Sample records for science process knowledge

  1. Science Process Skills and Attitudes toward Science among Palestinian Secondary School Students

    ERIC Educational Resources Information Center

    Zeidan, Afif Hafez; Jayosi, Majdi Rashed

    2015-01-01

    The aims of this study were to investigate the relationship between the Palestinian secondary school students knowledge level of science process skills and their attitudes toward science, and the effect of gender and residence of these students on their knowledge level of science process skills and on their attitudes toward science. The study used…

  2. Marrying Content and Process in Computer Science Education

    ERIC Educational Resources Information Center

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  3. Learners' and Teachers' Conceptual Knowledge of Science Processes: The Case of Botswana

    ERIC Educational Resources Information Center

    Emereole, Hezekiah Ukegbu

    2009-01-01

    The conceptual knowledge of science processes possessed by University of Botswana science students and senior secondary school science teachers was sought through a three-part questionnaire. One part requested demographic data of subjects, the second part asked them to select their level of familiarity with the processes, and the third part probed…

  4. Examining the Learning Outcomes Included in the Turkish Science Curriculum in Terms of Science Process Skills: A Document Analysis with Standards-Based Assessment

    ERIC Educational Resources Information Center

    Duruk, Umit; Akgün, Abuzer; Dogan, Ceylan; Gülsuyu, Fatma

    2017-01-01

    Science process skills have provided a valuable chance for everyone to construct their own knowledge by means of scientific inquiry. If students are to understand what science is and how it actually works, then they should necessarily make use of their science process skills as well as scientific content knowledge compulsory to be learned in any…

  5. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; Zulkafli, Zed; Grainger, Sam; Acosta, Luis; Bastiaensen, Johan; De Bièvre, Bert; Bhusal, Jagat; Chanie, Tilashwork; Clark, Julian; Dewulf, Art; Foggin, Marc; Hannah, David; Hergarten, Christian; Isaeva, Aiganysh; Karpouzoglou, Timos; Pandey, Bhopal; Paudel, Deepak; Sharma, Keshav; Steenhuis, Tammo; Tilahun, Seifu; Van Hecken, Gert; Zhumanova, Munavar

    2014-10-01

    The participation of the general public in the research design, data collection and interpretation process together with scientists is often referred to as citizen science. While citizen science itself has existed since the start of scientific practice, developments in sensing technology, data processing and visualisation, and communication of ideas and results, are creating a wide range of new opportunities for public participation in scientific research. This paper reviews the state of citizen science in a hydrological context and explores the potential of citizen science to complement more traditional ways of scientific data collection and knowledge generation for hydrological sciences and water resources management. Although hydrological data collection often involves advanced technology, the advent of robust, cheap and low-maintenance sensing equipment provides unprecedented opportunities for data collection in a citizen science context. These data have a significant potential to create new hydrological knowledge, especially in relation to the characterisation of process heterogeneity, remote regions, and human impacts on the water cycle. However, the nature and quality of data collected in citizen science experiments is potentially very different from those of traditional monitoring networks. This poses challenges in terms of their processing, interpretation, and use, especially with regard to assimilation of traditional knowledge, the quantification of uncertainties, and their role in decision support. It also requires care in designing citizen science projects such that the generated data complement optimally other available knowledge. Lastly, we reflect on the challenges and opportunities in the integration of hydrologically-oriented citizen science in water resources management, the role of scientific knowledge in the decision-making process, and the potential contestation to established community institutions posed by co-generation of new knowledge.

  6. [Problems of world outlook and methodology of science integration in biological studies].

    PubMed

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  7. Using texts in science education: cognitive processes and knowledge representation.

    PubMed

    van den Broek, Paul

    2010-04-23

    Texts form a powerful tool in teaching concepts and principles in science. How do readers extract information from a text, and what are the limitations in this process? Central to comprehension of and learning from a text is the construction of a coherent mental representation that integrates the textual information and relevant background knowledge. This representation engenders learning if it expands the reader's existing knowledge base or if it corrects misconceptions in this knowledge base. The Landscape Model captures the reading process and the influences of reader characteristics (such as working-memory capacity, reading goal, prior knowledge, and inferential skills) and text characteristics (such as content/structure of presented information, processing demands, and textual cues). The model suggests factors that can optimize--or jeopardize--learning science from text.

  8. An exploration of fifth-grade students' epistemological beliefs in science and an investigation of their relation to science learning

    NASA Astrophysics Data System (ADS)

    Elder, Anastasia Danos

    Elementary students' beliefs about the nature of knowledge---epistemological beliefs---are an emerging concern for science education and research. Composed of a critique of research literature and two studies, this dissertation investigated the epistemological beliefs of fifth-grade students who participated in inquiry-based, hands-on science program. The goals were to characterize their beliefs about the nature of knowledge in science and to investigate the relation between these beliefs and their learning of scientific process skills. In the first study, fifth-grade students (N = 211) were surveyed about their beliefs regarding the (1) purpose of science, (2) sources of scientific knowledge, (3) roles of evidence and experiments, (4) changing nature of knowledge in science, and (5) coherence of a scientific knowledge base. Descriptive statistics and analysis of variance (ANOVA) were conducted to assess the interrelations among various epistemological belief constructs. Fifth-graders' epistemological beliefs in science were found to reflect a mixture of naive and sophisticated understanding. Few differences in beliefs were found according to gender, ethnicity, and socio-economic status. Students' understanding of the purpose of science and the changing nature of science seemed to act as two important constructs in their beliefs. Furthermore, students' epistemological beliefs was characterized as an emerging system in which beliefs were related to each other in consistent ways. In the second study, fifth-grade students (N = 194) responded to questionnaire items about their epistemological beliefs in science and completed performance assessments testing their science process skills in two units---one which embedded learning of process skills with conceptual knowledge and another in which process skills were learned with minimal reference to conceptual knowledge. Based on correlational and ANOVA analyses, modest links were found between students' epistemological beliefs and their science learning. The relations varied by instructional unit. Findings defined a number of areas for further investigation including a consideration of how beliefs are characterized, a greater emphasis on understanding the role of aptitude and prior knowledge, and developmental issues in the relation between students' epistemological beliefs and their learning of science. Theoretical, methodological, and educational implications of this work were discussed.

  9. Emphasizing the process of science using demonstrations in conceptual chemistry

    NASA Astrophysics Data System (ADS)

    Lutz, Courtney A.

    The purpose of this project was to teach students a method for employing the process of science in a conceptual chemistry classroom when observing a demonstration of a discrepant event. Students observed six demonstrations throughout a trimester study of chemistry and responded to each demonstration by asking as many questions as they could think of, choosing one testable question to answer by making as many hypotheses as possible, and choosing one hypothesis to make predictions about observed results of this hypothesis when tested. Students were evaluated on their curiosity, confidence, knowledge of the process of science, and knowledge of the nature of science before and after the six demonstrations. Many students showed improvement in using or mastery of the process of science within the context of conceptual chemistry after six intensive experiences with it. Results of the study also showed students gained confidence in their scientific abilities after completing one trimester of conceptual chemistry. Curiosity and knowledge of the nature of science did not show statistically significant improvement according to the assessment tool. This may have been due to the scope of the demonstration and response activities, which focused on the process of science methodology instead of knowledge of the nature of science or the constraints of the assessment tool.

  10. Science Teachers' Epistemic Cognition in Instructional Decision Making

    ERIC Educational Resources Information Center

    Ponnock, Annette R.

    2017-01-01

    One understudied barrier to science education reform concerns teachers' cognitive processes and how they relate to instructional decision-making. Epistemic cognition--teachers' beliefs about knowledge and knowledge acquisition and goals for their students' knowledge acquisition--could provide important insights into the choices science teachers…

  11. The knowledge-learning-instruction framework: bridging the science-practice chasm to enhance robust student learning.

    PubMed

    Koedinger, Kenneth R; Corbett, Albert T; Perfetti, Charles

    2012-07-01

    Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of high potential for generality, while explicitly identifying constraints of and opportunities for detailed analysis of the knowledge students may acquire in courses. Drawing on research across domains of science, math, and language learning, we illustrate the analyses of knowledge, learning, and instructional events that the KLI framework affords. We present a set of three coordinated taxonomies of knowledge, learning, and instruction. For example, we identify three broad classes of learning events (LEs): (a) memory and fluency processes, (b) induction and refinement processes, and (c) understanding and sense-making processes, and we show how these can lead to different knowledge changes and constraints on optimal instructional choices. Copyright © 2012 Cognitive Science Society, Inc.

  12. The challenge of bridging science and policy in the Baltic Sea eutrophication governance in Finland: the perspective of science.

    PubMed

    Pihlajamäki, Mia; Tynkkynen, Nina

    2011-03-01

    This article examines the views of scientists on intricacies of scientific knowledge that affect science-policy interface in the Baltic Sea eutrophication governance in Finland. The analysis demonstrates that these intricacies can be divided into five categories: (1) uncertainty of knowledge concerning ecological processes, (2) heterogeneity of knowledge, (3) societal and political call for (certain) knowledge, (4) contingency of the knowledge that ends up taken as a baseline for decision making and further research, and (5) linkages of knowledge production, processing, and communication to particular characteristics of individual researchers and research societies. By explicating these aspects, this article illustrates the ways in which scientific knowledge concerning eutrophication is human-bound and susceptible to interpretation, thus adding on to the uncertainty of the Baltic Sea environmental governance. The aim is, then, to open up perspectives on how ambiguities related to science-policy interface could be coped with.

  13. A conceptual framework for understanding the perspectives on the causes of the science-practice gap in ecology and conservation.

    PubMed

    Bertuol-Garcia, Diana; Morsello, Carla; N El-Hani, Charbel; Pardini, Renata

    2018-05-01

    Applying scientific knowledge to confront societal challenges is a difficult task, an issue known as the science-practice gap. In Ecology and Conservation, scientific evidence has been seldom used directly to support decision-making, despite calls for an increasing role of ecological science in developing solutions for a sustainable future. To date, multiple causes of the science-practice gap and diverse approaches to link science and practice in Ecology and Conservation have been proposed. To foster a transparent debate and broaden our understanding of the difficulties of using scientific knowledge, we reviewed the perceived causes of the science-practice gap, aiming to: (i) identify the perspectives of ecologists and conservation scientists on this problem, (ii) evaluate the predominance of these perspectives over time and across journals, and (iii) assess them in light of disciplines studying the role of science in decision-making. We based our review on 1563 sentences describing causes of the science-practice gap extracted from 122 articles and on discussions with eight scientists on how to classify these sentences. The resulting process-based framework describes three distinct perspectives on the relevant processes, knowledge and actors in the science-practice interface. The most common perspective assumes only scientific knowledge should support practice, perceiving a one-way knowledge flow from science to practice and recognizing flaws in knowledge generation, communication, and/or use. The second assumes that both scientists and decision-makers should contribute to support practice, perceiving a two-way knowledge flow between science and practice through joint knowledge-production/integration processes, which, for several reasons, are perceived to occur infrequently. The last perspective was very rare, and assumes scientists should put their results into practice, but they rarely do. Some causes (e.g. cultural differences between scientists and decision-makers) are shared with other disciplines, while others seem specific to Ecology and Conservation (e.g. inadequate research scales). All identified causes require one of three general types of solutions, depending on whether the causal factor can (e.g. inadequate research questions) or cannot (e.g. scientific uncertainty) be changed, or if misconceptions (e.g. undervaluing abstract knowledge) should be solved. The unchanged predominance of the one-way perspective over time may be associated with the prestige of evidence-based conservation and suggests that debates in Ecology and Conservation lag behind trends in other disciplines towards bidirectional views ascribing larger roles to decision-makers. In turn, the two-way perspective seems primarily restricted to research traditions historically isolated from mainstream conservation biology. All perspectives represented superficial views of decision-making by not accounting for limits to human rationality, complexity of decision-making contexts, fuzzy science-practice boundaries, ambiguity brought about by science, and different types of knowledge use. However, joint knowledge-production processes from the two-way perspective can potentially allow for democratic decision-making processes, explicit discussions of values and multiple types of science use. To broaden our understanding of the interface and foster productive science-practice linkages, we argue for dialogue among different research traditions within Ecology and Conservation, joint knowledge-production processes between scientists and decision-makers and interdisciplinarity across Ecology, Conservation and Political Science in both research and education. © 2017 Cambridge Philosophical Society.

  14. Enhancing the Scientific Process with Artificial Intelligence: Forest Science Applications

    Treesearch

    Ronald E. McRoberts; Daniel L. Schmoldt; H. Michael Rauscher

    1991-01-01

    Forestry, as a science, is a process for investigating nature. It consists of repeatedly cycling through a number of steps, including identifying knowledge gaps, creating knowledge to fill them, and organizing, evaluating, and delivering this knowledge. Much of this effort is directed toward creating abstract models of natural phenomena. The cognitive techniques of AI...

  15. Using web-based technology to deliver scientific knowledge: the Southern Forest Encyclopedia Network.

    Treesearch

    John M. Pye; H. Michael Rauscher; Deborah K. Kennard; Patricia A. Flebbe; J. Bryan Jordin; William G. Hubbard; Cynthia Fowler; James Ward

    2007-01-01

    Forest science, like any science, is a continuous process of discovering new knowledge, reevaluating existing knowledge, and revising our theories and management practices in light of these changes. The forest science community has not yet found the solution to the problem of getting continuously changing science efficiently and effectively into the hands of those who...

  16. Science education for sustainability, epistemological reflections and educational practices: from natural sciences to trans-disciplinarity

    NASA Astrophysics Data System (ADS)

    Colucci-Gray, Laura; Perazzone, Anna; Dodman, Martin; Camino, Elena

    2013-03-01

    In this three-part article we seek to establish connections between the emerging framework of sustainability science and the methodological basis of research and practice in science education in order to bring forth knowledge and competences for sustainability. The first and second parts deal with the implications of taking a sustainability view in relation to knowledge processes. The complexity, uncertainty and urgency of global environmental problems challenge the foundations of reductionist Western science. Within such debate, the proposal of sustainability science advocates for inter-disciplinary and inter-paradigmatic collaboration and it includes the requirements of post- normal science proposing a respectful dialogue between experts and non-experts in the construction of new scientific knowledge. Such a change of epistemology is rooted into participation, deliberation and the gathering of extended-facts where cultural framings and values are the hard components in the face of soft facts. A reflection on language and communication processes is thus the focus of knowledge practices and educational approaches aimed at sustainability. Language contains the roots of conceptual thinking (including scientific knowledge) and each culture and society are defined and limited by the language that is used to describe and act upon the world. Within a scenario of sustainability, a discussion of scientific language is in order to retrace the connections between language and culture, and to promote a holistic view based on pluralism and dialogue. Drawing on the linguistic reflection, the third part gives examples of teaching and learning situations involving prospective science teachers in action-research contexts: these activities are set out to promote linguistic integration and to introduce reflexive process into science learning. Discussion will focus on the methodological features of a learning process that is akin to a communal and emancipatory research process within a sustainability scenario.

  17. Holistic science: An understanding of science education encompassing ethical and social issues

    NASA Astrophysics Data System (ADS)

    Malekpour, Susan

    Science has often been viewed, by the majority of our educators and the general public, as being objective and emotionless. Based on this view, our educators teach science in the same manner, objectively and in an abstract form. This manner of teaching has hindered our learners' ability for active learning and distanced them from the subject matter. In this action research, I have examined holistic science pedagogy in conjunction with a constructivism theory. In holistic science pedagogy, scientific knowledge is combined with subjective personal experiences and social issues. There is an interaction between student and scientific data when the student's context, relationships, and lived experiences that play a role in the scientific recognition of the world were incorporated into the learning process. In this pedagogical model, the factual content was viewed from the context of social and ethical implications. By empowering learners with this ability, science knowledge will no longer be exclusive to a select group. This process empowers the general population with the ability to understand scientific knowledge and therefore the ability to make informed decisions based on this knowledge. The goal was to make curriculum developers more conscious of factors that can positively influence the learning process and increase student engagement and understanding within the science classroom. The holistic approach to science pedagogy has enlightened and empowered our adult learners more effectively. Learners became more actively engaged in their own process of learning. Teachers must be willing to listen and implement student suggestions on improving the teaching/learning process. Teachers should be willing to make the effort in connecting with their students by structuring courses so the topics would be relevant to the students in relation to real world and social/ethical and political issues. Holistic science pedagogy strives for social change through the empowerment of adult learners with scientific knowledge. This research has demonstrated that learners can better understand the decision-making process and more easily relate their experiences, and therefore their knowledge, to social/political and ethical issues.

  18. The Effects of a STEM Intervention on Elementary Students' Science Knowledge and Skills

    ERIC Educational Resources Information Center

    Cotabish, Alicia; Dailey, Debbie; Robinson, Ann; Hughes, Gail

    2013-01-01

    The purpose of the study was to assess elementary students' science process skills, content knowledge, and concept knowledge after one year of participation in an elementary Science, Technology, Engineering, and Mathematics (STEM) program. This study documented the effects of the combination of intensive professional development and the use of…

  19. Science teaching in science education

    NASA Astrophysics Data System (ADS)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  20. Case-based medical informatics

    PubMed Central

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-01-01

    Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and powerful case matching mechanisms), technical solutions are challenging. Finally, we discuss the major challenges for a technical solution: case record comprehensiveness, organization of information on similarity principles, development of pattern recognition and solving ethical issues. Summary Medical Informatics is an applied science that should be committed to advancing patient-centered medicine through individual knowledge processing. Case-based reasoning is the technical solution that enables a continuous individual knowledge processing and could be applied providing that challenges and ethical issues arising are addressed appropriately. PMID:15533257

  1. The Process of Science Communications at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in operation for nearly two years. Serving scientists in Earth Science, Microgravity Science, and Space Science. Critical features of the design are illustrated, and essential skills required to operate the process are defined. Measures of success will also be presented.

  2. Science Literacy of Undergraduates in the United States

    NASA Astrophysics Data System (ADS)

    Impey, Chris

    2013-01-01

    Science literacy is a matter of broad concern among scientists, educators, and many policy-makers. National Science Foundation surveys of the general public for biannual Science Indicators series show that respondents on average score less than 2/3 correct on a series of science knowledge questions, and less than half display an understanding of the process of scientific inquiry. Both measures are essentially unchanged over two decades. At the University of Arizona, we have gathered over 11,000 undergraduate student responses to a survey of knowledge and beliefs that is tethered in the NSF survey. This non-science major population demographically represents ten million students nationwide. There is a less than 10% gain in performance in the science knowledge score between the incoming freshmen and seniors who graduate having completed their requirement of three science classes. Belief levels in pseudoscience and supernatural phenomena are disconcertingly high, mostly resistant to college science instruction, and weakly correlated with performance on the science knowledge questions. The Internet is rapidly becoming the primary information source for anyone interested in science so students may not get most of their information from the classroom. Educators and policy makers need to decide what aspects of science knowledge and process are important for adults to know. College science educators have major challenges in better in preparing graduates for participation in a civic society largely driven by science and technology.

  3. Fundamental care and knowledge interests: Implications for nursing science.

    PubMed

    Granero-Molina, José; Fernández-Sola, Cayetano; Mateo-Aguilar, Ester; Aranda-Torres, Cayetano; Román-López, Pablo; Hernández-Padilla, José Manuel

    2018-06-01

    To characterise the intratheoretical interests of knowledge in nursing science as an epistemological framework for fundamental care. For Jürgen Habermas, theory does not separate knowledge interests from life. All knowledge, understanding and human research is always interested. Habermas formulated the knowledge interests in empirical-analytical, historical-hermeneutic and critical social sciences; but said nothing about health sciences and nursing science. Discursive paper. The article is organised into five sections that develop our argument about the implications of the Habermasian intratheoretical interests in nursing science and fundamental care: the persistence of a technical interest, the predominance of a practical interest, the importance of an emancipatory interest, "being there" to understand individuals' experience and an "existential crisis" that uncovers the individual's subjectivity. The nursing discipline can take on practical and emancipatory interests (together with a technical interest) as its fundamental knowledge interests. Nurses' privileged position in the delivery of fundamental care gives them the opportunity to gain a deep understanding of the patient's experience and illness process through physical contact and empathic communication. In clinical, academic and research environments, nurses should highlight the importance of fundamental care, showcasing the value of practical and emancipatory knowledge. This process could help to improve nursing science's leadership, social visibility and idiosyncrasy. © 2017 John Wiley & Sons Ltd.

  4. Enhancing healthcare process design with human factors engineering and reliability science, part 2: applying the knowledge to clinical documentation systems.

    PubMed

    Boston-Fleischhauer, Carol

    2008-02-01

    The demand to redesign healthcare processes that achieve efficient, effective, and safe results is never-ending. Part 1 of this 2-part series introduced human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare organizations. In part 2, the author applies this knowledge to one of the most common operational processes in healthcare: clinical documentation. Specific implementation strategies and anticipated results are discussed, along with organizational challenges and recommended executive responses.

  5. Defining the requisite knowledge for providers of in-service professional development for K--12 teachers of science: Refining the construct

    NASA Astrophysics Data System (ADS)

    Tucker, Deborah L.

    Purpose. The purpose of this grounded theory study was to refine, using a Delphi study process, the four categories of the theoretical model of the comprehensive knowledge base required by providers of professional development for K-12 teachers of science generated from a review of the literature. Methodology. This grounded theory study used data collected through a modified Delphi technique and interviews to refine and validate the literature-based knowledge base required by providers of professional development for K-12 teachers of science. Twenty-three participants, experts in the fields of science education, how people learn, instructional and assessment strategies, and learning contexts, responded to the study's questions. Findings. By "densifying" the four categories of the knowledge base, this study determined the causal conditions (the science subject matter knowledge), the intervening conditions (how people learn), the strategies (the effective instructional and assessment strategies), and the context (the context and culture of formal learning environments) surrounding the science professional development process. Eight sections were added to the literature-based knowledge base; the final model comprised of forty-nine sections. The average length of the operational definitions increased nearly threefold and the number of citations per operational definition increased more than twofold. Conclusions. A four-category comprehensive model that can serve as the foundation for the knowledge base required by science professional developers now exists. Subject matter knowledge includes science concepts, inquiry, the nature of science, and scientific habits of mind; how people learn includes the principles of learning, active learning, andragogy, variations in learners, neuroscience and cognitive science, and change theory; effective instructional and assessment strategies include constructivist learning and inquiry-based teaching, differentiation of instruction, making knowledge and thinking accessible to learners, automatic and fluent retrieval of nonscience-specific skills, and science assessment and assessment strategies, science-specific instructional strategies, and safety within a learning environment; and, contextual knowledge includes curriculum selection and implementation strategies and knowledge of building program coherence. Recommendations. Further research on the use of which specific instructional strategies identified in the refined knowledge base have positive, significant effect sizes for adult learners is recommended.

  6. Experimenting with engagement : commentary on: Taking our own medicine: on an experiment in science communication.

    PubMed

    Lewenstein, Bruce V

    2011-12-01

    Social scientists can explore questions about what counts as knowledge and how researchers-including social science researchers-can produce that knowledge. An art/space installation examining issues of public participation in science demonstrates the process of co-creation of knowledge about public participation, not simply the co-creation of the meaning of the installation itself.

  7. Processes and Pathways: How Do Mathematics and Science Partnerships Measure and Promote Growth in Teacher Content Knowledge?

    ERIC Educational Resources Information Center

    Moyer-Packenham, Patricia S.; Westenskow, Arla

    2012-01-01

    Intense focus on student achievement results in mathematics and science has brought about claims that K-12 teachers should be better prepared to teach basic concepts in these disciplines. The focus on teachers' mathematics and science content knowledge has been met by efforts to increase teacher knowledge through funded national initiatives…

  8. Science Literacy: Concepts, Contexts, and Consequences

    ERIC Educational Resources Information Center

    Snow, Catherine E., Ed.; Dibner, Kenne A., Ed.

    2016-01-01

    Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to science--whether using knowledge or creating it--necessitates some level of familiarity with the enterprise and…

  9. Learning, Unlearning and Relearning--Knowledge Life Cycles in Library and Information Science Education

    ERIC Educational Resources Information Center

    Bedford, Denise A. D.

    2015-01-01

    The knowledge life cycle is applied to two core capabilities of library and information science (LIS) education--teaching, and research and development. The knowledge claim validation, invalidation and integration steps of the knowledge life cycle are translated to learning, unlearning and relearning processes. Mixed methods are used to determine…

  10. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    ERIC Educational Resources Information Center

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  11. Policy impacts of ecosystem services knowledge

    PubMed Central

    Posner, Stephen M.; McKenzie, Emily; Ricketts, Taylor H.

    2016-01-01

    Research about ecosystem services (ES) often aims to generate knowledge that influences policies and institutions for conservation and human development. However, we have limited understanding of how decision-makers use ES knowledge or what factors facilitate use. Here we address this gap and report on, to our knowledge, the first quantitative analysis of the factors and conditions that explain the policy impact of ES knowledge. We analyze a global sample of cases where similar ES knowledge was generated and applied to decision-making. We first test whether attributes of ES knowledge themselves predict different measures of impact on decisions. We find that legitimacy of knowledge is more often associated with impact than either the credibility or salience of the knowledge. We also examine whether predictor variables related to the science-to-policy process and the contextual conditions of a case are significant in predicting impact. Our findings indicate that, although many factors are important, attributes of the knowledge and aspects of the science-to-policy process that enhance legitimacy best explain the impact of ES science on decision-making. Our results are consistent with both theory and previous qualitative assessments in suggesting that the attributes and perceptions of scientific knowledge and process within which knowledge is coproduced are important determinants of whether that knowledge leads to action. PMID:26831101

  12. Transfer Entails Communication: The Public Understanding of (Social) Science as a Stage and a Play for Implementing Evidence-Based Prevention Knowledge and Programs.

    PubMed

    Bromme, Rainer; Beelmann, Andreas

    2018-04-01

    Many social science-based interventions entail the transfer of evidence-based knowledge to the "target population," because the acquisition and the acceptance of that knowledge are necessary for the intended improvement of behavior or development. Furthermore, the application of a certain prevention program is often legitimated by a reference to science-based reasons such as an evaluation according to scientific standards. Hence, any implementation of evidence-based knowledge and programs is embedded in the public understanding of (social) science. Based on recent research on such public understanding of science, we shall discuss transfer as a process of science communication.

  13. Examining an online microbiology game as an effective tool for teaching the scientific process.

    PubMed

    Bowling, Kristi G; Klisch, Yvonne; Wang, Shu; Beier, Margaret

    2013-01-01

    This study investigates the effectiveness of the online Flash game Disease Defenders in producing knowledge gains for concepts related to the scientific process. Disease Defenders was specifically designed to model how the scientific process is central to a variety of disciplines and science careers. An additional question relates to the game's ability to shift attitudes toward science. Middle school classes from grades six to eight were assigned to the experimental group (n = 489) or control group (n = 367) and asked to participate in a three-session intervention. The sessions involved completing a pretest, a game play session, and taking a posttest. Students in the experimental group played Disease Defenders while students in the control group played an alternative science game. Results showed a significant increase in mean science knowledge scores for all grades in the experimental group, with sixth grade and seventh grade students gaining more knowledge than eighth grade students. Additionally, results showed a significant positive change in science attitudes only among sixth graders, who also rated their satisfaction with the game more favorably than students in higher grades. No differences in mean test scores were found between genders for science knowledge or science attitudes, suggesting that the game is equally effective for males and females.

  14. Redesigning Problem-Based Learning in the Knowledge Creation Paradigm for School Science Learning

    ERIC Educational Resources Information Center

    Yeo, Jennifer; Tan, Seng Chee

    2014-01-01

    The introduction of problem-based learning into K-12 science classrooms faces the challenge of achieving the dual goal of learning science content and developing problem-solving skills. To overcome this content-process tension in science classrooms, we employed the knowledge-creation approach as a boundary object between the two seemingly…

  15. iBiology: communicating the process of science

    PubMed Central

    Goodwin, Sarah S.

    2014-01-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. PMID:25080124

  16. Things You Should Not Believe in Science

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2017-01-01

    This article considers the relationship between belief and learning science. It is argued that belief in science (as a process) needs to be distinguished from belief in particular scientific ideas and knowledge claims. Scientific knowledge is theoretical and provisional--something to be adopted for its utility, not as articles of faith. The…

  17. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    NASA Astrophysics Data System (ADS)

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-10-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them experiment, science fair, and hypothesis, is used to probe the students' knowledge structures. Students from grades four, five, and eight, as well as first-year college students were tested to reveal their knowledge structures relating to the scientific method. Younger students were found to have a naïve view of the science process with little understanding of how science relates to the real world. However, students' conceptions about the scientific process appear to be malleable, with science fairs a potentially strong influencer. The strength of associations between words is observed to change from grade to grade, with younger students placing science fair near the center of their knowledge structure regarding the scientific method, whereas older students conceptualize the scientific method around experiment.

  18. Contemporary HIV/AIDS research: Insights from knowledge management theory.

    PubMed

    Callaghan, Chris William

    2017-12-01

    Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn's paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the 'crowd,' thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process.

  19. Promoting elementary students' epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Chan, Carol K. K.

    2018-04-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.

  20. A Method of Synthesizing Large Bodies of Knowledge in the Social Sciences.

    ERIC Educational Resources Information Center

    Thiemann, Francis C.

    Employing concepts of formal symbolic logic, the philosophy of science, computer technology, and the work of Hans Zetterberg, a format is suggested for synthesizing and increasing use of the rapidly expanding knowledge of the social sciences. Steps in the process include formulating basic propositions, utilizing computers to establish sets, and…

  1. The Effects of Science Models on Students' Understanding of Scientific Processes

    NASA Astrophysics Data System (ADS)

    Berglin, Riki Susan

    This action research study investigated how the use of science models affected fifth-grade students' ability to transfer their science curriculum to a deeper understanding of scientific processes. This study implemented a variety of science models into a chemistry unit throughout a 6-week study. The research question addressed was: In what ways do using models to learn and teach science help students transfer classroom knowledge to a deeper understanding of the scientific processes? Qualitative and quantitative data were collected through pre- and post-science interest inventories, observations field notes, student work samples, focus group interviews, and chemistry unit tests. These data collection tools assessed students' attitudes, engagement, and content knowledge throughout their chemistry unit. The results of the data indicate that the model-based instruction program helped with students' engagement in the lessons and understanding of chemistry content. The results also showed that students displayed positive attitudes toward using science models.

  2. The effects of inquiry-based summer enrichment activities on rising eighth graders' knowledge of science processes, attitude toward science, and perceptions of scientists

    NASA Astrophysics Data System (ADS)

    Moore, Juanita Martin

    The purpose of this research was to examine the effects of summer science enrichment on eighth-graders' science process skills knowledge, attitude toward science and perceptions of scientists. A single group pre- and post-test design was used to test participants in a summer science enrichment camp, which took place over a three-week period in the summer of 2000. Participants, all of whom were residents of the Mississippi area known as the Delta, lived on the campus of Mississippi Valley State University for the entire course of the camp. Activities included several guided inquiry-based projects such as water rocket design and solar or battery-powered car design. Participants also took trips to an environmental camp in north Mississippi and to the Stennis Space Center on the Mississippi Gulf Coast. Participants worked on their projects in groups, supervised by an undergraduate student "mentor". Participants were encouraged to keep journals of their experiences throughout the camp, and the researcher developed a rubric to evaluate student journals for process knowledge, evidence of planning, reflective thought, and disposition toward science. Tests were used to evaluate student knowledge of process skills, attitude toward science, and perceptions of scientists. On the Test of Integrated Process Skills (Dillashaw & Okey, 1983), the students showed significant improvement overall, but when evaluated separately, males showed significant improvement while females did not. On the Attitude toward Science in School Assessment (Germane, 1988), data indicated that attitude toward science improved significantly for the group as a whole, but upon closer inspection, indicated a significant improvement for the female students only. On Chamber's Draw-a-Scientist Test (1983), analysis of student drawings indicated no significant change in stereotypical images of scientists for the group overall. However, boys' scores indicated a significant improvement when analyzed separately. Journal analysis revealed a need for instruction in their use, but provided an interesting glimpse into students' thoughts. The researcher concluded that summer enrichment camps have potential m terms of helping students improve their science knowledge and their thinking about science. Further research on summer opportunities, inquiry-based instruction, work with mentors, and use of journals is suggested by this work.

  3. NSF Support for Information Science Research.

    ERIC Educational Resources Information Center

    Brownstein, Charles N.

    1986-01-01

    Major research opportunities and needs are expected by the National Science Foundation in six areas of information science: models of adaptive information processing, learning, searching, and recognition; knowledge resource systems, particularly intelligent systems; user-system interaction; augmentation of human information processing tasks;…

  4. How can we transfer scientific knowledge to citizens? : Case studies from huge earthquake and tsunami researches

    NASA Astrophysics Data System (ADS)

    Kitazato, Hiroshi; Kijima, Akihiro; Kogure, Kazuhiro; Fujikura, Katsunori

    2017-04-01

    On March 11, 2011, huge earthquake and tsunamis took place coastal regions of Northeast Japan. Coastal infrastructure collapsed due to high waves of tsunamis. Marine ecosystems were also strongly disturbed by the earthquakes and tsunamis. TEAMS (Tohoku Ecosystem-Associated Marine Sciences) has started for monitoring recovering process of marine ecosystems. The project continues ten years. First five years are mainly monitored recovery process, then we should transfer our knowledge to fishermen and citizens for restoration of fishery and social systems. But, how can we actually transfer our knowledge from science to citizens? This is new experience for us. Socio-technology constructs a "high quality risk communication" model how scientific knowledge or technologies from scientific communities to citizens. They are progressing as follows, "observation, measurements and data", → "modeling and synthesis" → "information process" → "delivery to society" → " take action in society". These steps show detailed transition from inter-disciplinarity to trans-disciplinarity in science and technology. In our presentation, we plan to show a couple of case studies that are going forward from science to society.

  5. Using the Science Process Skills to Investigate Animals and Animal Habitats

    NASA Astrophysics Data System (ADS)

    Braithwaite, Saisha

    This study explored how a STEM (science, technology, engineering, and math) engineer design challenge allowed students to analyze the characteristics of animals and animal habitats. This study was conducted in a kindergarten class within an urban school district. The class has 25 students while the study focuses on six students. The group consists of three boys and three girls. In this study, the students used the science process skills to observe, classify, infer, and make predictions about animals and habitats. In the engineer design, students created an established habitat and built their own animal that can survive in that habitat. The study analyzed how students used process skills to engage with the habitats and animals. The students successfully used the science process skills in this study. The results showed that students gained more content knowledge when they used multiple process skills within a lesson. The study shows that developing lessons using the science process skills improves students' ability to demonstrate their knowledge of animals and their habitats.

  6. Indigenous knowledge and languages in the teaching and learning of science: A focus on a rural primary school in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Shizha, Edward

    Teachers are known for their "gate-keeping" roles in schools, especially in the classroom setting. They process and decide what "knowledge" is "valid" and "appropriate" for students. They also decide when and how the knowledge should be mediated to students. Their gate-keeping role marginalizes some forms of knowledge while validating and legitimating others. This qualitative and constructivist-interpretive case study is an exploration and description of ten rural primary school teachers' experiences in teaching science using indigenous perspectives in Zimbabwe. The purpose of the study was to discover and describe, using qualitative inquiry, how teachers incorporate indigenous knowledge and languages in teaching science in a rural primary school in Zimbabwe. The study also sought to understand teachers' mediation techniques in the process of bridging the cultural gap between formal science and indigenous knowledge that students bring into the classroom from home. In this study, I elicited, from teachers, their understanding of the interconnectedness of indigenous knowledge and Western science. I employed qualitative inquiry to collect data from them in their natural working environment, the school and the classroom. Purposive sampling was utilized to select ten teachers who were observed teaching two science lessons each. All the lessons were captured using a video recorder, which facilitated the collection of as much information as possible from events occurring in the classroom. Later, semi-structured interviews/conversations were audio-recorded from the same teachers to elicit their insights and experiences in teaching science using indigenous perspectives and languages. Policy documents and science syllabuses were also perused for information on what teachers were expected to teach in science. Inductive analysis was employed to interpret findings that resulted in thick and in-depth narratives. The findings from these narratives revealed differences and similarities in teachers' views and experiences, and their fears and concerns in using indigenous knowledge and languages to teach science in Zimbabwe. The conclusions derived from these findings, though specific to the teachers in this study, gave rise to policy and pedagogical recommendations for increasing the use of indigenous knowledge and languages in the science curriculum in Zimbabwe.

  7. What Can Funders Do to Better Link Science with Decisions? Case Studies of Coastal Communities and Climate Change

    NASA Astrophysics Data System (ADS)

    Matso, Kalle E.; Becker, Mimi L.

    2014-12-01

    Many reports and studies have noted that a significant portion of problem-oriented coastal science does not actually link to decisions. Here, three competitively funded project case studies are studied to determine what funders can and should do to better link science with decisions. The qualitative analysis used for this study indicates that the studied program was seen as being unusually attentive to the issue of linking science to decisions, as opposed to simply generating new knowledge. Nevertheless, much of the data indicate that funders can and should do more. Three ideas figured most prominently in the qualitative data: (1) funders should do more to ensure that the problem itself is defined more thoroughly with people who are envisioned as potential users of the science; (2) funders need to allocate more resources and attention to communicating effectively (with users) throughout the project; and (3) funders need to demand more engagement of users throughout the project. These findings have important implications for how funders review and support science, especially when competitive processes are used. Most importantly, funders should adjust what kind of science they ask for. Secondly, funders need to change who is involved in the review process. Currently, review processes focus on knowledge generation, which means that the reviewers themselves have expertise in that area. Instead, review panels should be balanced between those who focus on knowledge generation and those who focus on linking knowledge to decisions; this is a separate but critical discipline currently left out of the review process.

  8. The Alchemy of Art: Transforming Student Art into Science Knowledge in the Chemistry Classroom

    ERIC Educational Resources Information Center

    Flores, Mickie

    2005-01-01

    Art provides students a way to visually represent their scientific knowledge and at the same time helps teachers assess student understanding. Examining a drawing allows teachers to scrutinize students' mental model of a science concept. Science can be described as a continuing process of discovering the order and recurring patterns in nature;…

  9. Community Science: creating equitable partnerships for the advancement of scientific knowledge for action.

    NASA Astrophysics Data System (ADS)

    Lewis, E. S.; Gehrke, G. E.

    2017-12-01

    In a historical moment where the legitimacy of science is being questioned, it is essential to make science more accessible to the public. Active participation increases the legitimacy of projects within communities (Sidaway 2009). Creating collaborations in research strengthens not only the work by adding new dimensions, but also the social capital of communities through increased knowledge, connections, and decision making power. In this talk, Lewis will discuss how engagement at different stages of the scientific process is possible, and how researchers can actively develop opportunities that are open and inviting. Genuine co-production in research pushes scientists to work in new ways, and with people from different backgrounds, expertise, and lived experiences. This approach requires a flexible and dynamic balance of learning, sharing, and creating for all parties involved to ensure more meaningful and equitable participation. For example, in community science such as that by Public Lab, the community is at the center of scientific exploration. The research is place-based and is grounded in the desired outcomes of community members. Researchers are able to see themselves as active participants in this work alongside community members. Participating in active listening, developing plans together, and using a shared language built through learning can be helpful tools in all co-production processes. Generating knowledge is powerful. Through genuine collaboration and co-creation, science becomes more relevant. When community members are equitable stakeholders in the scientific process, they are better able to engage and advocate for the changes they want to see in their communities. Through this talk, session attendees will learn about practices that promote equitable participation in science, and hear examples of how the community science process engages people in both the knowledge production, and in the application of science.

  10. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  11. The effectiveness of a long-term professional development program on teachers' self-efficacy, attitudes, skills, and knowledge using a thematic learning approach

    NASA Astrophysics Data System (ADS)

    Tinnin, Richard Kinna

    The purpose of this research study was to determine the effectiveness of a long-term professional development program on self-efficacy beliefs, science attitudes, skills, and knowledge of elementary teachers. The target school was located in the Lower Rio Grande Valley of Texas. Major elements of the study included the use of thematic science strands, use of the 5E constructivist-oriented instructional model, a focus on the interdisciplinary nature of the science process skills, and guided, inquiry-based learning experiences. These elements mirror the principles identified as being essential components of effective professional development for mathematics, and science education (Fullan, 1985; Sparks & Loucks-Horsley, 1990; Loucks-Horsley, 1997). The research team was actively involved with the participants for a total of 30 days at their school over the 24 months of the study. During each training, the research team modeled the 5E constructivist-oriented instructional strategy, and the interdisciplinary nature of the science process skills, set up a wide variety of activity centers, and provided the teachers with opportunities to improve their attitudes, skills, and knowledge of the science content, and teaching strategies. The 15 participants completed pre-, post-, and post-post-Leadership Team Surreys. Quantitative data analyses of gain scores measuring level of confidence to teach Marine and Earth Science, content knowledge, and teaching strategies were significant, p < .001. The participants' efficacy-beliefs and outcome expectancy were assessed with a pre- and posttest Science Teacher Self-Efficacy Beliefs Instrument that measures both elements. Self-efficacy beliefs were significant at p < .001. Outcome expectancies were not significant, p > .05. Qualitative analysis of reflective journal comments, classroom observations, and the participants understanding, and use of science process skills across the curriculum supported the quantitative data results. The data demonstrate significant improvement in the self-efficacy beliefs, attitudes, skills, and knowledge toward teaching science of the Pre-Kindergarten--2nd -grade teachers who participated in this long-term professional development study.

  12. Alignment of Assessment Objectives with Instructional Objectives Using Revised Bloom's Taxonomy--The Case for Food Science and Technology Education

    ERIC Educational Resources Information Center

    Jideani, V. A.; Jideani, I. A.

    2012-01-01

    Nine food science and technology (FST) subjects were assessed for alignment between the learning outcomes and assessment using revised Bloom's taxonomy (RBT) of cognitive knowledge. Conjoint analysis was used to estimate the utilities of the levels of cognitive, knowledge, and the attribute importance (cognitive process and knowledge dimension)…

  13. Intuition and Insight: Two Concepts That Illuminate the Tacit in Science Education

    ERIC Educational Resources Information Center

    Brock, Richard

    2015-01-01

    Tacit knowledge, that is knowledge not expressible in words, may play a role in learning science, yet it is difficult to study directly. Intuition and insight, two processes that link the tacit and the explicit, are proposed as a route to investigating tacit knowledge. Intuitions are defined as tacit hunches or feelings that influence thought with…

  14. How Do Primary School Students Acquire the Skill of Making Hypothesis

    ERIC Educational Resources Information Center

    Darus, Faridah Binti; Saat, Rohaida Mohd

    2014-01-01

    Science education in Malaysia emphasizes three components: namely knowledge, scientific skills which include science process skills and manipulative skills; scientific attitudes; and noble values. The science process skills are important in enhancing students' cognitive development and also to facilitate students' active participation during the…

  15. Roles and applications of biomedical ontologies in experimental animal science.

    PubMed

    Masuya, Hiroshi

    2012-01-01

    A huge amount of experimental data from past studies has played a vital role in the development of new knowledge and technologies in biomedical science. The importance of computational technologies for the reuse of data, data integration, and knowledge discoveries has also increased, providing means of processing large amounts of data. In recent years, information technologies related to "ontologies" have played more significant roles in the standardization, integration, and knowledge representation of biomedical information. This review paper outlines the history of data integration in biomedical science and its recent trends in relation to the field of experimental animal science.

  16. Can citizen science enhance public understanding of science?

    PubMed

    Bonney, Rick; Phillips, Tina B; Ballard, Heidi L; Enck, Jody W

    2016-01-01

    Over the past 20 years, thousands of citizen science projects engaging millions of participants in collecting and/or processing data have sprung up around the world. Here we review documented outcomes from four categories of citizen science projects which are defined by the nature of the activities in which their participants engage - Data Collection, Data Processing, Curriculum-based, and Community Science. We find strong evidence that scientific outcomes of citizen science are well documented, particularly for Data Collection and Data Processing projects. We find limited but growing evidence that citizen science projects achieve participant gains in knowledge about science knowledge and process, increase public awareness of the diversity of scientific research, and provide deeper meaning to participants' hobbies. We also find some evidence that citizen science can contribute positively to social well-being by influencing the questions that are being addressed and by giving people a voice in local environmental decision making. While not all citizen science projects are intended to achieve a greater degree of public understanding of science, social change, or improved science -society relationships, those projects that do require effort and resources in four main categories: (1) project design, (2) outcomes measurement, (3) engagement of new audiences, and (4) new directions for research. © The Author(s) 2015.

  17. The value of program science to optimize knowledge brokering on infectious diseases for public health.

    PubMed

    Becker, Marissa; Haworth-Brockman, Margaret; Keynan, Yoav

    2018-05-02

    Knowledge translation (KT) and related terms have variously been defined as process and as products. In this paper we contribute to debates on effective KT, specifically knowledge brokering, by describing an adaptation of Program Science that aligns with the real-world of public health activities. We describe an adaptation of the Program Science framework to our knowledge translation and brokering planning and projects at the National Collaborating Centre for Infectious Diseases. The systematic approach allows for layering of knowledge year to year and translating knowledge from one infectious disease content area to another. Using a recent forum on syphilis outbreaks as an example, we also demonstrate the value of using Program Science to shape the design and delivery of the knowledge brokering event. The use of scientific knowledge to improve public health program design, implementation and evaluation forms the basis for the program science framework. Providing the right public health information to the right audience at the right time can foster long-term outcomes of networks and new partnerships which can potentially improve delivery of public health services.

  18. Examining an Online Microbiology Game as an Effective Tool for Teaching the Scientific Process†

    PubMed Central

    Bowling, Kristi G.; Klisch, Yvonne; Wang, Shu; Beier, Margaret

    2013-01-01

    This study investigates the effectiveness of the online Flash game Disease Defenders in producing knowledge gains for concepts related to the scientific process. Disease Defenders was specifically designed to model how the scientific process is central to a variety of disciplines and science careers. An additional question relates to the game’s ability to shift attitudes toward science. Middle school classes from grades six to eight were assigned to the experimental group (n = 489) or control group (n = 367) and asked to participate in a three-session intervention. The sessions involved completing a pretest, a game play session, and taking a posttest. Students in the experimental group played Disease Defenders while students in the control group played an alternative science game. Results showed a significant increase in mean science knowledge scores for all grades in the experimental group, with sixth grade and seventh grade students gaining more knowledge than eighth grade students. Additionally, results showed a significant positive change in science attitudes only among sixth graders, who also rated their satisfaction with the game more favorably than students in higher grades. No differences in mean test scores were found between genders for science knowledge or science attitudes, suggesting that the game is equally effective for males and females. PMID:23858354

  19. The art of co-production of knowledge in environmental sciences and management: lessons from international practice

    NASA Astrophysics Data System (ADS)

    Djenontin, Ida Nadia S.; Meadow, Alison M.

    2018-06-01

    This review paper addresses the challenging question of "how to" design and implement co-production of knowledge in climate science and other environmental and agricultural sciences. Based on a grounded theory review of nine (9) published case studies of transdisciplinary and collaborative research projects, the paper offers a set of common themes regarding specific components and processes for the design, implementation, and achievement of co-production of knowledge work, which represent the "Modus Operandi" of knowledge co-production. The analysis focuses on practical methodological guidance based on lessons from how different research teams have approached the challenges of complex collaborative research. We begin by identifying broad factors or actions that inhibit or facilitate the process, then highlight specific practices associated with co-production of knowledge and necessary competencies for undertaking co-production. We provide insights on issues such as the integration of social and professional cultures, gender and social equity, and power dynamics, and illustrate the different ways in which researchers have addressed these issues. By exploring the specific practices involved in knowledge co-production, this paper provides guidance to researchers on how to navigate different possibilities of the process of conducting transdisciplinary and co-production of knowledge research projects that best fit their research context, stakeholder needs, and research team capacities.

  20. The art of co-production of knowledge in environmental sciences and management: lessons from international practice.

    PubMed

    Djenontin, Ida Nadia S; Meadow, Alison M

    2018-06-01

    This review paper addresses the challenging question of "how to" design and implement co-production of knowledge in climate science and other environmental and agricultural sciences. Based on a grounded theory review of nine (9) published case studies of transdisciplinary and collaborative research projects, the paper offers a set of common themes regarding specific components and processes for the design, implementation, and achievement of co-production of knowledge work, which represent the "Modus Operandi" of knowledge co-production. The analysis focuses on practical methodological guidance based on lessons from how different research teams have approached the challenges of complex collaborative research. We begin by identifying broad factors or actions that inhibit or facilitate the process, then highlight specific practices associated with co-production of knowledge and necessary competencies for undertaking co-production. We provide insights on issues such as the integration of social and professional cultures, gender and social equity, and power dynamics, and illustrate the different ways in which researchers have addressed these issues. By exploring the specific practices involved in knowledge co-production, this paper provides guidance to researchers on how to navigate different possibilities of the process of conducting transdisciplinary and co-production of knowledge research projects that best fit their research context, stakeholder needs, and research team capacities.

  1. Developing pre-service science teachers' pedagogical content knowledge by using training program

    NASA Astrophysics Data System (ADS)

    Udomkan, Watinee; Suwannoi, Paisan

    2018-01-01

    A training program was developed for enhancing pre-service science teachers' pedagogical content knowledge (PCK). The pre-service science teachers are able to: understand science curriculum, knowledge of assessment in science, knowledge of students' understanding of science, instructional strategies and orientations towards science teaching, which is conceptualized as PCK [5]. This study examined the preservice science teachers' understandings and their practices which include five pre-service science teachers' PCK. In this study, the participants demonstrated their PCK through the process of the training program by writing content representations (CoRes), preparing the lesson plans, micro-teaching, and actual teaching respectively. All pre-service science teachers' performs were collected by classroom observations. Then, they were interviewed. The results showed that the pre-service science teachers progressively developed knowledge components of PCK. Micro-teaching is the key activities for developing PCK. However, they had some difficulties in their classroom teaching. They required of sufficient ability to design appropriate instructional strategies and assessment activities for teaching. Blending content and pedagogy is also a matter of great concern. The implication of this study was that science educators can enhance pre-service science teachers' PCK by fostering their better understandings of the instructional strategies, assessment activities and blending between content and pedagogy in their classroom.

  2. An Investigation into Upper Elementary Students' Attitudes towards Science

    ERIC Educational Resources Information Center

    Kaya, Hasan

    2012-01-01

    Science and technology course that helps to improve cognitive aspects and enhance the creativity of the individuals is an important part of elementary school education as a core course. Students may gain scientific knowledge, scientific process skills, and attitudes during their science learning process. This study aimed to determine upper…

  3. Contemporary HIV/AIDS research: Insights from knowledge management theory

    PubMed Central

    Callaghan, Chris William

    2017-01-01

    Abstract Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn’s paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the ‘crowd,’ thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process. PMID:28922967

  4. A Novel Multiple Choice Question Generation Strategy: Alternative Uses for Controlled Vocabulary Thesauri in Biomedical-Sciences Education.

    PubMed

    Lopetegui, Marcelo A; Lara, Barbara A; Yen, Po-Yin; Çatalyürek, Ümit V; Payne, Philip R O

    2015-01-01

    Multiple choice questions play an important role in training and evaluating biomedical science students. However, the resource intensive nature of question generation limits their open availability, reducing their contribution to evaluation purposes mainly. Although applied-knowledge questions require a complex formulation process, the creation of concrete-knowledge questions (i.e., definitions, associations) could be assisted by the use of informatics methods. We envisioned a novel and simple algorithm that exploits validated knowledge repositories and generates concrete-knowledge questions by leveraging concepts' relationships. In this manuscript we present the development and validation of a prototype which successfully produced meaningful concrete-knowledge questions, opening new applications for existing knowledge repositories, potentially benefiting students of all biomedical sciences disciplines.

  5. A Thematic Analysis of Theoretical Models for Translational Science in Nursing: Mapping the Field

    PubMed Central

    Mitchell, Sandra A.; Fisher, Cheryl A.; Hastings, Clare E.; Silverman, Leanne B.; Wallen, Gwenyth R.

    2010-01-01

    Background The quantity and diversity of conceptual models in translational science may complicate rather than advance the use of theory. Purpose This paper offers a comparative thematic analysis of the models available to inform knowledge development, transfer, and utilization. Method Literature searches identified 47 models for knowledge translation. Four thematic areas emerged: (1) evidence-based practice and knowledge transformation processes; (2) strategic change to promote adoption of new knowledge; (3) knowledge exchange and synthesis for application and inquiry; (4) designing and interpreting dissemination research. Discussion This analysis distinguishes the contributions made by leaders and researchers at each phase in the process of discovery, development, and service delivery. It also informs the selection of models to guide activities in knowledge translation. Conclusions A flexible theoretical stance is essential to simultaneously develop new knowledge and accelerate the translation of that knowledge into practice behaviors and programs of care that support optimal patient outcomes. PMID:21074646

  6. Analysing Vee Diagram Reflections to Explore Pre-Service Science Teachers' Understanding the Nature of Science in Biology

    ERIC Educational Resources Information Center

    Savran-Gencer, Ayse

    2014-01-01

    Vee diagrams have been a metacognitive tool to help in learning the nature and structure of knowledge by reflecting on the scientific process and making knowledge much more explicit to learners during the practical work. This study aimed to assess pre-service science teachers' understanding some aspects of NOS by analyzing their reflections on the…

  7. Global histories, vernacular science, and African genealogies; or, Is the history of science ready for the world?

    PubMed

    Tilley, Helen

    2010-03-01

    Scholars in imperial and science studies have recently begun to examine more systematically the different ways knowledge systems around the world have intersected. This essay concentrates on one aspect of this process, the codification of research into "primitive" or "indigenous" knowledge, especially knowledge that was transmitted orally, and argues that such investigations were a by-product of four interrelated phenomena: the globalization of the sciences themselves, particularly those fields that took the earth and its inhabitants as their object of analysis; the professionalization of anthropology and its growing emphasis on studying other cultures' medical, technical, and natural knowledge; the European push, in the late nineteenth century, toward "global colonialism" and the ethnographic research that accompanied colonial state building; and, finally, colonized and marginalized peoples' challenges to scientific epistemologies and their paradoxical call that scientists study their knowledge systems more carefully. These phenomena came together on a global scale in the decades surrounding the turn of the twentieth century to produce a subgenre of research within the sciences, here labeled "vernacular science," focused explicitly on "native" knowledge.

