Advances in the NASA Earth Science Division Applied Science Program
NASA Astrophysics Data System (ADS)
Friedl, L.; Bonniksen, C. K.; Escobar, V. M.
2016-12-01
The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.
Four Tools for Science Fair Success
ERIC Educational Resources Information Center
Smith, Sherry Weaver; Messmer, Barbara; Storm, Bill; Weaver, Cheryl
2007-01-01
These teacher-tested ideas will guide students in creating true inquiry-based projects. Two of the ideas, the Topic Selection Wizard and Science Project Timeline, are appropriate for all science fair programs, even new ones. For existing programs, the Black Box of Project Improvement and After-School Project Clinic improve project quality and…
Nevada Underserved Science Education Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicole Rourke; Jason Marcks
2004-07-06
Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.
Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences
NASA Astrophysics Data System (ADS)
Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.
2017-12-01
Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.
Exemplary Programs in Physics, Chemistry, Biology, and Earth Science.
ERIC Educational Resources Information Center
Yager, Robert E., Ed.
The 1982 Search for Excellence in Science Education project has identified 50 exemplary programs in physics, chemistry, biology, and earth science. Descriptions of four of these programs and the criteria used in their selection are presented. The first section reviews the direction established by Project Synthesis in searching for exemplary…
NASA Technical Reports Server (NTRS)
Childs, Lauren; Brozen, Madeline; Hillyer, Nelson
2010-01-01
Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.
NASA Astrophysics Data System (ADS)
Friedl, L. A.; Cox, L.
2008-12-01
The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.
1999 LDRD Laboratory Directed Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rita Spencer; Kyle Wheeler
This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Laboratory Directed Research and Development FY 1998 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Vigil; Kyle Wheeler
This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Laboratory directed research and development: FY 1997 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1998-05-01
This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Undergraduate Research Experience in Ocean/Marine Science (URE-OMS)
2003-09-30
The URE-Ocean/Marine Science program supports active research participation by undergraduate students in remote sensing and GIS. The program is based on a model for undergraduate research programs supported by the National Science Foundation . URE project features mentors, research projects, and professional development opportunities. It is the long-term goal
NASA Astrophysics Data System (ADS)
Eyles, C.; Symons, S. L.; Harvey, C. T.
2016-12-01
Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.
Program Brings Science to Elementary Students.
ERIC Educational Resources Information Center
Worthy, Ward
1988-01-01
Describes "Parents and Children for Terrific Science (PACTS)" program sponsored by the American Chemical Society's Education Division for encouraging the development of family science projects at the elementary and intermediate school levels. Discusses some examples and the results of the project. (YP)
In Brief: Revitalizing Earth science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-12-01
A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.
NASA Astrophysics Data System (ADS)
Hey, Tony
2002-08-01
After defining what is meant by the term 'e-Science', this talk will survey the activity on e-Science and Grids in Europe. The two largest initiatives in Europe are the European Commission's portfolio of Grid projects and the UK e-Science program. The EU under its R Framework Program are funding nearly twenty Grid projects in a wide variety of application areas. These projects are in varying stages of maturity and this talk will focus on a subset that have most significant progress. These include the EU DataGrid project led by CERN and two projects - EuroGrid and Grip - that evolved from the German national Unicore project. A summary of the other EU Grid projects will be included. The UK e-Science initiative is a 180M program entirely focused on e-Science applications requiring resource sharing, a virtual organization and a Grid infrastructure. The UK program is unique for three reasons: (1) the program covers all areas of science and engineering; (2) all of the funding is devoted to Grid application and middleware development and not to funding major hardware platforms; and (3) there is an explicit connection with industry to produce robust and secure industrial-strength versions of Grid middleware that could be used in business-critical applications. A part of the funding, around 50M, but requiring an additional 'matching' $30M from industry in collaborative projects, forms the UK e-Science 'Core Program'. It is the responsibility of the Core Program to identify and support a set of generic middleware requirements that have emerged from a requirements analysis of the e-Science application projects. This has led to a much more data-centric vision for 'the Grid' in the UK in which access to HPC facilities forms only one element. More important for the UK projects are issues such as enabling access and federation of scientific data held in files, relational databases and other archives. Automatic annotation of data generated by high throughput experiments with XML-based metadata is seen as a key step towards developing higher-level Grid services for information retrieval and knowledge discovery. The talk will conclude with a survey of other Grid initiatives across Europe and look at possible future European projects.
Environmental Management Science Program Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1998-07-01
This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.
NASA Astrophysics Data System (ADS)
Whitehurst, A.; Murphy, K. J.
2017-12-01
The objectives of the NASA Citizen Science for Earth Systems Program (CSESP) include both the evaluation of using citizen science data in NASA Earth science related research and engaging the public in Earth systems science. Announced in 2016, 16 projects were funded for a one year prototype phase, with the possibility of renewal for 3 years pending a competitive evaluation. The current projects fall into the categories of atmospheric composition (5), biodiversity and conservation (5), and surface hydrology/water and energy cycle (6). Out of the 16, 8 of the projects include the development and/or implementation of low cost sensors to facilitate data collection. This presentation provides an overview of the NASA CSESP program to both highlight the diversity of innovative projects being funded and to share information with future program applicants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less
NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Szofran, Frank
2008-01-01
The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.
34 CFR 637.14 - What are special projects?
Code of Federal Regulations, 2012 CFR
2012-07-01
... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2012-07-01 2012-07-01 false What are special projects? 637.14 Section 637.14...
34 CFR 637.14 - What are special projects?
Code of Federal Regulations, 2013 CFR
2013-07-01
... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2013-07-01 2013-07-01 false What are special projects? 637.14 Section 637.14...
34 CFR 637.14 - What are special projects?
Code of Federal Regulations, 2010 CFR
2010-07-01
... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2010-07-01 2010-07-01 false What are special projects? 637.14 Section 637.14...
34 CFR 637.14 - What are special projects?
Code of Federal Regulations, 2014 CFR
2014-07-01
... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2014-07-01 2014-07-01 false What are special projects? 637.14 Section 637.14...
34 CFR 637.14 - What are special projects?
Code of Federal Regulations, 2011 CFR
2011-07-01
... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2011-07-01 2011-07-01 false What are special projects? 637.14 Section 637.14...
ALCF Data Science Program: Productive Data-centric Supercomputing
NASA Astrophysics Data System (ADS)
Romero, Nichols; Vishwanath, Venkatram
The ALCF Data Science Program (ADSP) is targeted at big data science problems that require leadership computing resources. The goal of the program is to explore and improve a variety of computational methods that will enable data-driven discoveries across all scientific disciplines. The projects will focus on data science techniques covering a wide area of discovery including but not limited to uncertainty quantification, statistics, machine learning, deep learning, databases, pattern recognition, image processing, graph analytics, data mining, real-time data analysis, and complex and interactive workflows. Project teams will be among the first to access Theta, ALCFs forthcoming 8.5 petaflops Intel/Cray system. The program will transition to the 200 petaflop/s Aurora supercomputing system when it becomes available. In 2016, four projects have been selected to kick off the ADSP. The selected projects span experimental and computational sciences and range from modeling the brain to discovering new materials for solar-powered windows to simulating collision events at the Large Hadron Collider (LHC). The program will have a regular call for proposals with the next call expected in Spring 2017.http://www.alcf.anl.gov/alcf-data-science-program This research used resources of the ALCF, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
Space Science Research and Technology at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Johnson, Charles L.
2007-01-01
This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.
Future prospects for space life sciences from a NASA perspective
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.
ERIC Educational Resources Information Center
Brown, Pamela; Borrego, Maura
2013-01-01
The National Science Foundation's Math and Science Partnership (MSP) program (NSF, 2012) supports partnerships between K-12 school districts and institutions of higher education (IHEs) and has been funding projects to improve STEM education in K-12 since 2002. As of 2011, a total of 178 MSP projects have received support as part of a STEM…
Summary of Research 1997, Department of Computer Science.
1999-01-01
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704...contains summaries of research projects in the Department of Computer Science . A list of recent publications is also included which consists of conference...parallel programming. Recently, in a joint research project between NPS and the Russian Academy of Sciences Systems Programming Insti- tute in Moscow
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.
NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.
ERIC Educational Resources Information Center
CAMAREN, JAMES
ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…
Math and Science 1967-68, Volume II, Project "Interweave", End of Project Report.
ERIC Educational Resources Information Center
East Maine School District 63, Niles, IL.
This document contains materials given to teachers participating in an inservice program aimed at helping them teach topics in modern mathematics and science. The mathematics portion of the project was a series of 11 television programs introducing the topics of equations, number lines, operations, functions, centimeter blocks, lattices, brackets,…
NASA Astrophysics Data System (ADS)
Simms, E.; Goehring, E.; Larsen, J.; Kusek, K.
2007-12-01
Sponsored by the National Science Foundation, Ridge 2000 (R2K) is a mid-ocean ridge and hydrothermal vent research program with a history of successful education and public outreach (EPO) programs and products. This presentation will share general science and education partnership strategies and best practices employed by the R2K program, with a particular emphasis on the innovative R2K project From Local to EXtreme Environments (FLEXE). As a new project of the international NSF and NASA sponsored GLOBE earth science education program, FLEXE involves middle and high school students in structured, guided analyses and comparisons of real environmental data. The science and education partnership model employed by FLEXE relies on experienced education coordinators within the R2K and international InterRidge and ChEss science research programs, who directly solicit and facilitate the involvement of an interdisciplinary community of scientists in the project based on their needs and interests. Concurrently, the model also relies on the GLOBE program to facilitate awareness and access to a large, established network of international educators who are interested in the process of science and interacting with the scientific community. The predominantly web-based interfaces that serve to effectively link together the FLEXE science and education communities have been developed by the Center for Science and the Schools at Penn State University, and are based on researched educational pedagogy, tools and techniques. The FLEXE partnership model will be discussed in the context of both broad and specific considerations of audience needs, scientist and educator recruitment, and the costs and benefits for those involved in the project.
NASA Astrophysics Data System (ADS)
Hogue, T. S.; Moldwin, M.; Nonacs, P.; Daniel, J.; Shope, R.
2009-12-01
A National Science Foundation Graduate Teaching Fellows in K- 12 Education program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA) has just completed its first year (of a five-year program) and has greatly expanded UCLA’s science and engineering partnerships with LA Unified and Culver City Unified School Districts. The SEE-LA program partners UCLA faculty, graduate students (fellows), middle and high school science teachers and their students into a program of science and engineering exploration that brings the environment of Los Angeles into the classroom. UCLA graduate fellows serve as scientists-in-residence at the four partner schools to integrate inquiry-based science and engineering lessons, facilitate advancements in science content teaching, and ultimately, to improve their own science communication skills. As part of their fellowship, graduate students are required to develop three inquiry-based lessons in their partner classroom, including a lesson focused on their dissertation research, a lesson focused on the environmental/watershed theme of the project, and a lesson that involves longer-term data collection and synthesis with the grade 6-12 teachers and students. The developed long-term projects ideally involve continued observations and analysis through the five-year project and beyond. During the first year of the project, the ten SEE-LA fellows developed a range of long-term research projects, from seasonal invertebrate observations in an urban stream system, to home energy consumption surveys, to a school bioblitz (quantification of campus animals and insects). Examples of lesson development and integration in the classroom setting will be highlighted as well as tools required for sustainability of the projects. University and local pre-college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the integration of sustainable research projects into K-12 curriculum.
Theme-Based Project Learning: Design and Application of Convergent Science Experiments
ERIC Educational Resources Information Center
Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee
2015-01-01
This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…
NASA Astrophysics Data System (ADS)
Sorensen, A. E.; Jordan, R.
2016-12-01
Recent literature has suggested public participatory research models (e.g., citizen science and similar) as a key opportunity for scientists to meaningfully engage and communicate with the public to increase support for science and encourage pro-science behavior. In this, there has been an inherent assumption that all models of engagement yield similar participant results with few examples of assessment of these programs. While many of these programs do share superficial similarities in their modes of participant engagement and participant motivation, there is a large disparity in participant engagement between them. This disparity suggests that framing of these projects (e.g., citizen science versus crowd sourcing) also plays an important role in decisions about participation. Additionally, participant outcomes, in terms of beliefs about scientific practices and scientific trust, between these two project types has not yet been investigated. To investigate the impact of framing, participants were recruited to a web-based tree phenology public participatory research program where half the participants were engaged in a citizen science framed program and the other were engaged in a crowdsourced framed project. The participants in each frame were engaged in the same task (reporting leaf budding/leaf drop), but the way the projects were framed differed. Post-participation we see that there are indeed statistically significant differences in participant outcomes between individuals who participated as a citizen scientist versus as a crowdsourcer. Particularly we see differences in terms of their views of science, identity, and trust of science. This work is the first to the authors' knowledge that aims to evaluate if projects can be treated synonymously when discussing potential for public engagement and broader trust and literacy outcomes.
Elementary and middle school science improvement project
NASA Technical Reports Server (NTRS)
Mcguire, Saundra Yancy
1987-01-01
The Alabama A & M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted in response to a need to improve the ability of North Alabama teachers to teach science effectively using the experimental or hands-on approach. The major component of the project was a two-week workshop. Follow-up visits were made to the classrooms of many of the participating teachers to obtain information on how the program was being implemented in the classroom. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcomes are addressed.
Citizen Science: Opportunities for Girls' Development of Science Identity
NASA Astrophysics Data System (ADS)
Brien, Sinead Carroll
Many students in the United States, particularly girls, have lost interest in science by the time they reach high school and do not pursue higher degrees or careers in science. Several science education researchers have found that the ways in which youth see themselves and position themselves in relation to science can influence whether they pursue science studies and careers. I suggest that participation in a citizen science program, which I define as a program in which girls interact with professional scientists and collect data that contributes to scientific research, could contribute to changing girls' perceptions of science and scientists, and promote their science identity work. I refer to science identity as self-recognition and recognition by others that one thinks scientifically and does scientific work. I examined a case study to document and analyze the relationship between girls' participation in a summer citizen science project and their development of science identity. I observed six girls between the ages of 16 and 18 during the Milkweed and Monarch Project, taking field notes on focal girls' interactions with other youth, adults, and the scientist, conducted highly-structured interviews both pre-and post- girls' program participation, and interviewed the project scientist and educator. I qualitatively analyzed field notes and interview responses for themes in girls' discussion of what it meant to think scientifically, roles they took on, and how they recognized themselves as thinking scientifically. I found that girls who saw themselves as thinking scientifically during the program seemed to demonstrate shifts in their science identity. The aspects of the citizen science program that seemed to most influence shifts in these girls' science identities were 1) the framing of the project work as "real science, 2) that it involved ecological field work, and 3) that it created a culture that valued data and scientific work. However, some of the girls only saw themselves as completing a repetitive task of data collection, and these evidenced no change in science identity. This indicates that science identity work might require more explicit attention by educators and scientists to girls' perceptions of science and scientific thinking, and discussion of how this is related to the project work and the roles they are playing within the citizen science project.
Cooperative General Science Project-A Progress Report
ERIC Educational Resources Information Center
Puri, Om P.
1971-01-01
A two-semester program which includes topics from biological and physical sciences at the conceptual level with limited mathematics. The program utilizes multimedia and includes some history of science and science processes. (TS)
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.
NASA Technical Reports Server (NTRS)
Lester, Dan
1997-01-01
The Science in the Stratosphere program, first established in 1992, was conceived to introduce K-6 teachers to airborne infrared astronomy through the Kuiper Airborne Observatory (KAO), and to use this venue as a basis for seeing scientists at work in a mission-intensive program. The teachers selected for this program would bring their new perspectives back to their schools and students. Unlike the related FOSTER program, the emphasis of this program was on more intensive exposure of the KAO mission to a small number of teachers. The teachers in the Science in the Stratosphere program essentially lived with the project scientists and staff for almost a week. One related goal was to imbed the KAO project with perspectives of working teachers, thereby sensitizing the project staff and scientists to educational outreach efforts in general, which is an important goal of the NASA airborne astronomy program. A second related goal was to explore the ways in which K-5 educators could participate in airborne astronomy missions. Also unlike FOSTER, the Science in the Stratosphere program was intentionally relatively unstructured, in that the teacher participants were wholly embraced by the science team, and were encouraged to 'sniff out' the flavor of the whole facility by talking with people.
Transfer of training through a science education professional development program
NASA Astrophysics Data System (ADS)
Sowards, Alan Bosworth
Educational research substantiates that effective professional development models must be developed in order for reform-based teaching strategies to be implemented in classrooms. This study examined the effectiveness of an established reform-based science education professional development program, Project LIFE. The study investigated what impact Project LIFE had on participants implementation of reform-based instruction in their classroom three years after participation in the science inservice program. Participants in the case studies described use of reform-based instruction and program factors that influenced transfer of training to their classrooms. Subjects of the study were 5th--10th grade teachers who participated in the 1997--98 Project LIFE professional development program. The study employed a mixed design including both qualitative and quantitative methodology. The qualitative data was collected from multiple sources which included: an open-ended survey, classroom observations, structured interviews, and artifacts. Three purposeful selection of teachers for case studies were made with teacher approval and authorization from building principals. Interview responses from the three case studies were further analyzed qualitatively using the microcomputer software NUD*IST. Tables and figures generated from NUD*IST graphically represented the case study teachers response and case comparison to six established categories: (1) continued implementation of reform-based instruction, (2) use of reform-based instruction, (3) program factors supporting transfer of training, (4) professional development, (5) goals of Project LIFE, and (6) critical issues in science education. Paired t-tests were used to analysis the quantitative data collected from the Survey of Attitudes Toward Science and Science Teaching. The study concluded the 1997--98 Project LIFE participants continued to implement reform-based instruction in their classrooms three years later. According to the teachers the program factors having the most influence on transferring training to their classroom were the positive responses from students; reflections with other teachers regarding instructional activities and strategies; modeling of activities and strategies they received from Project LIFE staff while participating in the program; and teachers commitment to reform-based instruction. These findings are important in enhancing national science reform goals. In order for teachers to be able to implement science-reform-based instruction in their classrooms they must experience effective professional development models. Designers of professional development programs must understand which factors in staff development programs most contribute to transfer of training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowling, Timothy Edward
2014-02-11
We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.
Materials sciences programs: Fiscal year 1994
NASA Astrophysics Data System (ADS)
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.
Materials sciences programs, fiscal year 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less
75 FR 62559 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... marketing science, research, practice, and public affairs; (2) leads agency strategic planning for communication and marketing science and public affairs programs and projects; (3) analyzes context, situation, and environment to inform agency-wide communication and marketing programs and projects; (4) ensures...
Environmental Sciences Division: Summaries of research in FY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principalmore » investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.« less
Interfacial nanobubbles produced by long-time preserved cold water
NASA Astrophysics Data System (ADS)
Zhou, Li-Min; Wang, Shuo; Qiu, Jie; Wang, Lei; Wang, Xing-Ya; Li, Bin; Zhang, Li-Juan; Hu, Jun
2017-09-01
Not Available Project supported by the Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, the Open Research Project of the Large Scientific Facility of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11079050, 11290165, 11305252, 11575281, and U1532260), the National Key Basic Research Program of China (Grant Nos. 2012CB825705 and 2013CB932801), the National Natural Science Foundation for Outstanding Young Scientists, China (Grant No. 11225527), the Shanghai Academic Leadership Program, China (Grant No. 13XD1404400), and the Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-EW-W09 and QYZDJ-SSW-SLH019)
The DEVELOP National Program's Strategy for Communicating Applied Science Outcomes
NASA Astrophysics Data System (ADS)
Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Favors, J.; Kelley, C.; Miller, T. N.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.
2016-12-01
NASA's DEVELOP National Program conducts rapid feasibility projects that enable the future workforce and current decision makers to collaborate and build capacity to use Earth science data to enhance environmental management and policy. The program communicates its results and applications to a broad spectrum of audiences through a variety of methods: "virtual poster sessions" that engage the general public through short project videos and interactive dialogue periods, a "Campus Ambassador Corps" that communicates about the program and its projects to academia, scientific and policy conference presentations, community engagement activities and end-of-project presentations, project "hand-offs" providing results and tools to project partners, traditional publications (both gray literature and peer-reviewed), an interactive website project gallery, targeted brochures, and through multiple social media venues and campaigns. This presentation will describe the various methods employed by DEVELOP to communicate the program's scientific outputs, target audiences, general statistics, community response and best practices.
Environmental Management Science Program Workshop. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1998-07-01
The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as thatmore » performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.« less
1992-10-01
science and mathematics education: • DOD Apprenticeship Programs * DOD Teacher Internship Programs * DOD Partnership Programs * DOD Dependents Schools ...corporate sponsors. curriculum and instruction in school mathematics For further information about the project or for were developed in a comprehensive... students develop critical thinking skills and to enhance their ability to solve problems through hands-on activities. The staff and participants were most
Cognitive and Neural Sciences Division, 1991 Programs.
ERIC Educational Resources Information Center
Vaughan, Willard S., Ed.
