lacking in quality. The ESSEA program addresses its educational priorities through enriching pre- and in-service Earth science teachers' backgrounds in Earth system science, specifically in the area of global climate change, and through developing educational materials in support of science education.
Marsan, Lynnsay A; D'Arcy, Christina E; Olimpo, Jeffrey T
2016-12-01
Evidence suggests that incorporating quantitative reasoning exercises into existent curricular frameworks within the science, technology, engineering, and mathematics (STEM) disciplines is essential for novices' development of conceptual understanding and process skills in these domains. Despite this being the case, such studies acknowledge that students often experience difficulty in applying mathematics in the context of scientific problems. To address this concern, the present study sought to explore the impact of active demonstrations and critical reading exercises on novices' comprehension of basic statistical concepts, including hypothesis testing, experimental design, and interpretation of research findings. Students first engaged in a highly interactive height activity that served to intuitively illustrate normal distribution, mean, standard deviation, and sample selection criteria. To enforce practical applications of standard deviation and p -value, student teams were subsequently assigned a figure from a peer-reviewed primary research article and instructed to evaluate the trustworthiness of the data. At the conclusion of this exercise, students presented their evaluations to the class for open discussion and commentary. Quantitative assessment of pre- and post-module survey data indicated a statistically significant increase both in students' scientific reasoning and process skills and in their self-reported confidence in understanding the statistical concepts presented in the module. Furthermore, data indicated that the majority of students (>85%) found the module both interesting and helpful in nature. Future studies will seek to develop additional, novel exercises within this area and to evaluate the impact of such modules across a variety of STEM and non-STEM contexts.
Foster, Jamie S; Lemus, Judith D
2015-01-01
Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.
Hands-On Optics: An Informal Education Program for Exploring Light and Color
NASA Astrophysics Data System (ADS)
Pompea, S. M.; Walker, C. E.; Peruta, C. C.; Kinder, B. A.; Aceituno, J. C.; Pena, M. A.
2005-05-01
Hands-On Optics (HOO) is a collaborative four-year program to create and sustain a unique, national, informal science education program to excite students about science by actively engaging them in optics activities. It will reach underrepresented middle school students in after-school programs and at hands-on science centers nationwide. Project partners with NOAO are SPIE-The International Society for Optical Engineering, the Optical Society of America (OSA), and the Mathematics, Engineering, Science Achievement Program (MESA) of California. This program builds on the 2001 National Science Foundation planning grant (number ESI-0136024), Optics Education - A Blueprint for the 21st Century, undertaken to address the disconnect between the ubiquity of optics in everyday life and the noticeable absence of optics education in K-12 curricula and in informal science education. NOAO - with expertise in teaching optics, developing optics kits, and in science-educator partnerships is designing the HOO instructional materials by adapting well-tested formal education activities on light, color, and optical technology for the informal setting. These hands-on, high-interest, standards-connected activities and materials serve as the basis for 6, three-hour-long optics activity modules that will be used in informal education programs at 23 HOO host sites. NOAO also will train the educators, parents, and optics professionals who will work in teams to lead the HOO activities. A key component of the project will be the optics professionals from the two optical societies who currently are engaged in outreach activities and programs. Optics professionals will serve as resource agents teamed with science center and MESA educators, a model very successfully used by the Astronomical Society of the Pacific's Project ASTRO. The six modules and associated challenges and contests address reflection from one or many mirrors, image formation, colors and polarization, ultraviolet and infrared phenomena, and communication over a beam of light. Challenges and contests have also been created to augment the six modules. The Hands On Optics Project is funded by the National Science Foundation ISE program. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.
Combining content and elements of communication into an upper-level biochemistry course.
Whittington, Carli P; Pellock, Samuel J; Cunningham, Rebecca L; Cox, James R
2014-01-01
This report describes how a science communication module was incorporated into an advanced biochemistry course. Elements of communication were taught synergistically with biochemistry content in this course in an effort to expose students to a variety of effective oral communication strategies. Students were trained to use these established techniques and incorporated them into various presentations throughout the course. Three students describe their use of specific resources and how the skills learned relate to their future career. The importance and relevance of science communication are receiving unprecedented national attention. The academic scientific community must respond by incorporating more communication-centered instruction and opportunities in the classroom and laboratory. © 2013 by The International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Svirsky, A.; Rogers, K. L.; Meissner, M.; Busby, G.; Roberge, W.
2014-12-01
The New York Center for Astrobiology (NYCA) EPO effort is a collaboration combining expertise in evaluation and assessment of STEM educational modules with disciplinary expertise in astrobiology. In practice, the NYCA partners with external experts in professional development, informal education and evaluation to assist in developing and implementing certain programs of the NYCA EPO activities. Two specific program initiatives of the NYCA EPO effort offer excellent examples of programs with strong science content knowledge as well as using effective tools to address the NSF impact categories. These are the ExxonMobil Bernard Harris Summer Science Camp (EMBHSSC, in conjunction with RPI's STEM Pipeline Initiative) and the Astrobiology Teachers Academy (ATA). The EMBHSSC for middle school students focuses on NASA astrobiology initiatives around the "Quest for Life" theme. The Camp has a comprehensive evaluation component and uses pre-and post- assessment of student knowledge and interest in STEM. Recent data suggest that every student has shown a measurable gain in these areas. The ATA is a weeklong summer intensive professional development program for P-12 STEM teachers that combines discipline scientists in the NYCA with an external evaluation organization, the Association for the Cooperative Advancement of Science and Education (ACASE). The goal is for teachers to develop a new learning module for a course they teach that uses astrobiology as a content focus to engage students. The Academy has scientists collaborating with teachers in this effort, providing content and assistance in designing instructional activities. Assessments are woven into the fabric of the work in a few ways: 1. There is a purposeful focus on assessment as part of the learning module, and the content of the ATA; 2. ACASE offers teachers a tool for tracking their students' attainment of the learning goals identified in their learning module; 3. There are daily evaluations of the teachers' experiences to enable mid-course corrections, and a final evaluation of the ATA at the end of the experience. NYCA scientists support the approach of working collaboratively with external experts in evaluation as a paradigm for EPO activities sponsored by NASA. Our presentation will highlight the myriad of tools used to measure outcomes of these activities.
NASA Technical Reports Server (NTRS)
1996-01-01
This paper presents the summaries of the MCTP Summer Research Internship Program. Technological areas discussed include: Mathematical curriculum development for real world problems; Rain effects on air-water gas exchange; multi-ring impact basins on mars; developing an interactive multimedia educational cd-rom on remote sensing; a pilot of an activity for for the globe program; fossils in maryland; developing children's programming for the american horticultural society at river farm; children's learning, educational programs of the national park service; a study of climate and student satisfaction in two summer programs for disadvantaged students interested in careers in mathematics and science; the maryland governor's academy, integrating technology into the classroom; stream sampling with the maryland biological stream survey (MBSS); the imaging system inspection software technology, the preparation and detection of nominal and faulted steel ingots; event-based science, the development of real-world science units; correlation between anxiety and past experiences; environmental education through summer nature camp; enhancing learning opportunities at the Salisbury zoo; plant growth experiment, a module for the middle school classroom; the effects of proxisome proliferators in Japanese medaka embryos; development of a chapter on birth control and contraceptive methodologies as part of an interactive computer-based education module on hiv and aids; excretion of gentamicin in toadfish and goldfish; the renaissance summer program; and Are field trips important to the regional math science center?
Project TIMS (Teaching Integrated Math/Science)
NASA Technical Reports Server (NTRS)
Edwards, Leo, Jr.
1993-01-01
The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.
Instructional Efficiency of Changing Cognitive Load in an Out-of-School Laboratory
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2010-04-01
Our research objective focused on monitoring students' mental effort and cognitive achievement to unveil potential effects of an instructional change in an out-of-school laboratory offering gene technology modules. Altogether, 231 students (12th graders) attended our day-long hands-on module. Within a quasi-experimental design, a treatment group followed the newly developed two-step approach derived from cognitive load theory while a control group applied experimentation in a conventional one-step mode. The difference consisted of additional focused discussions combined with noting students' ideas (Step 1) prior to starting any experimental procedure (Step 2). We monitored mental effort (nine times during the teaching unit) and cognitive achievement (in a pre-post-design with follow-up test). The treatment demonstrated a change in instructional efficiency (by combining mental effort and cognitive achievement data), especially for intrinsically high-loaded students. Conclusions for optimizing individual cognitive load in science teaching were drawn.
NASA Astrophysics Data System (ADS)
Chamrat, Suthida
2018-01-01
The standard evaluation of Thai education relies excessively on the Ordinary National Educational Test, widely known as O-NET. However, a focus on O-Net results can lead to unsatisfactory teaching practices, especially in science subjects. Among the negative consequences, is that schools frequently engage in "cramming" practices in order to elevate their O-NET scores. Higher education, which is committed to generating and applying knowledge by socially engaged scholars, needs to take account of this situation. This research article portrays the collaboration between the faculty of education at Chiang Mai University and an educational service area to develop the model of science camp. The activities designed for the Science Camp Model were based on the Tinkering and Maker Movement. Specifically, the Science Camp Model was designed to enhance the conceptualization of electricity for Middle School Students in order to meet the standard evaluation of the Ordinary National Educational Test. The hands-on activities consisted of 5 modules which were simple electrical circuits, paper circuits, electrical measurement roleplay motor art robots and Force from Motor. The data were collected by 11 items of Electricity Socratic-based Test adapted from cumulative published O-NET tests focused on the concept of electricity concept. The qualitative data were also collected virtually via Flinga.com. The results indicated that students after participating in 5modules of science camp based on the Maker Movement and tinkering activity developed average percentage of test scores from 33.64 to 65.45. Gain score analysis using dependent t-test compared pretest and posttest mean scores. The p value was found to be statistically significant (less than 0.001). The posttest had a considerably higher mean score compared with the pretest. Qualitative data also indicated that students could explain the main concepts of electrical circuits, and the transformation of electrical energy to mechanical energy. The schools were satisfied, and expressed greater confidence in the Science Camp Model as an alternative way to improve Standard Evaluation of Ordinary National Educational Test.
NASA Astrophysics Data System (ADS)
Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.
2017-12-01
In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing volunteer resources, (4) meeting new state curricular standards, (5) developing publicly available lesson plans for other teachers and outreach programs, (6) institutionalizing the outreach program within the DEEPS community, and (7) cultivating STEM retention at the grassroots level.
VERT, a virtual clinical environment, enhances understanding of radiation therapy planning concepts.
Leong, Aidan; Herst, Patries; Kane, Paul
2018-06-01
The ability to understand treatment plan dosimetry and apply this understanding clinically is fundamental to the role of the radiation therapist. This study evaluates whether or not the Virtual Environment for Radiotherapy Training (VERT) contributes to teaching treatment planning concepts to a cohort of first-year radiation therapy students. We directly compared a custom-developed VERT teaching module with a standard teaching module with respect to the understanding of treatment planning concepts using a cross-over design. Students self-reported their understanding of specific concepts before and after delivery of the VERT and standard teaching modules and evaluated aspects of VERT as a learning experience. In addition, teaching staff participated in a semi-structured interview discussing the modules from an educational perspective. Both the standard teaching module and VERT teaching module enhanced conceptual understanding and level of confidence in the student cohort after both teaching periods. The proportion of students reporting a perceived increase in knowledge/confidence was similar for the VERT teaching module for all but two scenarios. We propose that an integrated approach, providing a strong theoretical conceptual framework, followed by VERT to situate this framework in the (simulated) clinical environment combines the best of both teaching approaches. This study has established for the first time a clear role for a tailored VERT teaching module in teaching RT planning concepts because of its ability to visualise conceptual information within a simulated clinical environment. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.
ERIC Educational Resources Information Center
Hotaling, Liesl; Lowes, Susan; Stolkin, Rustam; Lin, Peiyi; Bonner, James; Kirkey, William; Ojo, Temitope
2012-01-01
This paper describes the structure and impact of an NSF-funded ITEST project designed to enrich science, technology, engineering, and mathematics (STEM) education using educational modules that teach students to construct, program, and test a series of sensors used to monitor water quality. During the two years of the SENSE IT project, over 30…
ERIC Educational Resources Information Center
Voelkel, Susanne
2013-01-01
The aim of this action research project was to improve student learning by encouraging more "time on task" and to improve self-assessment and feedback through the introduction of weekly online tests in a Year 2 lecture module in biological sciences. Initially voluntary online tests were offered to students and those who participated…
Interactive instruction of cellular physiology for remote learning.
Huang, C; Huang, H K
2003-12-01
The biomedical sciences are a rapidly changing discipline that have adapted to innovative technological advances. Despite these many advances, we face two major challenges: a) the number of experts in the field is vastly outnumbered by the number of students, many of whom are separated geographically or temporally and b) the teaching methods used to instruct students and learners have not changed. Today's students have adapted to technology--they use the web as a source of information and communicate via email and chat rooms. Teaching in the biomedical sciences should adopt these new information technologies (IT), but has thus far failed to capitalize on technological opportunity. Creating a "digital textbook" of the traditional learning material is not sufficient for dynamic processes such as cellular physiology. This paper describes innovative teaching techniques that incorporate familiar IT and high-quality interactive learning content with user-centric instruction design models. The Virtual Labs Project from Stanford University has created effective interactive online teaching modules in physiology (simPHYSIO) and delivered them over broadband networks to their undergraduate and medical students. Evaluation results of the modules are given as a measure of success of such innovative teaching method. This learning media strategically merges IT innovations with pedagogy to produce user-driven animations of processes and engaging interactive simulations.
Climate Literacy: Supporting Teacher Professional Development
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Dunlap, C.; Bardar, E.; Youngman, B.; Ellins, K. K.; McNeal, K. S.; Libarkin, J.
2012-12-01
Confronting the Challenges of Climate Literacy (CCCL) is an NSF-funded (DRK-12) project that includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at high school teachers and students. The project's evaluation efforts inform and guide all major components of the project. The research effort addresses the question of what interventions are most effective in helping high school students grasp the complexities of the Earth system and climate processes, which occur over a range of spatial and temporal scales. The curriculum unit includes three distinct but related modules: Climate and the Cryosphere; Climate, Weather, and the Biosphere; and Climate and the Carbon Cycle. Climate-related themes that cut across all three modules include the Earth system, with the complexities of its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. The professional development component of the project includes online science resources to support the teaching of the curriculum modules, summer workshops for high school teachers, and a support system for developing the teacher leaders who plan and implement those summer workshops. When completed, the project will provide a model high school curriculum with online support for implementing teachers and a cadre of leaders who can continue to introduce new teachers to the resource. This presentation will introduce the curriculum and the university partnerships that are key to the project's success, and describe how the project addresses the challenge of helping teachers develop their understanding of climate science and their ability to convey climate-related concepts articulated in the Next Generation Science Standards to their students. We will also describe the professional development and support system to develop teacher leaders and explain some of the challenges that accompany this approach of developing teacher leaders in the area of climate literacy.
NASA Astrophysics Data System (ADS)
Taylor, H.; Charlevoix, D. J.; Pritchard, M. E.; Lohman, R. B.