  8. How scientific experiments are designed: Problem solving in a knowledge-rich, error-rich environment

    NASA Astrophysics Data System (ADS)

    Baker, Lisa M.

    While theory formation and the relation between theory and data has been investigated in many studies of scientific reasoning, researchers have focused less attention on reasoning about experimental design, even though the experimental design process makes up a large part of real-world scientists' reasoning. The goal of this thesis was to provide a cognitive account of the scientific experimental design process by analyzing experimental design as problem-solving behavior (Newell & Simon, 1972). Three specific issues were addressed: the effect of potential error on experimental design strategies, the role of prior knowledge in experimental design, and the effect of characteristics of the space of alternate hypotheses on alternate hypothesis testing. A two-pronged in vivo/in vitro research methodology was employed, in which transcripts of real-world scientific laboratory meetings were analyzed as well as undergraduate science and non-science majors' design of biology experiments in the psychology laboratory. It was found that scientists use a specific strategy to deal with the possibility of error in experimental findings: they include "known" control conditions in their experimental designs both to determine whether error is occurring and to identify sources of error. The known controls strategy had not been reported in earlier studies with science-like tasks, in which participants' responses to error had consisted of replicating experiments and discounting results. With respect to prior knowledge: scientists and undergraduate students drew on several types of knowledge when designing experiments, including theoretical knowledge, domain-specific knowledge of experimental techniques, and domain-general knowledge of experimental design strategies. Finally, undergraduate science students generated and tested alternates to their favored hypotheses when the space of alternate hypotheses was constrained and searchable. This result may help explain findings of confirmation bias in earlier studies using science-like tasks, in which characteristics of the alternate hypothesis space may have made it unfeasible for participants to generate and test alternate hypotheses. In general, scientists and science undergraduates were found to engage in a systematic experimental design process that responded to salient features of the problem environment, including the constant potential for experimental error, availability of alternate hypotheses, and access to both theoretical knowledge and knowledge of experimental techniques.

  9. Power and Networks in Worldwide Knowledge Coordination: The Case of Global Science

    ERIC Educational Resources Information Center

    King, Roger

    2011-01-01

    The article considers the global governance of knowledge systems, exploring concepts of power, networks, standards (defined as normative practices), and structuration. The focus is on science as a form of predominantly private global governance, particularly the self-regulatory and collaborative processes stretching across time and space. These…

  10. Fragile Knowledge and Conflicting Evidence: What Effects Do Contiguity and Personal Characteristics of Museum Visitors Have on Their Processing Depth?

    ERIC Educational Resources Information Center

    Grüninger, Rahel; Specht, Inga; Lewalter, Doris; Schnotz, Wolfgang

    2014-01-01

    Until recently, museums mainly communicated well-established knowledge. Current science, however, is characterized by a rapid knowledge increase, so that we often have to deal with fragile and inconsistent knowledge. In order to develop exhibitions that encourage visitors to process information in a differentiated way, museums need to know how…

  11. [Common sense, science and philosophy: the links of knowledge necessary for promoting health care].

    PubMed

    Rios, Ediara Rabello Girão; Franchi, Kristiane Mesquita Barros; da Silva, Raimunda Magalhães; de Amorim, Rosendo Freitas; Costa, Nhandeyjara de Carvalho

    2007-01-01

    In its evolution, humanity has accumulated data which were systematized as knowledge. Philosophy through self examination helps us in its practical and theoretical functions to reach a concept of the universe. Common sense helps science evolve. People's daily difficulties stir up the need for research, for deepening data interpretation and to propose solutions to overcome the population's problems. Science exists to explain difficult aspects of common sense, to support questions, as well as to substantiate knowledge produced as a response to demands. Thus, knowledge involved in this reflection sets out to foster an articulation between basic forms of knowledge and to develop a satisfactory understanding of the health care process, through a shared and critically consciousness view of the changes in the health system's paradigm. We understand that health education is an essential component within this process, provided that it is focused primarily on an individual belonging to a community with its multiple relationships, especially between the community context and the subjective dimension, which can provide citizenship empowerment redemption.

  12. Inquiry-Driven Field-Based (IDFB) Ocean Science Classes: an Important Role in College Students' Development as Scientists, and Student Retention in the Geo-science Pipeline.

    NASA Astrophysics Data System (ADS)

    Crane, N. L.

    2004-12-01

    Experiential learning, engaging students in the process of science, can not only teach students important skills and knowledge, it can also help them become connected with the process on a personal level. This study investigates the role that Inquiry-Driven Field-Based (IDFB) experiences (primarily field classes) in ocean science have on undergraduate science students' development as ocean scientists. Both cognitive (knowledge-based) and affective (motivation and attitude) measures most important to students were used as indicators of development. Major themes will be presented to illustrate how IDFB science experiences can enhance the academic and personal development of students of science. Through their active engagement in the process of science, students gain important skills and knowledge as well as increased confidence, motivation, and ability to plan for their future (in particular their career and educational pathways). This growth is an important part of their development as scientists; the IDFB experience provides them a way to build a relationship with the world of science, and to better understand what science is, what scientists do, and their own future role as scientists. IDFB experiences have a particularly important role in affective measures of development: students develop an important personal connection to science. By doing science, students learn to be scientists and to understand science and science concepts in context. Many underrepresented students do not have the opportunity to take IDFB classes, and addressing this access issue could be an important step towards engaging more underrepresented students in the field. The nature of IDFB experiences and their impact on students makes them a potentially important mechanism for retaining students in the geo-science `pipeline'.

  13. A gaze through the lens of decision theory toward knowledge translation science.

    PubMed

    Bucknall, Tracey

    2007-01-01

    Research findings become evidence when an individual decides that the information is relevant and useful to a particular circumstance. Prior to that point, they are unrelated facts. For research translation to occur, research evidence needs filtering, interpretation, and application by individuals to the specific situation. For this reason, decision science is complementary to knowledge translation science. Both aim to support the individual in deciding the most appropriate action in a dynamic environment where there are masses of uncensored and nonprioritized information readily available. Decision science employs research theories to study the cognitive processes underpinning the filtering and integration of current scientific information into changing contexts. Two meta-theories, coherence and correspondence theories, have been used to provide alternative views and prompt significant debate to advance the science. The aim of this article is to stimulate debate about the relationship between decision theory and knowledge translation. Discussed is the critical role of cognition in clinical decision making, with a focus on knowledge translation. A critical commentary of the knowledge utilization modeling papers is presented from a decision science perspective. The article concludes with a discussion on the implications for knowledge translation when viewed through the lens of decision science.

  14. Parents' Metacognitive Knowledge: Influences on Parent-Child Interactions in a Science Museum Setting

    NASA Astrophysics Data System (ADS)

    Thomas, Gregory P.; Anderson, David

    2013-06-01

    Despite science learning in settings such as science museums being recognized as important and given increasing attention in science education circles, the investigation of parents' and their children's metacognition in such settings is still in its infancy. This is despite an individual's metacognition being acknowledged as an important influence on their learning within and across contexts. This research investigated parents' metacognitive procedural and conditional knowledge, a key element of their metacognition, related to (a) what they knew about how they and their children thought and learned, and (b) whether this metacognitive knowledge influenced their interactions with their children during their interaction with a moderately complex simulation in a science museum. Parents reported metacognitive procedural and conditional knowledge regarding their own and their children's thinking and learning processes. Further, parents were aware that this metacognitive knowledge influenced their interactions with their children, seeing this as appropriate pedagogical action for them within the context of the particular exhibit and its task requirements at the science museum, and for the child involved. These findings have implications for exhibit and activity development within science museum settings.

  15. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    ERIC Educational Resources Information Center

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-01-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This…

  16. Occupationally Related Science. Draft Curriculum 1986-87.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Occupational Education Programs.

    To prepare occupational students for employment, a basic understanding of scientific knowledge and the processes of science that have been applied in the development of tools, machines, instruments, and technological techniques or processes should be taught. When a second unit of science was included for all high school students in the New York…

  17. A Finnish Concept for Academic Entrepreneurship: The Case of Satakunta University of Applied Sciences

    ERIC Educational Resources Information Center

    Lain, Kari

    2008-01-01

    In a knowledge-driven economy there is a growing need for deeper and more productive interaction between higher education and industry. The full exploitation of knowledge requires strategies, incentives, appropriate systems and strong interaction between the transfer processes and the main processes in higher education. In a knowledge-based…

  18. The importance of pedagogical content knowledge in curriculum development for illumination engineering

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Walker, Constance E.

    2017-08-01

    An understanding of pedagogical content knowledge (PCK) and educative materials has been critical to our teaching programs in illumination engineering. We will discuss the PCK basis of a number of innovative curriculum efforts at the National Optical Astronomy and how we develop "educative materials" that improve educator content knowledge, pedagogical knowledge, and contextual knowledge. We also describe the process and team approach required to create these "educative materials." The foundation of our work at NOAO were two previous projects at the NASA Classroom of the Future. These projects created educative curricular materials with sophisticated science content integrated with a deep, authentic understanding of science process. Additional curricula with these attributes were developed at NOAO for the NSF-sponsored Hands-On Optics project (SPIE, OSA, and NOAO), for the citizen science project Globe at Night (NOAO), and for the Quality Lighting Teaching Kits (NOAO, International Astronomical Union, OSA Foundation, SPIE, CIE, and the International Dark Sky Association). These projects all strove to create educative instructional materials that can enhance the pedagogical content knowledge of educators.

  19. Supporting Teachers Learning Through the Collaborative Design of Technology-Enhanced Science Lessons

    NASA Astrophysics Data System (ADS)

    Kafyulilo, Ayoub C.; Fisser, Petra; Voogt, Joke

    2015-12-01

    This study used the Interconnected Model of Professional Growth (Clarke & Hollingsworth in Teaching and Teacher Education, 18, 947-967, 2002) to unravel how science teachers' technology integration knowledge and skills developed in a professional development arrangement. The professional development arrangement used Technological Pedagogical Content Knowledge as a conceptual framework and included collaborative design of technology-enhanced science lessons, implementation of the lessons and reflection on outcomes. Support to facilitate the process was offered in the form of collaboration guidelines, online learning materials, exemplary lessons and the availability of an expert. Twenty teachers participated in the intervention. Pre- and post-intervention results showed improvements in teachers' perceived and demonstrated knowledge and skills in integrating technology in science teaching. Collaboration guidelines helped the teams to understand the design process, while exemplary materials provided a picture of the product they had to design. The availability of relevant online materials simplified the design process. The expert was important in providing technological and pedagogical support during design and implementation, and reflected with teachers on how to cope with problems met during implementation.

  20. Knowledge Construction, Meaning-Making and Interaction in CLIL Science Classroom Communities of Practice

    ERIC Educational Resources Information Center

    Evnitskaya, Natalia; Morton, Tom

    2011-01-01

    This paper draws on Wenger's model of community of practice to present preliminary findings on how processes of negotiation of meaning and identity formation occur in knowledge construction, meaning-making and interaction in two secondary Content and Language Integrated Learning (CLIL) science classrooms. It uses a multimodal conversation analysis…

  1. Bridging Professional Teacher Knowledge for Science and Literary Integration via Design-Based Research

    ERIC Educational Resources Information Center

    Fazio, Xavier; Gallagher, Tiffany L.

    2018-01-01

    We offer insights for using design-based research (DBR) as a model for constructing professional development that supports curriculum and instructional knowledge regarding science and literacy integration. We spotlight experiences in the DBR process from data collected from a sample of four elementary teachers. Findings from interviews, focus…

  2. Strategic Game Moves Mediate Implicit Science Learning

    ERIC Educational Resources Information Center

    Rowe, Elizabeth; Baker, Ryan S.; Asbell-Clarke, Jodi

    2015-01-01

    Educational games have the potential to be innovative forms of learning assessment, by allowing us to not just study their knowledge but the process that takes students to that knowledge. This paper examines the mediating role of players' moves in digital games on changes in their pre-post classroom measures of implicit science learning. We…

  3. To naturalize or not to naturalize? An issue for cognitive science as well as anthropology.

    PubMed

    Stenning, Keith

    2012-07-01

    Several of Beller, Bender, and Medin's (2012) issues are as relevant within cognitive science as between it and anthropology. Knowledge-rich human mental processes impose hermeneutic tasks, both on subjects and researchers. Psychology's current philosophy of science is ill suited to analyzing these: Its demand for ''stimulus control'' needs to give way to ''negotiation of mutual interpretation.'' Cognitive science has ways to address these issues, as does anthropology. An example from my own work is about how defeasible logics are mathematical models of some aspects of simple hermeneutic processes. They explain processing relative to databases of knowledge and belief-that is, content. A specific example is syllogistic reasoning, which raises issues of experimenters' interpretations of subjects' reasoning. Science, especially since the advent of understandings of computation, does not have to be reductive. How does this approach transfer onto anthropological topics? Recent cognitive science approaches to anthropological topics have taken a reductive stance in terms of modules. We end with some speculations about a different cognitive approach to, for example, religion. Copyright © 2012 Cognitive Science Society, Inc.

  4. Justifying an ideal first pregnancy age: Vernacular science knowledge and the facilitation of lay argument.

    PubMed

    Jensen, Robin E; Blumling, Allison N

    2018-04-01

    Members of the lay public often draw from vernacular science knowledge-or metaphors, images, and terms related to technical science-to make normative assessments about behavior. Yet, little is known about vernacular science knowledge in terms of its forms and functions. In a national survey, US adults ( N = 688) were asked to identify an ideal age for first pregnancy, and to explain their decision. Participants drew from arguments related to hormonal processes, the language of risk, and the quality and quantity of "eggs" to navigate and identify an ideal timeline for first pregnancy. Their responses illustrated patterns of justification that involved the (a) employment of scientific concepts as heuristic cues for critical analysis, (b) conflation of details, and (c) synecdochal explication. These findings reveal some of the key ways in which vernacular science knowledge may shape the trajectory of lay argument in a range of contexts.

  5. Capturing and portraying science student teachers' pedagogical content knowledge through CoRe construction

    NASA Astrophysics Data System (ADS)

    Thongnoppakun, Warangkana; Yuenyong, Chokchai

    2018-01-01

    Pedagogical content knowledge (PCK) is an essential kind of knowledge that teacher have for teaching particular content to particular students for enhance students' understanding, therefore, teachers with adequate PCK can give content to their students in an understandable way rather than transfer subject matter knowledge to learner. This study explored science student teachers' PCK for teaching science using Content representation base methodology. Research participants were 68 4th year science student teachers from department of General Science, faculty of Education, Phuket Rajabhat University. PCK conceptualization for teaching science by Magnusson et al. (1999) was applied as a theoretical framework in this study. In this study, Content representation (CoRe) by Loughran et al. (2004) was employed as research methodology in the lesson preparation process. In addition, CoRe consisted of eight questions (CoRe prompts) that designed to elicit and portray teacher's PCK for teaching science. Data were collected from science student teachers' CoRes design for teaching a given topic and student grade. Science student teachers asked to create CoRes design for teaching in topic `Motion in one direction' for 7th grade student and further class discussion. Science student teachers mostly created a same group of science concepts according to subunits of school science textbook rather than planned and arranged content to support students' understanding. Furthermore, they described about the effect of student's prior knowledge and learning difficulties such as students' knowledge of Scalar and Vector quantity; and calculating skill. These responses portrayed science student teacher's knowledge of students' understanding of science and their content knowledge. However, they still have inadequate knowledge of instructional strategies and activities for enhance student learning. In summary, CoRes design can represented holistic overviews of science student teachers' PCK related to the teaching of a particular topic and also support them to gain more understanding about how to teach for understanding. Research implications are given for teacher education and educational research to offer a potential way to enhance science student teachers' PCK for teaching science and support their professional learning.

  6. Machine actionable information about observed environments

    NASA Astrophysics Data System (ADS)

    Stocker, Markus; Nativi, Stefano; Pearlman, Jay

    2017-04-01

    Data, information, and knowledge are terms commonly used in earth and environmental sciences, as well as in informatics supporting these sciences. The Lindstrom et al. Framework for Ocean Observing highlights the "challenge of delivering ocean information for societal benefit" and suggests that a key framework concept is to promote the "transformation of observational data organized in [Essential Ocean Variables] into information." A flyer presenting the Integrated Carbon Observation System says "Knowledge through observations." Writing about Oceans 2.0, Ocean Networks Canada highlights that the system is able to mine "data streams to detect trends, classify content and extract features [...] thereby turning raw data into information and setting the stage to allow the information to be transformed into knowledge." At 2016 AGU Fall Meeting, Rebecca Moore presented the vision of monitoring a changing planet and "generating precise, actionable information and knowledge." Yet, what exactly are these entities in the context of earth sciences and environmental research infrastructures? Can they be defined? To which processes are they input and output? How are they represented and managed? Can we extend Moore's vision to machine actionable information and knowledge? Information Systems research has for long struggled with defining data, information, and knowledge. Literature on the Data, Information, Knowledge, Wisdom (DIKW) hierarchy underscores the challenge of defining these terms. Some scholars have even suggested that providing general definitions is beyond the scope of the discipline. This may be particularly true at the higher levels, where wisdom should be considered in the context of the societal environment and may not be quantifiable out of context. While reaching consensus is hard, to obtain a better understanding for what the terms mean, how they are applied, and to what processes they are relevant in the context of earth sciences and environmental research infrastructures is arguably worthwhile. This can be done in some situations through the examination of exemplars or use cases, particularly addressing processing for translation of data to knowledge. In this talk, we will not attempt to define what data, information, and knowledge are in the context of earth sciences and environmental research infrastructures. Rather, in the particular context of a concrete use case in aerosol science - namely for the study of atmospheric new particle formation events on concentration of polydisperse aerosol - we present how observational data on concentration evolve to but are different from information about events, and how these entities are input and output, respectively, to the process of interpretation. The presentation involves technologies that enable the formal representation and management of information. Information about new particle formation events is thus machine actionable.

  7. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1994

    1994-01-01

    Includes abstracts of 18 special interest group (SIG) sessions. Highlights include natural language processing, information science and terminology science, classification, knowledge-intensive information systems, information value and ownership issues, economics and theories of information science, information retrieval interfaces, fuzzy thinking…

  8. iBiology: communicating the process of science.

    PubMed

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Cheminformatics and Computational Chemistry: A Powerful Combination for the Encoding of Process Science

    EPA Science Inventory

    The registration of new chemicals under the Toxicological Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transformation of organic chemicals in natural...

  10. A Rules-Based Service for Suggesting Visualizations to Analyze Earth Science Phenomena.

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Zednik, S.; Fox, P. A.; Ramachandran, R.; Maskey, M.; Shie, C. L.; Shen, S.

    2016-12-01

    Current Earth Science Information Systems lack support for new or interdisciplinary researchers, who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. We need to evolve the current information systems, to reduce the time required for data preparation, processing and analysis. This can be done by effectively salvaging the "dark" resources in Earth Science. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. In order to effectively use these dark resources, especially for data processing and visualization, we need a combination of domain, data product and processing knowledge, i.e. a knowledge base from which specific data operations can be performed. In this presentation, we describe a semantic, rules based approach to provide i.e. a service to visualize Earth Science phenomena, based on the data variables extracted using the "dark" metadata resources. We use Jena rules to make assertions about compatibility between a phenomena and various visualizations based on multiple factors. We created separate orthogonal rulesets to map each of these factors to the various phenomena. Some of the factors we have considered include measurements, spatial resolution and time intervals. This approach enables easy additions and deletions based on newly obtained domain knowledge or phenomena related information and thus improving the accuracy of the rules service overall.

  11. Integrating the Family and Consumer Sciences Body of Knowledge into Higher Education: Eight AAFCS-Accredited Universities Explain Their Process

    ERIC Educational Resources Information Center

    Reiboldt, Wendy; Stanley, M. Sue; Coffey, Kitty R.; Whaley, Heather M.; Yazedjian, Ani; Yates, Amy M.; Kihm, Holly; Wanga, Pamela E.; Martin, Lynda; Olle, Mary; Anderson, Melinda

    2016-01-01

    This article features eight AAFCS-accredited academic units in higher education that illustrate how the Family and Consumer Sciences Body of Knowledge (FCS-BOK) can be integrated into program curricula and educational procedures or structures. Contributors represent the following educational institutions (in alphabetical order): (1) California…

  12. Mentor Advice Giving in an Alternative Certification Program for Secondary Science Teaching: Opportunities and Roadblocks in Developing a Knowledge Base for Teaching

    NASA Astrophysics Data System (ADS)

    Upson Bradbury, Leslie; Koballa, Thomas R., Jr.

    2007-12-01

    Mentoring is often an important component of alternative certification programs, yet little is known about what novices learn about science teaching through mentoring relationships. This study investigated the advice given by two mentor science teachers to their protégés. Findings indicate that mentors gave more advice related to general pedagogical knowledge than science-specific pedagogical content knowledge. Specifically, there was little to no advice related to the topics of inquiry, the nature of science, or the development of scientific literacy. Implications call for an increase in communication between university teacher education programs and school-based mentors, the development of benchmarks to help guide mentor-protégé interactions, and the importance of a multiyear induction process.

  13. Cheminformatics Applications and Physicochemical Property ...

    EPA Pesticide Factsheets

    The registration of new chemicals under the Toxic Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transport and transformation of organic chemicals in natural ecosystems. The purpose of this presentation is to demonstrate how cheminformatics, using chemical terms language in combination with the output of physicochemical property calculators, can be employed to encode this knowledge and make it available to the appropriate decision makers. The encoded process science is realized through the execution of reaction libraries in simulators such as EPA’s Chemical Transformation Simulator (CTS). In support of the CTS, reaction libraries have, or are currently being developed for a number of transformation processes including hydrolysis, abiotic reduction, photolysis and disinfection by-product formation. Examples of how the process science in the peer-reviewed literature is being encoded will be presented. The purpose of this presentation is to demonstrate how cheminformatics, using chemical terms language in combination with the output of physicochemical property calculators, can be employed to encode this knowledge and make it available to the appropriate decision makers.

  14. Science: Grades K-2. [Revised

    ERIC Educational Resources Information Center

    Green, Muriel; And Others

    This document was developed to provide primary level school teachers in New York City with specific materials and suggestions for organizing effective learning experiences in the science area. The program is designed to emphasize both science knowledge and science processes. An introductory section presents ideas related to the overall philosophy…

  15. Using Analytics to Support Petabyte-Scale Science on the NASA Earth Exchange (NEX)

    NASA Astrophysics Data System (ADS)

    Votava, P.; Michaelis, A.; Ganguly, S.; Nemani, R. R.

    2014-12-01

    NASA Earth Exchange (NEX) is a data, supercomputing and knowledge collaboratory that houses NASA satellite, climate and ancillary data where a focused community can come together to address large-scale challenges in Earth sciences. Analytics within NEX occurs at several levels - data, workflows, science and knowledge. At the data level, we are focusing on collecting and analyzing any information that is relevant to efficient acquisition, processing and management of data at the smallest granularity, such as files or collections. This includes processing and analyzing all local and many external metadata that are relevant to data quality, size, provenance, usage and other attributes. This then helps us better understand usage patterns and improve efficiency of data handling within NEX. When large-scale workflows are executed on NEX, we capture information that is relevant to processing and that can be analyzed in order to improve efficiencies in job scheduling, resource optimization, or data partitioning that would improve processing throughput. At this point we also collect data provenance as well as basic statistics of intermediate and final products created during the workflow execution. These statistics and metrics form basic process and data QA that, when combined with analytics algorithms, helps us identify issues early in the production process. We have already seen impact in some petabyte-scale projects, such as global Landsat processing, where we were able to reduce processing times from days to hours and enhance process monitoring and QA. While the focus so far has been mostly on support of NEX operations, we are also building a web-based infrastructure that enables users to perform direct analytics on science data - such as climate predictions or satellite data. Finally, as one of the main goals of NEX is knowledge acquisition and sharing, we began gathering and organizing information that associates users and projects with data, publications, locations and other attributes that can then be analyzed as a part of the NEX knowledge graph and used to greatly improve advanced search capabilities. Overall, we see data analytics at all levels as an important part of NEX as we are continuously seeking improvements in data management, workflow processing, use of resources, usability and science acceleration.

  16. Creating Metacognitive Awareness in the Lab: Outcomes for Preservice Science Teachers

    ERIC Educational Resources Information Center

    Saribas, Deniz; Mugaloglu, Ebru Z.; Bayram, Hale

    2013-01-01

    This study investigated the influence of metacognitive guidance on pre-service science teachers' scientific knowledge, science process skills, and views about the nature of science. The sample included 48 pre-service science teachers taking a first-year chemistry laboratory course in a public university in Turkey. During the 11-week course, the…

  17. As Science Evolves, How Can Science Policy? NBER Working Paper No. 16002

    ERIC Educational Resources Information Center

    Jones, Benjamin

    2010-01-01

    Getting science policy right is a core objective of government that bears on scientific advance, economic growth, health, and longevity. Yet the process of science is changing. As science advances and knowledge accumulates, ensuing generations of innovators spend longer in training and become more narrowly expert, shifting key innovations (i)…

  18. Pedagogic Professionalism Defi(l)es the Knowledge Economy? Some Preliminary Notes

    ERIC Educational Resources Information Center

    Kessl, Fabian; Otto, Hans-Uwe

    2006-01-01

    The ability to generate and process information, and hence the availability of knowledge has increasingly shifted to the foreground of the new knowledge societies. At the same time, traditional systems of knowledge production (science) and knowledge reception (professions) are subjected to a steady loss of legitimacy. Within this context,…

  19. The PIERDUB project: International Project on Education and Research in Donation at University of Barcelona: training university students about donation and transplantation.

    PubMed

    Manyalich, M; Paredes, D; Ballesté, C; Menjívar, A

    2010-01-01

    Donation and transplantation is an accepted therapeutic option when organ failure or tissue replacements are needed to save or improve the quality of life. However, in most medical schools there is no specific training for it, thus disregarding the key role of university students for the future success of the process. Knowledge diffusion about the donation procedure to clarify doubts and stimulate positive attitudes toward donation. Training university students in the donation and transplantation process. Research about the previous donation knowledge and the impact in donation indexes. Three different phases have been designed: (1) Training the University of Barcelona Health Sciences School students; (2) Training the Health Sciences School students in other faculties of Catalonia, Spain, and International; and (3) research. Since 2005, we have offered yearly an Optional Credits Course to medical students with duration of 45 hours, and two Donation days opened to health sciences students. Since 2007, promotional campaigns have been carried out in medicine and other health sciences faculties. Until now, 818 answered surveys have been collected to evaluate previous knowledge among university students. Training medical and other health sciences students in the donation process will improve quality of medical education and develop a trainer role for future professionals to help improve donation rates.

  20. The Knowledge Capsules: Very Short Films on Earth Science for Mainstream Audiences

    NASA Astrophysics Data System (ADS)

    Kerlow, Isaac

    2015-04-01

    The Knowledge Capsules are outreach and communication videos that present practical science research to mainstream audiences and take viewers on a journey into different aspects of Earth science and natural hazards. The innovative shorts are the result of an interdisciplinary development and production process. They include a combination of interviews, visualizations of scientific research, and documentation of fieldwork. They encapsulate research insights about volcanoes, tsunamis, and climate change in Southeast Asia. These short films were actively distributed free-of-charge during 2012-2014 and all of them are available online. The paper provides an overview of the motivations, process and accomplished results. Our approach for producing the Knowledge Capsules includes: an engaging mix of information and a fresh delivery style, a style suitable for a primary audience of non-scientists, a simple but experientially rich production style, Diagrams and animations based on the scientists' visuals, and a running time between five and twenty minutes. The completed Knowledge Capsules include: "Coastal Science" on Coastal Hazards, "The Ratu River Expedition" on Structural Geology, "Forensic Volcano Petrology by Fidel Costa, Volcano Petrology, "A Tale of Two Tsunamis" on Tsunami Stratigraphy, "Unlocking Climate Secrets" on Marine Geochemistry, and "Earth Girl 2: A Casual Strategy Game to Prepare for the Tsunami" on Natural Hazards and Science Outreach.

  1. How Multidisciplinary Are the Multidisciplinary Journals Science and Nature?

    PubMed Central

    Solomon, Gregg E. A.; Carley, Stephen; Porter, Alan L.

    2016-01-01

    Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples). PMID:27043924

  2. How Multidisciplinary Are the Multidisciplinary Journals Science and Nature?

    PubMed

    Solomon, Gregg E A; Carley, Stephen; Porter, Alan L

    2016-01-01

    Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples).

  3. Changes in science classrooms resulting from collaborative action research initiatives

    NASA Astrophysics Data System (ADS)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a variety of pedagogical functions. Students perceived Group-Investigations and Peer Assessments as positive in that they contributed to realizing constructivist features in their classrooms. The students also reported that they gained several learning outcomes through Group-Investigations, including more positive attitudes, new knowledge, greater learning capabilities, and improved self-esteem. However, the Group-Investigation and Peer Assessment methods were perceived as negative and problematic by those who had rarely been exposed to such inquiry-based, student-centered approaches.

  4. Problematizing the Practicum to Integrate Practical Knowledge

    ERIC Educational Resources Information Center

    Melville, Wayne; Campbell, Todd; Fazio, Xavier; Stefanile, Antonio; Tkaczyk, Nicholas

    2014-01-01

    This article examines the influence of a practicum teaching experience on two pre-service science teachers. The research is focused on examining a practicum in a secondary science department that actively promotes the teaching and learning of science as inquiry. We investigated the process through which the pre-service science teachers integrated…

  5. Cheminformatics Applications and Physicochemical Property Calculators: A Powerful Combination for the Encoding of Process Science

    EPA Science Inventory

    The registration of new chemicals under the Toxic Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transport and transformation of organic chemicals in n...

  6. A Way Forward Beyond Karl Popper's and Donald T. Campbell's Dead-End Evolutionary Epistemologies.

    PubMed

    Wettersten, John

    2016-01-01

    Theories of natural thought processes have traditionally served as foundations for philosophies of science. The source of all knowledge is passively received observations; these are combined to produce certain knowledge. After David Hume showed that this was not possible, deductivist alternatives, that is, theories that find a source of knowledge in ideas not derived from observations, from Immanuel Kant to William Whewell in the mid-1 9th century, were introduced. In response, traditional associationist and inductivist views were refurbished; a deductivist alternative was developed by the W6rzburg School. Much later Karl Popper in philosophy and Donald T. Campbell in psychology integrated this view with evolutionary theory. Campbell wanted thereby to find a justificationist view, which would reduce philosophy of science to cognitive psychology; Popper rejected both justificationism and the reduction of philosophy of science to psychology. Campbell thought all rational processes were innate psychological processes; Popper thought psychological processes were used to develop various rational processes. Campbell could not show that all rational thought was reducible to innate psychological processes, nor how some justification of scientific theories was possible. Popper could not show how evolutionary theory contributed to our knowledge of psychological thought processes. Both failed to observe that cognitive processes are social; people have learned how to think by learning how to interact in social groups seeking understanding. When innate thought processes are studied as social characteristics, evolutionary theory can contribute to both cognitive psychology and the theory of rationality, as both Popper and Campbell wanted it to do.

  7. How Close Student Teachers' Educational Philosophies and Their Scientific Thinking Processes in Science Education

    ERIC Educational Resources Information Center

    Yurumezoglu, Kemal; Oguz, Ayse

    2007-01-01

    For being guidance, science teachers should be framed by strong content knowledge to construct scientific thinking process as a scaffold. The aim of this research was to look at student teachers' scientific thinking processes. Then, the results compared with their educational philosophy. During the study, two different instruments were used. For…

  8. Knowledge: Creation, Organization and Use. ASIS '99: Proceedings of the American Society for Information Science (ASIS) Annual Meeting (62nd, Washington, DC, October 31-November 4, 1999). Volume 36.

    ERIC Educational Resources Information Center

    Woods, Larry, Ed.

    The 1999 American Society for Information Science (ASIS) conference explored current knowledge creation, acquisition, navigation, correlation, retrieval, management, and dissemination practicalities and potentialities, their implementation and impact, and the theories behind the developments. Speakers reviewed processes, technologies, and tools,…

  9. Asthma in the community: Designing instruction to help students explore scientific dilemmas that impact their lives

    NASA Astrophysics Data System (ADS)

    Tate, Erika Dawn

    School science instruction that connects to students' diverse home, cultural, or linguistic experiences can encourage lifelong participation in the scientific dilemmas that impact students' lives. This dissertation seeks effective ways to support high school students as they learn complex science topics and use their knowledge to transform their personal and community environments. Applying the knowledge integration perspective, I collaborated with education, science, and community partners to design a technology enhanced science module, Improving Your Community's Asthma Problem. This exemplar community science curriculum afforded students the opportunity to (a) investigate a local community health issue, (b) interact with relevant evidence related to physiology, clinical management, and environmental risks, and (c) construct an integrated understanding of the asthma problem in their community. To identify effective instructional scaffolds that engage students in the knowledge integration process and prepare them to participate in community science, I conducted 2 years of research that included 5 schools, 10 teachers, and over 500 students. This dissertation reports on four studies that analyzed student responses on pre-, post-, and embedded assessments. Researching across four design stages, the iterative design study investigated how to best embed the visualizations of the physiological processes breathing, asthma attack, and the allergic immune response in an inquiry activity and informed evidence-based revisions to the module. The evaluation study investigated the impact of this revised Asthma module across multiple classrooms and differences in students' prior knowledge. Combining evidence of student learning from the iterative and evaluation studies with classroom observations and teacher interviews, the longitudinal study explored the impact of teacher practices on student learning in years 1 and 2. In the final chapter, I studied how the Asthma module and students' local community influenced students as they integrated their ideas related to perspectives, evidence use, the consideration of tradeoffs, and localization to construct explanations and decision justifications regarding their community's asthma problem. In the end, this dissertation offers evidence that informs the future design of community science instruction that successfully engages students in the knowledge integration process and has implications for creating multiple opportunities for students to meaningfully participate in community science.

  10. Planning for Action Research: Looking at Practice through a Different Lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Heidi A.

    2012-08-03

    It has been my experience that behavioral science practitioners, including myself, often 'back into' action research. That is, we start out doing a process improvement or intervention and discover something along the way - generalizable knowledge - that seems worthwhile to share with our community of practice. What if, instead of looking at these projects from the point of view of practitioners, we looked at them as research from the outset? Would that change the outcome or generate additional knowledge? This paper compares and contrasts process improvement and action research methods, and illustrates how use of a research 'lens' canmore » enhance behavioral science interventions and the knowledge that may result from them.« less

  11. Connecting Coastal Communities with Ocean Science: A Look at Ocean Sense and the Inclusion of Place-based Indigenous Knowledge

    NASA Astrophysics Data System (ADS)

    McLean, M. A.; Brown, J.; Hoeberechts, M.

    2016-02-01

    Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. In 2014, ONC pioneered an innovative educational program, Ocean Sense: Local observations, global connections, which introduces students and teachers to the technologies installed on community observatories. The program introduces middle and high school students to research methods in biology, oceanography and ocean engineering through hands-on activities. Ocean Sense includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. The connection to place and local relevance of the program is further enhanced through an emphasis on Indigenous and place-based knowledge. ONC is working with coastal Indigenous communities in a collaborative process to include local knowledge, culture, and language in Ocean Sense materials. For this process to meaningful and culturally appropriate, ONC is relying on the guidance and oversight of Indigenous community educators and knowledge holders. Ocean Sense also includes opportunities for Indigenous youth and teachers in remote communities to connect in person, including an annual Ocean Science Symposium and professional development events for teachers. Building a program which embraces multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking Indigenous knowledge and place-based knowledge to ocean science.

  12. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    PubMed

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  13. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials

    PubMed Central

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R.

    2017-01-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers. PMID:28690971

  14. Valid and Reliable Science Content Assessments for Science Teachers

    NASA Astrophysics Data System (ADS)

    Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn

    2013-03-01

    Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper describes multiple sources of validity and reliability (Cronbach's alpha greater than 0.8) evidence for physical, life, and earth/space science assessments—part of the Diagnostic Teacher Assessments of Mathematics and Science (DTAMS) project. Validity was strengthened by systematic synthesis of relevant documents, extensive use of external reviewers, and field tests with 900 teachers during assessment development process. Subsequent results from 4,400 teachers, analyzed with Rasch IRT modeling techniques, offer construct and concurrent validity evidence.

  15. Humorous Cartoons Made by Preservice Teachers for Teaching Science Concepts to Elementary Students: Process and Product

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Sallis, Derek A.; Donaldson, J. Ana

    2008-01-01

    Elementary school science is an often-neglected subject in the current literacy-focused political atmosphere. However, reading informational trade books about science in literacy class can help children increase their science knowledge. Incorporating humor through content-related cartoons is an effective way to engage students in deeper…

  16. Approaches to the Measurement of the Impact of Knowledge Management Programmes.

    ERIC Educational Resources Information Center

    Martin, William J.

    2000-01-01

    Examines the problem of knowledge measurement and, in reviewing some of the current alternatives, argues for the importance of metrics to the overall process of knowledge management. Discusses the nature of intellectual capital and emphasizes the significance of knowledge measurement to the information science community. (Contains 10 references.)…

  17. The lure of rationality: Why does the deficit model persist in science communication?

    PubMed

    Simis, Molly J; Madden, Haley; Cacciatore, Michael A; Yeo, Sara K

    2016-05-01

    Science communication has been historically predicated on the knowledge deficit model. Yet, empirical research has shown that public communication of science is more complex than what the knowledge deficit model suggests. In this essay, we pose four lines of reasoning and present empirical data for why we believe the deficit model still persists in public communication of science. First, we posit that scientists' training results in the belief that public audiences can and do process information in a rational manner. Second, the persistence of this model may be a product of current institutional structures. Many graduate education programs in science, technology, engineering, and math (STEM) fields generally lack formal training in public communication. We offer empirical evidence that demonstrates that scientists who have less positive attitudes toward the social sciences are more likely to adhere to the knowledge deficit model of science communication. Third, we present empirical evidence of how scientists conceptualize "the public" and link this to attitudes toward the deficit model. We find that perceiving a knowledge deficit in the public is closely tied to scientists' perceptions of the individuals who comprise the public. Finally, we argue that the knowledge deficit model is perpetuated because it can easily influence public policy for science issues. We propose some ways to uproot the deficit model and move toward more effective science communication efforts, which include training scientists in communication methods grounded in social science research and using approaches that engage community members around scientific issues. © The Author(s) 2016.

  18. Science Grades 3-4.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    This handbook provides the elementary school teacher with specific suggestions regarding use of materials and organization of effective learning experiences in science at this level. The book contains three sections: An introduction emphasizes both science knowledge and process while the other two sections deal with subject matter topics for…

  19. Citizen Science for public health.

    PubMed

    Den Broeder, Lea; Devilee, Jeroen; Van Oers, Hans; Schuit, A Jantine; Wagemakers, Annemarie

    2018-06-01

    Community engagement in public health policy is easier said than done. One reason is that public health policy is produced in a complex process resulting in policies that may appear not to link up to citizen perspectives. We therefore address the central question as to whether citizen engagement in knowledge production could enable inclusive health policy making. Building on non-health work fields, we describe different types of citizen engagement in scientific research, or 'Citizen Science'. We describe the challenges that Citizen Science poses for public health, and how these could be addressed. Despite these challenges, we expect that Citizen Science or similar approaches such as participatory action research and 'popular epidemiology' may yield better knowledge, empowered communities, and improved community health. We provide a draft framework to enable evaluation of Citizen Science in practice, consisting of a descriptive typology of different kinds of Citizen Science and a causal framework that shows how Citizen Science in public health might benefit both the knowledge produced as well as the 'Citizen Scientists' as active participants.

  20. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    PubMed

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  1. Beyond Objectivity and Subjectivity: The Intersubjective Foundations of Psychological Science.

    PubMed

    Mascolo, Michael F

    2016-12-01

    The question of whether psychology can properly be regarded as a science has long been debated (Smedslund in Integrative Psychological & Behavioral Science, 50, 185-195, 2016). Science is typically understood as a method for producing reliable knowledge by testing falsifiable claims against objective evidence. Psychological phenomena, however, are traditionally taken to be "subjective" and hidden from view. To the extent that science relies upon objective observation, is a scientific psychology possible? In this paper, I argue that scientific psychology does not much fail to meet the requirements of objectivity as much as the concept of objectivity fails as a methodological principle for psychological science. The traditional notion of objectivity relies upon the distinction between a public, observable exterior and a private, subjective interior. There are good reasons, however, to reject this dichotomy. Scholarship suggests that psychological knowledge arises neither from the "inside out" (subjectively) nor from the outside-in (objectively), but instead intersubjective processes that occur between people. If this is so, then objectivist methodology may do more to obscure than illuminate our understanding of psychological functioning. From this view, we face a dilemma: Do we, in the name of science, cling to an objective epistemology that cuts us off from the richness of psychological activity? Or do we seek to develop a rigorous intersubjective psychology that exploits the processes through which we gain psychological knowledge in the first place? If such a psychology can produce systematic, reliable and useful knowledge, then the question of whether its practices are "scientific" in the traditional sense would become irrelevant.

  2. Revitalizing Theory in Library and Information Science: The Contribution of Process Philosophy

    ERIC Educational Resources Information Center

    Jones, Bonna

    2005-01-01

    Two main traditions now operate in philosophy, influencing the choice about which theories are appropriate in library and information science (LIS). A third tradition, known as process philosophy, gives prominence to human knowledge as an organically integrated, self-sustaining whole, thereby opening another avenue for the effort to revitalize…

  3. Case Studies Add Value to a Diverse Teaching Portfolio in Science Courses

    ERIC Educational Resources Information Center

    Camill, Philip

    2006-01-01

    Together with lectures and labs, case studies assist students in acquiring content knowledge, process skills, and an understanding of the context and application of science to their daily lives. Cases make the process of scientific learning more genuine and rigorous, bringing alive classroom learning and helping students apply concepts to…

  4. Some Interrelationships between Constructivist Models of Learning and Current Neurobiological Theory, with Implications for Science Education.

    ERIC Educational Resources Information Center

    Anderson, O. Roger

    1992-01-01

    This paper examines how some fundamental mechanisms of nervous system activity can explain human information processing and the acquisition of knowledge and provides additional theoretical support for constructivist applications to science education reform. The implications for scientific epistemology and conceptual change processes in science…

  5. Classroom Environment and Student Outcomes Associated with Using Anthropometry Activities in High School Science.

    ERIC Educational Resources Information Center

    Lightburn, Millard E.; Fraser, Barry J.

    The study involved implementing and evaluating activities that actively engage students in the process of gathering, processing and analyzing data derived from human body measurements, with students using their prior knowledge acquired in science, mathematics, and computer classes to interpret this information. In the classroom activities…

  6. The Dynamic between Knowledge Production and Faculty Evaluation: Perceptions of the Promotion and Tenure Process across Disciplines

    ERIC Educational Resources Information Center

    Jackson, J. Kasi; Latimer, Melissa; Stoiko, Rachel

    2017-01-01

    This study sought to understand predictors of faculty satisfaction with promotion and tenure processes and reasonableness of expectations in the context of a striving institution. The factors we investigated included discipline (high-consensus [science and math] vs. low-consensus [humanities and social sciences]); demographic variables; and…

  7. Measurement of Learning Process by Semantic Annotation Technique on Bloom's Taxonomy Vocabulary

    ERIC Educational Resources Information Center

    Yanchinda, Jirawit; Yodmongkol, Pitipong; Chakpitak, Nopasit

    2016-01-01

    A lack of science and technology knowledge understanding of most rural people who had the highest education at elementary education level more than others level is unsuccessfully transferred appropriate technology knowledge for rural sustainable development. This study provides the measurement of the learning process by on Bloom's Taxonomy…

  8. The influence of the history of science course on pre-service science teachers' understanding of the nature of science concepts

    NASA Astrophysics Data System (ADS)

    Akcay, Behiye

    The purpose of this study was to investigate the influence of a history of science course on pre-service science teachers' understanding of the nature of science concepts. Subjects in the study were divided in two groups: (1) students who enrolled in only in the history of science course, (2) students who enrolled both the meaning of science and the history of science courses. An interpretative-descriptive approach and constant comparative analysis were used to identify similarities and differences among pre-service teachers' views about nature of scientific knowledge prior to and after the history of science course. The results of this study indicate that explicitly addressing certain aspects of the nature of science is effective in promoting adequate understanding of the nature of science for pre-service science teachers. Moreover, the results indicate that a student's prior experience with the history of science helps to improve their understanding of the history and nature of science. The history of science course helped pre-service teachers to develop the following views which are parallel with these advocated in both the Benchmarks (AAAS, 1993) and the National Science Education Standards (NRC, 1996) concerning the nature of scientific knowledge: (1) Scientific knowledge is empirically based and an ongoing process of experimentation, investigation, and observation. (2) Science is a human endeavor. (3) People from different cultures, races, genders, and nationality contribute to science. (4) Scientific knowledge is not based on myths, personal beliefs, and religious values. (5) Science background and prior knowledge have important roles for scientific investigations. (6) Scientific theories and laws represent different kinds of knowledge. (7) Science is affected by political, social, and cultural values. (8) Creativity and imagination are used during all stages of scientific investigations. (9) Theories change because of new evidence and new views of existing data as well as advances in technology. (10) Theories have significant roles in generating future research questions. (11) Adequate understanding of differences between observations and inferences develop from considering the history of science. (12) There is no single universal step-by-step scientific method. (13) Learning about the nature of scientific knowledge helps students to become scientifically literate.

  9. Ernst Mach and George Sarton's Successors: The Implicit Role Model of Teaching Science in USA and Elsewhere, Part II

    NASA Astrophysics Data System (ADS)

    Siemsen, Hayo

    2013-05-01

    George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach's Mechanics when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many others in several generations (James Conant, Thomas Kuhn, Gerald Holton, etc.). What were the origins of these ideas in Mach and what can this origin tell us about the history of science and science education nowadays? Which ideas proved to be successful and which ones need to be improved upon? The following article will elaborate the epistemological questions, which Charles Darwin's "Origin" raised concerning human knowledge and scientific knowledge and which led Mach to adapt the concept of what is "empirical" in contrast to metaphysical a priori assumptions a second time after Galileo. On this basis Sarton proposed "genesis and development" as the major goal of his journal Isis. Mach had elaborated this epistemology in La Connaissance et l'Erreur ( Knowledge and Error), which Sarton read in 1911 (Hiebert in Knowledge and error. Reidel, Dordrecht, 1976; de Mey in George Sarton centennial. Communication & Cognition, Ghent, pp. 3-6, 1984). Accordingly for Sarton, history becomes not only a subject of science, but a method of science education. Culture—and science as part of culture—is a result of a genetic process. History of science shapes and is shaped by science and science education in a reciprocal process. Its epistemology needs to be adapted to scientific facts and the philosophy of science. Sarton was well aware of the need to develop the history of science and the philosophy of science along the lines of this reciprocal process. It was a very fruitful basis, but a specific part of it Sarton did not elaborate further, namely the erkenntnis-theory and psychology of science education. This proved to be a crucial missing element for all of science education in Sarton's succession, especially in the US. Looking again at the origins of the central questions in the thinking of Mach, which provided the basis and gave rise to Sarton's research program, will help in resolving current epistemic and methodological difficulties, contradictions and impasses in science education influenced by Sarton. The difficulties in science education will prevail as long as the omissions from their Machian origins are not systematically recovered and reintegrated.

  10. ESIP's Earth Science Knowledge Graph (ESKG) Testbed Project: An Automatic Approach to Building Interdisciplinary Earth Science Knowledge Graphs to Improve Data Discovery

    NASA Astrophysics Data System (ADS)

    McGibbney, L. J.; Jiang, Y.; Burgess, A. B.

    2017-12-01

    Big Earth observation data have been produced, archived and made available online, but discovering the right data in a manner that precisely and efficiently satisfies user needs presents a significant challenge to the Earth Science (ES) community. An emerging trend in information retrieval community is to utilize knowledge graphs to assist users in quickly finding desired information from across knowledge sources. This is particularly prevalent within the fields of social media and complex multimodal information processing to name but a few, however building a domain-specific knowledge graph is labour-intensive and hard to keep up-to-date. In this work, we update our progress on the Earth Science Knowledge Graph (ESKG) project; an ESIP-funded testbed project which provides an automatic approach to building a dynamic knowledge graph for ES to improve interdisciplinary data discovery by leveraging implicit, latent existing knowledge present within across several U.S Federal Agencies e.g. NASA, NOAA and USGS. ESKG strengthens ties between observations and user communities by: 1) developing a knowledge graph derived from various sources e.g. Web pages, Web Services, etc. via natural language processing and knowledge extraction techniques; 2) allowing users to traverse, explore, query, reason and navigate ES data via knowledge graph interaction. ESKG has the potential to revolutionize the way in which ES communities interact with ES data in the open world through the entity, spatial and temporal linkages and characteristics that make it up. This project enables the advancement of ESIP collaboration areas including both Discovery and Semantic Technologies by putting graph information right at our fingertips in an interactive, modern manner and reducing the efforts to constructing ontology. To demonstrate the ESKG concept, we will demonstrate use of our framework across NASA JPL's PO.DAAC, NOAA's Earth Observation Requirements Evaluation System (EORES) and various USGS systems.

  11. Teaching Constructivist Science, K-8: Nurturing Natural Investigators in the Standards-Based Classroom

    ERIC Educational Resources Information Center

    Bentley, Michael L.; Ebert, Edward S., II; Ebert, Christine

    2007-01-01

    Good teachers know that science is more than just a collection of facts in a textbook and that teaching science goes beyond the mere transmission of information. Actively engaging students in the learning process is critical to building their knowledge base, assessing progress, and meeting science standards. This book shows teachers how to…

  12. The Process of Science Communications at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning-based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium.

  13. Learners' strategies for reconstructing cognitive frameworks and navigating conceptual change from prior conception to consensual genetics knowledge

    NASA Astrophysics Data System (ADS)

    Parrott, Annette M.

    Problem. Science teachers are charged with preparing students to become scientifically literate individuals. Teachers are given curriculum that specifies the knowledge that students should come away with; however, they are not necessarily aware of the knowledge with which the student arrives or how best to help them navigate between the two knowledge states. Educators must be aware, not only of where their students are conceptually, but how their students move from their prior knowledge and naive theories, to scientifically acceptable theories. The understanding of how students navigate this course has the potential to revolutionize educational practices. Methods. This study explored how five 9th grade biology students reconstructed their cognitive frameworks and navigated conceptual change from prior conception to consensual genetics knowledge. The research questions investigated were: (1) how do students in the process of changing their naive science theories to accepted science theories describe their journey from prior knowledge to current conception, and (2) what are the methods that students utilize to bridge the gap between alternate and consensual science conceptions to effect conceptual change. Qualitative and quantitative methods were employed to gather and analyze the data. In depth, semi-structured interviews formed the primary data for probing the context and details of students' conceptual change experience. Primary interview data was coded by thematic analysis. Results and discussion. This study revealed information about students' perceived roles in learning, the role of articulation in the conceptual change process, and ways in which a community of learners aids conceptual change. It was ascertained that students see their role in learning primarily as repeating information until they could add that information to their knowledge. Students are more likely to consider challenges to their conceptual frameworks and be more motivated to become active participants in constructing their knowledge when they are working collaboratively with peers instead of receiving instruction from their teacher. Articulation was found to be instrumental in aiding learners in identifying their alternate conceptions as well as in revisiting, investigating and reconstructing their conceptual frameworks. Based on the assumptions generated, suggestions were offered to inform pedagogical practice in support of the conceptual change process.

  14. Design of Automated Guidance to Support Effortful Revisions and Knowledge Integration in Science Learning

    ERIC Educational Resources Information Center

    Tansomboon, Charissa

    2017-01-01

    Students studying complex science topics can benefit from receiving immediate, personalized guidance. Supporting students to revise their written explanations in science can help students to integrate disparate ideas and develop a coherent, generative account of complex scientific topics. Using natural language processing to analyze student…

  15. Understanding Ecology Content Knowledge and Acquiring Science Process Skills through Project-Based Science Instruction

    ERIC Educational Resources Information Center

    Colley, Kabba E.

    2006-01-01

    This activity discusses a two-day unit on ecology implemented during the summer of 2004 using the project-based science instructional (PBSI) approach. Through collaborative fieldwork, group discussions, presentations, and reflections, students planned, implemented, and reported their own scientific investigations on the environmental health of…

  16. Building Knowledge Graphs for NASA's Earth Science Enterprise

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.

    2016-12-01

    Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of concept, we focus on a well-defined domain - Hurricane Science linking research articles and their findings, data, people and tools/services. Modern information retrieval, natural language processing machine learning and deep learning techniques are applied to build the knowledge network.