This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…
Materials sciences programs: Fiscal Year 1987
NASA Astrophysics Data System (ADS)
1987-09-01
Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into seven sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, gives distribution of funding, and Section G has various indexes.
NASA Astrophysics Data System (ADS)
Buzby, C. K.; Jona, K.
2009-12-01
The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions. Resources such as OSEP can pair scientists with educational organizations so that science outreach programs can be sustainable.
NASA Astrophysics Data System (ADS)
Mahlab, Minna; Grinnell Science Project Team--Grinnell College
2015-01-01
The Grinnell Science Project (GSP) is a program that was developed starting in the early 1990's at Grinnell College -- a selective liberal arts college in Grinnell, Iowa. The GSP program is committed to developing the talents of all students interested in science and mathematics, especially those from groups underrepresented in the sciences -- students of color, first-generation college students, and women in physics, mathematics and computer science. The program developed over several years, drawing on national studies and efforts, and aimed at addressing barriers to success in the sciences. It has involved curricular and mentoring changes, activities and structures that foster acclimation to college life and a community of scientists, and improvement of student achievement. Prior to the full implementation of the Grinnell Science Project, from 1992-1994, an average of 42 science majors graduated annually who were women and eight who were students of color. By 2008, those numbers had jumped to 90 women (a 114% increase) and 21 students of color (a 162.5% increase). In 2009, the GSP was honored with the Presidential Award for Excellence in Science, Engineering, Mathematics, and Engineering Mentoring, administered by the National Science Foundation. Components of the GSP are now mainstream throughout the science curriculum at Grinnell, and almost all science and math faculty have played some role in the program.
Children's Attitudes and Classroom Interaction in an Intergenerational Education Program
ERIC Educational Resources Information Center
Dunham, Charlotte Chorn; Casadonte, Dominick
2009-01-01
This research reports findings from an intergenerational science program, Project Serve, which placed senior volunteers in elementary and junior high science classrooms to assist teachers and augment instruction. Items from the Children's View of Aging survey (Newman, 1997; Newman & Faux, 1997) were administered before and after the project with…
34 CFR 645.1 - What is the Upward Bound Program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...
34 CFR 645.1 - What is the Upward Bound Program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...
34 CFR 645.1 - What is the Upward Bound Program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...
34 CFR 645.1 - What is the Upward Bound Program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...
NASA Astrophysics Data System (ADS)
Johnson, K. C.
1991-04-01
This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of U.S. science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities.
NASA Earth Science Research and Applications Using UAVs
NASA Technical Reports Server (NTRS)
Guillory, Anthony R.
2003-01-01
The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.
Laboratory-directed research and development: FY 1996 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1997-05-01
This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less
Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana
NASA Astrophysics Data System (ADS)
Akinyemi, Felicia O.
2018-05-01
Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.
Special Advanced Course for Core Sciences to Bring Up Project Leaders
NASA Astrophysics Data System (ADS)
Inagaki, Kenji; Tabata, Nobuhisa; Gofuku, Akio; Harada, Isao; Takada, Jun
Special Advanced Course for Core Sciences has been introduced recently to Graduate School of Natural Science and Technology, Okayama University, to bring up a project leader. The following points are key education goals in this program : (1) knowledge of core sciences, (2) communication ability by using English, and (3) wide viewpoints for researches. In order to accomplish these goals, several lectures for core sciences, patent systems and engineering ethics as well as long term internships by the collaboration with some regional companies have been put in practice. In this paper, we describe the outline of the program, educational effects, and our experiences. Then, we discuss how effective the program is for bringing up an engineer or a scientist who can lead sciences and technologies of their domains. This paper also describes current activities of the program.
Hands-On Optics: An Informal Education Program for Exploring Light and Color
NASA Astrophysics Data System (ADS)
Pompea, S. M.; Walker, C. E.; Peruta, C. C.; Kinder, B. A.; Aceituno, J. C.; Pena, M. A.
2005-05-01
Hands-On Optics (HOO) is a collaborative four-year program to create and sustain a unique, national, informal science education program to excite students about science by actively engaging them in optics activities. It will reach underrepresented middle school students in after-school programs and at hands-on science centers nationwide. Project partners with NOAO are SPIE-The International Society for Optical Engineering, the Optical Society of America (OSA), and the Mathematics, Engineering, Science Achievement Program (MESA) of California. This program builds on the 2001 National Science Foundation planning grant (number ESI-0136024), Optics Education - A Blueprint for the 21st Century, undertaken to address the disconnect between the ubiquity of optics in everyday life and the noticeable absence of optics education in K-12 curricula and in informal science education. NOAO - with expertise in teaching optics, developing optics kits, and in science-educator partnerships is designing the HOO instructional materials by adapting well-tested formal education activities on light, color, and optical technology for the informal setting. These hands-on, high-interest, standards-connected activities and materials serve as the basis for 6, three-hour-long optics activity modules that will be used in informal education programs at 23 HOO host sites. NOAO also will train the educators, parents, and optics professionals who will work in teams to lead the HOO activities. A key component of the project will be the optics professionals from the two optical societies who currently are engaged in outreach activities and programs. Optics professionals will serve as resource agents teamed with science center and MESA educators, a model very successfully used by the Astronomical Society of the Pacific's Project ASTRO. The six modules and associated challenges and contests address reflection from one or many mirrors, image formation, colors and polarization, ultraviolet and infrared phenomena, and communication over a beam of light. Challenges and contests have also been created to augment the six modules. The Hands On Optics Project is funded by the National Science Foundation ISE program. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.
An optics education program designed around experiments with small telescopes
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.; Dokter, Erin F. C.
2010-08-01
The National Optical Astronomy Observatory has led the development of a new telescope kit for kids as part of a strategic plan to interest young children in science. This telescope has been assembled by tens of thousands of children nationwide, who are now using this high-quality telescope to conduct optics experiments and to make astronomical observations. The Galileoscope telescope kit and its associated educational program are an outgrowth of the NSF sponsored "Hands-On Optics" (HOO) project, a collaboration of the SPIE, the Optical Society of America, and NOAO. This project developed optics kits and activities for upper elementary students and has reached over 20,000 middle school kids in afterschool programs. HOO is a highly flexible educational program and was featured as an exemplary informal science program by the National Science Teachers Association. Our new "Teaching with Telescopes" program builds on HOO, the Galileoscope and other successful optical education projects.
7 CFR 3405.4 - Purpose of the program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... agricultural sciences. In this context, CSREES has specific responsibility to initiate and support projects to strengthen college and university teaching programs in the food and agricultural sciences. One national... food and agricultural sciences higher education programs and to provide them with an education of the...
Laboratory directed research and development program FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.
Special Project Examination in Integrated Science - Ordinary Level.
ERIC Educational Resources Information Center
Wimpenny, David
A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…
Kasperowski, Dick; Hillman, Thomas
2018-05-01
In the past decade, some areas of science have begun turning to masses of online volunteers through open calls for generating and classifying very large sets of data. The purpose of this study is to investigate the epistemic culture of a large-scale online citizen science project, the Galaxy Zoo, that turns to volunteers for the classification of images of galaxies. For this task, we chose to apply the concepts of programs and antiprograms to examine the 'essential tensions' that arise in relation to the mobilizing values of a citizen science project and the epistemic subjects and cultures that are enacted by its volunteers. Our premise is that these tensions reveal central features of the epistemic subjects and distributed cognition of epistemic cultures in these large-scale citizen science projects.
Project BudBurst: Continental-scale citizen science for all seasons
NASA Astrophysics Data System (ADS)
Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.
2011-12-01
Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago Botanic Garden.
Windows to the Universe: Earth Science Enterprise Education Program
NASA Technical Reports Server (NTRS)
2004-01-01
Over the past year, Windows to the Universe has continued a multifaceted program of support to the Earth Science Enterprise Education program. Areas of activity include continued maintenance of the W2U website and user traffic analysis, development of new and revised content and activities on the website, implementation of new tools to facilitate website development and maintenance, response to users questions and comments, professional development for educators through workshops at the National Science Teachers Association meetings and at NCAR, and dissemination of information about the project through materials distribution at NSTAs, AGUs, AMS and other venues. This report provides some background on the project and summarizes progress for the third and final year of the project.
2010-03-16
L TO R: DR. FRANCIS CHIARAMONTE, PROGRAM EXECUTIVE FOR PHYSICAL SCIENCES, ISS RESEARCH PROJECT, NASA HEADQUARTERS; DR. RAYMOND CLINTON, ACTING MANAGER FOR SCIENCE AND MISSION SYSTEMS OFFICE, NASA MARSHALL; DR. FRANK SZOFRAN, MICROGRAVITY MATERIALS SCIENCE PROJECT MANAGER AND DISCIPLINE SCIENTIST MATERIALS AND PROCESSES LABORATORY AT MSFC.
Mexico's Program for Science and Technology, 1978 to 1982.
ERIC Educational Resources Information Center
Flores, Edmundo
1979-01-01
Describes briefly the National Council for Science and Technology (CONACYT) of Mexico, and outlines Mexico's Program for Science and Technology which includes 2,489 projects in basic and applied sciences at a cost of $260 million from 1978 to 1982. (HM)
ERIC Educational Resources Information Center
Lemus, Judith D.; Bishop, Kristina; Walters, Howard
2010-01-01
The QuikSCience Challenge science education program combines a cooperative team project emphasizing community service with an academic competition for middle and high school students. The program aims to develop leadership abilities, motivate interest in ocean sciences, engage students in community service and environmental stewardship, and…
Laboratory Directed Research and Development Program FY2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
none, none
2012-04-27
Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports themore » Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.« less
NASA Technical Reports Server (NTRS)
Childs, Lauren M.; Miller, Joseph E.
2011-01-01
The DEVELOP National Program was established over a decade ago to provide students with experience in the practical application of NASA Earth science research results. As part of NASA's Applied Sciences Program, DEVELOP focuses on bridging the gap between NASA technology and the public through projects that innovatively use NASA Earth science resources to address environmental issues. Cultivating a diverse and dynamic group of students and young professionals, the program conducts applied science research projects during three terms each year (spring, summer, and fall) that focus on topics ranging from water resource management to natural disasters.
ERIC Educational Resources Information Center
Abelson, Harold; diSessa, Andy
During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…
Making the Invisible Visible: The Oklahoma Science Project.
ERIC Educational Resources Information Center
McCarty, Robbie; Pedersen, Jon E.
2002-01-01
Reports that teachers in preservice education programs still view the teaching of science much in the same traditional ways as our predecessors. "The Oklahoma Science Project (OSP) Model for Professional Development: Practicing Science Across Contexts" will build discourses and relationships that can be extended across contexts to establish…
ScienceVision: An Inquiry-Based Videodisc Science Curriculum.
ERIC Educational Resources Information Center
Dawson, George
As a result of declining scores, the National Science Foundation has funded numerous materials-development grants. Largest among these is the Interactive Media Science (IMS) Project at Florida State University (FSU) in Tallahassee. This project's mandate is to design, develop, and produce six level III interactive videodisc programs for middle…
Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris
2009-01-01
Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.
Portsmouth Atmospheric Science School (PASS) Project
NASA Technical Reports Server (NTRS)
Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)
2002-01-01
The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).
Northland science discovery. Final report, February 15, 1995--February 14, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigford, A.
1997-09-01
This is a final report on the US Department of Energy`s grant of $39,900 to the PLUS Center at The College of St. Scholastica for a PREP program called Northland Science Discovery (NSD). This report includes an overview of the past year`s progress toward achieving the goals established for the project, a description of the results of these efforts and their relationship to the project goals, and appendices documenting program activities, accomplishments, and expenditures. The goal of Northland Science Discovery is to provide science and math enrichment activities for students traditionally underrepresented in science (girls, minorities, low-income, and rural children).more » The program works toward this goal by providing a four-week residential, research-based, science and math youth camp which serves approximately 25 students per year. NSD has been held each summer since 1992. This program also has an academic-year component consisting of reunions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less
The Seeds Left in Italy by the E&O Program of the Andrill Research
NASA Astrophysics Data System (ADS)
Cattadori, M.
2010-12-01
One of the main purposes of the ARISE program, the educational initiative by the ANDRILL research, was to “integrate polar geoscience content into a range of learning environments”. In the range of this program, an Italian science teacher created and developed through 2006 and 2007 a specific project called progettosmilla.it (www.progettosmilla.it). With the services consequently created, this initiative managed to involve more then 2000 students and 100 teachers across the Italian territory. Though, what is left of that experience four years later? This contribution focuses on the description of the long-term effects of that event on the earth system science education in Italy. It offers the chance to analyze some of the most significant educational projects rooted in the network of (local and national) institutions which supported the progettosmilla.it-ANDRILL program. Among these: - the Ortles project: an E&O initiative developed in the range of an international paleoclimatic research on the biggest ice-cap of the Eastern Alps (by Italian and U.S. universities and centers of research); - the I-CLEEN (Inquiring on Climate & ENergy) project: an information gateway collecting educational resources, which promotes an enquiry-based approach and is managed by science teachers (by the Natural Science Museum of Trento- Italy); - the SPEs (Summer Polar School for Teachers): a summer class where research, researchers and teachers illustrate polar themes and lectures to be introduced in scholastic programs (by the National Museum of Antarctica- Italy); - the first European edition of IESO (International Earth Science Olympiad), initiative to be held in Italy in 2011 (by University of Modena and Reggio Emilia - Italy). Through the analysis of these projects it will be possible to gain useful clues and answer more complex questions, such as: Which are the key factors for the success of such a project, aimed to the cooperation between scientists and teachers? Why an Educational & Outreach program of a scientific research should invest on science teachers?
The University of Amsterdam at TREC 2012
2012-11-01
lady , weight, ap, loss, major, insurance, rate, role, response, plays, atlanta, rising, oprah, childhood, crescent Table 5: Example topics and their...by the CLARIN-nl program, the Dutch national program COMMIT, the ESF Research Net- work Program ELIAS, the Elite Network Shifts project funded by the...Royal Dutch Academy of Sciences (KNAW), and the Netherlands eScience Center under project number 027.012.105. 6 References [1] Balasubramanian, N. and
ERIC Educational Resources Information Center
Gusack, Nancy, Ed.; And Others
1995-01-01
Contains 11 articles that describe different university access systems designed and built to provide access to journals via The University Licensing Program (TULIP), a science journal access project, involving Elsevier Science Publishing and major universities. The project produced insights to help with future electronic information delivery…
Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole
NASA Astrophysics Data System (ADS)
Liu, Shuang; Ma, Yan-Zhen; Yang, Yun-Fan; Liu, Song-Song; Li, Yong-Qing; Song, Yu-Zhi
2018-02-01
Not Available Project supported by the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J17KA186), the Taishan Scholar Project of Shandong Province, China, the Natural Science Foundation of Liaoning Province, China (Grant No. 20170540408), and the Science and Technology Plan Project of Shenyang City, China (Grant No. 17-231-1-06).
Textile Science Leader's Guide. 4-H Textile Science.
ERIC Educational Resources Information Center
Scholl, Jan
This instructor's guide provides an overview of 4-H student project modules in the textile sciences area. The guide includes short notes explaining how to use the project modules, a flowchart chart showing how the project areas are sequenced, a synopsis of the design and content of the modules, and some program planning tips. For each of the…
ERIC Educational Resources Information Center
Arctic Research Consortium of the United States, Fairbanks, AK.
The U.S. Global Change Research Program was established in 1990 to develop scientific projections of anticipated impacts of the changing biosphere on humans and social systems. As part of this program, the National Science Foundation created the Arctic System Science Program (ARCSS). This document describes the ARCSS Human Dimensions of the Arctic…
Undergraduate design projects for assistive technology needs: assisted fishing.
Borrego, Nick; Bilan, Kristi; Gebes, T J; Barrett, S F; Morton, S A
2012-01-01
In 2010 the University of Wyoming, College of Engineering and Applied Science was funded for a five year increment of the National Science Foundations Research to Aid Persons with Disabilities. This program provides a vital link between challenged individuals who require custom assistive technology devices with senior capstone design students who require challenging, meaningful projects. The program also provides education for our next generation of engineers on the needs of all individuals. In this paper we describe the program organization including project partners in the College and Wyoming Institute for Disabilities (WIND). We also provide a case study of a recently completed project for an assistive fishing device.
Project BudBurst: Citizen Science for All Seasons
NASA Astrophysics Data System (ADS)
Meymaris, K.; Henderson, S.; Alaback, P.; Havens, K.
2008-12-01
Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its second year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, participants from 49 states have submitted data that is being submitted to the USA National Phenology Network (www.usanpn.org) database. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project Budburst and will report on the results of the 2008 field campaign and discuss plans to expand Project BudBurst in 2009. Project BudBurst is a Windows to the Universe Citizen Science program managed by the University Corporation for Atmospheric Research, the Chicago Botanic Garden, University of Montana in collaboration with the USA -National Phenology Network and with financial support from U.S. Bureau of Land Management, U.S. Geological Survey, NEON, and the Fish and Wildlife Foundation.
Assessing Motivations and Use of Online Citizen Science Astronomy Projects
NASA Astrophysics Data System (ADS)
Nona Bakerman, Maya; Buxner, Sanlyn; Bracey, Georgia; Gugliucci, Nicole
2018-01-01
The exponential proliferation of astronomy data has resulted in the need to develop new ways to analyze data. Recent efforts to engage the public in the discussion of the importance of science has led to projects that are aimed at letting them have hands-on experiences. Citizen science in astronomy, which has followed the model of citizen science in other scientific fields, has increased in the number and type of projects in the last few years and poses captivating ways to engage the public in science.The primary feature of this study was citizen science users’ motivations and activities related to engaging in astronomy citizen science projects. We report on participants’ interview responses related to their motivations, length and frequency of engagement, and reasons for leaving the project. From May to October 2014, 32 adults were interviewed to assess their motivations and experiences with citizen science. In particular, we looked at if and how motivations have changed for those who have engaged in the projects in order to develop support for and understandparticipants of citizen science. The predominant reasons participants took part in citizen science were: interest, helping, learning or teaching, and being part of science. Everyone interviewed demonstrated an intrinsic motivation to do citizen science projects.Participants’ reasons for ending their engagement on any given day were: having to do other things, physical effects of the computer, scheduled event that ended, attention span or tired, computer or program issues. A small fraction of the participants also indicated experiencing negative feedback. Out of the participants who no longer took part in citizen science projects, some indicated that receiving negative feedback was their primary reason and others reported the program to be frustrating.Our work is helping us to understand participants who engage in online citizen science projects so that researchers can better design projects to meet their needs and develop support materials and incentives to encourage more participation.
NASA technology utilization applications. [transfer of medical sciences
NASA Technical Reports Server (NTRS)
1973-01-01
The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.
Challenge: A Focus for Improving Teaching and Learning.
ERIC Educational Resources Information Center
Baird, John R.; And Others
A 4-year program of naturalistic research on science teaching and learning was conducted in Australia. This program comprised a project entitled Teaching and Learning Science in Schools (TLSS), which ran from 1987-89, and a year of follow-up studies in which some of the major findings from the project were explored further. Participants included 5…
Issues in NASA program and project management
NASA Technical Reports Server (NTRS)
Hoban, Francis T. (Editor); Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)
1995-01-01
This volume is the ninth in an ongoing series on aerospace project management at NASA. Articles in this volume cover evolution of NASA cost estimating; SAM 2; National Space Science Program: strategies to maximize science return; and human needs, motivation, and results of the NASA culture surveys. A section on resources for NASA managers rounds out the publication.
Issues in NASA program and project management
NASA Technical Reports Server (NTRS)
Hoban, Francis T. (Editor)
1993-01-01
This volume is the sixth in an ongoing series on aerospace project management at NASA. Articles in this volume cover evolution of NASA cost estimating; SAM 2; National Space Science Program: strategies to maximize science return; and human needs, motivation, and results of the NASA culture surveys. A section on resources for NASA managers rounds out the publication.
COURSE AND CURRICULUM IMPROVEMENT PROFECTS--MATHEMATICS, SCIENCE, ENGINEERING.
ERIC Educational Resources Information Center
FONTAINE, THOMAS D.
ELEMENTARY, SECONDARY, AND COLLEGE LEVEL SCIENCE COURSE IMPROVEMENT PROJECTS ARE DESCRIBED. INDIVIDUAL PROJECTS ARE CLASSIFIED ACCORDING TO INSTITUTIONAL LEVEL AND ACADEMIC DISCIPLINE. MANY OF THE PROJECTS REPRESENT COMPLETE EDUCATIONAL PROGRAMS AND INCLUDE SUCH MATERIALS AS STUDENT TEXTBOOKS, LABORATORY MANUALS, SUPPLEMENTARY READINGS, TEACHER…
7 CFR 3430.304 - Project Types and priorities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...
7 CFR 3430.304 - Project Types and priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...
7 CFR 3430.304 - Project Types and priorities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...
7 CFR 3430.304 - Project Types and priorities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...
ERIC Educational Resources Information Center
Demaray, Bryan
Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…
NASA Astrophysics Data System (ADS)
Gurtler, G.