2013-12-01
In the last several decades, advances in geodetic technology have allowed us to significantly expand our knowledge of processes acting on and beneath the Earth's surface. Many of these advances have come as a result of EarthScope, a community of scientists conducting multidisciplinary Earth science research utilizing freely accessible data from a variety of instruments. The geodetic component of EarthScope includes the acquisition of synthetic aperture radar (SAR) images, which are archived at the UNAVCO facility. Interferometric SAR complements the spatial and temporal coverage of GPS and allows monitoring of ground deformation in remote areas worldwide. However, because of the complex software required for processing, InSAR data are not readily accessible to most students. Even with these challenges, exposure at the undergraduate level is important for showing how geodesy can be applied in various areas of the geosciences and for promoting geodesy as a future career path. Here we present a module focused on exploring the tectonics of the western United States using InSAR data for use in undergraduate tectonics and geophysics classes. The module has two major objectives: address topics concerning tectonics in the western U.S. including Basin and Range extension, Yellowstone hotspot activity, and creep in southern California, and familiarize students with how imperfect real-world data can be manipulated and interpreted. Module questions promote critical thinking skills and data literacy by prompting students to use the information given to confront and question assumptions (e.g. 'Is there a consistency between seismic rates and permanent earthquake deformation? What other factors might need to be considered besides seismicity?'). The module consists of an introduction to the basics of InSAR and three student exercises, each focused on one of the topics listed above. Students analyze pre-processed InSAR data using MATLAB, or an Excel equivalent, and draw on GPS and creepmeter datasets for comparison. Exercises were developed following Backward Design and initial feedback was provided by curriculum experts and several undergraduate students. Evaluation of the impact of the module on student understanding of InSAR will be conducted in the fall with volunteers from tectonics and geophysics classes. Students will be given pre- and post-module surveys to evaluate overall effectiveness and areas for improvement. This module will be disseminated on the UNAVCO website after finalization.
NASA Astrophysics Data System (ADS)
Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Cronin, V. S.; Funning, G.; Stearns, L. A.; Charlevoix, D.; Miller, M. M.
2017-12-01
The NSF-funded GEodesy Tools for Societal Issues (GETSI) project is developing teaching resources for use in introductory and majors-level courses, emphasizing a broad range of geodetic methods and data applied to societally important issues. The modules include a variety of hands-on activities, demonstrations, animations, and interactive online tools in order to facilitate student learning and engagement. A selection of these activities will be showcased at the AGU session. These activities and data analysis exercises are embedded in 4-6 units per module. Modules can take 2-3 weeks of course time total or individual units and activities can be selected and used over just 1-2 class periods. Existing modules are available online via serc.carleton.edu/getsi/ and include "Ice mass and sea level changes", "Imaging active tectonics with LiDAR and InSAR", "Measuring water resources with GPS, gravity, and traditional methods", "Surface process hazards", and "GPS, strain, and earthquakes". Modules, and their activities and demonstrations were designed by teams of faculty and content experts and underwent rigorous classroom testing and review using the process developed by the Science Education Resource Center's InTeGrate Project (serc.carleton.edu/integrate). All modules are aligned to Earth Science and Climate literacy principles. GETSI collaborating institutions are UNAVCO (which runs NSF's Geodetic Facility), Indiana University, and Mt San Antonio College. Initial funding came from NSF's TUES (Transforming Undergraduate Education in STEM). A second phase of funding from NSF IUSE (Improving Undergraduate STEM Education) is just starting and will fund another six modules (including their demonstrations, activities, and hands-on activities) as well as considerably more instructor professional development to facilitate implementation and use.
Premo, Joshua; Cavagnetto, Andy; Davis, William B; Brickman, Peggy
2018-06-01
Collaboration is an important career skill and vital to student understanding of the social aspects of science, but less is known about relationships among collaborative-learning strategies, classroom climate, and student learning. We sought to increase the collaborative character of introductory undergraduate laboratory classrooms by analyzing a 9-week intervention in 10 classrooms ( n = 251) that participated in cooperative-learning modules (promoting interdependence via a modified jigsaw technique). Students in an additional 10 classrooms ( n = 232) completed the same material in an unstructured format representative of common educational practice. Results showed that, when between-class variance was controlled for, intervention students did not score higher on weekly quizzes, but science interest and prior science experience had a reduced relationship to quiz performance in intervention classrooms. Also, intervention classrooms showed increased collaborative engagement at both whole-class and individual levels (24 students at three time points), but the intervention was only one of several factors found to account for late-intervention classroom collaborative engagement (prosocial behavior and discussion practices). Taken together, findings suggest that integrating interdependence-based tasks may foster collaborative engagement at both small-group and whole-classroom levels, but by itself may not be enough to promote increased student achievement.
Using an Interdisciplinary Approach to Enhance Climate Literacy for K-12 Teachers
NASA Astrophysics Data System (ADS)
Hanselman, J. A.; Oches, E. A.; Sliko, J.; Wright, L.
2014-12-01
The Next Generation Science Standards (2014) will begin to change how K-12 teachers teach science. Using a scaffolding approach, the standards focus on a depth of knowledge across multiple content areas. This philosophy should encourage inquiry-based teaching methods, provided the teacher has both the knowledge and the confidence to teach the content. Although confidence to teach science is high among secondary science (biology, general science, chemistry) teachers, depth of knowledge may be lacking in certain areas, including climate science. To address this issue, a graduate course in climate science (Massachusetts Colleges Online Course of Distinction award winner) was developed to include inquiry-based instruction, connections to current research, and interdisciplinary approaches to teaching science. With the support of the InTeGrate program (SERC) at Carleton College, a module was developed to utilize cli-fi (climate science present in fictional literature) and related climate data. Graduate students gain an appreciation of scientific communication and an understanding of climate data and its connection to societal issues. In addition, the graduate students also gain the ability to connect interdisciplinary concepts for a deeper understanding of climate science and have the opportunity. By the end of the course, the graduate students use the content learned and the examples of pedagogical tools to develop their own activities in his or her classroom.
NASA Astrophysics Data System (ADS)
Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.
2012-12-01
The highly interdisciplinary nature of sustainability presents pedagogic challenges when sustainability concepts are incorporated into traditional disciplinary courses. At Bentley University, where over 90 percent of students major in business disciplines, we have created a multidisciplinary course module centered on corn ethanol that explores a complex social, environmental, and economic problem and develops basic data analysis and analytical thinking skills in several courses spanning the natural, physical, and social sciences within the business curriculum. Through an NSF-CCLI grant, Bentley faculty from several disciplines participated in a summer workshop to define learning objectives, create course modules, and develop an assessment plan to enhance interdisciplinary sustainability teaching. The core instructional outcome was a data-rich exercise for all participating courses in which students plot and analyze multiple parameters of corn planted and harvested for various purposes including food (human), feed (animal), ethanol production, and commodities exchanged for the years 1960 to present. Students then evaluate patterns and trends in the data and hypothesize relationships among the plotted data and environmental, social, and economic drivers, responses, and unintended consequences. After the central data analysis activity, students explore corn ethanol production as it relates to core disciplinary concepts in their individual classes. For example, students in Environmental Chemistry produce ethanol using corn and sugar as feedstocks and compare the efficiency of each process, while learning about enzymes, fermentation, distillation, and other chemical principles. Principles of Geology students examine the effects of agricultural runoff on surface water quality associated with extracting greater agricultural yield from mid-continent croplands. The American Government course examines the role of political institutions, the political process, and various stakeholders in developing and implementing policy on renewable fuels standards and ethanol production targets for the U.S. In Microeconomics students learn cost-benefit analysis and other concepts by applying economics principles to the corn ethanol problem. Following the disciplinary activities, students are asked to reconsider the central corn ethanol problem and evaluate it from a sustainability perspective. Assessment is ongoing, although initial results suggest that undergraduate students have difficulty integrating knowledge across multiple disciplines when evaluating a complex sustainability problem. Based on our initial assessment, we are exploring ways to modify the corn ethanol module as well as fine-tune the assessment instruments to provide the most effective outcomes possible. Because there are commonly institutional barriers to team teaching and other methods of cross-disciplinary instruction, we are recruiting faculty from additional disciplines to adapt and implement the corn ethanol module as a way of integrating sustainability concepts across the curriculum. Our goal is to teach complex, trans-disciplinary problem-solving and have students explore ways in which sustainability issues must be addressed through the application of concepts from the environmental and social sciences, public policy, and economics.
NASA Astrophysics Data System (ADS)
Wenner, J. M.; Baer, E. M.
2007-12-01
Introductory geoscience courses are rife with quantitative concepts from graphing to rates to unit conversions. Recent research suggests that supplementary mathematical instruction increases post-secondary students' retention and performance in science courses. Nonetheless, many geoscience faculty feel that they do not have enough time to cover all the geoscience content, let alone covering the math they often feel students should have learned before reaching their classes. We present our NSF-funded effort to create web modules for students that address these concerns. Our web resources focus on both student performance and faculty time issues by building students' quantitative skills through web-based, self-paced modular tutorials. Each module can be assigned to individual students who have demonstrated on a pre-test that they are in need of supplemental instruction. The pre-test involves problems that place mathematical concepts in a geoscience context and determines the students who need the most support with these skills. Students needing support are asked to complete a three-pronged web-based module just before the concept is needed in class. The three parts of each tutorial include: an explanation of the mathematics, a page of practice problems and an on-line quiz that is graded and sent to the instructor. Each of the modules is steeped in best practices in mathematics and geoscience education, drawing on multiple contexts and utilizing technology. The tutorials also provide students with further resources so that they can explore the mathematics in more depth. To assess the rigor of this program, students are given the pre-test again at the end of the course. The uniqueness of this program lies in a rich combination of mathematical concepts placed in multiple geoscience contexts, giving students the opportunity to explore the way that math relates to the physical world. We present several preliminary modules dealing with topics common in introductory geoscience courses. We seek feedback from faculty teaching all levels of geoscience addressing several questions: In what math/geoscience topics do you feel students need supplemental instruction? Where do students come up against quantitative topics that make them drop the class or perform poorly? Would you be willing to review or help us to test these modules in your class?
Who will study HSC physics? Relationships between motivation, engagement and choice
NASA Astrophysics Data System (ADS)
Abraham, Jessy
This study investigates the relationship between students' achievement motivation, sustained engagement and sustained enrolment intentions, in relation to senior secondary physics. Specifically, this study sought to determine the motivational factors that predict students' sustained engagement and sustained enrolment intentions in four physics modules, and tested whether there were gender differences. These issues were addressed through a multi-occasional exploration among senior secondary students in New South Wales during their first year of elective physics. This study pioneered an innovative approach to exploring sustained enrolment intentions in the enacted physics curriculum, since students were asked about their enrolment plans at a time when they were actually studying physics modules, rather than before they had studied the subject, which as has been the case for most research on science enrolment. An achievement motivation theoretical framework was employed to provide a more comprehensive explanation of students' sustained physics engagement and enrolment plans. A significant feature of this exploration is the topic (module) specificity of motivation. This study, based on Expectancy-Value (EV) theoretical underpinnings, has implications for strengthening physics enrolment research, and makes a significant contribution to advancing research and practice. While the declining trend in physics enrolment and the widening gender imbalance in physics participation have been explored widely, the retention of students in physics courses remains largely unexplored. The existing research mainly focuses on the main exit point from physics education, which is the transition from a general science course to non-compulsory, more specialised science courses that takes place during the transition from junior high school to senior high school in Australia. Another major exit point from physics education is the transition from senior high school to tertiary level. However, the Australian senior high school structure, where students can opt out of physics after the first year of senior secondary physics if they do not want to continue it to the final year, provides a unique exit point from physics education. This investigation examines the sustained enrolment intentions of students during their senior high school, and this adds an innovative variation to the enrolment research tradition. It further makes an original contribution to educational theory by fine-grained analysis of the retention motivations of physics students while they are studying the subject. The purpose of the study is to contribute to theory, practice and research knowledge of students' sustained engagement and enrolment plans in physics. The findings of the study inform educational practitioners and policy makers. A reliable, valid and gender invariant scale to measure the motivational and behavioural patterns of adolescent students across four physics modules was developed and tested specifically for this study. This provides researchers and educational practitioners with a sensitive measuring instrument of physics enrolment motivation. Furthermore, this study extends the current understanding of gender differences in major achievement motivational constructs and engagement constructs in relation to physics. Findings from this research hold important implications for understanding the motivational factors that affect student engagement, and also for educational practice and research relating to students' enrolment in physics.
Coleman, Aaron B; Lam, Diane P; Soowal, Lara N
2015-01-01
Gaining an understanding of how science works is central to an undergraduate education in biology and biochemistry. The reasoning required to design or interpret experiments that ask specific questions does not come naturally, and is an essential part of the science process skills that must be learned for an understanding of how scientists conduct research. Gaps in these reasoning skills make it difficult for students to become proficient in reading primary scientific literature. In this study, we assessed the ability of students in an upper-division biochemistry laboratory class to use the concepts of correlation, necessity, and sufficiency in interpreting experiments presented in a format and context that is similar to what they would encounter when reading a journal article. The students were assessed before and after completion of a laboratory module where necessary vs. sufficient reasoning was used to design and interpret experiments. The assessment identified two types of errors that were commonly committed by students when interpreting experimental data. When presented with an experiment that only establishes a correlation between a potential intermediate and a known effect, students frequently interpreted the intermediate as being sufficient (causative) for the effect. Also, when presented with an experiment that tests only necessity for an intermediate, they frequently made unsupported conclusions about sufficiency, and vice versa. Completion of the laboratory module and instruction in necessary vs. sufficient reasoning showed some promise for addressing these common errors. © 2015 The International Union of Biochemistry and Molecular Biology.
Educational aspects of molecular simulation
NASA Astrophysics Data System (ADS)
Allen, Michael P.
This article addresses some aspects of teaching simulation methods to undergraduates and graduate students. Simulation is increasingly a cross-disciplinary activity, which means that the students who need to learn about simulation methods may have widely differing backgrounds. Also, they may have a wide range of views on what constitutes an interesting application of simulation methods. Almost always, a successful simulation course includes an element of practical, hands-on activity: a balance always needs to be struck between treating the simulation software as a 'black box', and becoming bogged down in programming issues. With notebook computers becoming widely available, students often wish to take away the programs to run themselves, and access to raw computer power is not the limiting factor that it once was; on the other hand, the software should be portable and, if possible, free. Examples will be drawn from the author's experience in three different contexts. (1) An annual simulation summer school for graduate students, run by the UK CCP5 organization, in which practical sessions are combined with an intensive programme of lectures describing the methodology. (2) A molecular modelling module, given as part of a doctoral training centre in the Life Sciences at Warwick, for students who might not have a first degree in the physical sciences. (3) An undergraduate module in Physics at Warwick, also taken by students from other disciplines, teaching high performance computing, visualization, and scripting in the context of a physical application such as Monte Carlo simulation.
NASA Astrophysics Data System (ADS)
Richter-Menge, J.; Stott, G.; Harriman, C.; Perovich, D. K.; Elder, B. C.; Polashenski, C.