  17. Creativity, Scientific Practice, and Knowledge Production

    ERIC Educational Resources Information Center

    Fryer, Marilyn

    2010-01-01

    In this interesting article, Hisham Ghassib (2010) describes the transformation of science from its craft status in a pre-modern era to the major knowledge industry it is today. He then compares the production of scientific knowledge with industrial production, but makes the important distinction between the process of developing scientific…

  18. Bridging Research and Environmental Regulatory Processes: The Role of Knowledge Brokers

    PubMed Central

    Pennell, Kelly G.; Thompson, Marcella; Rice, James W.; Senier, Laura; Brown, Phil; Suuberg, Eric

    2013-01-01

    Federal funding agencies increasingly require research investigators to ensure that federally-sponsored research demonstrates broader societal impact. Specifically, the National Institutes of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) requires research centers to include research translation and community engagement cores to achieve broader impacts, with special emphasis on improving environmental health policies through better scientific understanding. This paper draws on theoretical insights from the social sciences to show how incorporating knowledge brokers in research centers can facilitate translation of scientific expertise to influence regulatory processes and thus promote public health. Knowledge brokers connect academic researchers with decision-makers, to facilitate the translation of research findings into policies and programs. In this article, we describe the stages of the regulatory process and highlight the role of the knowledge broker and scientific expert at each stage. We illustrate the cooperation of knowledge brokers, scientific experts and policymakers using a case from the Brown University (Brown) SRP. We show how the Brown SRP incorporated knowledge brokers to engage scientific experts with regulatory officials around the emerging public health problem of vapor intrusion. In the Brown SRP, the knowledge broker brought regulatory officials into the research process, to help scientific experts understand the critical nature of this emerging public health threat, and helped scientific experts develop a research agenda that would inform the development of timely measures to protect public health. Our experience shows that knowledge brokers can enhance the impact of environmental research on public health by connecting policy decision-makers with scientific experts at critical points throughout the regulatory process. PMID:24083557

  19. Optimizing the Orchestration of Resemiotization with Teacher "Talk Moves": A Model of Guided-Inquiry Instruction in Middle School Science

    ERIC Educational Resources Information Center

    Millstone, Rachel Diana

    2010-01-01

    The current conceptualization of science set forth by the National Research Council (2008) is one of science as a social activity, rather than a view of science as a fixed body of knowledge. This requires teachers to consider how communication, processing, and meaning-making contribute to science learning. It also requires teachers to think deeply…

  20. A Study of Teacher-Mediated Enhancement of Students' Organization of Earth Science Knowledge Using Web Diagrams as a Teaching Device

    NASA Astrophysics Data System (ADS)

    Anderson, O. Roger; Contino, Julie

    2010-10-01

    Current research indicates that students with enhanced knowledge networks are more effective in learning science content and applying higher order thinking skills in open-ended inquiry learning. This research examined teacher implementation of a novel teaching strategy called “web diagramming,” a form of network mapping, in a secondary school earth science class. We report evidence for student improvement in knowledge networking, questionnaire-based reports by the students on the merits of web diagramming in terms of interest and usefulness, and information on the collaborating teacher’s perceptions of the process of implementation, including implications for teacher education. This is among the first reports that teachers can be provided with strategies to enhance student knowledge networking capacity, especially for those students whose initial networking scores are among the lowest.

  1. The Use of Triadic Dialogue in the Science Classroom: a Teacher Negotiating Conceptual Learning with Teaching to the Test

    NASA Astrophysics Data System (ADS)

    Salloum, Sara; BouJaoude, Saouma

    2017-08-01

    The purpose of this research is to better understand the uses and potential of triadic dialogue (initiation-response-feedback) as a dominant discourse pattern in test-driven environments. We used a Bakhtinian dialogic perspective to analyze interactions among high-stakes tests and triadic dialogue. Specifically, the study investigated (a) the global influence of high-stakes tests on knowledge types and cognitive processes presented and elicited by the science teacher in triadic dialogue and (b) the teacher's meaning making of her discourse patterns. The classroom talk occurred in a classroom where the teacher tried to balance conceptual learning with helping low-income public school students pass the national tests. Videos and transcripts of 20 grade 8 and 9 physical science sessions were analyzed qualitatively. Teacher utterances were categorized in terms of science knowledge types and cognitive processes. Explicitness and directionality of shifts among different knowledge types were analyzed. It was found that shifts between factual/conceptual/procedural-algorithmic and procedural inquiry were mostly dialectical and implicit, and dominated the body of concept development lessons. These shifts called for medium-level cognitive processes. Shifts between the different knowledge types and procedural-testing were more explicit and occurred mostly at the end of lessons. Moreover, the science teacher's focus on success and high expectations, her explicitness in dealing with high-stakes tests, and the relaxed atmosphere she created built a constructive partnership with the students toward a common goal of cracking the test. We discuss findings from a Bakhtinian dialogic perspective and the potential of triadic dialogue for teachers negotiating multiple goals and commitments.

  2. Knowledge Distance, Cognitive-Search Processes, and Creativity: The Making of Winning Solutions in Science Contests.

    PubMed

    Acar, Oguz Ali; van den Ende, Jan

    2016-05-01

    Prior research has provided conflicting arguments and evidence about whether people who are outsiders or insiders relative to a knowledge domain are more likely to demonstrate scientific creativity in that particular domain. We propose that the nature of the relationship between creativity and the distance of an individual's expertise from a knowledge domain depends on his or her cognitive processes of problem solving (i.e., cognitive-search effort and cognitive-search variation). In an analysis of 230 solutions generated in a science contest platform, we found that distance was positively associated with creativity when problem solvers engaged in a focused search (i.e., low cognitive-search variation) and exerted a high level of cognitive effort. People whose expertise was close to a knowledge domain, however, were more likely to demonstrate creativity in that domain when they drew on a wide variety of different knowledge elements for recombination (i.e., high cognitive-search variation) and exerted substantial cognitive effort. © The Author(s) 2016.

  3. Cheminformatics and Computational Chemistry: A Powerful ...

    EPA Pesticide Factsheets

    The registration of new chemicals under the Toxicological Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transformation of organic chemicals in natural ecosystems. The purpose of this presentation is to demonstrate how cheminformatics using chemical terms language in combination with the output of physicochemical property calculators can be employed to encode this knowledge and make it available to the appropriate decision makers. The encoded process science is realized through the execution of reaction libraries in simulators such as EPA’s Chemical Transformation Simulator (CTS). In support of the CTS, reaction libraries have or are currently being developed for a number of transformation processes including hydrolysis, abiotic reduction, photolysis and disinfection by-product formation. Examples of how the process science available in the peer-reviewed literature is being encoded will be presented. Presented at the 252nd American Chemical Society National Meeting:Aquatic Chemistry: Symposium in Honor of Professor Alan T. Stone

  4. Implicit Learning in Science: Activating and Suppressing Scientific Intuitions to Enhance Conceptual Change

    NASA Astrophysics Data System (ADS)

    Wang, Jeremy Yi-Ming

    This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naive knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naive intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education.

  5. Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.

    2016-12-01

    Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.

  6. Cultural Memory Banking in Preservice Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Handa, Vicente C.; Tippins, Deborah J.

    2012-12-01

    This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers and a science teacher educator/doctoral candidate formed a research team and documented community funds of knowledge relevant to science teaching and learning through their participation in a Community Immersion course. The study employed the use of the cultural memory banking as a meditational tool to analyze, make sense of, and represent interview, focus-group discussion, and observation data, among others, for the development of culturally relevant science lessons. Originally used as an anthropological tool to preserve cultural knowledge associated with the cultivation of indigenous plant varieties, the cultural memory banking, as adapted in science education, was used, both as a data collection and analytic tool, to locate relevant science at the intersection of community life. The research team developed a cultural memory bank exemplar, "Ginamos: The Stinky Smell that Sells," to highlight the learning experiences and meaning-making process of those involved in its development. Dilemmas and insights on the development and use of cultural memory banking were discussed with respect to issues of knowledge mining and mainstreaming of indigenous/local funds of knowledge, troubling the privileged position of Western-inspired nature of science.

  7. Understanding understanding in secondary school science: An interpretive study

    NASA Astrophysics Data System (ADS)

    O'Neill, Maureen Gail

    This study investigated the teaching of secondary school science with an emphasis on promoting student understanding. In particular, I focused on two research questions: What are the possible meanings of teaching for understanding? And, how might one teach secondary school science for understanding? After semi-structured interviews were conducted with 13 secondary school science teachers, grounded theory methodology was used to interpret the data. As a result of the selective coding process, I was able to identify 14 connected components of teaching for understanding (TfU). The process of TfU involves: puzzle-solving, a specific pedagogy and a conscious decision. The teacher must be a reflective practitioner who has some knowledge of the facets of understanding. The teacher comes to a critical incident or crisis in his or her pedagogy and adopts a mindset which highlights TfU as a personal problematic. Teachers operate with student-centred rather than teacher-centred metaphors. TfU requires a firm belief in and passion for the process, a positive attitude and excellent pedagogical content knowledge. It hinges on a performance view of understanding and demands risk-taking in the science classroom. Abstracting these ideas to a theory led me to the notion of Purposive Teaching . In their purposive-driven role as pedagogues, these teachers have placed TfU at the core of their daily practice. Constraints and challenges facing TfU as well as implications of the findings are discussed. Keywords. science teaching, teaching for understanding, purposive teaching, constructivism, understanding, pedagogy, pedagogical content knowledge, memorization, meaningful learning, reflective practice.

  8. Clinical Competencies and the Basic Sciences: An Online Case Tutorial Paradigm for Delivery of Integrated Clinical and Basic Science Content

    ERIC Educational Resources Information Center

    DiLullo, Camille; Morris, Harry J.; Kriebel, Richard M.

    2009-01-01

    Understanding the relevance of basic science knowledge in the determination of patient assessment, diagnosis, and treatment is critical to good medical practice. One method often used to direct students in the fundamental process of integrating basic science and clinical information is problem-based learning (PBL). The faculty facilitated small…

  9. Emphasizing the History of Genetics in an Explicit and Reflective Approach to Teaching the Nature of Science: A Pilot Study

    ERIC Educational Resources Information Center

    Williams, Cody Tyler; Rudge, David Wÿss

    2016-01-01

    Science education researchers have long advocated the central role of the nature of science (NOS) for our understanding of scientific literacy. NOS is often interpreted narrowly to refer to a host of epistemological issues associated with the process of science and the limitations of scientific knowledge. Despite its importance, practitioners and…

  10. Cybernetics: A Possible Solution for the "Knowledge Gap" between "External" and "Internal" in Evaluation Processes

    ERIC Educational Resources Information Center

    Levin-Rozalis, Miri

    2010-01-01

    This paper addresses the issue of the knowledge gap between evaluators and the entity being evaluated: the dilemma of the knowledge of professional evaluators vs. the in-depth knowledge of the evaluated subjects. In order to optimize evaluative outcomes, the author suggests an approach based on ideas borrowed from the science of cybernetics as a…

  11. Exploring science teachers' pedagogical content knowledge in the teaching of genetics in Swaziland

    NASA Astrophysics Data System (ADS)

    Mthethwa-Kunene, Khetsiwe Eunice Faith

    Recent trends show that learners' enrolment and performance in science at secondary school level is dwindling. Some science topics including genetics in biology are said to be difficult for learners to learn and thus they perform poorly in examinations. Teacher knowledge base, particularly topic-specific pedagogical content knowledge (PCK), has been identified by many researchers as an important factor that is linked with learner understanding and achievement in science. This qualitative study was an attempt to explore the PCK of four successful biology teachers and how they developed it in the context of teaching genetics. The purposive sampling technique was employed to select the participating teachers based on their schools' performance in biology public examinations and recommendations by science specialists and school principals. Pedagogical content knowledge was used as a theoretical framework for the study, which guided the inquiry in data collection, analysis and discussion of the research findings. The study adopted the case study method and various sources of evidence including concept maps, lesson plans, pre-lesson interviews, lesson observations, post-teaching teacher questionnaire, post-lesson interviews and document analysis were used to collect data on teachers' PCK as well as how PCK was assumed to have developed. The data were analysed in an attempt to determine the individual teachers' school genetics' content knowledge, related knowledge of instructional strategies and knowledge of learners' preconceptions and learning difficulties. The analysis involved an iterative process of coding data into PCK categories of content knowledge, pedagogical knowledge and knowledge of learners' preconceptions and learning difficulties. The findings of the study indicate that the four successful biology teachers generally have the necessary content knowledge of school genetics, used certain topic-specific instructional strategies, but lacked knowledge of genetics-related learners' preconceptions and learning difficulties despite having taught the topic for many years. There were some instructional deficits in their approaches and techniques in teaching genetics. The teachers failed to use physical models, teacher demonstration and/or learner experimentation in their lessons (or include them in their lesson plans) to assist learners in visualizing or internalizing the genetics concepts or processes located at the sub-microscopic level. The teachers' PCK in genetics teaching was assumed to have developed mainly through formal university education programmes, classroom teaching experiences, peer support and participation in in-service workshops. The implications for biology teacher education are also discussed.

  12. Optimization of knowledge-based systems and expert system building tools

    NASA Technical Reports Server (NTRS)

    Yasuda, Phyllis; Mckellar, Donald

    1993-01-01

    The objectives of the NASA-AMES Cooperative Agreement were to investigate, develop, and evaluate, via test cases, the system parameters and processing algorithms that constrain the overall performance of the Information Sciences Division's Artificial Intelligence Research Facility. Written reports covering various aspects of the grant were submitted to the co-investigators for the grant. Research studies concentrated on the field of artificial intelligence knowledge-based systems technology. Activities included the following areas: (1) AI training classes; (2) merging optical and digital processing; (3) science experiment remote coaching; (4) SSF data management system tests; (5) computer integrated documentation project; (6) conservation of design knowledge project; (7) project management calendar and reporting system; (8) automation and robotics technology assessment; (9) advanced computer architectures and operating systems; and (10) honors program.

  13. "A Scientist Has Many Things to Do:" EPO Strategies that Focus on the Processes of Science

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Brickley, A. L.

    2011-09-01

    Scientists' effort in education and public outreach (EPO) is best invested in sharing their expertise on the nature and processes of science - the "understandings of science" that are emphasized in the National Science Education Standards, but that are difficult to teach and poorly supported by existing curricular materials. These understandings address the intellectual process of science - posing questions, gathering and interpreting evidence - and the social process of science as a human endeavor for building knowledge. We share several ways of incorporating concepts about the nature and processes of science into EP/O activities and making them focal points in their own right. Hands-on activities used at science festivals and in classrooms and professional development workshops illustrate key scientific thinking skills such as observing, classifying, making predictions, and drawing inferences. A more comprehensive approach is exemplified by Upward and Outward: Scientific Inquiry on the Tibetan Plateau, a 20-minute educational documentary film for school science classrooms and teacher professional development. The film portrays the intellectual and human processes of science through an inside view of a research project; classroom assessments offer evidence of its impact on students' ideas about these processes.

  14. Levels of line graph question interpretation with intermediate elementary students of varying scientific and mathematical knowledge and ability: A think aloud study

    NASA Astrophysics Data System (ADS)

    Keller, Stacy Kathryn

    This study examined how intermediate elementary students' mathematics and science background knowledge affected their interpretation of line graphs and how their interpretations were affected by graph question levels. A purposive sample of 14 6th-grade students engaged in think aloud interviews (Ericsson & Simon, 1993) while completing an excerpted Test of Graphing in Science (TOGS) (McKenzie & Padilla, 1986). Hand gestures were video recorded. Student performance on the TOGS was assessed using an assessment rubric created from previously cited factors affecting students' graphing ability. Factors were categorized using Bertin's (1983) three graph question levels. The assessment rubric was validated by Padilla and a veteran mathematics and science teacher. Observational notes were also collected. Data were analyzed using Roth and Bowen's semiotic process of reading graphs (2001). Key findings from this analysis included differences in the use of heuristics, self-generated questions, science knowledge, and self-motivation. Students with higher prior achievement used a greater number and variety of heuristics and more often chose appropriate heuristics. They also monitored their understanding of the question and the adequacy of their strategy and answer by asking themselves questions. Most used their science knowledge spontaneously to check their understanding of the question and the adequacy of their answers. Students with lower and moderate prior achievement favored one heuristic even when it was not useful for answering the question and rarely asked their own questions. In some cases, if students with lower prior achievement had thought about their answers in the context of their science knowledge, they would have been able to recognize their errors. One student with lower prior achievement motivated herself when she thought the questions were too difficult. In addition, students answered the TOGS in one of three ways: as if they were mathematics word problems, science data to be analyzed, or they were confused and had to guess. A second set of findings corroborated how science background knowledge affected graph interpretation: correct science knowledge supported students' reasoning, but it was not necessary to answer any question correctly; correct science knowledge could not compensate for incomplete mathematics knowledge; and incorrect science knowledge often distracted students when they tried to use it while answering a question. Finally, using Roth and Bowen's (2001) two-stage semiotic model of reading graphs, representative vignettes showed emerging patterns from the study. This study added to our understanding of the role of science content knowledge during line graph interpretation, highlighted the importance of heuristics and mathematics procedural knowledge, and documented the importance of perception attentions, motivation, and students' self-generated questions. Recommendations were made for future research in line graph interpretation in mathematics and science education and for improving instruction in this area.

  15. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  16. Understanding and managing trust at the climate science-policy interface

    NASA Astrophysics Data System (ADS)

    Lacey, Justine; Howden, Mark; Cvitanovic, Christopher; Colvin, R. M.

    2018-01-01

    Climate change effects are accelerating, making the need for appropriate actions informed by sound climate knowledge ever more pressing. A strong climate science-policy relationship facilitates the effective integration of climate knowledge into local, national and global policy processes, increases society's responsiveness to a changing climate, and aligns research activity to policy needs. This complex science-policy relationship requires trust between climate science `producers' and `users', but our understanding of trust at this interface remains largely uncritical. To assist climate scientists and policymakers, this Perspective provides insights into how trust develops and operates at the interface of climate science and policy, and examines the extent to which trust can manage — or even create — risk at this interface.

  17. Process skills approach to develop primary students’ scientific literacy: A case study with low achieving students on water cycle

    NASA Astrophysics Data System (ADS)

    Suryanti; Ibrahim, M.; Lede, N. S.

    2018-01-01

    The results of the Program for International Student Assessment (PISA) study on the scientific literacy of Indonesian students since the year 2000 have been still far below the international average score of 500. This could also be seen from the results of the science literacy test of 5th-grade students of primary school in Indonesia which showed that 60% of students are still at level ≤ 3 (value < 500). The students’ science literacy skills need to be improved by applying learning with a process skills approach. This study aims to describe the findings of classroom action research using a process skills approach to the science literacy level of primary students (n = 23). This research was conducted in 2 cycles with stages of planning, implementation, observation, and reflection. Students’ ability in scientific literacy was measured by using description and subjective tests of context domains, knowledge, competencies, and attitudes. In this study, researchers found an improvement in students’ science literacy skills when learning using a process skills approach. In addition, students’ scientific attitude is also more positive. In activities for learning science, students should be challenged as often as possible so that they have more practice using their scientific knowledge and skills to solve problems presented by teachers in the classroom.

  18. Implementing Science-Technology-Society Approaches in Middle School Science Teaching

    ERIC Educational Resources Information Center

    Akcay, Hakan; Yager, Robert E.

    2010-01-01

    The National Science Education Standards emphasize a goal that students should achieve scientific literacy, which is defined as the knowledge and understanding of scientific concepts needed in daily living. Scientific literacy enables people to not only use scientific principles and processes in making personal decisions but also to participate in…

  19. Dynamic Framing in the Communication of Scientific Research: Texts and Interactions

    ERIC Educational Resources Information Center

    Davis, Pryce R.; Russ, Rosemary S.

    2015-01-01

    The fields of science education and science communication share the overarching goal of helping non-experts and non-members of the professional science community develop knowledge of the content and processes of scientific research. However, the specific audiences, methods, and aims employed in the two fields have evolved quite differently and as…

  20. Primary School Students' Views about Science, Technology and Engineering

    ERIC Educational Resources Information Center

    Pekmez, Esin

    2018-01-01

    Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…

  1. Crossing the Border: Science Student Teachers Using Role-Play in Grade 7

    ERIC Educational Resources Information Center

    Braund, Martin; Moodley, Trevor; Ekron, Christelle; Ahmed, Zaiboenisha

    2015-01-01

    Drama is used to build knowledge and understanding in science as part of a socio-linguistic, constructivist approach. Role-plays, where learners act as analogues for components and processes, help access abstract ideas. However, a problem restricting many science teachers using these approaches has been that they lack sufficient pedagogical…

  2. Science: A Practical View. Volume I. Teacher Edition. Applied Basic Curriculum Series.

    ERIC Educational Resources Information Center

    Evaluation, Dissemination and Assessment Center, Dallas.

    This guide, the first in a series of three, provides the intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. The three components in this guide deal with (1) ecology (what marine science…

  3. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  4. Using Model-Tracing to Conduct Performance Assessment of Students' Inquiry Skills within a Microworld

    ERIC Educational Resources Information Center

    Gobert, Janice D.; Koedinger, Kenneth R.

    2011-01-01

    The National frameworks for science emphasize inquiry skills (NRC, 1996), however, in typical classroom practice, science learning often focuses on rote learning in part because science process skills are difficult to assess (Fadel, Honey, & Pasnick, 2007) and rote knowledge is prioritized on high-stakes tests. Short answer assessments of…

  5. The Sustainable Development Goals - conceptual approaches for science and research projects

    NASA Astrophysics Data System (ADS)

    Schmalzbauer, Bettina; Visbeck, Martin

    2017-04-01

    Challenged to provide answers to some of the world's biggest societal and environmental problems, the scientific community has consistently delivered exciting and solid information that is often used to assess the situation in many different parts of the globe to document the anthropogenic cause of environmental changes and to provide perspectives on possible development scenarios. With the adoption of the Paris climate agreement and the 2030 Agenda for Sustainable Development (and its 17 Sustainable Development Goals (SDGs)) major issues for society are now in its complexity in implementation. That are: consistency with other political processes (e.g. UNFCCC, IPBES), implementability (e.g. interactions between SDGs, pathways) and measurability (e.g. indicators). We argue that science can contribute to all these aspects by providing fundamental knowledge necessary for decision-making and practical implementation of the SDGs. Cooperation beyond disciplines and national boarders is essential, as well as the integration of concepts and methods of natural and social sciences. The outcome of two international conferences has called out four specific areas where science can make significant contributions towards SDG implementation: First, deep and integrated scientific knowledge is needed for better understanding key interactions, synergies and trade-offs embedded in the SDGs. Second, sound scientific input is needed for co-designing and executing of scientific assessments in the context of the SDG process (going beyond the good examples set by IPCC and IPBES). Third, science can support the establishment of evidence-based procedures for the development of scenarios and identify possible pathways for the world in 2030 or beyond. Fourth, progress on SDG implementation needs to be supported by a meaningful indicator framework, and this framework needs scientific input to refine indicators, and further develop and standardise methods. The main conclusion is that a comprehensive approach is needed that combines basic science and solution-oriented science, and integrates knowledge from natural science, social sciences, engineering and humanities (but also from other knowledge domains) to meet the overall objective of the 2030 Agenda. Foresight, integrated assessment and integrated modelling can be possible successful approaches for knowledge exchange, learning, and identifying possible coherent development pathways towards global sustainability.To ensure rapid and effective uptake of new research results the concepts of co-design of research projects and co-production of knowledge show promise.

  6. The Impact of Non-Conscious Knowledge on Educational Technology Research and Design

    ERIC Educational Resources Information Center

    Clark, Richard E.

    2011-01-01

    There are at least three powerful insights for educational technology researchers and designers from recent neuroscience studies of the brain and from cognitive science research findings: First, our brains learn and process two very different types of knowledge; non-conscious, automated, procedural, or implicit knowledge, and conscious,…

  7. [Sustainable Implementation of Evidence-Based Programmes in Health Promotion: A Theoretical Framework and Concept of Interactive Knowledge to Action].

    PubMed

    Rütten, A; Wolff, A; Streber, A

    2016-03-01

    This article discusses 2 current issues in the field of public health research: (i) transfer of scientific knowledge into practice and (ii) sustainable implementation of good practice projects. It also supports integration of scientific and practice-based evidence production. Furthermore, it supports utilisation of interactive models that transcend deductive approaches to the process of knowledge transfer. Existing theoretical approaches, pilot studies and thoughtful conceptual considerations are incorporated into a framework showing the interplay of science, politics and prevention practice, which fosters a more sustainable implementation of health promotion programmes. The framework depicts 4 key processes of interaction between science and prevention practice: interactive knowledge to action, capacity building, programme adaptation and adaptation of the implementation context. Ensuring sustainability of health promotion programmes requires a concentrated process of integrating scientific and practice-based evidence production in the context of implementation. Central to the integration process is the approach of interactive knowledge to action, which especially benefits from capacity building processes that facilitate participation and systematic interaction between relevant stakeholders. Intense cooperation also induces a dynamic interaction between multiple actors and components such as health promotion programmes, target groups, relevant organisations and social, cultural and political contexts. The reciprocal adaptation of programmes and key components of the implementation context can foster effectiveness and sustainability of programmes. Sustainable implementation of evidence-based health promotion programmes requires alternatives to recent deductive models of knowledge transfer. Interactive approaches prove to be promising alternatives. Simultaneously, they change the responsibilities of science, policy and public health practice. Existing boundaries within disciplines and sectors are overcome by arranging transdisciplinary teams as well as by developing common agendas and procedures. Such approaches also require adaptations of the structure of research projects such as extending the length of funding. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Examining Challenges Related to the Production of Actionable Climate Knowledge for Adaptation Decision-Making: A Focus on Climate Knowledge System Producers

    NASA Astrophysics Data System (ADS)

    Ernst, K.; Preston, B. L.; Tenggren, S.; Klein, R.; Gerger-Swartling, Å.

    2017-12-01

    Many challenges to adaptation decision-making and action have been identified across peer-reviewed and gray literature. These challenges have primarily focused on the use of climate knowledge for adaptation decision-making, the process of adaptation decision-making, and the needs of the decision-maker. Studies on climate change knowledge systems often discuss the imperative role of climate knowledge producers in adaptation decision-making processes and stress the need for producers to engage in knowledge co-production activities and to more effectively meet decision-maker needs. While the influence of climate knowledge producers on the co-production of science for adaptation decision-making is well-recognized, hardly any research has taken a direct approach to analyzing the challenges that climate knowledge producers face when undertaking science co-production. Those challenges can influence the process of knowledge production and may hinder the creation, utilization, and dissemination of actionable knowledge for adaptation decision-making. This study involves semi-structured interviews, focus groups, and participant observations to analyze, identify, and contextualize the challenges that climate knowledge producers in Sweden face as they endeavor to create effective climate knowledge systems for multiple contexts, scales, and levels across the European Union. Preliminary findings identify complex challenges related to education, training, and support; motivation, willingness, and culture; varying levels of prioritization; professional roles and responsibilities; the type and amount of resources available; and professional incentive structures. These challenges exist at varying scales and levels across individuals, organizations, networks, institutions, and disciplines. This study suggests that the creation of actionable knowledge for adaptation decision-making is not supported across scales and levels in the climate knowledge production landscape. Additionally, enabling the production of actionable knowledge for adaptation decision-making requires multi-level effort beyond the individual level.

  9. Towards transdisciplinarity in Arctic sustainability knowledge co-production: Socially-Oriented Observations as a participatory integrated activity

    NASA Astrophysics Data System (ADS)

    Vlasova, Tatiana; Volkov, Sergey

    2016-09-01

    The paper is an attempt to tie together main biogeophysical and social science projects under the auspice of interdisciplinary sustainability science development. Special attention is put to the necessity of the transdisciplinary knowledge co-production based on activities and problem-solutions approaches. It puts attention to the role of monitoring activities in sustainability interdisciplinary science and transdisciplinary knowledge evolution in the Arctic. Socially focused monitoring named Socially-Oriented Observations creating a transdisciplinary space is viewed as one of sources of learning and transformations towards sustainability making possible to shape rapid changes happening in the Arctic based on sustainability knowledge co-production. Continuous Socially-Oriented Observations integrating scientific, education and monitoring methods enables to define adaptation and transformation pathways in the Arctic - the most rapidly changing region of our planet. Socially-Oriented Observations are based on the existing and developing interdisciplinary scientific approaches emerged within natural science and social science projects, sustainable development and resilience concepts putting principle attention to building sustainable and resilient socio-ecological systems. It is argued that the Arctic sustainability science is a valuable component of the whole and broader system of the Arctic Sustainability knowledge co-produced with the help of transdisciplinary approaches integrating science, local/traditional knowledge, entrepreneurship, education, decision-making. Socially-Oriented Observations are designed to be a transdisciplinary interactive continuous participatory process empowering deliberate choices of people that can shape the changes and enable transformation towards sustainability. Approaches of Socially-Oriented Observations and methods of implementation that have been developed since the IPY 2007/2008 and being practiced in different regions of the Arctic are discussed.

  10. Focus: global currents in national histories of science: the "global turn" and the history of science in Latin America.

    PubMed

    McCook, Stuart

    2013-12-01

    The "global turn" in the history of science offers new ways to think about how to do national and regional histories of science, in this case the history of science in Latin America. For example, it questions structuralist and diffusionist models of the spread of science and shows the often active role that people in Latin America (and the rest of the Global South) played in the construction of "universal" scientific knowledge. It suggests that even national or regional histories of science must be situated in a global context; all too often, such histories have treated global processes as a distant backdrop. At the same time, historians need to pay constant attention to the role of power in the construction of scientific knowledge. Finally, this essay highlights a methodological tool for writing globally inflected histories of science: the method of "following".

  11. When science became Western: historiographical reflections.

    PubMed

    Elshakry, Marwa

    2010-03-01

    While thinking about the notion of the "global" in the history of the history of science, this essay examines a related but equally basic concept: the idea of "Western science." Tracing its rise in the nineteenth century, it shows how it developed as much outside the Western world as within it. Ironically, while the idea itself was crucial for the disciplinary formation of the history of science, the global history behind this story has not been much attended to. Drawing on examples from nineteenth-century Egypt and China, the essay begins by looking at how international vectors of knowledge production (viz., missionaries and technocrats) created new global histories of science through the construction of novel genealogies and through a process of conceptual syncretism. Turning next to the work of early professional historians of science, it shows how Arabic and Chinese knowledge traditions were similarly reinterpreted in light of the modern sciences, now viewed as part of a diachronic and universalist teleology ending in "Western science." It concludes by arguing that examining the global emergence of the idea of Western science in this way highlights key questions pertaining to the relation of the history of science to knowledge traditions across the world and the continuing search for global histories of science.

  12. Science and Technology, Autonomous and More Interdependent Every Time

    NASA Astrophysics Data System (ADS)

    Santilli, Haydée

    2012-06-01

    In a School of Engineering scientific and technological knowledge live together. Science teachers usually try to understand the role that scientific disciplines have over the engineer training. In this paper are descript three historical case studies that could help teachers and students for better understanding the interdependence between science and technology, and the way in which both are related to society. The cases clearly show that both kind of knowledge, scientific and technological, are autonomous, and that their growths involve complex processes. On this way, learners could have an insight of both, the NOS and the NOT.

  13. Relationships between Scientific Process Skills and Scientific Creativity: Mediating Role of Nature of Science Knowledge

    ERIC Educational Resources Information Center

    Ozdemir, Gokhan; Dikici, Ayhan

    2017-01-01

    The purpose of this study is to explore the strength of relationships between 7th grade students' Scientific Process Skills (SPS), Nature of Science (NOS) beliefs, and Scientific Creativity (SC) through Structural Equation Modeling (SEM). For this purpose, data were collected from 332 students of two public middle school students in Turkey. SPS,…

  14. Translating Knowledge: The role of Shared Learning in Bridging the Science-Application Divide

    NASA Astrophysics Data System (ADS)

    Moench, M.

    2014-12-01

    As the organizers of this session state: "Understanding and managing our future relation with the Earth requires research and knowledge spanning diverse fields, and integrated, societally-relevant science that is geared toward solutions." In most cases, however, integration is weak and scientific outputs do not match decision maker requirements. As a result, while scientific results may be highly relevant to society that relevance is operationally far from clear. This paper explores the use of shared learning processes to bridge the gap between the evolving body of scientific information on climate change and its relevance for resilience planning in cities across Asia. Examples related to understanding uncertainty, the evolution of scientific knowledge from different sources, and data extraction and presentation are given using experiences generated over five years of work as part of the Rockefeller Foundation supported Asian Cities Climate Change Resilience Network and other programs. Results suggest that processes supporting effective translation of knowledge between different sources and different applications are essential for the identification of solutions that respond to the dynamics and uncertainties inherent in global change processes.

  15. Linking Indigenous Knowledge and Observed Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Alexander, Chief Clarence; Bynum, Nora; Johnson, Liz; King, Ursula; Mustonen, Tero; Neofotis, Peter; Oettle, Noel; Rosenzweig, Cynthia; Sakakibara, Chie; Shadrin, Chief Vyacheslav; hide

    2010-01-01

    We present indigenous knowledge narratives and explore their connections to documented temperature and other climate changes and observed climate change impact studies. We then propose a framework for enhancing integration of these indigenous narratives of observed climate change with global assessments. Our aim is to contribute to the thoughtful and respectful integration of indigenous knowledge with scientific data and analysis, so that this rich body of knowledge can inform science, and so that indigenous and traditional peoples can use the tools and methods of science for the benefit of their communities if they choose to do so. Enhancing ways of understanding such connections are critical as the Intergovernmental Panel on Climate Change Fifth Assessment process gets underway.

  16. Exploring the Complexities of Children's Inquiries in Science: Knowledge Production Through Participatory Practices

    NASA Astrophysics Data System (ADS)

    Siry, Christina

    2013-12-01

    Beginning with the assumption that young children are capable of producing unprecedented knowledges about science phenomena, this paper explores the complexities of children's inquiries within open-ended investigations. I ask two central questions: (1) how can we (teachers, researchers, and children themselves) use and build upon children's explorations in science in practice? and (2) what pedagogical approaches can position children as experts on their experiences to facilitate children's sense of ownership in the process of learning science? Six vignettes from a Kindergarten classroom are analyzed to elaborate the central claim of this work, which is that when children are engaged in collaborative open-ended activities, science emerges from their interactions. Open-ended structures allowed for teachers and children to facilitate further investigations collaboratively, and participatory structures mediated children's representations and explanations of their investigations. Evidence of children's interactions is used to illustrate the complexities of children's explorations, and pedagogical approaches that create the spaces for children to create knowledge are highlighted.

  17. Forming of science teacher thinking through integrated laboratory exercises

    NASA Astrophysics Data System (ADS)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Within the three-semester optional course Science we have also included into curricula the subject entitled Science Practicum consisting of laboratory exercises of complementary natural scientific disciplines whose content exceeds the boundaries of relevant a scientific discipline (physics, biology, …). The paper presents the structure and selected samples of laboratory exercises of physical part of Science Practicum in which we have processed in an integrated way the knowledge of physics and biology at secondary grammar school. When planning the exercises we have proceeded from those areas of mentioned disciplines in which we can appropriately apply integration of knowledge and where the measurement methods are used. We have focused on the integration of knowledge in the field of human sensory organs (eye, ear), dolphins, bats (spatial orientation) and bees (ommatidium of faceted eye) and their modelling. Laboratory exercises are designed in such a way that they would motivate future teachers of natural scientific subjects to work independently with specialized literature of the mentioned natural sciences and ICT.

  18. Ernst Mach, George Sarton and the Empiry of Teaching Science Part I

    NASA Astrophysics Data System (ADS)

    Siemsen, Hayo

    2012-04-01

    George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach's Mechanics when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many others (James Conant, Thomas Kuhn, Gerald Holton, etc.). What were the origins of these ideas in Mach and what can this origin tell us about the history of science and science education nowadays? Which ideas proved to be successful and which ones need to be improved upon? The following article will elaborate the epistemological questions, which Darwin's "Origin" raised concerning human knowledge and scientific knowledge and which led Mach to adapt the concept of what is "empirical" in contrast to metaphysical a priori assumptions a second time after Galileo. On this basis Sarton proposed "genesis and development" as the major goal of Isis. Mach had elaborated this epistemology in La Connaissance et l'Erreur ( Knowledge and Error), which Sarton read in 1913 (Hiebert 1905/1976; de Mey 1984). Accordingly for Sarton, history becomes not only a subject of science, but a method of science education. Culture—and science as part of culture—is a result of a genetic process. History of science shapes and is shaped by science and science education in a reciprocal process. Its epistemology needs to be adapted to scientific facts and the philosophy of science. Sarton was well aware of the need to develop the history of science and the philosophy of science along the lines of this reciprocal process. It was a very fruitful basis, but a specific part of it, Sarton did not elaborate further, namely the psychology of science education. This proved to be a crucial missing element for all of science education in Sarton's succession, especially in the US. Looking again at the origins of the central questions in the thinking of Mach, which provided the basis and gave rise to Sarton's research program, will help in resolving current epistemic and methodological difficulties, contradictions and impasses in science education influenced by Sarton. The difficulties in science education will prevail as long as the omissions from their Machian origins are not systematically recovered and reintegrated.

  19. Organization of knowledge and the complex identity of history of science.

    PubMed

    Alfonso-Goldfarb, Ana M; Waisse, Silvia; Ferraz, Márcia H M

    2013-09-01

    History of science as a formal and autonomous field of research crosses over disciplinary boundaries. For this reason, both its production and its working materials are difficult to classify and catalog according to discipline-based systems of organization of knowledge. Three main problems might be pointed out in this regard: the disciplines themselves are subject to a historical process of transformation; some objects of scientific inquiry resist constraint within rigid disciplinary grids but, rather, extend across several disciplinary boundaries; and the so-called digital revolution has replaced spatial with temporal display sequences and shifted the traditional emphasis on knowledge to user-oriented approaches. The first part of this essay is devoted to a conceptual analysis of the various approaches to the organization of knowledge formulated over time, whereas the second considers the new possibilities afforded by a faceted model of knowledge organization compatible with user-oriented relational databases to the research materials and production of history of science.

  20. Genetic discoveries and nursing implications for complex disease prevention and management.

    PubMed

    Frazier, Lorraine; Meininger, Janet; Halsey Lea, Dale; Boerwinkle, Eric

    2004-01-01

    The purpose of this article is to examine the management of patients with complex diseases, in light of recent genetic discoveries, and to explore how these genetic discoveries will impact nursing practice and nursing research. The nursing science processes discussed are not comprehensive of all nursing practice but, instead, are concentrated in areas where genetics will have the greatest influence. Advances in genetic science will revolutionize our approach to patients and to health care in the prevention, diagnosis, and treatment of disease, raising many issues for nursing research and practice. As the scope of genetics expands to encompass multifactorial disease processes, a continuing reexamination of the knowledge base is required for nursing practice, with incorporation of genetic knowledge into the repertoire of every nurse, and with advanced knowledge for nurses who select specialty roles in the genetics area. This article explores the impact of this revolution on nursing science and practice as well as the opportunities for nursing science and practice to participate fully in this revolution. Because of the high proportion of the population at risk for complex diseases and because nurses are occupied every day in the prevention, assessment, treatment, and therapeutic intervention of patients with such diseases in practice and research, there is great opportunity for nurses to improve health care through the application (nursing practice) and discovery (nursing research) of genetic knowledge.

  1. An Approach to Knowledge-Directed Image Analysis,

    DTIC Science & Technology

    1977-09-01

    34AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS D.H. Ballard, C.M.’Brown, J.A. Feldman Computer Science Department iThe University of Rochester...Rochester, New York 14627 DTII EECTE UTIC FILE COPY o n I, n 83 - ’ f t 8 11 28 19 1f.. AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS 5*., D.H...semantic network model and a distributed control structure to accomplish the image analysis process. The process of " understanding an image" leads to

  2. Enhancing healthcare process design with human factors engineering and reliability science, part 1: setting the context.

    PubMed

    Boston-Fleischhauer, Carol

    2008-01-01

    The design and implementation of efficient, effective, and safe processes are never-ending challenges in healthcare. Less than optimal performance levels and rising concerns about patient safety suggest that traditional process design methods are insufficient to meet design requirements. In this 2-part series, the author presents human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare. An examination of these theories, application approaches, and examples are presented.

  3. The impact of a student-teacher-scientist partnership (STSP) on students' and teachers' content knowledge and attitudes toward science

    NASA Astrophysics Data System (ADS)

    Houseal, Ana K.

    Engaging elementary students in science through inquiry-based methodologies is at the center of science education reform efforts (AAAS, 1989, NRC 1996, 2000). Through scientific problem solving, students can learn that science is more than just learning facts and concepts (NRC, 2000) The process of scientific inquiry, as a way of approaching scientific problem solving, can be taught to students through experiential, authentic (or real-world) science experiences. Student-teacher-scientist partnerships (STSPs) are one vehicle used to connect students to these science experiences with practicing research scientists. However, the literature on STSPs demonstrates they are fraught with challenges and very little is known of their effects on teachers' and students' content knowledge growth or changes in their attitudes about science and scientists. This study addressed these two areas by researching a particular STSP. The STSP, called Students, Teachers, and Rangers and Research Scientists (STaRRS), designed to be incorporated into the existing long-standing education program Expedition: Yellowstone! (E:Y!) was the focus of this study. For teachers, a pre-test, intervention, post-test research design addressing content knowledge gains, attitude changes, and pedagogical changes was used. A quasi-experimental pre- post-test design using treatment and comparison groups of students addressed content knowledge gains and attitude changes. Findings provided evidence of significant positive shifts in teachers' attitudes regarding science and scientists, and trends of shifting pedagogical choices made by teachers. Students showed significant content knowledge gains and an increased positive attitude regarding their perceptions of scientists.

  4. The drive to innovation: The privileging of science and technology knowledge production in Canada

    NASA Astrophysics Data System (ADS)

    Cauchi, Laura

    This dissertation project explored the privileging of knowledge production in science and technology as a Canadian national economic, political and social strategy. The project incorporated the relationship between nation-state knowledge production and how that knowledge is then systematically evaluated, prioritized and validated by systems of health technology assessment (HTA). The entry point into the analysis and this dissertation project was the Scientific Research and Experimental Design (SR&ED) federal tax incentive program as the cornerstone of science and technology knowledge production in Canada. The method of inquiry and analysis examined the submission documents submitted by key stakeholders across the country, representing public, private and academic standpoints, during the public consultation process conducted from 2007 to 2008 and how each of these standpoints is hooked into the public policy interests and institutional structures that produce knowledge in science and technology. Key public meetings, including the public information sessions facilitated by the Canada Revenue Agency and private industry conferences, provided context and guidance regarding the current pervasive public and policy interests that direct and drive the policy debates. Finally, the "Innovation Canada: A Call to Action Review of Federal Support to Research and Development: Expert Panel Report," commonly referred to as "The Jenkins Report" (Jenkins et al., 2011), was critically evaluated as the expected predictor of future public policy changes associated with the SR&ED program and the future implications for the production of knowledge in science and technology. The method of inquiry and analytical lens was a materialist approach that drew on the inspiring frameworks of such scholars as Dorothy Smith, Michel Foucault, Kaushik Sunder Rajan, Melinda Cooper, and, Gilles Deleuze. Ultimately, I strove to illuminate the normalizing force and power of knowledge production in science and technology, and the disciplines and structures that encompass it and are hooked into it where the privileging of such knowledge becomes hegemonic within and by the regimes of knowledge production that created them.

  5. Explicit Science Reading Instruction in Grade 7: Metacognitive Awareness, Metacognitive Self-Management and Science Reading Comprehension.

    ERIC Educational Resources Information Center

    Spence, David J.; And Others

    Reading science text is not simply a process of translating printed symbols into meaning; it involves the interaction of the reader's prior knowledge, beliefs, concurrent experience, and the text in a sociocultural context to construct new meaning and understanding. The purposes of this study were to: explore the associations between metacognition…

  6. Tanzanian Teachers' Understanding of the Science Embedded in Traditional Technologies: A Study to Inform Teacher Education.

    ERIC Educational Resources Information Center

    Knamiller, G. W.; And Others

    1995-01-01

    Explored the degree to which a sample of Tanzania science teachers were able to interpret the local production of alcohol in light of their conceptual knowledge of the science involved, designed experiments for investigating factors relating to the processes of fermentation and distillation, and considered alternatives for improving this…

  7. Challenges in Mentoring Software Development Projects in the High School: Analysis According to Shulman's Teacher Knowledge Base Model

    ERIC Educational Resources Information Center

    Meerbaum-Salant, Orni; Hazzan, Orit

    2009-01-01

    This paper focuses on challenges in mentoring software development projects in the high school and analyzes difficulties encountered by Computer Science teachers in the mentoring process according to Shulman's Teacher Knowledge Base Model. The main difficulties that emerged from the data analysis belong to the following knowledge sources of…

  8. The Process of Facilitating Knowledge Acquisition and Retention: An Inquiry into Magnetic Poles with Challenging Questions

    ERIC Educational Resources Information Center

    Okulu, Hasan Zühtü; Ünver, Ayse Oguz

    2018-01-01

    The current research is to give an example to the inquiry-based science teaching implementations for facilitating knowledge acquisition and retention in a short period of time. Thus, the aim of the research is to transfer of acquired knowledge into different situations using sequential inquiry activities, which have challenging questions for…

  9. Target Inquiry: Changing Chemistry High School Teachers' Classroom Practices and Knowledge and Beliefs about Inquiry Instruction

    ERIC Educational Resources Information Center

    Herrington, Deborah G.; Yezierski, Ellen J.; Luxford, Karen M.; Luxford, Cynthia J.

    2011-01-01

    Inquiry-based instruction requires a deep, conceptual understanding of the process of science combined with a sophisticated knowledge of teaching and learning. This study examines the changes in classroom instructional practices and corresponding changes to knowledge and beliefs about inquiry instruction for eight high school chemistry teachers.…

  10. 77 FR 56662 - Homeland Security Science and Technology Advisory Committee (HSSTAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... as new developments in systems engineering, cyber-security, knowledge management and how best to... Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Homeland Security Science and... the Under Secretary on policies, management processes, and organizational constructs as needed. Agenda...

  11. 78 FR 66949 - Homeland Security Science and Technology Advisory Committee (HSSTAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Technology, such as new developments in systems engineering, cyber-security, knowledge management and how... Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Homeland Security Science and... also advises the Under Secretary on policies, management processes, and organizational constructs as...

  12. Integration of Culturally Relevant Pedagogy Into the Science Learning Progression Framework

    NASA Astrophysics Data System (ADS)

    Bernardo, Cyntra

    This study integrated elements of culturally relevant pedagogy into a science learning progression framework, with the goal of enhancing teachers' cultural knowledge and thereby creating better teaching practices in an urban public high school science classroom. The study was conducted using teachers, an administrator, a science coach, and students involved in science courses in public high school. Through a qualitative intrinsic case study, data were collected and analyzed using traditional methods. Data from primary participants (educators) were analyzed through identification of big ideas, open coding, and themes. Through this process, patterns and emergent ideas were reported. Outcomes of this study demonstrated that educators lack knowledge about research-based academic frameworks and multicultural education strategies, but benefit through institutionally-based professional development. Students from diverse cultures responded positively to culturally-based instruction. Their progress was further manifested in better communication and discourse with their teacher and peers, and increased academic outcomes. This study has postulated and provided an exemplar for science teachers to expand and improve multicultural knowledge, ultimately transferring these skills to their pedagogical practice.

  13. Patterns in Nature Forming Patterns in Minds: An Evaluation of an Introductory Physics Unit

    NASA Astrophysics Data System (ADS)

    Sheaffer, Christopher Ryan

    Educators are increasingly focused on the process over the content. In science especially, teachers want students to understand the nature of science and investigation. The emergence of scientific inquiry and engineering design teaching methods have led to the development of new teaching and evaluation methods that concentrate on steps in a process rather than facts in a topic. Research supports the notion that an explicit focus on the scientific process can lead to student science knowledge gains. In response to new research and standards many teachers have been developing teaching methods that seem to work well in their classrooms, but lack the time and resources to test them in other classroom environments. A high school Physics teacher (Bradford Hill) has developed a unit called Patterns in Nature (PIN) with objectives relating mathematical modeling to the scientific process. Designed for use in his large public school classroom, the unit was taken and used in a charter school with small classes. This study looks at specifically whether or not the PIN unit effectively teaches students how to graph the data they gather and fit an appropriate mathematical pattern, using that model to predict future measurements. Additionally, the study looks at the students' knowledge and views about the nature of science and the process of scientific investigation as it is affected by the PIN unit. Findings show that students are able to identify and apply patterns to data, but have difficulties explaining the meaning of the math. Students' show increases in their knowledge of the process of science, and the majority develop positive views about science in general. A major goal of this study is to place this unit in the cyclical process of Design-Based Research and allow for Pattern in Nature's continuous improvement, development and evaluation. Design-Based Research (DBR) is an approach that can be applied to the implementation and evaluation of classroom materials. This method incorporates the complexities of different contexts and changing treatments into the research methods and analysis. From the use of DBR teachers can understand more about how the designed materials affect the students. Others may be able to use the development and analysis of PIN study as a guide to look at similar aspects of science units developed elsewhere.

  14. Government Regulatory

    NASA Astrophysics Data System (ADS)

    Becker, Katie

    Government regulation of food products, food processing, and food preparation is imperative in bringing an unadulterated, nonmisleading, and safe food product to market and is relevant to all areas of food science, including engineering, processing, chemistry, and microbiology. The liability associated with providing consumers with an adulterated or substandard product cannot only tarnish a company's name and reputation, but also impose substantial financial repercussions on the company and those individuals who play an active role in the violation. In order for a company to fully comply with the relevant food laws (both federal and state), an intimate knowledge of food science is required. Individuals knowledgeable in food science play an integral role not only in implementing and counseling food companies/processors to ensure compliance with government regulations, but these individuals are also necessary to the state and federal governments that make and enforce the relevant laws and regulators.

  15. Validity issues in the evaluation of a measure of science and mathematics teacher knowledge

    NASA Astrophysics Data System (ADS)

    Talbot, Robert M., III

    2011-12-01

    This study investigates the reliability and validity of an instrument designed to measure science and mathematics teachers' strategic knowledge . Strategic knowledge is conceptualized as a construct that is related to pedagogical knowledge and is comprised of two dimensions: Flexible Application (FA) and Student Centered Instruction (SCI). The FA dimension describes how a science teacher invokes, applies and modifies her instructional repertoire in a given teaching context. The SCI dimension describes how a science teacher conceives of a given situation as an opportunity for active engagement with the students. The Flexible Application of Student-Centered Instruction (FASCI) survey instrument was designed to measure science teachers' strategic knowledge by eliciting open-ended responses to scenario-based items. This study addresses the following overarching question: What are some potential issues pertaining to the validity of measures of science and mathematics teacher knowledge? Using a validity argument framework, different sources of evidence are identified, collected, and evaluated to examine support for a set or propositions related to the intended score interpretation and instrument use: FASCI scores can be used to compare and distinguish the strategic knowledge of novice science and mathematics teachers in the evaluation of teacher education programs. Three separate but related studies are presented and discussed. These studies focus on the reliability of FASCI scores, the effect of adding specific science content to the scenario-based items, and the observation of strategic knowledge in teaching practice. Serious issues were found with the reliability of scores from the FASCI instrument. It was also found that adding science content to the scenario-based items has an effect on FASCI scores, but not for the reason hypothesized. Finally, it was found that more evidence is needed to make stronger claims about the relationship between FASCI scores and novice teachers' practice. In concluding this work, a set of four recommendations are presented for others who are engaged in similar measure development efforts. These recommendations focus on the areas of construct definition, item design and development, rater recruitment and training, and the validation process.

  16. Cross-disciplinary links in environmental systems science: Current state and claimed needs identified in a meta-review of process models.

    PubMed

    Ayllón, Daniel; Grimm, Volker; Attinger, Sabine; Hauhs, Michael; Simmer, Clemens; Vereecken, Harry; Lischeid, Gunnar

    2018-05-01

    Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model intercomparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Basic Sciences Fertilizing Clinical Microbiology and Infection Management

    PubMed Central

    2017-01-01

    Abstract Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of “practice deconstruction” might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. PMID:28859345

  18. Scientists in the making: An ethnographic investigation of scientific processes as literate practice in an elementary classroom

    NASA Astrophysics Data System (ADS)

    Crawford, Teresa Jo

    This study explored the issue of literacy in science by examining how the social and academic literate practices in an elementary classroom formed the basis for learning across the curriculum, with a specific focus on the disciplinary field of science. Through the study of classroom interaction, issues related to student knowledge and ability were addressed as they pertain to scientific literacy in the context of science education reform. The theoretical framework guiding this study was drawn from sociocultural studies of scientific communities and interactional ethnography in education. To investigate the literate practices of science in a school setting, data were collected over a two-year period with the same teacher in her third grade and then her fourth/fifth grade classroom. Data were collected through participant observation in the form of fieldnotes, video data, interviews, and various artifacts (e.g., writings, drawings, teaching protocols). Using ethnographic and sociolinguistic methods of analysis this work examined classroom members' discursive practices to illustrate the role that discourse plays in creating opportunities for engagement in, and access to, scientific knowledge. These analyses revealed that the discursive actions and practices among members of this classroom shaped a particular type of learning environment that was process-oriented and inquiry based. It was shown that this learning environment afforded opportunities for students to engage in the processes of science outside the official, planned curriculum, often leading to whole class scientific investigations and discussions. Additionally, within this classroom community students were able to draw on multiple discourses to display their knowledge of scientific concepts and practices. Overall, this study found that the literate practices of this classroom community, as they were socially constructed among members, contributed to opportunities for students to practice science and demonstrate scientific literacy.