2017-12-01
We discuss the challenges and achievements that a small HSI college had integrating undergraduate research experiences into an existing natural sciences program. Like most introductory college science courses, our natural science courses used textbooks, PowerPoint presentations, and lectures to illustrate basic scientific concepts. Though a collective decision was made by our science faculty to incorporate undergraduate research projects into various STEM courses, our greatest challenge was incorporating mandatory research courses into the degree plans of our Natural Science program. We found that students made considerable progress in understanding natural science by critically evaluating primary research articles and undertaking small research projects. Many of these student projects were conducted in cooperation with the Albuquerque District of the US Army Corps of Engineers, United States Geological Survey in Denver, and the National Ice Core Laboratory. These projects illustrated the effects of climate change on the water quality, sediment buildup, and biodiversity at local reservoirs. Other projects involved the analysis of ice core samples from Greenland and Antarctica. Students presented research posters at various research venues, including Community College Undergraduate Research Initiative colloquiums.
Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
NASA Astrophysics Data System (ADS)
Hu, Ting-Jing; Cui, Xiao-Yan; Wang, Jing-Shu; Zhang, Jun-Kai; Li, Xue-Fei; Yang, Jing-Hai; Gao, Chun-Xiao
2018-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11374131, 11674404, 11404137, and 61378085), Program for the Development of Science and Technology of Jilin Province, China (Grant Nos. 201201079 and 20150204085GX), Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 20150221), and Open Project of State Key Laboratory of Superhard Materials (Jilin University), China (Grant No. 201710).
Defense Science Board Task Force Report: Predicting Violent Behavior
2012-08-01
Sciences Projects . Washington, DC: U.S. Department of Homeland Security, August 2009. http://www.dhs.gov/files/programs/gc_1218480185439.shtm Randazzo...5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Defense Science Board (DSB),OUSD(AT&L) Room 3B888A,The Pentagon,Washington,DC,20310 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING
Detlefsen, E G; Epstein, B A; Mickelson, P; Detre, T
1996-01-01
BACKGROUND: The University of Pittsburgh was awarded a grant by the National Library of Medicine to study the education and training needs of present and future medical librarians and health information specialists through a collaboration of the university's School of Information Sciences and Health Sciences Library System. Goals and objectives for the year-long project included (1) assessment of education and training needs of medical librarians, (2) development of a master of library science curriculum and an internship program that would prepare graduates to take leadership roles in medical librarianship or information management, (3) development of continuing education programs for medical librarians in different formats, and (4) development of targeted recruitment efforts to attract minority group members and individuals with undergraduate science majors. The importance of this project, present practice, and success factors for programs seeking excellence in the preparation of health sciences information professionals are reviewed. A needs assessment involving a national advisory panel and a follow-up study of individuals who have participated in previous specialized training programs in health sciences information, compared with a peer group of medical librarians who did not participate in such programs, is described. This paper presents the goals and objectives of the project, describes the methods used, and outlines a curriculum, continuing education initiatives, and recruitment activities. PMID:8913555
Teacher's Guide to SERAPHIM Software V. Chemistry: The Central Science.
ERIC Educational Resources Information Center
Bogner, Donna J.
Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the fifth in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: The Central Science." Program suggestions are…
NASA Astrophysics Data System (ADS)
Moldwin, M. B.; Fiello, D.; Harter, E.; Holman, G.; Nagumo, N.; Pryharski, A.; Takunaga, C.
2008-12-01
An elementary science education professional development partnership between Culver City Unified School District teachers and UCLA has been formed. The project was designed to assist teachers to comfortably present introductory space science concepts, to support them in their efforts, and to aid them in encouraging their students to develop inquiry skills related to space sciences. The project encourages teacher use of observational science techniques in their classrooms, the use of NASA solar mission images and enhanced use of astronomical observation to facilitate discovery learning. The integrated approach of the project has fostered collegial learning activities among the participating teachers and offered them opportunities for continued renewal and professional development of teacher competencies in astronomy and space science. The activities used in the classroom were developed by others, classroom tested, and specifically address National Science Education and California Science Content Standards. These activities have been sustained through on-going collaboration between the scientist and the teachers, a summer Research Experience for Teachers program, and on-going, grade-specific, district-sponsored workshops. Assessment of the value of the program is done by the school district and is used to continuously improve each workshop and program component. Culver City (California) Unified School District is a small urban school district located on the Westside of Los Angeles. This paper describes the program and the plans for incorporating IHY-themed science into the classroom.
NASA Astrophysics Data System (ADS)
Yamamoto, Karen Kina
This study examines the dynamics of survival and growth of curricular and instructional innovations. It focuses on the Foundational Approaches in Science Teaching (FAST) project, a long-term survivor of reform in science education. Key questions guiding this study include: (1) How did the FAST project survive over the past 30 years? (2) What elements are essential for long-term survival and growth of an innovative science program? (3) Why did the project continue to survive amidst several waves of educational reform? The core of my conceptual framework is that the odds of survival and growth of curricular and instructional innovations are increased by the extent to which resources, theory-based curriculum development processes, and professional development strategies are not only incorporated into but also interdependent within a project. With this framework as a guide, the main methods of data collection were document analysis, interviews, and observations. FAST, developed by the University of Hawaii's Curriculum Research and Development Group (CRDG), consists of a sequential and interdisciplinary middle and high school science program for students in grades 6-10. According to the results of this study, the project was able to survive by receiving constant organizational support from CRDG and a steady source of State funding through the university since 1966; it also retained a relatively small but stable staff of highly qualified project personnel. Formulated on a discipline-based theory that values development of students' intellectual capacities as the platform for curriculum research, design, and development, the FAST project translated this vision of science education into key elements of an innovative program that survived and thrived: (1) an interdisciplinary program consisting of physical, biological, and earth sciences; inquiry as content and process; history and philosophy of science; and links between and among sciences, technology, and society; and (2) teaching and learning strategies that model a community of practicing scientists. This study also identified the main elements of professional development strategies essential for an innovative project's survival and growth: linking curriculum development to required pre-implementation inservice training, engaging project personnel in both of these phases recruiting, training a cadre of experienced FAST teachers as inservice trainers, and providing follow-up professional development seminars. In conclusion, the FAST project survived mainly because the longevity of its leaders gave stability and continuity to the project. Against many odds such as limited financial resources and a small number of staff positions relative to the project's scope, the leaders managed with whatever resources were available to link theory-based curriculum development with professional development and, thereby, increase the project's chances for survival and growth.
Graphene/Mo2C heterostructure directly grown by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Deng, Rongxuan; Zhang, Haoran; Zhang, Yanhui; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Liang, Yijian; Hu, Shike; Yu, Guanghui; Jiang, Da
2017-06-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 1402342, 11574338, and 11274333), the Hundred Talents Program of Chinese Academy of Sciences, the International Collaboration and Innovation Program on High Mobility Materials Engineering, Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences (Grant No. XDB04040300).
1998-09-30
The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.
Program theory-driven evaluation science in a youth development context.
Deane, Kelsey L; Harré, Niki
2014-08-01
Program theory-driven evaluation science (PTDES) provides a useful framework for uncovering the mechanisms responsible for positive change resulting from participation in youth development (YD) programs. Yet it is difficult to find examples of PTDES that capture the complexity of such experiences. This article offers a much-needed example of PTDES applied to Project K, a youth development program with adventure, service-learning and mentoring components. Findings from eight program staff focus groups, 351 youth participants' comments, four key program documents, and results from six previous Project K research projects were integrated to produce a theory of change for the program. A direct logic analysis was then conducted to assess the plausibility of the proposed theory against relevant research literature. This demonstrated that Project K incorporates many of the best practice principles discussed in the literature that covers the three components of the program. The contributions of this theory-building process to organizational learning and development are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of the Howard Hughes Science Grant Project, Year One
ERIC Educational Resources Information Center
Wolanin, Natalie; Wade, Julie
2015-01-01
The goal of the Howard Hughes Science Institute (HHMI) supported science program is to train one staff member to become a science lead within each of the elementary schools in the Montgomery County (Maryland) Public Schools (MCPS) district. The specific objectives of the first year of HHMI grant project were to: (1) provide approximately 20…
34 CFR 645.31 - What selection criteria does the Secretary use?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...
34 CFR 645.31 - What selection criteria does the Secretary use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...
34 CFR 645.31 - What selection criteria does the Secretary use?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...
34 CFR 645.31 - What selection criteria does the Secretary use?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...
34 CFR 645.31 - What selection criteria does the Secretary use?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...
JSC Director's Discretionary Fund Program
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M. (Editor)
1991-01-01
The JSC Center Director's Discretionary Fund Program 1991 Annual Report provides a brief status of the projects undertaken during the 1991 fiscal year. For this year, four space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, lunar surface habitat, and in situ resource utilization. In this way, a viable program of life sciences, space sciences, and engineering research has been maintained. For additional information on any single project, the individual investigator should be contacted.
The ASP: Programs to Inspire Educators
NASA Astrophysics Data System (ADS)
Hurst, Anna; Gurton, S.; Bennett, M.; Berendson, M.; Gibbs, M.
2006-12-01
The Astronomical Society of the Pacific (ASP) provides educators with new approaches to hands-on astronomy and space science. Through interactive educational programs, our goal is to help more people understand, appreciate, and enjoy astronomy and science. Over the past several years, the ASP has re-dedicated itself to achieving this mission through an ever-expanding portfolio of programs. Our astronomy and education programs target educators of all descriptions classroom teachers, informal science educators (in science museums, planetariums, nature centers, etc.), college astronomy teachers, and amateur astronomers providing them with materials and training to capture the attention of their students and audiences and to introduce them to science via an initial engagement in astronomy. In this poster we provide an overview of current programs that include partnerships with the National Optical Astronomy Observatory, the Association of Science-Technology Centers, TERC, the Astronomical League, NASA, and the SETI Institute to address this broad range of formal and informal educators. Additionally, the poster will provide a summary of recently conducted research by the ASP regarding the Project ASTRO program, done in cooperation with our national partners, to gauge whether the program, as perceived by the teachers participating in Project ASTRO, a) assists in correcting common misconceptions in astronomy or science and b) improve students' attitudes towards science. Additional information regarding the ASP's educational programs can be found at: www.astrosociety.org/education.html
Guidelines for NASA Missions to Engage the User Community as a Part of the Mission Life Cycle
NASA Astrophysics Data System (ADS)
Escobar, V. M.; Friedl, L.; Bonniksen, C. K.
2017-12-01
NASA continues to improve the Earth Science Directorate in the areas of thematic integration, stakeholder feedback and Project Applications Program tailoring for missions to transfer knowledge between scientists and projects. The integration of application themes and the implementation of application science activities in flight projects have evolved to formally include user feedback and stakeholder integration. NASA's new Flight Applied Science Program Guidelines are designed to bridge NASA Earth Science Directorates in Flight, Applied Sciences and Research and Development by agreeing to integrate the user community into mission life cycles. Thus science development and science applications will guide all new instruments launched by NASAs ESD. The continued integration with the user community has enabled socio-economic considerations into NASA Earth Science projects to advance significantly. Making users a natural part of mission science leverages future socio-economic impact research and provides a platform for innovative and more actionable product to be used in decision support systems by society. This presentation will give an overview of the new NASA Guidelines and provide samples that demonstrate how the user community can be a part of NASA mission designs.
NASA Astrophysics Data System (ADS)
Ward, D.; Henderson, S.; Newman, S. J.
2012-12-01
Citizen science projects in ecology are in a unique position to address the needs of both the science and education communities. Such projects can provide needed data to further understanding of ecological processes at multiple spatial scales while also increasing public understanding of the importance of the ecological sciences. Balancing the needs of both communities, it is important that citizen science programs also provide different 'entry' points to appeal to diverse segments of society. In the case of NEON's Project BudBurst, a national plant phenology citizen science program, two approaches were developed to address the ongoing challenge to recruitment and retention of participants. Initially, Project BudBurst was designed to be an event-based phenology program. Participants were asked to identify a plant and report on the timing of specific phenoevents throughout the year. This approach requires a certain level of participation, which while yielding useful results, is not going to appeal to the broadest audience possible. To broaden participation, in 2011 and 2012, Project BudBurst added campaigns targeted at engaging individuals in making simple status-based reports of a plant they chose. Three targeted field campaigns were identified to take advantage of times when people notice changes to plants in their environment, using simple status-based protocols: Fall Into Phenology, Cherry Blossom Blitz, and Summer Solstice Snapshot. The interest and participation in these single report phenological status-based campaigns exceeded initial expectations. For example, Fall Into Phenology attracted individuals who otherwise had not considered participating in an ongoing field campaign. In the past, observations of fall phenology events submitted to Project BudBurst had been limited. By providing the opportunity for submitting simple, single reports, the number of both new participants and submitted observations increased significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houston, Johnny L; Geter, Kerry
This Project?s third year of implementation in 2007-2008, the final year, as designated by Elizabeth City State University (ECSU), in cooperation with the National Association of Mathematicians (NAM) Inc., in an effort to promote research and research training programs in computational science ? scientific visualization (CSSV). A major goal of the Project was to attract the energetic and productive faculty, graduate and upper division undergraduate students of diverse ethnicities to a program that investigates science and computational science issues of long-term interest to the Department of Energy (DoE) and the nation. The breadth and depth of computational science?scientific visualization andmore » the magnitude of resources available are enormous for permitting a variety of research activities. ECSU?s Computational Science-Science Visualization Center will serve as a conduit for directing users to these enormous resources.« less
Atmospheric Science Data Center
2014-07-22
... SSE is supported through the Prediction of Worldwide Energy Resource (POWER) project under the NASA Applied Sciences Program within ... Science Data Center Surface meteorological and Solar Energy (SSE) web portal supported by the NASA LaRC POWER Project." Continued ...
Shaking up Pre-Calculus: Incorporating Engineering into K-12 Curricula
ERIC Educational Resources Information Center
Sabo, Chelsea; Burrows, Andrea; Childers, Lois
2014-01-01
Projects highlighting Science, Technology, Engineering, and Mathematics (STEM) education in high schools have promoted student interest in engineering-related fields and enhanced student understanding of mathematics and science concepts. The Science and Technology Enhancement Program (Project STEP), funded by a NSF GK-12 grant at the University of…
41 CFR 109-50.205 - Procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.205 Procedure. (a) The DOE... math and science projects where the equipment would further enhance the progress of the project. (e... will be used to improve math and science curricula or in the conduct of technical and scientific...
41 CFR 109-50.205 - Procedure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.205 Procedure. (a) The DOE... math and science projects where the equipment would further enhance the progress of the project. (e... will be used to improve math and science curricula or in the conduct of technical and scientific...
41 CFR 109-50.205 - Procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.205 Procedure. (a) The DOE... math and science projects where the equipment would further enhance the progress of the project. (e... will be used to improve math and science curricula or in the conduct of technical and scientific...
41 CFR 109-50.205 - Procedure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.205 Procedure. (a) The DOE... math and science projects where the equipment would further enhance the progress of the project. (e... will be used to improve math and science curricula or in the conduct of technical and scientific...
41 CFR 109-50.205 - Procedure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.205 Procedure. (a) The DOE... math and science projects where the equipment would further enhance the progress of the project. (e... will be used to improve math and science curricula or in the conduct of technical and scientific...
What Kindergarten Students Learn in Inquiry-Based Science Classrooms
ERIC Educational Resources Information Center
Samarapungavan, Ala; Patrick, Helen; Mantzicopoulos, Panayota
2011-01-01
The purpose of this study was to examine how participation in an inquiry-based science program impacts kindergarten students' science learning and motivation. The study was implemented as part of a larger, federally funded research project, the Scientific Literacy Project or SLP (Mantzicopoulos, Patrick, & Samarapungavan, 2005). The study…
34 CFR 637.32 - What selection criteria does the Secretary use?
Code of Federal Regulations, 2010 CFR
2010-07-01
... POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM How Does... project; (iii) A clear description of how the objectives of the project relate to the purpose of the... specific needs in science; and (iii) Involvement of appropriate individuals, especially science faculty, in...
NASA Technical Reports Server (NTRS)
Wilson, Eleanor
2002-01-01
The CHROME Honors Program was designed as a two-week residential program for 9th and 1Oth grade students participating in CHROME clubs. The curriculum focused on the health sciences with instruction from: (1) the science and health curriculum of the Dozoretz National Program for Minorities in Applied Sciences (DNIMAS) Program of Norfolk State University (NSU); (2) the humanities curriculum of the NSU Honors Program; (3) NASA-related curriculum in human physiology. An Advisory Committee was formed to work with the Project Coordinator in the design of the summer program.
ERIC Educational Resources Information Center
Wielard, Valerie Michelle
2013-01-01
The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…
Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)
2013-08-29
educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology
NASA Astrophysics Data System (ADS)
Shen, Zhan-Wei; Zhang, Feng; Dimitrijev, Sima; Han, Ji-Sheng; Yan, Guo-Guo; Wen, Zheng-Xin; Zhao, Wan-Shun; Wang, Lei; Liu, Xing-Fang; Sun, Guo-Sheng; Zeng, Yi-Ping
2017-09-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2015CB759600), the National Natural Science Foundation of China (Grant Nos. 61474113 and 61574140), the Beijing NOVA Program, China (Grant No. Z1611000049161132016071), China Academy of Engineering Physics (CAEP) Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201502), the Beijing Municipal Science and Technology Commission Project, China (Grant Nos. Z161100002116018 and D16110300430000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2012098)
Social Science Methods Used in the RESTORE Project
Lynne M. Westphal; Cristy Watkins; Paul H. Gobster; Liam Heneghan; Kristen Ross; Laurel Ross; Madeleine Tudor; Alaka Wali; David H. Wise; Joanne Vining; Moira Zellner
2014-01-01
The RESTORE (Rethinking Ecological and Social Theories of Restoration Ecology) project is an interdisciplinary, multi-institutional research endeavor funded by the National Science Foundation's Dynamics of Coupled Natural Human Systems program. The goal of the project is to understand the links between organizational type, decision making processes, and...
ERIC Educational Resources Information Center
National Inst. for Science Education, Madison, WI.
The National Institute for Science Education's (NISE) focused mission is to improve mathematics and science education from kindergarten through college. This document reports on NISE's research programs, dissemination programs, and organizational process programs. Contents include: (1) "Systemic Reform: Policy and Evaluation" (William H. Clune and…
Science and Engineering Technical Assessments (SETA) Program
NASA Technical Reports Server (NTRS)
Huy, Frank
2000-01-01
This document provides a project plan for the D.N. American response to Modification #1 to Contract Task Order #13 - Program Maintenance and Logistics for the Science and Engineering Technical Assessments (SETA) contract.
The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training
NASA Technical Reports Server (NTRS)
Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.;
2017-01-01
The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.
NASA Astrophysics Data System (ADS)
Cady, Sherry L.; Blok, Mikel; Grosse, Keith; Wells, Jennifer
2014-09-01
The program Project NANO (Nanoscience and Nanotechnology Outreach) enables middle and high school students to discover and research submicroscopic phenomena in a new and exciting way with the use of optical and scanning electron microscopes in the familiar surroundings of their middle or high school classrooms. Project NANO provides secondary level professional development workshops, support for classroom instruction and teacher curriculum development, and the means to deliver Project NANO toolkits (SEM, stereoscope, computer, supplies) to classrooms with Project NANO trained teachers. Evaluation surveys document the impact of the program on student's attitudes toward science and technology and on the learning outcomes for secondary level teachers. Project NANO workshops (offered for professional development credit) enable teachers to gain familiarity using and teaching with the SEM. Teachers also learn to integrate new content knowledge and skills into topic-driven, standards-based units of instruction specifically designed to support the development of students' higher order thinking skills that include problem solving and evidence-based thinking. The Project NANO management team includes a former university science faculty, two high school science teachers, and an educational researcher. To date, over 7500 students have experienced the impact of the Project NANO program, which provides an exciting and effective model for engaging students in the discovery of nanoscale phenomena and concepts in a fun and engaging way.
Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
NASA Astrophysics Data System (ADS)
Yang, Guang; Lian, Bao-Wang; Nie, Min; Jin, Jiao
2017-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61172071), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711), the International Scientific Cooperation Program of Shaanxi Province, China (Grant No. 2015KW-013), and the Natural Science Foundation Research Project of Shaanxi Province, China (Grant No. 2016JQ6033).
ERIC Educational Resources Information Center
Bobronnikov, Ellen; Rhodes, Hilary; Bradley, Cay
2010-01-01
This final report culminates the evaluation and technical assistance provided for the U.S. Department of Education's Mathematics and Science Partnership (MSP) Program and its projects since 2005. As part of this support, Abt Associates looked across the portfolio of projects funded by the MSP program to draw lessons on best practices. This…
Revolutionizing Climate Science: Using Teachers as Communicators
NASA Astrophysics Data System (ADS)
Warburton, J.; Crowley, S.; Wood, J.