2013-12-01
Over the past 4 school years, our team of Arctic sea ice researchers and middle school teachers has collaborated in an educational outreach activity to develop a series of earth science classes aimed at 8th grade science students. Central to the effort is an environmental observation site installed at the school, designed to closely mimic sea ice mass balance buoys deployed as part of an NSF-sponsored Arctic Observing Network (AON) project. The site located at the school collects data on air temperature, barometric pressure, snow depth, and snow and ground temperatures. Working directly with the research team over the course of the school year, students learn to collect, process, and analyze the local environmental data. Key to the experience is the students' opportunity to pose and address open-ended questions about a set of scientific data that is inherently familiar to them, since it reflects the seasonal conditions they are witnessing (e.g. the 2011-12 New England winter with no snow). During the series of classes, students are also exposed to the similar set of environmental data collected in the Arctic, via a sea ice mass balance buoy they ';adopt.' The arctic data set opens the door to discussions about climate change and its particularly dramatic affect on the arctic environment. Efforts are underway to transform this outreach project into an expanded earth science classroom module for use at other schools. Portability will require an approach that makes connections to the Arctic without a reliance on the multiple visits to the classroom by the research team (e.g. forming and facilitating partnerships with Arctic schools and field researchers via the internet). We are also evaluating the possibility of constructing low cost, portable weather stations to be used with the module.
NASA Astrophysics Data System (ADS)
Smith, M. C.; Smith, M. J.; Lederman, N.; Southard, J. B.; Rogers, E. A.; Callahan, C. N.
2002-12-01
Project CUES is a middle-school earth systems science curriculum project under development by the American Geological Institute (AGI) and funded by the National Science Foundation (ESI-0095938). CUES features a student-centered, inquiry pedagogy and approaches earth science from a systems perspective. CUES will use the expanded learning cycle approach of Trowbridge and Bybee (1996), known as the 5E model (engage-explore-explain-elaborate-evaluate). Unlike AGI's Investigating Earth Systems (IES) curriculum modules, CUES will include a single hard-bound textbook, and will take one school-year to complete. The textbook includes a prologue that addresses systems concepts and four main units: Geosphere, Hydrosphere, Atmosphere, and Biosphere. Each eight-week unit takes students through a progression from guided inquiry to open-ended, student-driven inquiry. During first 4 to 5 weeks of each unit, students explore important earth science phenomena and concepts through scripted investigations and narrative reading passages written by scientists as "inquiry narratives". The narratives address the development of scientific ideas and relay the personal experiences of a scientist during their scientific exploration. Aspects of the nature of science will be explicitly addressed in investigations and inquiry narratives. After the guided inquiry, students will develop a research proposal and conduct their own inquiry into local or regional scientific problems. Each unit culminates with a science conference at which students present their research. CUES will be the first NSF-funded, comprehensive earth systems textbook for middle school that is based on national standards. CUES will be pilot tested in 12 classrooms in January 2003, with a national field test of the program in 50 classrooms during the 2003-2004 school year.
An interactive computer lab of the galvanic cell for students in biochemistry.
Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran
2018-01-01
We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as Δ r G, Δ r H, and Δ r S that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):58-65, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.
van Gessel, Elisabeth; Picchiottino, Patricia; Doureradjam, Robert; Nendaz, Mathieu; Mèche, Petra
2018-03-08
Demography of patients and complexity in the management of multimorbid conditions has made collaborative practice a necessity for the future, also in Switzerland. Since 2012, the University of Applied Sciences (UAS) and its Healthcare School as well as the University of Geneva (UG) with its Medical Faculty have joined forces to implement a training program in collaborative practice, using simulation as one of the main learning/teaching process. The actual program consists of three sequential modules and totalizes 300 h of teaching and learning for approximately 1400-1500 students from six tracks (nutritionists, physiotherapists, midwives, nurses, technologists in medical radiology, physicians); in 2019 another hundred pharmacists will also be included. The main issues addressed by the modules are Module 1: the Swiss healthcare system and collaborative tools. Module 2: roles and responsibilities of the different health professionals, basic tools acquisition in team working (situation monitoring, mutual support, communication). Module 3: the axis of quality and safety of care through different contexts and cases. A very first evaluation of the teaching and learning and particularly on the aspects of acquisition of collaborative tools shows positive attitudes of students towards the implementation of this new training program. Furthermore, a pre-post questionnaire on teamwork aspects reveals significant modifications.
The Moon Topography Model as an Astronomy Educational Kit for Visual Impaired Student
NASA Astrophysics Data System (ADS)
Pramudya, Y.; Hikmah, F. N.; Muchlas
2016-08-01
The visual impaired students need science educational kit at the school to assist their learning process in science. However, there are lack of the educational kit especially on the topic of astronomy. To introduce the structure of the moon, the moon topography model has been made in circular shape only shown the near side of the moon. The moon topography module are easy to be made since it was made based on low cost material. The expertise on astronomy and visual impaired media marked the 76.67% and 94% ideal percentage, respectively. The visual impaired students were able to study the moon crater and mare by using the kit and the braille printed learning book. They also showed the improvement in the material understanding skill.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Stone, Leland (Technical Monitor)
1997-01-01
This paper details two projects that use the World Wide Web (WWW) for dissemination of curricula that focus on remote sensing. 1) Presenting grade-school students with the concepts used in remote sensing involves educating the teacher and then providing the teacher with lesson plans. In a NASA-sponsored project designed to introduce students in grades 4 through 12 to some of the ideas and terminology used in remote sensing, teachers from local grade schools and middle schools were recruited to write lessons about remote sensing concepts they could use in their classrooms. Twenty-two lessons were produced and placed in seven modules that include: the electromagnetic spectrum, two- and three-dimensional perception, maps and topography, scale, remote sensing, biotic and abiotic concepts, and landscape chi rise. Each lesson includes a section that evaluates what students have learned by doing the exercise. The lessons, instead of being published in a workbook and distributed to a limited number of teachers, have been placed on a WWW server, enabling much broader access to the package. This arrangement also allows for the lessons to be modified after feedback from teachers accessing the package. 2) Two-year colleges serve to teach trade skills, prepare students for enrollment in senior institutions of learning, and more and more, retrain students who have college degrees in new technologies and skills. A NASA-sponsored curriculum development project is producing a curriculum using remote sensing analysis an Earth science applications. The project has three major goals. First, it will implement the use of remote sensing data in a broad range of community college courses. Second, it will create curriculum modules and classes that are transportable to other community colleges. Third, the project will be an ongoing source of data and curricular materials to other community colleges. The curriculum will have these course pathways to a certificate; a) a Science emphasis, b) an Arts and Letters emphasis, and c) a Computer Science emphasis Each pathway includes course work in remote sensing, geographical information systems (GIS), computer science, Earth science, software and technology utilization, and communication. Distribution of products from this project to other two-year colleges will be accomplished using the WWW.
NASA Astrophysics Data System (ADS)
Fiondella, F.; Davi, N. K.; Wattenberg, F.; Pringle, P. T.; Greidanus, I.; Oelkers, R.
2015-12-01
Tree-ring science provides an engaging, intuitive, and relevant entryway into understanding both climate change and environmental research. It also sheds light on the process of science--from inspiration, to fieldwork, to analysis, to publishing and communication. The basic premise of dendrochronology is that annual rings reflect year-to-year environmental conditions and that by studying long-lived trees we can learn about environmental and climatic conditions going back hundreds to thousands of years. Conceptually, this makes tree-ring studies accessible to students and faculty for a number of reasons. First, in order to collect their data, dendrochronologists often launch expeditions to stunningly picturesque and remote places in search of long-lived, climate sensitive trees. The exciting stories and images that scientists bring back from the field can help connect students to the studies, their motivation, and the data collected. Second, tree rings can be more easily explained as a proxy for climate than ice cores, speleothems and others. Most people have prior knowledge about trees and annual growth rings. It is even possible, for example, for non-expert audiences to see climate variability through time with the naked eye by looking at climate-sensitive tree cores. Third, tree rings are interdisciplinary and illustrate the interplay between the mathematical sciences, the biological sciences, and the geosciences—that is, they show that the biosphere is a fundamental component of the Earth system. Here, we present online, multi-media learning modules for undergraduates that introduce students to several foundational studies in tree-ring science. These include evaluating tree-ring cores from ancient hemlock trees growing on a talus slope in New Paltz, NY to learn about drought in the Northeastern US, evaluating long-term streamflow and drought of the Colorado River based on tree-ring records, and using tree-ring dating techniques to develop construction histories of cliff dwellings and pueblos in the US Southwest. Our modules are designed to give undergraduate students a sense of the scientific process, from fieldwork and logistics, to data processing and data analysis.
Marsan, Lynnsay A.; D’Arcy, Christina E.; Olimpo, Jeffrey T.
2016-01-01
Evidence suggests that incorporating quantitative reasoning exercises into existent curricular frameworks within the science, technology, engineering, and mathematics (STEM) disciplines is essential for novices’ development of conceptual understanding and process skills in these domains. Despite this being the case, such studies acknowledge that students often experience difficulty in applying mathematics in the context of scientific problems. To address this concern, the present study sought to explore the impact of active demonstrations and critical reading exercises on novices’ comprehension of basic statistical concepts, including hypothesis testing, experimental design, and interpretation of research findings. Students first engaged in a highly interactive height activity that served to intuitively illustrate normal distribution, mean, standard deviation, and sample selection criteria. To enforce practical applications of standard deviation and p-value, student teams were subsequently assigned a figure from a peer-reviewed primary research article and instructed to evaluate the trustworthiness of the data. At the conclusion of this exercise, students presented their evaluations to the class for open discussion and commentary. Quantitative assessment of pre- and post-module survey data indicated a statistically significant increase both in students’ scientific reasoning and process skills and in their self-reported confidence in understanding the statistical concepts presented in the module. Furthermore, data indicated that the majority of students (>85%) found the module both interesting and helpful in nature. Future studies will seek to develop additional, novel exercises within this area and to evaluate the impact of such modules across a variety of STEM and non-STEM contexts. PMID:28101271
Flipping one-shot library instruction: using Canvas and Pecha Kucha for peer teaching.
Carroll, Alexander J; Tchangalova, Nedelina; Harrington, Eileen G
2016-04-01
This study sought to determine whether a flipped classroom that facilitated peer learning would improve undergraduate health sciences students' abilities to find, evaluate, and use appropriate evidence for research assignments. Students completed online modules in a learning management system, with librarians facilitating subsequent student-directed, in-person sessions. Mixed methods assessment was used to evaluate program outcomes. Students learned information literacy concepts but did not consistently apply them in research assignments. Faculty interviews revealed strengthened partnerships between librarians and teaching faculty. This pedagogy shows promise for implementing and evaluating a successful flipped information literacy program.
Baumler, David J.; Banta, Lois M.; Hung, Kai F.; Schwarz, Jodi A.; Cabot, Eric L.; Glasner, Jeremy D.; Perna, Nicole T.
2012-01-01
Genomics and bioinformatics are topics of increasing interest in undergraduate biological science curricula. Many existing exercises focus on gene annotation and analysis of a single genome. In this paper, we present two educational modules designed to enable students to learn and apply fundamental concepts in comparative genomics using examples related to bacterial pathogenesis. Students first examine alignments of genomes of Escherichia coli O157:H7 strains isolated from three food-poisoning outbreaks using the multiple-genome alignment tool Mauve. Students investigate conservation of virulence factors using the Mauve viewer and by browsing annotations available at the A Systematic Annotation Package for Community Analysis of Genomes database. In the second module, students use an alignment of five Yersinia pestis genomes to analyze single-nucleotide polymorphisms of three genes to classify strains into biovar groups. Students are then given sequences of bacterial DNA amplified from the teeth of corpses from the first and second pandemics of the bubonic plague and asked to classify these new samples. Learning-assessment results reveal student improvement in self-efficacy and content knowledge, as well as students' ability to use BLAST to identify genomic islands and conduct analyses of virulence factors from E. coli O157:H7 or Y. pestis. Each of these educational modules offers educators new ready-to-implement resources for integrating comparative genomic topics into their curricula. PMID:22383620
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left, partially hidden) and Commander Pam Melroy (second from right in group), talk with members of the media and guests after a ceremony to unveil NASA's Node 2 module's new name, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left) and Commander Pam Melroy begin to unveil the Node 2 module's new name, Harmony, as Russ Romanella, director of International Space Station and Spacecraft Processing presides over the ceremony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
Lemus, Judith D.
2015-01-01
Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292
Building Learning Communities: Foundations for Good Practice
ERIC Educational Resources Information Center
Davies, Alison; Ramsay, Jill; Lindfield, Helen; Couperthwaite, John
2005-01-01
The School of Health Sciences at the University of Birmingham provided opportunities for the development of student learning communities and online resources within the neurological module of the BSc Physiotherapy degree programme. These learning communities were designed to facilitate peer and independent learning in core aspects underpinning…
Resources in Technology: Problem-Solving.
ERIC Educational Resources Information Center
Technology Teacher, 1986
1986-01-01
This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)
Shankar, P Ravi; Dubey, Arun K; Mishra, P; Upadhyay, Dinesh K
2008-01-01
The Manipal College of Medical Sciences, Pokhara, Nepal, admits students from Nepal, India, Sri Lanka, and other countries to the undergraduate medical course. The present study sought to describe and explore reading habits of medical students during the first three semesters and obtain their views regarding inclusion of medical humanities in the course. The authors introduced a voluntary module in medical humanities to the fifth- and sixth-semester students. Gender, semester, and nationality of respondents were noted. Commonly read noncourse books (fiction and nonfiction) were noted. Student attitudes toward medical humanities were studied using a set of nine statements. A total of 165 of the 220 students (75%) participated. Indians followed by Nepalese were the most common nationalities. Romantic fiction and biography were most commonly read. The Alchemist and The Da Vinci Code were commonly read books. Students were in favor of inclusion of medical humanities in the curriculum. The median total score was 30 (maximum possible score = 45). Students read widely beyond their course. The possibility of introducing medical humanities in the curriculum should be explored.
Encouraging Competence in Basic Mathematics in Hydrology using The Math You Need
NASA Astrophysics Data System (ADS)
Fredrick, K. C.
2011-12-01
California University of Pennsylvania has experienced significant growth in interest of its Earth Science programs over the last few years. With the burgeoning shale gas exploration and drilling, along with continued environmental problems, students and parents recognize the potential for jobs in the region in the Geosciences. With this increase in student interest has come an increase in the number of majors including a greater number of first-year students entering the major right from high school. Hydrology, is an important course within the Earth Science department curriculum. It is required by all Geology, Meteorology, and Earth and Space Science Education majors. It also serves majors from the Biology program, but is not required. This mix of students based on major expectations, grade level, and background leads to a varied distribution of math competencies. Many students enter unprepared for the rigors of a physics-based Hydrology course. The pre-requisites for the course are Introduction to Geology, a mostly non-quantitative survey course, and College Algebra. However, some students are more confident in their math skills because they have completed some level of Calculus. Regardless of the students' perceived abilities, nearly all struggle early on in the course because they have never used math within the context of Hydrology (or Science for that matter) , including continuity, conservation, and fluid dynamics. In order to make sure students have the basic skills to understand the science, it has been necessary to dedicate significant class time to such topics as Unit Conversions, Scientific Notation, Significant Figures, and basic Graphing. The Math You Need (TMYN) is an online tool, which requires students to complete instructor-selected questions to assess student competence in fundamental math topics. Using Geology as the context for the questions in the database, TMYN is ideal for introductory-level courses, but can also be effective as a review tool in higher-level courses. For our Hydrology course, we employ a strategy to integrate TMYN assessments throughout the course, to continually encourage students to practice math skills and introduce others that might be unfamiliar. The course begins with a pass/fail pre-assessment to gauge math competencies across the class, to prepare students for the rigors of the course, and to make sure they are technically able to access the website. Beginning the first week, and continuing through the first twelve weeks of the semester, additional assessments are assigned and graded on a pass/fail basis. The assessments include a guided module, followed by a brief quiz. The modules are aligned with the course materials as much as possible. At the end of the course, a post-assessment is assigned to measure student improvement. Most of the students will continue on to courses within Geology or Meteorology, depending on major, for which Hydrology is a pre-requisite. For the students, TMYN will serve to lay the groundwork for improved math competencies throughout their college career. For the faculty, this model allows for more class time to concentrate on science content, lab activities, and data analysis.