  19. An investigation of the artifacts, outcomes, and processes of constructing computer games about environmental science in a fifth grade science classroom

    NASA Astrophysics Data System (ADS)

    Baytak, Ahmet

    Among educational researchers and practitioners, there is a growing interest in employing computer games for pedagogical purposes. The present research integrated a technology education class and a science class where 5 th graders learned about environmental issues by designing games that involved environmental concepts. The purposes of this study were to investigate how designing computer games affected the development of students' environmental knowledge, programming knowledge, environmental awareness and interest in computers. It also explored the nature of the artifacts developed and the types of knowledge represented therein. A case study (Yin, 2003) was employed within the context of a 5 th grade elementary science classroom. Fifth graders designed computer games about environmental issues to present to 2nd graders by using Scratch software. The analysis of this study was based on multiple data sources: students' pre- and post-test scores on environmental awareness, their environmental knowledge, their interest in computer science, and their game design. Included in the analyses were also data from students' computer games, participant observations, and structured interviews. The results of the study showed that students were able to successfully design functional games that represented their understanding of environment, even though the gain between pre- and post-environmental knowledge test and environmental awareness survey were minimal. The findings indicate that all students were able to use various game characteristics and programming concepts, but their prior experience with the design software affected their representations. The analyses of the interview transcriptions and games show that students improved their programming skills and that they wanted to do similar projects for other subject areas in the future. Observations showed that game design appeared to lead to knowledge-building, interaction and collaboration among students. This, in turn, encouraged students to test and improve their designs. Sharing the games, it was found, has both positive and negative effects on the students' game design process and the representation of students' understandings of the domain subject.

  20. Knowledge systems and the colonial legacies in African science education

    NASA Astrophysics Data System (ADS)

    Ziegler, John R.; Lehner, Edward

    2017-10-01

    This review surveys Femi Otulaja and Meshach Ogunniyi's, Handbook of research in science education in sub-Saharan Africa, Sense, Rotterdam, 2017, noting the significance of the theoretically rich content and how this book contributes to the field of education as well as to the humanities more broadly. The volume usefully outlines the ways in which science education and scholarship in sub-Saharan Africa continue to be impacted by the region's colonial history. Several of the chapters also enumerate proposals for teaching and learning science and strengthening academic exchange. Concerns that recur across many of the chapters include inadequate implementation of reforms; a lack of resources, such as for classroom materials and teacher training; and the continued and detrimental linguistic, financial, and ideological domination of African science education by the West. After a brief overview of the work and its central issues, this review closely examines two salient chapters that focus on scholarly communications and culturally responsive pedagogy. The scholarly communication section addresses the ways in which African science education research may in fact be too closely mirroring Western knowledge constructions without fully integrating indigenous knowledge systems in the research process. The chapter on pedagogy makes a similar argument for integrating Western and indigenous knowledge systems into teaching approaches.

  1. The new science of mind and the future of knowledge.

    PubMed

    Kandel, Eric

    2013-10-30

    Understanding mental processes in biological terms makes available insights from the new science of the mind to explore connections between philosophy, psychology, the social sciences, the humanities, and studies of disorders of mind. In this Perspective we examine how these linkages might be forged and how the new science of the mind might serve as an inspiration for further exploration. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Working with the Nature of Science in Physics Class: Turning "Ordinary" Classroom Situations into Nature of Science Learning Situations

    ERIC Educational Resources Information Center

    Hansson, Lena; Leden, Lotta

    2016-01-01

    In the science education research field there is a large body of literature on the "nature of science" (NOS). NOS captures issues about what characterizes the research process as well as the scientific knowledge. Here we, in line with a broad body of literature, use a wide definition of NOS including also e.g. socio-cultural aspects. It…

  3. Agile science: creating useful products for behavior change in the real world.

    PubMed

    Hekler, Eric B; Klasnja, Predrag; Riley, William T; Buman, Matthew P; Huberty, Jennifer; Rivera, Daniel E; Martin, Cesar A

    2016-06-01

    Evidence-based practice is important for behavioral interventions but there is debate on how best to support real-world behavior change. The purpose of this paper is to define products and a preliminary process for efficiently and adaptively creating and curating a knowledge base for behavior change for real-world implementation. We look to evidence-based practice suggestions and draw parallels to software development. We argue to target three products: (1) the smallest, meaningful, self-contained, and repurposable behavior change modules of an intervention; (2) "computational models" that define the interaction between modules, individuals, and context; and (3) "personalization" algorithms, which are decision rules for intervention adaptation. The "agile science" process includes a generation phase whereby contender operational definitions and constructs of the three products are created and assessed for feasibility and an evaluation phase, whereby effect size estimates/casual inferences are created. The process emphasizes early-and-often sharing. If correct, agile science could enable a more robust knowledge base for behavior change.

  4. Teaching science vs. the apprentice model--do we really have the choice?

    PubMed

    Marckmann, G

    2001-01-01

    The debate about the appropriate methodology of medical education has been (and still is) dominated by the opposing poles of teaching science versus teaching practical skills. I will argue that this conflict between scientific education and practical training has its roots in the underlying, more systematic question about the conceptual foundation of medicine: how far or in what respects can medicine be considered to be a science? By analyzing the epistemological status of medicine I will show that the internal aim of medicine ("promoting health through the prevention and treatment of disease") differs from the internal aim of science ("the methodological and systematic acquisition of knowledge"). Therefore, medicine as a whole discipline should not be considered as a science. However, medicine can be conceptually and methodologically scientific in so much as it is based on scientific knowledge. There is evidence from cognitive science research that diagnostic reasoning not only relies on the application of scientific knowledge but also--especially in routine cases--on a process of pattern recognition, a reasoning strategy based on the memory of previously encountered patients. Hence, medical education must contain both: the imparting of scientific knowledge and the rich exposure to concrete cases during practical training. Hence, the question of teaching science vs. the apprentice model will not be "either-or" but rather "both--but in which proportion?"

  5. Literacy events during science instruction in a fifth-grade classroom: Listening to teacher and student voices

    NASA Astrophysics Data System (ADS)

    Deal, Debby

    Concern with science literacy and how to achieve it has a long history in our education system. The goals and definitions established by the National Science Education Standards (1996) suggest that if we are to successfully prepare students for the information age, science education must blend the natural and social sciences. However, research indicates that connections between hands-on science and literacy, as a tool for processing information, do not regularly occur during school science instruction. This case study explored the use of literacy by a second year teacher in a fifth grade class during consecutive science units on chemistry and liquids. The research questions focused on how and why the teacher and students used literacy during science and how and why the teacher and selected focus students believed literacy influenced their learning in science. Data was collected through classroom observations and multiple interviews with the teacher and selected focus students. Interview data was analyzed and coded using an iterative process. Field notes and student artifacts were used to triangulate the data. The study found that the teacher and students used reading and writing to record and acquire content knowledge, learn to be organized, and to facilitate assessment. Although the teacher had learned content literacy strategies in her pre-service program, she did not implement them in the classroom and her practice seemed to reflect her limited science content knowledge and understanding of the nature of science. The focus students believed that recording and studying notes, reading books, drawing, and reading study guides helped them learn science. The findings suggest the following implications: (1) More data is needed on the relationship between teaching approach, science content knowledge, and beliefs about science. (2) Elementary student voices make a valuable contribution to our understanding of science learning. (3) Pre-service candidates should have multiple opportunities to explicitly reflect on their beliefs about literacy, the nature of science, and learning in general. (4) Science methods classes should balance content, beliefs and attitudes related to science, and content literacy strategies.

  6. Applying gene flow science to environmental policy needs: a boundary work perspective.

    PubMed

    Ridley, Caroline E; Alexander, Laurie C

    2016-08-01

    One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.

  7. Alaska's Secondary Science Teachers and Students Receive Earth Systems Science Knowledge, GIS Know How and University Technical Support for Pre- College Research Experiences: The EDGE Project

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Prakash, A.

    2007-12-01

    Alaska's secondary school teachers are increasingly required to provide Earth systems science (ESS) education that integrates student observations of local natural processes related to rapid climate change with geospatial datasets and satellite imagery using Geographic Information Systems (GIS) technology. Such skills are also valued in various employment sectors of the state where job opportunities requiring Earth science and GIS training are increasing. University of Alaska's EDGE (Experiential Discoveries in Geoscience Education) program has provided training and classroom resources for 3 cohorts of inservice Alaska science and math teachers in GIS and Earth Systems Science (2005-2007). Summer workshops include geologic field experiences, GIS instruction, computer equipment and technical support for groups of Alaska high school (HS) and middle school (MS) science teachers each June and their students in August. Since 2005, EDGE has increased Alaska science and math teachers' Earth science content knowledge and developed their GIS and computer skills. In addition, EDGE has guided teachers using a follow-up, fall online course that provided more extensive ESS knowledge linked with classroom standards and provided course content that was directly transferable into their MS and HS science classrooms. EDGE teachers were mentored by University faculty and technical staff as they guided their own students through semester-scale, science fair style projects using geospatial data that was student- collected. EDGE program assessment indicates that all teachers have improved their ESS knowledge, GIS knowledge, and the use of technology in their classrooms. More than 230 middle school students have learned GIS, from EDGE teachers and 50 EDGE secondary students have conducted original research related to landscape change and its impacts on their own communities. Longer-term EDGE goals include improving student performance on the newly implemented (spring 2008) 10th grade, standards-based, High School Qualifying Exam, on recruiting first-generation college students, and on increasing the number of Earth science majors in the University of Alaska system.

  8. Pedagogical Content Knowledge Development and Pre-Service Physics Teacher Education: A Case Study

    NASA Astrophysics Data System (ADS)

    Sperandeo-Mineo, R. M.; Fazio, C.; Tarantino, G.

    2006-09-01

    This paper addresses the question of how to develop prospective teachers' pedagogical content knowledge (PCK) in science teacher education. The main focus is on the knowledge transformation process and on the cognitive strategies used to shift prospective teachers' explanations within the domain of modelling thermal physical phenomena. This study investigates the development of PCK within a group of 28 pre-service physics teachers during the first semester of their two-year post-graduate teacher education program. It focuses on the central issue of the relationships between observable phenomena, like macroscopic thermal properties of matter and their interpretation and/or explanation in terms of corpuscular characteristics and/or thermodynamics theory. The strategy is based on the consideration that knowledge transformation is not a one-way process from subject matter knowledge to pedagogical content knowledge, as literature suggests, but a bidirectional process involving deepening of subject matter knowledge and increasing awareness of pedagogical issues.

  9. From Flavr Savr Tomatoes to Stem Cell Therapy: Young People's Understandings of Gene Technology, 15 Years on

    NASA Astrophysics Data System (ADS)

    Lewis, Jenny

    2014-02-01

    This paper explores knowledge and understanding of basic genetics and gene technologies in school students who have been taught to a `science for all' National Curriculum and compares 482 students in 1995 (gene technology was a new and rapidly developing area of science with potential to impact on everyday life; the first cohort of students had been taught to the National Curriculum for Science) with 154 students in 2011 (genomics had replaced gene technology as a rapidly developing area of science with potential to impact on everyday life; science as a core subject within the National Curriculum was well established). These studies used the same questions, with the same age group (14-16) across the same (full) ability range; in addition the 2011 sample were asked about stem cells, stem cell technology and epigenetics. Students in 2011 showed: better knowledge of basic genetics but continuing difficulty in developing coherent explanatory frameworks; a good understanding of the nature of stem cells but no understanding of the process by which such cells become specialised; better understanding of different genetic technologies but also a wider range of misunderstandings and confusions (both between different genetic technologies and with other biological processes); continuing difficulty in evaluating potential veracity of short `news' items but greater awareness of ethical issues and the range of factors (including knowledge of genetics) which could be drawn on when justifying a view or coming to a decision. Implications for a `science for all' curriculum are considered.

  10. Integrating scientific knowledge into large-scale restoration programs: the CALFED Bay-Delta Program experience

    USGS Publications Warehouse

    Taylor, Kimberly A.; Short, A.

    2009-01-01

    Integrating science into resource management activities is a goal of the CALFED Bay-Delta Program, a multi-agency effort to address water supply reliability, ecological condition, drinking water quality, and levees in the Sacramento-San Joaquin Delta of northern California. Under CALFED, many different strategies were used to integrate science, including interaction between the research and management communities, public dialogues about scientific work, and peer review. This paper explores ways science was (and was not) integrated into CALFED's management actions and decision systems through three narratives describing different patterns of scientific integration and application in CALFED. Though a collaborative process and certain organizational conditions may be necessary for developing new understandings of the system of interest, we find that those factors are not sufficient for translating that knowledge into management actions and decision systems. We suggest that the application of knowledge may be facilitated or hindered by (1) differences in the objectives, approaches, and cultures of scientists operating in the research community and those operating in the management community and (2) other factors external to the collaborative process and organization.

  11. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  12. A Comparison Between Teacher-Directed Instruction and Student Self-Directed Study in Physical Science for Undergraduate Elementary Education Majors.

    ERIC Educational Resources Information Center

    Magnus, Douglas Leslie

    This research was conducted to compare the learning which occurred in a preservice elementary education course using two teaching-learning methods (teacher-directed instruction and student self-directed study). Areas investigated were: (1) knowledge of physical science content, (2) development and application of the processes of science, (3)…

  13. Using the Activity Model of Inquiry to Enhance General Chemistry Students' Understanding of Nature of Science

    ERIC Educational Resources Information Center

    Marchlewicz, Sara C.; Wink, Donald J.

    2011-01-01

    Nature of science refers to the processes of scientific activity and the social and cultural premises involved in the creation of scientific knowledge. Having an informed view of nature of science is important in the development of scientifically literate citizens. However, students often come to the classroom with misconceptions about nature of…

  14. Excellence in Social Science: International Knowledge and Innovation Networks for European Integration, Cohesion, and Enlargement

    ERIC Educational Resources Information Center

    Cappellin, Riccardo

    2004-01-01

    Nowadays, it is widely accepted that knowledge and learning are the core of competitiveness, international division of labour and agglomeration and exclusion phenomena. Yet we are still in need of a better understanding of the processes which allow access by individual regions both to codified knowledge and RTD networks as well as tacit knowledge…

  15. Cross-Field Effects and Temporary Social Fields: A Case Study of the Mediatization of Recent Australian Knowledge Economy Policies

    ERIC Educational Resources Information Center

    Rawolle, Shaun

    2005-01-01

    This paper utilizes Bourdieu's conceptual frame to examine the mediatized effects of policy processes concerned with the growth and support of knowledge industries in Australia. These policies span education, science, research and other knowledge industries (such as venture capital firms and intellectual property law). The paper argues that some…

  16. Genetics problem solving and worldview

    NASA Astrophysics Data System (ADS)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  17. Science and policy: valuing framing, language and listening.

    PubMed

    Forbes, Stephen

    2011-01-01

    This paper considers the context for science contributing to policy development and explores some critical issues that should inform science advocacy and influence with policy makers. The paper argues that the key challenges are at least as much in educating conservation scientists and science communicators about society and policy making as they are in educating society and policy makers about science. The importance of developing processes to ensure that scientists and science communicators invest in the development of relationships based on respect and understanding of their audience in both communities and amongst policy makers provides a critical first step. The objectives of the Global Strategy for Plant Conservation acknowledge the importance of developing the capacities and public engagement necessary to implement the Strategy, including knowledge transfer and community capacity building. However, the development of targets to equip institutions and plant conservation professionals to explicitly address the barriers to influencing policy development through knowledge transfer and integration require further consideration.

  18. Fostering Students’ and Teachers’ Understanding of the Nature of Science: Where We Need the Broadest of Broader Impacts

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Dauber, R.; Molnar, P. H.; Smith, L. K.

    2009-12-01

    Making wise decisions about daunting societal and environmental problems requires understanding of both scientific concepts and the limits of scientific knowledge. While K-12 school standards now include topics on scientific inquiry and the nature of science, few science teachers have personal knowledge of these ideas through conducting science research first-hand. In their own education, most have experienced primarily fact-packed lecture courses rather than deep engagement with gathering, interpreting and communicating about scientific evidence. Teachers are thus at a disadvantage in teaching about the nature of science. Moreover, few curriculum materials directly address these ideas. Instead, instructors at all levels tend to rely on students gleaning ideas from their lab work, without ever making them explicit. The result is a poor understanding of the nature of science among many students and citizens. Thus the nature of science is an important and fruitful area for “broader impacts” efforts by NSF-funded projects across the entire spectrum of science. To address this gap, we have created a 20-minute educational documentary film focused on the nature and processes of science. The film is a broader impacts effort for a large, NSF-funded, multidisciplinary, collaborative research project to study the uplift of the Tibetan plateau and its impact on atmospheric and climate processes. The film, Upward and Outward: Scientific Inquiry on the Tibetan Plateau, focuses on the process of science, as seen through the lens of a specific project. Viewers follow an international team of scientists as they work in the laboratory and in the field, build new instruments and computer models, travel to exotic locales, argue about their findings, and enjoy collaboration and conversation. By gaining an insider’s glimpse into both the intellectual process of scientific inquiry and the everyday social and professional activities of science, students learn how science is a human process for building knowledge, not just a body of fact. While originally targeted to students in grades 8-12, the film has also proven effective with undergraduates in introductory science courses, and with teachers in professional development courses. The 20-minute length ensures that the film can be readily screened and discussed within a single class session, and teachers are supported with suggested pre/post writing prompts, discussion questions, teaching tips, and background materials on the film's scientific content. The presentation will describe the making of the film, its relationship to the scientific project, its use with students and teachers, and some data on their responses. We will show a short clip and make copies of the DVD available to educators and professional developers who attend the session. More information about the film, a short clip, and supporting information for educators can be found at our web site.

  19. How to Become a Great Detective

    ERIC Educational Resources Information Center

    Peacock, Alan

    2005-01-01

    Children in South Africa learned to do fascinating activities when they were introduced to the "Spider's Place" materials and, in the process, learned valuable science skills and knowledge. "Spider's Place" was initially a series of 13 science programmes for primary-age children from the South African Broadcasting Corporation…

  20. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    NASA Astrophysics Data System (ADS)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  1. The science teacher as the organic link in science learning: Identity, motives, and capital transfer

    NASA Astrophysics Data System (ADS)

    Alexakos, Konstantinos

    This life history study is based on in-depth interviews of five science teachers and explores themes of science teachers' experiences as science learners and how these experiences frame what I have come to call "the subjective aspects of teaching." These themes seem to imply that through such individual experiences individuals develop a personally unique lens through which they view and interpret science, science meanings, and science teaching and learning. Emerging themes created new questions to pursue and they in turn produced new themes. These were further investigated in an attempt to connect science learning and science teachers to broader issues in society. These themes include that of a dynamic, dialectical learning and understanding of science by the participants, developed and influenced through a combination of their families, their schools, and their professional experiences, and in which morals and passion play major roles. The theme of the "organic link" is also introduced and developed in this research. It includes these individuals' views of science and the scientific enterprise, their path to learning, their morals, passions, and choices, and their way of constructing knowledge and the transmission of such a process. As organic links, they are seen as a direct and necessary social connection between science and the science learner, and they foster educational experiences grounded in the social lives of their students. Not only are they seen as "transmitters" of science knowledge and the process of constructing knowledge, but they are also seen as correcting and adjusting perceived diversions of the students' thinking from that of their own. It is in this context that the concept of capital (human and cultural capital, as well as capital exchange) is also explored. These themes are seen as having immense impact on how these science teachers teach, where they teach, what is communicated to their students, and whether they become or remain science teachers. As teachers, they are affected differentially by the school culture and environment. It is within this context, as well as how these participants see their students, that the themes of identity construction and "multiple realities" are developed and discussed.

  2. On the rationale for hysteresis in economic decisions

    NASA Astrophysics Data System (ADS)

    Rios, Luis A.; Rachinskii, Dmitrii; Cross, Rod

    2017-02-01

    In the social sciences there are plausible reasons to postulate that hysteresis effects are important. The available evidence, however, is predominantly at the macro level. In this paper we review the evidence regarding hysteresis in the neural processes underlying human behavior. We argue that there is a need for experimental and neuroimaging studies to fill the gap in knowledge about hysteresis processes at the micro level in the social sciences.

  3. The Relationship between Immediate Relevant Basic Science Knowledge and Clinical Knowledge: Physiology Knowledge and Transthoracic Echocardiography Image Interpretation

    ERIC Educational Resources Information Center

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-01-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…

  4. Evolving Best Practice in Learning About Air Quality and Climate Change Science in ACCENT

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2008-12-01

    Learning about air quality and climate change science has developed into a transdisciplinary impact generator, moulded by academic-stakeholder partnerships, where complementary skills and competences lead to a culture of dialogue, mutual learning and decision-making. These sweeping changes are mirrored in the evolving best practice within the European Network of Excellence on Atmospheric Composition Change (ACCENT). The Training and Education Programme in ACCENT pursues an integrated approach and innovative avenues to sharing knowledge and communicating air quality and climate change science to various end-user groups, including teachers, policy makers, stakeholders, and the general public. Early career scientists are involved in the process, and are trained to acquire new knowledge in a variety of learning communities and environments. Here, examples of both the open system of teaching within ACCENT training workshops for early career scientists, and the engagement of non-academic audiences in the joint learning process are presented.

  5. Fostering radical conceptual change through dual-situated learning model

    NASA Astrophysics Data System (ADS)

    She, Hsiao-Ching

    2004-02-01

    This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept heat transfer: heat conduction and convection, which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process.

  6. Science, education and industry information resources complementarity as a basis for design of knowledge management systems

    NASA Astrophysics Data System (ADS)

    Maksimov, N. V.; Tikhomirov, G. V.; Golitsyna, O. L.

    2017-01-01

    The main problems and circumstances that influence the processes of creating effective knowledge management systems were described. These problems particularly include high species diversity of instruments for knowledge representation, lack of adequate lingware, including formal representation of semantic relationships. For semantic data descriptions development a conceptual model of the subject area and a conceptual-lexical system should be designed on proposals of ISO-15926 standard. It is proposed to conduct an information integration of educational and production processes on the basis of information systems technologies. Integrated knowledge management system information environment combines both traditional information resources and specific information resources of subject domain including task context and implicit/tacit knowledge.

  7. Designing computer learning environments for engineering and computer science: The scaffolded knowledge integration framework

    NASA Astrophysics Data System (ADS)

    Linn, Marcia C.

    1995-06-01

    Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.

  8. One foot on the dock and one foot on the boat: Differences among preservice science teachers' interpretations of field-based science methods in culturally diverse contexts

    NASA Astrophysics Data System (ADS)

    Yerrick, Randy K.; Hoving, Timothy J.

    2003-05-01

    To support lasting change in science classrooms, efforts must be made to assist teachers in understanding the outcomes of their pedagogical choices. The process of reflection is not limited to experienced teachers' experiences, though we must recognize that preservice teachers do not draw upon the same vast repertoire and knowledge. The purpose of this study was to investigate preservice science teachers' beliefs about science teaching and learning through reflections on their own teaching with lower track science students. Using the major data sources of videotapes of teaching, stimulated recall interviews, and student journals we studied preservice teachers enrolled in a field based secondary science methods course working predominantly with rural Black children. Initially, preservice science teachers demonstrated similar practices, made similar inferences about teaching and learning, and relied upon similar domains of knowledge to gauge their teaching. By the end of the study, two discrete categories of preservice teachers emerged: (1) those who demonstrated an ability to reflect on and revise their practices and engage in the production of new teacher knowledge and (2) those who seemingly deflected efforts to shift their thinking and instead reproduced their own educational experience with a new student population. Implications for teacher education and research are discussed.

  9. Achieving conservation science that bridges the knowledge-action boundary.

    PubMed

    Cook, Carly N; Mascia, Michael B; Schwartz, Mark W; Possingham, Hugh P; Fuller, Richard A

    2013-08-01

    There are many barriers to using science to inform conservation policy and practice. Conservation scientists wishing to produce management-relevant science must balance this goal with the imperative of demonstrating novelty and rigor in their science. Decision makers seeking to make evidence-based decisions must balance a desire for knowledge with the need to act despite uncertainty. Generating science that will effectively inform management decisions requires that the production of information (the components of knowledge) be salient (relevant and timely), credible (authoritative, believable, and trusted), and legitimate (developed via a process that considers the values and perspectives of all relevant actors) in the eyes of both researchers and decision makers. We perceive 3 key challenges for those hoping to generate conservation science that achieves all 3 of these information characteristics. First, scientific and management audiences can have contrasting perceptions about the salience of research. Second, the pursuit of scientific credibility can come at the cost of salience and legitimacy in the eyes of decision makers, and, third, different actors can have conflicting views about what constitutes legitimate information. We highlight 4 institutional frameworks that can facilitate science that will inform management: boundary organizations (environmental organizations that span the boundary between science and management), research scientists embedded in resource management agencies, formal links between decision makers and scientists at research-focused institutions, and training programs for conservation professionals. Although these are not the only approaches to generating boundary-spanning science, nor are they mutually exclusive, they provide mechanisms for promoting communication, translation, and mediation across the knowledge-action boundary. We believe that despite the challenges, conservation science should strive to be a boundary science, which both advances scientific understanding and contributes to decision making. © 2013 Society for Conservation Biology.

  10. Translational Science: Epistemology and the Investigative Process

    PubMed Central

    Dougherty, Edward R

    2009-01-01

    The term “translational science” has recently become very popular with its usage appearing to be almost exclusively related to medicine, in particular, the “translation” of biological knowledge into medical practice. Taking the perspective that translational science is somehow different than science and that sound science is grounded in an epistemology developed over millennia, it seems imperative that the meaning of translational science be carefully examined, especially how the scientific epistemology manifests itself in translational science. This paper examines epistemological issues relating mainly to modeling in translational science, with a focus on optimal operator synthesis. It goes on to discuss the implications of epistemology on the nature of collaborations conducive to the translational investigative process. The philosophical concepts are illustrated by considering intervention in gene regulatory networks. PMID:19794882

  11. An analysis of elementary teachers' perceptions of teaching science as inquiry

    NASA Astrophysics Data System (ADS)

    Domjan, Heather Nicole

    The purpose of this study is to describe elementary school teachers' perceptions of science as inquiry in science instruction. A descriptive survey research design was used to collect data regarding elementary science teachers' knowledge and beliefs related to inquiry and its role in science education. The written section of the survey was analyzed and interpreted descriptively through phenomenological data and the constant comparative method (Glaser & Strauss, 1967; Lincoln & Guba, 1985). The researcher used the constant comparative method to identify statements, perceptions, and impressions that occurred over time during the study (Janesick, 1994). Ninety-two elementary school teachers who teach science in a large suburban district southwest of Houston, Texas were administered a three part Understanding Science as Inquiry Survey (USAI) developed by the researcher. Participants communicated in writing personal definitions of inquiry in elementary science as well as determined to what extent inquiry was used in four elementary science classroom scenarios. The survey items were based on the following four components of inquiry described by Inquiry and the National Science Education Standards (2000): (1) conceptual knowledge, (2) process skills, (3) nature of science, and (4) affect. The study describes elementary school teachers' perceptions about science as inquiry. Conclusions for Part A of the USAI Survey indicate that participants define inquiry as: mostly process skills, some conceptual knowledge, and very little affect with no perception of the nature of science. The Likert scale ratings for the scenarios in Part B of the USAI Survey reveal that participants have varied perceptions regarding teaching science as inquiry. The written section of Part B reveals participants' perceptions to be similar to that of their Likert scale ratings except in scenario one. The researcher concludes that the participants in this study appear to have an incomplete understanding of teaching science as inquiry. This study suggests that elementary teachers might benefit from increased and sustained professional development programs centered on inquiry teaching strategies. Professional development activities on teaching science as inquiry create opportunities for teachers to confront and develop ways of thinking about inquiry and ultimately enhance inquiry-based teaching in their classrooms.

  12. Science at the supermarket: multiplication, personalization and consumption of science in everyday life.

    PubMed

    Tateo, Luca

    2014-06-01

    Which is the kind science's psychological guidance upon everyday life? I will try to discuss some issues about the role that techno-scientific knowledge plays in sense-making and decision making about practical questions of life. This relation of both love and hate, antagonism and connivance is inscribable in a wider debate between a trend of science to intervene in fields that are traditionally prerogative of political, religious or ethical choices, and, on the other side, the position of those who aim at stemming "technocracy" and governing these processes. I argue that multiplication, personalization and consumption are the characteristics of the relationship between science, technology and society in the age of "multiculturalism" and "multi-scientism". This makes more difficult but intriguing the study and understanding of the processes through which scientific knowledge is socialized. Science topics, like biotech, climate change, etc. are today an unavoidable reference frame. It is not possible to not know them and to attach them to the most disparate questions. Like in the case of Moscovici's "Freud for all seasons", the fact itself that the members of a group or a society believe in science as a reference point for others, roots its social representation and the belief that it can solve everyday life problems.

  13. The usefulness of science knowledge for parents of hearing-impaired children.

    PubMed

    Shauli, Sophie; Baram-Tsabari, Ayelet

    2018-04-01

    Hearing-impaired children's chances of integrating into hearing society largely depend on their parents, who need to learn vast amounts of science knowledge in the field of hearing. This study characterized the role played by science knowledge in the lives of nonscientists faced with science-related decisions by examining the interactions between general science knowledge, contextual science knowledge in the field of hearing, and parents' advocacy knowledge and attitudes. Based on six semi-structured interviews and 115 questionnaires completed by parents of hearing-impaired children, contextual science knowledge emerged as the only predictor for having slightly better advocacy attitudes and knowledge (5.5% explained variance). Although general science knowledge was the best predictor of contextual knowledge (14% of explained variance), it was not a direct predictor of advocacy knowledge and attitudes. Science knowledge plays some role in the lives of hearing-impaired families, even if they do not list it as a resource for successful rehabilitation.

  14. The role of the media in the science-policy nexus. Some critical reflections based on an analysis of the Belgian drug policy debate (1996-2003).

    PubMed

    Tieberghien, Julie

    2014-03-01

    Drug policy is one of the most polarised subjects of public debate and media coverage, which frequently tend to be dramatic and event-centred. Although the role of the media in directing the drug discourse is widely acknowledged, limited research has been conducted in examining the particular role of the media in the science-policy nexus. We sought to determine how the (mis)representation of scientific knowledge in the media may, or may not, have an impact on the contribution of scientific knowledge to the drug-policy making process. Using a case study of the Belgian drug-policy debates between 1996 and 2003, we conducted a discourse analysis of specially selected 1067 newspaper articles and 164 policy documents. Our analysis focused on: textual elements that feature intra-discourse differences, how players and scientific knowledge are represented in the text, the arguments used and claims made, and the various types of research utilisation. Media discourse strongly influenced the public's and policy makers' understanding as well as the content of the Belgian drug policy debate between 1996 and 2003. As a major source of scientific knowledge, media coverage supported the 'enlightenment' role of scientific knowledge in the policy-making process by broadening and even determining frames of reference. However, as the presentation of scientific knowledge in the media was often inaccurate or distorted due to the lack of contextual information or statistical misinformation, the media may also support the selective utilisation of scientific knowledge. Many challenges as well as opportunities lie ahead for researchers who want to influence the policy-making process since most research fails to go beyond academic publications. Although media is a valuable linking mechanism between science and policy, by no means does it provide scientists with a guarantee of a more 'evidence-based' drug policy. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Engagement in Science and Engineering through Animal-Based Curricula

    ERIC Educational Resources Information Center

    Mueller, Megan Kiely; Byrnes, Elizabeth M.; Buczek, Danielle; Linder, Deborah E.; Freeman, Lisa M.; Webster, Cynthia R. L.

    2018-01-01

    One of the persistent challenges in science, technology, engineering, and math (STEM) education is increasing interest, learning, and retention, particularly with regard to girls and students in underserved areas. Educational curricula that promote process and content knowledge development as well as interest and engagement in STEM are critical in…

  16. Deliberating International Science Policy Controversies: Uncertainty and AIDS in South Africa

    ERIC Educational Resources Information Center

    Paroske, Marcus

    2009-01-01

    International science policy controversies involve disputes over cultural differences in the assessment of knowledge claims and competing visions of the policy-making process between different nations. This essay analyzes these dynamics in the recent controversy surrounding AIDS policy in South Africa. It develops the notion of an epistemological…

  17. The Relation between Cognitive and Metacognitive Strategic Processing during a Science Simulation

    ERIC Educational Resources Information Center

    Dinsmore, Daniel L.; Zoellner, Brian P.

    2018-01-01

    Background: This investigation was designed to uncover the relations between students' cognitive and metacognitive strategies used during a complex climate simulation. While cognitive strategy use during science inquiry has been studied, the factors related to this strategy use, such as concurrent metacognition, prior knowledge, and prior…

  18. Teaching Experimental Design to Elementary School Pupils in Greece

    ERIC Educational Resources Information Center

    Karampelas, Konstantinos

    2016-01-01

    This research is a study about the possibility to promote experimental design skills to elementary school pupils. Experimental design and the experiment process are foundational elements in current approaches to Science Teaching, as they provide learners with profound understanding about knowledge construction and science inquiry. The research was…

  19. The Hybridization of Social Science Knowledge.

    ERIC Educational Resources Information Center

    Dogan, Mattei

    1996-01-01

    Describes the growth of science as a twofold process: (1) the fragmentation of formal disciplines; and (2) a recombination of the specialties resulting from this fragmentation. Discusses the division of disciplines into specialized subfields that has led to the development of hybrid specialties, and maintains that the concept of hybridization is…

  20. The Write Brain: How to Educate and Entertain with Learner-Centered Writing

    ERIC Educational Resources Information Center

    Iverson, Kathleen M.

    2009-01-01

    This article presents a conceptual framework for the writing process to facilitate motivation, learning, retention, and knowledge transfer in readers of expository material. Drawing from four well-developed bodies of knowledge--cognitive science, learning theory, technical communication, and creative writing--the author creates a model that allows…

  1. [Lights, art, science - action!].

    PubMed

    Lopes, Thelma

    2005-01-01

    The article offers some reflections on the main interactions between theater, science, and technology down through the history of theater. Based on our experience at "Science in the Spotlight", part of the Casa de Oswaldo Cruz's Museum of Life, we discuss how these interactions can be part of a science museum's daily activities. We use the word 'science' in its broad sense, encompassing not only the natural but human sciences as well; likewise, we use the word 'technology' as it relates to applied science. Art and science are understood here as creative processes, as ways of representing the world and expressing human knowledge.

  2. From science to action: Principles for undertaking environmental research that enables knowledge exchange and evidence-based decision-making.

    PubMed

    Cvitanovic, C; McDonald, J; Hobday, A J

    2016-12-01

    Effective conservation requires knowledge exchange among scientists and decision-makers to enable learning and support evidence-based decision-making. Efforts to improve knowledge exchange have been hindered by a paucity of empirically-grounded guidance to help scientists and practitioners design and implement research programs that actively facilitate knowledge exchange. To address this, we evaluated the Ningaloo Research Program (NRP), which was designed to generate new scientific knowledge to support evidence-based decisions about the management of the Ningaloo Marine Park in north-western Australia. Specifically, we evaluated (1) outcomes of the NRP, including the extent to which new knowledge informed management decisions; (2) the barriers that prevented knowledge exchange among scientists and managers; (3) the key requirements for improving knowledge exchange processes in the future; and (4) the core capacities that are required to support knowledge exchange processes. While the NRP generated expansive and multidisciplinary science outputs directly relevant to the management of the Ningaloo Marine Park, decision-makers are largely unaware of this knowledge and little has been integrated into decision-making processes. A range of barriers prevented efficient and effective knowledge exchange among scientists and decision-makers including cultural differences among the groups, institutional barriers within decision-making agencies, scientific outputs that were not translated for decision-makers and poor alignment between research design and actual knowledge needs. We identify a set of principles to be implemented routinely as part of any applied research program, including; (i) stakeholder mapping prior to the commencement of research programs to identify all stakeholders, (ii) research questions to be co-developed with stakeholders, (iii) implementation of participatory research approaches, (iv) use of a knowledge broker, and (v) tailored knowledge management systems. Finally, we articulate the individual, institutional and financial capacities that must be developed to underpin successful knowledge exchange strategies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Science with society in the anthropocene.

    PubMed

    Seidl, Roman; Brand, Fridolin Simon; Stauffacher, Michael; Krütli, Pius; Le, Quang Bao; Spörri, Andy; Meylan, Grégoire; Moser, Corinne; González, Monica Berger; Scholz, Roland Werner

    2013-02-01

    Interdisciplinary scientific knowledge is necessary but not sufficient when it comes to addressing sustainable transformations, as science increasingly has to deal with normative and value-related issues. A systems perspective on coupled human-environmental systems (HES) helps to address the inherent complexities. Additionally, a thorough interaction between science and society (i.e., transdisciplinarity = TD) is necessary, as sustainable transitions are sometimes contested and can cause conflicts. In order to navigate complexities regarding the delicate interaction of scientific research with societal decisions these processes must proceed in a structured and functional way. We thus propose HES-based TD processes to provide a basis for reorganizing science in coming decades.

  4. African Indigenous science in higher education in Uganda

    NASA Astrophysics Data System (ADS)

    Akena Adyanga, Francis

    This study examines African Indigenous Science (AIS) in higher education in Uganda. To achieve this, I use anticolonial theory and Indigenous knowledge discursive frameworks to situate the subjugation of Indigenous science from the education system within a colonial historical context. These theories allow for a critical examination of the intersection of power relations rooted in the politics of knowledge production, validation, and dissemination, and how this process has become a systemic and complex method of subjugating one knowledge system over the other. I also employ qualitative and autoethnographic research methodologies. Using a qualitative research method, I interviewed 10 students and 10 professors from two universities in Uganda. My research was guided by the following key questions: What is African Indigenous Science? What methodology would help us to indigenize science education in Uganda? How can we work with Indigenous knowledge and anticolonial theoretical discursive frameworks to understand and challenge the dominance of Eurocentric knowledge in mainstream education? My research findings revealed that AIS can be defined in multiple ways, in other words, there is no universal definition of AIS. However, there were some common elements that my participants talked about such as: (a) knowledge by Indigenous communities developed over a long period of time through a trial and error approach to respond to the social, economic and political challenges of their society. The science practices are generational and synergistic with other disciplines such as history, spirituality, sociology, anthropology, geography, and trade among others, (b) a cumulative practice of the use, interactions with and of biotic and abiotic organism in everyday life for the continued existence of a community in its' totality. The research findings also indicate that Indigenous science is largely lacking from Uganda's education curriculum because of the influence of colonial and post-colonial education. Graduates of the colonial education system who are manning education in the country have themselves come to disdain Indigenous knowledge. The major findings from the study were: 1) participants' articulation of Indigenous science; 2) influence of organized religion on African Indigenous Science; 3) dominance of professors' foreign experiences in determining curriculum content; 4) protection of intellectual property rights for Indigenous science; and 5) collaborative research between Indigenous and Western scholars to enhance attitude change toward Indigenous science.

  5. La ciencia en la vida actual. Volumen I. Edicion para el maestro (Science in Everyday Life. Volume I. Teacher Edition). Applied Basic Curriculum Series.

    ERIC Educational Resources Information Center

    Evaluation, Dissemination and Assessment Center, Dallas.

    This guide, the first in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. The three components in this guide deal with (1) ecology (what…

  6. La ciencia en la vida actual. Volumen II. Edicion para el maestro (Science in Everyday Life. Volume II. Teacher Edition). Applied Basic Curriculum Series.

    ERIC Educational Resources Information Center

    Evaluation, Dissemination and Assessment Center, Dallas.

    This guide, the second in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. This guide is divided into three components. The first component…

  7. La ciencia en la vida actual. Volumen III. Edicion para el maestro (Science in Everyday Life. Volume III. Teacher Edition). Applied Basic Curriculum Series.

    ERIC Educational Resources Information Center

    Evaluation, Dissemination and Assessment Center, Dallas.

    This guide, the third in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. The three components in this guide deal with (1) the scientific…

  8. Investigating Science Student Teachers' Ideas about Function and Anatomical Form of Two Human Sensory Organs, the Eye and the Ear

    ERIC Educational Resources Information Center

    Kunt, Halil

    2016-01-01

    The purpose of this research was to determine science student teachers' level of knowledge about the anatomical structure of two sensory organs, the eye and the ear, in addition to vision and hearing processes. Conducted with 86 science student teachers, research utilized drawing methods and open-ended questions as data collection instruments. The…

  9. Teaching Experiences for Graduate Student Researchers: A Study of the Design and Implementation of Science Courses for Secondary Students

    ERIC Educational Resources Information Center

    Collins, Anne Wrigley

    2011-01-01

    Modern science education reform recommends that teachers provide K-12 science students a more complete picture of the scientific enterprise, one that lies beyond content knowledge and centers more on the processes and culture of scientists. In the case of Research Experience for Teachers (RET) programs, the "teacher" becomes "researcher" and it is…

  10. Effect of 5E Learning Model on Academic Achievement, Attitude and Science Process Skills: Meta-Analysis Study

    ERIC Educational Resources Information Center

    Cakir, Nevin Kozcu

    2017-01-01

    Today, with the development of science and technology and its rapid progress, the importance attached to science education has increased. This increase in interest has led to the development of the methods, techniques, and approaches that enable the students to be active, question and construct knowledge. The 5E learning model is one of them, and…

  11. Science-based Framework for Environmental Benefits Assessment

    DTIC Science & Technology

    2013-03-01

    ER D C/ EL T R -1 3 -4 Environmental Benefits Analysis Program Science-based Framework for Environmental Benefits Assessment E nv ir...acwc.sdp.sirsi.net/client/default. Environmental Benefits Analysis Program ERDC/EL TR-13-4 March 2013 Science-based Framework for Environmental Benefits ...evaluating ecosystem restoration benefits within the context of USACE Civil Works planning process. An emphasis is placed on knowledge gained from

  12. Implementing family nursing: how do we translate knowledge into clinical practice? Part II: The evolution of 20 years of teaching, research, and practice to a Center of Excellence in Family Nursing.

    PubMed

    Duhamel, Fabie

    2010-02-01

    The author's reflections on knowledge transfer/translation highlight the importance of the circular process between science and practice knowledge, leading to the notion of "knowledge exchange." She addresses the dilemmas of translating knowledge into clinical practice by describing her academic contributions to knowledge exchange within Family Systems Nursing (FSN). Teaching and research strategies are offered that address the circularity between science and practice knowledge. The evolution of 20 years of teaching, research, and clinical experience has resulted in the recent creation of a Center of Excellence in Family Nursing at the University of Montreal. The three main objectives of the Center uniquely focus on knowledge exchange by providing (a) a training context for skill development for nurses specializing in FSN, (b) a research milieu for knowledge "creation" and knowledge "in action" studies to further advance the practice of FSN, and (c) a family healing setting to support families who experience difficulty coping with health issues.

  13. Science education researchers as orthographers: documenting Keiyo (Kenya) knowledge, learning and narratives about snakes

    NASA Astrophysics Data System (ADS)

    Thomson, Norman

    2003-01-01

    Using Keiyo (Kenya) knowledge, learning and oral narratives about snakes, the paper advances the argument that science educators have a pivotal role as orthographers in 'preserving and promoting science for all'. Linguists, and a growing number of scientists, realize that in processes of globalisation, many indigenous languages and cultures are facing extinction, especially languages that remain unwritten, such as the Keiyo language. Within these languages are several thousand years of indigenous science education that include knowledge, teaching and learning about local environments. Science educators are a missing link in the ongoing conversations between biologists, linguists and indigenous cultures. Today, it is also known that reptiles are at greater risk for extinction than amphibians. In an area noted for its reptiles (Kenya's Rift Valley), Keiyo elders and students (n = 748) were interviewed or given a questionnaire to determine indigenous names for snakes and how Keiyo oral narratives of snakes are used in teaching and learning. They provided names for 19 of 34 (55%) snake species and 278 narratives that include snakes. The data are being used to document Keiyo language and construct relevant written science curriculum materials for Keiyo children

  14. [Behind the scenes of the didactic of nursing science knowledge: role play simulation filmed for learning through "problematic situations"].

    PubMed

    Gineyt, Christine

    2015-12-01

    clinical simulation to teach expertise to nursing students plays an important role in nursing schools (IFSI). as recommended in the training frame of reference, students must develop skills from real situations. The objective of this study was to determine the importance of role play simulation of 'problematic situations' to boost the process of appropriation of nursing science knowledge and initiate the task of conceptualization among first year students when putting up a drip. this contextual research used qualitative data collected from students who answered three open post-simulation questions in order to communicate how they felt faced with this learning technique. This data was compared with that of two executive tutors who used an observation grid during the simulation. the students' answers have shown that this learning technique offered the possibility to develop dexterity in problem solving skills, to construct new knowledge and to memorize knowledge gained from university science and nursing care. The executive tutors have observed the construction of a meta-cognitive attitude suited to the conceptualization of action. during a change in the relationship with knowledge, the executive tutors noted that students are happy to learn different types of knowledge.

  15. Engaging plant anatomy and local knowledge on the buriti palm ( Mauritia flexuosa L.f.: Arecaceae): the microscopic world meets the golden grass artisan's perspective

    NASA Astrophysics Data System (ADS)

    Viana, Rebeca V. R.; Scatena, Vera L.; Eichemberg, Mayra T.; Sano, Paulo T.

    2018-03-01

    Considering that both Western Science and Local Knowledge Systems share a common ground—observations of the natural world—the dialogue between them should not only be possible, but fruitful. Local communities whose livelihoods depend on traditional uses of the local biodiversity not only develop knowledge about nature, making several uses of such knowledge, but, with that process, several inquiries about nature can be raised. Here we present our experience with the engagement of Western Science with golden grass artisan's knowledge about the buriti palm ( M. flexuosa). We applied 25 semi-directive interviews, combined with field diary and participative observation, in two quilombola communities from Jalapão region (Central-Brazil). One of the inquiries that emerged from the artisan's perspectives was about the differences between male and female buriti palms' fiber. We then engaged both local and scientific perspectives regarding this issue using plant anatomy as a dialogue instrument. Here we describe this experience and resort to Paulo Freire's ideas on dialogue to argue that, to integrate Western Science and Local Knowledge Systems in a collaborative and contextualized perspective, the research should be faced as a mutual learning practice.

  16. a Conceptual Framework for Virtual Geographic Environments Knowledge Engineering

    NASA Astrophysics Data System (ADS)

    You, Lan; Lin, Hui

    2016-06-01

    VGE geographic knowledge refers to the abstract and repeatable geo-information which is related to the geo-science problem, geographical phenomena and geographical laws supported by VGE. That includes expert experiences, evolution rule, simulation processes and prediction results in VGE. This paper proposes a conceptual framework for VGE knowledge engineering in order to effectively manage and use geographic knowledge in VGE. Our approach relies on previous well established theories on knowledge engineering and VGE. The main contribution of this report is following: (1) The concepts of VGE knowledge and VGE knowledge engineering which are defined clearly; (2) features about VGE knowledge different with common knowledge; (3) geographic knowledge evolution process that help users rapidly acquire knowledge in VGE; and (4) a conceptual framework for VGE knowledge engineering providing the supporting methodologies system for building an intelligent VGE. This conceptual framework systematically describes the related VGE knowledge theories and key technologies. That will promote the rapid transformation from geodata to geographic knowledge, and furtherly reduce the gap between the data explosion and knowledge absence.

  17. PROCESS DOCUMENTATION: A MODEL FOR KNOWLEDGE MANAGEMENT IN ORGANIZATIONS.

    PubMed

    Haddadpoor, Asefeh; Taheri, Behjat; Nasri, Mehran; Heydari, Kamal; Bahrami, Gholamreza

    2015-10-01

    Continuous and interconnected processes are a chain of activities that turn the inputs of an organization to its outputs and help achieve partial and overall goals of the organization. These activates are carried out by two types of knowledge in the organization called explicit and implicit knowledge. Among these, implicit knowledge is the knowledge that controls a major part of the activities of an organization, controls these activities internally and will not be transferred to the process owners unless they are present during the organization's work. Therefore the goal of this study is identification of implicit knowledge and its integration with explicit knowledge in order to improve human resources management, physical resource management, information resource management, training of new employees and other activities of Isfahan University of Medical Science. The project for documentation of activities in department of health of Isfahan University of Medical Science was carried out in several stages. First the main processes and related sub processes were identified and categorized with the help of planning expert. The categorization was carried out from smaller processes to larger ones. In this stage the experts of each process wrote down all their daily activities and organized them into general categories based on logical and physical relations between different activities. Then each activity was assigned a specific code. The computer software was designed after understanding the different parts of the processes, including main and sup processes, and categorization, which will be explained in the following sections. The findings of this study showed that documentation of activities can help expose implicit knowledge because all of inputs and outputs of a process along with the length, location, tools and different stages of the process, exchanged information, storage location of the information and information flow can be identified using proper documentation. A documentation program can create a complete identifier for every process of an organization and also acts as the main tool for establishment of information technology as the basis of the organization and helps achieve the goal of having electronic and information technology based organizations. In other words documentation is the starting step in creating an organizational architecture. Afterwards, in order to reach the desired goal of documentation, computer software containing all tools, methods, instructions and guidelines and implicit knowledge of the organization was designed. This software links all relevant knowledge to the main text of the documentation and identification of a process and provides the users with electronic versions of all documentations and helps use the explicit and implicit knowledge of the organization to facilitate the reengineering of the processes in the organization.

  18. Theorizing and Researching Levels of Processing in Self-Regulated Learning

    ERIC Educational Resources Information Center

    Winne, Philip H.

    2018-01-01

    Background: Deep versus surface knowledge is widely discussed by educational practitioners. A corresponding construct, levels of processing, has received extensive theoretical and empirical attention in learning science and psychology. In both arenas, lower levels of information and shallower levels of processing are predicted and generally…

  19. Can we really make a difference? Exploring pre-service teachers' experience with socio-scientific issues aiming for democratic participation in science

    NASA Astrophysics Data System (ADS)

    Cook, Kristin Leigh

    Responding to calls for an empirical glimpse into a socioscientific issues (SSI)-based curriculum that aims to promote democratic participation, enhance students' connections to science, and empower students for the betterment of society (Dos Santos, 2008; Sadler, Barab, & Scott, 2007; Tal & Kedmi, 2006; Fusco & Barton, 2001; Hodson, 2003), this critical case study of 24 pre-service teachers (PSTs) enrolled in a scientific inquiry course offers curricular suggestions to empower learners to connect with the dynamic and socially-mediated process of science. In effect, incorporating nature of science-focused and place-based inquiry into a collaboration between PSTs and scientists were essential elements in enhancing students' connections to and feelings of inclusion in SSI. Propelled beyond a deficit model of public participation in science, the PSTs did indeed experience a public debate model and in some cases a knowledge production model in their collaborative efforts with scientists (Callon, 1999; Pouliot, 2009). While all of the PSTs engaged in rich discussion of their perspectives with scientists to enhance the investigation of their inquiry, some experienced a redistribution of the roles of participation in the production of scientific knowledge that was integrated into the scientists' decision-making processes. The materialization of these models depended on the structures of the student-scientists collaboration and the ways in which these malleable structures were flexed and negotiated. In effect, this study contributes to the literature on the potentials of SSI by providing an example of an educational approach that engages learners in a community practice as active participants in decision-making processes regarding socio-scientific issues, as well as focuses on empowering learners to be involved in the generation of scientific knowledge that contributes to their community.

  20. Intuition and nursing practice implications for nurse educators: a review of the literature.

    PubMed

    Correnti, D

    1992-01-01

    Intuitive knowledge is an essential component of the art of nursing and of the nursing process. This article provides an analysis and review of the literature on intuition. The author addresses the use of intuition in nursing science, characteristics of intuitive nurses, receptivity of intuitive knowledge, and the importance of expanding nursing's utilization of the intuitive process. Strategies are provided for promoting intuitive skills in continuing education/staff development settings.

  1. Cognitive science speaks to the "common-sense" of chronic illness management.

    PubMed

    Leventhal, Howard; Leventhal, Elaine A; Breland, Jessica Y

    2011-04-01

    We describe the parallels between findings from cognitive science and neuroscience and Common-Sense Models in four areas: (1) Activation of illness representations by the automatic linkage of symptoms and functional changes with concepts (an integration of declarative and perceptual and procedural knowledge); (2) Action plans for the management of symptoms and disease; (3) Cognitive and behavioral heuristics (executive functions parallel to recent findings in cognitive science) involved in monitoring and modifying automatic control processes; (4) Perceiving and communicating to "other minds" during medical visits to address the declarative and non-declarative (perceptual and procedural) knowledge that comprise a patient's representations of illness and treatment (the transparency of other minds).

  2. Interdisciplinary team science and the public: Steps toward a participatory team science.

    PubMed

    Tebes, Jacob Kraemer; Thai, Nghi D

    2018-01-01

    Interdisciplinary team science involves research collaboration among investigators from different disciplines who work interdependently to share leadership and responsibility. Although over the past several decades there has been an increase in knowledge produced by science teams, the public has not been meaningfully engaged in this process. We argue that contemporary changes in how science is understood and practiced offer an opportunity to reconsider engaging the public as active participants on teams and coin the term participatory team science to describe public engagement in team science. We discuss how public engagement can enhance knowledge within the team to address complex problems and suggest a different organizing framework for team science that aligns better with how teams operate and with participatory approaches to research. We also summarize work on public engagement in science, describe opportunities for various types of engagement, and provide an example of participatory team science carried out across research phases. We conclude by discussing implications of participatory team science for psychology, including changing the default when assembling an interdisciplinary science team by identifying meaningful roles for public engagement through participatory team science. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. A Study of the Education of Geology

    NASA Astrophysics Data System (ADS)

    Berglin, R. S.; Baldridge, A. M.; Buxner, S.; Crown, D. A.