2012-12-01
PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university faculty in climate science and a PolarTREC alumni teacher the program was touted as 'the best professional opportunity to date". This program gave new teachers the tools to adequately communicate climate science with a new generation of scientifically literate students. Additionally, teachers possess the skills to inform young professional scientists on effective outreach and communication beyond peer-reviewed papers and scientific circles.
ERIC Educational Resources Information Center
Lee, Mimi Miyoung; Chauvot, Jennifer; Plankis, Brian; Vowell, Julie; Culpepper, Shea
2011-01-01
iSMART (Integration of Science, Mathematics, and Reflective Teaching) Program is an online science and mathematics integrated graduate program for middle school teachers across the state of Texas. As part of a large design-based research project, this paper describes the initial stages of the design process of the iSMART program for its first…
Hanford`s innovations for science education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, D.
1996-12-31
In recognition of declining science literacy in the United States and a projected shortfall of scientists, engineers and technologists to address environmental problems nationally and internationally during the 21st century, Westinghouse Hanford Company has launched several innovative science education projects at the US Department of Energy Hanford Site. The Hanford Site is very rich in resources that can be brought to bear on the problem: world-class technical experts, state of the art facilities and equipment, and the largest environmental laboratory in the world. During the past two years, several innovative science education initiatives have been conceived and pursued at themore » secondary education level including the International Academy for the Environment (residential high school with an environmental theme), Environmental BATTmobile Program (mobile middle school science education program), and Multicultural Experiences in Math and Science (education program based on cultural contributions to math and science). Hanford scientists, engineers and administrators have worked with the education community (K-12 and college-university) to develop innovative approaches to science education.« less
2017 TRIAD Small Business Advisory Panel
2017-10-11
government service in 2007 as the Science & Technology (S&T) Project Manager for the United States Navy’s Unmanned Maritime Systems Program Office...National Renewable Energy Laboratory (NREL) as a Program Manager for over 110 energy and water projects on military installations. He worked... management , project management , program management , donor relation service, contract and subcontract policy development and implementation, data integrity
Innovations in Ocean Sciences Education at the University of Washington
NASA Astrophysics Data System (ADS)
Robigou, V.
2003-12-01
A new wave of education collaborations began when the national science education reform documents (AAAS Project 2061 and National Science Education Standards) recommended that scientific researchers become engaged stakeholders in science education. Collaborations between research institutions, universities, nonprofits, corporations, parent groups, and school districts can provide scientists original avenues to contribute to education for all. The University of Washington strongly responded to the national call by promoting partnerships between the university research community, the K-12 community and the general public. The College of Ocean and Fishery Sciences and the School of Oceanography spearheaded the creation of several innovative programs in ocean sciences to contribute to the improvement of Earth science education. Two of these programs are the REVEL Project and the Marine Science Student Mobility (MSSM) program that share the philosophy of involving school districts, K-12 science teachers, their students and undergraduate students in current, international, cutting-edge oceanographic research. The REVEL Project (Research and Education: Volcanoes, Exploration and Life) is an NSF-funded, professional development program for middle and high school science teachers that are determined to use deep-sea research and seafloor exploration as tools to implement inquiry-based science in their classrooms, schools, and districts, and to share their experiences with their communities. Initiated in 1996 as a regional program for Northwest science educators, REVEL evolved into a multi-institutional program inviting teachers to practice doing research on sea-going research expeditions. Today, in its 7th year, the project offers teachers throughout the U. S. an opportunity to participate and contribute to international, multidisciplinary, deep-sea research in the Northeast Pacific ocean to study the relationship between geological processes such as earthquakes and volcanism, fluid circulation and life on our planet. http://www.ocean.washington.edu/outreach/revel/ The Marine Science Student Mobility program is a FIPSE-funded program that fosters communication and collaboration across cultural and linguistic boundaries for undergraduate students interested in pursuing careers in marine sciences. A consortium of six universities in Florida, Hawaii, Washington, Belgium, Spain and France offers a unique way to study abroad. During a six month exchange, students acquire foreign language skills, cultural awareness and ocean sciences field study in one of the four major oceanographic areas: the Atlantic, the Pacific, the Gulf of Mexico and the Mediterranean. The program not only promotes cultural understanding among the participant students but among faculty members from different educational systems, and even among language and science faculty members. Understanding how different cultures approach, implement, and interpret scientific research to better study the world's oceans is the cornerstone of this educational approach. http://www.marine-language-exch.org/ Similar collaborative, educational activities could be adapted by other research institutions on many campuses to provide many opportunities for students, teachers and the general public to get involved in Earth and ocean sciences.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document reviews the Pacific Region Junior Science and Humanities Symposium (PJSHS) program for 2003-2004 which is a 10-month, precollege student research program held in Japan. The theme is AtmosphereThe Other Ocean. The program includes a one-week symposium of student delegates who have completed research projects in the sciences or have…
Ultra-broadband asymmetric acoustic transmission with single transmitted beam
NASA Astrophysics Data System (ADS)
Jia, Ding; Sun, Hong-xiang; Yuan, Shou-qi; Ge, Yong
2017-02-01
Not Available Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 51239005), the National Natural Science Foundation of China (Grant No. 11404147), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20140519), China Postdoctoral Science Foundation (Grant No. 2015M571672), the Scientific Research Project for Graduate Students of Universities in Jiangsu Province, China (Grant No. CXZZ13 06), and the Training Project of Young Backbone Teachers of Jiangsu University.
NASA Astrophysics Data System (ADS)
Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab
2018-01-01
The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.
The residual C concentration control for low temperature growth p-type GaN
NASA Astrophysics Data System (ADS)
Liu, Shuang-Tao; Zhao, De-Gang; Yang, Jing; Jiang, De-Sheng; Liang, Feng; Chen, Ping; Zhu, Jian-Jun; Liu, Zong-Shun; Li, Xiang; Liu, Wei; Xing, Yao; Zhang, Li-Qun
2017-09-01
Not Available Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0401801 and 2016YFB0400803), the National Natural Science Foundation of China (Grant Nos. 61674138, 61674139, 61604145, 61574135, 61574134, 61474142, 61474110, 61377020, and 61376089), the Science Challenge Project (Grant No. JCKY2016212A503), and Beijing Municipal Science and Technology Project (Grant No. Z161100002116037).
Diode-pumped passively mode-locked sub-picosecond Yb:LuAG ceramic laser
NASA Astrophysics Data System (ADS)
Zhu, Jiang-Feng; Liu, Kai; Jiang, Li; Wang, Jun-Li; Yang, Yu; Wang, Hui-Bo; Gao, Zi-Ye; Xie, Teng-Fei; Chao-Yu, Li; Pan, Yu-Bai; Wei, Zhi-Yi
2017-05-01
Not Available Project supported by the National Major Scientific Instruments Development Project of China (Grant No. 2012YQ120047), the National Key R&D Program of China (Grant No. 2016YFB0402105), the National Natural Science Foundation of China (Grant Nos. 61205130 and 61575212), and the Key Research Project of the Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC022).
Sisters in Science: Using Sports as a Vehicle for Science Learning.
ERIC Educational Resources Information Center
Hammrich, Penny L.; Richardson, Greer M.; Green, Tina Sloan; Livingston, Beverly
This paper describes a project for upper elementary and middle school minority girl students called the Sisters in Sport Science (SISS). The SISS program addresses the needs of urban girls in gaining access to equal education in science and mathematics by using athletics as a vehicle for learning. The program provides a non-competitive and…
NASA high performance computing and communications program
NASA Technical Reports Server (NTRS)
Holcomb, Lee; Smith, Paul; Hunter, Paul
1993-01-01
The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project.
Jia, Ren-bing; Fan, Xian-qun; Xu, Yan-ying; Dong, Er-dan
2012-02-01
To analyze the role of National Natural Science Foundation of China (NSFC) on the development of the discipline of Ophthalmology from 1986 to 2010. Data on the total number of projects and funding of NSFC allocated to Ophthalmology, as well as papers published, awards, personnel training, subject construction were collected, and the role of NSFC on other sources of funding was evaluated. From 1986 to 2010, NSFC supported a total of 593 scientific research projects of Ophthalmology, funding a total amount of 152.44 million Yuan, among which were 371 free application projects, 156 Young Scientist Funds, 9 Key Programs, 5 National Science Fund for Distinguished Young Scholars, 3 Major international (regional) joint research programs, 1 Science Fund for Creative Research Group and 48 other projects. Over the past 25 years, the number of NSFC projects received by Ophthalmology has been an overall upward trend in the share in the Department of Life (Health) Sciences. Take the projects (186 of 292, 63.7%) as examples completed between 2002 and 2010, a total 262 papers were published in Science Citation Index (SCI) included journals and 442 papers were published in Chinese journals. Meanwhile, 8 Second prizes of National Science and Technology Progress Award and 1 State Technological Invention Award were received. As of 2010, the training of a total of more than 40 postdoctoral, more than 400 doctoral students and more than 600 graduate students have been completed. 5 national key disciplines and 1 national key laboratory have been built. Moreover, 2 "973" programs from Ministry of Science and Technology and 1 project of special fund in the public interest from Ministry of Public Health were obtained. 2 scholars were among the list of Yangtze Fund Scholars granted by Ministry of Education. Over the past 25 years, a full range of continuous funding from NSFC has led to fruitful results and a strong impetus to the progress of discipline of Ophthalmology.
NASA Technical Reports Server (NTRS)
Dickinson, William B.
1995-01-01
An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.
NASA Astrophysics Data System (ADS)
Chen, Jie; Huang, Pu-Man; Han, Xiao-Biao; Pan, Zheng-Zhou; Zhong, Chang-Ming; Liang, Jie-Zhi; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun
2017-06-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 61574173), the National Key Research and Development Program, China (Grant No. 2016YFB0400105), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the International Science and Technology Collaboration Program of Guangzhou City, China (Grant No. 2016201604030055), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), Guangdong Provincial Natural Science Foundation, China (Grant No. 2015A030312011), the Science & Technology Plan of Guangdong Province, China (Grant Nos. 2015B090903062, 2015B010132007, and 2015B010129010), the Science and Technology Plan of Guangzhou, China (Grant No. 201508010048), the Science and Technology Plan of Foshan, China (Grant No. 201603130003), Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505009), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17), the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University (Grant No. 20167612042080001).
Case-based Long-term Professional Development of Science Teachers
NASA Astrophysics Data System (ADS)
Dori, Yehudit J.; Herscovitz, Orit
2005-10-01
Reform efforts are often unsuccessful because they failed to understand that teachers play a key role in making educational reforms successful. This paper describes a long-term teacher professional development (PD) program aimed at educating and training teachers to teach interdisciplinary topics using case-based method in science. The research objective was to identify, follow and document the processes that science teachers went through as they assimilated the interdisciplinary, case-based science teaching approach. The research accompanied the PD program throughout its 3-year period. About 50 teachers, who took part in the PD program, were exposed to an interdisciplinary case-based teaching method. The research instruments included teacher portfolios, which contained projects and reflection questionnaires, classroom observations, teacher interviews, and student feedback questionnaires. The portfolios contained the projects that the teachers had carried out during the PD program, which included case studies and accompanying student activities. We found that the teachers gradually moved from exposure to new teaching methods and subject matter, through active learning and preparing case-based team projects, to interdisciplinary, active classroom teaching using the case studies they developed.
Meeting the Capstone Challenge in Postgraduate Food Science Education
ERIC Educational Resources Information Center
McSweeney, Peter; Calvo, Joaquin; Santhanam-Martin, Michael; Billman-Jacobe, Helen
2017-01-01
Project work and work placements can help prepare tertiary food science students for the workplace. Programs in the curriculum should support the development of transferable skills such as communication, problem-solving, and planning. This paper describes a case study of a new capstone project for Masters of Food Science students based on a work…
The Professional Development of College Science Professors as Science Teacher Educators.
ERIC Educational Resources Information Center
Fedock, Patricia M.; And Others
Teacher training projects have used university research scientists to conduct workshops for teachers, but because of faculty time constraints and university reward systems, it is unlikely this type of program will be used extensively. This project utilized community college professors whose main focus is teaching science and working with the…
Smith, L C
1996-01-01
This project responds to the need to identify the knowledge, skills, and expertise required by health sciences librarians in the future and to devise mechanisms for providing this requisite training. The approach involves interdisciplinary multiinstitutional alliances with collaborators drawn from two graduate schools of library and information science (University of Illinois at Urbana-Champaign and Indiana University) and two medical schools (University of Illinois at Chicago and Washington University). The project encompasses six specific aims: (1) investigate the evolving role of the health sciences librarian; (2) analyze existing programs of study in library and information science at all levels at Illinois and Indiana; (3) develop opportunities for practicums, internships, and residencies; (4) explore the possibilities of computing and communication technologies to enhance instruction; (5) identify mechanisms to encourage faculty and graduate students to participate in medical informatics research projects; and (6) create recruitment strategies to achieve better representation of currently underrepresented groups. The project can serve as a model for other institutions interested in regional collaboration to enhance graduate education for health sciences librarianship. PMID:8913560
ERIC Educational Resources Information Center
Roseland, Denise; Volkov, Boris B.; Callow-Heusser, Catherine
2011-01-01
In contrast to typical National Science Foundation program evaluations, the Utah State Math Science Partnership-Research, Evaluation and Technical Assistance Project (MSP-RETA) provided technical assistance (TA) in two forms: direct TA for up to 10 projects a year, and professional development sessions for a larger number of project staff. Not…
Monogamy relations of quantum entanglement for partially coherently superposed states
NASA Astrophysics Data System (ADS)
Shi, Xian
2017-12-01
Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.
Challenge: Reframing, communicating, and finding relevance. Solution: Teachers on the research team
NASA Astrophysics Data System (ADS)
Bartholow, S.; Warburton, J.
2013-12-01
PolarTREC (Teachers and Researchers Exploring and Collaborating) is a program in which K-12 teachers spend 2-6 weeks participating in hands-on field research experiences in the polar regions. The goal of PolarTREC is to invigorate polar science education and understanding by bringing K-12 educators and polar researchers together. Program data has illuminated a crucial dynamic that increases the potential for a successful climate change science campaign. We contend that the inclusion of a teacher into the field research campaign can tackle challenges such as reframing climate change science to better address the need for a particular campaign, as well as garnering the science project the necessary support through effective, authentic, and tangible communication efforts to policymakers, funders, students, and the public. The program evaluation queried researchers on a.) the teachers' primary roles in the field b.) the impact teachers on the team's field research, and c.) the teachers' role conducting outreach. Additionally, researchers identified the importance of the facilitator, the Arctic Research Consortium of the United States (ARCUS), as an integral component to the challenge of providing a meaningful broader impact statement to the science proposal. Researchers reported the value of explaining their science, in-situ, allowed them to reframe and rework the objectives of the science project to attain meaningful outcomes. More than half of the researchers specifically noted that one of the strengths of the PolarTREC project is its benefit to the scientific process. The researchers also viewed PolarTREC as an essential outreach activity for their research project. Other researchers said that the outreach provided by their teacher also improved the research project's public image and articulated complex ideas to the public at large. This presentation will speak to the practices within the PolarTREC program and how researchers can meet outreach expectations, impact the public, and refine their science with teachers in the field.
Art as a Vehicle for Nuclear Astrophysics
NASA Astrophysics Data System (ADS)
Kilburn, Micha
2013-04-01
One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.
Bilingual Mathematics and Science Achievement, 1988-89. Evaluation Section Report.
ERIC Educational Resources Information Center
Berney, Tomi D.; Barrera, Marbella
This report documents the evaluation of the Bilingual Mathematics and Science Achievement Program (Project BMSA) for students of limited English proficiency. The bilingual program was designed to provide intensive mathematics and science instruction, using mastery level concepts, in the native language and to incorporate mathematics and science…
Issue-Oriented Science Using CEPUP.
ERIC Educational Resources Information Center
California Univ., Berkeley. Lawrence Hall of Science.
CEPUP in the Schools is a project of the Chemical Education for Public Understanding Program (CEPUP) at the Lawrence Hall of Science, University of California-Berkeley. CEPUP is a diverse educational program highlighting chemicals and their uses in the context of societal issues, so that learners experience the reality of science. This booklet…
Cognitive and Neural Sciences Division 1990 Programs.
ERIC Educational Resources Information Center
Vaughan, Willard S., Jr., Ed.
Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…
ERIC Educational Resources Information Center
Allen, Denise
1995-01-01
Reviews five compact disc-read only memory (CD-ROM) products and one video series that focus on science projects: (1) "Body Park" (Virtual Entertainment); (2) "The Magic School Bus Explores the Solar System" (Microsoft); (3) "The Magic School Bus Explores the Human Body" (Microsoft); (4) "Science Curriculum Assistance Program" (Demco); and (5)…
International Cooperation of Space Science and Application in Chinese Manned Space Program
NASA Astrophysics Data System (ADS)
Gao, Ming; Guo, Jiong; Yang, Yang
Early in China Manned Space Program, lots of space science and application projects have been carried out by utilizing the SZ series manned spaceships and the TG-1 spacelab, and remarkable achievements have been attained with the efforts of international partners. Around 2020, China is going to build its space station and carry out space science and application research of larger scale. Along with the scientific utilization plan for Chinese space station, experiment facilities are considered especially for international scientific cooperation, and preparations on international cooperation projects management are made as well. This paper briefs the international scientific cooperation history and achievement in the previous missions of China Manned Space Program. The general resources and facilities that will support potential cooperation projects are then presented. Finally, the international cooperation modes and approaches for utilizing Chinese Space Station are discussed.
NASA Astrophysics Data System (ADS)
Walker, C. E.; Hill, F.; Plymate, C.
2005-12-01
The solar project in "Teacher Leaders in Research-Based Science Education" program provides the opportunity for teachers to study the Sun with the world's largest solar telescope. This exciting program is designed for middle and high school science teachers with more than 5 years experience teaching science. Funded by a National Science Foundation (NSF) Teacher Retention and Renewal grant, teachers learn how to acquire astronomy data and support their students in conducting authentic astronomy research projects. In addition, the program enhances their skills as leaders and mentors for those science teachers new to the profession. The TLRBSE program includes: 1) A 14-week online distance learning program with an emphasis on spectroscopy and data imaging; 2) A 2-week in-residence workshop at the National Optical Astronomy Observatory in Tucson, including several nights of research observing at a world-class observatory; 3) A program of ongoing mentoring support for beginning teachers; and 4) Partial funding to attend a national NSTA meeting with the mentees; 5) A journal to publish student and teacher research results and 6) Access to ongoing research, via further observing runs or archival data. Various factors have played a part in the evolution of the solar project. It began as an activity that used sunspots to measure the solar rotation rate. Then it progressed to a comparison of active regions (e.g., the areas of sunspots) at various wavelengths, to measuring the splitting of infrared spectral lines due to strong magnetic fields in active regions, and to measuring the amount of polarization due to weak magnetic fields. Challenges were presented as the project evolved from an activity to a hands-on observing experience fully reflecting the scientific research process. Some of the issues and trade-offs we will discuss are hands-on observing experience vs. remote observing, archival data retrieval vs. talking data, and more vs. less scientific assistance in the project. Group dynamics among the teachers also played a significant role in determining the cohort's success in research. The move to accommodate a minimum in the solar cycle dictated a change in the scientific program. Cross-platform issues arose as the software reduction and analysis became more sophisticated. Future instrumentation and telescopes offered further changes in scientific goals. Factors beyond the preparation of the course and observing material, training of the teachers, maintaining the program and on-going support of the teachers will also be discussed. These aspects of the solar project will be highlighted as we continue to morph into an improved version of the project. The TLRBSE Program is funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.
National Science Foundation 1989 Engineering Senior Design Projects To Aid the Disabled.
ERIC Educational Resources Information Center
Enderle, John D., Ed.
Through the Bioengineering and Research to Aid the Disabled program of the National Science Foundation, design projects were awarded competitively to 16 universities. Senior engineering students at each of the universities constructed custom devices and software for disabled individuals. This compendium contains a description of each project in…
ERIC Educational Resources Information Center
Phillips, Michelle; St. John, Mark
2013-01-01
In 2009, the National Science Foundation funded the "Dynabook: A Digital Resource and Preservice Model for Developing TPCK" project through its Discovery Research K-12 program. Dynabook project leaders and the National Science Foundation (NSF) recognized that digital textbooks would soon be a primary instructional resource, and seized…
Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
NASA Astrophysics Data System (ADS)
Pei, Ke; Xia, Wei-Xing; Wang, Bao-Min; Wen, Xing-Cheng; Sheng, Ping; Liu, Jia-Ping; Liu, Xin-Cai; Li, Run-Wei
2018-04-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0201102), the National Natural Science Foundation of China (Grant No. 51571208), the Instrument Developing Project of Chinese Academy of Sciences (Grant No. YZ201536), the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08), the K C Wong Education Foundation (Grant No. rczx0800), and the K C Wong Magna Fund in Ningbo University.