The importance of explicitly mapping instructional analogies in science education
NASA Astrophysics Data System (ADS)
Asay, Loretta Johnson
Analogies are ubiquitous during instruction in science classrooms, yet research about the effectiveness of using analogies has produced mixed results. An aspect seldom studied is a model of instruction when using analogies. The few existing models for instruction with analogies have not often been examined quantitatively. The Teaching With Analogies (TWA) model (Glynn, 1991) is one of the models frequently cited in the variety of research about analogies. The TWA model outlines steps for instruction, including the step of explicitly mapping the features of the source to the target. An experimental study was conducted to examine the effects of explicitly mapping the features of the source and target in an analogy during computer-based instruction about electrical circuits. Explicit mapping was compared to no mapping and to a control with no analogy. Participants were ninth- and tenth-grade biology students who were each randomly assigned to one of three conditions (no analogy module, analogy module, or explicitly mapped analogy module) for computer-based instruction. Subjects took a pre-test before the instruction, which was used to assign them to a level of previous knowledge about electrical circuits for analysis of any differential effects. After the instruction modules, students took a post-test about electrical circuits. Two weeks later, they took a delayed post-test. No advantage was found for explicitly mapping the analogy. Learning patterns were the same, regardless of the type of instruction. Those who knew the least about electrical circuits, based on the pre-test, made the most gains. After the two-week delay, this group maintained the largest amount of their gain. Implications exist for science education classrooms, as analogy use should be based on research about effective practices. Further studies are suggested to foster the building of research-based models for classroom instruction with analogies.
An Interdisciplinary Module on Regulating Carbon Emissions to Mitigate Climate Change
NASA Astrophysics Data System (ADS)
Penny, S.; Sethi, G.; Smyth, R.; Leibensperger, E. M.; Gervich, C.; Batur, P.
2016-12-01
The dynamics of the unfolding carbon regulatory process presents a unique and timely opportunity to teach students about the grand challenge brought by climate change and the importance of systems thinking and interdisciplinary problem solving. In this poster, we summarize our recently developed 4-week activity-based class module "Regulating Carbon Emissions to Mitigate Climate Change," which we have developed as part of the InTeGrate ("Interdisciplinary Teaching about Earth for a Sustainable Future") program. These materials are suitable for introductory non-majors, environmental sciences majors, and political science majors, and we have formally piloted in each of these settings. This module is truly interdisciplinary and spans topics such as the Supreme Court ruling in Massachusetts v. EPA, costs and benefits of carbon abatement, and climate sensitivity. We discuss the unique challenges (and rewards!) that we experienced teaching materials entirely outside one's expertise.
Space Operations Learning Center
NASA Technical Reports Server (NTRS)
Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng
2012-01-01
The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.
NASA Astrophysics Data System (ADS)
Solomon, S. C.; Stockman, S.; Chapman, C. R.; Leary, J. C.; McNutt, R. L.
2003-12-01
The Education and Public Outreach (EPO) Program of the MESSENGER mission to the planet Mercury, supported by the NASA Discovery Program, is a full partnership between the project's science and engineering teams and a team of professionals from the EPO community. The Challenger Center for Space Science Education (CCSSE) and the Carnegie Academy for Science Education (CASE) are developing sets of MESSENGER Education Modules targeting grade-specific education levels across K-12. These modules are being disseminated through a MESSENGER EPO Website developed at Montana State University, an Educator Fellowship Program managed by CCSSE to train Fellows to conduct educator workshops, additional workshops planned for NASA educators and members of the Minority University - SPace Interdisciplinary Network (MU-SPIN), and existing inner-city science education programs (e.g., the CASE Summer Science Institute in Washington, D.C.). All lessons are mapped to national standards and benchmarks by MESSENGER EPO team members trained by the American Association for the Advancement of Science (AAAS) Project 2061, all involve user input and feedback and quality control by the EPO team, and all are thoroughly screened by members of the project science and engineering teams. At the college level, internships in science and engineering are provided to students at minority institutions through a program managed by MU-SPIN, and additional opportunities for student participation across the country are planned as the mission proceeds. Outreach efforts include radio spots (AAAS), museum displays (National Air and Space Museum), posters and traveling exhibits (CASE), general language books (AAAS), programs targeting underserved communities (AAAS, CCSSE, and MU-SPIN), and a documentary highlighting the scientific and technical challenges involved in exploring Mercury and how the MESSENGER team has been meeting these challenges. As with the educational elements, science and engineering team members are active partners in each of the public outreach efforts. MESSENGER fully leverages other NASA EPO programs, including the Solar System Exploration EPO Forum and the Solar System Ambassadors. The overarching goal of the MESSENGER EPO program is to convey the excitement of planetary exploration to students and the lay public throughout the nation.
Effectiveness of integrated teaching module in pharmacology among medical undergraduates.
Yadav, Preeti P; Chaudhary, Mayur; Patel, Jayshree; Shah, Aashal; Kantharia, N D
2016-01-01
Over the years with advancement of science and technology, each subject has become highly specialized. Teaching of medical students has still remained separate in various departments with no scope of integration in majority of medical institutes in India. Study was planned to have an experience of integration in institute and sensitize faculty for integrated teaching-learning (TL) method. To prepare and test effectiveness of integrated teaching module for 2(nd) year MBBS student in pharmacology and to sensitize and motivate faculties toward advantages of implementing integrated module. Education intervention project implemented 2(nd) year MBBS students of Government Medical College and New Civil Hospital, Surat. Students of second MBBS were divided into two groups. One group was exposed to integrated teaching sessions and another to traditional method. Both the groups were assessed by pre- and post-test questionnaire, feedback and focus group discussions were conducted to know their experience about process. A total of 165 students of the 2(nd) year MBBS were exposed to the integrated teaching module for two topics in two groups. One group was taught by traditional teaching, and another group was exposed to the integrated TL session. Both the groups have shown a significant improvement in posttest scores but increase in mean score was more in integrated group. During analysis of feedback forms, it was noted that students preferred integrated TL methods since they help in better understanding. Faculty feedback shows consensus over the adaptation of integrated TL methods. Integrated TL sessions were well-appreciated by students and faculties. To improve the critical reasoning skills and self-directed learning of students, integrated TL is highly recommended for must know areas of curriculum.
Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff
2016-01-01
Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory biology courses. Modules are designed to improve skills in quantitative numeracy, interpreting data sets using visual tools, and making inferences about biological phenomena using mathematical/statistical models. We also examine demographic/background data that predict student improvement in these skills through exposure to these modules. We carried out pre/postassessment tests across four semesters and used student interviews in one semester to examine how students at different levels approached quantitative problems. We found that students improved in all skills in most semesters, although there was variation in the degree of improvement among skills from semester to semester. One demographic variable, transfer status, stood out as a major predictor of the degree to which students improved (transfer students achieved much lower gains every semester, despite the fact that pretest scores in each focus area were similar between transfer and nontransfer students). We propose that increased exposure to quantitative skill development in biology courses is effective at building competency in quantitative reasoning. © 2016 K. Hoffman, S. Leupen, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Rademacher, L. K.
2017-12-01
The Interdisciplinary Teaching about Earth for a Sustainable Future (InTeGrate) community has developed extensive courses and modules designed for broad adoption into geoscience classrooms in diverse environments. I participated in a three-semester research project designed to test the efficacy of incorporating "high doses" (minimum 3 modules or 18 class periods) of InTeGrate materials into a course, in my case, an introductory environmental science class. InTeGrate materials were developed by groups of instructors from a range of institutions across the US. These materials include an emphasis on systems thinking, interdisciplinary approaches, and sustainability, and those themes are woven throughout the modules. The three semesters included a control in which no InTeGrate materials were used, a pilot in which InTeGrate materials were tested, and a treatment semesters in which tested materials were modified as needed and fully implemented into the course. Data were collected each semester on student attitudes using the InTeGrate Attitudinal Instrument (pre and post), a subset of Geoscience Literacy Exam questions (pre and post), and a series of assessments and essay exam questions (post only). Although results suggest that learning gains were mixed, changes in attitudes pre- and post-instruction were substantial. Changes in attitudes regarding the importance of sustainable employers, the frequency of self-reported individual sustainable actions, and motivation level for creating a sustainable society were observed in the control and treatment semesters, with the treatment semester showing the greatest gains. Importantly, one of the biggest differences between the control and treatment semesters is the reported impact that the course had on influencing students' sustainable behaviors. The treatment semester course impacted students' sustainable behaviors far more than the control semester.
Space Science in Project SMART: A UNH High School Outreach Program
NASA Astrophysics Data System (ADS)
Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.
2016-12-01
Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .
Astronomy Village Reaches for New Heights
NASA Astrophysics Data System (ADS)
Croft, S. K.; Pompea, S. M.
2007-12-01
We are developing a set of complex, multimedia-based instructional modules emphasizing technical and scientific issues related to Giant Segmented Mirror Telescope project. The modules" pedagogy will be open-ended and problem-based to promote development of problem-solving skills. Problem- based-learning modules that emphasize work on open-ended complex real world problems are particularly valuable in illustrating and promoting a perspective on the process of science and engineering. Research in this area shows that these kinds of learning experiences are superior to more conventional student training in terms of gains in student learning. The format for the modules will be based on the award-winning multi-media educational Astronomy Village products that present students with a simulated environment: a mountaintop community surrounded by a cluster of telescopes, satellite receivers, and telecommunication towers. A number of "buildings" are found in the Village, such as a library, a laboratory, and an auditorium. Each building contains an array of information sources and computer simulations. Students navigate through their research with a mentor via imbedded video. The first module will be "Observatory Site Selection." Students will use astronomical data, basic weather information, and sky brightness data to select the best site for an observatory. Students will investigate the six GSMT sites considered by the professional site selection teams. Students will explore weather and basic site issues (e.g., roads and topography) using remote sensing images, computational fluid dynamics results, turbulence profiles, and scintillation of the different sites. Comparison of student problem solving with expert problem solving will also be done as part of the module. As part of a site selection team they will have to construct a case and present it on why they chose a particular site. The second module will address aspects of system engineering and optimization for a GSMT-like telescope. Basic system issues will be addressed and studied. These might include various controls issues and optimization issues such as mirror figure, mirror support stability, and wind loading trade-offs. Using system modeling and system optimization results from existing and early GSMT trade studies, we will create a simulation where students are part of an engineering design and optimization team. They will explore the cost/performance/schedule issues associate with the GSMT design.
NASA Astrophysics Data System (ADS)
Mandock, R. L.
2008-12-01
An interactive instructional module has been developed to study energy balance at the earth's surface. The module uses a graphical interface to model each of the major energy components involved in the partitioning of energy at this surface: net radiation, sensible and latent heat fluxes, ground heat flux, heat storage, anthropogenic heat, and advective heat transport. The graphical interface consists of an energy-balance diagram composed of sky elements, a line or box representing the air or sea surface, and arrows which indicate magnitude and direction of each of the energy fluxes. In April 2005 an energy-balance project and laboratory assignment were developed for a core-curriculum earth science course at Clark Atlanta University. The energy-balance project analyzes surface weather data from an assigned station of the Georgia Automated Environmental Monitoring Network (AEMN). The first part of the project requires the student to print two observations of the "Current Conditions" web page for the assigned station: one between the hours of midnight and 5:00 a.m., and the other between the hours of 3:00- 5:00 p.m. A satellite image of the southeastern United States must accompany each of these printouts. The second part of the project can be completed only after the student has modeled the 4 environmental scenarios taught in the energy-balance laboratory assignment. The student uses the energy-balance model to determine the energy-flux components for each of the printed weather conditions at the assigned station. On successful completion of the project, the student has become familiar with: (1) how weather observations can be used to constrain parameters in a microclimate model, (2) one common type of error in measurement made by weather sensors, (3) some of the uses and limitations of environmental models, and (4) fundamentals of the distribution of energy at the earth's surface. The project and laboratory assignment tie together many of the earth science concepts taught in the course: geology (soils), oceanography (surface mixed layer), and atmospheric science (meteorology of the lowest part of the atmosphere). Details of the project and its impact on student assessment tests and surveys will be presented.
NASA Astrophysics Data System (ADS)
Gutwill-Wise, Joshua P.
2001-05-01
This study evaluates new materials, "modules", for teaching introductory chemistry courses. The modules, under development by faculty from two NSF-funded consortia, employ real-world contexts and an interactive class format to foster conceptual understanding, scientific thinking, and improved attitudes toward science. The evaluation studies were conducted at two institutions, a small college and a large university. The experimental design at each school compared students in a course section taught with modules to those in a section that used a textbook and lecture format. At both schools, students in the modular section outperformed the control group on conceptual problems in chemistry and on scientific thinking problems. Modular section students at the large university also outperformed their peers on the first midterm exam in the subsequent organic chemistry course. Regarding attitudes, the modular section students were more positive about chemistry and the course than their peers in the control section at the small college. However, at the large school, the opposite attitudinal pattern was found. An analysis of informal focus group data provides insight into the negative attitudes in the modular section of the large course. Possible remedies for the issues raised are discussed.
McCarthy, Bridie; O'Donovan, Moira; Twomey, Angela
2008-02-01
Despite wide agreement about the importance of effective communication in nursing there is continuing evidence of the need for nurses to improve their communication skills. Consequently, there is a growing demand for more therapeutic and person-centred communication courses. Studies on communication education reveal considerable variability on the design and operationalisation of these programmes. Additionally, the literature highlights that nurse educators are continually challenged with developing and implementing these programmes. Communication skills are generally taught in years one and two of undergraduate nursing degree programmes. This is a stage when students have minimal contact with patients and clients. We suggest that a communication skills module should be included in all final years of undergraduate nursing programmes. With an array of clinical experiences to draw from, final year nursing students are better placed to apply the skills of effective communication in practice. In this paper, we present the design, implementation and evaluation of an advanced communication skills module undertaken by fourth year undergraduate nursing students completing a Bachelor of Science (BSc) degree - nursing programme at one university in the Republic of Ireland.
Exploring The Moon through a 21st Century Learning Environment of Interactive Whiteboards
NASA Astrophysics Data System (ADS)
Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.