    2013-12-01

    An Evaluation and Assessment Method for Workshops in Science Education and Resources While many professional development workshops train teachers with classroom activities for students, Workshops in Science Education and Resources (WISER): Planetary Perspectives is designed to give elementary and middle school teachers the deeper knowledge necessary to be confident teaching the earth and space science content in their classrooms. Two WISER workshops, Deserts of the Solar System and Volcanoes of the Solar System, place an emphasis on participants being able to use learned knowledge to describe or 'tell the story of' a given rock. In order to understand how participants' knowledge and ability to tell the story changes with instruction, we are investigating new ways of probing the understanding of geologic processes. The study will include results from both college level geology students and teachers, focusing on their understanding of geologic processes and the rock cycle. By studying how new students process geologic information, teachers may benefit by learning how to better teach similar information. This project will help to transfer geologic knowledge to new settings and assess education theories for how people learn. Participants in this study include teachers participating in the WISER program in AZ and introductory level college students at St. Mary's College of California. Participants will be videotaped drawing out their thought process on butcher paper as they describe a given rock. When they are done, they will be asked to describe what they have put on the paper and this interview will be recorded. These techniques will be initially performed with students at St. Mary's College of California to understand how to best gather information. An evaluation of their prior knowledge and previous experience will be determined, and a code of their thought process will be recorded. The same students will complete a semester of an introductory college level Physical Geology course and then complete the assessment process, with the same rock again. Data will be compared to see how the thought process has changed. By studying the initial thought process, teachers can meet students at their level. At the end of the student research, this project will also be applied to elementary and middle school teachers in Tucson, Arizona at WISER workshops. This study will draw conclusions on how participants' thought processes change through WISER-type instruction.

  4. The Medawar Lecture 2001 Knowledge for vision: vision for knowledge

    PubMed Central

    Gregory, Richard L

    2005-01-01

    An evolutionary development of perception is suggested—from passive reception to active perception to explicit conception—earlier stages being largely retained and incorporated in later species. A key is innate and then individually learned knowledge, giving meaning to sensory signals. Inappropriate or misapplied knowledge produces rich cognitive phenomena of illusions, revealing normally hidden processes of vision, tentatively classified here in a ‘peeriodic table’. Phenomena of physiology are distinguished from phenomena of general rules and specific object knowledge. It is concluded that vision uses implicit knowledge, and provides knowledge for intelligent behaviour and for explicit conceptual understanding including science. PMID:16147519

  5. Representation and re-presentation in litigation science.

    PubMed

    Jasanoff, Sheila

    2008-01-01

    Federal appellate courts have devised several criteria to help judges distinguish between reliable and unreliable scientific evidence. The best known are the U.S. Supreme Court's criteria offered in 1993 in Daubert v. Merrell Dow Pharmaceuticals, Inc. This article focuses on another criterion, offered by the Ninth Circuit Court of Appeals, that instructs judges to assign lower credibility to "litigation science" than to science generated before litigation. In this article I argue that the criterion-based approach to judicial screening of scientific evidence is deeply flawed. That approach buys into the faulty premise that there are external criteria, lying outside the legal process, by which judges can distinguish between good and bad science. It erroneously assumes that judges can ascertain the appropriate criteria and objectively apply them to challenged evidence before litigation unfolds, and before methodological disputes are sorted out during that process. Judicial screening does not take into account the dynamics of litigation itself, including gaming by the parties and framing by judges, as constitutive factors in the production and representation of knowledge. What is admitted through judicial screening, in other words, is not precisely what a jury would see anyway. Courts are sites of repeated re-representations of scientific knowledge. In sum, the screening approach fails to take account of the wealth of existing scholarship on the production and validation of scientific facts. An unreflective application of that approach thus puts courts at risk of relying upon a "junk science" of the nature of scientific knowledge.

  6. Crisis or self-correction: Rethinking media narratives about the well-being of science

    PubMed Central

    Jamieson, Kathleen Hall

    2018-01-01

    After documenting the existence and exploring some implications of three alternative news narratives about science and its challenges, this essay outlines ways in which those who communicate science can more accurately convey its investigatory process, self-correcting norms, and remedial actions, without in the process legitimizing an unwarranted “science is broken/in crisis” narrative. The three storylines are: (i) quest discovery, which features scientists producing knowledge through an honorable journey; (ii) counterfeit quest discovery, which centers on an individual or group of scientists producing a spurious finding through a dishonorable one; and (iii) a systemic problem structure, which suggests that some of the practices that protect science are broken, or worse, that science is no longer self-correcting or in crisis. PMID:29531076

  7. Basic Sciences Fertilizing Clinical Microbiology and Infection Management.

    PubMed

    Baquero, Fernando

    2017-08-15

    Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of "practice deconstruction" might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  8. Language Is a Complex Adaptive System: Position Paper

    ERIC Educational Resources Information Center

    Beckner, Clay; Blythe, Richard; Bybee, Joan; Christiansen, Morten H.; Croft, William; Ellis, Nick C.; Holland, John; Ke, Jinyun; Larsen-Freeman, Diane; Schoenemann, Tom

    2009-01-01

    Language has a fundamentally social function. Processes of human interaction along with domain-general cognitive processes shape the structure and knowledge of language. Recent research in the cognitive sciences has demonstrated that patterns of use strongly affect how language is acquired, is used, and changes. These processes are not independent…

  9. Knowledge in motion: The cultural politics of modern science translations in Arabic.

    PubMed

    Elshakry, Marwa S

    2008-12-01

    This essay looks at the problem of the global circulation of modem scientific knowledge by looking at science translations in modern Arabic. In the commercial centers of the late Ottoman Empire, emerging transnational networks lay behind the development of new communities of knowledge, many of which sought to break with old linguistic and literary norms to redefine the basis of their authority. Far from acting as neutral purveyors of "universal truths," scientific translations thus served as key instruments in this ongoing process of sociopolitical and epistemological transformation and mediation. Fierce debates over translators' linguistic strategies and choices involved deliberations over the character of language and the nature of "science" itself. They were also crucially shaped by such geopolitical factors as the rise of European imperialism and anticolonial nationalism in the region. The essay concludes by arguing for the need for greater attention to the local factors involved in the translation of scientific concepts across borders.

  10. "Beyond the walls": A research study of eighth-grade students mentored in a hospital setting

    NASA Astrophysics Data System (ADS)

    Grattan, Aileen

    This research study was designed to evaluate twelve eighth-grade students participating in the fourth year of a mentoring program to determine what effect the mentoring experience would have on the students' sense of a scientific community, their understanding of scientific knowledge and process skills and attitudes toward science. The mentoring program was developed through a partnership established between the researcher, an eighth-grade science teacher at a junior high school, and an administrator of a local hospital, to provide educational opportunities for students mentored by medical professionals. The research design included qualitative and quantitative methods of analysis. The qualitative instruments were student journals and interviews. The quantitative instruments included the science subtest of the Stanford Nine Achievement Test, a Student Attitude Toward Science Survey (STATS), and a Hospital Questionnaire. The findings indicate that mentoring developed the students' understanding of a scientific community, revealed a wide range of attitudes and had a positive effect on the students' scientific knowledge and process skills. Finally, this research study has shown the benefits of mentoring as a model for teaching science in a community setting beyond the walls of the school.

  11. Physics Guided Data Science in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.

    2017-12-01

    Even as the geosciences are becoming relatively data-rich owing to remote sensing and archived model simulations, established physical understanding and process knowledge cannot be ignored. The ability to leverage both physics and data-intensive sciences may lead to new discoveries and predictive insights. A principled approach to physics guided data science, where physics informs feature selection, output constraints, and even the architecture of the learning models, is motivated. The possibility of hybrid physics and data science models at the level of component processes is discussed. The challenges and opportunities, as well as the relations to other approaches such as data assimilation - which also bring physics and data together - are discussed. Case studies are presented in climate, hydrology and meteorology.

  12. Furthering Our Understanding of Therapist Knowledge and Attitudinal Measurement in Youth Community Mental Health.

    PubMed

    Okamura, Kelsie H; Hee, Puanani J; Jackson, David; Nakamura, Brad J

    2018-02-19

    Examining therapist evidence-based practice (EBP) knowledge seems an important step for supporting successful implementation. Advances in implementation science suggest a distinction between practice specific (i.e., knowing which practices are derived from the evidence base) and EBP process (i.e., integrating research evidence, clinical experience, client characteristics, and monitoring outcomes) knowledge. An examination of how these knowledge types are measured and relate to attitudes appears warranted. In our sample of 58 youth community therapists, both practice specific and EBP process knowledge accounted for EBP attitude scores, which varied by therapist demographic variables. Implications for measurement of therapist constructs and future research in identifying therapist predictors of EBP use and youth clinical improvement are discussed.

  13. Science education as an exercise in foreign affairs

    NASA Astrophysics Data System (ADS)

    Cobern, William W.

    1995-07-01

    In Kuhnian terms, science education has been a process of inducting students into the reigning paradigms of science. In 1985, Duschl noted that science education had not kept pace with developments in the history and philosophy of science. The claim of certainty for scientific knowledge which science educators grounded in positivist philosophy was rendered untenable years ago and it turns out that social and cultural factors surrounding discovery may be at least as important as the justification of knowledge. Capitalizing on these new developments, Duschl, Hamilton, and Grandy (1990) wrote a compelling argument for the need to have a joint research effort in science education involving the philosophy and history of science along with cognitive psychology. However, the issue of discovery compels the research community go one step further. If the science education community has been guilty of neglecting historical and philosophical issues in science, let it not now be guilty of ignoring sociological issues in science. A collaborative view ought also to include the sociological study of cultural milieu in which scientific ideas arise. In other words, an external sociological perspective on science. The logic of discovery from a sociological point of view implies that conceptual change can also be viewed from a sociological perspective.

  14. Modal Representations and Their Role in the Learning Process: A Theoretical and Pragmatic Analysis

    ERIC Educational Resources Information Center

    Gunel, Murat; Yesildag-Hasancebi, Funda

    2016-01-01

    In the construction and sharing of scientific knowledge, modal representations such as text, graphics, pictures, and mathematical expressions are commonly used. Due to the increasing importance of their role in the production and communication of science, modal representations have become a topic of growing interest in science education research…

  15. The Cognitive Neuroscience of the Teacher-Student Interaction

    ERIC Educational Resources Information Center

    Battro, Antonio M.; Calero, Cecilia I.; Goldin, Andrea P.; Holper, Lisa; Pezzatti, Laura; Shalóm, Diego E.; Sigman, Mariano

    2013-01-01

    Pedagogy is the science and art of teaching. Each generation needs to explore the history, theory, and practice of the teacher-student interaction. Here we pave the path to develop a science that explores the cognitive and physiological processes involved in the human capacity to communicate knowledge through teaching. We review examples from our…

  16. TPACK Survey Development Study for Social Sciences Teachers and Teacher Candidates

    ERIC Educational Resources Information Center

    Akman, Özkan; Güven, Cemal

    2015-01-01

    The purpose of this research is to develop a scale for analyzing the technological pedagogical and content knowledge (TPACK) and self-efficacy perceptions of the social sciences teachers and teacher candidates. During the development process, an item pool has been generated by evaluating the studies made in the literature. Also, after opinions…

  17. Devising Your Own Investigations Using Common Classroom and Household Materials.

    ERIC Educational Resources Information Center

    Wentworth, Daniel F.

    Many elementary classroom teachers must overcome the following problems in order to teach science effectively: (1) a lack of background in scientific concepts and general information; (2) a scarcity of science equipment and supplies on hand or insufficient funds to purchase them; (3) little basic knowledge of the skills, processes and attitudes…

  18. Latino Youth's Out-of-School Math and Science Experiences: Impact on Teacher Candidates

    ERIC Educational Resources Information Center

    Diaz, Maria E.; Bussert-Webb, Kathy

    2017-01-01

    This qualitative study examines the learning and interaction processes between Latino/a teacher candidates (TCs) and youth during a community service-learning program involving science and math. Knowing and affirming nondominant youth's strengths are essential from funds of knowledge and Third Space perspectives. Participants were 11 TCs and their…

  19. Values, Social Science, and Social Policy. Working Paper No. 21.

    ERIC Educational Resources Information Center

    Rein, Martin

    Three obstacles appear to frustrate the potential contribution of empirical research and social science to policy formulation. First there is the inherent conflict in the political decision making process; second, reality is so complex it defeats our ability to locate the sphere of understanding which we should apply; third, knowledge presupposes…

  20. Pushing to the Edge: Rutgers Astrophysics Institute Motivates Talented High School Students

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Matilsky, Terry; Lawrence, Michael

    2003-01-01

    The Rutgers Astrophysics Institute is a program in which gifted high school students learn about contemporary science and its methods, and conduct independent authentic research using real-time data. The students use the processes of science to acquire knowledge, and serve as cognitive apprentices to an expert astrophysicist. A variety of…

  1. Teaching of Computer Science Topics Using Meta-Programming-Based GLOs and LEGO Robots

    ERIC Educational Resources Information Center

    Štuikys, Vytautas; Burbaite, Renata; Damaševicius, Robertas

    2013-01-01

    The paper's contribution is a methodology that integrates two educational technologies (GLO and LEGO robot) to teach Computer Science (CS) topics at the school level. We present the methodology as a framework of 5 components (pedagogical activities, technology driven processes, tools, knowledge transfer actors, and pedagogical outcomes) and…

  2. Engaging Students in Learning Science through Promoting Creative Reasoning

    ERIC Educational Resources Information Center

    Waldrip, Bruce; Prain, Vaughan

    2017-01-01

    Student engagement in learning science is both a desirable goal and a long-standing teacher challenge. Moving beyond engagement understood as transient topic interest, we argue that cognitive engagement entails sustained interaction in the processes of how knowledge claims are generated, judged, and shared in this subject. In this paper, we…

  3. Understanding Gravity: The Role of a School Visit to a Science Centre

    ERIC Educational Resources Information Center

    Lelliott, Anthony

    2014-01-01

    This paper examines the knowledge construction processes involved when grades 7 and 8 South African students learnt about the concept of gravity while visiting an astronomy-related science centre. The literature on students' understanding of gravity identifies a number of alternative conceptions prevalent, several of which are mirrored in this…

  4. A Critical Appraisal of State Level Science Exhibition

    ERIC Educational Resources Information Center

    Nath, Baiju K.

    2007-01-01

    Science exhibitions are really great opportunities to students as well as teachers to disseminate knowledge that they have, and to experience a variety of new inventions and innovations that also need wide dissemination. The great significance of exhibition is that it fosters acquisition of different process skills leading to the development of…

  5. Science for action at the local landscape scale

    Treesearch

    Paul Opddam; Joan Iverson Nassauer; Zhifang Wang; Christian Albert; Gary Bentrup; Jean-Christophe Castella; Clive McAlpine; Jianguo Liu; Stephen Sheppard; Simon Swaffield

    2013-01-01

    For landscape ecology to produce knowledge relevant to society, it must include considerations of human culture and behavior, extending beyond the natural sciences to synthesize with many other disciplines. Furthermore, it needs to be able to support landscape change processes which increasingly take the shape of deliberative and collaborative decision making by local...

  6. Environmental Education: From the Perspective of Scientific Knowledge for Constructivist Learning

    ERIC Educational Resources Information Center

    Giron, Graciela; Vasquez-Martinez, Claudio-Rafael; López, Juan Sánchez; Bañuelos, Antonio Ayón

    2012-01-01

    Environmental education is not merely a modern form for the didactics of natural science, but is, on the contrary, an educational process that integrates ecological knowledge, philosophy, politics, economics and sociology, among others. This is because its purpose is to change the relationships of production, social structures of economics and…

  7. Integration of Mathematical and Natural-Science Knowledge in School Students' Project-Based Activity

    ERIC Educational Resources Information Center

    Luneeva, Olga L.; Zakirova, Venera G.

    2017-01-01

    New educational standards implementation prioritizes the projective beginning of training in school education. Therefore, consideration of educational activity only as the process of obtaining ready knowledge should be abandoned. Thus the relevance of the studied problem is substantiated by the need to develop methodical works connected with the…

  8. 21st Century Pedagogical Content Knowledge and Science Teaching and Learning

    ERIC Educational Resources Information Center

    Slough, Scott; Chamblee, Gregory

    2017-01-01

    Technological Pedagogical Content Knowledge (TPACK) is a theoretical framework that has enjoyed widespread applications as it applies to the integration of technology in the teaching and learning process. This paper reviews the background for TPACK, discusses some of its limitations, and reviews and introduces a new theoretical framework, 21st…

  9. Prior Knowledge and Online Inquiry-Based Science Reading: Evidence from Eye Tracking

    ERIC Educational Resources Information Center

    Ho, Hsin Ning Jessie; Tsai, Meng-Jung; Wang, Ching-Yeh; Tsai, Chin-Chung

    2014-01-01

    This study employed eye-tracking technology to examine how students with different levels of prior knowledge process text and data diagrams when reading a web-based scientific report. Students' visual behaviors were tracked and recorded when they read a report demonstrating the relationship between the greenhouse effect and global climate…

  10. Leveraging Students' Knowledge to Adapt Science Curricula to Local Context

    ERIC Educational Resources Information Center

    Minshew, Lana M.; Barber-Lester, Kelly J.; Derry, Sharon J.; Anderson, Janice L.

    2017-01-01

    Conceptions of ecological processes such as the flow of energy and cycling of matter in an ecosystem are increasingly important understandings in a rapidly changing world. This study utilizes a p-prims, or knowledge in pieces, lens to examine understandings and disconnections in students' conceptualizations of energy flow and matter cycling…

  11. Probing Student Teachers' Subject Content Knowledge in Chemistry: Case Studies Using Dynamic Computer Models

    ERIC Educational Resources Information Center

    Toplis, Rob

    2008-01-01

    This paper reports case study research into the knowledge and understanding of chemistry for six secondary science student teachers. It combines innovative student-generated computer animations, using "ChemSense" software, with interviews to probe understanding of four common chemical processes used in the secondary school curriculum. Findings…

  12. Some Thoughts on the Relationship of Developmental Science and Population Neuroscience

    ERIC Educational Resources Information Center

    Paus, Tomáš

    2012-01-01

    This essay describes briefly population neuroscience, the merging of genetics and epidemiology with neuroscience, and its goals with regard to (1) gaining new knowledge about "processes" leading to a particular "state" of brain structure and function, and (2) using this knowledge to predict the risk (and resilience) of an…

  13. Forum: Cultural Identity and (Dis)Continuities of Children of Immigrant Communities

    ERIC Educational Resources Information Center

    Obsiye, Mohamed; Cook, Rachel

    2016-01-01

    Susan Harper's study centres on "funds of knowledge" as a pedagogical resource for the development of a science curriculum, drawing on Karen refugee parents' cultural knowledge and identity. She argues that engagement in this process helps the parent generation of this community to "rebuild their cultural resilience" and cope…

  14. Establishing lunar resource viability

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Fisackerly, R.; Houdou, B.

    2016-11-01

    Recent research has highlighted the potential of lunar resources as an important element of space exploration but their viability has not been demonstrated. Establishing whether or not they can be considered in future plans is a multidisciplinary effort, requiring scientific expertise and delivering scientific results. To this end various space agencies and private entities are looking to lunar resources, extracted and processed in situ, as a potentially game changing element in future space architectures, with the potential to increase scale and reduce cost. However, before any decisions can be made on the inclusion of resources in exploration roadmaps or future scenarios some big questions need to be answered about the viability of different resource deposits and the processes for extraction and utilisation. The missions and measurements that will be required to answer these questions, and which are being prepared by agencies and others, can only be performed through the engagement and support of the science community. In answering questions about resources, data and knowledge will be generated that is of fundamental scientific importance. In supporting resource prospecting missions the science community will de facto generate new scientific knowledge. Science enables exploration and exploration enables science.

  15. Topical Review: Translating Translational Research in Behavioral Science.

    PubMed

    Hommel, Kevin A; Modi, Avani C; Piazza-Waggoner, Carrie; Myers, James D

    2015-01-01

    To present a model of translational research for behavioral science that communicates the role of behavioral research at each phase of translation. A task force identified gaps in knowledge regarding behavioral translational research processes and made recommendations regarding advancement of knowledge. A comprehensive model of translational behavioral research was developed. This model represents T1, T2, and T3 research activities, as well as Phase 1, 2, 3, and 4 clinical trials. Clinical illustrations of translational processes are also offered as support for the model. Behavioral science has struggled with defining a translational research model that effectively articulates each stage of translation and complements biomedical research. Our model defines key activities at each phase of translation from basic discovery to dissemination/implementation. This should be a starting point for communicating the role of behavioral science in translational research and a catalyst for better integration of biomedical and behavioral research. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Boundary Development in the Field of International Nutrition Science12

    PubMed Central

    Centrone Stefani, Monique; Humphries, Debbie L.

    2014-01-01

    Using a sociological approach that elaborates on key observations of institutional entrepreneurs in international nutrition, this paper explores institutional boundaries and boundary work in international nutrition. Sociological concepts of “boundary making” and “situated knowledge” are applied to the boundaries between the nutrition sciences and lay nutrition knowledge in nutrition intervention. These concepts allow an analysis of how nutrition science creates boundaries between its field and other sciences and between nutrition as a science and other nutrition practices, providing additional perspective on current challenges in global food security and malnutrition. Analysis of boundary processes in international nutrition can also illuminate the development of “implementation” or “delivery science” in the field of international nutrition as it attempts to strengthen effectiveness of global efforts to reduce malnutrition. Although some risk taking in the academic world is rewarded, the analysis indicates that there are underlying processes that may inhibit full partnership with local people in the course of intervention work that builds scientific nutrition knowledge. As nutrition science becomes increasingly central to development, the boundaries that are reinforced by digging in heels over the implementation of programs with little local input or softened by inviting local stakeholders to publicly consider the problems in global nutrition together are important to consider in helping to create directions that favor viable solutions. PMID:24618761

  17. Representation and Exchange of Knowledge as a Basis of Information Processes. Proceedings of the International Research Forum in Information Science (5th, Heidelberg, West Germany, September 5-7, 1983).

    ERIC Educational Resources Information Center

    Dietschmann, Hans, Ed.

    This 22-paper collection addresses a variety of issues related to representation and transfer of knowledge. Individual papers include an explanation of the usefulness of general scientific models versus case-specific approaches and a discussion of different empirical approaches to the general problem of knowledge representation for information…

  18. Scientific literacy for decisionmaking and the social construction of scientific knowledge

    NASA Astrophysics Data System (ADS)

    Bingle, Wade H.; Gaskell, P. James

    Citizens are often required to make decisions about socioscientific issues in a climate characterized by conflict within both the scientific community and the larger society. Central to the process of decisionmaking is a critical examination of the relevant scientific knowledge involved. Individuals capable of performing this task can be considered scientifically literate in a decisionmaking sense. In this article we explore two ways of critically examining scientific knowledge in the context of a current socioscientific dispute: NASA's Galileo Mission to Jupiter. The two approaches we outline, termed the positivist and social constructivist positions, are examined in terms of their inherent views concerning the nature of scientific knowledge, in particular their use of constitutive and contextual values when evaluating knowledge claims. Because the social constructivist position acknowledges the importance of contextual values, it provides citizens with accessible standards for evaluating scientific knowledge claims. The positivist position, on the other hand, relies on constitutive values which we show are normally inaccessible to ordinary citizens. The positivist position, however, is most closely associated with the predominant social issues approach to science-technology-society (STS) education. Implications little consensus about which statements are fact (i.e., will remain stable when challenged) and which opinion, (i.e., will be modified when challenged). All knowledge is potentially unreliable when one is dealing with a socioscientific dispute.The adoption of a social constructivist view of scientific knowledge and its inherent way of evaluating knowledge claims clearly has implications for future approaches to STS education. Although one approach might be to offer a course in the history, philosophy, and sociology of science, this would not be useful without reference to the way in which such knowledge can help students to understand the context of a conflict within the society of scientists and the larger society. As Rosenthal (1989) argues, a synthesis is needed in which social issues are seen as a vehicle for studying the social studies of science and the social issues are seen as a way of making sense of social aspects of science. However, this way of teaching STS may be difficult to implement. In British Columbia, for example, science teachers have resisted efforts to include the social context of science within a traditional university-oriented physics course (Gaskell, 1992) and to teach a grade 11 social issues oriented sicence and technology course (Gaskell, 1989). This may be because the current social issues approach is most compatible with traditional science content as it is now taught: it simply shows the relevance of textbook knowledge (ready-made science) to contemporary probles. The shift to the approach suggested above will require a more drastic reorganization of the curriculum, one that may be resisted by the current stakeholders in science education (Duschl, 1988; Gaskell, 1989).

  19. Mapping epistemic cultures and learning potential of participants in citizen science projects.

    PubMed

    Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid

    2016-06-01

    The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. © 2016 Society for Conservation Biology.

  20. Soil Science self-learning based on the design and conduction of experiments

    NASA Astrophysics Data System (ADS)

    Jordán, A.; Bárcenas-Moreno, G.; Zavala, L. M.

    2012-04-01

    This paper presents an experience for introducing the methodology of project-based learning (PBL) in the area of Soil Science in the University of Sevilla (Spain). Currently, teachers try to enhance practical experience of university students in a complementary manner to theoretical knowledge. However, many times this is a difficult process. Practice is an important part of personal work in the vast majority of subjects that degree students receive, since the implementation of the EHEA. In most cases, these experiences are presented as partial small experiments or projects, assigned to the area-specific knowledge agenda. Certain sciences, such as Soil Science, however, require synthesis and integration capabilities of previous knowledge. It is therefore necessary to develop practical programs that address the student not only to the performance of laboratory determinations, but to the formulation of hypotheses, experimental design and problem solving, whether in groups or individually, situated in a wide context and allowing students to make connections with other areas of knowledge. This project involves the development of teamwork experiments, for the study real cases and problems and making decisions in the field of Soil Science. The results of the experimental work were publicly exposed as posters and oral presentations and were discussed during a mini-congress open to students and a general audience. The open and dynamic nature of the project substantially improves student motivation, which adds value to our project. Due to the multidisciplinary character of Soil Science it is relatively easy to propose projects of some complexity, and therefore, provides good conditions for introducing the PBL methodology. The teacher's role is also important and is not limited to observe or qualify the students, but it is a catalyst for learning. It is important that teacher give the leadership of the process and make the students themselves feel the protagonists of the project.

  1. Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte

    2005-01-01

    Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.

  2. The Life Science Exchange: a case study of a sectoral and sub-sectoral knowledge exchange programme.

    PubMed

    Perkins, Brian Lee; Garlick, Rob; Wren, Jodie; Smart, Jon; Kennedy, Julie; Stephens, Phil; Tudor, Gwyn; Bisson, Jonathan; Ford, David V

    2016-04-27

    Local and national governments have implemented sector-specific policies to support economic development through innovation, entrepreneurship and knowledge exchange. Supported by the Welsh Government through the European Regional Development Fund, The Life Science Exchange® project was created with the aim to increase interaction between stakeholders, to develop more effective knowledge exchange mechanisms, and to stimulate the formation and maintenance of long-term collaborative relationships within the Welsh life sciences ecosystem. The Life Science Exchange allowed participants to interact with other stakeholder communities (clinical, academic, business, governmental), exchange perspectives and discover new opportunities. Six sub-sector focus groups comprising over 200 senior stakeholders from academia, industry, the Welsh Government and National Health Service were established. Over 18 months, each focus group provided input to inform healthcare innovation policy and knowledge mapping exercises of their respective sub-sectors. Collaborative projects identified during the focus groups and stakeholder engagement were further developed through sandpit events and bespoke support. Each sub-sector focus group produced a report outlining the significant strengths and opportunities in their respective areas of focus, made recommendations to overcome any 'system failures', and identified the stakeholder groups which needed to take action. A second outcome was a stakeholder-driven knowledge mapping exercise for each area of focus. Finally, the sandpit events and bespoke support resulted in participants generating more than £1.66 million in grant funding and inward investment. This article outlines four separate outcomes from the Life Science Exchange programme. The Life Science Exchange process has resulted in a multitude of collaborations, projects, inward investment opportunities and special interest group formations, in addition to securing over ten times its own costs in funding for Wales. The Life Science Exchange model is a simple and straightforward mechanism for a regional or national government to adapt and implement in order to improve innovation, skills, networks and knowledge exchange.

  3. The nature of knowledge and how to account for it

    NASA Astrophysics Data System (ADS)

    Burgos, M. C. G.; De la Peña, F. D. E.

    2014-10-01

    One of the key challenges in science and technology is the evaluation of knowledge generated in either one or the other. This paper presents a case study where the use of acquired knowledge -in the form of lessons learned-applied to process improvement, meets the target of reduction of production costs for secondary -recycled-aluminium, and how this means that an intangible (knowledge embodied in software) can become tangible (a reduction in production costs), thus eligible to be reported in the company's balance sheet.

  4. Twenty-first century science as a relational process: from eureka! to team science and a place for community psychology.

    PubMed

    Tebes, Jacob Kraemer; Thai, Nghi D; Matlin, Samantha L

    2014-06-01

    In this paper we maintain that twenty-first century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of twenty-first century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: (1) trends in science show that research is increasingly being conducted in teams; (2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; (3) transdisciplinary scientific teams are part of the larger, twenty-first century transformation in science; (4) the concept of heterarchy is a heuristic for team science aligned with this transformation; (5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance twenty-first century science; and (6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the twenty-first century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are well-prepared to help advance these developments, and thus have much to offer twenty-first century science.

  5. 21st Century Science as a Relational Process: From Eureka! to Team Science and a Place for Community Psychology

    PubMed Central

    Tebes, Jacob Kraemer; Thai, Nghi D.; Matlin, Samantha L.

    2014-01-01

    In this paper we maintain that 21st century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of 21st century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: 1) trends in science show that research is increasingly being conducted in teams; 2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; 3) transdisciplinary scientific teams are part of the larger, 21st century transformation in science; 4) the concept of heterarchy is a heuristic for team science aligned with this transformation; 5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance 21st century science; and 6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the 21st century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are extraordinarily well-prepared to help advance these developments, and thus have much to offer 21st century science. PMID:24496718

  6. Philosophical Aspects of Space Science

    NASA Astrophysics Data System (ADS)

    Poghosyan, Gevorg

    2015-07-01

    The modern astronomy and physics are closely related to the philosophy. If in the past philosophy was largely confined to interpretations of the results obtained by the natural sciences, in the present times it becomes a full member of the scientific research process. Philosophy is currently involved not only in the methodological problems of the natural sciences and formulation process of the general conclusions. In most cases, the philosophical considerations are allowed to make a choice between the different physical hypotheses and assumptions. A unified approach to solving the problems of philosophy and natural sciences becomes more important as the physical and philosophical aspects are often intertwined, forming a mold that defines our knowledge of today's leading edge.

  7. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    NASA Astrophysics Data System (ADS)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  8. The theoretical cognitive process of visualization for science education.

    PubMed

    Mnguni, Lindelani E

    2014-01-01

    The use of visual models such as pictures, diagrams and animations in science education is increasing. This is because of the complex nature associated with the concepts in the field. Students, especially entrant students, often report misconceptions and learning difficulties associated with various concepts especially those that exist at a microscopic level, such as DNA, the gene and meiosis as well as those that exist in relatively large time scales such as evolution. However the role of visual literacy in the construction of knowledge in science education has not been investigated much. This article explores the theoretical process of visualization answering the question "how can visual literacy be understood based on the theoretical cognitive process of visualization in order to inform the understanding, teaching and studying of visual literacy in science education?" Based on various theories on cognitive processes during learning for science and general education the author argues that the theoretical process of visualization consists of three stages, namely, Internalization of Visual Models, Conceptualization of Visual Models and Externalization of Visual Models. The application of this theoretical cognitive process of visualization and the stages of visualization in science education are discussed.

  9. Science-policy processes for transboundary water governance.

    PubMed

    Armitage, Derek; de Loë, Rob C; Morris, Michelle; Edwards, Tom W D; Gerlak, Andrea K; Hall, Roland I; Huitema, Dave; Ison, Ray; Livingstone, David; MacDonald, Glen; Mirumachi, Naho; Plummer, Ryan; Wolfe, Brent B

    2015-09-01

    In this policy perspective, we outline several conditions to support effective science-policy interaction, with a particular emphasis on improving water governance in transboundary basins. Key conditions include (1) recognizing that science is a crucial but bounded input into water resource decision-making processes; (2) establishing conditions for collaboration and shared commitment among actors; (3) understanding that social or group-learning processes linked to science-policy interaction are enhanced through greater collaboration; (4) accepting that the collaborative production of knowledge about hydrological issues and associated socioeconomic change and institutional responses is essential to build legitimate decision-making processes; and (5) engaging boundary organizations and informal networks of scientists, policy makers, and civil society. We elaborate on these conditions with a diverse set of international examples drawn from a synthesis of our collective experiences in assessing the opportunities and constraints (including the role of power relations) related to governance for water in transboundary settings.

  10. Characterizing Middle Grade Students' Integrated Alternative Science Knowledge about the Effects of Climate Change

    ERIC Educational Resources Information Center

    Fick, Sarah J.; Songer, Nancy Butler

    2017-01-01

    Recent reforms emphasize a shift in how students should learn and demonstrate knowledge of science. These reforms call for students to learn content knowledge using science and engineering practices, creating integrated science knowledge. While there is existing literature about the development of integrated science knowledge assessments, few…

  11. Assessing the Science Knowledge of University Students: Perils, Pitfalls and Possibilities

    ERIC Educational Resources Information Center

    Jones, Susan M.

    2014-01-01

    Science content knowledge is internationally regarded as a fundamentally important learning outcome for graduates of bachelor level science degrees: the Science Threshold Learning Outcomes (TLOs) recently adopted in Australia as a nationally agreed framework include "Science Knowledge" as TLO 2. Science knowledge is commonly assessed…

  12. The Use of Clinical Interviews to Develop Inservice Secondary Science Teachers' Nature of Science Knowledge and Assessment of Student Nature of Science Knowledge

    ERIC Educational Resources Information Center

    Peters-Burton, Erin E.

    2013-01-01

    To fully incorporate nature of science knowledge into classrooms, teachers must be both proficient in their own nature of science knowledge, but also skillful in translating their knowledge into a learning environment which assesses student knowledge. Twenty-eight inservice teachers enrolled in a graduate course which in part required a clinical…

  13. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2017-04-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was also explored. The participants were 489 senior high school students (244 males and 245 females) from eight different schools in Taiwan. Based on the result of an extensive literature review, we first identified six factors of epistemic knowledge of science, such as status of scientific knowledge, the nature of scientific enterprise, measurement in science, and so on. An online test was then created for assessing students' understanding of the epistemic knowledge of science. Also, a learner-factor survey was developed by adopting previous PISA survey items to measure the abovementioned learner factors. The results of this study show that; (1) by factor analysis, the six factors of epistemic knowledge of science could be grouped into two dimensions which reflect the nature of scientific knowledge and knowing in science, respectively; (2) there was a gender difference in the participants' understanding of the epistemic knowledge of science; and (3) students' interest in science learning and the time spent on science learning were positively correlated to their understanding of the epistemic knowledge of science.

  14. Biological knowledge is more tentative than physics knowledge: Taiwan high school adolescents' views about the nature of biology and physics.

    PubMed

    Tsai, Chin-Chung

    2006-01-01

    Many educational psychologists believe that students' beliefs about the nature of knowledge, called epistemological beliefs, play an essential role in their learning process. Educators also stress the importance of helping students develop a better understanding of the nature of knowledge. The tentative and creative nature of science is often highlighted by contemporary science educators. However, few previous studies have investigated students' views of more specific knowledge domains, such as biology and physics. Consequently, this study developed a questionnaire to assess students' views specifically about the tentative and creative nature of biology and physics. From a survey of 428 Taiwanese high school adolescents, this study found that although students showed an understanding of the tentative and creative nature of biology and physics, they expressed stronger agreement as to the tentativeness of biology than that of physics. In addition, male students tended to agree more than did females that physics had tentative and creative features and that biology had tentative features. Also, students with more years of science education tended to show more agreement regarding the creative nature of physics and biology than those with fewer years.

  15. Public attention to science and political news and support for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Hart, P. Sol; Nisbet, Erik C.; Myers, Teresa A.

    2015-06-01

    We examine how attention to science and political news may influence public knowledge, perceived harm, and support for climate mitigation policies. Previous research examining these relationships has not fully accounted for how political ideology shapes the mental processes through which the public interprets media discourses about climate change. We incorporate political ideology and the concept of motivated cognition into our analysis to compare and contrast two prominent models of opinion formation, the scientific literacy model, which posits that disseminating scientific information will move public opinion towards the scientific consensus, and the motivated reasoning model, which posits that individuals will interpret information in a biased manner. Our analysis finds support for both models of opinion formation with key differences across ideological groups. Attention to science news was associated with greater perceptions of harm and knowledge for conservatives, but only additional knowledge for liberals. Supporting the literacy model, greater knowledge was associated with more support for climate mitigation for liberals. In contrast, consistent with motivated reasoning, more knowledgeable conservatives were less supportive of mitigation policy. In addition, attention to political news had a negative association with perceived harm for conservatives but not for liberals.

  16. An integrated model of decision-making in health contexts: the role of science education in health education

    NASA Astrophysics Data System (ADS)

    Arnold, Julia C.

    2018-03-01

    Health education is to foster health literacy, informed decision-making and to promote health behaviour. To date, there are several models that seek to explain health behaviour (e.g. the Theory of Planned Behaviour or the Health Belief Model). These models include motivational factors (expectancies and values) that play a role in decision-making in health contexts. In this theoretical paper, it is argued that none of these models makes consequent use of expectancy-value pairs. It is further argued that in order to make these models fruitful for science education and for informed decision-making, models should systematically incorporate knowledge as part of the decision-making process. To fill this gap, this theoretical paper introduces The Integrated Model of Decision-Making in Health Contexts. This model includes three types of knowledge (system health knowledge, action-related health knowledge and effectiveness health knowledge) as influencing factors for motivational factors (perceived health threat, attitude towards health action, attitude towards health outcome and subjective norm) that are formed of expectancy-value pairs and lead to decisions. The model's potential for health education in science education as well as research implications is discussed.

  17. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  18. Use of Thermochrons in the Classroom

    ERIC Educational Resources Information Center

    Avard, Margaret Marie

    2010-01-01

    Preservice elementary education students often do not have a good feel for the process of science. Many may be acquainted with the steps of the scientific method but have never been through the scientific process. An exercise was designed using temperature-logging iButtons (Thermochrons) to improve knowledge of and familiarity with the process of…

  19. [Heritages of science history in the gerontological discussion on multidisciplinary and interdisciplinary perspectives].

    PubMed

    von Kondratowitz, Hans-Joachim

    2015-04-01

    Since the beginning of the nineteenth century, the history of science in modern Germany has been characterized by a development going in opposite directions. The old scientific disciplines with their traditional Gestus of knowledge acquisition are in contrast to new sciences resulting from external pressures, combining and mobilizing different areas of knowledge, which challenge former dominances and help to establish new open disciplines. However, gerontology in Germany is in this respect a clear latecomer and can only cast off the impact of medicine in the twentieth century to some extent. This article describes this process by the superposition of different lines of tradition, which have long-term effects reaching into the history of the early Federal Republic of Germany.

  20. Open Science as a Knowledge Transfer strategy

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Dalmeier-Thiessen, Suenje

    2015-04-01

    Beyond providing basic understanding of how our Blue Planet functions, flows and breathes, the collection of Earth & Marine Research disciplines are of major service to most of today's Societal Challenges: from Food Security and Sustainable Resource Management, to Renewable Energies, Climate Mitigation & Ecosystem Services and Hazards. Natural Resources are a key commodity in the long-term strategy of the EU Innovation Union(1), and better understanding of the natural process governing them, as well as science-based management are seen as a key area for stimulating future economic growth. Such potential places responsibility on research project managers to devise innovative methods to ensure effective transfer of new research to public and private sector users, and society at large. Open Science is about removing all barriers to full sphere basic research knowledge and outputs, not just the publishable part of research but also the data, the software code, and failed experiments. The concept is central to EU's Responsible Research and Innovation philosophy(2), and removing barriers to basic research measurably contributes to the EU's Blue Growth Agenda(3). Despite the potential of the internet age to deliver on that promise, only 50% of today's basic research is freely available(4). The talk will demonstrate how and why Open Science can be a first, passive but effective strategy for any research project to transfer knowledge to society by allowing access and dicoverability to the full sphere of new knowledge, not just the published outputs. Apart from contributing to economic growth, Open Science can also optimize collaboration, within academia, assist with better engagement of citizen scientists into the research process and co-creation of solutions to societal challenges, as well as providing a solid ground for more sophisticated communication strategies and Ocean/Earth Literacy initiatives targeting policy makers and the public at large. (1)EC Digital Agenda & Access to Knowledge http://ec.europa.eu/digital-agenda/en/open-access-scientific-knowledge-0 (2)Responsible Research and Innovation for Societal Challenges http://ec.europa.eu/research/science-society/document_library/pdf_06/responsible-research-and-innovation-leaflet_en.pdf (3)Houghton, J., Swan, A., Brown, S., 2011. Access to research and technical information in Denmark [WWW Document]. URL http://www.deff.dk/uploads/media/Access_to_Research_and_Technical_Information_in_Denmark.pdf (4)Proportion of OA Peer-Reviewed Papers at the European & World Levels 2004-2011, EC Report http://www.science-metrix.com/pdf/SM_EC_OA_Availability_2004-2011.pdf

  1. [Objectivity and subjectivity of knowledge in nomological social sciences].

    PubMed

    Zepf, S

    1995-01-01

    In this article the question is discussed in how far the processes of understanding in the nomological social sciences an "objectivication", which is demanded of psychoanalysts, can be used for psychoanalytically gained insights to human behavior. For one it is shown that it is impossible in principle to verify or falsify hypotheses within the nomologically oriented methodological self understanding. Furthermore the logical, empirical scientific process obligated to proving hypotheses is pursued in the perspective of a psychoanalytic social psychology and the thesis is developed that these insights, which are gained in nomological research projects are also always products of neurotic-blind interaction, so that nothing can be said of the value of knowledge gained in these research findings as long as the scientists do not clarify their research practice psychoanalytically.

  2. Deriving evaluation indicators for knowledge transfer and dialogue processes in the context of climate research

    NASA Astrophysics Data System (ADS)

    Treffeisen, Renate; Grosfeld, Klaus; Kuhlmann, Franziska

    2017-12-01

    Knowledge transfer and dialogue processes in the field of climate science have captured intensive attention in recent years as being an important part of research activities. Therefore, the demand and pressure to develop a set of indicators for the evaluation of different activities in this field have increased, too. Research institutes are being asked more and more to build up structures in order to map these activities and, thus, are obliged to demonstrate the success of these efforts. This paper aims to serve as an input to stimulate further reflection on the field of evaluation of knowledge transfer and dialogue processes in the context of climate sciences. The work performed in this paper is embedded in the efforts of the German Helmholtz Association in the research field of earth and environment and is driven by the need to apply suitable indicators for knowledge transfer and dialogue processes in climate research center evaluations. We carry out a comparative analysis of three long-term activities and derive a set of indicators for measuring their output and outcome by balancing the wide diversity and range of activity contents as well as the different tools to realize them. The case examples are based on activities which are part of the regional Helmholtz Climate Initiative Regional Climate Change (REKLIM) and the Climate Office for Polar Regions and Sea Level Rise at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. Both institutional units have been working on a wide range of different knowledge transfer and dialogue processes since 2008/2009. We demonstrate that indicators for the evaluation must be based on the unique objectives of the individual activities and the framework they are embedded in (e.g., research foci which provide the background for the performed knowledge transfer and dialogue processes) but can partly be classified in a principle two-dimensional scheme. This scheme might serve as a usable basis for climate research center evaluation in the future. It, furthermore, underlines the need for further development of proper mechanisms to evaluate scientific centers, in particular with regard to knowledge transfer and dialogue processes.

  3. Exploring what contributes to the knowledge development of secondary physics and physical science teachers in a continuous professional development context

    NASA Astrophysics Data System (ADS)

    Nelms, April Wagnon

    This dissertation used qualitative methodologies, specifically phenomenological research, to investigate what contributes to the development of pedagogical content knowledge (PCK) of physics and physical science teachers who participate in a content-specific continuous professional development program. There were five participants in this study. The researcher conducted participant observations and interviews, rated participants degree of reformed teaching practices using the Reformed Teaching Observation Protocol, surveyed participants' self-efficacy beliefs using the Science Teacher Efficacy Belief Instrument "A," and rated participants'' level of PCK using the PCK Rubrics.. All data were analyzed, and a composite description of what contributes to physics and physical science teachers' PCK development through a continuous professional development program emerged. A theory also emerged from the participants' experiences pertaining to how teachers' assimilate new conditions into their existing teaching schema, how conditions change teachers' perceptions of their practice, and outcomes of teachers' new ideas towards their practice. This study contributed to the literature by suggesting emergent themes and a theory on the development of physics and physical science teachers' PCK. PCK development is theorized to be a spiral process incorporating new conditions into the spiral as teachers employ new science content knowledge and pedagogical practices in their individual classroom contexts.

  4. Ghanaian Junior High School Science Teachers' Knowledge of Contextualised Science Instruction

    ERIC Educational Resources Information Center

    Ngman-Wara, Ernest I. D.

    2015-01-01

    The purpose of the study was to investigate Junior High School science teachers' knowledge about contextualised science instruction. The study employed descriptive survey design to collect data. A test, Test of Science Teacher Knowledge of Contextualised Science Instruction was developed and administered to collect data on teachers' knowledge of…

  5. So you want to share your science…. Connecting to the world of informal science learning.

    PubMed

    Alpert, Carol Lynn

    2018-04-25

    Scientists can reap personal rewards through collaborations with science and natural history museums, zoos, botanical gardens, aquaria, parks, and nature preserves, and, while doing so, help to advance science literacy and broaden participation in the natural sciences. Beyond volunteer opportunities, which allow scientists to contribute their knowledge and passion within the context of existing programs and activities, there are also opportunities for scientists to bring their knowledge and resources to the design and implementation of new learning experiences for visitors to these informal science learning organizations (ISLOs). Well-designed education outreach plans that leverage the expertise and broad audiences of ISLOs can also enhance the prospects of research grant proposals made to agencies such as National Science Foundation, which encourage researchers to pay careful attention to the broader impacts of their research as well as its intellectual merit. Few scientists, however, have had the opportunity to become familiar with the pedagogy and design of informal or 'free-choice' science learning, and fewer still know how to go about the process of collaborating with ISLO's in developing and implementing effective programs, exhibits, and other learning experiences. This article, written by an experienced science museum professional, provides guidance for individual scientists and research groups interested in pursuing effective education outreach collaborations with science museums and other ISLOs. When prospective partners begin discussions early in the proposal development process, they increase the likelihood of successful outcomes in funding, implementation, and impact. A strategic planning worksheet is provided, along with a carefully-selected set of further resources to guide the design and planning of informal science learning experiences.

  6. Working knowledges before and after circa 1800: practices and disciplines in the history of science, technology, and medicine.

    PubMed

    Pickstone, John V

    2007-09-01

    Historians of science, inasmuch as they are concerned with knowledges and practices rather than institutions, have tended of late to focus on case studies of common processes such as experiment and publication. In so doing, they tend to treat science as a single category, with various local instantiations. Or, alternatively, they relate cases to their specific local contexts. In neither approach do the cases or their contexts build easily into broader histories, reconstructing changing knowledge practices across time and space. This essay argues that by systematically deconstructing the practices of science and technology and medicine (STM) into common, recurrent elements, we can gain usefully "configurational" views, not just of particular cases and contexts but of synchronic variety and diachronic changes, both short term and long. To this end, we can begin with the customary actors' disciplines of early modern knowledge (natural philosophy, natural history, mixed mathematics, and experimental philosophy), which can be understood as elemental "ways of knowing and working," variously combined and disputed. I argue that these same working knowledges, together with a later mode-synthetic experimentation and systematic invention-may also serve for the analysis of STM from the late eighteenth century to the present. The old divisions continued explicitly and importantly after circa 1800, but they were also "built into" an array of new sciences. This historiographic analysis can help clarify a number of common problems: about the multiplicity of the sciences, the importance of various styles in science, and the relations between science and technology and medicine. It suggests new readings of major changes in STM, including the first and second scientific revolutions and the transformations of biomedicine from the later twentieth century. It offers ways of recasting both microhistories and macrohistories, so reducing the apparent distance between them. And it may thus facilitate both more constructive uses of case studies and more innovative and acceptable longer histories.

  7. The Role of Research Coordination in Enhancing Integrative Research: the Co-production of Knowledge Agenda of the Global Land Programme

    NASA Astrophysics Data System (ADS)

    Scarpa, F. M.; Boillat, S. P.; Grove, J. M.

    2015-12-01

    The search for sustainability and resilience requires the integration of natural science with social science, as well as the joint production of knowledge and solutions by science and society. In this context, international science coordination initiatives, like Future Earth, have increasingly stressed the need to perform more integrated and more socially relevant research. This contribution has the objective to highlight the potential role of a research coordination initiative, the Global Land Programme (GLP), to provide guidance for more integrative research. The need to perform integrative research is particularly true for land systems, which include dynamic interactions among social and natural drivers that are often multifunctional. Thus, their governance and management is particularity complex and involve highly diverse stakeholders. A key aspect of integrative research is co-production of knowledge, understood as the interactive production of knowledge by both academics and non-academics, that leads to new forms of solutions-oriented knowledge. We relied on experiences of co-production of knowledge on land systems from the GLP network, and drove seven lessons learnt: 1) the importance of including several learning loops in the process, 2) the importance of long-term relationships, 3) the need to overcome the distinction between basic and applied science, 4) the opportunities offered by new communication technologies, 5) the need to train professionals in both breadth and depth, 6) the access to knowledge, and 7) the need to understand better the roles of scientists and decision-makers. These lessons were used to define action-research priorities for enhancing co-production of knowledge on land systems in GLP projects and working groups. As a conclusion, we argue that research coordination initiatives have the potential to provide analysis and guidance for more integrative research. This can be done by performing synthesis and self-reflection activities that feed back into research and action.

  8. Using Elaborative Interrogation To Help Students Overcome Their Inaccurate Science Beliefs.

    ERIC Educational Resources Information Center

    Woloshyn, Vera E.; And Others

    One hundred and forty students in grades 6 and 7 were asked to process 32 science statements. Half of the statements were consistent with their prior knowledge, whereas the remaining facts were inconsistent with it. Half of the students were instructed to read the sentences for understanding (reading controls). The remaining students were…

  9. Sciences Teacher Education Curriculum Re-Alignment: "Science Education Lecturers' Perspectives of Knowledge Integration at South African Universities"

    ERIC Educational Resources Information Center

    Booi, Kwanele; Khuzwayo, Mamsie Ethel

    2018-01-01

    A qualitative case study was conducted at six purposively sampled universities; out of a population of approximately 23 universities. This sampling strategy was based on selecting some universities that became Universities of Technology during the process of merging Higher Education Institutions (HEIs) while other universities kept their identity;…

  10. Primary School Science: Implementation of Domain-General Strategies into Teaching Didactics

    ERIC Educational Resources Information Center

    Dejonckheere, Peter J. N.; Van de Keere, Kristof; Tallir, Isabel; Vervaet, Stephanie

    2013-01-01

    In the present study we present a didactic method to help children aged 11 and 12 learn science in such a way as to enable a dynamic interaction between domain general strategies and the development of conceptual knowledge, whilst each type of scientific process has been considered (forming of hypotheses, experimenting and evaluating). We have…

  11. Analysing Student Written Solutions to Investigate if Problem-Solving Processes Are Evident Throughout

    ERIC Educational Resources Information Center

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-01-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science…

  12. Assessing Secondary Science Students' Knowledge of Molecule Movement, Concentration Gradients, and Equilibrium through Multiple Contexts

    ERIC Educational Resources Information Center

    Raven, Sara

    2015-01-01

    Background: Studies have shown that students' knowledge of osmosis and diffusion and the concepts associated with these processes is often inaccurate. This is important to address, as these concepts not only provide the foundation for more advanced topics in biology and chemistry, but are also threaded throughout both state and national science…

  13. Stretching the Academic Harness: Knowledge Construction in the Process of Academic Mobility in Chile

    ERIC Educational Resources Information Center

    Munoz-Garcia, Ana Luisa; Chiappa, Roxana

    2017-01-01

    In this article, we analyse the impact of academic mobility on the construction of knowledge for Chilean scholars who have studied abroad. We conducted 41 semi-structured interviews with Chilean-born scholars in the social sciences and humanities, who accepted jobs at national research universities in Chile after receiving their doctorates abroad.…

  14. Using Scaffold Supports to Improve Student Practice and Understanding of an Authentic Inquiry Process in Science

    ERIC Educational Resources Information Center

    Turcotte, Sandrine; Hamel, Christine

    2016-01-01

    This study addressed computer-supported collaborative scientific inquiries in remote networked schools (Quebec, Canada). Three dyads of Grade 5-6 classrooms from remote locations across the province collaborated using the knowledge-building tool Knowledge Forum. Customized scaffold supports embedded in the online tool were used to support student…

  15. The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013

    NASA Astrophysics Data System (ADS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-06-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013 - are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Conference photograph Conference photograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA 2013 - Floridablanaca, Colombia. Conference photograph Closure of CIIMCA 2013. Details of the editorial committee and acknowledgements are available in the PDF.