NASA Astrophysics Data System (ADS)
Zhu, Yanchun; Spincemaille, Pascal; Liu, Jing; Li, Shuo; Nguyen, Thanh D.; Prince, Martin R.; Xie, Yaoqin; Wang, Yi
2017-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 81501463, 61671026, 81571669, and 81671853), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310360), Guangdong Innovative Research Team Program of China (Grant No. 2011S013), the Basic Research Project of Shenzhen City, China (Grant Nos. JCYJ20140417113430639 and JCYJ20160429172357751), the High-level Oversea Talent Program of Shenzhen City, China (Grant No. KQJSCX20160301144248), and Beijing Center for Mathematics and Information Interdisciplinary Sciences of China.
Planetary science education in a multidisciplinar environment: an alternative approach for ISU
NASA Astrophysics Data System (ADS)
Calzada, A.
2012-09-01
The aim of the International Space University (ISU) located in Strasbourg, France, is to provide to the participants of its programs an overview of all the aspects of the space field. This also includes a basic background on Planetary Sciences. During the Master 2012 an individual project about impact processes was done. During this project some issues regarding planetary science awareness arise and it brought to the table the need to increase its presence in the ISU programs. The conclusions may be extrapolated to other academic institutions.
Teacher education professionals as partners in health science outreach.
Houtz, Lynne E; Kosoko-Lasaki, Omofolasade; Zardetto-Smith, Andrea M; Mu, Keli; Royeen, Charlotte B
2004-01-01
Medical school and other health science outreach programs to educate and recruit precollege students always have relied on successful collaborative efforts. Creighton University shares the value, significance, and strategies of involving teacher education professionals in several of its current outreach programs, including HPPI, Brains Rule! Neuroscience Expositions, and HHMI Build a Human Project. The education department partner serves as an essential team member in the development, implementation, assessment, and dissemination of these projects to promote science and mathematics achievement and interest in medical careers. Specific examples and mistakes to avoid are included.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Education and Human Resources.
This document describes some of the many programs sponsored by the National Science Foundation in its efforts to continue to promote systemic science and mathematics education reform. Brief descriptions of the following programs are included: (1) Interactive Math Program Restructures 9-12 Math Education; (2) Algebra I Project Sparks Citywide…
MentorLinks: Advancing Technological Education. Project Brief. AACC-PB-04-01
ERIC Educational Resources Information Center
Hause, Ellen
2004-01-01
The American Association of Community Colleges with support from the National Science Foundation created the "MentorLinks" Advancing Technological Education program to help community colleges develop or strengthen technician training programs in the science, technology, engineering, and mathematics fields. The program works with…
Real Life Science with Dandelions and Project BudBurst.
Johnson, Katherine A
2016-03-01
Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.
Project BudBurst: Citizen Science for All Seasons
NASA Astrophysics Data System (ADS)
Henderson, S.; Brewer, C.; Havens, K.; Meymaris, K.
2007-12-01
Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. Project BudBurst launched a pilot program in the Spring of 2007. The goals of Project BudBurst were to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From April through mid-June 2007, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of ~60 easily identifiable, broadly distributed wild and cultivated species found across the continent. We will report on the results of the pilot project and discuss plans to expand Project BudBurst as it becomes a year round event beginning in 2008. A broad consortium of collaborators, representing the Chicago Botanic Garden, Plant Conservation Alliance, ESRI, the USA-National Phenology Network, University Corporation for Atmospheric Research, University of Arizona, University of Montana, University of California-Santa Barbara, University of Wisconsin-Milwaukee and the University of Wisconsin-Madison, came together to design and implement Project BudBurst with seed funding from the U.S. Bureau of Land Management, the National Phenology Network (through a RCN grant from the NSF), and the Plant Conservation Alliance.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
...-science conference on its designated priority research area in the fourth year of the project period, and... Rehabilitation Research Projects and Centers Program AGENCY: Office of Special Education and Rehabilitative... and Rehabilitative Services proposes two priorities for the Disability and Rehabilitation Research...
Raman spectroscopy characterization of two-dimensional materials
NASA Astrophysics Data System (ADS)
Liang, Fang; Xu, Hejun; Wu, Xing; Wang, Chaolun; Luo, Chen; Zhang, Jian
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11504111, 61574060, and 61574056), the Projects of Science and Technology Commission of Shanghai Municipality of China (Grant Nos. 15JC1401800 and 14DZ2260800), the Program for Professor of Special Appointment (Eastern Scholar), Shanghai Rising-Star Program, China (Grant No. 17QA1401400), and the Fundamental Research Funds for the Central Universities of China.
Composition design for (PrNd–La–Ce)2Fe14B melt-spun magnets by machine learning technique
NASA Astrophysics Data System (ADS)
Li, Rui; Liu, Yao; Zuo, Shu-Lan; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen
2018-04-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB643702), the National Natural Science Foundation of China (Grant No. 51590880), the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-M05), and the National Key Research and Development Program of China (Grant No. 2016YFB0700903).
ERIC Educational Resources Information Center
Beisel, Raymond W.
This report describes development of the "Prepare Them for the Future" project, a K-3 activity-oriented science curriculum. The program, funded through two grants, was driven by the need to boost the distressed labor-based economy in rural western Pennsylvania. Data showed a drop of 1,100 coal-mining jobs between 1980 and 1986 in Indiana…
ERIC Educational Resources Information Center
Mentzer, Gale A.; Czerniak, Charlene M.; Brooks, Lisa
2017-01-01
Project-based science (PBS) aligns with national standards that assert children should learn science by actively engaging in the practices of science. Understanding and implementing PBS requires a shift in teaching practices away from one that covers primarily content to one that prompts children to conduct investigations. A common challenge to…
Actionable Science in the Gulf of Mexico: Connecting Researchers and Resource Managers
NASA Astrophysics Data System (ADS)
Lartigue, J.; Parker, F.; Allee, R.; Young, C.
2017-12-01
The National Oceanic and Atmospheric Administration (NOAA) RESTORE Science Program was established in the wake of the Deepwater Horizon oil spill to to carry out research, observation, and monitoring to support the long-term sustainability of the Gulf of Mexico ecosystem, including its fisheries. Administered in partnership with the US Fish and Wildlife Service, the Science Program emphasizes a connection between science and decision-making. This emphasis translated into an engagement process that allowed for resource managers and other users of information about the ecosystem to provide direct input into the science plan for the program. In developing funding opportunities, the Science Program uses structured conversations with resource managers and other decision makers to focus competitions on specific end user needs. When evaluating proposals for funding, the Science Program uses criteria that focus on applicability of a project's findings and products, end user involvement in project planning, and the approach for transferring findings and products to the end user. By including resource managers alongside scientific experts on its review panels, the Science Program ensures that these criteria are assessed from both the researcher and end user perspectives. Once funding decisions are made, the Science Program assigns a technical monitor to each award to assist with identifying and engaging end users. Sharing of best practices among the technical monitors has provided the Science Program insight on how best to bridge the gap between research and resource management and how to build successful scientist-decision maker partnerships. During the presentation, we will share two case studies: 1) design of a cooperative (fisheries scientist, fisheries managers, and fishers), Gulf-wide conservation and monitoring program for fish spawning aggregations and 2) development of habitat-specific ecosystem indicators for use by federal and state resource managers.
Notification: Review of Science to Achieve Results (STAR) Grant Program
Project #OA-FY12-0606, July 16, 2012. EPA’s Office of Inspector General (OIG) plans to begin preliminary research for an audit of grants awarded under EPA’s Science to Achieve Results (STAR) program.
Institutional computing (IC) information session
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Kenneth R; Lally, Bryan R
2011-01-19
The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.
Brandt, K A; Sapp, J R; Campbell, J M
1996-01-01
The long-term objective of this project is to make health sciences librarians more effective in their role by using emerging technologies to deliver timely continuing education (CE) programs to them regardless of their physical location. The goals of the one-year planning project at the William H. Welch Medical Library are to plan, implement, and evaluate a pilot CE program that includes (1) a three-day general-interest session organized in four tracks: Market Forces and Management, Information Technology and the Internet, Publishing and Copyright, and Education; (2) a one-day special topic session on the Informatics of the Human Genome Project; and (3) an electronic poster session in parallel with the general-interest session. The program will be offered in three simultaneous formats: (1) on-site, in a distance-learning classroom in Baltimore; (2) as a telecourse, in a similar classroom outside Washington, DC; and (3) online, via the World Wide Web. An electronic proceedings of the entire program will be published on the Web to serve as a continuously available CE resource for health sciences librarians. This paper gives an overview of the planning process, presents a status report on the programmatic and technical implementation of the pilot project at its midpoint, and discusses future directions for the program. PMID:8913554
NASA Astrophysics Data System (ADS)
Solomon, S. C.; Stockman, S.; Chapman, C. R.; Leary, J. C.; McNutt, R. L.
2003-12-01
The Education and Public Outreach (EPO) Program of the MESSENGER mission to the planet Mercury, supported by the NASA Discovery Program, is a full partnership between the project's science and engineering teams and a team of professionals from the EPO community. The Challenger Center for Space Science Education (CCSSE) and the Carnegie Academy for Science Education (CASE) are developing sets of MESSENGER Education Modules targeting grade-specific education levels across K-12. These modules are being disseminated through a MESSENGER EPO Website developed at Montana State University, an Educator Fellowship Program managed by CCSSE to train Fellows to conduct educator workshops, additional workshops planned for NASA educators and members of the Minority University - SPace Interdisciplinary Network (MU-SPIN), and existing inner-city science education programs (e.g., the CASE Summer Science Institute in Washington, D.C.). All lessons are mapped to national standards and benchmarks by MESSENGER EPO team members trained by the American Association for the Advancement of Science (AAAS) Project 2061, all involve user input and feedback and quality control by the EPO team, and all are thoroughly screened by members of the project science and engineering teams. At the college level, internships in science and engineering are provided to students at minority institutions through a program managed by MU-SPIN, and additional opportunities for student participation across the country are planned as the mission proceeds. Outreach efforts include radio spots (AAAS), museum displays (National Air and Space Museum), posters and traveling exhibits (CASE), general language books (AAAS), programs targeting underserved communities (AAAS, CCSSE, and MU-SPIN), and a documentary highlighting the scientific and technical challenges involved in exploring Mercury and how the MESSENGER team has been meeting these challenges. As with the educational elements, science and engineering team members are active partners in each of the public outreach efforts. MESSENGER fully leverages other NASA EPO programs, including the Solar System Exploration EPO Forum and the Solar System Ambassadors. The overarching goal of the MESSENGER EPO program is to convey the excitement of planetary exploration to students and the lay public throughout the nation.
NASA Astrophysics Data System (ADS)
Xu, Qing-Jun; Liu, Bin; Zhang, Shi-Ying; Tao, Tao; Xie, Zi-Li; Xiu, Xiang-Qian; Chen, Dun-Jun; Chen, Peng; Han, Ping; Zhang, Rong; Zheng, You-Dou
2017-04-01
Not Available Project supported by the National Key Research and Development Project of China (Grant No. 2016YFB0400100), the Hi-tech Research Project of China (Grant Nos. 2014AA032605 and 2015AA033305), the National Natural Science Foundation of China (Grant Nos. 61274003, 61422401, 51461135002, and 61334009), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BY2013077, BK20141320, and BE2015111), the Project of Green Young and Golden Phenix of Yangzhou City, the Postdoctoral Sustentation Fund of Jiangsu Province, China (Grant No. 1501143B), the Project of Shandong Provinceial Higher Educational Science and Technology Program, China (Grant No. J13LN08), the Solid State Lighting and Energy-saving Electronics Collaborative Innovation Center, Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Research Funds from NJU-Yangzhou Institute of Opto-electronics.
The TXESS Revolution: A Partnership to Advance Earth and Space Science in Texas
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Olson, H. C.; Willis, M.
2007-12-01
The Texas State Board of Education voted in 2006 to require a fourth year of science for graduation from high school and to authorize the creation of a new senior level Earth Systems and Space Science course as an option to fulfill that requirement. The new Earth Systems and Space Science course will be a capstone course for which three required science courses(biology, chemistry and physics)are prerequisites. Here, we summarize the collective efforts of business leaders, scientists and educators who worked collaboratively for almost a decade to successfully reinstate Earth science as part of Texas' standard high school curriculum and describe a new project, the Texas Earth and Space Science (TXESS) Revolution, a 5-year professional development program for 8th -12th grade minority and minority-serving science teachers and teacher mentors in Texas to help prepare them to teach the new capstone course. At the heart of TXESS Revolution is an extraordinary partnership, involving (1) two UT-Austin academic units, the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering; (2) TERC, a not-for-profit educational enterprise in Massachusetts with 30 years experience in designing science curriculum; (3) the University of South Florida; and (4) the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching, a statewide network of teacher mentors and science teachers. With guidance from the Texas Education Agency, the state agency charged with overseeing education, the TXESS Revolution project will provide teachers with access to high quality materials and instruction aligned with the Texas educational standards for the new capstone course through: a program of eight different 3-day professional development academies offered to both teachers and teachers mentors; immersive summer institutes, field experiences, and a Petroleum Science and Technology Institute; training on how to implement Earth Science by Design, a teacher professional development program developed by TERC and the American Geological Institute with National Science Foundation (NSF) funding; and an online learning forum designed to keep teachers and teacher mentors in contact with facilitators and fellow project-participants between and after training, as well as share best practices and new information. The new capstone course promises to be a rigorous and dynamic change to the way Earth and Space Science has been presented previously anywhere in the U.S. and will provide many opportunities for professional development and the dissemination of suitable Earth and Space Science curriculum. The TXESS Revolution project welcomes opportunities to collaborate with geoscience consortia, programs, organizations and geoscience educators to advance Earth and Space Science in Texas. NSF's Opportunities to Enhance Diversity in the Geosciences program, the Shell Oil Company and the Jackson School of Geosciences are together funding the TXESS Revolution project.
Microgravity science and applications. Program tasks and bibliography for FY 1994
NASA Technical Reports Server (NTRS)
1995-01-01
This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.
Microgravity science & applications. Program tasks and bibliography for FY 1995
NASA Technical Reports Server (NTRS)
1996-01-01
This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.
Bringing Seismological Research into the School Setting
NASA Astrophysics Data System (ADS)
Pavlis, G. L.; Hamburger, M. W.
2004-12-01
One of the primary goals of educational seismology programs is to bring inquiry-based research to the middle- and high-school classroom setting. Although it is often stated as a long-term goal of science outreach programs, in practice there are many barriers to research in the school setting, among them increasing emphasis on test-oriented training, decreasing interest and participation in science fairs, limited teacher confidence and experience for mentoring research, insufficient student preparedness for research projects, and the short term of university involvement (typically limited to brief one-day encounters). For the past three+ years we have tried to address these issues through a focused outreach program we have called the PEPP Research Fellows Program. This is treated as an honors program in which high school teachers in our group nominate students with interests in science careers. These students are invited to participate in the program, and those who elect to take part participate in a one-day education and training session in the fall. Rather than leave research projects completely open, we direct the students at toward one of two specific, group-oriented projects (in our case, one focusing on local recordings of mining explosions, and a second on teleseismic body-wave analysis), but we encourage them to act as independent researchers and follow topics of interest. The students then work on seismic data from the local educational network or from the IRIS facilities. Following several months of informal interaction with teachers and students (email, web conferencing, etc.), we bring the students and teachers to our university for a weekend research symposium in the spring. Students present their work in oral or poster form and prizes are given for the best papers. Projects range from highly local projects (records of seismic noise at school X) to larger-scale regional projects (analysis of teleseismic P-wave delays at PEPP network stations) From 20 to 40 students and teachers have participated in the program in the past three years and independent work by students has been outstanding including several students' work that have won awards at regional and national science fairs. The program is feasible because we had a pool of dedicated teachers with experience in using seismographs in schools as a legacy of the Princeton Earth Physics Program (PEPP). It provides a model for focused outreach to top science students to give them an early research experience.
The Impact of an Informal Science Program on Students' Science Knowledge and Interest
ERIC Educational Resources Information Center
Zandstra, Anne Maria
2012-01-01
In this sequential explanatory mixed methods study, quantitative and qualitative data were used to measure the impact of an informal science program on eleventh grade students' science knowledge and interest. The local GEAR UP project has been working for six years with a cohort of students who were in eleventh and twelfth grade during the time of…
Engaging Science Faculty in Teacher Professional Development: Renewable Energy
NASA Astrophysics Data System (ADS)
Czajkowski, K. P.; Czerniak, C.; Struble, J.; Mentzer, G.; Brooks, L.; Hedley, M.
2011-12-01
The LEADERS Program (Leadership for Educators: Academy for Driving Economic Revitalization in Science) is an NSF funded Math and Science Partnership program that aims to link economic revitalization in the Great Lakes region with K-12 education through renewable energy technology using a project-based learning approach. The LEADERS Program brings teacher leaders together with science and education faculty from the University of Toledo. Teacher leaders, from Toledo Public and Catholic Schools, attended a six week long institute in the summers of 2010 and 2011 and offered professional development for their colleagues during the school year. The teacher leaders took two science courses during the summer of 2010 in Physics and Chemistry of Renewable Energy as well as classes in Project-Based Science and Leadership and three courses in the summer of 2011, Earth Technologies, Climate Change and Biofuels. In addition, teachers were introduced to industry leaders in renewable energies as well as conservation. This presentation will discuss the implementation of the program and focus on the involvement of science faculty. We will discuss the challenges and successes in bringing together science faculty with teachers including how the experience has changed the teaching style of the scientists.
Applied Information Systems Research Program Workshop
NASA Technical Reports Server (NTRS)
Bredekamp, Joe
1991-01-01
Viewgraphs on Applied Information Systems Research Program Workshop are presented. Topics covered include: the Earth Observing System Data and Information System; the planetary data system; Astrophysics Data System project review; OAET Computer Science and Data Systems Programs; the Center of Excellence in Space Data and Information Sciences; and CASIS background.
ERIC Educational Resources Information Center
Johnson, Elmima C.; Tornatzky, Louis G.
This report presents data from a national study of 118 Industry/University Cooperative Research (IUCR) projects supported by the National Science Foundation. Questionnaire responses were gathered from 226 industry and university scientists working on these projects. The purpose of the study was to describe how IUCR projects develop, how they are…
From Washington's Yakima River to India's Ganges: Project GREEN Is Connecting.
ERIC Educational Resources Information Center
Kuechle, Jeff
1993-01-01
Project GREEN (Global Rivers Environmental Education Network) is an international environmental education program empowering students to use science to improve and protect the quality of watersheds. As an integral part of the Yakima School District Environmental Awareness Program, Project GREEN provides educational benefits for both American…
Combining the Views of "Both Worlds": Science Education in Nunavut "Piqusiit Tamainik Katisugit"
ERIC Educational Resources Information Center
Lewthwaite, Brian; McMillan, Barbara; Renaud, Robert; Hainnu, Rebecca; MacDonald, Carolyn
2010-01-01
This paper reports on several phases of a five-year science education development project in Nunavut, Canada. The project, in its entirety, was established as a Pilot Program for Nunavut schools in effort to understand school community aspirations for science education and potential contributors and impediments to fostering the realization of…
NASA Technical Reports Server (NTRS)
Russell, Yvonne; Falsetti, Christine M.
1991-01-01
Customer requirements are presented through three viewgraphs. One graph presents the range of services, which include requirements management, network engineering, operations, and applications support. Another viewgraph presents the project planning process. The third viewgraph presents the programs and/or projects actively supported including life sciences, earth science and applications, solar system exploration, shuttle flight engineering, microgravity science, space physics, and astrophysics.
NASA Astrophysics Data System (ADS)
He, Ge; Wei, Zhong-Xu; Brisbois, Jérémy; Jia, Yan-Li; Huang, Yu-Long; Zhou, Hua-Xue; Ni, Shun-Li; Silhanek, Alejandro V.; Shan, Lei; Zhu, Bei-Yi; Yuan, Jie; Dong, Xiao-Li; Zhou, Fang; Zhao, Zhong-Xian; Jin, Kui
2018-04-01
Not Available Project supported by the National Key Basic Research Program of China (Grant Nos. 2015CB921000, 2016YFA0300301, and 2017YFA0302902), the National Natural Science Foundation of China (Grant Nos. 11674374 and 1474338), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH008), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07020100 and XDB07030200), the Beijing Municipal Science and Technology Project (Grant No. Z161100002116011), the Fonds de la Recherche Scientifique–FNRS and the ARC Grant 13/18-08 for Concerted Research Actions, financed by the French Community of Belgium (Wallonia-Brussels Federation). Jérémy Brisbois acknowledges the support from F.R.S.–FNRS (Research Fellowship), The work of Alejandro V Silhanek is partially supported by PDR T.0106.16 of the F.R.S.–FNRS..