2012-12-01
Lunar exploration has an important role to play in inspiring students to hone their skills and understanding, as well as encouraging them to pursue careers in science, technology engineering and math (STEM). Many of NASA's current lunar educational materials do not dynamically engage the whole learner or effectively address 21st Century skills. We present examples of several dynamic lunar science activities for use on interactive white boards. These activities are replicable and incorporate NASA mission-derived sampling and analysis techniques. Building on a highly visual and tactile workforce, it is imperative that today's classrooms keep up with technologies that are the media of modern life. Interactive white boards offer a coordinated curricula and supporting resources that are immediately usable in most classrooms across America. Our dynamic classroom materials are rich in scientific processes, meet the national standards of learning in STEM, and are teacher-vetted for content and usability. Incorporating educational activities created from the NASA Lunar Science Institute team activities, the Moon Mineralogy Mapper (M3) Educator's Guide, and more current NASA lunar missions, we offer three dynamic modules for use on an interactive white board. SMART activities implement the mastery teaching model, employing instructional strategies so that all students can achieve the same level of learning. Our goal is to provide educators with multiple resources for teaching their students about the Moon and engaging their interest in pursuing STEM in the future. In addition to background information, inquiry-oriented lessons allow students to gather information and data directly through the Internet. For example, with the return of high resolution/high spatial data from M3/Chandrayaan-1, we can now better identify, discern and understand the compositional variations on the lunar surface. Data and analysis techniques from the M3 imaging spectrometer are incorporated into the lessons. Module I: Students explore the properties of light and use an ALTA hand-held spectrometer to identify and map compositional variation on the moon's surface, discovering that the Moon is similar to, yet different from, the Earth and terrestrial planets. Module II: Students break up into teams of "Orbiters" and "Earth scientists" to gather reflectance data from "Moon rocks" and Earth rocks respectively. Students compare the reflectance spectra from those to identify the rock types on the Moon. Module III: Students create and compare color-coded mineralogy maps and topographical maps of the Moon. Using spectroscopic data and their understanding of cratering and volcanism from previous activities, students create questions and devise theories for the geologic history of the Moon. Current research is inconclusive as to whether or not the use of 21st century technologies are effective as learning tools. Although the technology may be available in modern classrooms, many teachers still teach with traditional instructional strategies. We have seen, that when students actively engage and are a part of using the technology, they develop a deeper understanding and a desire to learn more about the topics covered. The interactive whiteboard technology permits students to directly immerse themselves with the content.
Sammaraiee, Yezen; Mistry, Ravi D; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth
2016-09-01
In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United Kingdom medical school. Twenty tutorials were delivered by senior students throughout the year to first- and second-year students. A baseline questionnaire was delivered to inform the development of the program followed by an end-point questionnaire the next year (n = 122). Quizzes were administered before and after five separate tutorials to assess changes in mean student scores. Additionally, each tutorial was evaluated via a questionnaire for participants (n = 949). All five posttutorial quizzes showed a significant improvement in mean student score (P < 0.05). Questionnaires showed students found the program to be relevant and useful for revision purposes and appreciated how tutorials contextualized basic science to clinical medicine. Students appreciated the interactive nature of the sessions and found receiving personalized feedback about their learning and consolidating information with someone familiar with the material to be useful. With the inclusion of the program, students felt there were now an adequate number of tutorials during the year. In conclusion, this study shows that senior medical students can design and deliver a program that adds value to the mostly lecture-based formal preclinical curriculum. We hope that our study can prompt further work to explore the effect of PAL on the teaching of basic sciences during preclinical studies. Copyright © 2016 The American Physiological Society.
2009-01-01
Assessment plays a crucial role in the learning process, but current assessments focus on assessment of learning rather than assessment for learning. In this study, a novel method for open-book continuous assessment (CA) was developed. The aim was to encourage students to learn beyond the textbook by challenging students with questions linked to a research article. Research articles closely related to lecture contents were selected and released to students before the CA for perusal. CA questions were set at three different levels to assess conceptual understanding, application, and synthesis. The CA was administered to first-year undergraduate students majoring in life science as part of Molecular Genetics, a compulsory module. It contributed 10% of the student's grade for the module. Students’ CA scores indicated that the majority could answer correctly all the questions. Students’ feedback on the CA showed that most of them praised the CA model for its novelty, motivation, and application. Only a few criticized it due to its poor coverage of lecture contents. Overall, this CA went beyond the traditional role of assessments in the assignment of scores and stimulated curiosity and self-directed learning. PMID:19952097
Nuclear Chemistry, Science (Experimental): 5316.62.
ERIC Educational Resources Information Center
Williams, Russell R.
This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…
This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...
Plastics in Our Lives. What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
This module, recommended for third or fourth year high school students, consists of three parts. The first part (entitled "Knowing Plastics") gives some background information regarding the origin of plastics, their chemical and physical properties, and the different available types. The second part (entitled "Shaping…
Nematodes: Model Organisms in High School Biology
ERIC Educational Resources Information Center
Bliss, TJ; Anderson, Margery; Dillman, Adler; Yourick, Debra; Jett, Marti; Adams, Byron J.; Russell, RevaBeth
2007-01-01
In a collaborative effort between university researchers and high school science teachers, an inquiry-based laboratory module was designed using two species of insecticidal nematodes to help students apply scientific inquiry and elements of thoughtful experimental design. The learning experience and model are described in this article. (Contains 4…
Computer Lab Modules as Problem Solving Tools. Final Report.
ERIC Educational Resources Information Center
Ignatz, Mila E.; Ignatz, Milton
There are many problems involved in upgrading scientific literacy in high schools: poorly qualified teachers, the lack of good instructional materials, and economic and academic disadvantages all contribute to the problem. This document describes a project designed to increase the opportunities available to the high school science student to…
Teaching Embedded System Concepts for Technological Literacy
ERIC Educational Resources Information Center
Winzker, M.; Schwandt, A.
2011-01-01
A basic understanding of technology is recognized as important knowledge even for students not connected with engineering and computer science. This paper shows that embedded system concepts can be taught in a technological literacy course. An embedded system teaching block that has been used in an electronics module for non-engineers is…
Soil, Plant, and Crop Science. Teacher Edition.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This package contains an instructor's manual, an instructor's resource package, and a student workbook for a course in agricultural production and management as it relates to crop production. The module contains 17 units of instruction, each of which contains some or all of the following components: objective sheet, instructor's guide, information…
Professional Development Integrating Technology: Does Delivery Format Matter?
ERIC Educational Resources Information Center
Claesgens, Jennifer; Rubino-Hare, Lori; Bloom, Nena; Fredrickson, Kristi; Henderson-Dahms, Carol; Menasco, Jackie; Sample, James
2013-01-01
The goal of the two Power of Data (POD) projects was to increase science, technology and math skills through the implementation of project-based learning modules that teach students how to solve problems through data collection and analysis utilizing geospatial technologies. Professional development institutes in two formats were offered to…
Designing Online Resources in Preparation for Authentic Laboratory Experiences
Boulay, Rachel; Parisky, Alex; Leong, Peter
2013-01-01
Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology “boot camp” targeting high school biology teachers in the State of Hawaii. The John A. Burns School of Medicine at the University of Hawaii had an opportunity to design and develop professional development that prepares science teachers with an introduction of skills, techniques, and applications for their students to conduct medical research in a laboratory setting. A group of 29 experienced teachers shared their opinions of the online materials and reported on how they used the online materials in their learning process or teaching. PMID:24319698
Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.
McIlrath, Victoria; Trye, Alice; Aguanno, Ann
2015-06-18
Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.
Undergraduate healthcare ethics education, moral resilience, and the role of ethical theories.
Monteverde, Settimio
2014-06-01
This article combines foundational and empirical aspects of healthcare education and develops a framework for teaching ethical theories inspired by pragmatist learning theory and recent work on the concept of moral resilience. It describes an exemplary implementation and presents data from student evaluation. After a pilot implementation in a regular ethics module, the feasibility and acceptance of the novel framework by students were evaluated. In addition to the regular online module evaluation, specific questions referring to the teaching of ethical theories were added using simple (yes/no) and Likert rating answer formats. At the Bern University of Applied Sciences, a total of 93 students from 2 parallel sub-cohorts of the bachelor's program in nursing science were sent the online survey link after having been exposed to the same modular contents. A total of 62% of all students participated in the survey. The survey was voluntary and anonymous. Students were free to write their name and additional comments. Students consider ethical theories-as taught within the proposed framework-as practically applicable, useful, and transferable into practice. Teaching ethical theories within the proposed framework overcomes the shortcomings described by current research. Students do not consider the mutually exclusive character of ethical theories as an insurmountable problem. The proposed framework is likely to promote the effectiveness of healthcare ethics education. Inspired by pragmatist learning theory, it enables students to consider ethical theories as educative playgrounds that help them to "frame" and "name" the ethical issues they encounter in daily practice, which is seen as an expression of moral resilience. Since it does not advocate a single ethical theory, but is open to the diversity of traditions that shape ethical thinking, it promotes a culturally sensitive, ethically reflected healthcare practice. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Thompson, L.; Bertram, M. A.
2012-12-01
Education on climate change occurs in many departments at large research universities, but providing a coordinated educational experience for students in this topic is challenging. Departmental boundaries, accounting for student credit hours, and curricula inertia create roadblocks to the creation of interdisciplinary curriculum for both graduate and undergraduate students. We describe a hierarchy of interdisciplinary programs that reach students from seniors in high school to graduate students, targeting students from a variety of disciplines. The UWHS (University of Washington in the High School) program allows high school teachers to be trained to teach UW courses to their own high school students at their own school. The students who enroll receive a UW grade and credit for the course (as well as high school credit). A UWHS course on Climate and Climate Change (Atmospheric Sciences 211) was created in 2011 supported by training to high school science teachers on the fundamentals of climate science. For the 2012-13 academic year we anticipate at least 5 schools in Washington State will be offering this course. Once students matriculate at UW, 211 serves as a prerequisite for the Climate Minor that began in 2011. The minor is hosted by the departments of Atmospheric Sciences, Earth and Space Sciences and Oceanography, offering instruction in three focus areas: climate chemistry and biology, the physical climate, and past climate and ice. Students also take an integrative seminar where they are required to communicate to both scientific and non-scientific audiences some topic in climate science. Students enrolled in graduate programs at UW can participate in the Graduate Certificate in Climate Science that began 2008. The certificate gives students instruction in climate science covering the same topic areas as the minor and with a capstone project where student communicate some aspect of climate science to a non-physical science audience. Projects have included describing to policy students how rainfall is expected to impact crops in Africa, the development of a series of talks on the health impacts of climate change for County Health officials, and the development of hands on curriculum modules for the 211 course. A climate and society track is under development for the Environmental Studies BA students who are also required to take 211. For these students capstone project will focus on societal implications of climate change. A track will be added to the Graduate Certificate focusing on impact, vulnerability and adaptation. This will serve students in natural resource sciences, public health, and social science programs. We are also working to linkage with the Graduate Certificate in Global Health so that group capstone experiences could focus on the climate impacts and adaption strategies for the most vulnerable people in the world. The richness of offerings at a large research intensive university can allow students to engage in all aspects of climate science, with the programs described above providing the structure that students need to be guided towards a deep and nuanced understanding of all aspects of climate change.
NASA Astrophysics Data System (ADS)
St. John, K.; Leckie, R. M.; Jones, M. H.; Pound, K. S.; Pyle, E.; Krissek, L. A.
2009-12-01
This NSF-funded, Phase 1 CCLI project effectively integrates scientific ocean drilling data and research (DSDP-ODP-IODP-ANDRILL) with education. We have developed, and are currently testing, a suite of data-rich inquiry-based classroom learning materials based on sediment core archives. These materials are suitable for use in introductory geoscience courses that serve general education students, early geoscience majors, and pre-service teachers. 'Science made accessible' is the essence of this goal. Our team consists of research and education specialists from institutions ranging from R1 research to public liberal arts to community college. We address relevant and timely ‘Big Ideas’ with foundational geoscience concepts and climate change case studies, as well transferable skills valued in professional settings. The exercises are divided into separate but inter-related modules including: introduction to cores, seafloor sediments, microfossils and biostratigraphy, paleomagnetism and magnetostratigraphy, climate rhythms, oxygen-isotope changes in the Cenozoic, past Arctic and Antarctic climates, drill site selection, interpreting Arctic and Antarctic sediment cores, onset of Northern Hemisphere glaciation, onset of Antarctic glaciation, and the Paleocene-Eocene Thermal Maximum. Each module has several parts, and each is designed to be used in the classroom, laboratory, or assigned as homework. All exercises utilize authentic data. Students work with scientific uncertainty, practice quantitative and problem-solving skills, and expand their basic geologic and geographic knowledge. Students have the opportunity to work individually and in groups, evaluate real-world problems, and formulate hypotheses. Initial exercises in each module are useful to introduce a topic, gauge prior knowledge, and flag possible areas of student misconception. Comprehensive instructor guides provide essential background information, detailed answer keys, and alternative implementation strategies, as well as providing links to other supplementary materials and examples for assessment. Preliminary assessment data indicates positive gains in student attitudes towards science, and in their content knowledge and scientific skills. In addition, student outcomes appear to depend somewhat on students’ motivation for taking the course and their institution, but are generally independent of students’ class rank or GPA. Our classroom-tested learning materials are being disseminated through a variety of outlets including instructor workshops and eventually to the web.
NASA Astrophysics Data System (ADS)
Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.
2015-12-01
The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.
Performing the Future. On the Use of Drama in Philosophy Courses for Science Students
NASA Astrophysics Data System (ADS)
Toonders, Winnie; Verhoeff, Roald P.; Zwart, Hub
2016-10-01
Drama is a relatively unexplored tool in academic science education. This paper addresses in what way the use of drama may allow science students to deepen their understanding of recent developments in the emerging and controversial field of neuro-enhancement, by means of a case study approach. First, we emphasise the congruency between drama and science, notably the dramatic dimension of experimental research. Subsequently, we draw on educational literature to elaborate the potential of using drama as a teaching modality, specifically focusing on the ethical and moral dimensions of future techno-scientific innovations. Our case study consisted of a drama experiment as a module in a philosophy course on human enhancement. Twenty-two students from various science disciplines performed multiple roles, as authors, actors, audience and reviewers. Qualitative data were collected on the educational process and student performance during the course, i.e. observations and video recordings of class discussions, group work and plays, interviews and questionnaires. Our drama experiment proved to be effective in enabling students to explore and relate to a future life world affected by enhancement technologies. It allowed them to deepen their awareness of social and ethical implications of neuro-technologies and of the different viewpoints people may have on this issue in academic, professional or everyday settings. Moreover, drama allowed them to develop a reflexive position of their own in the neuro-enhancement debate by enacting a moral dilemma in front of an audience. Our results confirm the potential of drama as a tool for exploring techno-scientific futures in science education.
NASA Astrophysics Data System (ADS)
Dugan, H.; Hanson, P. C.; Weathers, K. C.