  16. "Exploring knowledge-user experiences in integrated knowledge translation: a biomedical investigation of the causes and consequences of food allergy".

    PubMed

    Dixon, Jenna; Elliott, Susan J; Clarke, Ann E

    2016-01-01

    Food allergy is a serious public health problem in Canada and other high-income countries, as it is potentially life threatening and severely impacts the quality of life for individuals and their families. Yet, many questions still remain as to its origins and determinants, and the best practices for treatment. Formed to tackle these very questions, the GET-FACTS research study centers on a novel concept in biomedical research: in order to make this science useful, knowledge creation must include meaningful interactions with knowledge-users. With this, knowledge-users are present at every stage of the research and are crucial, central and equal contributors. This study reflects on the early part of that journey from the perspective of the knowledge-users. We conducted interviews with all non-scientist members of the GET-FACTS steering committee, representing Canadian organizations that deal with patient advocacy and policy with regards to food allergy. Steering committee members had a clear sense that scientists and knowledge-users are equally responsible for putting knowledge into action and the importance of consulting and integrating knowledge-users throughout research. They also have high expectations for the GET-FACTS integrated process; that this model of doing science will create better scientists (e.g. improve communication skills) and make the scientific output more useful and relevant. Our work highlights both the unique contributions that knowledge-users can offer to knowledge creation as well as the challenges of trying to unify members from such different communities (policy/advocacy and biomedical science). There remains a real need to develop more touch points and opportunities for collaboration if true integration is to be achieved. Despite the obstacles, this model can help change the way knowledge is created in the biomedical world. ᅟ. Despite the burden of food allergic disease many questions remain as to its origins, determinants and best practices for treatment. Formed to tackle these very questions, the GET-FACTS (Genetics, Environment and Therapies: Food Allergy Clinical Tolerance Studies) research study centers around a novel concept in biomedical research: in order to make this science useful, knowledge creation must include meaningful interactions with knowledge-users, known as Integrated Knowledge Translation (IKT). In IKT, knowledge-users are present at every stage of the research and are crucial, central and equal contributors. This paper contributes to this exciting form of research by reflecting on the beginning of that journey from the perspective of the knowledge-users. Semi structured in-depth interviews were conducted in year 2 of the 5 year GET-FACTS project with all ( n  = 9) non-scientist members of the GET-FACTS steering committee, representing Canadian organizations that deal with patient advocacy and policy with regards to food allergy. Transcripts were coded and organized by themes developed both deductively and inductively. Steering committee members indicated a clear sense that scientists and knowledge-users are equally responsible for the translation of knowledge into action and the importance of consulting and integrating knowledge-users throughout research. Overall, these knowledge-users have very high expectations for the GET-FACTS IKT process; they feel that this model of doing science will create better scientists (e.g. improve communication skills) and make the resulting science more useful and relevant; indeed, they reported that this model of knowledge creation can be paradigm shifting. This study highlights both the unique contributions that knowledge-users can offer to knowledge creation as well as the challenges of trying to unify members from such different communities (policy/advocacy and biomedical science). While our steering committee has a strong conceptual grasp on IKT and vision for their contributions, execution is not without challenges. There remains a real need to develop more touch points and opportunities for collaboration if true integration is to be achieved. Despite the obstacles, the GET-FACTS IKT model represents a new approach to knowledge creation in Canadian biomedical research and can help foster a culture of openness to participant involvement.

  17. An analysis of the relationship between teachers' acquisition of physics content knowledge and their level of science teaching efficacy

    NASA Astrophysics Data System (ADS)

    Marion, Virginia Frances

    1998-12-01

    The goal of Project Inquiry, a two-year long multiphase study, was to transform the delivery of science instruction from a traditional, textbook driven delivery approach to a hands-on, minds-on, constructivist approach. Teachers from a midwestern urban school district were trained in constructivism while learning physics concepts and content through guided inquiry instruction in collaborative groups. The objectives aimed to increase teachers' content expertise and science teaching efficacy, as well as to have teachers become better facilitators of learning. Phase two of the three phases of Project Inquiry was the focus of this study. Fifty-seven teachers participated in Phase two, which began with an intense two week summer institute in 1995. A longitudinal time-series (OxOO), quasi-experimental research design was used to investigate the relationship between science teaching efficacy scores and gains in physics content knowledge. The data consisted of: (a) six sets of pre and post physics content knowledge test scores (electricity, magnetism, matter and balance); (b) three sets of STEBI-A (inservice), Science Teaching Efficacy Belief Instrument scores, a pre to post, pre to follow-up, and post to follow-up; and (c) demographic variables that were used as covariates, grade taught, years of experience, and postbaccalaureate training. Using the general linear model with an Alpha level of.05, and testing the hypothesized relationships, results indicated that although there were significant positive gains in content knowledge (p =.000) and science teaching efficacy (p =.000), the overall average gains in physics content knowledge were not predictive of gains in either Personal Science Teaching Efficacy or Science Outcome Expectancy. Post hoc analysis used individual content gain scores, in regression models that included the three covariates: grade taught, years of experience, and post baccalaureate training, to test the relationship between knowledge gains and efficacy gains. A series of interactions between significant content areas and the covariates was also run. Science Teaching Outcome Expectancy and Personal Science Teaching Efficacy showed different relationships with the predictor variables. Though gains in specific content areas were related to gains in Science Teaching Outcome Expectancy and Personal Science Teaching Efficacy, gains in Personal Science Teaching Efficacy were further modified by the covariates. These results may reflect not only a more complex relationship between content knowledge gain and Personal Science Teaching Efficacy but also the complex nature of the construct. Evaluation of the physics content knowledge tests revealed that the tests were not valid for evaluating 35 of the 37 identified learning objectives. Although the data did not render valid results, it does give insights into possible relationships that may exist given a more stringent investigation with a valid instrument to measure content knowledge gains. In addition, this study demonstrated the importance of considering the likelihood of interactions among a given set of variables and the covariates. The findings also suggest the possible value of considering the psychological factors associated with the change process when planning professional development programs.

  18. Examining Middle School Science Student Self-Regulated Learning in a Hypermedia Learning Environment through Microanalysis

    NASA Astrophysics Data System (ADS)

    Mandell, Brian E.

    The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic methodology has been successfully administered. Educational implications and limitations to the study are also discussed.

  19. Exploring Preschool Children’s Science Content Knowledge

    PubMed Central

    Guo, Ying; Piasta, Shayne B.; Bowles, Ryan P.

    2014-01-01

    Research Findings The purpose of this study was to describe children’s science content knowledge and examine the early predictors of science content knowledge in a sample of 194 typically developing preschool children. Children’s science content knowledge was assessed in the fall (Time 1) and spring (Time 2) of the preschool year. Results showed that children exhibited significant gains in science content knowledge over the course of the preschool year. Hierarchical linear modeling results indicated that the level of maternal education (i.e., holding at least a bachelor’s degree) significantly predicted children’s Time 1 science content knowledge. Children’s cognitive, math, and language skills at Time 1 were all significant concurrent predictors of Time 1 science content knowledge. However, only Time 1 math skills significantly predicted residualized gains in science content knowledge (i.e., Time 2 scores with Time 1 scores as covariates). Practice or Policy Factors related to individual differences in young children’s science content knowledge may be important for early childhood educators to consider in their efforts to provide more support to children who may need help with science learning. PMID:25541574

  20. Prospective faculty developing understanding of teaching and learning processes in science

    NASA Astrophysics Data System (ADS)

    Pareja, Jose I.

    Historically, teaching has been considered a burden by many academics at institutions of higher education, particularly research scientists. Furthermore, university faculty and prospective faculty often have limited exposure to issues associated with effective teaching and learning. As a result, a series of ineffective teaching and learning strategies are pervasive in university classrooms. This exploratory case study focuses on four biology graduate teaching fellows (BGF) who participated in a National Science Foundation (NSF) GK-12 Program. Such programs were introduced by NSF to enhance the preparation of prospective faculty for their future professional responsibilities. In this particular program, BGF were paired with high school biology teachers (pedagogical mentors) for at least one year. During this yearlong partnership, BGF were involved in a series of activities related to teaching and learning ranging from classroom teaching, tutoring, lesson planning, grading, to participating in professional development conferences and reflecting upon their practices. The purpose of this study was to examine the changes in BGF understanding of teaching and learning processes in science as a function of their pedagogical content knowledge (PCK). In addition, the potential transfer of this knowledge between high school and higher education contexts was investigated. The findings of this study suggest that understanding of teaching and learning processes in science by the BGF changed. Specific aspects of the BGF involvement in the program (such as classroom observations, practice teaching, communicating with mentors, and reflecting upon one's practice) contributed to PCK development. In fact, there is evidence to suggest that constant reflection is critical in the process of change. Concurrently, BGFs enhanced understanding of science teaching and learning processes may be transferable from the high school context to the university context. Future research studies should be designed to explore explicitly this transfer phenomenon.

  1. Early space experiments in materials processing

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1979-01-01

    A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se.

  2. Procedural apprenticeship in school science: Constructivist enabling of connoisseurship

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence

    2000-11-01

    In many parts of the world, school science, especially at the secondary school level, is a sort of selection and training camp for future scientists and engineers. For most students, their general lack of cultural capital (Apple, 1990) minimizes their opportunities to survive the rapid coverage of large volumes of abstract, decontextualized laws, theories, and inventions so typical of school science. Most graduates and drop-outs become relatively scientifically and technologically illiterate. They either have forgotten or have confused conceptions of scientific and technological knowledge; often view science and technology as relatively certain, unbiased, and benign with respect to effects on society and the environment; and lack resources necessary to effectively judge products and processes of science and technology or, crucially, to create their own explanations for and changes to phenomena. Citizens with illiteracy to this extent may have little control over their own thoughts and actions and be prey to whims of those who control knowledge, its production and dissemination. Curriculum frameworks are required that enable all students to achieve their maximum potential literacy and, as well, to create their own knowledge, to develop in directions unique to their needs, interests, abilities, and perspectives; that is, to become self-actualized. This latter goal can, in part, be achieved through apprenticeship education in schools, such that students acquire a measure of scientific and technological connoisseurship - expertise enabling them to conduct open-ended scientific investigations and invention projects of their design. In collaboration with five teachers of secondary school science, such a framework was, indeed, developed, and field-tested. Through a spiraling, cyclical process involving synchronous reconstruction of conceptual and procedural understandings, evidence suggests students were able to carry out experiments, studies, and tests of their inventions with minimal teacher involvement. Furthermore, they appeared to accommodate more realistic conceptions of scientific and technological work. Moreover, many seemed to have made progress toward intellectual independence; able to judge knowledge claims independent of authorities. It is hoped that with more schools, systems, and teachers enabling development of such connoisseurship, all students will be better served by school science and, as well, the larger society will be more diverse, adaptable, and free.

  3. Earth Science Data Analytics: Preparing for Extracting Knowledge from Information

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Barbieri, Lindsay

    2016-01-01

    Data analytics is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. Data analytics is a broad term that includes data analysis, as well as an understanding of the cognitive processes an analyst uses to understand problems and explore data in meaningful ways. Analytics also include data extraction, transformation, and reduction, utilizing specific tools, techniques, and methods. Turning to data science, definitions of data science sound very similar to those of data analytics (which leads to a lot of the confusion between the two). But the skills needed for both, co-analyzing large amounts of heterogeneous data, understanding and utilizing relevant tools and techniques, and subject matter expertise, although similar, serve different purposes. Data Analytics takes on a practitioners approach to applying expertise and skills to solve issues and gain subject knowledge. Data Science, is more theoretical (research in itself) in nature, providing strategic actionable insights and new innovative methodologies. Earth Science Data Analytics (ESDA) is the process of examining, preparing, reducing, and analyzing large amounts of spatial (multi-dimensional), temporal, or spectral data using a variety of data types to uncover patterns, correlations and other information, to better understand our Earth. The large variety of datasets (temporal spatial differences, data types, formats, etc.) invite the need for data analytics skills that understand the science domain, and data preparation, reduction, and analysis techniques, from a practitioners point of view. The application of these skills to ESDA is the focus of this presentation. The Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster was created in recognition of the practical need to facilitate the co-analysis of large amounts of data and information for Earth science. Thus, from a to advance science point of view: On the continuum of ever evolving data management systems, we need to understand and develop ways that allow for the variety of data relationships to be examined, and information to be manipulated, such that knowledge can be enhanced, to facilitate science. Recognizing the importance and potential impacts of the unlimited ways to co-analyze heterogeneous datasets, now and especially in the future, one of the objectives of the ESDA cluster is to facilitate the preparation of individuals to understand and apply needed skills to Earth science data analytics. Pinpointing and communicating the needed skills and expertise is new, and not easy. Information technology is just beginning to provide the tools for advancing the analysis of heterogeneous datasets in a big way, thus, providing opportunity to discover unobvious scientific relationships, previously invisible to the science eye. And it is not easy It takes individuals, or teams of individuals, with just the right combination of skills to understand the data and develop the methods to glean knowledge out of data and information. In addition, whereas definitions of data science and big data are (more or less) available (summarized in Reference 5), Earth science data analytics is virtually ignored in the literature, (barring a few excellent sources).

  4. Time for a paradigm shift in how we transfer knowledge? Making the case for translational science and public engagement

    NASA Astrophysics Data System (ADS)

    Orr, Barron

    2015-04-01

    By any measure, our efforts to protect and restore the environment have failed to keep pace with environmental change, despite extraordinary scientific advances. Clearly there is a problem in knowledge transfer, which is often blamed on limited public awareness, misunderstanding or even apathy. Whether it's moving research to practice, informing policy, or educating the public on the environmental challenges of our time, our track record is poor. A major part of our failure lies in how scientists and practitioners understand (or misunderstand) and practice knowledge transfer. What actually drives knowledge acquisition and the motivation to gain knowledge, and what does this say about the methods used for knowledge transfer? Is the problem a supply issue (deficit of knowledge) or a demand issue (personal relevance)? The false assumptions that spin out of how we conceptualize knowledge acquisition lead to investment in knowledge transfer balanced heavily in "science communication" and "awareness raising" activities that tend to be unidirectional, top-down, and rarely linked to personal interests. Successful adaptation to environmental change requires a theoretical and practical understanding of coupled natural-human systems as well as advances in bridging knowledge systems and the science-society gap. To be effective, this means a "translational science" approach that promotes the capture and integration of scientific and local knowledge, addresses the influences of scale (biophysically, socially, institutionally), encourages mutual learning among all parties, and builds capacity as part of the process. The facilitation and translation of information and meanings among stakeholders can lead to the co-production of knowledge, more informed decision making, and in a very pragmatic way, more effective use of assessments and other products of scientific discovery. The purpose of this presentation is to shed light on what underlies the majority of investment in knowledge transfer, the false assumptions that result, and the ramifications for the methods employed the vast majority of the time by the scientific community. The case for public engagement and participatory approaches will be made, followed by a brief survey of the theories, methods and tools that make engagement possible and effective. Successful adaptation to environmental change requires a much stronger link between science and society. While science communication and awareness raising are necessary, they are much more effective when coupled with robust, formative, and participatory approaches to stakeholder engagement. This is necessary for successful land-based adaptation to environmental change.

  5. Reading for meaning: The foundational knowledge every teacher of science should have

    NASA Astrophysics Data System (ADS)

    Patterson, Alexis; Roman, Diego; Friend, Michelle; Osborne, Jonathan; Donovan, Brian

    2018-02-01

    Reading is fundamental to science and not an adjunct to its practice. In other words, understanding the meaning of the various forms of written discourse employed in the creation, discussion, and communication of scientific knowledge is inherent to how science works. The language used in science, however, sets up a barrier, that in order to be overcome requires all students to have a clear understanding of the features of the multimodal informational texts employed in science and the strategies they can use to decode the scientific concepts communicated in informational texts. We argue that all teachers of science must develop a functional understanding of reading comprehension as part of their professional knowledge and skill. After describing our rationale for including knowledge about reading as a professional knowledge base every teacher of science should have, we outline the knowledge about language teachers must develop, the knowledge about the challenges that reading comprehension of science texts poses for students, and the knowledge about instructional strategies science teachers should know to support their students' reading comprehension of science texts. Implications regarding the essential role that knowledge about reading should play in the preparation of science teachers are also discussed here.

  6. Everyday objects of learning about health and healing and implications for science education

    NASA Astrophysics Data System (ADS)

    Gitari, Wanja

    2006-02-01

    The role of science education in rural development is of great interest to science educators. In this study I investigated how residents of rural Kirumi, Kenya, approach health and healing, through discussions and semistructured and in-depth interviews with 150 residents, 3 local herbalists, and 2 medical researchers over a period of 6 months. I constructed objects of learning by looking for similarities and differences within interpretive themes. Objects of learning found comprise four types of personal learning tools, three types of relational learning tools, three genres of moral obligation, and five genres of knowledge guarding. Findings show that rural people use (among other learning tools) inner sensing to engage thought processes that lead to health and healing knowledge. The sociocultural context is also an important component in learning. Inner sensing and residents' sociocultural context are not presently emphasized in Kenyan science teaching. I discuss the potential use of rural objects of learning in school science, with specific reference to a health topic in the Kenyan science curriculum. In addition, the findings add to the literature in the Science, Technology, Society, and Environment (STSE) approach to science education, and cross-cultural and global science education.

  7. Science/art - art/science: case studies of the development of a professional art product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesko, S.C.; Marchant, M.

    1997-02-24

    Objective was to follow the cognitive and creative processes demonstrated by student research participants as they integrated a developing knowledge of ``big`` science, as practiced at LLNL, into a personal and idiosyncratic visual, graphical, or multimedia product. The participants, all non-scientists, involved in this process, attended a series of design classes, sponsored by LLNL at the Art Center College of Design in Pasadena CA. As a result of this study, we have become interested in the possibility of similar characteristics between scientists and artists. We have also become interested in the different processes that can be used to teach sciencemore » to non-scientists, so that they are able to understand and portray scientific information.« less

  8. What is Science?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, H.

    Helen Quinn is a theoretical particle physicist at SLAC. Throughout her career, she has been passionately involved in science education and public understanding of science. In talking about science, whether to the public or to students, we scientists often assume that they share with us a common idea of science. In my experience that is often not the case. To oversimplify, scientists think of science both as a process for discovering properties of nature, and as the resulting body of knowledge, whereas most people seem to think of science, or perhaps scientists, as an authority that provides some information--just onemore » more story among the many that they use to help make sense of their world. Can we close that gap in understanding? Middle school teachers typically spend a day or so teaching something called the scientific method, but the process by which scientific ideas are developed and tested is messier and much more interesting than that typical capsule description. Some remarkable features of the process are seldom stressed in teaching science, nor are they addressed in explaining any one piece of science to the public. My goal in this column is to provide some ideas for closing that gap in understanding, and to encourage scientists and teachers to communicate about the process as they discuss scientific work.« less

  9. Knowledge creation through total clinical outcomes management: a practice-based evidence solution to address some of the challenges of knowledge translation.

    PubMed

    Lyons, John S

    2009-02-01

    The challenges of knowledge translation in behavioural health care are unique to this field for a variety of reasons including the fact that effective treatment is invariably embedded in a strong relationship between practitioners and the people they serve. Practitioners' knowledge gained from experience and intuition become an even more important consideration in the knowledge translation process since clinicians are, in fact, a component of most treatments. Communication of findings from science must be conceptualized with sensitivity to this reality. Considering knowledge translation as a communication process suggests the application of contemporary theories of communication which emphasize the creation of shared meaning over the transmission of knowledge from one person to the next. In this context outcomes management approaches to create a learning environment within clinical practices that facilitate the goals of knowledge transfer while respecting that the scientific enterprise is neither the sole nor primary repository of knowledge.

  10. "The first step is admitting you have a problem…": the process of advancing science communication in Landscape Conservation Cooperatives in Alaska

    NASA Astrophysics Data System (ADS)

    Buxbaum, T. M.; Trainor, S.; Warner, N.; Timm, K.

    2015-12-01

    Climate change is impacting ecological systems, coastal processes, and environmental disturbance regimes in Alaska, leading to a pressing need to communicate reliable scientific information about climate change, its impacts, and future projections for land and resource management and decision-making. However, little research has been done to dissect and analyze the process of making the results of scientific inquiry directly relevant and usable in resource management. Based within the Science Application division of the US Fish and Wildlife Service, Landscape Conservation Cooperatives (LCCs) are regional conservation science partnerships that provide scientific and technical expertise needed to support conservation planning at landscape scales and promote collaboration in defining shared conservation goals. The five LCCs with jurisdiction in Alaska recently held a training workshop with the goals of advancing staff understanding and skills related to science communication and translation. We report here preliminary results from analysis of workshop discussions and pre- and post- workshop interviews and surveys revealing expectations, assumptions, and mental models regarding science communication and the process of conducting use-inspired science. Generalizable conclusions can assist scientists and boundary organizations bridge knowledge gaps between science and resource management.

  11. A Collaborative Problem-solving Process Through Environmental Field Studies

    NASA Astrophysics Data System (ADS)

    Kim, Mijung; Teck Tan, Hoe

    2013-02-01

    This study explored and documented students' responses to opportunities for collective knowledge building and collaboration in a problem-solving process within complex environmental challenges and pressing issues with various dimensions of knowledge and skills. Middle-school students (n = 16; age 14) and high-school students (n = 16; age 17) from two Singapore public institutions participated in an environmental science field study to experience knowledge integration and a decision-making process. Students worked on six research topics to understand the characteristics of an organic farm and plan for building an ecological village. Students collected and analysed data from the field and shared their findings. Their field work and discussions were video-recorded, and their reflective notes and final reports were collected for data coding and interpretation. The results revealed that throughout the study, students experienced the needs and development of integrated knowledge, encountered the challenges of knowledge sharing and communication during their collaboration, and learned how to cope with the difficulties. Based on research findings, this study further discusses students' learning through a collaborative problem-solving process, including the interdependence of knowledge and the development of mutual relationships such as respect and care for others' knowledge and learning.

  12. Improving Group Work Practices in Teaching Life Sciences: Trialogical Learning

    NASA Astrophysics Data System (ADS)

    Tammeorg, Priit; Mykkänen, Anna; Rantamäki, Tomi; Lakkala, Minna; Muukkonen, Hanni

    2017-08-01

    Trialogical learning, a collaborative and iterative knowledge creation process using real-life artefacts or problems, familiarizes students with working life environments and aims to teach skills required in the professional world. We target one of the major limitation factors for optimal trialogical learning in university settings, inefficient group work. We propose a course design combining effective group working practices with trialogical learning principles in life sciences. We assess the usability of our design in (a) a case study on crop science education and (b) a questionnaire for university teachers in life science fields. Our approach was considered useful and supportive of the learning process by all the participants in the case study: the students, the stakeholders and the facilitator. Correspondingly, a group of university teachers expressed that the trialogical approach and the involvement of stakeholders could promote efficient learning. In our case in life sciences, we identified the key issues in facilitating effective group work to be the design of meaningful tasks and the allowance of sufficient time to take action based on formative feedback. Even though trialogical courses can be time consuming, the experience of applying knowledge in real-life cases justifies using the approach, particularly for students just about to enter their professional careers.

  13. How to link geography, cross-curricular approach and inquiry in science education at the primary schools

    NASA Astrophysics Data System (ADS)

    Karvánková, Petra; Popjaková, Dagmar

    2018-05-01

    Pupil research in school lessons in the sense of Inquiry-Based Education (IBE) is one of the constructivist approaches to education. Inquiry strengthens the positive approach of pupils to natural science subjects, encouraging them to study phenomena and processes taking place in the natural environment around them and use the acquired knowledge in their practical life. Geography as a school subject, due to the multidisciplinary nature of geography as a science, is close to natural sciences as well. This is because of the broadness of the subject of geographical studies, the complex (natural and cultural) landscape. The close links of geography to all cross-sectional themes make it a good support for teaching classical science subjects at schools such as mathematics, physics, chemistry or biology, environmental education. Moreover, the field teaching is one of the strong assets of the implementation of IBE in the school geography. Presented case study on the 'effect of noise on the surroundings' explores the facts mentioned above, in geography teaching. It verifies the pupils' knowledge and skills to adopt the basic principles of IBE in the practice. At the same time, it presents the concrete experiences how the children master the individual stages of IBE during the process of education.

  14. A unique collaborative nursing evidence-based practice initiative using the Iowa model: a clinical nurse specialist, a health science librarian, and a staff nurse's success story.

    PubMed

    Krom, Zachary R; Batten, Janene; Bautista, Cynthia

    2010-01-01

    The purpose of this article was to share how the collaboration of a clinical nurse specialist (CNS), a health science librarian, and a staff nurse can heighten staff nurses' awareness of the evidence-based practice (EBP) process. The staff nurse is expected to incorporate EBP into daily patient care. This expectation is fueled by the guidelines established by professional, accrediting, and regulatory bodies. Barriers to incorporating EBP into practice have been well documented in the literature. A CNS, a health science librarian, and a staff nurse collaborated to develop an EBP educational program for staff nurses. The staff nurse provides the real-time practice issues, the CNS gives extensive knowledge of translating research into practice, and the health science librarian is an expert at retrieving the information from the literature. The resulting collaboration at this academic medical center has increased staff nurse exposure to and knowledge about EBP principles and techniques. The collaborative relationship among the CNS, health science librarian, and staff nurse effectively addresses a variety of barriers to EBP. This successful collaborative approach can be utilized by other medical centers seeking to educate staff nurses about the EBP process.

  15. Ecological literacy and beyond: Problem-based learning for future professionals.

    PubMed

    Lewinsohn, Thomas M; Attayde, José Luiz; Fonseca, Carlos Roberto; Ganade, Gislene; Jorge, Leonardo Ré; Kollmann, Johannes; Overbeck, Gerhard E; Prado, Paulo Inácio; Pillar, Valério D; Popp, Daniela; da Rocha, Pedro L B; Silva, Wesley Rodrigues; Spiekermann, Annette; Weisser, Wolfgang W

    2015-03-01

    Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.

  16. Epistemic modesty, ostentatiousness and the uncertainties of epigenetics: on the knowledge machinery of (social) science.

    PubMed

    Pickersgill, Martyn

    2016-03-01

    Epigenetic processes are garnering attention in the social sciences, where some scholars assert their importance for theorizing social life. I engage with such ideas here by drawing on interviews with leading bioscientists. To begin with, I underscore the (productive) uncertainties of those working in and around epigenetics; I describe these as a manifestation of 'epistemic modesty', and suggest that dissensus helps to propel biomedical innovation. Then, drawing on the concept of 'alien science', I detail some researchers' ambivalences regarding the notion of 'transgenerational inheritance'; their dissatisfaction with the (public) communication practices of other scientists (situated in what I term a regime of 'epistemic ostentatiousness'); and the challenges faced when moderating societal discussion of epigenetics in ways that expand excitement whilst deflating (what researchers regard as) unrealistic expectations. The paper concludes with reflections on the knowledge machinery of the (social) sciences, and employs the study data to interrogate sociological engagements with epigenetics.

  17. Geospatial Standards and the Knowledge Generation Lifescycle

    NASA Technical Reports Server (NTRS)

    Khalsa, Siri Jodha S.; Ramachandran, Rahul

    2014-01-01

    Standards play an essential role at each stage in the sequence of processes by which knowledge is generated from geoscience observations, simulations and analysis. This paper provides an introduction to the field of informatics and the knowledge generation lifecycle in the context of the geosciences. In addition we discuss how the newly formed Earth Science Informatics Technical Committee is helping to advance the application of standards and best practices to make data and data systems more usable and interoperable.

  18. Tsé na'alkaah: Weaving Native and Mainstream Earth and Environmental Science into Place-Based Teacher Professional Development on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Godsey, H. S.; Tsosie, W. B., Jr.

    2017-12-01

    Place-based, culturally-integrated approaches to teaching geoscience and environmental science are aligned with traditional indigenous education, and illustrate the premise that leveraging the cultural capital of Native Americans and other underrepresented groups renders more inclusive and relevant teaching. Situating learning within local landscapes, environments, and communities; and meaningfully connecting mainstream science with Native science and knowledge of place enables students to construct new knowledge that is scaffolded by their own worldview and experiences, and helps lessen any sense of discontinuity that may arise from apparently disparate interpretations of Earth processes. We drew on this philosophy in implementing a multi-year program of summer professional-development workshops for K-12 teachers in the Colorado Plateau and Intermountain regions, many of whom work in schools that serve majority Native American student populations. Through collaboration of geoscientists, Diné (Navajo) cultural experts, and master teachers, we developed and implemented inquiry-rich field excursions in which learning about Earth-system features and processes on the Plateau utilized factual and conceptual knowledge from mainstream geoscience and Diné geoscience (tsé na'alkaah) alike, as well as on other forms of local place knowledge such as Diné toponymy and history. Participants used concepts such as the dynamic interactions of Earth (Nahasdzaan) and Sky (Yádilhil) systems and the natural order (nitsahakees, nahat'a, iina, siihasin) to interpret natural landscape features (e.g., desert landforms, Plateau stratigraphy, Laramide structures) as well as anthropogenic impacts (e.g., uranium extraction and its environmental and health effects) in the field. We will share specific examples of place-based, culturally integrated curriculum and assessment from this program.

  19. Expanding the knowledge translation metaphor.

    PubMed

    Engebretsen, Eivind; Sandset, Tony Joakim; Ødemark, John

    2017-03-13

    Knowledge translation (KT) is a buzzword in modern medical science. However, there has been little theoretical reflection on translation as a process of meaning production in KT. In this paper, we argue that KT will benefit from the incorporation of a more theoretical notion of translation as an entangled material, textual and cultural process. We discuss and challenge fundamental assumptions in KT, drawing on theories of translation from the human sciences. We show that the current construal of KT as separate from and secondary to the original scientific message is close to the now deeply compromised literary view of translation as the simple act of copying the original. Inspired by recent theories of translation, we claim that KT can be more adequately understood in terms of a 'double supplement' - on the one hand, KT offers new approaches to the communication of scientific knowledge to different groups in the healthcare system with the aim of supplementing a lack of knowledge among clinicians (and patients). On the other, it demonstrates that a textual and cultural supplement, namely a concern with target audiences (clinicians and patients), is inevitable in the creation of an 'autonomous' science. Hence, the division between science and its translation is unproductive and impossible to maintain. We discuss some possible implications of our suggested shift in concept by drawing on pharmaceutical interventions for the prevention of HIV as a case. We argue that such interventions are based on a supplementary and paradoxical relation to the target audiences, both presupposing and denying their existence. More sophisticated theories of translation can lay the foundation for an expanded model of KT that incorporates a more adequate and reflective description of the interdependency of scientific, cultural, textual and material practices.

  20. Pharmacist's knowledge, practice and attitudes toward pharmacovigilance and adverse drug reactions reporting process.

    PubMed

    Suyagh, Maysa; Farah, Doaa; Abu Farha, Rana

    2015-04-01

    Adverse drug reactions (ADRs) are a major cause of drug related morbidity and mortality. Pharmacovigilance is the science that plays an essential role in the reduction of ADRs, thus the evolution and growth of this science are critical for effective and safe clinical practice. This study is considered the first study in the region to evaluate pharmacist's knowledge, practice and attitudes toward ADRs reporting after establishing the national ADRs reporting center in Jordan. A cross sectional study was used to evaluate pharmacist knowledge and attitude toward ADRs reporting. A structured validated questionnaire was developed for this purpose and a total of 208 pharmacists were recruited to participate in this study. The majority of pharmacists have insufficient awareness and lack of knowledge about pharmacovigilance and ADRs reporting. Also the rate of reporting of ADRs was extremely poor. Several factors were found to discourage pharmacists from reporting ADRs, which include inadequate information available from the patient, unavailability of pharmacist ADRs form when needed, unawareness of the existence of the national ADRs reporting system. Also pharmacists think that ADRs are unimportant or they did not know how to report them. The results of this study suggest that pharmacists have insufficient knowledge about the concept of pharmacovigilance and spontaneous ADRs reporting. On the other hand, pharmacists had positive attitudes toward pharmacovigilance, despite their little experience with ADRs reporting. Educational programs are needed to increase pharmacist's role in the reporting process, and thus to have a positive impact on the overall patient caring process.

  1. A Unitary-Transformative Nursing Science: From Angst to Appreciation.

    PubMed

    Cowling, W Richard

    2017-10-01

    The discord within nursing regarding the definition of nursing science has created great angst, particularly for those who view nursing science as a body of knowledge derived from theories specific to its unique concerns. The purpose of this brief article is to suggest a perspective and process grounded in appreciation of wholeness that may offer a way forward for proponents of a unitary-transformative nursing science that transcends the discord. This way forward is guided by principles of fostering dissent without contempt, generating a well-imagined future, and garnering appreciatively inspired action for change.

  2. The Ontology of Clinical Research (OCRe): An Informatics Foundation for the Science of Clinical Research

    PubMed Central

    Sim, Ida; Tu, Samson W.; Carini, Simona; Lehmann, Harold P.; Pollock, Brad H.; Peleg, Mor; Wittkowski, Knut M.

    2013-01-01

    To date, the scientific process for generating, interpreting, and applying knowledge has received less informatics attention than operational processes for conducting clinical studies. The activities of these scientific processes — the science of clinical research — are centered on the study protocol, which is the abstract representation of the scientific design of a clinical study. The Ontology of Clinical Research (OCRe) is an OWL 2 model of the entities and relationships of study design protocols for the purpose of computationally supporting the design and analysis of human studies. OCRe’s modeling is independent of any specific study design or clinical domain. It includes a study design typology and a specialized module called ERGO Annotation for capturing the meaning of eligibility criteria. In this paper, we describe the key informatics use cases of each phase of a study’s scientific lifecycle, present OCRe and the principles behind its modeling, and describe applications of OCRe and associated technologies to a range of clinical research use cases. OCRe captures the central semantics that underlies the scientific processes of clinical research and can serve as an informatics foundation for supporting the entire range of knowledge activities that constitute the science of clinical research. PMID:24239612

  3. Translating three states of knowledge--discovery, invention, and innovation

    PubMed Central

    2010-01-01

    Background Knowledge Translation (KT) has historically focused on the proper use of knowledge in healthcare delivery. A knowledge base has been created through empirical research and resides in scholarly literature. Some knowledge is amenable to direct application by stakeholders who are engaged during or after the research process, as shown by the Knowledge to Action (KTA) model. Other knowledge requires multiple transformations before achieving utility for end users. For example, conceptual knowledge generated through science or engineering may become embodied as a technology-based invention through development methods. The invention may then be integrated within an innovative device or service through production methods. To what extent is KT relevant to these transformations? How might the KTA model accommodate these additional development and production activities while preserving the KT concepts? Discussion Stakeholders adopt and use knowledge that has perceived utility, such as a solution to a problem. Achieving a technology-based solution involves three methods that generate knowledge in three states, analogous to the three classic states of matter. Research activity generates discoveries that are intangible and highly malleable like a gas; development activity transforms discoveries into inventions that are moderately tangible yet still malleable like a liquid; and production activity transforms inventions into innovations that are tangible and immutable like a solid. The paper demonstrates how the KTA model can accommodate all three types of activity and address all three states of knowledge. Linking the three activities in one model also illustrates the importance of engaging the relevant stakeholders prior to initiating any knowledge-related activities. Summary Science and engineering focused on technology-based devices or services change the state of knowledge through three successive activities. Achieving knowledge implementation requires methods that accommodate these three activities and knowledge states. Accomplishing beneficial societal impacts from technology-based knowledge involves the successful progression through all three activities, and the effective communication of each successive knowledge state to the relevant stakeholders. The KTA model appears suitable for structuring and linking these processes. PMID:20205873

  4. From science to popularization, and back--the science and journalism of the Belgian economist Gustave de Molinari.

    PubMed

    Van Dijck, Maarten

    2008-09-01

    Sociologists and historians of science, such as Richard Whitley and Stephen Hilgartner, identified a culturally dominant discourse of science popularization in the broader society. In this dominant view, a clear distinction is maintained between scientific knowledge and popularized knowledge. Popularization of science is seen as the process of transmitting real science to a lay public. This discourse on science popularization was criticized by Whitley and Hilgartner as an inadequate simplification. Yet, the battered traditional model of popularization remains remarkably resistant to these theoretical attacks. In this paper I will argue, based on research of the output of the Belgian economist Gustave de Molinari (1819-1912), and more specifically, his opinion on the role of government in economic life, that the boundary between science and popularization in political economy is not clear and that the status of scientists fluctuates over time and in different contexts. It is therefore impossible for historians or economists to distinguish science from popularization based on the essential characteristics or intrinsic quality of the work. De Molinari's ideas are followed through the different media of science and journalism. Although de Molinari himself differentiated between his scientific and "popular" work, the boundary between science and popularization proves to be highly permeable, in both directions.

  5. Infusing Traditional Knowledge and Ways of Knowing into Science Communication Courses at the University of Hawai'i

    ERIC Educational Resources Information Center

    Lemus, Judith D.; Seraphin, Kanesa Duncan; Coopersmith, Ann; Correa, Carly K. V.

    2014-01-01

    We describe a philosophy and process by which cultural awareness and traditional ways of knowing were incorporated into courses on communicating ocean sciences for college and graduate students in Hawai'i. The result is a culturally relevant framework that contextualizes the course for Hawai'i audiences while also enabling students to better…

  6. How Doctoral Students and Graduates Describe Facilitating Experiences and Strategies for Their Thesis Writing Learning Process: A Qualitative Approach

    ERIC Educational Resources Information Center

    Odena, Oscar; Burgess, Hilary

    2017-01-01

    This study considered the sources of facilitating experiences and strategies for thesis writing from doctoral students and graduates (N = 30). The sample was balanced between science and social science knowledge areas, with equal numbers of English as Second Language (ESL) participants in both groups. Semi-structured in-depth interviews were used…

  7. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    ERIC Educational Resources Information Center

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-01-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. ("Journal of Research in…

  8. Emergent Themes from Recent Research Syntheses in Science Education and Their Implications for Research Design, Replication, and Reporting Practices

    ERIC Educational Resources Information Center

    Taylor, Joseph; Furtak, Erin; Kowalski, Susan; Martinez, Alina; Slavin, Robert; Stuhlsatz, Molly; Wilson, Christopher

    2016-01-01

    This article draws upon the experiences of four recent efforts to synthesize the findings of quantitative studies in science education research. After establishing the need for research syntheses in advancing generalizable knowledge and causal effects research in our field, we identify a set themes that emerged in the process of conducting these…

  9. An Analysis of Science Textbooks for Grade 6: The Electric Circuit Lesson

    ERIC Educational Resources Information Center

    Sothayapetch, Pavinee; Lavonen, Jari; Juuti, Kalle

    2013-01-01

    Textbooks are a major tool in the teaching and learning process. This paper presents the results of an analysis of the Finnish and Thai 6th grade science textbooks: electric circuit lesson. Textual and pictorial information from the textbooks were analyzed under four main categories: 1) introduction of the concepts, 2) type of knowledge, 3)…

  10. Exploring Features of Integrative Teaching through a Microanalysis of Connection-Making Processes in a Health Sciences Curriculum

    ERIC Educational Resources Information Center

    Hooper, Barbara R.; Greene, David; Sample, Pat L.

    2014-01-01

    The interconnected nature of knowledge in the health sciences is not always reflected in how curricula, courses, and learning activities are designed. Thus have scholars advocated for more explicit attention to connection-making, or integration, in teaching and learning. However, conceptual and empirical work to guide such efforts is limited. This…

  11. The role of science in wilderness planning: a state-of-knowledge review

    Treesearch

    Edwin E. Krumpe

    2000-01-01

    Wilderness planning has evolved since the Wilderness Act of 1964 in an atmosphere of intense debate and public scrutiny. Wilderness planning and the role science has played in developing the planning process has been influenced by many complex legal mandates, by thorny social issues, and by emerging planning paradigms. Wilderness planning has at times been inspired by...

  12. Extension in Planned Social Change, the Indian Experience.

    ERIC Educational Resources Information Center

    Rudramoorthy, B.

    Extension, the process of extending the knowledge of recent advances in science and technology to the people who need it, has been emphasized in India since the introduction of the Community Development Programme in 1952. Community development involves two distinct processes--extension education and community organization--and has had four…

  13. Engineering Encounters: Identifying an Engineering Design Problem

    ERIC Educational Resources Information Center

    Chizek, Lisa; VanMeeteren, Beth; McDermott, Mark; Uhlenberg, Jill

    2018-01-01

    Engineering is an intriguing way for students to connect the design process with their knowledge of science (NRC 2012). This article describes the "Engineering a Pancake Recipe" design process which was created to make the structure and properties of matter more meaningful for fifth grade students. The whole pancake recipe engineering…

  14. The Red and White Yeast Lab: An Introduction to Science as a Process.

    ERIC Educational Resources Information Center

    White, Brian T.

    1999-01-01

    Describes an experimental system based on an engineered strain of bakers' yeast that is designed to involve students in the process by which scientific knowledge is generated. Students are asked to determine why the yeast grow to form a reproducible pattern of red and white. (WRM)

  15. The Formation of Russian Christian Psychology: Problems and Prospects for Future Development

    ERIC Educational Resources Information Center

    Slobodchikov, Viktor Ivanovich

    2016-01-01

    This article deals with the place of Christian psychology in the system of psychological knowledge. The author points to the need to distinguish between the two systems of knowledge: the psychology of the mind and the psychology of the person. The psychology of the mind is the science devoted to the process of the formation of a particular mental…

  16. Readability and Item Difficulty of the Texas Assessment of Knowledge and Skills Fifth-Grade Science Tests

    ERIC Educational Resources Information Center

    Thomas, Conn; Carpenter, Clint

    2008-01-01

    The development of the Texas Assessment of Knowledge and Skills test involves input from educators across the state. The development process attempts to create an assessment that reflects the skills and content understanding of students at the tested grade level. This study attempts to determine other factors that can affect student performance on…

  17. Creating a Knowledge-Based Economy in the United Arab Emirates: Realising the Unfulfilled Potential of Women in the Science, Technology and Engineering Fields

    ERIC Educational Resources Information Center

    Aswad, Noor Ghazal; Vidican, Georgeta; Samulewicz, Diana

    2011-01-01

    As the United Arab Emirates (UAE) moves towards a knowledge-based economy, maximising the participation of the national workforce, especially women, in the transformation process is crucial. Using survey methods and semi-structured interviews, this paper examines the factors that influence women's decisions regarding their degree programme and…

  18. Scrutinizing A Survey-Based Measure of Science and Mathematics Teacher Knowledge: Relationship to Observations of Teaching Practice

    ERIC Educational Resources Information Center

    Talbot, Robert M., III

    2017-01-01

    There is a clear need for valid and reliable instrumentation that measures teacher knowledge. However, the process of investigating and making a case for instrument validity is not a simple undertaking; rather, it is a complex endeavor. This paper presents the empirical case of one aspect of such an instrument validation effort. The particular…

  19. ILCOR Scientific Knowledge Gaps and Clinical Research Priorities for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: A Consensus Statement.

    PubMed

    Kleinman, Monica E; Perkins, Gavin D; Bhanji, Farhan; Billi, John E; Bray, Janet E; Callaway, Clifton W; de Caen, Allan; Finn, Judith C; Hazinski, Mary Fran; Lim, Swee Han; Maconochie, Ian; Morley, Peter; Nadkarni, Vinay; Neumar, Robert W; Nikolaou, Nikolaos; Nolan, Jerry P; Reis, Amelia; Sierra, Alfredo F; Singletary, Eunice M; Soar, Jasmeet; Stanton, David; Travers, Andrew; Welsford, Michelle; Zideman, David

    2018-04-26

    Despite significant advances in the field of resuscitation science, important knowledge gaps persist. Current guidelines for resuscitation are based on the International Liaison Committee on Resuscitation 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations, which includes treatment recommendations supported by the available evidence. The writing group developed this consensus statement with the goal of focusing future research by addressing the knowledge gaps identified during and after the 2015 International Liaison Committee on Resuscitation evidence evaluation process. Key publications since the 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations are referenced, along with known ongoing clinical trials that are likely to affect future guidelines. © 2018 European Resuscitation Council and American Heart Association, Inc. Published by Elsevier B.V. All rights reserved. Copyright © 2018 European Resuscitation Council and American Heart Association, Inc. Published by Elsevier B.V. All rights reserved.

  20. The Implementation of Integrated Natural Science Textbook of Junior High School be Charged on Character-based Shared Models to Improve the Competence of Learners' Knowledge

    NASA Astrophysics Data System (ADS)

    Rahmiwati, S.; Ratnawulan; Yohandri

    2018-04-01

    The process of science learning can take place if there is an attempt to create an active learning atmosphere and can improve the knowledge competence of learners. One of the efforts made is to use learning resources. Textbooks are a learning resource used by learners. This study aims to describe the increase of knowledge’s competence of learners with integrated Natural Science (IPA) textbook of Junior High School (SMP) be charged on character-based shared model. The method used pre-test, post-test design with one group using the class as a research subject. Pre-test was given before treatment to measure student’s initial understanding of the problem, while the post-test was given to measure student’s final understanding.The subject of this research is students of class VII SMP N 13 Padang. Result of gain score is 0,73. The result showed competence student’s knowledge increased significantly and high categorized.

  1. Scrutinizing a Survey-Based Measure of Science and Mathematics Teacher Knowledge: Relationship to Observations of Teaching Practice

    NASA Astrophysics Data System (ADS)

    Talbot, Robert M.

    2017-12-01

    There is a clear need for valid and reliable instrumentation that measures teacher knowledge. However, the process of investigating and making a case for instrument validity is not a simple undertaking; rather, it is a complex endeavor. This paper presents the empirical case of one aspect of such an instrument validation effort. The particular instrument under scrutiny was developed in order to determine the effect of a teacher education program on novice science and mathematics teachers' strategic knowledge (SK). The relationship between novice science and mathematics teachers' SK as measured by a survey and their SK as inferred from observations of practice using a widely used observation protocol is the subject of this paper. Moderate correlations between parts of the observation-based construct and the SK construct were observed. However, the main finding of this work is that the context in which the measurement is made (in situ observations vs. ex situ survey) is an essential factor in establishing the validity of the measurement itself.

  2. Endangered Mangroves in Segara Anakan, Indonesia: Effective and Failed Problem-Solving Policy Advice.

    PubMed

    Dharmawan, Budi; Böcher, Michael; Krott, Max

    2017-09-01

    The success of scientific knowledge transfer depends on if the decision maker can transform the scientific advice into a policy that can be accepted by all involved actors. We use a science-policy interactions model called research-integration-utilization to observe the process of scientific knowledge transfer in the case of endangered mangroves in Segara Anakan, Indonesia. Scientific knowledge is produced within the scientific system (research), science-based solutions to problems are practically utilized by political actors (utilization), and important links between research and utilization must be made (integration). We looked for empirical evidence to test hypotheses about the research-integration-utilization model based on document analysis and expert interviews. Our study finds that the failures in knowledge transfer are caused by the inappropriate use of scientific findings. The district government is expected by presidential decree to only used scientifically sound recommendations as a prerequisite for designing the regulation. However, the district government prefers to implement their own solutions because they believe that they understand the solutions better than the researcher. In the process of integration, the researcher cannot be involved, since the selection of scientific recommendations here fully depends on the interests of the district government as the powerful ally.

  3. Endangered Mangroves in Segara Anakan, Indonesia: Effective and Failed Problem-Solving Policy Advice

    NASA Astrophysics Data System (ADS)

    Dharmawan, Budi; Böcher, Michael; Krott, Max

    2017-09-01

    The success of scientific knowledge transfer depends on if the decision maker can transform the scientific advice into a policy that can be accepted by all involved actors. We use a science-policy interactions model called research-integration-utilization to observe the process of scientific knowledge transfer in the case of endangered mangroves in Segara Anakan, Indonesia. Scientific knowledge is produced within the scientific system (research), science-based solutions to problems are practically utilized by political actors (utilization), and important links between research and utilization must be made (integration). We looked for empirical evidence to test hypotheses about the research-integration-utilization model based on document analysis and expert interviews. Our study finds that the failures in knowledge transfer are caused by the inappropriate use of scientific findings. The district government is expected by presidential decree to only used scientifically sound recommendations as a prerequisite for designing the regulation. However, the district government prefers to implement their own solutions because they believe that they understand the solutions better than the researcher. In the process of integration, the researcher cannot be involved, since the selection of scientific recommendations here fully depends on the interests of the district government as the powerful ally.

  4. Cybernetics: a possible solution for the "knowledge gap" between "external" and "internal" in evaluation processes.

    PubMed

    Levin-Rozalis, Miri

    2010-11-01

    This paper addresses the issue of the knowledge gap between evaluators and the entity being evaluated: the dilemma of the knowledge of professional evaluators vs. the in-depth knowledge of the evaluated subjects. In order to optimize evaluative outcomes, the author suggests an approach based on ideas borrowed from the science of cybernetics as a method of evaluation--one that enables in-depth perception of the evaluated field without jeopardizing a rigorous study or the evaluator's professionalism. The paper focuses on the main concepts that deal with this dilemma--showing how cybernetics combines the different bodies of knowledge of the different stakeholders, including the professional evaluator, resulting in a coherent body of knowledge created mainly by those internal to the process, owned by them, and relevant to all--those who are internal and those who are external and their different purposes. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Team Science, Justice, and the Co-Production of Knowledge.

    PubMed

    Tebes, Jacob Kraemer

    2018-06-08

    Science increasingly consists of interdisciplinary team-based research to address complex social, biomedical, public health, and global challenges through a practice known as team science. In this article, I discuss the added value of team science, including participatory team science, for generating scientific knowledge. Participatory team science involves the inclusion of public stakeholders on science teams as co-producers of knowledge. I also discuss how constructivism offers a common philosophical foundation for both community psychology and team science, and how this foundation aligns well with contemporary developments in science that emphasize the co-production of knowledge. I conclude with a discussion of how the co-production of knowledge in team science can promote justice. © Society for Community Research and Action 2018.

  6. Forget about data, deliver results

    NASA Astrophysics Data System (ADS)

    Walter, Roland

    2015-12-01

    High-energy astrophysics space missions have pioneered and demonstrated the power of legacy data sets for generating new discoveries, especially when analysed in ways original researchers could not have anticipated. The only way to ensure that the data of present observatories can be effectively used in the future is to allow users to perform on-the-fly data analysis to produce straightforwardly scientific results for any sky position, time and energy intervals without requiring mission specific software or detailed instrumental knowledge. Providing a straightforward interface to complex data and data analysis makes the data and the process of generating science results available to the public and higher education and promotes the visibility of the investment in science to the society. This is a fundamental step to transmit the values of science and to evolve towards a knowledge society.

  7. Information revolution in nursing and health care: educating for tomorrow's challenge.

    PubMed

    Kooker, B M; Richardson, S S

    1994-06-01

    Current emphasis on the national electronic highway and a national health database for comparative health care reporting demonstrates society's increasing reliance on information technology. The efficient electronic processing and managing of data, information, and knowledge are critical for survival in tomorrow's health care organization. To take a leadership role in this information revolution, informatics nurse specialists must possess competencies that incorporate information science, computer science, and nursing science for successful information system development. In selecting an appropriate informatics educational program or to hire an individual capable of meeting this challenge, nurse administrators must look for the following technical knowledge and skill set: information management principles, system development life cycle, programming languages, file design and access, hardware and network architecture, project management skills, and leadership abilities.

  8. Assessing the continuum of applications and societal benefits of US CLIVAR science

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Garfin, G. M.

    2015-12-01

    The new US CLIVAR strategic plan seeks to address the challenges of communicating the climate knowledge generated through its activities and to collaborate with the research and operational communities that may use this knowledge for managing climate risks. This presentation provides results of an overview in progress of the continuum of potential applications of climate science organized and coordinated through US CLIVAR. We define applications more broadly than simply ready for operations or direct use, and find that there are several stages in a continuum of readiness for communication and collaboration with communities that use climate information. These stages include: 1) advancing scientific understanding to a readiness for the next research steps aimed at predictable signals; 2) application of understanding climate phenomena in collaboration with a boundary organization, such as NOAA RISAs DOI Climate Science Centers, and USDA Climate Hubs, to understand how predictable signals may be translated into useable products; 3) use of knowledge in risk framing for a decision process, or in a science synthesis, such as the National Climate Assessment, and 4) transitioning new science knowledge into operational products (e.g. R2O), such as intraseasonal climate prediction. In addition, US CLIVAR has sponsored efforts to build science-to-decisions capacity, e.g., the Postdocs Applying Climate Expertise (PACE) program, in its 7th cohort, which has embedded climate experts into decision-making institutions. We will spotlight accomplishments of US CLIVAR science that are ripe for application in communities that are managing climate risks -- such as drought outlooks, MJO forecasting, extremes, and ocean conditions -- for agricultural production, water use, and marine ecosystems. We will use these examples to demonstrate the usefulness of an "applications continuum framework" identifying pathways from research to applications.

  9. Medical University admission test: a confirmatory factor analysis of the results.

    PubMed

    Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert

    2016-05-01

    The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.