Laboratory Directed Research and Development Program FY 2008 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
editor, Todd C Hansen
2009-02-23
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less
ERIC Educational Resources Information Center
Wang, Jianjun
2013-01-01
Since 2007, Chevron has funded the Research Experience Vitalizing Science -- University Program (REVS-UP), which lasts four weeks each summer to develop Science, Technology, Engineering, and Mathematics (STEM) projects at CSUB [California State University, Bakersfield]. Over the past six years, a total of 26 STEM professors have led the…
ERIC Educational Resources Information Center
Heck, Daniel J.; Weiss, Iris R.
2005-01-01
In 1990, the National Science Foundation (NSF) created the Statewide Systemic Initiative Program. The solicitation issued by the Directorate for Science and Engineering Education sought proposals "for projects intended to broaden the impact, accelerate the pace, and increase the effectiveness of improvements in science, mathematics, and…
Connecting Adolescent Girls of Color and Math/Science Interventions.
ERIC Educational Resources Information Center
Murphy, Diane S.; Sullivan, Kathleen
This paper describes a study of Project SPLASH!, a program for minority adolescent girls with high potential in mathematics and science. This paper aims to contribute to the knowledge base on characteristics of program interventions which may increase the representation of women and minorities in the fields of mathematics and science. Findings on…
Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Projects Frontiers of Particle Physics Benefits to Society Contacting Fermilab General Contact Information Email -12 Programs Lederman Science Center Saturday Morning Physics Cooperative Education Program
ERIC Educational Resources Information Center
White, Edwin P.; Teumac, Karen
1984-01-01
Brief descriptions and addresses are provided for the following: four handbooks for elementary principals on science programs, a study on women in science, a renewal of National Science Foundation funding for precollege-level science teaching projects, and a report outlining proposals for educational improvement in science. (TE)
LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bookless, W.
This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for hismore » laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.« less
Real Life Science with Dandelions and Project BudBurst
Johnson, Katherine A.
2016-01-01
Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education PMID:27047605
NASA Astrophysics Data System (ADS)
Yang, Zongchun; Mei, Yingshuang; Chen, Chengke; Ruan, Yinlan; Hu, Xiaojun
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), European Unionʼs Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), and the One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021).
ERIC Educational Resources Information Center
Thurston, Linda P.; Shuman, Cindy; Middendorf, B. Jan; Johnson, Cassandra
2017-01-01
The Research in Disabilities Education Synthesis Project (RDE-SP), a four-year mixed methods research project, assessed a decade of funded projects (2001-2011) under the National Science Foundation's Research in Disabilities Education program which is aimed at increasing participation and retention of students with disabilities (SWD) in Science,…
FY 1991 RDT&E Descriptive Summaries
1990-01-01
OF PROJECT : The Defense Sciences program element provides the technical foundation for long-term improvements in military equiment...DESCRIPTION OF PROJECT : Develop the fundamental technology in advanced digital structures and network concepts for smaller, more powerful, less expensive...DESCRIPTION OF PROJECT : The 1985 Defense Science Board (DSB) noted that the United States was behind and failing further behind in armor and
Cooper, Alan; Barker, Peter; Barrett, Peter; Behrendt, John; Brancolini, Giuliano; Childs, Jonathan R.; Escutia, Carlota; Jokat, Wilfried; Kristoffersen, Yngve; Leitchenkov, German; Stagg, Howard; Tanahashi, Manabu; Wardell, Nigel; Webb, Peter
2009-01-01
The Antarctic Offshore Stratigraphy project (ANTOSTRAT; 1989–2002) was an extremely successful collaboration in international marine geological science that also lifted the perceived “veil of secrecy” from studies of potential exploitation of Antarctic marine mineral resources. The project laid the groundwork for circum-Antarctic seismic, drilling, and rock coring programs designed to decipher Antarctica’s tectonic, stratigraphic, and climate histories. In 2002, ANTOSTRAT evolved into the equally successful and currently active Antarctic Climate Evolution research program. The need for, and evolution of, ANTOSTRAT was based on two simple tenets within SCAR and the Antarctic Treaty: international science collaboration and open access to data. The ANTOSTRAT project may be a helpful analog for other regions of strong international science and geopolitical interests, such as the Arctic. This is the ANTOSTRAT story.
ERIC Educational Resources Information Center
Dyasi, Hubert M.
This paper is concerned with the teaching-learning strategy of the Primary Science Project of the Science Education Program for Africa. It was presented in the 1976 seminar of the International Institute for Educational Planning (IIEP) of the UNESCO in Paris. The document includes six sections: (1) The concept of a strategy; (2) Description of the…
Skylab Student Project: Summary Description
NASA Technical Reports Server (NTRS)
Floyd, Henry B.
1973-01-01
In 1971 the NASA conceived the Skylab student project in an effort to involve the general public in the Skylab program. The primary aim of this project was to stimulate national interest in science and technology. NASA decided to direct the Skylab student project to those young people who have indicated an interest in science and technology and to foster this interest through direct participation in an ongoing program emphasizing as wide a spectrum of science and technology as possible. Skylab, with the opportunity it gives to provide experiments in areas of science and technology provided the ideal opportunity for such participation. In implementing this project, the National Science Teachers Association (NSTA), having an existing, closely associated contact with students, grades 9 through 12, in United States schools, was asked to sponsor, organize, and administer a national competition for high school students. This competition called for individual students (or groups of students) to develop meaningful experiments to be flown on Skylab. To facilitate the organization and administration of this program, the NSTA divided the participating students into their 12 geographical regions with a regional chairmen appointed to receive all proposals for his region. The regional chairmen then appointed a committee of eminent scientists, engineers, and science educators to evaluate each proposal. Some 80,000 applications were requested by teachers and 3409 proposals were submitted. Moreover, because of team proposals, over 4000 students participated and approximately 300 regional winners selected. Each participant received a certification of merit. The 300 winning regional proposals were transmitted to the NSTA headquarters where they were further screened. In March of 1972 twenty-five national winners and 22 special mentions were announced. The 25 winning students were then assigned science advisers at the George C. Marshall Space Flight center (MSFC), the center selected by NASA to be responsible for development of the student project. The Johnson Space Center (JSC) also provided science advisors and valuable support.
Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure
NASA Astrophysics Data System (ADS)
Yu, Le; Liu, Di; Qi, Xiao-Zhuo; Xiong, Xiao; Feng, Lan-Tian; Li, Ming; Guo, Guo-Ping; Guo, Guang-Can; Ren, Xi-Feng
2018-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61590932 and 11774333), the Anhui Initiative Project in Quantum Information Technologies, China (Grant No. AHY130300), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030600), the National Key Research and Development Program of China (Grant No. 2016YFA0301700), and the Fundamental Research Funds for the Central Universities, China.
NASA Technical Reports Server (NTRS)
2003-01-01
The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In Situ Resource Utilization (ISRU) studies work towards future long duration missions. Biomaterials support materials issues affecting crew health. Nanostructured Materials are currently considered to be maturing new research, and Advanced Materials for Space Transportation has as yet no PIs. PIs are assigned a NASA Technical Monitor to maintain contact, a position considered to be a 5 percent per PI effort. Currently 33 PIs are supported on the 1996 NRA, which is about to expire, and 59 on the 1998 NRA. Two new NRAs, one for Radiation Shielding and one for Materials Science for Advanced Space Propulsion are due to be announced by the 2003 fiscal year. MSFC has a number of facilities supporting materials science. These include the Microgravity Development Laboratory/SD43; Electrostatic Levitator Facility; SCN Purification Facility; Electron Microscope/Microprobe Facility; Static and Rotating Magnetic Field Facility; X-Ray Diffraction Facility; and the Furnace Development Laboratory.
NASA Astrophysics Data System (ADS)
Richard, G. A.
2003-12-01
Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with Stony Brook's Department of Technology and Society. During the academic year, a college-level Earth science course is offered to tenth graders from Sayville, New York. In both programs, students conduct research projects as one of their primary responsibilities. In collaboration with the Museum of Long Island Natural Sciences on the Stony Brook campus, two programs have been developed that enable visiting K-12 school classes to investigate earthquakes and phenomena that operate in the Earth's deep interior. From 1997 to 1999, the weekly activity-based Science Enrichment for the Early Years (SEEY) program, focusing on common Earth materials and fundamental Earth processes, was conducted at a local pre-K school. Since 2002, ESERC has worked with the Digital Library for Earth System Education (DLESE) to organize the Skills Workshops for their Annual Meeting and with EarthScope for the development of their Education and Outreach Program Plan. Future education programs and tools developed through COMPRES partnerships will place an increased emphasis on deep Earth materials and phenomena.
Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice
NASA Astrophysics Data System (ADS)
Jia, Li-Ping; Jasmina, T´; Duan, Wen-Shan
2015-04-01
Not Available Supported by the National Magnetic Confinement Fusion Science Program of China under Grant No 2014GB104002, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA03030100, the National Natural Science Foundation of China under Grant Nos 11275156 and 11304324, the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Sciences under Grant No Y4KF201CJ1, and the Serbian Ministry of Education and Science under Grant No III-45010.
Making continental-scale environmental programs relevant locally for educators with Project BudBurst
NASA Astrophysics Data System (ADS)
Goehring, L.; Henderson, S.; Wasser, L.; Newman, S. J.; Ward, D.
2012-12-01
Project BudBurst is a national citizen science initiative designed to engage non professionals in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide excellent opportunities for educators and their students to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch, this on-line program has engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent, and in contemplating the meaning of such data in their local environments. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst educational resources and share lessons learned from educators in implementing the program in formal and informal education settings. Lesson plans and tips from educators will be highlighted. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago Botanic Garden.
UCLA's outreach program of science education in the Los Angeles schools.
Palacio-Cayetano, J; Kanowith-Klein, S; Stevens, R
1999-04-01
The UCLA School of Medicine's Interactive Multi-media Exercises (IMMEX) Project began its outreach into pre-college education in the Los Angeles area in 1993. The project provides a model in which software and technology are effectively intertwined with teaching, learning, and assessment (of both students' and teachers' performances) in the classroom. The project has evolved into a special collaboration between the medical school and Los Angeles teachers. UCLA faculty and staff work with science teachers and administrators from elementary, middle, and high schools. The program benefits ethnically and racially diverse groups of students in schools ranging from the inner city to the suburbs. The project's primary goal is to use technology to increase students' achievement and interest in science, including medicine, and thus move more students into the medical school pipeline. Evaluations from outside project evaluators (West Ed) as well as from teachers and IMMEX staff show that the project has already had a significant effect on teachers' professional development, classroom practice, and students' achievement in the Los Angeles area.
The NASA Space Life Sciences Training Program: Accomplishments Since 2013
NASA Technical Reports Server (NTRS)
Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth
2017-01-01
The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.
Chaos generation by a hybrid integrated chaotic semiconductor laser
NASA Astrophysics Data System (ADS)
Zhang, Ming-Jiang; Niu, Ya-Nan; Zhao, Tong; Zhang, Jian-Zhong; Liu, Yi; Xu, Yu-Hang; Meng, Jie; Wang, Yun-Cai; Wang, An-Bang
2018-05-01
Not Available Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA50870), the National Natural Science Foundation of China (Grant Nos. 61377089, 61475111, and 61527819), Shanxi Province Natural Science Foundation, China (Grant No. 2015011049), Shanxi Province Youth Science and Technology Foundation, China (Grant No. 201601D021069), Shanxi Scholarship Council of China (Grant No. 2016-036), Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, and Program for Sanjin Scholar, China.
A Curriculum for a Three Year High School Science Research Program
NASA Astrophysics Data System (ADS)
Darytichen, F.; Danch, J.
2003-12-01
A three-year high school science research program has been taught in Woodbridge Township School District - Woodbridge, New Jersey, since 1987. The program's focus is to foster originial science research projects for high school students that have shown an aptitude and an interest in science. Students are instructed in basic research skills, including developing and conducting original research projects, statistical analysis, scientific writing, and presentation of research at local and national symposia, and science fairs. Upon completion of the third year all students are required to submit a paper, suitable for journal publication, detailing their research. Participating students have gone on to win awards with Westinghouse, Intel, The National Junior Science and Humanities Symposium, the International Science and Engineering Fair, New Jersey Academy of Sciences, and local and regional science fairs and symposia. Participating teachers have been recoginized by the Sigma Xi Research Society of Rutgers University for excellence in science teaching. New Jersey awarded the curriulum a Best Practice Award for 2003. Goals and strategies of the curriculum are detailed in a guide written for the courses. Professional development for the courses and resources for mentoring programs are the responsibility of the District Science Supervisor, and have been fostered over the years with the assistance of local colleges and universities including Rutgers Univesity, Monmouth University, University of Medicine and Dentistry of New Jersey, Liberty Science Center of New Jersey's Partners in Science Program, as well as local industries including Hatco Corporation, Merck Corporation, Englehard Corporation, and Lucent Technologies. Science Research teachers have conducted developmental workshops for school districts interested in implementing similar curricula.
NASA High Performance Computing and Communications program
NASA Technical Reports Server (NTRS)
Holcomb, Lee; Smith, Paul; Hunter, Paul
1994-01-01
The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 1(X)-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientists' abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project, exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects, as well as summaries of early accomplishments and the significance, status, and plans for individual research and development programs within each project. Areas of emphasis include benchmarking, testbeds, software and simulation methods.
NASA Technical Reports Server (NTRS)
House, G.
1980-01-01
Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.
Authentic Research in the Classroom: NITARP Teachers Connect Astronomy with NGSS.
NASA Astrophysics Data System (ADS)
Pruett, Lee; Gibbs, John; Palmer, Robert; Young, Diedre; Gorjian, Varoujan
2016-01-01
The NASA/IPAC Teacher Archive Research Program (NITARP) uses authentic astronomical research to bring the Next Generation Science Standards (NGSS) into the classroom. The creation of the NGSS was a collaborative effort between teams composed of teachers, scientists and other professionals from twenty-six states. These standards provide a framework for the change in how science is taught at all levels from kindergarten to twelfth grade in participating states. Scientific concepts are grouped into broad categories (physical, biological and earth sciences), and call for an interdisciplinary approach to content, along with the integration of engineering practices into the curriculum. This approach to the teaching of science has led educators to place more emphasis on authentic learning and problem-solving in their curricula. Project-based learning is a strategy that can effectively allow students to learn core scientific concepts within the context of a focused and complex scientific problem.The NASA/IPAC Teacher Archive Research Program (NITARP) pairs teams of teachers and students with NASA astronomers. These teams are immersed in an astronomy research project over the course of the year, and are responsible for writing a project proposal, doing original research and presenting that research at a professional conference. The students who are involved in the NITARP research are provided with a rich hands-on experience that both exposes them to a deep understanding of an astronomical problem (and the core physics and math behind it), as well as the process of doing real science. The NITARP program offers a unique opportunity to bring project-based learning into K-12 science classrooms. We will highlight the ways in which this program has been implemented in classrooms across the country, as well as the connections to the NGSS.This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.
ERIC Educational Resources Information Center
Venkatasamy, D.; And Others
A pilot project was undertaken in 1984 at the Mauritius Institute of Education for the purpose of developing and preparing teaching/learning materials for out-of-school Science and Technology Education programs. This volume is one in a series of UNESCO programs which encourage an international exchange of ideas and information on science and…
University of Maryland MRSEC - Site Map
; National Labs International Educational Education Pre-College Programs Homeschool Programs Undergraduate Education Outreach: Pre-college Programs Project Lead the Way Chemistry Programs Student Science Conference
NASA Astrophysics Data System (ADS)
Mulkerrin, Elizabeth A.
The purpose of this study was to determine the effect of an 11th-grade and 12th-grade zoo-based academic high school experiential science program compared to a same school-district school-based academic high school experiential science program on students' pretest and posttest science, math, and reading achievement, and student perceptions of program relevance, rigor, and relationships. Science coursework delivery site served as the study's independent variable for the two naturally formed groups representing students (n = 18) who completed a zoo-based experiential academic high school science program and students (n = 18) who completed a school-based experiential academic high school science program. Students in the first group, a zoo-based experiential academic high school science program, completed real world, hands-on projects at the zoo while students in the second group, those students who completed a school-based experiential academic high school science program, completed real world, simulated projects in the classroom. These groups comprised the two research arms of the study. Both groups of students were selected from the same school district. The study's two dependent variables were achievement and school climate. Achievement was analyzed using norm-referenced 11th-grade pretest PLAN and 12th-grade posttest ACT test composite scores. Null hypotheses were rejected in the direction of improved test scores for both science program groups---students who completed the zoo-based experiential academic high school science program (p < .001) and students who completed the school-based experiential academic high school science program (p < .001). The posttest-posttest ACT test composite score comparison was not statistically different ( p = .93) indicating program equipoise for students enrolled in both science programs. No overall weighted grade point average score improvement was observed for students in either science group, however, null hypotheses were rejected in the direction of improved science grade point average scores for 11th-grade (p < .01) and 12th-grade (p = .01) students who completed the zoo-based experiential academic high school science program. Null hypotheses were not rejected for between group posttest science grade point average scores and school district criterion reference math and reading test scores. Finally, students who completed the zoo-based experiential academic high school science program had statistically improved pretest-posttest perceptions of program relationship scores (p < .05) and compared to students who completed the school-based experiential academic high school science program had statistically greater posttest perceptions of program relevance (p < .001), perceptions of program rigor (p < .001), and perceptions of program relationships (p < .001).
Teen Advocates for Community and Environmental Sustainability
NASA Astrophysics Data System (ADS)
Wunar, B.
2017-12-01
The Museum of Science and Industry, Chicago (MSI) is in the early stages of a NOAA supported Environmental Literacy Grant project that aims to engage high school age youth in the exploration of climate and Earth systems science. Participating youth are positioned as teen advocates for establishing resilient communities in the Midwest. The project utilizes a variety of resources, including NOAA Science On a Sphere® (SOS) technology and datasets, Great Lakes and local climate assets, and local municipal resiliency planning guides to develop museum-based youth programming. Teen participants in the project will share their learning through regular facilitated interactions with public visitors in the Museum and will bring learning experiences to Chicago Public Library sites throughout the city's neighborhoods. Project content will also be adapted for use in 100+ after-school science clubs to engage younger students from diverse communities across the Chicago area. Current strategies for supporting teen facilitation of public experiences, linkages to out of school time and summer learning programs, and connections to local resiliency planning agencies will be explored.
Women in STEM: The Effect of Undergraduate Research on Persistence
NASA Astrophysics Data System (ADS)
Wilker, Jodi
The underrepresentation of women in science, technology, engineering, and math (STEM) careers constitutes a major issue in postsecondary science education. Perseverance of women in STEM is linked to a strong science identity. Experiential learning activities, such as undergraduate research, increase science identity and thus should help keep women in STEM. Most studies on research program development are from 4-year institutions, yet many women start at community colleges. The goal of this study was to fill this gap. Science identity and experiential learning theories provided the framework for this case study at a local institution (LECC). Semistructured interviews determined college science faculty and administrators perceptions of advantages and disadvantages of undergraduate research, the viability of developing a research program, and specific research options feasible for LECC. Transcripted data were analyzed through multiple rounds of coding yielding five themes: faculty perception of undergraduate research, authentic experiences, health technologies/nursing programs, LECC students career focus, and the unique culture at LECC. The most viable type of undergraduate research for LECC is course-based and of short timeframe. The project study advocates the use of citizen science (CS) studies in the classroom as they are relatively short-term and can take the place of lab sessions. The true benefit is that students perform authentic science by contributing to an actual scientific research project. CS projects can effect social change by developing science literate citizens, empowering faculty to create authentic learning experiences, and by sparking interest in science and directing women into STEM careers.
Research and technology report, 1981
NASA Technical Reports Server (NTRS)
1981-01-01
The Marshall Space Flight Center programs of research and technology for 1981 in various areas of aerospace science are reviewed. Each activity reviewed has a high probability of application to current or future programs or is an application of the results of current programs. Projects in atmospheric and magnetospheric science, solar physics, astronomy, and space technology are included.
JSC director's discretionary fund program
NASA Technical Reports Server (NTRS)
1991-01-01
The Johnson Space Center Director's Discretionary Fund Program Annual Report provides a brief review of the status of projects undertaken during the 1990 fiscal year. Three space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, and lunar surface habitat. A viable program of life sciences, space sciences, and engineering research has been maintained.
Human Research Program Science Management: Overview of Research and Development Activities
NASA Technical Reports Server (NTRS)
Charles, John B.
2007-01-01
An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews
Establishing a Student Research and Publishing Program in High School Physics
ERIC Educational Resources Information Center
Eales, Jonathan; Laksana, Sangob
2016-01-01
Student learning in science is improved by authentic personal experience of research projects and the publication of findings. Graduate students do this, but it is uncommon to find student research and publishing in high school science programs. We describe here the Student Research and Publishing Program (SRPP) established at International School…
Simulation of a torrential rainstorm in Xinjiang and gravity wave analysis
NASA Astrophysics Data System (ADS)
Yang, Rui; Liu, Yi; Ran, Ling-Kun; Zhang, Yu-Li
2018-05-01
Not Available Project supported by China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201406002), the National Natural Science Foundation of China (Grant Nos. 41575065 and 41405049), the National Natural Science Foundation International Cooperation Project, China (Grant No. 41661144024), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17010100).