2016-12-01
In the water sciences there is a massive need for graduate students who possess the analytical and technical skills to deal with large datasets and function in the new paradigm of open, collaborative -science. The Global Lake Ecological Observatory Network (GLEON) graduate fellowship program (GFP) was developed as an interdisciplinary training program to supplement the intensive disciplinary training of traditional graduate education. The primary goal of the GFP was to train a diverse cohort of graduate students in network science, open-web technologies, collaboration, and data analytics, and importantly to provide the opportunity to use these skills to conduct collaborative research resulting in publishable scientific products. The GFP is run as a series of three week-long workshops over two years that brings together a cohort of twelve students. In addition, fellows are expected to attend and contribute to at least one international GLEON all-hands' meeting. Here, we provide examples of training modules in the GFP (model building, data QA/QC, information management, bayesian modeling, open coding/version control, national data programs), as well as scientific outputs (manuscripts, software products, and new global datasets) produced by the fellows, as well as the process by which this team science was catalyzed. Data driven education that lets students apply learned skills to real research projects reinforces concepts, provides motivation, and can benefit their publication record. This program design is extendable to other institutions and networks.
Earthquake Magnitude: A Teaching Module for the Spreadsheets Across the Curriculum Initiative
NASA Astrophysics Data System (ADS)
Wetzel, L. R.; Vacher, H. L.
2006-12-01
Spreadsheets Across the Curriculum (SSAC) is a library of computer-based activities designed to reinforce or teach quantitative-literacy or mathematics concepts and skills in context. Each activity (called a "module" in the SSAC project) consists of a PowerPoint presentation with embedded Excel spreadsheets. Each module focuses on one or more problems for students to solve. Each student works through a presentation, thinks about the in-context problem, figures out how to solve it mathematically, and builds the spreadsheets to calculate and examine answers. The emphasis is on mathematical problem solving. The intention is for the in- context problems to span the entire range of subjects where quantitative thinking, number sense, and math non-anxiety are relevant. The self-contained modules aim to teach quantitative concepts and skills in a wide variety of disciplines (e.g., health care, finance, biology, and geology). For example, in the Earthquake Magnitude module students create spreadsheets and graphs to explore earthquake magnitude scales, wave amplitude, and energy release. In particular, students realize that earthquake magnitude scales are logarithmic. Because each step in magnitude represents a 10-fold increase in wave amplitude and approximately a 30-fold increase in energy release, large earthquakes are much more powerful than small earthquakes. The module has been used as laboratory and take-home exercises in small structural geology and solid earth geophysics courses with upper level undergraduates. Anonymous pre- and post-tests assessed students' familiarity with Excel as well as other quantitative skills. The SSAC library consists of 27 modules created by a community of educators who met for one-week "module-making workshops" in Olympia, Washington, in July of 2005 and 2006. The educators designed the modules at the workshops both to use in their own classrooms and to make available for others to adopt and adapt at other locations and in other classes. When fully developed, the module collection will be available at the on-line Science Education Resource Center at Carleton College, searchable by quantitative skill, subject area, and Excel level. The number of modules will continue to grow through individual efforts as well as an additional module-making workshop in July of 2007 facilitated by the Washington Center for Improving the Quality of Undergraduate Education.
NASA Astrophysics Data System (ADS)
Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Charlevoix, D. J.; Miller, M. M.
2015-12-01
The GETSI project, funded by NSF TUES, is developing and disseminating teaching and learning materials that feature geodesy data applied to critical societal issues such as climate change, water resource management, and natural hazards (serc.carleton.edu/getsi). It is collaborative between UNAVCO (NSF's geodetic facility), Mt San Antonio College, and Indiana University. GETSI was initiated after requests by geoscience faculty for geodetic teaching resources for introductory and majors-level students. Full modules take two weeks but module subsets can also be used. Modules are developed and tested by two co-authors and also tested in a third classroom. GETSI is working in partnership with the Science Education Resource Center's (SERC) InTeGrate project on the development, assessment, and dissemination to ensure compatibility with the growing number of resources for geoscience education. Two GETSI modules are being published in October 2015. "Ice mass and sea level changes" includes geodetic data from GRACE, satellite altimetry, and GPS time series. "Imaging Active Tectonics" has students analyzing InSAR and LiDAR data to assess infrastructure earthquake vulnerability. Another three modules are in testing during fall 2015 and will be published in 2016. "Surface process hazards" investigates mass wasting hazard and risk using LiDAR data. "Water resources and geodesy" uses GRACE, vertical GPS, and reflection GPS data to have students investigating droughts in California and the High Great Plains. "GPS, strain, and earthquakes" helps students learn about infinitesimal and coseismic strain through analysis of horizontal GPS data and includes an extension module on the Napa 2014 earthquake. In addition to teaching resources, the GETSI project is compiling recommendations on successful development of geodesy curricula. The chief recommendations so far are the critical importance of including scientific experts in the authorship team and investing significant resources in data preparation (student interns can be excellent for this). GETSI also includes a research element on the way instructors adapt or adopt the resources. After publication, 4 additional testers will be recruited per module. They will provide feedback on how they choose to use the module elements in their courses.
NASA Astrophysics Data System (ADS)
St John, K. K.; Jones, M. H.; Leckie, R. M.; Pound, K. S.; Krissek, L. A.
2013-12-01
The context for understanding modern global climate change lies in the records of Earth's past. This is demonstrated by decades of paleoclimate research by scientists in organizations such as IODP and ANDRILL, yet making that science accessible to educators has been a long-standing challenge. Furthermore, content transfer is not enough; in science education, addressing how we know is as important as addressing what we know about science. To that end, our initial NSF-CCLI/TUES objective of Teaching Anchor Concepts of Climate Change (NSF #0737335) was to put authentic data and published case studies of past climate change at students' fingertips in a series of 7 multipart inquiry-based exercise modules for undergraduate classroom and lab use. After 4 years of funding (incl. 2 no-cost extensions) we surpassed our project objective and established an avenue for sustainability that is proving successful. The purpose of this presentation is to share (1) the process by which we developed the curriculum and (2) the strategies used to ensure sustainability. The curriculum development process reflected many of the same successful strategies used in scientific research. It drew on the knowledge and skills of the team; it was collaborative, iterative, and primarily distributive, yet at times directive. The team included paleoclimate researchers and educators from a broad range of undergraduate institutions. We evaluated published data from scientific reports and peer-reviewed journal articles, and used these as the foundation for writing curriculum that was data-rich and inquiry-based. In total 14 multipart exercise modules were developed. The feedback from early and frequent meeting presentations, from formative evaluation by students in courses and by faculty in workshops, and from peer-review by paleoclimate scientists and undergraduate educators helped us fine-tune the materials to the needs of the education and paleoclimate science communities. It additionally helped us develop detailed instructor guides to accompany each module. After careful consideration of dissemination options, we choose to publish the full suite of exercise modules as a commercially-available book, Reconstructing Earth's Climate History, while also providing open online access to a subset of modules. Its current use in undergraduate paleoclimatology courses, and the availability of select modules for use in other courses demonstrate that creative, hybrid options can be found for lasting dissemination, and thus sustainability. In achieving our goal of making science accessible, we believe we have followed a curriculum development process and sustainability path that can be used by others to meet needs in earth, ocean, and atmospheric science education. Next steps for REaCH include exploration of its use in blended learning classrooms, and at minority serving institutions.
NASA Astrophysics Data System (ADS)
Schwieterman, Edward; Binder, Breanna A.; Pre-Major in Astronomy Program
2016-01-01
The Pre-Major in Astronomy Program (Pre-MAP) is a research and mentoring program for entering undergraduate students offered by the University of Washington Astronomy Department since 2005. The primary goal of Pre-MAP is to recruit and retain students from groups traditionally underrepresented in science, technology, engineering, and mathematics (STEM) through early exposure to guided research projects. The Pre-MAP seminar is the core component of the program and offers instruction in computing skills, data manipulation, science writing, statistical analysis, and scientific speaking and presentation skills. Students choose research projects proposed by faculty, post-docs and graduate students in areas related to astrophysics, planetary science, and astrobiology. Pre-MAP has been successful in retaining underrepresented students in STEM fields relative to the broader UW population, and we've found these students are more likely to graduate and excel academically than their peers. As of fall 2015, more than one hundred students have taken the Pre-MAP seminar, and both internal and external evaluations have shown that all groups of participating students report an increased interest in astronomy and science careers at the end of the seminar. This talk will provide an overview of the program and the structure of the core seminar. In particular, the talk will focus on additions and revisions to the seminar course over the last few years, such as the introduction of a public speaking coach, career and internship modules, and the formalization of external lab tours.
NASA Astrophysics Data System (ADS)
Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva
2012-10-01
The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.
Mendoza-Núñez, Víctor Manuel; Martínez-Maldonado, María de la Luz; Correa-Muñoz, Elsa
2007-01-19
The main challenge of higher education institutions throughout the world is to develop professionals capable of understanding and responding to the current social priorities of our countries. Given the utmost importance of addressing the complex needs of an increasingly elderly population in Mexico, the National Autonomous University of Mexico has systematically incorporated modules dealing with primary gerontological health care into several of its undergraduate programs in health sciences. The objective of this study was to analyze teacher's and student's perceptions about the current educational practices on gerontology. A cross-sectional study was carried out with a sample of 26 teachers and 122 undergraduate students. Subjects were administered interviews and responded survey instrument. A vast proportion of the teachers (42%) reported students' attitudes towards their academic training as the most important factor affecting learning in the field of gerontology, whereas students reported that the main problems of education in gerontology were theoretical (32%) and methodological (28%). In addition, 41% of students considered education on ageing matters as an essential element for their professional development, as compared to 19% of teachers (p < 0.05). Our findings suggest that the teachers' perceptions about the low importance of education on ageing matters for the professional practice of health sciences could be a negative factor for gerontology teaching.
Weaving a Formal Methods Education with Problem-Based Learning
NASA Astrophysics Data System (ADS)
Gibson, J. Paul
The idea of weaving formal methods through computing (or software engineering) degrees is not a new one. However, there has been little success in developing and implementing such a curriculum. Formal methods continue to be taught as stand-alone modules and students, in general, fail to see how fundamental these methods are to the engineering of software. A major problem is one of motivation — how can the students be expected to enthusiastically embrace a challenging subject when the learning benefits, beyond passing an exam and achieving curriculum credits, are not clear? Problem-based learning has gradually moved from being an innovative pedagogique technique, commonly used to better-motivate students, to being widely adopted in the teaching of many different disciplines, including computer science and software engineering. Our experience shows that a good problem can be re-used throughout a student's academic life. In fact, the best computing problems can be used with children (young and old), undergraduates and postgraduates. In this paper we present a process for weaving formal methods through a University curriculum that is founded on the application of problem-based learning and a library of good software engineering problems, where students learn about formal methods without sitting a traditional formal methods module. The process of constructing good problems and integrating them into the curriculum is shown to be analagous to the process of engineering software. This approach is not intended to replace more traditional formal methods modules: it will better prepare students for such specialised modules and ensure that all students have an understanding and appreciation for formal methods even if they do not go on to specialise in them.
NASA Astrophysics Data System (ADS)
Pratt-Sitaula, B. A.; Shervais, K.; Crosby, C. J.; Douglas, B. J.; Niemi, N. A.; Wang, G.; Charlevoix, D. J.
2015-12-01
Fieldwork is an integral part of the geosciences and there is a longstanding tradition of teaching field methods as part of the undergraduate curriculum. As new technology changes the ways in which we scientifically examine the Earth, and as workforce development demands evolve, there is growing interest in introducing these new technologies into field education courses. In collaboration with field education instructors, UNAVCO, the National Science Foundation's geodetic facility, has developed a module of teaching resources to integrate terrestrial lidar scanning into field courses. An NSF facility is well positioned to develop scalable resources that can then be distributed or adapted for broader implementation. The modules can also be accomplished using Structure from Motion methods in place of lidar scanning. Modules goals are for students to be able to: (A) design and conduct a complex TLS survey to address a geologic research question and (B) articulate the societal impetus for answering these research questions and identify why TLS is the appropriate method in some circumstances. The module is comprised of five units: (1) Introduction to survey design, (2) Stratigraphic section analysis, (3) Fault scarp analysis, (4) Geomorphic change detection, (5) Student-led survey design summative assessment. The modules, apart from the Introduction, are independent, thus select modules can be employed in a given field setting. Prototype module materials were developed from the last five years of UNAVCO support of undergraduate field courses. The current versions of the modules were tested in summer 2015 at the Indiana University and University of Michigan field camps. Results show that the majority of students are able to achieve the intended learning goals. Module materials are available on the UNAVCO Education and Community Engagement website.
An Exploration Geophysics Course With an Environmental Focus for an Urban Minority Institution
NASA Astrophysics Data System (ADS)
Kenyon, P. M.
2004-12-01
A hands-on exploration geophysics field course with an environmental focus has been developed with NSF support for use at the City College of New York in Manhattan. To maximize access for the students, no prerequisites beyond introductory earth science and physics are required. The course is taught for three hours on Saturday mornings. This has resulted in it attracting not only regular City College students, but also earth science teachers studying for alternate certification or Master's degrees. After a brief introduction to the nature of geophysics and to concepts in data processing, the course is taught in four three-week modules, one each on seismology, resistivity surveying, electromagnetic ground conductivity, and magnetic measurements. Each module contains one week of theory, a field experience, computer data analysis, and a final report. Field exercises are planned to emphasize teamwork and include realistic urban applications of the techniques. Student surveys done in conjunction with this course provide insights into the motivations and needs of the mostly minority students taking it. In general, these students come to the course already comfortable with teamwork and with working in the field. The questionnaires indicate that their greatest need is increased knowledge of the methods of geophysics and of the problems that can be attacked using it. Most of the students gave high ratings to the course, citing the fieldwork as the part that they most enjoyed. The results of these surveys will be presented, along with examples of the field exercises used. The computer analysis assignments written for this course will also be available.
The Galileoscope project: community-based technology education in Arizona
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Fine, Leonard W.; Sparks, Robert T.; Walker, Constance E.; Dugan, Charles L.; Dokter, Erin F. C.
2014-07-01
A program model has been developed and implemented over the last three years to provide a robust optical technologybased science education program to students aged 9-11 years (5th grade), a formative time in the development of a student's interest in science and engineering. We have created well-tested and evaluated teaching kits for the classroom to teach about the basics of image formation and telescopes. In addition we provide professional development to the teachers of these students on principles of optics and on using the teaching kits. The program model is to reach every teacher and every student in a number of mid-sized rural communities across the state of Arizona. The Galileoscope telescope kit is a key part of this program to explore optics and the nature of science. The program grew out of Module 3 of the NSF-Supported Hands-On Optics project (SPIE, OSA, and NOAO) and from the Science Foundation Arizona-supported Hands-On Optics Arizona program. NOAO has conducted this program in Flagstaff, Yuma, Globe, and Safford, Arizona and is being expanded to sites across the entire state of Arizona (295,254 square kilometers). We describe the educational goals, evaluations, and logistical issues connected to the program. In particular, we proposed that this model can be adapted for any rural or urban locations in order to encourage interest in science, astronomy and optics.-
Effective, Active Learning Strategies for the Oceanography Classroom
NASA Astrophysics Data System (ADS)
Dmochowski, J. E.; Marinov, I.