  10. Written Discourse in Scientific Communities: A conversation with two scientists about their views of science, use of language, role of writing in doing science, and compatibility between their epistemic views and language

    NASA Astrophysics Data System (ADS)

    Yore, Larry D.; Florence, Marilyn K.; Pearson, Terry W.; Weaver, Andrew J.

    2006-02-01

    This autobiographical case study of two scientists involved in earlier studies documents a profile of each scientist. These profiles were used to develop semi-structured interview protocols and email surveys for each scientist. The central issues of these data collections were whether these modern, evaluativist scientists believe that the review react revise process of publishing a peer-reviewed research report simply improves the quality of the language or actually changes the science, and how their metacognitive awareness and executive control were demonstrated in their science inquiry and science writing. The scientists served both as informants and co-authors. Both scientists believed that writing and revising research reports improved the science as well as the clarity of the text; that their use of absolutist language related to their beliefs about inquiry and not about science knowledge; that addressing comments about their writing forced them to assess, monitor, and regulate their science inquiries and research reports; and that traditional forms of knowledge about nature and natural events were valuable information sources that stress description rather than physical causality

  11. In science communication, why does the idea of the public deficit always return? Exploring key influences.

    PubMed

    Suldovsky, Brianne

    2016-05-01

    Despite mounting criticism, the deficit model remains an integral part of science communication research and practice. In this article, I advance three key factors that contribute to the idea of the public deficit in science communication, including the purpose of science communication, how communication processes and outcomes are conceptualized, and how science and scientific knowledge are defined. Affording science absolute epistemic privilege, I argue, is the most compelling factor contributing to the continued use of the deficit model. In addition, I contend that the deficit model plays a necessary, though not sufficient, role in science communication research and practice. Areas for future research are discussed. © The Author(s) 2016.

  12. Nursing's ways of knowing and dual process theories of cognition.

    PubMed

    Paley, John; Cheyne, Helen; Dalgleish, Len; Duncan, Edward A S; Niven, Catherine A

    2007-12-01

    This paper is a comparison of nursing's patterns of knowing with the systems identified by cognitive science, and evaluates claims about the equal-status relation between scientific and non-scientific knowledge. Ever since Carper's seminal paper in 1978, it has been taken for granted in the nursing literature that there are ways of knowing, or patterns of knowing, that are not scientific. This idea has recently been used to argue that the concept of evidence, typically associated with evidence-based practice, is inappropriately restricted because it is identified exclusively with scientific research. The paper reviews literature in psychology which appears to draw a comparable distinction between rule-based, analytical cognitive processes and other forms of cognitive processing which are unconscious, holistic and intuitive. There is a convincing parallel between the 'patterns of knowing' distinction in nursing and the 'cognitive processing' distinction in psychology. However, there is an important difference in the way the relation between different forms of knowing (or cognitive processing) is depicted. In nursing, it is argued that the different patterns of knowing have equal status and weight. In cognitive science, it is suggested that the rule-based, analytical form of cognition has a supervisory and corrective function with respect to the other forms. Scientific reasoning and evidence-based knowledge have epistemological priority over the other forms of nursing knowledge. The implications of this claim for healthcare practice are briefly indicated.

  13. The relationship between immediate relevant basic science knowledge and clinical knowledge: physiology knowledge and transthoracic echocardiography image interpretation.

    PubMed

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-10-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent research has implied that a more complex relationship between the two knowledge bases exists. In this study, we explore the relationship between immediate relevant basic science (physiology) and clinical knowledge within a specific domain of medicine (echocardiography). Twenty eight medical students in their 3rd year and 45 physicians (15 interns, 15 cardiology residents and 15 cardiology consultants) took a multiple-choice test of physiology knowledge. The physicians also viewed images of a transthoracic echocardiography (TTE) examination and completed a checklist of possible pathologies found. A total score for each participant was calculated for the physiology test, and for all physicians also for the TTE checklist. Consultants scored significantly higher on the physiology test than did medical students and interns. A significant correlation between physiology test scores and TTE checklist scores was found for the cardiology residents only. Basic science knowledge of immediate relevance for daily clinical work expands with increased work experience within a specific domain. Consultants showed no relationship between physiology knowledge and TTE interpretation indicating that experts do not use basic science knowledge in routine daily practice, but knowledge of immediate relevance remains ready for use.

  14. Formalization of the engineering science discipline - knowledge engineering

    NASA Astrophysics Data System (ADS)

    Peng, Xiao

    Knowledge is the most precious ingredient facilitating aerospace engineering research and product development activities. Currently, the most common knowledge retention methods are paper-based documents, such as reports, books and journals. However, those media have innate weaknesses. For example, four generations of flying wing aircraft (Horten, Northrop XB-35/YB-49, Boeing BWB and many others) were mostly developed in isolation. The subsequent engineers were not aware of the previous developments, because these projects were documented such which prevented the next generation of engineers to benefit from the previous lessons learned. In this manner, inefficient knowledge retention methods have become a primary obstacle for knowledge transfer from the experienced to the next generation of engineers. In addition, the quality of knowledge itself is a vital criterion; thus, an accurate measure of the quality of 'knowledge' is required. Although qualitative knowledge evaluation criteria have been researched in other disciplines, such as the AAA criterion by Ernest Sosa stemming from the field of philosophy, a quantitative knowledge evaluation criterion needs to be developed which is capable to numerically determine the qualities of knowledge for aerospace engineering research and product development activities. To provide engineers with a high-quality knowledge management tool, the engineering science discipline Knowledge Engineering has been formalized to systematically address knowledge retention issues. This research undertaking formalizes Knowledge Engineering as follows: 1. Categorize knowledge according to its formats and representations for the first time, which serves as the foundation for the subsequent knowledge management function development. 2. Develop an efficiency evaluation criterion for knowledge management by analyzing the characteristics of both knowledge and the parties involved in the knowledge management processes. 3. Propose and develop an innovative Knowledge-Based System (KBS), AVD KBS, forming a systematic approach facilitating knowledge management. 4. Demonstrate the efficiency advantages of AVDKBS over traditional knowledge management methods via selected design case studies. This research formalizes, for the first time, Knowledge Engineering as a distinct discipline by delivering a robust and high-quality knowledge management and process tool, AVDKBS. Formalizing knowledge proves to significantly impact the effectiveness of aerospace knowledge retention and utilization.

  15. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries.

    PubMed

    Sutton, Abigail M; Rudd, Murray A

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on 'expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent 'shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  16. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries

    NASA Astrophysics Data System (ADS)

    Sutton, Abigail M.; Rudd, Murray A.

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on `expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent `shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  17. Navigating the science-policy-practice interface in rural SW China

    NASA Astrophysics Data System (ADS)

    Naylor, Larissa; Zheng, Ying; Oliver, David; Buckerfield, Sarah; Peng, Tao; Wang, Shijie; Waldron, Susan

    2017-04-01

    There is growing academic, funder and government interest in developing effective methods of successfully navigating the science-policy-practice interface. The practice of interaction between the science community and policy and practice is often termed 'knowledge exchange'. This involves the two-way co-production of knowledge between researchers and practitioners to improve the usefulness of science for society. We report here on an examination of current knowledge exchange understanding and practice by critical zone scientists in the UK and China, as well as report on surveys of 24 leaders from county to village levels of governance and 312 farmers. The practitioner data were collected in Puding catchment, Guizhou province, China as part of a joint UK-China funded research programme that is designed to help improve the resiliency of fragile karst agricultural landscapes in this region. We asked each group of participants (scientists, leaders (county, town and village) and farmers) about their experience of knowledge exchange, of working with each other and how they would like to learn. These data show that UK based scientists have more understanding and experience of knowledge exchange than the Chinese scientists. They also demonstrate consistencies in the types of KE processes (farm visits) that were most suitable, and variation between these methods and those that we identified as being suitable in the project proposal (e.g. decision support tool). Semi-structured interviews were used to gain greater insight into the science-policy-practice interface, where it was evident that farmers had little or no direct interaction with scientists, where the majority of training is delivered county-level schemes where scientists are appointed to deliver the training. Between village differences in understanding of critical zone science issues and access to training and advice were evident. All practitioners surveyed were very enthusiastic about the science team returning to work with them, and over 50% of respondents in all groups were interested in learning more. These baseline knowledge exchange data will be used to help inform the knowledge exchange activities within the UK-China CZO projects and aid local policymakers in understanding the types of knowledge exchange that the farming community (n=312) are most interested in receiving. More broadly, these data also demonstrate the importance of engaging with key users early in a project, to help shape the types and styles of activities that are used to help co-produce and share science with practitioners.

  18. Toward the integration of expert knowledge and instrumental data to control food processes: application to Camembert-type cheese ripening.

    PubMed

    Sicard, M; Perrot, N; Leclercq-Perlat, M-N; Baudrit, C; Corrieu, G

    2011-01-01

    Modeling the cheese ripening process remains a challenge because of its complexity. We still lack the knowledge necessary to understand the interactions that take place at different levels of scale during the process. However, information may be gathered from expert knowledge. Combining this expertise with knowledge extracted from experimental databases may allow a better understanding of the entire ripening process. The aim of this study was to elicit expert knowledge and to check its validity to assess the evolution of organoleptic quality during a dynamic food process: Camembert cheese ripening. Experiments on a pilot scale were carried out at different temperatures and relative humidities to obtain contrasting ripening kinetics. During these experiments, macroscopic evolution was evaluated from an expert's point of view and instrumental measurements were carried out to simultaneously monitor microbiological, physicochemical, and biochemical kinetics. A correlation of 76% was established between the microbiological, physicochemical, and biochemical data and the sensory phases measured according to expert knowledge, highlighting the validity of the experts' measurements. In the future, it is hoped that this expert knowledge may be integrated into food process models to build better decision-aid systems that will make it possible to preserve organoleptic qualities by linking them to other phenomena at the microscopic level. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. The evolution and provision of expert knowledge and its effective utilisation

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter

    2017-04-01

    The specific aims of increasing Resilience to Natural Hazards in China programme are (i) to improve hazard forecasting, risk mitigation and preparedness based upon reliable knowledge of the fundamental processes involved and underpinned by basic science and, (ii) to improve the uptake of and responses to scientific advice, by developing risk-based approaches to natural hazards in collaboration with the communities at risk. One of the programme's principal goals is to integrate natural and social science research to increase the benefits for those affected by natural hazards. To that end a co-productive approach to research is expected, involving a framework for sharing knowledge and values between natural and social scientists and consultation with policy makers, civil society and other stakeholders. This paper explore knowledge relationships and reflective learning across disciplines. There is commonly a disjunction between the evolution and provision of expert knowledge and its effective utilisation. Building on experience as Strategic Advisor to the Increasing Resilience to Natural Hazards programme, this paper addresses the research needs to assess how scientific knowledge and risk reduction strategies can be most effectively developed and communicated.

  20. Timely injection of knowledge when interacting with stakeholders and policy makers.

    NASA Astrophysics Data System (ADS)

    Bouma, Johan

    2015-04-01

    Timely injection of knowledge when interacting with stakeholders and policy makers. J.Bouma Em. Prof. Soil Science, Wageningen University, the Netherlands During the last decade, the spectacular development of Information and Communication Technology (ICT) has strongly increased the accessible amount of data and information for stakeholders and policy makers and the science community is struggling to adjust to these developments. In the Netherlands not only industry has now a major impact on the research agenda but this is now to be extended to citizens at large. Rather than complain about an apparent "gap" between science and society and wrestle with the challenge to bridge it in a rather reactive manner, the science community would be well advised to initiate a proactive approach, showing that knowledge implies a deep understanding of issues and processes that does not necessarily follow from having data and information. The "gap" certainly applies to soil research in the context of sustainable development where many often well informed stakeholders are involved with widely different opinions, norms and values. Changes are suggested in the manner in which we frame our work: (i) longer involvement with projects from initiation to implementation in practice; (ii) active role of "knowledge brokers" who inject the right type of knowledge during the entire project run in a joint-learning mode, and (iii) not proposing new research from a science perspective but demonstrating a clear need because existing knowledge is inadequate. Yet more conceptual discussions about e.g. inter- and transdisciplinarity, worrysome soil degradation and lack of professional recognition are less meaningful than specific case studies demonstrating the crucial role of soil science when analysing land-based environmental problems. New narratives are needed instead of statistics, openness to learn from best practices and pilot projects as a necessary next step beyond awareness raising. Soil scientists have a rich history of working with stakeholders. They should re-discover their roots and publications should not only focus on the science alone but also on the societal context in which the studies were made. Much has already been done. It needs to be framed more effectively.

  1. Problematizing the Practicum to Integrate Practical Knowledge

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Campbell, Todd; Fazio, Xavier; Stefanile, Antonio; Tkaczyk, Nicholas

    2014-10-01

    This article examines the influence of a practicum teaching experience on two pre-service science teachers. The research is focused on examining a practicum in a secondary science department that actively promotes the teaching and learning of science as inquiry. We investigated the process through which the pre-service science teachers integrated their practical knowledge, and examined this in the context of the quantified reformed instruction they enacted. Using a mixed methods design, we have quantified these pre-service science teachers' practice using the Reformed Teaching Observation Protocol (Piburn et al. 2000), in concert with a narrative methodology drawn from in-depth interviews. Our analysis of the data indicates two important conclusions. The first is the importance of a consistently reformed image of science education being presented and practiced by both science teacher educators and cooperating teachers. The second is the recognition that a consistently reformed image may not be sufficient, of itself, to challenge pre-service teachers' views of science education. Pre-service teachers appear to be heavily influenced by their biographies and own science education. Consequently, it appears the extent to which a pre-service teacher identifies problems of teaching and learning, and then works toward possible resolution, influences their progress in shaping reformed views of science education.

  2. Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2016-06-01

    Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.

  3. Semantically-enabled Knowledge Discovery in the Deep Carbon Observatory

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.; Ma, X.; Erickson, J. S.; West, P.; Fox, P. A.

    2013-12-01

    The Deep Carbon Observatory (DCO) is a decadal effort aimed at transforming scientific and public understanding of carbon in the complex deep earth system from the perspectives of Deep Energy, Deep Life, Extreme Physics and Chemistry, and Reservoirs and Fluxes. Over the course of the decade DCO scientific activities will generate a massive volume of data across a variety of disciplines, presenting significant challenges in terms of data integration, management, analysis and visualization, and ultimately limiting the ability of scientists across disciplines to make insights and unlock new knowledge. The DCO Data Science Team (DCO-DS) is applying Semantic Web methodologies to construct a knowledge representation focused on the DCO Earth science disciplines, and use it together with other technologies (e.g. natural language processing and data mining) to create a more expressive representation of the distributed corpus of DCO artifacts including datasets, metadata, instruments, sensors, platforms, deployments, researchers, organizations, funding agencies, grants and various awards. The embodiment of this knowledge representation is the DCO Data Science Infrastructure, in which unique entities within the DCO domain and the relations between them are recognized and explicitly identified. The DCO-DS Infrastructure will serve as a platform for more efficient and reliable searching, discovery, access, and publication of information and knowledge for the DCO scientific community and beyond.

  4. What is This Thing Called Sensemaking?: A Theoretical Framework for How Physics Students Resolve Inconsistencies in Understanding

    NASA Astrophysics Data System (ADS)

    Odden, Tor Ole B.

    Students often emerge from introductory physics courses with a feeling that the concepts they have learned do not make sense. In recent years, science education researchers have begun to attend to this type of problem by studying the ways in which students make sense of science concepts. However, although many researchers agree intuitively on what sensemaking looks like, the literature on sensemaking is both theoretically fragmented and provides few guidelines for how to encourage and support the process. In this dissertation, I address this challenge by proposing a theoretical framework to describe students' sensemaking processes. I base this framework both on the science education research literature on sensemaking and on a series of video-recorded cognitive, clinical interviews conducted with introductory physics students enrolled in a course on electricity and magnetism. Using the science education research literature on sensemaking as well as a cognitivist, dynamic network model of mind as a theoretical lens, I first propose a coherent definition of sensemaking. Then, using this definition I analyze the sensemaking processes of these introductory physics students during episodes when they work to articulate and resolve gaps or inconsistencies in their understanding. Based on the students' framing, gestures, and dialogue I argue that the process of sensemaking unfolds in a distinct way, which we can describe as an epistemic game in which students first build a framework of knowledge, then identify a gap or inconsistency in that framework, iteratively build an explanation to resolve the gap or inconsistency, and (sometimes) successfully resolve it. I further argue that their entry into the sensemaking frame is facilitated by a specific question, which is in turn motivated by a gap or inconsistency in knowledge that I call the vexation point. I also investigate the results of sensemaking, arguing that students may use the technique of conceptual blending to both "defragment" their knowledge and resolve their vexation points.

  5. Proceedings of National Symposium on the Role of Academia in National Competitiveness and Total Quality Management (1st) Held in Morgantown, West Virginia on 18-20 July 1990

    DTIC Science & Technology

    1990-07-20

    sciences: The engineering sciences have their roots in mathematics and basic sciences but carry knowledge further toward creative application. These studies...business, and government partnership to develop TQM as a process to improve national competitiveness. • Investigate and develop resources to implement...and develop TQM. 4 • Investigate and resolve TQM curriculum and accreditation issues. • Develop measurements to assess the effectiveness of TQM in the

  6. A pragmatic conception of science: Implications for science teaching

    NASA Astrophysics Data System (ADS)

    Sessoms, Deidre Bates

    In this dissertation, I examine various philosophical conceptions of the nature of science---its goals, methods and products---and link those views to how science is taught. While the review begins in the 1600s, the focus is primarily on logical positivism. The logical positivist view of science prevailed for much of the twentieth century and has greatly influenced how science is taught. The review section culminates with current conceptions of science from the fields of philosophy, sociology, feminist studies and radical studies of science. These various conceptions of the nature of science are linked to how science is currently taught, at the K--12 level and at the university. In particular, the logical positivist conception has influenced the teaching of science by emphasizing the products of science (factual knowledge and theories) over the processes of science (the social methods of knowledge production). As a result of viewing science as the logical positivists did, teachers primarily focus on science as unchanging factual knowledge, at the expense of examining the social and cultural aspects of scientific practices. I develop a pragmatic conception of the method of science as reflective thinking that we effectively use in our everyday lives. Linking that conception with the aims that John Dewey outlined for schools in a democratic society points the way towards certain goals and methods for teaching science. Therefore, I explore the type of science teaching that might result when viewing science as a pragmatic activity conducted in a democracy. Teaching of this sort would involve students in working together on shared problems that arise in the context of daily life. For science students at the university, this would include participating in and critiquing scientific research in active research laboratories. Implementing this view of science teaching might result in modifications in the practices and goals of science. Lastly, the experiences of a group of under-represented minority students who studied the sciences at the university are used to illustrate both the promises and the pitfalls of attempting to incorporate a pragmatic view of science into science teaching.

  7. Exploring Preschool Children's Science Content Knowledge

    ERIC Educational Resources Information Center

    Guo, Ying; Piasta, Shayne B.; Bowles, Ryan P.

    2015-01-01

    Research Findings: The purpose of this study was to describe children's science content knowledge and examine the early predictors of science content knowledge in a sample of 194 typically developing preschool children. Children's science content knowledge was assessed in the fall (Time 1) and spring (Time 2) of the preschool year. Results showed…

  8. Factors influencing public risk-benefit considerations of nanotechnology: Assessing the effects of mass media, interpersonal communication, and elaborative processing.

    PubMed

    Ho, Shirley S; Scheufele, Dietram A; Corley, Elizabeth A

    2013-07-01

    This study examines the influence of mass media, interpersonal communication, and elaborative processing on public perception of benefits and risks of nanotechnology, based on a large-scale nationally representative telephone survey of U.S. adult citizens. Results indicate that cognitive processes in the form of news elaboration had a significant positive main effect on benefits outweigh risks perception. The influences of attention to science in newspapers, attention to science news on television, and interpersonal communication about science on public perception of benefits outweigh risks were moderated by elaborative processing, after controlling for socio-demographic variables, religious beliefs, trust in scientists, and scientific knowledge. The findings highlight the importance of elaborative processing when it comes to understanding how the mass media differentially influence public benefits outweigh risks perception of emerging technologies. Specifically, high elaborative processing emphasizes higher levels of perceived benefits outweigh risks than low elaborative processing. This study explores explanations for this phenomenon and offers implications for future research and policy.

  9. The Use of Fuzzy Theory in Grading of Students in Math

    ERIC Educational Resources Information Center

    Bjelica, Momcilo; Rankovic, Dragica

    2010-01-01

    The development of computer science, statistics and other technological fields, give us more opportunities to improve the process of evaluation of degree of knowledge and achievements in a learning process of our students. More and more we are relying on the computer software to guide us in the grading process. An improved way of grading can help…

  10. Meaningful Engagement in Scientific Practices: How Classroom Communities Develop Authentic Epistemologies for Science

    NASA Astrophysics Data System (ADS)

    Krist, Christina Rae

    Recent reforms in science education, based on decades of learning research, emphasize engaging students in science and engineering practices as the means to develop and refine disciplinary ideas. These reforms advocate an epistemic shift in how school science is done: from students learning about science ideas to students figuring out core science ideas. This shift is challenging to implement: how do we bring the goals and practices of a discipline into classroom communities in meaningful ways that go beyond simply following rote scientific procedures? In this dissertation, I investigate how classroom communities learn to engage meaningfully in scientific practices, characterizing their engagement as a process of epistemic learning. I take a situated perspective that defines learning as shifts in how members engage in communities of practice. I examine students' epistemic learning as a function of their participation in a classroom community of scientific practice along two dimensions: what they do, or the practical epistemic heuristics they use to guide how they build knowledge; and who they are, or how ownership and authorship of ideas is negotiated and affectively marked through interaction. I focus on a cohort of students as they move from 6th to 8 th grade. I analyze three science units, one from each grade level, to look at the epistemic heuristics implicit in student and teacher talk and how the use of those heuristics shifts over time. In addition, I examine one anomalous 8th grade class to look at how students and the teacher position themselves and each other with respect to the ideas in their classroom and how that positioning supports epistemic learning. Taken together, these analyses demonstrate how students' engagement in scientific practices evolves in terms of what they do and who they are in relation to the knowledge and ideas in their classroom over time. I propose a model for epistemic learning that articulates how classroom communities develop practical epistemologies that guide their knowledge building work and how the development of these epistemologies is identity-laden. I find that for engagement in science practices to be meaningful, classroom communities' engagement is motivated by the unknowns in students' knowledge, or what they still need to figure out and explain. In contexts where knowledge is uncertain, practical epistemic heuristics become authentically useful for students' knowledge building work. However, using unknowns to motivate learning can be distressing for students. The anomalous case study suggests that students' meaningful engagement in science knowledge building requires particular affective supports from the teacher that allow students to take on and embrace new identities with respect to ideas in their classroom. Taken together, the model of epistemic learning that I propose suggests that both conceptual and affective supports are necessary to shift science classrooms in ways that engage students in meaningful science knowledge building.

  11. Learning about Bones at a Science Museum: Examining the Alternate Hypotheses of Ceiling Effect and Prior Knowledge

    ERIC Educational Resources Information Center

    Judson, Eugene

    2012-01-01

    Groups of children at a science museum were pre- and post-assessed with a type of concept map, known as personal meaning maps, to determine what new understandings, if any, they were gaining from participation in a series of structured hands-on activities about bones and the process of bones healing. Close examination was made regarding whether…

  12. A View of the Tip of the Iceberg: Revisiting Conceptual Continuities and Their Implications for Science Learning

    ERIC Educational Resources Information Center

    Brown, Bryan A.; Kloser, Matt

    2009-01-01

    We respond to Hwang and Kim and Yeo's critiques of the conceptual continuity framework in science education. First, we address the criticism that their analysis fails to recognize the situated perspective of learning by denying the dichotomy of the formal and informal knowledge as a starting point in the learning process. Second, we address the…

  13. Effectiveness of a Curricular and Professional Development Intervention at Improving Elementary Teachers' Science Content Knowledge and Student Achievement Outcomes: Year 1 Results

    ERIC Educational Resources Information Center

    Diamond, Brandon S.; Maerten-Rivera, Jaime; Rohrer, Rose Elizabeth; Lee, Okhee

    2014-01-01

    Teacher knowledge of science content is an important but under-studied construct. A curricular and professional development intervention consisting of a fifth grade science curriculum, teacher workshops, and school site support was studied to determine its effect on teachers' science content knowledge as measured by a science knowledge test,…

  14. What Happens to Student Learning When Color Is Added to a New Knowledge Representation Strategy? Implications from Visual Thinking Networking.

    ERIC Educational Resources Information Center

    Longo, Palma J.

    A long-term study was conducted to test the effectiveness of visual thinking networking (VTN), a new generation of knowledge representation strategies with 56 ninth grade earth science students. The recent findings about the brain's organization and processing conceptually ground VTN as a new cognitive tool used by learners when making their…

  15. Developing Content Knowledge in Students through Explicit Teaching of the Nature of Science: Influences of Goal Setting and Self-Monitoring

    ERIC Educational Resources Information Center

    Peters, Erin E.

    2012-01-01

    Knowledge about the nature of science has been advocated as an important component of science because it provides a framework on which the students can incorporate content knowledge. However, little empirical evidence has been provided that links nature of science knowledge with content knowledge. The purpose of this mixed method study was to…

  16. Teaching "Digital Earth" technologies in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Griffiths, J. A.

    2014-04-01

    As part of a review process for a module entitled "Digital Earth" which is currently taught as part of a BSc in Environmental Sciences program, research into the current provision of Geographical Information Science and Technology (GIS&T) related modules on UKbased Environmental Science degrees is made. The result of this search is used with DiBiase et al. (2006) "Body of Knowledge of GIS&T" to develop a foundation level module for Environmental Sciences. Reference is also made to the current provision geospatial analysis techniques in secondary and tertiary education in the UK, US and China, and the optimal use of IT and multimedia in geo-education.

  17. Literature Review on Processing and Analytical Methods for ...

    EPA Pesticide Factsheets

    Report The purpose of this report was to survey the open literature to determine the current state of the science regarding the processing and analytical methods currently available for recovery of F. tularensis from water and soil matrices, and to determine what gaps remain in the collective knowledge concerning F. tularensis identification from environmental samples.

  18. Cognitive Science and Instructional Technology: Improvements in Higher Order Thinking Strategies.

    ERIC Educational Resources Information Center

    Tennyson, Robert D.

    This paper examines the cognitive processes associated with higher-order thinking strategies--i.e., cognitive processes directly associated with the employment of knowledge in the service of problem solving and creativity--in order to more clearly define a prescribed instructional method to improve problem-solving skills. The first section of the…

  19. Interactivity, Information Processing, and Learning on the World Wide Web.

    ERIC Educational Resources Information Center

    Tremayne, Mark; Dunwoody, Sharon

    2001-01-01

    Examines the role of interactivity in the presentation of science news on the World Wide Web. Proposes and tests a model of interactive information processing that suggests that characteristics of users and Web sites influence interactivity, which influences knowledge acquisition. Describes use of a think-aloud method to study participants' mental…

  20. Investigating elementary principals' science beliefs and knowledge and its relationship to students' science outcomes

    NASA Astrophysics Data System (ADS)

    Khan, Uzma Zafar

    The aim of this quantitative study was to investigate elementary principals' beliefs about reformed science teaching and learning, science subject matter knowledge, and how these factors relate to fourth grade students' superior science outcomes. Online survey methodology was used for data collection and included a demographic questionnaire and two survey instruments: the K-4 Physical Science Misconceptions Oriented Science Assessment Resources for Teachers (MOSART) and the Beliefs About Reformed Science Teaching and Learning (BARSTL). Hierarchical multiple regression analysis was used to assess the separate and collective contributions of background variables such as principals' personal and school characteristics, principals' science teaching and learning beliefs, and principals' science knowledge on students' superior science outcomes. Mediation analysis was also used to explore whether principals' science knowledge mediated the relationship between their beliefs about science teaching and learning and students' science outcomes. Findings indicated that principals' science beliefs and knowledge do not contribute to predicting students' superior science scores. Fifty-two percent of the variance in percentage of students with superior science scores was explained by school characteristics with free or reduced price lunch and school type as the only significant individual predictors. Furthermore, principals' science knowledge did not mediate the relationship between their science beliefs and students' science outcomes. There was no statistically significant variation among the variables. The data failed to support the proposed mediation model of the study. Implications for future research are discussed.

  1. Soft Skills for Hard Impact

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Davidson, Joy; Knoth, Petr; Kuchma, Iryna; Schmidt, Birgit; Rettberg, Najla; Rogrigues, Eloy

    2015-04-01

    Marine and Earth Science graduates will be under increasing pressure in future to delve into research questions of relevance to societal challenges. Even fundamental research focused on basic processes of the environment and universe will in the coming decade need to justify their societal impact. As the Research Excellence Frameworks (REF) for research evaluation shift more and more away from the classical Impact Factor and number of peer-reviewed publications to "societal impact", the question remains whether the current graduates, and future researchers, are sufficiently prepared to deal with this reality. The essential compliment of skills beyond research excellence, rigor and method are traditionally described as "soft skills". This includes how to formulate an argument, how to construct a scientific publication, how to communicate such publications to non-experts, place them in context of societal challenges and relevant policies, how to write a competitive proposal and "market" one's research idea to build a research group around an interesting research topic. Such "soft skills" can produce very measurable and concrete impact for career development, but are rarely provided systematically and coherently by graduate schools in general. The presentation will focus on Open Science as a set of "soft skills", and demonstrate why graduate schools should train Open Science competencies alongside research excellence by default. Open Science is about removing all barriers to research process and outputs, both published and unpublished, and directly supports transparency and reproducibility of the research process. Open Science as a set of news competencies can also foster unexpected collaborations, engage citizen scientists into co-creation of solutions to societal challenges, as well as use concepts of Open Science to transfer new knowledge to the knowledge-based private sector, and help them with formulating more competitive research proposals in future.

  2. The effects of conducting authentic field-geology research on high school students' understanding of the nature of science, and their views of themselves as research scientists

    NASA Astrophysics Data System (ADS)

    Millette, Patricia M.

    Authentic field geology research is a inquiry method that encourages students to interact more with their local environment, and by solving genuine puzzles, begin to increase their intuitive understanding of the nature and processes of science. The goal of the current study was to determine if conducting authentic field research and giving high school students the opportunity to present findings to adult audiences outside of the school setting 1) enhances students' understanding of the nature of science, and 2) affects students views of themselves as researchers. To accomplish this, ninth-grade students from a public school in northern New England engaged in a community-initiated glacial geology problem, completed a field research investigation, and presented their findings at several professional conferences. Following the completion of this student-centered field research, I investigated its effects by using a mixed methods approach consisting of qualitative and quantitative data from two sources. These included selected questions from an open-response survey (VNOS-c), and interviews that were conducted with fifteen of the students of different ages and genders. Findings show that conducting original field research seems to have a positive influence on these students' understanding of the NOS as well as the processes of science. Many of the students reported feelings of accomplishment, acceptance of responsibility for the investigation, a sense of their authentic contribution to the body of scientific knowledge in the world, and becoming scientists. This type of authentic field investigation is significant because recent reforms in earth-science education stress the importance of students learning about the nature and processes of scientific knowledge along with science content.

  3. Integration science and distributed networks

    NASA Astrophysics Data System (ADS)

    Landauer, Christopher; Bellman, Kirstie L.

    2002-07-01

    Our work on integration of data and knowledge sources is based in a common theoretical treatment of 'Integration Science', which leads to systematic processes for combining formal logical and mathematical systems, computational and physical systems, and human systems and organizations. The theory is based on the processing of explicit meta-knowledge about the roles played by the different knowledge sources and the methods of analysis and semantic implications of the different data values, together with information about the context in which and the purpose for which they are being combined. The research treatment is primarily mathematical, and though this kind of integration mathematics is still under development, there are some applicable common threads that have emerged already. Instead of describing the current state of the mathematical investigations, since they are not yet crystallized enough for formalisms, we describe our applications of the approach in several different areas, including our focus area of 'Constructed Complex Systems', which are complex heterogeneous systems managed or mediated by computing systems. In this context, it is important to remember that all systems are embedded, all systems are autonomous, and that all systems are distributed networks.

  4. Applying Historic Science Communication Lessons to Today's Global Change Issues

    NASA Astrophysics Data System (ADS)

    Rocchio, L. E.

    2009-12-01

    As global population surges towards seven billion and anthropogenic impacts ricochet throughout Earth’s environment, effective science communication has become essential. In today’s digital world where science communication must contend with stiff competition for audience attention, it is crucial to understand the lessons gleaned from a century worth of science communication research. Starting in the early part of the twentieth century a cadre of American scientists began to advocate for better public understanding of science, arguing that better understanding of science meant a better quality of life, better public affairs deliberations, and the elevation of democracy and culture. To improve science communication, many models of the communication process have been developed since then. Starting in the 1940s, science communication researchers adopted the linear communication model of electrical engineering. Over time, the one-way scientific communication of the linear model came to be identified with the deficit model approach—which assumes little prior scientific knowledge on the part of the receiver. A major failure of the deficit model was witnessed during the Mad Cow Disease outbreak in the UK: beef safety was over-simplified in the communication process, people were given a false sense of security, many ended up sick, and public trust in government plummeted. Of the many lessons learned from failures of the deficit model, arguably, the most significant lesson is that the public’s prior knowledge and life experience is always brought to bear on the message, i.e. the message must be contextualized. Here, we examine the major science communication lessons of the past century and discuss how they can inform more effective global change communication.

  5. Modifiable futures: science fiction at the bench.

    PubMed

    Milburn, Colin

    2010-09-01

    Science fiction remains an alien dimension of the history of science. Historical and literary studies of science have become increasingly attentive to various "literary technologies" in scientific practice, the metaphorical features of scientific discourse, and the impact of popular science writing on the social development of scientific knowledge. But the function of science fiction and even literature as such in the history of scientific and technological innovation has often been obscured, misconstrued, or repudiated owing to conventional notions of authorship, influence, and the organic unity of texts. The better to address those close encounters where scientific practice makes use of speculative fiction, this essay proposes that we instead analyze such exchanges as processes of appropriation, remixing, and modification.

  6. EarthCube: Advancing Partnerships, Collaborative Platforms and Knowledge Networks in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Stephen, Diggs; Lee, Allison

    2014-05-01

    The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.

  7. From Conflict to Collaboration: How Tribal Ways of Knowing Can Improve the Environmental Review Process

    NASA Astrophysics Data System (ADS)

    Gaughen, S.

    2017-12-01

    Tribal ways of knowing are often neglected during the process of creating science-based environmental policies and in conducting environmental reviews. Yet, because government-to-government consultation between Tribes and government agencies is a vital component to policy and project planning, it behooves all parties to bring an understanding of different epistemologies to the table. This presentation discusses cases where Tribal knowledge has been neglected and ignored, leading to destructive conflicts and even violence, and presents an alternative vision of how Tribal ecological and cultural knowledge can inform and enhance the policy-making and review process, thus leading to more positive outcomes.

  8. The Influence of Laboratory Instruction on Science Achievement and Attitude Toward Science across Gender Differences

    NASA Astrophysics Data System (ADS)

    Freedman, Michael P.

    This study investigated the use of a hands-on laboratory program to improve attitudes toward science and increase achievement levels in science knowledge among students in a ninth grade physical science course. An objective final examination measured achievement in science knowledge, and a Q sort survey measured attitude toward science. A t test compared the groups' differences in achievement and attitude toward science. An analysis of covariance determined the effect of the laboratory treatment on the dependent variable, with attitude toward science as the covariable. The findings showed that students with regular laboratory instruction scored significantly higher (p < .05) on achievement in science knowledge than those without laboratory instruction, girls with regular laboratory instruction scored significantly higher (p < .05) on achievement in science knowledge than those without laboratory instruction, and girls and boys within the treatment group did not differ significantly on achievement in science knowledge. No significant differences were reported in attitude toward science between or within groups.

  9. Constructivist Learning Theory and Climate Science Communication

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.

    2012-12-01

    Communicating climate science is a form of education. A scientist giving a television interview or testifying before Congress is engaged in an educational activity, though one not identical to teaching graduate students. Knowledge, including knowledge about climate science, should never be communicated as a mere catalogue of facts. Science is a process, a way of regarding the natural world, and a fascinating human activity. A great deal is already known about how to do a better job of science communication, but implementing change is not easy. I am confident that improving climate science communication will involve the paradigm of constructivist learning theory, which traces its roots to the 20th-century Swiss epistemologist Jean Piaget, among others. This theory emphasizes the role of the teacher as supportive facilitator rather than didactic lecturer, "a guide on the side, not a sage on the stage." It also stresses the importance of the teacher making a serious effort to understand and appreciate the prior knowledge and viewpoint of the student, recognizing that students' minds are not empty vessels to be filled or blank slates to be written on. Instead, students come to class with a background of life experiences and a body of existing knowledge, of varying degrees of correctness or accuracy, about almost any topic. Effective communication is also usually a conversation rather than a monologue. We know too that for many audiences, the most trusted messengers are those who share the worldview and cultural values of those with whom they are communicating. Constructivist teaching methods stress making use of the parallels between learning and scientific research, such as the analogies between assessing prior knowledge of the audience and surveying scientific literature for a research project. Meanwhile, a well-funded and effective professional disinformation campaign has been successful in sowing confusion, and as a result, many people mistakenly think climate change science is unreliable or is controversial within the expert community. Thus, an urgent task for climate scientists may be to give the public useful guidelines for recognizing and rejecting junk science and disinformation.

  10. Mi-STAR: Designing Integrated Science Curriculum to Address the Next Generation Science Standards and Their Foundations

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Huntoon, J. E.

    2015-12-01

    Mi-STAR (Michigan Science Teaching and Assessment Reform, http://mi-star.mtu.edu/) was funded by the Herbert H. and Grace A. Dow Foundation to reform K-12 science education to present science as an integrated body of knowledge that is applied to address societal issues. To achieve this goal, Mi-STAR is developing an integrated science curriculum for the middle grades that will be aligned with the Next Generation Science Standards (NGSS). Similar to the geosciences, the curriculum requires the integration of science, engineering and math content to explore 21st-century issues and demonstrates how these concepts can be used in service of society. The curriculum is based on the Mi-STAR Unit Specification Chart which pairs interdisciplinary themes with bundled NGSS Performance Expectations. Each unit is developed by a collaborative team of K-12 teachers, university STEM content experts and science education experts. Prior to developing a unit, each member on the team attends the on-line Mi-STAR Academy, completing 18+ hours of professional development (PD). This on-line PD program familiarizes teachers and experts with necessary pedagogical and content background knowledge, including NGSS and three-dimensional learning. With this background, teams use a staged, backwards design process to craft a multi-week unit based on a series of performance based tasks, or 'challenges' that engage students in actively doing science and engineering. Each unit includes Disciplinary Core Ideas from multiple disciplines, which focus on local and familiar examples that demonstrate the relevance of science in student's lives. Performance-based assessments are interwoven throughout the unit. Mi-STAR units will go through extensive pilot testing in several school districts across the state of Michigan. Additionally, the Mi-STAR program will develop teacher professional development programs to support implementation of the curriculum and design a pre-service teacher program in integrated science. We will share preliminary results on the collaborative Mi-STAR process of designing integrated science curriculum to address NGSS.

  11. Mapping out the Integration of the Components of Pedagogical Content Knowledge (PCK): Examples from High School Biology Classrooms

    ERIC Educational Resources Information Center

    Park, Soonhye; Chen, Ying-Chih

    2012-01-01

    This study explored the nature of the integration of the five components of pedagogical content knowledge (PCK): (a) Orientations toward Teaching Science, (b) Knowledge of Student Understanding, (c) Knowledge of Instructional Strategies and Representations, (d) Knowledge of Science Curriculum, and (e) Knowledge of Assessment of Science Learning.…

  12. The investigation of science teachers’ experience in integrating digital technology into science teaching

    NASA Astrophysics Data System (ADS)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  13. On Military Theory

    DTIC Science & Technology

    2011-07-01

    sciences and philosophies are based on dubious premises or are in fact pseudosciences. Modern military theory was heavily influenced by empiricism and...determinism. Empiricism is described as a logical process based on pursuing knowledge through observation and experiments. One can make sensible

  14. [Surgical laboratory in pregraduate medicine.

    PubMed

    Tapia-Jurado, Jesús

    2011-01-01

    Surgical laboratory in pregraduate students in medicine is beneficial and improves learning processes in cognitive aspects and skills acquisition. It is also an early initiation into scientific research. The laboratory is the introductory pathway into basic concepts of medical science (meaningful learning). It is also where students gain knowledge in procedures and abilities to obtain professional skills, an interactive teacher-student process. Medicine works rapidly to change from an art to a science. This fact compromises all schools and medical faculties to analyze their actual lesson plans. Simulators give students confidence and ability and save time, money and resources, eliminating at the same time the ethical factor of using live animals and the fear of patient safety. Multimedia programs may give a cognitive context evolving logically with an explanation based on written and visual animation followed by a clinical problem and its demonstration in a simulator, all before applying knowledge to the patient.

  15. The Effectiveness of an Online Curriculum on High School Students' Understanding of Biological Evolution

    NASA Astrophysics Data System (ADS)

    Marsteller, Robert B.; Bodzin, Alec M.

    2015-12-01

    An online curriculum about biological evolution was designed to promote increased student content knowledge and evidentiary reasoning. A feasibility study was conducted with 77 rural high school biology students who learned with the online biological evolution unit. Data sources included the Biological Evolution Assessment Measure (BEAM), an analysis of discussion forum posts, and a post-implementation perceptions and attitudes questionnaire. BEAM posttest scores were significantly higher than the pretest scores. However, the findings revealed that the students required additional support to develop evidentiary reasoning. Many students perceived that the Web-based curriculum would have been enhanced by increased immediate interaction and feedback. Students required greater scaffolding to support complex, process-oriented tasks. Implications for designing Web-based science instruction with curriculum materials to support students' acquisition of content knowledge and science process skills in a Web-based setting are discussed.

  16. Rock-Solid Support: Florida District Weighs Effectiveness of Science Professional Learning

    ERIC Educational Resources Information Center

    Shear, Linda; Penuel, William R.

    2010-01-01

    The best science teachers are not only experts in teaching and knowledgeable about science content, but they are also great at teaching science. They have specialized teaching knowledge, including knowledge of effective pedagogical practices in science, student difficulties with understanding content, and curricular purposes. As a result,…

  17. Integrating Land Cover Modeling and Adaptive Management to Conserve Endangered Species and Reduce Catastrophic Fire Risk

    NASA Technical Reports Server (NTRS)

    Breininger, David; Duncan, Brean; Eaton, Mitchell; Johnson, Fred; Nichols, James

    2014-01-01

    Land cover modeling is used to inform land management, but most often via a two-step process where science informs how management alternatives can influence resources and then decision makers can use this to make decisions. A more efficient process is to directly integrate science and decision making, where science allows us to learn to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuels monitoring with decision making focused on dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy, but habitat trajectories suggest tradeoffs. Knowledge about system responses to actions can be informed by applying competing management actions to different land units in the same system state and by ideas about fire behavior. Monitoring and management integration is important to optimize state-specific management decisions and increase knowledge about system responses. We believe this approach has broad utility for and cover modeling programs intended to inform decision making.

  18. Never the twain shall meet? - a comparison of implementation science and policy implementation research

    PubMed Central

    2013-01-01

    Background Many of society’s health problems require research-based knowledge acted on by healthcare practitioners together with implementation of political measures from governmental agencies. However, there has been limited knowledge exchange between implementation science and policy implementation research, which has been conducted since the early 1970s. Based on a narrative review of selective literature on implementation science and policy implementation research, the aim of this paper is to describe the characteristics of policy implementation research, analyze key similarities and differences between this field and implementation science, and discuss how knowledge assembled in policy implementation research could inform implementation science. Discussion Following a brief overview of policy implementation research, several aspects of the two fields were described and compared: the purpose and origins of the research; the characteristics of the research; the development and use of theory; determinants of change (independent variables); and the impact of implementation (dependent variables). The comparative analysis showed that there are many similarities between the two fields, yet there are also profound differences. Still, important learning may be derived from several aspects of policy implementation research, including issues related to the influence of the context of implementation and the values and norms of the implementers (the healthcare practitioners) on implementation processes. Relevant research on various associated policy topics, including The Advocacy Coalition Framework, Governance Theory, and Institutional Theory, may also contribute to improved understanding of the difficulties of implementing evidence in healthcare. Implementation science is at a relatively early stage of development, and advancement of the field would benefit from accounting for knowledge beyond the parameters of the immediate implementation science literature. Summary There are many common issues in policy implementation research and implementation science. Research in both fields deals with the challenges of translating intentions into desired changes. Important learning may be derived from several aspects of policy implementation research. PMID:23758952

  19. Never the twain shall meet?--a comparison of implementation science and policy implementation research.

    PubMed

    Nilsen, Per; Ståhl, Christian; Roback, Kerstin; Cairney, Paul

    2013-06-10

    Many of society's health problems require research-based knowledge acted on by healthcare practitioners together with implementation of political measures from governmental agencies. However, there has been limited knowledge exchange between implementation science and policy implementation research, which has been conducted since the early 1970s. Based on a narrative review of selective literature on implementation science and policy implementation research, the aim of this paper is to describe the characteristics of policy implementation research, analyze key similarities and differences between this field and implementation science, and discuss how knowledge assembled in policy implementation research could inform implementation science. Following a brief overview of policy implementation research, several aspects of the two fields were described and compared: the purpose and origins of the research; the characteristics of the research; the development and use of theory; determinants of change (independent variables); and the impact of implementation (dependent variables). The comparative analysis showed that there are many similarities between the two fields, yet there are also profound differences. Still, important learning may be derived from several aspects of policy implementation research, including issues related to the influence of the context of implementation and the values and norms of the implementers (the healthcare practitioners) on implementation processes. Relevant research on various associated policy topics, including The Advocacy Coalition Framework, Governance Theory, and Institutional Theory, may also contribute to improved understanding of the difficulties of implementing evidence in healthcare. Implementation science is at a relatively early stage of development, and advancement of the field would benefit from accounting for knowledge beyond the parameters of the immediate implementation science literature. There are many common issues in policy implementation research and implementation science. Research in both fields deals with the challenges of translating intentions into desired changes. Important learning may be derived from several aspects of policy implementation research.

  20. [From relativism to evaluation. Recent trends in the historiography of science and the humanities].

    PubMed

    Jonker, Ed

    2011-01-01

    Historians of science have taken leave of finalism. No longer do they write teleological histories of scientific progress. Instead of a grand narrative on the triumph of science they now tend to write small stories on local knowledge. This is the result of several decades of criticism of Whig history. Starting with neo-marxist critique in the interwar years, enhanced in the social history of the 1970s, science was seen as an economic commodity and as a social product. Cultural history and anthropology added the view that scientists and scholars are mere mortals, muddling through messy life. This critique was topped off with postmodern criticism of knowledge as power, which translates into the accusation that historiography is only legitimating cultural and political oppression. To counter these allegations, many historians have insulated themselves into a kind of retro-historicism that shies away from any teleology, coherence, meaning and evaluation. It depicts the production of knowledge as a practical, local activity that is strictly limited to its cultural context. No claims to truth, validity, let alone progress or even development were allowed. This situation of rampant relativism could not last. Total abstinence of any evaluation of knowledge claims, quality of research or success of theories has proven unsatisfactory. The need has arisen to study broader issues of traveling knowledge and longer lines of scientific development. There is a shift of interest into traditions of knowledge that spring the bonds of locality and context. Why do some scientific theories and research practices succeed in surpassing paradigms and bridging epistemic ruptures? In this respect disciplines are in the process of being rehabilitated. Instead of oppressive structures they become the vehicles of sustained knowledge growth. Especially the role of education and academic training is focused on. Facing up to the charges of conceptual anachronism, historians of knowledge now opt for a cautiously evaluative history. The alternative would be an intellectually barren historicism.

  1. Comparative analysis of knowledge representation and reasoning requirements across a range of life sciences textbooks.

    PubMed

    Chaudhri, Vinay K; Elenius, Daniel; Goldenkranz, Andrew; Gong, Allison; Martone, Maryann E; Webb, William; Yorke-Smith, Neil

    2014-01-01

    Using knowledge representation for biomedical projects is now commonplace. In previous work, we represented the knowledge found in a college-level biology textbook in a fashion useful for answering questions. We showed that embedding the knowledge representation and question-answering abilities in an electronic textbook helped to engage student interest and improve learning. A natural question that arises from this success, and this paper's primary focus, is whether a similar approach is applicable across a range of life science textbooks. To answer that question, we considered four different textbooks, ranging from a below-introductory college biology text to an advanced, graduate-level neuroscience textbook. For these textbooks, we investigated the following questions: (1) To what extent is knowledge shared between the different textbooks? (2) To what extent can the same upper ontology be used to represent the knowledge found in different textbooks? (3) To what extent can the questions of interest for a range of textbooks be answered by using the same reasoning mechanisms? Our existing modeling and reasoning methods apply especially well both to a textbook that is comparable in level to the text studied in our previous work (i.e., an introductory-level text) and to a textbook at a lower level, suggesting potential for a high degree of portability. Even for the overlapping knowledge found across the textbooks, the level of detail covered in each textbook was different, which requires that the representations must be customized for each textbook. We also found that for advanced textbooks, representing models and scientific reasoning processes was particularly important. With some additional work, our representation methodology would be applicable to a range of textbooks. The requirements for knowledge representation are common across textbooks, suggesting that a shared semantic infrastructure for the life sciences is feasible. Because our representation overlaps heavily with those already being used for biomedical ontologies, this work suggests a natural pathway to include such representations as part of the life sciences curriculum at different grade levels.

  2. Using writing as a vehicle to promote and develop scientific concepts and process skills in fourth-grade students

    NASA Astrophysics Data System (ADS)

    Disimoni, Katherine Cecilia

    The development of conceptual knowledge, particularly at the elementary level, is one area in which researchers and educators have noted remarkable deficiencies. The purpose of this descriptive study was to observe the impact of the use of writing as a thinking tool on the promotion and development of scientific concepts and science process skills in elementary students in the discipline of science. Reports from some of the publications for science research and educational progress cited the direct links of writing effectiveness to the development of skills in critical thinking. The study consisted of 12 fourth-grade students in the control group and their 12 fourth-grade counterparts in the experimental group. The treatment for the study was the use of learning logs by the experimental group to record their written responses to predesigned prompts related to hands-on science experiences during the intervention period. Their counterparts did no writing. Statistical measures used were Student's t tests to determine if significance was present. A pretest and posttest were given that involved written responses to the same prompt. Three judges used a specially designed rubric to evaluate and score the writing. Significant differences were found when the scores of the experimental group were analyzed between pretest and posttest. Also, a standardized test to assess basic process skills was administered prior to and after the intervention. There were no statistical differences found in either group to demonstrate that writing effected the development of process skills. The researcher determined that perhaps writing is not the best way to promote process skills. Rather, engaging in science is the best way. These skills are built separately but used in tandem, particularly when learning about science and mathematics. The implications of this study impact upon several areas of education which make up paradigms leading to good practice based on sound theory. These components include the use of writing as a tool to develop and link conceptual knowledge, use of scientific discourse in collaborative efforts, use of integration of language arts and theme-related content areas, and multiinstructional techniques. Rather than a "change" of paradigms for veteran teachers then, an "addition to" existing paradigms could lead to the changes necessary to revamp curriculum and may aid in meeting the demands of a vastly changing and diverse population of monolingual and multilingual learners experiencing gaps in their construction and demonstration of oral and written knowledge.

  3. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.

    PubMed

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-06-01

    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.

  4. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial

    PubMed Central

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-01-01

    Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286

  5. Improving Medical Students' Application of Knowledge and Clinical Decision-Making Through a Porcine-Based Integrated Cardiac Basic Science Program.

    PubMed

    Stott, Martyn Charles; Gooseman, Michael Richard; Briffa, Norman Paul

    2016-01-01

    Despite the concerted effort of modern undergraduate curriculum designers, the ability to integrate basic sciences in clinical rotations is an ongoing problem in medical education. Students and newly qualified doctors themselves report worry about the effect this has on their clinical performance. There are examples in the literature to support development of attempts at integrating such aspects, but this "vertical integration" has proven to be difficult. We designed an expert-led integrated program using dissection of porcine hearts to improve the use of cardiac basic sciences in clinical medical students' decision-making processes. To our knowledge, this is the first time in the United Kingdom that an animal model has been used to teach undergraduate clinical anatomy to medical students to direct wider application of knowledge. Action research methodology was used to evaluate the local curriculum and assess learners needs, and the agreed teaching outcomes, methods, and delivery outline were established. A total of 18 students in the clinical years of their degree program attended, completing precourse and postcourse multichoice questions examinations and questionnaires to assess learners' development. Student's knowledge scores improved by 17.5% (p = 0.01; students t-test). Students also felt more confident at applying underlying knowledge to decision-making and diagnosis in clinical medicine. An expert teacher (consultant surgeon) was seen as beneficial to students' understanding and appreciation. This study outlines how the development of a teaching intervention using porcine-based methods successfully improved both student's knowledge and application of cardiac basic sciences. We recommend that clinicians fully engage with integrating previously learnt underlying sciences to aid students in developing decision-making and diagnostic skills as well as a deeper approach to learning. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Toward actionable science: Empowering ecologists to engage in the process of translation through decision-maker and stakeholder partnerships

    NASA Astrophysics Data System (ADS)

    Enquist, C.; Jackson, S. T.; Garfin, G. M.