ERIC Educational Resources Information Center
Granow, Rolf; Bischoff, Michael
In 1997, the German Federal Ministry of Education and Research started an initiative to promote e-learning in Germany by installing an extensive research program. The Virtual University of Applied Sciences in Engineering, Computer Science and Economic Engineering is the most prominent and best-funded of the more than 100 projects in the field…
NASA Astrophysics Data System (ADS)
Ellis, T. D.; TeBockhorst, D.
2013-12-01
Teaching Inquiry using NASA Earth-System Science (TINES) is a NASA EPOESS funded program exploring blended professional development for pre- and in-service educators to learn how to conduct meaningful inquiry lessons and projects in the K-12 classroom. This project combines trainings in GLOBE observational protocols and training in the use of NASA Earth Science mission data in a backward-faded scaffolding approach to teaching and learning about scientific inquiry. It also features a unique partnership with the National Science Teachers Association Learning Center to promote cohort building and blended professional development with access to NSTA's collection of resources. In this presentation, we will discuss lessons learned in year one and two of this program and how we plan to further develop this program over the next two years.
Project SunSHINE: A Student Based Solar Research Program
NASA Astrophysics Data System (ADS)
Donahue, R.
2000-12-01
Eastchester Middle School (NY) is currently conducting an ongoing, interdisciplinary solar research program entitled Project SunSHINE, for Students Help Investigate Nature in Eastchester. Students are to determine how ultraviolet and visible light levels vary throughout the year at the school's geographic location, and to ascertain if any measured variations correlate to daily weather conditions or sunspot activity. The educational goal is to provide students the opportunity to conduct original and meaningful scientific research, while learning to work collaboratively with peers and teachers in accordance with national mathematics, science and technology standards. Project SunSHINE requires the student researchers to employ a number of technologies to collect and analyze data, including light sensors, astronomical imaging software, an onsite AirWatch Weather Station, Internet access to retrieve daily solar images from the National Solar Observatory's Kitt Peak Vacuum Telescope, and two wide field telescopes for live sunspot observations. The program has been integrated into the science, mathematics, health and computer technology classes. Solar and weather datasets are emailed weekly to physicist Dr. Gil Yanow of the Jet Propulsion Laboratory for inclusion in his global study of light levels. Dr. Yanow credited the Project SunSHINE student researchers last year for the discovery of an inverse relationship between relative humidity and ultraviolet light levels. The Journal News Golden Apple Awards named Project SunSHINE the 1999 New York Wired Applied Technology Award winner. This honor recognizes the year's outstanding educational technology program at both the elementary and secondary level, and included a grant of \\$20,000 to the research program. Teacher training and image processing software for Project SunSHINE has been supplied by The Use of Astronomy in Research Based Science Education (RBSE), a Teacher Enhancement Program funded by the National Science Foundation and conducted at the facilities of the National Optical Astronomy Observatory in Tucson, Arizona.
The Life Sciences program at the NASA Ames Research Center - An overview
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, Joan; Sharp, Joseph C.
1989-01-01
The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.
Project BudBurst: People, Plants, and Climate Change
NASA Astrophysics Data System (ADS)
Henderson, S.; Ward, D.; Havens, K.; Gardiner, L. S.; Alaback, P.
2010-12-01
Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project BudBurst and will report on the results of the 2009 field campaign and discuss plans to expand Project BudBurst in 2010 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst co managed by the National Ecological Observatory Network and the Chicago botanic Garden. Financial support has been received from the National Science Foundation, UCLA Center for Embedded network Sensors U.S. Bureau of Land Management, U.S. Geological Survey , National Geographic Education Foundation, U.S. Fish and Wildlife Foundation, and NASA.
NASA Astrophysics Data System (ADS)
Dai, Li-Dong; Hu, Hai-Ying; Li, He-Ping; Sun, Wen-Qing; Jiang, Jian-Jun
2018-02-01
Not Available Project supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB 18010401), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDB-SSW-DQC009), the “135” Program of the Institute of Geochemistry of CAS, the Hundred-Talent Program of CAS, and the National Natural Science Foundation of China (Grant Nos. 41474078, 41774099, and 41772042).
A Review of Resources for Evaluating K-12 Computer Science Education Programs
ERIC Educational Resources Information Center
Randolph, Justus J.; Hartikainen, Elina
2004-01-01
Since computer science education is a key to preparing students for a technologically-oriented future, it makes sense to have high quality resources for conducting summative and formative evaluation of those programs. This paper describes the results of a critical analysis of the resources for evaluating K-12 computer science education projects.…
ERIC Educational Resources Information Center
Carroll, Becky; Smith, Anita; Castori, Pam
2009-01-01
The Exploratorium is home to XTech, a science education program which began in 2006 and was primarily funded by a three-year National Science Foundation grant (Award # 05-25217) through its ITEST (Innovative Technology Experiences for Students and Teachers) initiative. XTech provided project-based afterschool activities in science, engineering,…
ERIC Educational Resources Information Center
Rivard, Léonard P.; Gueye, Ndeye R.
2016-01-01
'Literacy in the Science Classroom Project" was a three-year professional development (PD) program supporting minority-language secondary teachers' use of effective language-based instructional strategies for teaching science. Our primary objective was to determine how teacher beliefs and practices changed over time and how these were enacted…
Nonlinear spectral cleaning effect in cross-polarized wave generation
NASA Astrophysics Data System (ADS)
Yu, Linpeng; Xu, Yi; Wu, Fenxiang; Yang, Xiaojun; Zhang, Zongxin; Wu, Yuanfeng; Leng, Yuxin; Xu, Zhizhan
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11127901, 61521093, and 61505234), the International S&T Cooperation of Program of China (Grant No. 2016YFE0119300), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB160301), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.
Nevada's Climate Change High School Science Fair Network
NASA Astrophysics Data System (ADS)
Buck, P.
2012-12-01
The purpose of this 3 year project funded by NSF (GEO 1035049) is to increase the climate change science content knowledge and teaching effectiveness of in-service high school science teachers and increase the numbers of quality of high school geoscience projects competing in Nevada's three regional Intel ISEF (International Science & Engineering Fair) affiliated science fairs. In year 1 of the project participants consisted of six female and three male high school teachers from across Nevada. Eight of the participants were white and one was Asian. Five participants taught in Clark County, two taught in Owyhee, one taught in Elko and one taught in Spring Creek. Over 20% of the projects were noted (by the teachers) as being submitted by underrepresented students; however, this information is not reliable as most students did not provide this data themselves. Pre-and post- content tests were given. Teachers improved from an average of eight missed on the pre-test to an average of only four items missed on the post-test. Participants were also asked to evaluate their own teaching efficacy. In general, participants had a strong science efficacy. The item on which there was the most discrepancy among participants was on #10, the one stating that "The low achievement of some students cannot generally be blamed on their teachers." Most teachers completed an end of year program evaluation. All but one of the participants felt that the pace of the workshop was comfortable. All participants who used faculty mentors in helping their students rated their faculty mentors very highly. All participants rated the program content very highly in terms of clarity, organization, relevance, helpfulness and usefulness. All participants gave the program a very high rating overall and stated they would likely use the information to mentor future students and in instruction in future classes. The science fairs are the culmination of the program. Teachers were required to have at least one student submit a project related to climate change science in their regional fair. There were 28 projects submitted in 2011; of these there were 10 first place winners, 5 second place winners, and 1 third place winner. Over half of the projects entered in the regional science fairs received an award. The reported student science fair projects relating to climate change include, among others: comparing CO2 emissions in old and new cars, comparing travel by mass transit with travel by private car, studying how CO2 effects global warming, studying seedlings in a climate controlled environment, studying the effect of climate change on hurricanes, determining ammonia emission from bovine manure, and studying the effect of Dendroctonus brevicomis on the depopulation of Pinus edulis and Pinus ponderosa due to climate change.
Final Report of the Computer Assisted Learning Test Project. Report No. 19.
ERIC Educational Resources Information Center
Van der Drift, K. D.; And Others
A pilot project was conducted to gain information to advise the Board of Directors at the University of Leyden as to the feasibility of using a computerized system to aid in instructional programs in the social sciences, law, medicine, arts, mathematics, and natural sciences at a low cost. The pilot project is divided into four parts which are…
Technology for Science: Overview of the Project.
ERIC Educational Resources Information Center
Crismond, David; And Others
Technology for Science is a National Science Foundation funded program that is developing and testing curriculum units for teacher materials built around a series of design-oriented science problems called "challenges," mainly for ninth-grade general and physical science classes. Technology for science challenges have a clear connection…
[Analysis and prospect of projects funded in discipline of microbiology (NSFC) from 2006 to 2010].
Liao, Hai; Wen, Mingzhang; Yang, Haihua
2011-01-01
The overview of projects funded by general programs,key programs and national science fund for distinguished young scholars in discipline of microbiology, National Natural Science Foundation of China (NSFC) from 2006 to 2010 was recommended. Some important characters such as the distribution of projects in different subjects, organizations, regions and research fields were analyzed. Some important research fields which should be supported in "The Twelfth Five-Year Plan" was also put forward. The goal of the paper is to provide information of funding in NSFC for researchers in the field of microbiology.
NASA's Student Launch Projects: A Government Education Program for Science and Engineering
NASA Technical Reports Server (NTRS)
Shepherd, Christena C.
2009-01-01
Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.
Initiating the 2002 Mars Science Laboratory (MSL) Technology Program
NASA Technical Reports Server (NTRS)
Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca
2004-01-01
The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.
Multiple off-axis acoustic vortices generated by dual coaxial vortex beams
NASA Astrophysics Data System (ADS)
Li, Wen; Dai, Si-Jie; Ma, Qing-Yu; Guo, Ge-Pu; Ding, He-Ping
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11474166 and 11604156), the Science and Technology Cooperation Projects of People’s Republic of China-Romania (Grant No. 42-23), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Space sciences - Keynote address
NASA Technical Reports Server (NTRS)
Alexander, Joseph K.
1990-01-01
The present status and projected future developments of the NASA Space Science and Applications Program are addressed. Emphasis is given to biochemistry experiments that are planned for the Space Station. Projects for the late 1990s which will study the sun, the earth's magnetosphere, and the geosphere are briefly discussed.
Higher order harmonics suppression in extreme ultraviolet and soft x-ray
NASA Astrophysics Data System (ADS)
Chen, Yong; Wei, Lai; Qian, Feng; Yang, Zuhua; Wang, Shaoyi; Wu, Yinzhong; Zhang, Qiangqiang; Fan, Quanpin; Cao, Leifeng
2018-02-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0206004), the National Natural Science Foundation of China (Grant No. 11375160), and the National Science Instruments Major Project of China (Grant No. 2012YQ130125).
An Experiential Career Exploration Program in Science and Technology.
ERIC Educational Resources Information Center
Burkhalter, Bettye B.; And Others
1983-01-01
Describes the Experimental Career Exploration Program whose goal was to introduce students with no experience with technology to careers in aerospace science and technology at the Alabama Space and Rocket Center. The project involved cooperation from education, industry, and government. (JOW)
NASA Astrophysics Data System (ADS)
The Ocean Research Institute of the University of Tokyo and the National Science Foundation (NSF) have signed a Memorandum of Understanding for cooperation in the Ocean Drilling Program (ODP). The agreement calls for Japanese participation in ODP and an annual contribution of $2.5 million in U.S. currency for the project's 9 remaining years, according to NSF.ODP is an international project whose mission is to learn more about the formation and development of the earth through the collection and examination of core samples from beneath the ocean. The program uses the drillship JOIDES Resolution, which is equipped with laboratories and computer facilities. The Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), an international group of scientists, provides overall science planning and program advice regarding ODP's science goals and objectives.
Indian Education and Training Opportunities at Columbia Jr. College, [Columbia, California.
ERIC Educational Resources Information Center
Columbia Junior Coll., CA.
The purpose of this project was to develop a transitional instructional program to serve out-of-school and drop-out American Indian youth entering vocational education programs in forest technology, fire science, heavy equipment maintenance and health occupations. The project was designed to develop a 3-quarter transitional program concerned with…
The Evaluation of an Early Childhood Teacher Preparation Program: An Action Research Project
ERIC Educational Resources Information Center
Ragno, Kerry Sullivan
2013-01-01
The purpose of this dissertation was to evaluate the effectiveness of an Early Childhood Development Associate of Applied Science (AAS) degree program at one community college as part of an ongoing action research project. Prior to this dissertation study, external and internal barriers prevented the associate degree program stakeholders from…
Excursions in technology policy
NASA Technical Reports Server (NTRS)
Archibald, Robert B.
1995-01-01
This technical report presents a summary of three distinct projects: (1) Measuring economic benefits; (2) Evaluating the SBIR program; and (3) A model for evaluating changes in support for science and technology. the first project deals with the Technology Applications Group (TAG) at NASA Langley Research Center. The mission of TAG is to assist firms interested in commercializing technologies. TAG is a relatively new group as is the emphasis on technology commercialization for NASA. One problem faced by TAG and similar groups at other centers is measuring their effectiveness. The first project this summer, a paper entitled, 'Measuring the Economic Benefits of Technology Transfer from a National Laboratory: A Primer,' focused on this measurement problem. We found that the existing studies of the impact of technology transfer on the economy were conceptually flawed. The 'primer' outlines the appropriate theoretical framework for measuring the economic benefits of technology transfer. The second project discusses, one of the programs of TAG, the Small Business Innovation Research (SBIR) program. This program has led to over 400 contracts with Small Business since its inception in 1985. The program has never been evaluated. Crucial questions such as those about the extent of commercial successes from the contracts need to be answered. This summer we designed and implemented a performance evaluation survey instrument. The analysis of the data will take place in the fall. The discussion of the third project focuses on a model for evaluating changes in support for science and technology. At present several powerful forces are combining to change the environment for science and technology policy. The end of the cold war eliminated the rationale for federal support for many projects. The new- found Congressional conviction to balance the budget without tax increases combined with demographic changes which automatically increase spending for some politically popular programs will make it difficult to find funding for science and technology. Also, the two political parties have very different conceptions of the appropriate future for research and development spending. All these changes create the potential for serious, perhaps unintended, consequences for the economic future of the country. In a paper entitled, 'A Conceptual Framework for Evaluating the Impact of Changes in Federal Support for Science and Technology,' we introduce a model to evaluate the effects of changes in federal spending for science and technology. This paper both provides a way of organizing informed discussions and points out important research topics for science and technology policy.
NASA Astrophysics Data System (ADS)
Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.
2016-02-01
How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and education program.
NASA Astrophysics Data System (ADS)
Fudano, Hiroko
A project work in which learners of a foreign language engage in a task with the native speakers is one of the effective ways to bring in ample real communication opportunities to a classroom. This scheme also gives both parties meaningful experiences for intercultural understanding. This paper reports a “Pythagoras” machine production project in which international students were paired up with Japanese students as a part of a Japanese for science and technology course in a summer intensive program. Based on the participants‧ course evaluation data, the paper also discusses the effectiveness of the project for Japanese language learning and for promoting intercultural understanding.
Restoration Science in New York Harbor: It takes a (large, diverse and engaged) village
NASA Astrophysics Data System (ADS)
Newton, R.; Birney, L.; Janis, S.; Groome, M.; Palmer, M.; Bone, E.; O'Neil, J. M.; Hill, J.; Dennison, W.; Malinowski, P.; Kohne, L.; Molina, M.; Moore, G.; Woods, N.
2015-12-01
The Curriculum + Community Enterprise for Restoration Science (CCE-RS) facilitates partnerships between scientists and middle school educators on ecological restoration and environmental monitoring projects. The educational model is designed to wrap around the student, including classroom instruction, field science, after-school programs and engagement with the student's community. Its pillars include: a teacher training fellowship at Pace University, student curriculum, a digital platform, afterschool and summer mentoring, and community exhibits. The digital platform includes a tablet app tailored to the project's field protocols and linked to a database shared across schools and partnering institutions. Through the digital platform, data is integrated into a single citizen-science monitoring project, teachers share curriculum and best practices, and students link directly to their peers at other schools. Curriculum development has been collaborative between scientists, science education specialists, and secondary school teachers. The CCE-RS is rooted in project-based learning: the New York Harbor School has engaged high school students in environmental monitoring and oyster restoration in the Harbor for about the last decade. The science partners (U. of Maryland and Columbia) have been working with students and other citizen scientists in outdoor science over about the last decade. Local partners in outside-the-classroom education include the New York Academy of Sciences, The River Project, which will provide field education services, and Good Shepherd Services, which provides after-school programming in schools serving primarily poor families. Scientists on the project engage directly with teachers and informal educators in curriculum development and citizen-science outreach. We present the lessons learned from our first cohort of Fellows, the pedagogical model, and the digital platform, which is extensible to other ecological restoration settings.
ERIC Educational Resources Information Center
Appel, Gary; And Others
This guide for teaching science is Book Two in Project Life Lab's (Santa Cruz, California) three-part curriculum for a garden-based science and nutrition program for grades 2-6. The curriculum is designed for use as an integrated program, but the books can be used independently. It is suggested that the use of student journals can greatly enhance…
Life Sciences Program Tasks and Bibliography
NASA Technical Reports Server (NTRS)
1996-01-01
This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page
Status Report: Mathematics Curriculum-Development Projects Today
ERIC Educational Resources Information Center
Arithmetic Teacher, 1972
1972-01-01
Brief reports on the Cambridge Conference on School Mathematics, Comprehensive School Mathematics Program, Computer-Assisted Instruction Projects at Stanford, Individually Prescribed Instruction Project, The Madison Project, Mathematics/Science Learning System, MINNEMAST, and School Mathematics Study Group. (MM)
NASA Astrophysics Data System (ADS)
Haines-stiles, G.; Alley, R. B.; Akuginow, E.
2011-12-01
Recent public opinion surveys have found that Americans underestimate the degree of agreement by climate scientists about global warming and climate change, and - despite growing evidence of ice sheet loss, ocean acidification, sea level rise and extreme weather events - believe less in warming trends in 2011 than they did earlier. The issue has become politicized and controversial. "EARTH: The Operators' Manual" is an informal science education project supported by NSF, the National Science Foundation. Its ambitious goal is to use a hybrid mix of broadcast programs appearing on public television and hosted by Penn State geoscientist, Richard Alley, together with on-site outreach events and online resources and tools, to present core climate science in engaging ways, and to combine that presentation of objective research with an overview of sustainable energy solutions. The project's content and communication strategies have been shaped in response to analyses of public opinion such as the SIX AMERICAS study and aim to address common "skeptic" arguments and share essential climate science. Social science research has also found that audiences seem more open to scientific information where the possibility of a positive response is also offered. The first hour-long PBS program aired nationally in April 2011, has since been re-broadcast, and is also available online. Two more programs will air in 2012, and the presentation at the Fall AGU Conference will preview segments from both programs. Five regionally-diverse science centers (in San Diego, Raleigh NC, St. Paul MN, Fort Worth TX and Portland OR) have hosted outreach events, with Richard Alley and other project participants, and will continue with additional activities through summer 2012. The project's website includes video clips, case studies of energy-saving initiatives world-wide and across the USA, plus an interactive "Energy Gauge" inviting users to assess their current Home, Travel, Food, and Goods and Services usage, and commit to cutting back. The project is also experimenting with the use of social media to share information and gather feedback, and to promote local events. As an NSF-supported project, evaluation is a key element. Rockman Et Al has used focus groups to assess the video programs, and gathered data on website usage and the museum events. That input, with statistics and other findings to be reported at AGU 2011, has shaped the ongoing development of the project.
NASA Astrophysics Data System (ADS)
Sayers, J.