2014-12-01
A decline in enrollment in STEM fields at the university level has prompted extensive research on alternative ways of teaching and learning science. Inquiry-based learning as well as the related "flipped" or "active" lectures, and similar teaching methods and philosophies have been proposed as more effective ways to disseminate knowledge in science classes than the traditional lecture. We will provide a synopsis of our experiences in implementing some of these practices into our Introductory Oceanography, Global Climate Change, and Ocean Atmosphere Dynamics undergraduate courses at the University of Pennsylvania, with both smaller and larger enrollments. By implementing tools such as at-home modules; computer labs; incorporation of current research; pre- and post-lecture quizzes; reflective, qualitative writing assignments; peer review; and a variety of in-class learning strategies, we aim to increase the science literacy of the student population and help students gain a more comprehensive knowledge of the topic, enhance their critical thinking skills, and correct misconceptions. While implementing these teaching techniques with college students is not without complications, we argue that a blended class that flexibly and creatively accounts for class size and science level improves the learning experience and the acquired knowledge. We will present examples of student assignments and activities as well as describe the lessons we have learned, and propose ideas for moving forward to best utilize innovative teaching tools in order to increase science literacy in oceanography and other climate-related courses.
The Graduate School of Climate Sciences, University of Bern
NASA Astrophysics Data System (ADS)
Martin, L.
2012-04-01
The Graduate School of Climate Sciences, University of Bern, offers a specialised M.Sc. and a Ph.D. study programme in climate sciences. The graduate school has a highly interdisciplinary profile involving not only natural sciences, but also humanities/history, economics and law. The ten participating institutes with a total of 45 academics provide expertise in long-term climate variability, climate modelling, climate reconstruction, predictability of the future climate and extreme events, the impact of climate change on ecosystems and climate risks for society and economy. The graduate school is fully compliant with the Bologna Accords and collaborates closely with the sister institution C2SM at ETH Zurich by, e.g., jointly organised lectures. There are currently 23 master and 37 doctoral students in the programme. These originate from the University of Bern (28 %), from other Swiss universities (30 %) and from foreign universities (42 %). Comprehensive information about the Graduate School of Climate Sciences is available at http://www.climatestudies.unibe.ch . The M.Sc. in Climate Sciences programme (120 ECTS credits) is designed to attract students from all disciplines in natural sciences and offers them a tailor-made curriculum to reach their career aspirations. The students make their own course selection according to their profile envisaged (specialised versus broad education) and ideally already guided by a job perspective. Selecting the courses and the topic of the master thesis they specialise in one of five fields: climate and earth system science; atmospheric science; economics; economic, social and environmental history; statistics. Several courses are organised jointly with public authorities and the private industry, e.g. from experts working in the insurance business, in weather forecasting or in environmental pollution control. This provides the students hands-on experience and contacts to future employers. The master thesis (60 ECTS) involves the students in an ongoing research project and gives them the opportunity to collaborate with experienced scientists in a team. Alternatively, a short thesis (30 ECTS) may be combined with an internship (30 ECTS) at another university, in the private sector or in the administration. A bachelor degree in any field of science at university level (B.A. for specialisation in economics or history) or an equivalent degree is required for admission to the M.Sc. programme. The teaching language is English. The Ph.D. in Climate Sciences is research oriented and consists mainly of 3 to 4 years full time work in a project within one of the institutes involved in the Graduate School of Climate Sciences. The Ph.D. programme is research oriented and has a compulsory module of 12 ECTS credits containing workshops (professional skills), a summer school, an international conference, colloquia, seminars and optionally lectures. The compulsory module gives the Ph.D. students the opportunity to build up their own network in the local and international research community. The Ph.D. thesis is usually written in the form of research articles in international peer reviewed journals. A M.Sc. or an equivalent academic degree is conditional for admission to the Ph.D. programme.
Herd, A Y; Milligan, R G
1997-09-01
The 'conversion course' described in this paper has been set up following discussions between the Institute of Medical Illustrators (IMI) and Glasgow Caledonian University (GCU). The 'conversion course' will take the form of a degree triple module with a credit rating of 60 Scottish Credit and Accumulation Transfer (SCOTCAT) credits at Scottish Degree (SD) level 3. This module will require the student to undertake an extended theoretical based investigative project. The project will permit the student to study in-depth an aspect of his/her specialist interest that has a particular professional relevance. The topic of the project will be negotiated between the student and a scrutiny panel under the aegis of the department of Biological Sciences at Glasgow Caledonian University. The project will be written up in the style of an academic paper for the Institute's journal. Successful students will be awarded the BSc in Medical Illustration.
NASA Technical Reports Server (NTRS)
Williams, William B., Jr.
1999-01-01
The technologies associated with distance learning are evolving rapidly, giving to educators a potential tool for enhancing the educational experiences of large numbers of students simultaneously. This enhancement, in order to be effective, must take into account the various agendas of teachers, administrators, state systems, and of course students. It must also make use of the latest research on effective pedagogy. This combination, effective pedagogy and robust information technology, is a powerful vehicle for communicating, to a large audience of school children the excitement of mathematics and science--an excitement that for the most part is now well-hidden. This project,"Technology Development, Implementation and Assessment," proposed to bring to bear on the education of learners in grades 3 - 8 in science and mathematics both advances in information technology and in effective pedagogy. Specifically, the project developed components NASA CONNECT video series--problem-based learning modules that focus on the scientific method and that incorporate problem-based learning scenarios tied to national mathematics and science standards. These videos serve two purposes; they engage students in the excitement of hands-on learning and they model for the teachers of these students the problem-based learning practices that are proving to be excellent ways to teach science and mathematics to school students. Another component of NASA CONNECT is the accompanying web-site.
Overview of the Education and Public Outreach (EPO) program of the Caltech Tectonics Observatory
NASA Astrophysics Data System (ADS)
Kovalenko, L.; Jain, K.; Maloney, J.
2009-12-01
The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past year, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) stimulate the interest of students and the general public in Earth Sciences, particularly in the study of tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries and advancements, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools. We have hosted local high school students and teachers to provide them with research experience (as part of Caltech’s “Summer Research Connection”); participated in teacher training workshops (organized by the local school district); hosted tours for local elementary school students; and brought hands-on activities into local elementary and middle school classrooms, science clubs, and science nights. We have also led local school students and teachers on geology field trips through nearby parks. In addition, we have developed education modules for undergraduate classes (as part of MARGINS program), and have written educational web articles on TO research (http://www.tectonics.caltech.edu/outreach). The presentation will give an overview of these activities and their impact on our educational program.
pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students
Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason
2014-01-01
The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. PMID:26086659
ESSEA K-4 Online Course: Polar Connections
NASA Astrophysics Data System (ADS)
Blaney, L.; Myers, R. J.; Schwerin, T.
2007-12-01
The Earth System Science Education Alliance (ESSEA) is a National Science Foundation-supported program implemented by the Institute for Global Environmental Strategies (IGES) to improve the quality of geoscience instruction for pre-service, middle, and high school teachers. ESSEA increases teachers' access to quality materials, standards-based instructional methods and content knowledge. Started in 2000 and based on a trio of online courses (for elementary, middle, and high school teachers), the courses have been used by 40 faculty at 20 institutions educating over 1,700 teachers in Earth system science. Program evaluation of original course participants indicated that the courses had significant impact on teachers Earth system content knowledge and beliefs about teaching and learning. Seventeen of the original participating institutions have continued to use the courses and many have developed new programs that incorporate the courses in Earth science education opportunities for teachers. Today the ESSEA program lists nearly 40 colleges and universities as participants. The original K-4 course and modules have been revised to include topics and resources focusing on the International Polar Year. The new K-4 Land, Living Things, Water and Air modules contain inquiry-based investigations exploring our polar regions. Each module lists a set of essential questions that guide teachers and their students as they build content knowledge. The course structure requires teachers to work individually and in teams to build content knowledge and pedagogical understanding of how their students learn. This group investigation approach and a "Teacher as Researcher" theme promote reflection and collaboration to develop criteria for effective concept building. By exploring the characteristics of polar landscapes, atmosphere, and polar life, teachers and their students will develop new understandings about the interactions and dependencies of the Earth spheres and our polar regions. Changes in climate, air, water, and land quality and animal and plant populations make the news everyday. The K-4 course will help teachers inform rather than frighten their students as they learn more about the characteristics and importance of our polar regions. One goal of IPY 2007-2008 is to increase the awareness, understanding and interest of school-age children in polar conditions and research. The inclusion of polar topics in the K-4 course contributes to the achievement of that goal.
Flipping one-shot library instruction: using Canvas and Pecha Kucha for peer teaching*†
Carroll, Alexander J.; Tchangalova, Nedelina; Harrington, Eileen G.
2016-01-01
Objective This study sought to determine whether a flipped classroom that facilitated peer learning would improve undergraduate health sciences students' abilities to find, evaluate, and use appropriate evidence for research assignments. Methods Students completed online modules in a learning management system, with librarians facilitating subsequent student-directed, in-person sessions. Mixed methods assessment was used to evaluate program outcomes. Results Students learned information literacy concepts but did not consistently apply them in research assignments. Faculty interviews revealed strengthened partnerships between librarians and teaching faculty. Conclusion This pedagogy shows promise for implementing and evaluating a successful flipped information literacy program. PMID:27076799
NASA Astrophysics Data System (ADS)
Miller, H. R.; Sell, K. S.; Herbert, B. E.
2004-12-01
Shifts in learning goals in introductory earth science courses to greater emphasis on critical thinking and the nature of science has led to the adoption of new pedagogical techniques, including inquiry-based learning (IBL). IBL is thought to support understanding of the nature of science and foster development of scientific reasoning and critical thinking skills by modeling authentic science inquiry. Implementation of new pedagogical techniques do not occur without influence, instruction and learning occurs in a complex learning environment, referring to the social, physical, mental, and pedagogical contexts. This study characterized the impact of an IBL module verses a traditionally structured laboratory exercise in an introductory physical geology class at Texas A&M University. Student activities in this study included manipulation of large-scale data sets, use of multiple representations, and exposure to ill-constrained problems common to the Texas Gulf Coast system. Formative assessment data collected included an initial survey of self efficacy, student demographics, content knowledge and a pre-mental model expression. Summative data collected included a post-test, post-mental model expression, final laboratory report, and a post-survey on student attitudes toward the module. Mental model expressions and final reports were scored according to a validated rubric instrument (Cronbrach alpha: 0.84-0.98). Nine lab sections were randomized into experimental and control groups. Experimental groups were taught using IBL pedagogical techniques, while the control groups were taught using traditional laboratory "workbook" techniques. Preliminary assessment based on rubric scores for pre-tests using Student's t-test (N ˜ 140) indicated that the experimental and control groups were not significantly different (ρ > 0.05), therefore, the learning environment likely impacted student's ability to succeed. A non-supportive learning environment, including student attitudes, teaching assistant attitudes, the lack of scaffolded learning, limited pedagogical content knowledge, and departmental oversight, which were all encountered during this study, can have an affect on the students' attitudes and achievements during the course. Data collected showed an overall improvement in content knowledge (38% increase); while performance effort clearly declined as seen through post-mental model expressions (a decline in performance by 24.8%) and percentage of assignments turned in (39% of all students turned in the required final report). A non-supportive learning environment was also seen through student comments on the final survey, "I think that all the TA's and the professor have forgotten that we are an intro class". A non-supportive environment clearly does not encourage critical thinking and completion of work. This pilot study showed that the complex learning environment can play a significant role in student learning. It also illustrates the need for future studies in IBL with supportive learning environments in order for students to achieve academic excellence and develop scientific reasoning and critical thinking skills.
NASA Astrophysics Data System (ADS)
Torremorell, Maria Carme Boqué; de Nicolás, Montserrat Alguacil; Valls, Mercè Pañellas
Teacher training at the Blanquerna Faculty of Psychology and Educational and Sports Sciences (FPCEE), in Barcelona, has a long pedagogical tradition based on teaching innovation. Its educational style is characterised by methods focused on the students' involvement and on close collaboration with teaching practice centres. Within a core subject in the Teacher Training diploma course, students were asked to assess different methodological proposals aimed at promoting the development of their personal, social, and professional competences. In the assessment surveys, from a sample of 145 students, scores for variables very satisfactory or satisfactory ranged from 95.8 % to 83.4 % for the entire set of methodological actions under analysis. Data obtained in this first research phase were very useful to design basic training modules for the new Teacher Training Degree. In the second phase (in process), active teachers are asked for their perception on the orientation of the practicum, its connection with the end-of-course assignment, and the in-service student's incidence on innovation processes at school.
Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.
ERIC Educational Resources Information Center
Simpson, James R.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…
ERIC Educational Resources Information Center
Dori, Yehudit J.; Tal, Revital T.; Tsaushu, Masha
2003-01-01
Teaching nonscience majors topics in biotechnology through case studies is the focus of this research. Our "Biotechnology, Environment, and Related Issues" module, developed within the "Science for All" framework, is aimed at elevating the level of students' scientific and technological literacy and their higher order thinking…
ERIC Educational Resources Information Center
Luster-Teasley, Stephanie; Hargrove-Leak, Sirena; Gibson, Willietta; Leak, Roland
2017-01-01
This educational research seeks to develop novel laboratory modules by using Case Studies in the Science Teaching method to introduce sustainability and environmental engineering laboratory concepts to 21st century learners. The increased interest in "going green" has led to a surge in the number of engineering students studying…
ERIC Educational Resources Information Center
Kouh, Minjoon; Merz, River
2013-01-01
We piloted a semester-long, interdisciplinary, introductory science course using recently developed optogenetic technique as a main context. In neuroscience application, this technique introduces the gene of light-sensitive membrane protein into a targeted class of neurons, whose activity then can be modulated with a laser of specific wavelength.…
Canadian Studies for Elementary and Junior High School Teachers. A Syllabus and Resource Guide.
ERIC Educational Resources Information Center
State Univ., of New York, Plattsburgh. Coll. at Plattsburgh. Center for the Study of Canada.
Developed to promote greater awareness and understanding of Canada by American students and teachers, this interdisciplinary curriculum guide includes not only social studies, but also activities dealing with mathematics, science, environmental studies, English, art, and music. The book is divided into five modules, each giving a different…
ERIC Educational Resources Information Center
Walters, R. A.; Carey, G. F.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Primary production in aquatic ecosystems is carried out by phytoplankton, microscopic plants…
Borrowing Money. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
This module discusses several borrowing schemes to help students see more clearly the effects of borrowing money on both the lender and the borrower. They include borrowing from personal lenders, from "5-6" operators, and from credit unions. Three exercise sets with answers (one for each borrowing scheme), a short list of references, and…
Furge, Laura Lowe; Stevens-Truss, Regina; Moore, D Blaine; Langeland, James A
2009-01-01
Bioinformatics education for undergraduates has been approached primarily in two ways: introduction of new courses with largely bioinformatics focus or introduction of bioinformatics experiences into existing courses. For small colleges such as Kalamazoo, creation of new courses within an already resource-stretched setting has not been an option. Furthermore, we believe that a true interdisciplinary science experience would be best served by introduction of bioinformatics modules within existing courses in biology and chemistry and other complementary departments. To that end, with support from the Howard Hughes Medical Institute, we have developed over a dozen independent bioinformatics modules for our students that are incorporated into courses ranging from general chemistry and biology, advanced specialty courses, and classes in complementary disciplines such as computer science, mathematics, and physics. These activities have largely promoted active learning in our classrooms and have enhanced student understanding of course materials. Herein, we describe our program, the activities we have developed, and assessment of our endeavors in this area. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.