    2017-12-01

    Translational ecology is an approach by which ecologists, stakeholders, and decision-makers work collaboratively to develop and deliver ecological research that, ideally, results in actionable science that leads to improved environmental decision-making. We analyzed a diverse array of real-world case studies and distilled six principles that characterize the practice of translational ecology: communication, commitment, collaboration, engagement, process, and decision-framing. In this talk, we highlight a subset of the case studies that illustrate these principles. Notably, we found that translational ecology is distinct from both basic and applied ecological research. As a practice, the approach deliberately extends research beyond theory or opportunistic applications, motivated by a search for outcomes that directly serve the needs of natural resource managers and decision-makers. Translational ecology is also distinct from knowledge co-production in that it does not require deep engagement between collaborators, although incorporating differing modes of co-production relative to the decision context, associated time frame, and available financial resources can greatly enhance the translational approach. Although there is a need for incentives to pursue in this type of work, we found that the creativity and context-specific knowledge of resource managers, practitioners, and decision-makers informs and enriches the scientific process, helping shape actionable science. Moreover, the process of addressing research questions arising from on-the-ground management issues, rather than from the top-down or expert-oriented perspectives of traditional science, can foster the long-term trust and commitment that is critical for long-term, sustained engagement between partners. Now, perhaps more than ever, the climate and environmental issues facing society are complex, often politicized, and value-laden. We argue that ecological science should play a key role in informing these problems and ecologists can engage as important partners committed to finding solutions. More broadly, scientists that embrace translational approaches are poised to make science-informed decision-making a reality in the face of a rapidly changing global environment.

  7. ICU Nurses' Knowledge, Attitude, and Practice Towards their Role in the Organ Donation Process from Brain-Dead Patients and Factors Influencing it in Iran.

    PubMed

    Masoumian Hoseini, S T; Manzari, Z; Khaleghi, I

    2015-01-01

    Nowadays, ICU nurses play a significant role in the care of brain-dead patients and their families. Therefore, their knowledge, attitude and practice towards this issue are extremely important to the success of organ donation. To assess ICU nurses' knowledge, attitude and practice towards their role in the organ donation process from brain-dead patients and factors influencing it in Iran. In a cross-sectional analytical study, 90 ICU nurses working in Ghaem and Emam Reza Hospitals affiliated to Mashhad University of Medical Sciences were selected through a stratified random sampling. Data were collected from the participants by a questionnaire included demographic information, and factors influencing the nurses knowledge, attitude, and practice towards their roles in the organ donation process. 90 nurses participated in this study. 70% of the research subjects had spoken with their own families about organ donation; 20% had organ donation cards. The mean±SD score of nurses' knowledge was 49.13±9.6, attitude 21.49±14.32, and practice was 3.66±6.04. 80% of nurses had a mean knowledge about their roles in the organ donation process; 82% agreed with their roles in this process, and 97% showed weak practice in this regard. Nurses did not have adequate knowledge, attitude, and practice towards their role in organ donation process. It is suggested to include nursing courses on the organ donation process and organ transplantation as well as educational programs to acquaint nurses with their roles in the organ donation process.

  8. Scientific basis for risk analysis of food-related substances with particular reference to health effects on children.

    PubMed

    Hayashi, Yuzo

    2009-01-01

    Based on the advance of toxicology and related sciences, a regulatory regime for the safety of chemicals related to daily life has been rapidly established. Especially for the food-related substances, the process of risk analysis has facilitated the collaboration by all the players including consumers toward the security of their safety. On the other hand, except for pharmaceuticals, science-based decisions and governmental actions on safety issues have not always gained confidence of the public. One of the reasons was the inadequacy in the way of use of scientific knowledge, or in other words, inappropriateness of decision making by "the regulatory science". Regulatory science is a science to warrant the decision making processes for governmental acts (Mitsuru Uchiyama). In the case of chemical safety, it can be redefined as a theoretical concept to complements the uncertainty of scientific knowledge for the decision of governmental acts that is adequate in both scientific and social ways. Therefore, the regulatory science is an indispensable discipline to effectively apply risk analysis. Here, the significance of the regulatory science for the hazard assessment of the chemicals, especially for children is described. In the past, the hazard effects of chemicals have been assessed for adults. Recently, however, the importance of the assessment for children has gained international emphases. Not only for pharmaceuticals, but for food-related substances, the acceptable daily intake (ADI) and tolerable daily intake (TDI) are often set differently for adults and children. The child-specific responses against chemicals are related not only to the physiological factors such as body weight, basal metabolism, but also rapid growth of the body with developmental status of various organs. General knowledge on these issues will be discussed mainly referring the World Health Organization (WHO) documents. Although the cutting edge technology backs up the development of toxicology, it would appear that it is reaching a turning point from technology-centrism to look toward the direction for contribution to society from the stand point of regulatory science.

  9. Contested Domains of Science and Science Learning in Contemporary Native American Communities: Three Case Studies from a National Science Foundation grant titled, "Archaeology Pathways for Native Learners"

    NASA Astrophysics Data System (ADS)

    Parent, Nancy Brossard

    This dissertation provides a critical analysis of three informal science education partnerships that resulted from a 2003-2006 National Science Foundation grant titled, "Archaeology Pathways for Native Learners" (ESI-0307858), hosted by the Mashantucket Pequot Museum and Research Center. This dissertation is designed to contribute to understandings of learning processes that occur within and at the intersection of diverse worldviews and knowledge systems, by drawing upon experiences derived from three disparate contexts: 1) The Navajo Nation Museum in Window Rock, Arizona; 2) The A:shiwi A:wan Museum and Heritage Center on the Zuni Reservation in Zuni, New Mexico; and 3) Science learning camps at the Mashantucket Pequot Museum and Research Center for Native youth of southern New England. While informal science education is increasingly moving toward decolonizing and cross-cutting institutional boundaries of learning through critical thinking and real-world applications, the construction of "science" (even within diverse contexts) continues to be framed within a homogenous, predominantly Euro-American perspective. This study analyzes the language of Western science employed in these partnerships, with particular attention to the use of Western/Native binaries that shape perceptions of Native peoples and communities, real or imagined. Connections are drawn to broader nation-state interests in education, science, and the global economy. The role of educational evaluation in these case studies is also critically analyzed, by questioning the ways in which it is constructed, conducted, and evaluated for the purposes of informing future projects and subsequent funding. This study unpacks problems of the dominant language of "expert" knowledge embedded in Western science discourse, and highlights the possibilities of indigenous knowledge systems that can inform Western science frameworks of education and evaluation. Ultimately, this study suggests that research methodologies and epistemologies that acknowledge and integrate indigenous ways of knowing can advance and broaden Western constructions of science, the academy, and educational research and praxis on a national and global scale.

  10. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    ERIC Educational Resources Information Center

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  11. Making authentic science accessible—the benefits and challenges of integrating bioinformatics into a high-school science curriculum

    PubMed Central

    Gelbart, Hadas; Ben-Dor, Shifra; Yarden, Anat

    2017-01-01

    Despite the central place held by bioinformatics in modern life sciences and related areas, it has only recently been integrated to a limited extent into high-school teaching and learning programs. Here we describe the assessment of a learning environment entitled ‘Bioinformatics in the Service of Biotechnology’. Students’ learning outcomes and attitudes toward the bioinformatics learning environment were measured by analyzing their answers to questions embedded within the activities, questionnaires, interviews and observations. Students’ difficulties and knowledge acquisition were characterized based on four categories: the required domain-specific knowledge (declarative, procedural, strategic or situational), the scientific field that each question stems from (biology, bioinformatics or their combination), the associated cognitive-process dimension (remember, understand, apply, analyze, evaluate, create) and the type of question (open-ended or multiple choice). Analysis of students’ cognitive outcomes revealed learning gains in bioinformatics and related scientific fields, as well as appropriation of the bioinformatics approach as part of the students’ scientific ‘toolbox’. For students, questions stemming from the ‘old world’ biology field and requiring declarative or strategic knowledge were harder to deal with. This stands in contrast to their teachers’ prediction. Analysis of students’ affective outcomes revealed positive attitudes toward bioinformatics and the learning environment, as well as their perception of the teacher’s role. Insights from this analysis yielded implications and recommendations for curriculum design, classroom enactment, teacher education and research. For example, we recommend teaching bioinformatics in an integrative and comprehensive manner, through an inquiry process, and linking it to the wider science curriculum. PMID:26801769

  12. Making authentic science accessible-the benefits and challenges of integrating bioinformatics into a high-school science curriculum.

    PubMed

    Machluf, Yossy; Gelbart, Hadas; Ben-Dor, Shifra; Yarden, Anat

    2017-01-01

    Despite the central place held by bioinformatics in modern life sciences and related areas, it has only recently been integrated to a limited extent into high-school teaching and learning programs. Here we describe the assessment of a learning environment entitled 'Bioinformatics in the Service of Biotechnology'. Students' learning outcomes and attitudes toward the bioinformatics learning environment were measured by analyzing their answers to questions embedded within the activities, questionnaires, interviews and observations. Students' difficulties and knowledge acquisition were characterized based on four categories: the required domain-specific knowledge (declarative, procedural, strategic or situational), the scientific field that each question stems from (biology, bioinformatics or their combination), the associated cognitive-process dimension (remember, understand, apply, analyze, evaluate, create) and the type of question (open-ended or multiple choice). Analysis of students' cognitive outcomes revealed learning gains in bioinformatics and related scientific fields, as well as appropriation of the bioinformatics approach as part of the students' scientific 'toolbox'. For students, questions stemming from the 'old world' biology field and requiring declarative or strategic knowledge were harder to deal with. This stands in contrast to their teachers' prediction. Analysis of students' affective outcomes revealed positive attitudes toward bioinformatics and the learning environment, as well as their perception of the teacher's role. Insights from this analysis yielded implications and recommendations for curriculum design, classroom enactment, teacher education and research. For example, we recommend teaching bioinformatics in an integrative and comprehensive manner, through an inquiry process, and linking it to the wider science curriculum. © The Author 2016. Published by Oxford University Press.

  13. Teachers doing science: An authentic geology research experience for teachers

    USGS Publications Warehouse

    Hemler, D.; Repine, T.

    2006-01-01

    Fairmont State University (FSU) and the West Virginia Geological and Economic Survey (WVGES) provided a small pilot group of West Virginia science teachers with a professional development session designed to mimic experiences obtained by geology majors during a typical summer field camp. Called GEOTECH, the program served as a research capstone event complimenting the participants' multi-year association with the RockCamp professional development program. GEOTECH was funded through a Improving Teacher Quality Grant administered by West Virginia Higher Education Policy Commission. Over the course of three weeks, eight GEOTEACH participants learned field measurement and field data collection techniques which they then applied to the construction of a surficial geologic map. The program exposed participants to authentic scientific processes by emphasizing the authentic scientific application of content knowledge. As a secondary product, it also enhanced their appreciation of the true nature of science in general and geology particular. After the session, a new appreciation of the effort involved in making a geologic map emerged as tacit knowledge ready to be transferred to their students. The program was assessed using pre/post instruments, cup interviews, journals, artifacts (including geologic maps, field books, and described sections), performance assessments, and constructed response items. Evaluation of the accumulated data revealed an increase in participants demonstrated use of science content knowledge, an enhanced awareness and understanding of the processes and nature of geologic mapping, positive dispositions toward geologic research and a high satisfaction rating for the program. These findings support the efficacy of the experience and document future programmatic enhancements.

  14. CI-Miner: A Semantic Methodology to Integrate Scientists, Data and Documents through the Use of Cyber-Infrastructure

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; CyberShARE Center of Excellence

    2011-12-01

    Scientists today face the challenge of rethinking the manner in which they document and make available their processes and data in an international cyber-infrastructure of shared resources. Some relevant examples of new scientific practices in the realm of computational and data extraction sciences include: large scale data discovery; data integration; data sharing across distinct scientific domains, systematic management of trust and uncertainty; and comprehensive support for explaining processes and results. This talk introduces CI-Miner - an innovative hands-on, open-source, community-driven methodology to integrate these new scientific practices. It has been developed in collaboration with scientists, with the purpose of capturing, storing and retrieving knowledge about scientific processes and their products, thereby further supporting a new generation of science techniques based on data exploration. CI-Miner uses semantic annotations in the form of W3C Ontology Web Language-based ontologies and Proof Markup Language (PML)-based provenance to represent knowledge. This methodology specializes in general-purpose ontologies, projected into workflow-driven ontologies(WDOs) and into semantic abstract workflows (SAWs). Provenance in PML is CI-Miner's integrative component, which allows scientists to retrieve and reason with the knowledge represented in these new semantic documents. It serves additionally as a platform to share such collected knowledge with the scientific community participating in the international cyber-infrastructure. The integrated semantic documents that are tailored for the use of human epistemic agents may also be utilized by machine epistemic agents, since the documents are based on W3C Resource Description Framework (RDF) notation. This talk is grounded upon interdisciplinary lessons learned through the use of CI-Miner in support of government-funded national and international cyber-infrastructure initiatives in the areas of geo-sciences (NSF-GEON and NSF-EarthScope), environmental sciences (CEON, NSF NEON, NSF-LTER and DOE-Ameri-Flux), and solar physics (VSTO and NSF-SPCDIS). The discussion on provenance is based on the use of PML in support of projects in collaboration with government organizations (DARPA, ARDA, NSF, DHS and DOE), research organizations (NCAR and PNNL), and industries (IBM and SRI International).

  15. The Effect of Active Learning Based Science Camp Activities on Primary School Students' Opinions towards Scientific Knowledge and Scientific Process Skills

    ERIC Educational Resources Information Center

    Aydede Yalçin, Meryem Nur

    2016-01-01

    It is important for people to be able to judge the nature while actually living in it to gain the scientific perspective which is an important skill nowadays. Within this importance, the general purpose of this study is to examine the effect of active learning based science camp activities on sixth, seventh and eighth grade students' opinions…

  16. European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science

    DTIC Science & Technology

    1990-01-01

    because they permit a high degree of error then converted into system-specific data by coupling tolerance. Other knowledge- based approaches offer the...Reducing development costs and development time ing an increasingly powerful focus for business activities . " Simplifying the design process In the...systems. Sie- The immediate goal of telecommunications efforts is a mens is actively involved in defining and implementing configuration based on ISDN and

  17. Evolution of the Theory of the Earth: A Contextualized Approach for Teaching the History of the Theory of Plate Tectonics to Ninth Grade Students

    ERIC Educational Resources Information Center

    Dolphin, Glenn

    2009-01-01

    Current high school Earth Science curricula and textbooks organize scientific content into isolated "units" of knowledge. Within this structure, content is taught, but in the absence of the context of fundamental understandings or the process of how the science was actually done to reach the conclusions. These are two key facets of scientific…

  18. An Investigation into the Process of Transference, through the Integration of Art with Science and Math Curricula, in a California Community College: A Case Study

    ERIC Educational Resources Information Center

    Rachford, Maryann Kvietkauskas

    2011-01-01

    The transference of learning from one discipline to another creates new knowledge between subjects. Students can connect and apply what they learn in one subject to previously existing knowledge. Art expression is an integral part of human nature and has been a means of communication throughout history. Through the integration of art with science…

  19. On science versus engineering in hydrological modelling

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke

    2017-04-01

    It is always stressed that hydrological modelling is very important, to prevent floods, to mitigate droughts, to ensure food production or nature conservation. All very true, but I believe that focussing so much on the application of our knowledge (which I call `the engineering approach'), does not stimulate thorough system understanding (which I call `the scientific approach'). In many studies, science and engineering approaches are mixed, which results in large uncertainty e.g. due to a lack of system understanding. To what extent engineering and science approached are mixed depends on the Philosophy of Science of the researcher; verificationism seems to be closer related to engineering, than falsificationism or Bayesianism. In order to grow our scientific knowledge, which means increasing our understanding of the system, we need to be more critical towards the models that we use, but also recognize all the processes that influence the hydrological cycle. In an era called 'The Anthropocene' the influence of humans on the water system can no longer be neglected, and if we choose a scientific approach we have to account for human-induced processes. Summarizing, I believe that we have to account for human impact on the hydrological system, but we have to resist the temptation to directly quantify the hydrological impact on the human system.

  20. Investigating students' view on STEM in learning about electrical current through STS approach

    NASA Astrophysics Data System (ADS)

    Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study aims to investigate Grade 11 students' views on Science Technology Engineering Mathematics (STEM) with the integration of learning about electrical current based on Science Technology Society (STS) approach [8]. The participants were 60 Grade 11 students in Demonstration Secondary School, Khon Kaen University, Khon Kaen Province, Thailand. The methodology is in the respect of interpretive paradigm. The teaching and learning about Electrical Current through STS approach carried out over 6 weeks. The Electrical Current unit through STS approach was developed based on framework[8] that consists of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision making, and (5) socialization stage. To start with, the question "what if this world is lack of electricity" was challenged in the class in order to move students to find the problem of how to design Electricity Generation from Clean Energy. Students were expected to apply scientific and other knowledge to design of Electricity Generation. Students' views on STEM were collected during their learning by participant' observation and students' tasks. Their views on STEM were categorized when they applied their knowledge for designing the Electricity Generation. The findings indicated that students cooperatively work to solve the problem when applying knowledge about the content of Science and Mathematics and processing skill of Technology and Engineering. It showed that students held the integration of science, technology, engineering and mathematics to design their possible solutions in learning about Electrical Current. The paper also discusses implications for science teaching and learning through STS in Thailand.

  1. The concept verification testing of materials science payloads

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  2. Nursing Knowledge: Big Data Science-Implications for Nurse Leaders.

    PubMed

    Westra, Bonnie L; Clancy, Thomas R; Sensmeier, Joyce; Warren, Judith J; Weaver, Charlotte; Delaney, Connie W

    2015-01-01

    The integration of Big Data from electronic health records and other information systems within and across health care enterprises provides an opportunity to develop actionable predictive models that can increase the confidence of nursing leaders' decisions to improve patient outcomes and safety and control costs. As health care shifts to the community, mobile health applications add to the Big Data available. There is an evolving national action plan that includes nursing data in Big Data science, spearheaded by the University of Minnesota School of Nursing. For the past 3 years, diverse stakeholders from practice, industry, education, research, and professional organizations have collaborated through the "Nursing Knowledge: Big Data Science" conferences to create and act on recommendations for inclusion of nursing data, integrated with patient-generated, interprofessional, and contextual data. It is critical for nursing leaders to understand the value of Big Data science and the ways to standardize data and workflow processes to take advantage of newer cutting edge analytics to support analytic methods to control costs and improve patient quality and safety.

  3. Communicating the Science from NASA's Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  4. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  5. Indigenous and Western Knowledges in Science Education: An Ethnographic Study of Rural and Urban Secondary Schools and Classrooms in Kenya

    ERIC Educational Resources Information Center

    O'Hern, Darren M.

    2010-01-01

    In Kenya, indigenous knowledges related to the natural sciences are not considered in the formal science education of secondary students. Despite the prevalence of studies that examine indigenous knowledges in Kenyan school and community contexts, the perspectives of students and teachers concerning indigenous natural science knowledges and their…

  6. Development of Syntactic Subject Matter Knowledge and Pedagogical Content Knowledge for Science by a Generalist Elementary Teacher

    ERIC Educational Resources Information Center

    Anderson, Dayle; Clark, Megan

    2012-01-01

    The nature of knowledge needed for teaching elementary science and the development of such knowledge is a focus of ongoing research in science education. Internationally, there is a move to include scientific literacy as an aim of science education curricula. In order to teach such curricula teachers need two types of subject matter knowledge…

  7. A Knowledge Portal and Collaboration Environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    D'Agnese, F. A.

    2008-12-01

    Earth Knowledge is developing a web-based 'Knowledge Portal and Collaboration Environment' that will serve as the information-technology-based foundation of a modular Internet-based Earth-Systems Monitoring, Analysis, and Management Tool. This 'Knowledge Portal' is essentially a 'mash- up' of web-based and client-based tools and services that support on-line collaboration, community discussion, and broad public dissemination of earth and environmental science information in a wide-area distributed network. In contrast to specialized knowledge-management or geographic-information systems developed for long- term and incremental scientific analysis, this system will exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize existing environmental datasets using Google Earth and Google Maps. An early form of these tools and services is being used by Earth Knowledge to facilitate the investigations and conversations of scientists, resource managers, and citizen-stakeholders addressing water resource sustainability issues in the Great Basin region of the desert southwestern United States. These ongoing projects will serve as use cases for the further development of this information-technology infrastructure. This 'Knowledge Portal' will accelerate the deployment of Earth- system data and information into an operational knowledge management system that may be used by decision-makers concerned with stewardship of water resources in the American Desert Southwest.

  8. Mapping the knowledge utilization field in nursing from 1945 to 2004: a bibliometric analysis.

    PubMed

    Scott, Shannon D; Profetto-McGrath, Joanne; Estabrooks, Carole A; Winther, Connie; Wallin, Lars; Lavis, John N

    2010-12-01

    The field of knowledge utilization has been hampered by several issues including: the synonymous use of multiple terms with little attempt at definition precision; an overexamination of knowledge utilization as product, rather than a process; and a lack of progress to cross disciplinary boundaries to advance knowledge development. In order to address the challenges and current knowledge gaps in the knowledge utilization field in nursing, a comprehensive picture of the current state of the field is required. Bibliometric analyses were used to map knowledge utilization literature in nursing as an international field of study, and to identify the structure of its scientific community. Analyses of bibliographic data for 433 articles from the period 1945-2004 demonstrated three trends: (1) there has been significant recent growth and interest in this field, (2) the structure of the scientific knowledge utilization community is evolving, and (3) the Web of Science does not index the majority of journals where this literature is published. In order to enhance the accessibility and profile of this literature, and nursing's scientific literature at large, we encourage the International Academy of Nursing Editors to work collaboratively to increase the number of journals indexed in the Web of Science. ©2010 Sigma Theta Tau International.

  9. The spaces in between: science, ocean, empire.

    PubMed

    Reidy, Michael S; Rozwadowski, Helen M

    2014-06-01

    Historians of science have richly documented the interconnections between science and empire in the nineteenth century. These studies primarily begin with Britain, Europe, or the United States at the center and have focused almost entirely on lands far off in the periphery--India or Australia, for instance. The spaces in between have received scant attention. Because use of the ocean in this period was infused with the doctrine of the freedom of the seas, the ocean was constructed as a space amenable to control by any nation that could master its surface and use its resources effectively. Oceans transformed in the mid-nineteenth century from highway to destination, becoming--among other things--the focus of sustained scientific interest for the first time in history. Use of the sea rested on reliable knowledge of the ocean. Particularly significant were the graphical representations of knowledge that could be passed from scientists to publishers to captains or other agents of empire. This process also motivated early government patronage of science and crystallized scientists' rising authority in society. The advance of science, the creation of empire, and the construction of the ocean were mutually sustaining.

  10. Providing Context for Complexity: Using Infographics and Conceptual Models to Teach Global Change Processes

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; White, L. D.

    2015-12-01

    Understanding modern and historical global changes requires interdisciplinary knowledge of the physical and life sciences. The Understanding Global Change website from the UC Museum of Paleontology will use a focal infographic that unifies diverse content often taught in separate K-12 science units. This visualization tool provides scientists with a structure for presenting research within the broad context of global change, and supports educators with a framework for teaching and assessing student understanding of complex global change processes. This new approach to teaching the science of global change is currently being piloted and refined based on feedback from educators and scientists in anticipation of a 2016 website launch. Global change concepts are categorized within the infographic as causes of global change (e.g., burning of fossil fuels, volcanism), ongoing Earth system processes (e.g., ocean circulation, the greenhouse effect), and the changes scientists measure in Earth's physical and biological systems (e.g., temperature, extinctions/radiations). The infographic will appear on all website content pages and provides a template for the creation of flowcharts, which are conceptual models that allow teachers and students to visualize the interdependencies and feedbacks among processes in the atmosphere, hydrosphere, biosphere, and geosphere. The development of this resource is timely given that the newly adopted Next Generation Science Standards emphasize cross-cutting concepts, including model building, and Earth system science. Flowchart activities will be available on the website to scaffold inquiry-based lessons, determine student preconceptions, and assess student content knowledge. The infographic has already served as a learning and evaluation tool during professional development workshops at UC Berkeley, Stanford University, and the Smithsonian National Museum of Natural History. At these workshops, scientists and educators used the infographic to highlight how their research and activities reinforce conceptual links among global change topics. Pre- and post-workshop assessment results and responses to questionnaires have guided the refinement of classroom activities and assessment tools utilizing flowcharts as models for global change processes.

  11. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 31: The information-seeking behavior of engineers

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Engineers are an extraordinarily diverse group of professionals, but an attribute common to all engineers is their use of information. Engineering can be conceptualized as an information processing system that must deal with work-related uncertainty through patterns of technical communications. Throughout the process, data, information, and tacit knowledge are being acquired, produced, transferred, and utilized. While acknowledging that other models exist, we have chosen to view the information-seeking behavior of engineers within a conceptual framework of the engineer as an information processor. This article uses the chosen framework to discuss information-seeking behavior of engineers, reviewing selected literature and empirical studies from library and information science, management, communications, and sociology. The article concludes by proposing a research agenda designed to extend our current, limited knowledge of the way engineers process information.

  12. An Ontology for Representing Geoscience Theories and Related Knowledge

    NASA Astrophysics Data System (ADS)

    Brodaric, B.

    2009-12-01

    Online scientific research, or e-science, is increasingly reliant on machine-readable representations of scientific data and knowledge. At present, much of the knowledge is represented in ontologies, which typically contain geoscience categories such as ‘water body’, ‘aquifer’, ‘granite’, ‘temperature’, ‘density’, ‘Co2’. While extremely useful for many e-science activities, such categorical representations constitute only a fragment of geoscience knowledge. Also needed are online representations of elements such as geoscience theories, to enable geoscientists to pose and evaluate hypotheses online. To address this need, the Science Knowledge Infrastructure ontology (SKIo) specializes the DOLCE foundational ontology with basic science knowledge primitives such as theory, model, observation, and prediction. Discussed will be SKIo as well as its implementation in the geosciences, including case studies from marine science, environmental science, and geologic mapping. These case studies demonstrate SKIo’s ability to represent a wide spectrum of geoscience knowledge types, to help fuel next generation e-science.

  13. A program evaluation of Protovation Camp at an elementary school in North Carolina

    NASA Astrophysics Data System (ADS)

    Cavoly, Denise Y.

    The purpose of this program evaluation was to investigate the impact over time teachers' self-efficacies and the outcome expectancies of those who participated in an inquiry-based, hands-on, constructivist professional development program to learn science content. The hope was that after active participation in this inquiry-based professional development program that provides science inquiry experiences, the teachers, graduate students and elementary students would gain content knowledge, increase self-efficacies, and provide the outcome expectancies of the learning development program that provides science inquiry experiences. The mixed-methods approach used quantitative and qualitative data for campers, which consisted of pre-test and post-test scores on the Test of Science-Related Attitudes (TOSRA), the Draw-A-Scientist Test, Science Process Skills Inventory (SPSI) and content tests based on the camp activities. Additionally, TOSRA scores, Teacher Sense of Efficacy Scale (TSES), and Thinking about Science Survey (TSSI) results for the graduate students and elementary teachers were used along with qualitative data collected from plusdelta charts and interviews to determine the impact of participation in Protovation Camp on teachers and students. Results of the program evaluation indicated that when students were taught inquiry-based lessons that ignite wonder, both their attitudes toward science and their knowledge about science improved. An implication for teacher preparation programs was that practicing inquiry-based lessons on actual elementary students was an important component for teachers and graduate students as they prepare to positively impact student learning in their own classrooms. The findings of this study suggest that it is not just the length of the professional development program that is crucial, but the need for an implementation period while teachers work to transfer the learning to the classroom to their own students is critical to the success of process.

  14. The Effects of Prior-knowledge and Online Learning Approaches on Students' Inquiry and Argumentation Abilities

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Tsung; Lin, Yu-Ren; She, Hsiao-Ching; Huang, Kai-Yi

    2015-07-01

    This study investigated the effects of students' prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students in each class were divided into three groups according to their level of prior science knowledge; they then took either our social- or individual-based online science learning program. The results show that students in the social online argumentation group performed better in argumentation and online argumentation learning. Qualitative analysis indicated that the students' social interactions benefited the co-construction of sound arguments and the accurate understanding of science concepts. In constructing arguments, students in the individual online argumentation group were limited to knowledge recall and self-reflection. High prior-knowledge students significantly outperformed low prior-knowledge students in all three aspects of science learning. However, the difference in inquiry and argumentation performance between low and high prior-knowledge students decreased with the progression of online learning topics.

  15. Subject knowledge in the health sciences library: an online survey of Canadian academic health sciences librarians

    PubMed Central

    Watson, Erin M.

    2005-01-01

    Objectives: This study investigated whether Canadian academic health sciences librarians found knowledge of the health sciences to be important and, if so, how they acquired and maintained this knowledge. Methods: Data were gathered using a Web-based questionnaire made available to Canadian academic health sciences librarians. Results: Respondents recognized the need for subject knowledge: 93.3% of respondents indicated that subject knowledge was “very important” or “somewhat important” to doing their job. However, few respondents felt that holding a degree in the health sciences was necessary. Respondents reported devoting on average more than 6 hours per week to continuing education through various means. Reading or browsing health sciences journals, visiting Websites, studying independently, and participating in professional associations were identified by the largest number of participants as the best ways to become and stay informed. Conclusions: Although more research needs to be done with a larger sample, subject knowledge continues to be important to Canadian academic health sciences librarians. Continuing education, rather than formal degree studies, is the method of choice for obtaining and maintaining this knowledge. PMID:16239942

  16. The effects of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Logerwell, Mollianne G.

    The purpose of this study was to investigate the impact of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science. Master's degree students enrolled in the elementary Fairfax Partnership Schools (FPS, n = 21) cohort served as the treatment group, while those enrolled in the Loudoun Partnership Schools (LPS, n = 15) and Professional Development Schools (PDS, n = 24) cohorts at George Mason University served as the control groups. The treatment group planned for and taught a two-week inquiry- and problem-based summer science camp as part of their science methods course, while the control groups did not. The Science Teaching Efficacy Belief Instrument (STEBI), a science content assessment, a personal data questionnaire, and a modified version of the Views of Nature of Science Questionnaire (VNOS-C) were administered to the participants at the beginning and end of their science methods course. Analyses revealed significant increases for the FPS group in general science teaching efficacy, personal science teaching efficacy, science teaching outcome expectancy, general science knowledge, biology content knowledge, chemistry content knowledge, and understanding of NOS; the LPS group in general science teaching efficacy, personal science teaching efficacy, chemistry content knowledge, and understanding of NOS; and, the PDS group in general science teaching efficacy, personal science teaching efficacy, and chemistry content knowledge. Additionally, the FPS group had significantly higher general science teaching efficacy than both control groups, personal science teaching efficacy than the PDS group, and understanding of NOS than the LPS group. Overall, the findings indicate that course length is not as important for developing preservice teachers' teaching efficacy and understanding of content as having connected, authentic field-based teaching experiences that are based on best-practices research and coupled with methodological instruction.

  17. Mental model mapping as a new tool to analyse the use of information in decision-making in integrated water management

    NASA Astrophysics Data System (ADS)

    Kolkman, M. J.; Kok, M.; van der Veen, A.

    The solution of complex, unstructured problems is faced with policy controversy and dispute, unused and misused knowledge, project delay and failure, and decline of public trust in governmental decisions. Mental model mapping (also called concept mapping) is a technique to analyse these difficulties on a fundamental cognitive level, which can reveal experiences, perceptions, assumptions, knowledge and subjective beliefs of stakeholders, experts and other actors, and can stimulate communication and learning. This article presents the theoretical framework from which the use of mental model mapping techniques to analyse this type of problems emerges as a promising technique. The framework consists of the problem solving or policy design cycle, the knowledge production or modelling cycle, and the (computer) model as interface between the cycles. Literature attributes difficulties in the decision-making process to communication gaps between decision makers, stakeholders and scientists, and to the construction of knowledge within different paradigm groups that leads to different interpretation of the problem situation. Analysis of the decision-making process literature indicates that choices, which are made in all steps of the problem solving cycle, are based on an individual decision maker’s frame of perception. This frame, in turn, depends on the mental model residing in the mind of the individual. Thus we identify three levels of awareness on which the decision process can be analysed. This research focuses on the third level. Mental models can be elicited using mapping techniques. In this way, analysing an individual’s mental model can shed light on decision-making problems. The steps of the knowledge production cycle are, in the same manner, ultimately driven by the mental models of the scientist in a specific discipline. Remnants of this mental model can be found in the resulting computer model. The characteristics of unstructured problems (complexity, uncertainty and disagreement) can be positioned in the framework, as can the communities of knowledge construction and valuation involved in the solution of these problems (core science, applied science, and professional consultancy, and “post-normal” science). Mental model maps, this research hypothesises, are suitable to analyse the above aspects of the problem. This hypothesis is tested for the case of the Zwolle storm surch barrier. Analysis can aid integration between disciplines, participation of public stakeholders, and can stimulate learning processes. Mental model mapping is recommended to visualise the use of knowledge, to analyse difficulties in problem solving process, and to aid information transfer and communication. Mental model mapping help scientists to shape their new, post-normal responsibilities in a manner that complies with integrity when dealing with unstructured problems in complex, multifunctional systems.

  18. Prompting Undergraduate Students' Metacognition of Learning: Implementing "Meta-Learning" Assessment Tasks in the Biomedical Sciences

    ERIC Educational Resources Information Center

    Colthorpe, Kay; Sharifirad, Tania; Ainscough, Louise; Anderson, Stephen; Zimbardi, Kirsten

    2018-01-01

    To succeed at post-secondary education, it is essential that students develop an understanding of their own knowledge and learning processes. This metacognition of learning, or "meta-learning," helps students to become more effective learners, as they become more aware of their self-regulatory processes and recognise the effectiveness of…

  19. Conceptual Change and Killer Whales: Constructing Ecological Values for Animals at the Vancouver Aquarium.

    ERIC Educational Resources Information Center

    Kelsey, Elin

    1991-01-01

    Examines how the aquarium has attempted to move from a transfer view of knowledge to a constructivist approach in its most popular general public program--the killer whale presentation. The process of change that staff underwent is similar to conceptual change processes among learners of science. Describes constructivist strategies of conceptual…

  20. Different understanding: science through the eyes of visual thinkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesko, S.C.; Marchant, M.

    1997-09-11

    The objective of this emergent study was to follow the cognitive and creative processes demonstrated by five art student participants as they integrated a developing knowledge of big science, as practiced at the Department of Energy`s Lawrence Livermore National Laboratory, into a personal and idiosyncratic visual, graphical, or multimedia product. The non-scientist participants involved in this process attended design classes sponsored by the Laboratory at the Art Center College of Design in California. The learning experience itself, and how the students arrived at their product, were the focus of the class and the research. The study was emergent in thatmore » we found no applicable literature on the use of art to portray a cognitive understanding of science. This lack of literature led us to the foundation literature on creativity and to the corpus of literature on public understanding of science. We believe that this study contributes to the literature on science education, art education, cognitive change, and public understanding of science. 20 refs., 11 figs.« less

  1. WFIRST: Update on the Coronagraph Science Requirements

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Cahoy, Kerri; Carlton, Ashley; Macintosh, Bruce; Turnbull, Margaret; Kasdin, Jeremy; WFIRST Coronagraph Science Investigation Teams

    2018-01-01

    The WFIRST Coronagraph instrument (CGI) will enable direct imaging and low resolution spectroscopy of exoplanets in reflected light and imaging polarimetry of circumstellar disks. The CGI science investigation teams were tasked with developing a set of science requirements which advance our knowledge of exoplanet occurrence and atmospheric composition, as well as the composition and morphology of exozodiacal debris disks, cold Kuiper Belt analogs, and protoplanetary systems. We present the initial content, rationales, validation, and verification plans for the WFIRST CGI, informed by detailed and still-evolving instrument and observatory performance models. We also discuss our approach to the requirements development and management process, including the collection and organization of science inputs, open source approach to managing the requirements database, and the range of models used for requirements validation. These tools can be applied to requirements development processes for other astrophysical space missions, and may ease their management and maintenance. These WFIRST CGI science requirements allow the community to learn about and provide insights and feedback on the expected instrument performance and science return.

  2. A culture of technical knowledge: Professionalizing science and engineering education in late-nineteenth century America

    NASA Astrophysics Data System (ADS)

    Nienkamp, Paul

    This manuscript examines the intellectual, cultural, and practical approaches to science and engineering education as a part of the land-grant college movement in the Midwest between the 1850s and early 1900s. These land-grant institutions began and grew within unique frontier societies that both cherished self-reliance and diligently worked to make themselves part of the larger national experience. College administrators and professors encountered rapidly changing public expectations, regional needs, and employment requirements. They recognized a dire need for technically skilled men and women who could quickly adapt to changes in equipment and processes, and implement advances in scientific knowledge in American homes, fields, and factories. Charged with educating the "industrial classes in the several pursuits and professions in life," land-grant college supporters and professors sought out the most modern and innovative instructional methods. Combining the humanities, sciences, and practical skills that they believed uniquely suited student needs, these pioneering educators formulated new curricula and training programs that advanced both the knowledge and the social standing of America's agricultural and mechanical working classes.

  3. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    NASA Astrophysics Data System (ADS)

    Subramaniam, Karthigeyan

    2016-08-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.

  4. We need to talk about epistemology: orientations, meaning, and interpretation within music therapy research.

    PubMed

    Edwards, Jane

    2012-01-01

    Epistemology is a term used explicitly in social science research to refer to theory of knowledge, or ways of knowing. Describing the epistemological stance underpinning research studies in music therapy that use social science methods such as grounded theory, phenomenology, and ethnography will increase understanding of the outcomes presented. To promote an understanding of epistemology and its applications for music therapy research. The researcher describes her own views and experiences in developing knowledge of epistemology with reference to the social sciences and music therapy research literature published in English. She first focuses on terminology, then presents a discussion of epistemology. Further clarification is needed to improve understanding of the role of epistemology in advancing understanding of the foundations of the methods from the social sciences used in research in music therapy. In order to improve some aspects of research studies the following recommendations are made to authors. At minimum, a research report should, (a) define and describe the specific methodology such as grounded theory, phenomenology, ethnography, or other, (b) present the epistemological foundations of the method chosen, (c) include a statement on the personal standpoint of the researcher including motivations to undertake the study, (d) include the process of data analysis with justification from the epistemological stance as to why the process is credible, (e) provide outcomes of the analysis of the research in detail and in summary, and (f) refer to processes of reflexivity.

  5. The association between effectiveness of the management processes and quality of health services from the perspective of the managers in the university hospitals of Ahvaz, Iran

    PubMed Central

    Faraji-Khiavi, F; Ghobadian, S; Moradi-Joo, E

    2015-01-01

    Background and Objective: Knowledge management is introduced as a key element of quality improvement in organizations. There was no such research in university hospitals of Ahvaz. This study aimed to determine the association between the effectiveness of the processes of knowledge management and the health services quality from the managers’ view in the educational hospitals of Ahvaz city. Materials and Methods: in this correlational and research, the research population consisted of 120 managers from hospitals in University of Medical Sciences Ahvaz. Due to the limited population, the census was run. Three questionnaires were used for data collection: Demographic characteristics, the effectiveness of knowledge management processes and the quality of medical services. To analyze the data, the Spearman association analysis, The Kruskal-Wallis, the Mann–Whitney U test, were used in SPSS. Results: estimation of average scoring of the effectiveness of knowledge management processes and its components were relatively appropriate. Quality of medical services was estimated as relatively appropriate. Relationship of quality of health services with the effectiveness of knowledge management processes showed a medium and positive correlation (p < 0.001). Managers with different genders showed significant differences in knowledge development and transfer (P = 0.003). Conclusion: a significant and positive association was observed between the effectiveness of knowledge management processes and health care quality. To improve the health care quality in university hospitals, managers should pay more attention to develop the cultures of innovation, encourage teamwork, and improve communication and creative thinking in the knowledge management context PMID:28316735

  6. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    NASA Technical Reports Server (NTRS)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  7. Developing a framework for qualitative engineering: Research in design and analysis of complex structural systems

    NASA Technical Reports Server (NTRS)

    Franck, Bruno M.

    1990-01-01

    The research is focused on automating the evaluation of complex structural systems, whether for the design of a new system or the analysis of an existing one, by developing new structural analysis techniques based on qualitative reasoning. The problem is to identify and better understand: (1) the requirements for the automation of design, and (2) the qualitative reasoning associated with the conceptual development of a complex system. The long-term objective is to develop an integrated design-risk assessment environment for the evaluation of complex structural systems. The scope of this short presentation is to describe the design and cognition components of the research. Design has received special attention in cognitive science because it is now identified as a problem solving activity that is different from other information processing tasks (1). Before an attempt can be made to automate design, a thorough understanding of the underlying design theory and methodology is needed, since the design process is, in many cases, multi-disciplinary, complex in size and motivation, and uses various reasoning processes involving different kinds of knowledge in ways which vary from one context to another. The objective is to unify all the various types of knowledge under one framework of cognition. This presentation focuses on the cognitive science framework that we are using to represent the knowledge aspects associated with the human mind's abstraction abilities and how we apply it to the engineering knowledge and engineering reasoning in design.

  8. Delving within: the new science of the unconscious.

    PubMed

    Paulson, Steve; Berlin, Heather A; Ginot, Efrat; Makari, George

    2017-10-01

    What exactly is the relationship between conscious awareness and the unconscious mind? How, for example, does the brain classify and sort its different functions into conscious or unconscious processes? How has the history of human conceptualizations about the unconscious influenced current theories? Steve Paulson, executive producer of To the Best of Our Knowledge, moderated a discussion among neuroscientist Heather Berlin, psychologist Efrat Ginot, and psychiatrist George Makari to shed light on the history of the mind and the latest insights into the still emerging science of the unconscious. © 2017 New York Academy of Sciences.

  9. University and Elementary School Perspectives of Ideal Elementary Science Teacher Knowledge, Skills, and Dispositions

    NASA Astrophysics Data System (ADS)

    Sewart, Bethany Bianca

    Teacher education knowledge, skills, and dispositions have recently become a well-discussed topic among education scholars around the nation, mainly due to its attention by the National Council for Accreditation of Teacher Education (NCATE) over the past few years. Accrediting agencies, such as NCATE and the Interstate New Teacher and Assessment and Support Consortium (INTASC), have sought to improve the quality of teacher education programs by examining knowledge, skills, and dispositions as factors in preparing highly-qualified teachers. There is a paucity of research examining these factors for elementary science teachers. Because these factors influence instruction, and students are behind in scientific and mathematical knowledge, elementary science teachers should be studied. Teacher knowledge, skills, and dispositions should be further researched in order to ultimately increase the quality of teachers and teacher education programs. In this particular case, by determining what schools of education and public schools deem important knowledge, skills, and dispositions needed to teach science, higher education institutions and schools can collaborate to further educate these students and foster the necessary qualities needed to teach effectively. The study of knowledge, skills, and dispositions is crucial to nurturing effective teaching within the classroom. Results from this study demonstrated that there were prominent knowledge, skills, and dispositions identified by teachers, administrators, and science teacher educators as important for effective teaching of elementary science. These characteristics included: a willingness to learn, or open-mindedness; content knowledge; planning, organization, and preparation; significance of teaching science; and science-related assessment strategies. Interestingly, administrators in the study responded differently than their counterparts in the following areas: their self-evaluation of teacher effectiveness; how the teaching of science is valued; the best approach to science teaching; and planning for science instruction. When asked of their teaching effectiveness while teaching science, principals referred to enjoying science teaching and improving their practice, while teachers and science teacher educators discussed content knowledge. Administrators valued conducting experiments and hands-on science while teaching science, while their educational counterparts valued creating student connections and providing real-life applications to science for students. In their professional opinions, administrators preferred a hands-on approach to science teaching. Teachers and science teacher educators stated that they view scientific inquiry, exploration, and discovery as effective approaches to teaching within their classrooms. Administrators predicted that teachers would state that lack of resources affects their lesson planning in science. However, teachers and science teacher educators asserted that taking time to plan for science instruction was most important.

  10. Change is hard: What science teachers are telling us about reform and teacher learning of innovative practices

    NASA Astrophysics Data System (ADS)

    Davis, Kathleen S.

    2003-01-01

    Over the last decade, significant efforts have been made to bring change to science classrooms. Educational researchers (Anderson, R. D., & Helms, J. V. (2001). Journal of Research in Science Teaching, 38(1), 3-16.) have pointed to the need to examine reform efforts systemically to understand the pathways and impediments to successful reform. This study provides a critical analysis of the implementation of an innovative science curriculum at a middle school site. In particular, the author explores the issues that surround teacher learning of new practices including the structures, policies, and practices that were in place within the reform context that supported or impeded teacher learning. Parallels are drawn between student and teacher learning and the importance of autonomy and decision-making structures for both populations of learners. Findings presented include (1) how staff development with constructivist underpinnings facilitated teacher learning; (2) how regular and frequent opportunities for interactions with colleagues and outside support personnel contributed to teacher learning; (3) how the decline of such interactive forums and the continuation of old decision-making structures restricted the development of teacher knowledge, expertise, and a common vision of the science program; and (4) how the process of field-testing at this site limited the incorporation of teachers' prior knowledge and impacted teacher acquisition of new knowledge and skills.

  11. Science, Metaphoric Meaning, and Indigenous Knowledge

    ERIC Educational Resources Information Center

    Elliott, Frank

    2009-01-01

    Western cultural approaches to teaching science have excluded Indigenous knowledges and culturally favored many non-Aboriginal science students. By asking the question "What connections exist between Western science and Indigenous knowledge?" elements of epistemological (how do we determine what is real?) and ontological (what is real?)…

  12. Fairness in Knowing: Science Communication and Epistemic Justice.

    PubMed

    Medvecky, Fabien

    2017-09-22

    Science communication, as a field and as a practice, is fundamentally about knowledge distribution; it is about the access to, and the sharing of knowledge. All distribution (science communication included) brings with it issues of ethics and justice. Indeed, whether science communicators acknowledge it or not, they get to decide both which knowledge is shared (by choosing which topic is communicated), and who gets access to this knowledge (by choosing which audience it is presented to). As a result, the decisions of science communicators have important implications for epistemic justice: how knowledge is distributed fairly and equitably. This paper presents an overview of issues related to epistemic justice for science communication, and argues that there are two quite distinct ways in which science communicators can be just (or unjust) in the way they distribute knowledge. Both of these paths will be considered before concluding that, at least on one of these accounts, science communication as a field and as a practice is fundamentally epistemically unjust. Possible ways to redress this injustice are suggested.

  13. Double-edged sword of interdisciplinary knowledge flow from hard sciences to humanities and social sciences: Evidence from China

    PubMed Central

    Liu, Meijun; Shi, Dongbo

    2017-01-01

    Humanities and Social Sciences (HSS) increasingly absorb knowledge from Hard Sciences, i.e., Science, Technology, Agriculture and Medicine (STAM), as testified by a growing number of citations. However, whether citing more Hard Sciences brings more citations to HSS remains to be investigated. Based on China’s HSS articles indexed by the Web of Science during 1998–2014, this paper estimated two-way fixed effects negative binomial models, with journal effects and year effects. Findings include: (1) An inverse U-shaped curve was observed between the percentage of STAM references to the HSS articles and the number of citations they received; (2) STAM contributed increasing knowledge to China’s HSS, while Science and Technology knowledge contributed more citations to HSS articles. It is recommended that research policy should be adjusted to encourage HSS researchers to adequately integrate STAM knowledge when conducting interdisciplinary research, as over-cited STAM knowledge may jeopardize the readability of HSS articles. PMID:28934277

  14. Double-edged sword of interdisciplinary knowledge flow from hard sciences to humanities and social sciences: Evidence from China.

    PubMed

    Liu, Meijun; Shi, Dongbo; Li, Jiang

    2017-01-01

    Humanities and Social Sciences (HSS) increasingly absorb knowledge from Hard Sciences, i.e., Science, Technology, Agriculture and Medicine (STAM), as testified by a growing number of citations. However, whether citing more Hard Sciences brings more citations to HSS remains to be investigated. Based on China's HSS articles indexed by the Web of Science during 1998-2014, this paper estimated two-way fixed effects negative binomial models, with journal effects and year effects. Findings include: (1) An inverse U-shaped curve was observed between the percentage of STAM references to the HSS articles and the number of citations they received; (2) STAM contributed increasing knowledge to China's HSS, while Science and Technology knowledge contributed more citations to HSS articles. It is recommended that research policy should be adjusted to encourage HSS researchers to adequately integrate STAM knowledge when conducting interdisciplinary research, as over-cited STAM knowledge may jeopardize the readability of HSS articles.

  15. Elementary Preservice Teachers' Science Vocabulary: Knowledge and Application

    ERIC Educational Resources Information Center

    Carrier, Sarah J.

    2013-01-01

    Science vocabulary knowledge plays a role in understanding science concepts, and science knowledge is measured in part by correct use of science vocabulary (Lee et al. in "J Res Sci Teach" 32(8):797-816, 1995). Elementary school students have growing vocabularies and many are learning English as a secondary language or depend on schools to learn…

  16. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    ERIC Educational Resources Information Center

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2018-01-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was…

  17. A schema theory analysis of students' think aloud protocols in an STS biology context

    NASA Astrophysics Data System (ADS)

    Quinlan, Catherine Louise

    This dissertation study is a conglomerate of the fields of Science Education and Applied Cognitive Psychology. The goal of this study is to determine what organizational features and knowledge representation patterns high school students exhibit over time for issues pertinent to science and society. Participants are thirteen tenth grade students in a diverse suburban-urban classroom in a northeastern state. Students' think alouds are recorded, pre-, post-, and late-post treatment. Treatment consists of instruction in three Science, Technology, and Society (STS) biology issues, namely the human genome project, nutrition and health, and stem cell research. Coding and analyses are performed using Marshall's knowledge representations---identification knowledge, elaboration knowledge, planning knowledge, and execution knowledge, as well as qualitative research analysis methods. Schema theory, information processing theory, and other applied cognitive theory provide a framework in which to understand and explain students' schema descriptions and progressions over time. The results show that students display five organizational features in their identification and elaboration knowledge. Students also fall into one of four categories according to if they display prior schema or no prior schema, and their orientation "for" or "against," some of the issues. Students with prior schema and orientation "against" display the most robust schema descriptions and schema progressions. Those with no prior schemas and orientation "against" show very modest schema progressions best characterized by their keyword searches. This study shows the importance in considering not only students' integrated schemas but also their individual schemes. A role for the use of a more schema-based instruction that scaffolds student learning is implicated.

  18. Science knowledge and cognitive strategy use among culturally and linguistically diverse students

    NASA Astrophysics Data System (ADS)

    Lee, Okhee; Fradd, Sandra H.; Sutman, Frank X.

    Science performance is determined, to a large extent, by what students already know about science (i.e., science knowledge) and what techniques or methods students use in performing science tasks (i.e., cognitive strategies). This study describes and compares science knowledge, science vocabulary, and cognitive strategy use among four diverse groups of elementary students: (a) monolingual English Caucasian, (b) African-American, (c) bilingual Spanish, and (d) bilingual Haitian Creole. To facilitate science performance in culturally and linguistically congruent settings, the study included student dyads and teachers of the same language, culture, and gender. Science performance was observed using three science tasks: weather phenomena, simple machines, and buoyancy. Data analysis involved a range of qualitative methods focusing on major themes and patterns, and quantitative methods using coding systems to summarize frequencies and total scores. The findings reveal distinct patterns of science knowledge, science vocabulary, and cognitive strategy use among the four language and culture groups. The findings also indicate relationships among science knowledge, science vocabulary, and cognitive strategy use. These findings raise important issues about science instruction for culturally and linguistically diverse groups of students.Received: 3 January 1995;

  19. A Conflict in Your Head: An Exploration of Trainee Science Teachers' Subject Matter Knowledge Development and Its Impact on Teacher Self-Confidence

    ERIC Educational Resources Information Center

    Kind, Vanessa

    2009-01-01

    Teachers' subject matter knowledge (SMK) is one factor contributing to teaching 'successfully', as this provides a basis from which pedagogical content knowledge develops. UK-based trainee science teachers teach all sciences to age 14 and often up to age 16. Trainees have specialist science knowledge in chemistry, physics, or biology from their…

  20. Ontology-guided data preparation for discovering genotype-phenotype relationships.

    PubMed

    Coulet, Adrien; Smaïl-Tabbone, Malika; Benlian, Pascale; Napoli, Amedeo; Devignes, Marie-Dominique

    2008-04-25

    Complexity and amount of post-genomic data constitute two major factors limiting the application of Knowledge Discovery in Databases (KDD) methods in life sciences. Bio-ontologies may nowadays play key roles in knowledge discovery in life science providing semantics to data and to extracted units, by taking advantage of the progress of Semantic Web technologies concerning the understanding and availability of tools for knowledge representation, extraction, and reasoning. This paper presents a method that exploits bio-ontologies for guiding data selection within the preparation step of the KDD process. We propose three scenarios in which domain knowledge and ontology elements such as subsumption, properties, class descriptions, are taken into account for data selection, before the data mining step. Each of these scenarios is illustrated within a case-study relative to the search of genotype-phenotype relationships in a familial hypercholesterolemia dataset. The guiding of data selection based on domain knowledge is analysed and shows a direct influence on the volume and significance of the data mining results. The method proposed in this paper is an efficient alternative to numerical methods for data selection based on domain knowledge. In turn, the results of this study may be reused in ontology modelling and data integration.

Top