Teaching Chemical Equilibrium with the Jigsaw Technique
NASA Astrophysics Data System (ADS)
Doymus, Kemal
2008-03-01
This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students’ understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes was randomly assigned as the non-jigsaw group (control) and other as the jigsaw group (cooperative). Students participating in the jigsaw group were divided into four “home groups” since the topic chemical equilibrium is divided into four subtopics (Modules A, B, C and D). Each of these home groups contained four students. The groups were as follows: (1) Home Group A (HGA), representin g the equilibrium state and quantitative aspects of equilibrium (Module A), (2) Home Group B (HGB), representing the equilibrium constant and relationships involving equilibrium constants (Module B), (3) Home Group C (HGC), representing Altering Equilibrium Conditions: Le Chatelier’s principle (Module C), and (4) Home Group D (HGD), representing calculations with equilibrium constants (Module D). The home groups then broke apart, like pieces of a jigsaw puzzle, and the students moved into jigsaw groups consisting of members from the other home groups who were assigned the same portion of the material. The jigsaw groups were then in charge of teaching their specific subtopic to the rest of the students in their learning group. The main data collection tool was a Chemical Equilibrium Achievement Test (CEAT), which was applied to both the jigsaw and non-jigsaw groups The results indicated that the jigsaw group was more successful than the non-jigsaw group (individual learning method).
Modules to enhance smart lighting education
NASA Astrophysics Data System (ADS)
Bunch, Robert M.; Joenathan, Charles; Connor, Kenneth; Chouikha, Mohamed
2012-10-01
Over the past several years there has been a rapid advancement in solid state lighting applications brought on by the development of high efficiency light emitting diodes. Development of lighting devices, systems and products that meet the demands of the future lighting marketplace requires workers from many disciplines including engineers, scientists, designers and architects. The National Science Foundation has recognized this fact and established the Smart Lighting Engineering Research Center that promotes research leading to smart lighting systems, partners with industry to enhance innovation and educates a diverse, world-class workforce. The lead institution is Rensselaer Polytechnic Institute with core partners Boston University and The University of New Mexico. Outreach partners include Howard University, Morgan State University, and Rose-Hulman Institute of Technology. Because of the multidisciplinary nature of advanced smart lighting systems workers often have little or no formal education in basic optics, lighting and illumination. This paper describes the initial stages of the development of self-contained and universally applicable educational modules that target essential optics topics needed for lighting applications. The modules are intended to be easily incorporated into new and existing courses by a variety of educators and/or to be used in a series of stand-alone, asynchronous training exercises by new graduate students. The ultimate goal of this effort is to produce resources such as video lectures, video presentations of students-teaching-students, classroom activities, assessment tools, student research projects and laboratories integrated into learning modules. Sample modules and resources will be highlighted. Other outreach activities such as plans for coursework, undergraduate research, design projects, and high school enrichment programs will be discussed.
Careers and Networking: Professional Development for Graduate Students and Post-docs
NASA Astrophysics Data System (ADS)
Jungbluth, S.; Boiteau, R.; Bottjer, D.; De Leo, F. C.; Hawko, N.; Ilikchyan, I.; Bruno, B. C.
2013-12-01
Established in 2006 by the National Science Foundation, the Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institutional Science and Technology Center based at the University of Hawai i. One of C-MORE's missions is to provide graduate students and post-docs with state-of-the-art training, which primarily occurs through laboratory- and field-based research. Additionally, C-MORE offers a Professional Development Training Program (PDTP) to help students and post-docs develop a range of "soft" skills such as science communication, leadership, proposal writing, teaching and mentoring (Bruno et al, 2013). The PDTP not only provides professional development training to graduate students and post-docs, but also encourages these young scientists to take leadership of their training. The Professional Development Organizing Committee (PDOC), composed of students and post-docs across the various C-MORE institutions, works closely with the Education Office to implement the eight core PDTP modules as well as 'on-demand' workshops. In February 2013, we organized a workshop to promote networking and foster scientific collaborations among C-MORE graduate students and post-doctoral researchers at the seven partner institutions: the University of Hawaii, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Oregon State University, University of California Santa Cruz, Monterey Bay Aquarium Research Institute and Columbia University. The workshop was held in New Orleans in conjunction with the 2013 ASLO/ Ocean Sciences national meeting. In this paper, we will describe the student-led planning process, the workshop itself, and evaluation results. We will also present examples of some of the collaborations that resulted from this workshop.
Teaching with Games: Online Resources and Examples for Entry Level Courses
NASA Astrophysics Data System (ADS)
Teed, R.; Manduca, C.
2004-12-01
Using games to teach introductory geoscience can motivate students to enthusiastically learn material that they might otherwise condemn as "boring". A good educational game is one that immerses the players in the material and engages them for as long as it takes to master that material. There are some good geoscience games already available, but instructors can also create their own, suitable to their students and the content that they are teaching. Game-Based Learning is a module on the Starting Point website for faculty teaching entry level geosciences. It assists faculty in using games in their teaching by providing a description of the features of game-based learning, why you would use it, how to use games to teach geoscience, examples, and references. Other issues discussed include the development of video games for teaching, having your students create educational games, what makes a good game, handling competition in the classroom, and grading. The examples include descriptions of and rules for a GPS treasure hunt, a geology quiz show, and an earthquake game, as well as links to several online geological video games, and advice on how to design a paleontology board game. Starting Point is intended to help both experienced faculty and new instructors meet the challenge of teaching introductory geoscience classes, including environmental science and oceanography as well as more traditional geology classes. For many students, these classes are both the first and the last college-level science class that they will ever take. They need to learn enough about the Earth in that one class to sustain them for many decades as voters, consumers, and sometimes even as teachers. Starting Point is produced by a group of authors working with the Science Education Resource Center. It contains dozens of detailed examples categorized by geoscience topic with advice about using them and assessing learning. Each example is linked to one of many modules, such as Game-Based Learning, Interactive Lectures, or Using an Earth History Approach. These modules describe teaching tools and techniques, provide examples and advice about using them in an introductory geoscience class, and give instructors details on how to create their own exercises.
NASA Astrophysics Data System (ADS)
Stearns, L. A.; Walker, B.; Pratt-Sitaula, B.
2015-12-01
GETSI (Geodesy Tools for Societal Issues) is an NSF-funded partnership program between UNAVCO, Indiana University, Mt. San Antonio College, and the Science Education Resource Center (SERC). We present results from classroom testing and assessment of the GETSI Ice Mass and Sea Level Changes module that utilizes geodetic data to teach about ice sheet mass loss in introductory undergraduate courses. The module explores the interactions between global sea level rise, Greenland ice mass loss, and the response of the solid Earth. It brings together topics typically addressed in introductory Earth science courses (isostatic rebound, geologic measurements, and climate change) in a way that highlights the interconnectivity of the Earth system and the interpretation of geodetic data. The module was tested 3 times at 3 different institution types (R1 institution, comprehensive university, and community college), and formative and summative assessment data were obtained. We will provide an overview of the instructional materials, describe our teaching methods, and discuss how formative and summative assessment data assisted in revisions of the teaching materials and changes in our pedagogy during subsequent implementation of the module. We will also provide strategies for faculty who wish to incorporate the module into their curricula. Instructional materials, faculty and student resources, and implementation tips are freely available on the GETSI website.
MESSENGER Education and Public Outreach Arranges a Ride to the Innermost Planet
NASA Astrophysics Data System (ADS)
Weir, H. M.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Hirshon, B.; Vanhala, H.; Solomon, S. C.; Messenger Education; Public Outreach Team
2010-12-01
Exploration of the mysterious planet Mercury offers an unprecedented opportunity for teachers, students, and citizens to tag along for the ride, and the Education and Public Outreach (EPO) Team for MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is making sure the public gets quite a show. Since 2004, when MESSENGER was launched, MESSENGER has been gathering intriguing data and information about the Solar System's innermost planet. That journey will continue at a quickened pace after March 18, 2011, when MESSENGER enters into orbit around Mercury for one year of observations of the planet and its environment. The EPO Team - an extensive network of individuals and institutions - has sought to convey the excitement and complexity of the mission as MESSENGER's team overcomes challenges, achieves triumphs, and shares the adventure of space exploration with the American and global public. The EPO Team has developed a broad and comprehensive set of educational and outreach activities, ranging from curricular materials, teacher training, and unique mission-related student investigations to museum displays and special outreach to underserved communities and minority students. One of the most visible aspects of this effort is the MESSENGER Educator Fellows program: master science educators who conduct teacher training workshops throughout the nation for pre-K-12 educators. Educator Fellows train teachers on the EPO Team's MESSENGER Education Modules, which are also relevant to other NASA missions reaching important milestones this year (see http://www.messenger-education.org/teachers/educ_modules.php). By the time MESSENGER goes into orbit, Educator Fellows will have trained an estimated 18,000 teachers, who in turn, facilitate classroom experiences to over 1.8 million students. The EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science Systems and Applications, Inc. (SSAI); and Southwest Research Institute (SwRI).
NASA Astrophysics Data System (ADS)
Odell, M.; Ellins, K. K.; Polito, E. J.; Castillo Comer, C. A.; Stocks, E.; Manganella, K.; Ledley, T. S.
2010-12-01
TERC’s EarthLabs project provides rigorous and engaging Earth and environmental science labs. Four existing modules illustrate sequences for learning science concepts through data analysis activities and hands-on experiments. A fifth module, developed with NSF, comprises a series of linked inquiry based activities focused on the cryosphere to help students understand concepts around change over time on multiple and embedded time scales. Teachers recruited from the NSF-OEDG-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program conducted a pedagogical review of the Cryosphere EarthLabs module and provided feedback on how well the materials matched high school needs in Texas and were aligned with state and national standards. Five TXESS Revolution teachers field tested the materials in their classrooms and then trained other TXESS Revolution teachers on their implementation during spring and summer 2010. Here we report on the results of PD delivery during the summer 2010 TXESS Revolution summer institute as determined by (1) a set of evaluation instruments that included a pre-post concept map activity to assess changes in workshop teachers’ understanding of the concepts presented, a pre-post test content knowledge test, and a pre-post survey of teachers’ comfort in teaching the Texas Earth and Space Science standards addressed by the module; (2) teacher reflections; and (3) focus group responses. The findings reveal that the teachers liked the module activities and felt they could use them to teach Environmental and Earth Science. They appreciated that the sequence of activities contributed to a deeper understanding and observed that the variety of methods used to present the information accommodates different learning styles. Information about the cryosphere was new to all the teachers. The content knowledge tests reveal that although teachers made appreciable gains, their understanding of cryosphere, how it changes over time, and it’s role in Earth’s climate system remains weak. Our results clearly reflect the challenges of addressing the complexity of climate science and critical need for climate literacy education.
Sumter, Takita Felder; Owens, Patrick M
2011-01-01
The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. Copyright © 2010 Wiley Periodicals, Inc.
Sumter, Takita Felder; Owens, Patrick M.
2012-01-01
The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. PMID:21445902
NASA Astrophysics Data System (ADS)
McKenzie, L.; Versprille, A.; Towns, M.; Mahaffy, P.; Martin, B.; Kirchhoff, M.
2013-12-01
Global climate change is one of the most pressing environmental challenges facing humanity. Many of the important underlying concepts require mental models that are built on a fundamental understanding of chemistry, yet connections to climate science and global climate change are largely missing from undergraduate chemistry courses for science majors. In Visualizing the Chemistry of Climate Change (VC3Chem), we have developed and piloted a set of online modules that addresses this gap by teaching core chemistry concepts through the rich context of climate science. These interactive web-based digital learning experiences enable students to learn about isotopes and their relevance in determining historical temperature records, IR absorption by greenhouse gases, and acid/base chemistry and the impacts on changing ocean pH. The efficacy of these tools and this approach has been assessed through measuring changes in students' understanding about both climate change and core chemistry concepts.
Teaching habitat and animal classification to fourth graders using an engineering-design model
NASA Astrophysics Data System (ADS)
Marulcu, Ismail
2014-05-01
Background: The motivation for this work is built upon the premise that there is a need for research-based materials for design-based science instruction. In this paper, a small portion of our work investigating the impact of a LEGOTM engineering unit on fourth grade students' preconceptions and understanding of animals is presented. Purpose: The driving questions for our work are: (1) What is the impact of an engineering-design-based curricular module on students' understanding of habitat and animal classification? (2) What are students' misconceptions regarding animal classification and habitat? Sample: The study was conducted in an inner-city K-8 school in the northeastern region of the United States. There were two fourth grade classrooms in the school. The first classroom included seven girls and nine boys, whereas the other classroom included eight girls and eight boys. All fourth grade students participated in the study. Design and methods: In answering the research questions mixed-method approaches are used. Data collection methods included pre- and post-tests, pre- and post-interviews, student journals, and classroom observations. Identical pre- and post-tests were administered to measure students' understanding of animals. They included four multiple-choice and six open-ended questions. Identical pre- and post-interviews were administered to explore students' in-depth understanding of animals. Results: Our results show that students significantly increased their performance after instruction on both the multiple-choice questions (t = -3.586, p = .001) and the open-ended questions (t = -5.04, p = .000). They performed better on the post interviews as well. Also, it is found that design-based instruction helped students comprehend core concepts of a life science subject, animals. Conclusions: Based on these results, the main argument of the study is that engineering design is a useful framework for teaching not only physical science-related subjects, but also life science subjects in elementary science classrooms.
NASA Astrophysics Data System (ADS)
Manley, Jim
2017-04-01
Climate and the Carbon Cycle EOS3a Science in tomorrow's classroom Students, like too much of the American public, are largely unaware or apathetic to the changes in world climate and the impact that these changes have for life on Earth. A study conducted by Michigan State University and published in 2011 by Science Daily titled 'What carbon cycle? College students lack scientific literacy, study finds'. This study relates how 'most college students in the United States do not grasp the scientific basis of the carbon cycle - an essential skill in understanding the causes and consequences of climate change.' The study authors call for a new approach to teaching about climate. What if teachers better understood vital components of Earth's climate system and were able to impart his understanding to their students? What if students based their responses to the information taught not on emotion, but on a deeper understanding of the forces driving climate change, their analysis of the scientific evidence and in the context of earth system science? As a Middle School science teacher, I have been given the opportunity to use a new curriculum within TERC's EarthLabs collection, Climate and the Carbon Cycle, to awaken those brains and assist my students in making personal lifestyle choices based on what they had learned. In addition, with support from TERC and The University of Texas Institute for Geophysics I joined others to begin training other teachers on how to implement this curriculum in their classrooms to expose their students to our changing climate. Through my poster, I will give you (1) a glimpse into the challenges faced by today's science teachers in communicating the complicated, but ever-deepening understanding of the linkages between natural and human-driven factors on climate; (2) introduce you to a new module in the EarthLabs curriculum designed to expose teachers and students to global scientific climate data and instrumentation; and (3) illustrate how student worldviews are changed though exposure to the latest in scientific discovery and understanding.