2003-12-01
Teachers and students at Northview High School in Brazil, Indiana have the opportunity to engage in authentic scientific research through our participation in two national projects, TLRBSE and PEPP. Teacher Leaders in Research Based Science Education (TLRBSE) is a teacher professional development and retention program coupled with authentic scientific research projects in astronomy. Teacher-Leaders are trained in research-based pedagogy and serve as mentors to less experienced colleagues and work with students to develop science research methods and research projects for the classroom. Astronomical data collected at Kitt Peak by astronomers and teachers is made available on CD for classroom use. Northview is in its second year as a TLRBSE school. The Princeton Earth Physics Project (PEPP) trains mentor teachers in fundamentals of research in seismology. Teachers and students then gain hands on experience in science research through operation of a research quality seismic station sited at the high school. Data from the Northview seismometer are stored locally and also transmitted over the Internet to a database at Indiana University. Students have access to local data as well as seismic databases accessible through the Internet to use for research projects. The Northview Seismic Station has been in operation since 1998. In this presentation, I will describe how these projects have been incorporated into the physics and earth science programs at Northview High School. I will discus how our teachers and students have benefited from the opportunity to take part in hands-on scientific research under the guidance of university faculty. In particular, I will describe our participation in a regional seismic network through seismic data acquisition, data analysis using seismological software, and students' experiences in a university-based student research symposium. I reflect on the some of the successes and barriers to high-school teachers' and students' involvement in scientific research programs. I conclude with a discussion of a successful student seismology project that was a finalist in the 2003 INTEL International Science and Engineering Fair
ERIC Educational Resources Information Center
Goldsmith, Francisca; Seblonka, Cathy Sullivan; Wagner, Joyce; Smith, Tammy; Sipos, Caryn; Bodart, Joni Richards
1998-01-01
Includes six articles that describe public library programs for teens. Highlights include interactive murder mysteries; a girl scout sleepover program on career awareness; sign language workshop; a Science Fair help day that included guest speakers; a unit on fairy tales and legends; and a project to enhance creativity and self-esteem. (LRW)
NASA Astrophysics Data System (ADS)
Sajid; Elseman, A. M.; Ji, Jun; Dou, Shangyi; Huang, Hao; Cui, Peng; Wei, Dong; Li, Meicheng
2018-01-01
Not Available Project supported by the National High-tech Research and Development Program of China (Grant No. 2015AA034601), the National Natural Science Foundation of China (Grant Nos. 51772096, 91333122, 51372082, 51402106, and 11504107), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20130036110012), the Par-Eu Scholars Program, Beijing Municipal Science and Technology Project, China (Grant No. Z161100002616039), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. 2016JQ01, 2015ZZD03, 2015ZD07, and 2017ZZD02).
Signal-to-noise ratio comparison of angular signal radiography and phase stepping method
NASA Astrophysics Data System (ADS)
Faiz, Wali; Zhu, Peiping; Hu, Renfang; Gao, Kun; Wu, Zhao; Bao, Yuan; Tian, Yangchao
2017-12-01
Not Available Project supported by the National Research and Development Project for Key Scientific Instruments (Grant No. CZBZDYZ20140002), the National Natural Science Foundation of China (Grant Nos. 11535015, 11305173, and 11375225), the project supported by Institute of High Energy Physics, Chinese Academy of Sciences (Grant No. Y4545320Y2), and the Fundamental Research Funds for the Central Universities (Grant No. WK2310000065). The author, Wali Faiz, acknowledges and wishes to thank the Chinese Academy of Sciences and The World Academy of Sciences (CAS-TWAS) President's Fellowship Program for generous financial support.
Project Solo; Newsletter Number Seven.
ERIC Educational Resources Information Center
Pittsburgh Univ., PA. Project Solo.
The current curriculum modules under development at Project Solo are listed. The modules are grouped under the subject matter that they are designed to teach--algebra II, biology, calculus, chemistry, computer science, 12th grade math, physics, social science. Special programs written for use on the Hewlett-Packard Plotter are listed that may be…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, J.
1993-12-01
The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. Ten students from throughout the midwestern and eastern areas of the country were accepted into the program. These students selected projects in the areas of marine sciences, biostatistics and epidemiology, and toxicology. The research experience for all these students and their mentors was very positive. The seminars were well attended and the students showed their interest in the presentations and environmentalmore » sciences as a whole by presenting the speakers with thoughtful and intuitive questions. This report contains the research project written presentations prepared by the student interns.« less
Automated Reasoning CICT Program/Intelligent Systems Project ATAC-PRT Review
NASA Technical Reports Server (NTRS)
Morris, Robert; Smith, Ben
2003-01-01
An overview is presented of the Automated Reasoning CICT Program/Intelligent Systems project. Automated reasoning technology will help NASA missions by increasing the amount of science achieved, ensuring safety of spacecraft and surface explorers, and by enabling more robust mission operations.
US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, J.; Fox, P.; Dawson, W. A.
This white paper summarizes the workshop “U.S. Cosmic Visions: New Ideas in Dark Matter” held at University of Maryland from March 23-25. The flagships of the US Dark Matter search program are the G2 experiments ADMX, LZ, and SuperCDMS, which will cover well-motivated axion and WIMP dark matter over a range of masses. The workshop assumes that a complete exploration of this parameter space remains the highest priority of the dark matter community, and focuses instead on the science case for additional new small-scale projects in dark matter science that complement the G2 program (and other ongoing projects worldwide). Itmore » therefore concentrates on exploring distinct, well-motivated parameter space that will not be covered by the existing program; on surveying ideas for such projects (i.e. projects costing ~$10M or less); and on placing these ideas in a global context. The workshop included over 100 presentations of new ideas, proposals and recent science and R&D results from the US and international scientific community.« less
Sohn, S Y; Gyu Joo, Yong; Kyu Han, Hong
2007-02-01
Financial support on the R&D in Science & Technology for SMEs at the governmental level plays a crucial role on the improvement of the national competitiveness. Korea Science & Engineering Foundation (KOSEF) has supported the R&D projects of SMEs with the competitive technology ability by way of the Science and Technology Promotion Fund. In this paper, we propose a structural equation model (SEM) to evaluate the performance of such a funding program in terms of three aspects: output, outcome and impact under given funding inputs, R&D environment of a recipient company, and external evaluation programs of funding organization. We adopt Malcolm Baldrige National Quality Award (MBNQA) criteria to assess the R&D environmental factors of recipient companies. In addition, we test the effect of interim evaluation of the funded project. The proposed model is applied to the real case and is used to identify the best practices as well as to provide feedback information for the improvement of the government funding programs of the R&D projects of SMEs.
ERIC Educational Resources Information Center
Çibik, Ayse Sert
2016-01-01
The aim of this study is to compare the change of pre-service science teachers' views about the nature of scientific knowledge through Project-Based History and Nature of Science training and Conventional Method. The sample of the study consists of two groups of 3rd grade undergraduate students attending teacher preparation program of science…
ERIC Educational Resources Information Center
Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca
2015-01-01
GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old…
ERIC Educational Resources Information Center
Dalbotten, Diana; Ito, Emi; Myrbo, Amy; Pellerin, Holly; Greensky, Lowana; Howes, Thomas; Wold, Andrew; Breckenridge, Rachel; Drake, Christa; Bucar, Leslie; Kowalczak, Courtney; Lindner, Cameron; Olson, Carolyn; Ray, T. J.; Rhodes, Richard; Woods, Philip; Yellowman, Tom
2014-01-01
The Manoomin ''wild rice'' Science Camp program, a partnership between the University of Minnesota, the Fond du Lac Tribal and Community College, and the Fond du Lac Band of Lake Superior Chippewa is an example of how a community-based participatory research project can become the catalyst for STEM learning for an entire community, providing…
ERIC Educational Resources Information Center
Adams, Patricia A., Ed.
This illustrated booklet provides a rationale and overview for the twenty-nine coordinated mathematics and science units in the MINNEMAST program for kindergarten through third grade. The rationale for the program cites both the historical association of mathematics and science and pedagogical advantages. The goals of the project are to provide…
ERIC Educational Resources Information Center
Hardre, Patricia L.; Slater, Janis; Nanny, Mark
2010-01-01
This paper examines the redesign of evaluation components for a teacher professional development project funded by the National Science Foundation. It focuses on aligning evaluation instrumentation and strategies with program goals, research goals and program evaluation best practices. The study identifies weaknesses in the original (year 1)…
2010 Annual Progress Report DOE Hydrogen Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.
Follow-Up with Students after 6 Years of Participation in Project Excite
ERIC Educational Resources Information Center
Lee, Seon-Young; Olszewski-Kubilius, Paula; Peternel, George
2009-01-01
Project EXCITE is a program for minority students that supplements the regular school offerings with an emphasis on enhancing students' interest and performance in math and science. This study examines the experience and perceptions of 14 student participants in the program and their parents. In student and parent interviews, Project EXCITE was…
Flower, Emily; Jones, Darryl; Bernede, Lilia
2016-07-14
The acceptance and application of citizen science has risen over the last 10 years, with this rise likely attributed to an increase in public awareness surrounding anthropogenic impacts affecting urban ecosystems. Citizen science projects have the potential to expand upon data collected by specialist researchers as they are able to gain access to previously unattainable information, consequently increasing the likelihood of an effective management program. The primary objective of this research was to develop guidelines for a successful regional-scale citizen science project following a critical analysis of 12 existing citizen science case studies. Secondly, the effectiveness of these guidelines was measured through the implementation of a citizen science project, Koala Quest, for the purpose of estimating the presence of koalas in a fragmented landscape. Consequently, this research aimed to determine whether citizen-collected data can augment traditional science research methods, by comparing and contrasting the abundance of koala sightings gathered by citizen scientists and professional researchers. Based upon the guidelines developed, Koala Quest methodologies were designed, the study conducted, and the efficacy of the project assessed. To combat the high variability of estimated koala populations due to differences in counting techniques, a national monitoring and evaluation program is required, in addition to a standardised method for conducting koala population estimates. Citizen science is a useful method for monitoring animals such as the koala, which are sparsely distributed throughout a vast geographical area, as the large numbers of volunteers recruited by a citizen science project are capable of monitoring a similarly broad spatial range.
NASA Astrophysics Data System (ADS)
Long, M. D.
2015-12-01
Research experiences for secondary school science teachers have been shown to improve their students' test scores, and there is a substantial body of literature about the effectiveness of RET (Research Experience for Teachers) or SWEPT (Scientific Work Experience Programs for Teachers) programs. RET programs enjoy substantial support, and several opportunities for science teachers to engage in research currently exist. However, there are barriers to teacher participation in research projects; for example, laboratory-based projects can be time consuming and require extensive training before a participant can meaningfully engage in scientific inquiry. Field-based projects can be an effective avenue for involving teachers in research; at its best, earth science field work is a fun, highly immersive experience that meaningfully contributes to scientific research projects, and can provide a payoff that is out of proportion to a relatively small time commitment. In particular, broadband seismology deployments provide an excellent opportunity to provide teachers with field-based research experience. Such deployments are labor-intensive and require large teams, with field tasks that vary from digging holes and pouring concrete to constructing and configuring electronics systems and leveling and orienting seismometers. A recently established pilot program, known as FEST (Field Experiences for Science Teachers) is experimenting with providing one week of summer field experience for high school earth science teachers in Connecticut. Here I report on results and challenges from the first year of the program, which is funded by the NSF-CAREER program and is being run in conjunction with a temporary deployment of 15 seismometers in Connecticut, known as SEISConn (Seismic Experiment for Imaging Structure beneath Connecticut). A small group of teachers participated in a week of field work in August 2015 to deploy seismometers in northern CT; this experience followed a visit of the PI to the classroom of one of the teacher participants during spring 2015 to give a series of talks on Connecticut earthquakes and geology. This presentation will focus on the challenges and opportunities of running small, PI-driven, field-based RET programs.
NASA Astrophysics Data System (ADS)
Qin, Haiyun; Zhao, Wei; Zhang, Chen; Liu, Yong; Wang, Guiren; Wang, Kaige
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11672229 and 61378083), International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01), Natural Science Basic Research Program of Shaanxi Province — Major Basic Research Project, China (Grant No. 2016ZDJC-15), Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11504294), and the Youth Talent Plan of the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JQ103).
Performance of thermoelectric generator with graphene nanofluid cooling
NASA Astrophysics Data System (ADS)
Xing, Jiao-jiao; Wu, Zi-hua; Xie, Hua-qing; Wang, Yuan-yuan; Li, Yi-huai; Mao, Jian-hui
2017-09-01
Not Available Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 51590902), the National Natural Science Foundation of China (Grant N. 51476095), and the Program for Professor of Special Appointment (Young Eastern Scholar, QD2015052) at Shanghai Institutions of Higher Learning, and the Natural Science Foundation of Shanghai (Grant No. 14ZR1417000).
Toroidal rotation induced by 4.6 GHz lower hybrid current drive on EAST tokamak
NASA Astrophysics Data System (ADS)
Yin, Xiang-Hui; Chen, Jun; Hu, Rui-Ji; Li, Ying-Ying; Wang, Fu-Di; Fu, Jia; Ding, Bo-Jiang; Wang, Mao; Liu, Fu-Kun; Zang, Qing; Shi, Yue-Jiang; Lyu, Bo; Wan, Bao-Nian; EAST Team
2017-10-01
Not Available Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2013GB112004 and 2015GB103002), the National Natural Science Foundation of China (Grant Nos. 11405212 and 11261140328), and the Major Program of Development Foundation of Hefei Center for Physical Science and Technology China (Grant No. 2016FXZY008).
NASA Astrophysics Data System (ADS)
Su, Huidan; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong
2017-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11604156 and 11474166), the Science and Technology Cooperation Projects of China and Romania (Grant No. 42-23), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
The Galileoscope project: community-based technology education in Arizona
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Fine, Leonard W.; Sparks, Robert T.; Walker, Constance E.; Dugan, Charles L.; Dokter, Erin F. C.
2014-07-01
A program model has been developed and implemented over the last three years to provide a robust optical technologybased science education program to students aged 9-11 years (5th grade), a formative time in the development of a student's interest in science and engineering. We have created well-tested and evaluated teaching kits for the classroom to teach about the basics of image formation and telescopes. In addition we provide professional development to the teachers of these students on principles of optics and on using the teaching kits. The program model is to reach every teacher and every student in a number of mid-sized rural communities across the state of Arizona. The Galileoscope telescope kit is a key part of this program to explore optics and the nature of science. The program grew out of Module 3 of the NSF-Supported Hands-On Optics project (SPIE, OSA, and NOAO) and from the Science Foundation Arizona-supported Hands-On Optics Arizona program. NOAO has conducted this program in Flagstaff, Yuma, Globe, and Safford, Arizona and is being expanded to sites across the entire state of Arizona (295,254 square kilometers). We describe the educational goals, evaluations, and logistical issues connected to the program. In particular, we proposed that this model can be adapted for any rural or urban locations in order to encourage interest in science, astronomy and optics.-
The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction
NASA Astrophysics Data System (ADS)
Reif, C.; Oechel, W.
2003-12-01
The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz, Mexico where there are SDSU climate research stations. San Diego and Alaska scientists travel to Barrow twice a year to participate in an intense, month-long science instruction partnership. PISCES collects a variety of data including student work, science attitude surveys, interviews with students and teachers, video, as well as science content knowledge. The students find themselves enjoying science and are deeply impacted by the presence of an actual scientist in their classroom. As PISCES enters its fifth year, it is evident that the combination of continuous support inside and outside of the classroom is successful in developing teacher engagement in science instruction.
NASA Astrophysics Data System (ADS)
Wang, Jun; Hu, Hai-Yang; He, Yun-Rui; Deng, Can; Wang, Qi; Duan, Xiao-Feng; Huang, Yong-Qing; Ren, Xiao-Min
2015-08-01
Not Available Supported by the Fund of State Key Laboratory of Information Photonics and Optical Communications of Beijing University of Posts and Telecommunications, the National Basic Research Program of China under Grant No 2010CB327601, the Natural Science Foundational Science and Technology Cooperation Projects under Grant No 2011RR000100, the 111 Project of China under Grant No B07005, and the Doctoral Program of Higher Specialized Research Fund under Grant No 20130005130001.
Data Citation & Acknowledgements
Atmospheric Science Data Center
2014-09-29
... under the NASA Applied Sciences Program within the Earth Science Division of the Science Mission Directorate. When POWER data products ... energy system design, system maintenance, project planning, policy making, etc.) or in a publication, we would appreciate receiving any ...
Varela, Sara; González-Hernández, Javier; Casabella, Eduardo; Barrientos, Rafael
2014-01-01
Citizen science projects store an enormous amount of information about species distribution, diversity and characteristics. Researchers are now beginning to make use of this rich collection of data. However, access to these databases is not always straightforward. Apart from the largest and international projects, citizen science repositories often lack specific Application Programming Interfaces (APIs) to connect them to the scientific environments. Thus, it is necessary to develop simple routines to allow researchers to take advantage of the information collected by smaller citizen science projects, for instance, programming specific packages to connect them to popular scientific environments (like R). Here, we present rAvis, an R-package to connect R-users with Proyecto AVIS (http://proyectoavis.com), a Spanish citizen science project with more than 82,000 bird observation records. We develop several functions to explore the database, to plot the geographic distribution of the species occurrences, and to generate personal queries to the database about species occurrences (number of individuals, distribution, etc.) and birdwatcher observations (number of species recorded by each collaborator, UTMs visited, etc.). This new R-package will allow scientists to access this database and to exploit the information generated by Spanish birdwatchers over the last 40 years.
Children and their 4-H animal projects: How children use science in agricultural activity
NASA Astrophysics Data System (ADS)
Emo, Kenneth Roy
Many children are introduced to science through informal educational programs. 4-H, an educational youth program, has a history of introducing scientific practices into agriculture. The purpose of this ethnographically-driven case study is to examine how science informs the actions of children raising market animals in a 4-H project. For two years the researcher collected data on 4-H children with market animal projects. Observations, interviews, and artifacts gathered are interpreted using the framework of activity theory. This study provides evidence for how the context of an activity system influences individual actions. Rules developed by the organization guide the actions of children to incorporate physical and psychological tools of science into their project to achieve the object: producing animals of proper weight and quality to be competitive in the county fair. Children learn the necessary actions from a community of practitioners through which expertise is distributed. Children's learning is demonstrated by the way their participation in their project changes with time, from receiving assistance from others to developing expertise in which they provide assistance to others. The strength of this educational experience is how children apply specific tools of science in ways that provide meaning and relevancy to their 4-H activity.
Varela, Sara; González-Hernández, Javier; Casabella, Eduardo; Barrientos, Rafael
2014-01-01
Citizen science projects store an enormous amount of information about species distribution, diversity and characteristics. Researchers are now beginning to make use of this rich collection of data. However, access to these databases is not always straightforward. Apart from the largest and international projects, citizen science repositories often lack specific Application Programming Interfaces (APIs) to connect them to the scientific environments. Thus, it is necessary to develop simple routines to allow researchers to take advantage of the information collected by smaller citizen science projects, for instance, programming specific packages to connect them to popular scientific environments (like R). Here, we present rAvis, an R-package to connect R-users with Proyecto AVIS (http://proyectoavis.com), a Spanish citizen science project with more than 82,000 bird observation records. We develop several functions to explore the database, to plot the geographic distribution of the species occurrences, and to generate personal queries to the database about species occurrences (number of individuals, distribution, etc.) and birdwatcher observations (number of species recorded by each collaborator, UTMs visited, etc.). This new R-package will allow scientists to access this database and to exploit the information generated by Spanish birdwatchers over the last 40 years. PMID:24626233
Analysis of reference transactions using packaged computer programs.
Calabretta, N; Ross, R
1984-01-01
Motivated by a continuing education class attended by the authors on the measurement of reference desk activities, the reference department at Scott Memorial Library initiated a project to gather data on reference desk transactions and to analyze the data by using packaged computer programs. The programs utilized for the project were SPSS (Statistical Package for the Social Sciences) and SAS (Statistical Analysis System). The planning, implementation and development of the project are described.
NASA Astrophysics Data System (ADS)
Remillard, C. M.; Madden, M.; Favors, J.; Childs-Gleason, L.; Ross, K. W.; Rogers, L.; Ruiz, M. L.
2016-06-01
The NASA DEVELOP National Program bridges the gap between NASA Earth Science and society by building capacity in both participants and partner organizations that collaborate to conduct projects. These rapid feasibility projects highlight the capabilities of satellite and aerial Earth observations. Immersion of decision and policy makers in these feasibility projects increases awareness of the capabilities of Earth observations and contributes to the tools and resources available to support enhanced decision making. This paper will present the DEVELOP model, best practices, and two case studies, the Colombia Ecological Forecasting project and the Miami-Dade County Ecological Forecasting project, that showcase the successful adoption of tools and methods for decision making. Through over 90 projects each year, DEVELOP is always striving for the innovative, practical, and beneficial use of NASA Earth science data.
The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education
NASA Astrophysics Data System (ADS)
Young, R. S.; Kinner, F.
2008-12-01
Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory, incorporating student, tribal educator, and OPI views while considering sound geological content to formatively contribute to program success.
Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the k · p Model
NASA Astrophysics Data System (ADS)
Wang, Chang; Pan, Wenwu; Kolokolov, Konstantin; Wang, Shumin
2018-05-01
Not Available Supported by the National Basic Research Program of China under Grant No 2014CB643902, the Key Program of Natural Science Foundation of China under Grant No 61334004, the National Natural Science Foundation of China under Grant No 61404152, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1, the Foundation of National Laboratory for Infrared Physics, the Key Research Program of the Chinese Academy of Sciences under Grant No KGZD-EW-804, and the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, M.J.; Jenkins, S.
Project JEM (Jarvis Enhancement of Males) is a pre-college program directed toward stimulating disadvantaged, talented African American males in grades four, five, and six to attend college and major in mathematics, science, computer science, or related technical areas needed by the US Department of Energy. Twenty young African American male students were recruited from Gladewater Independent School District (ISD), Longview ISD, Hawkins ISD, Tyler ISD, Winona ISD and big Sandy ISD. Students enrolled in the program range from ages 10 to 13 and are in grades four, five and six. Student participants in the 1997 Project JEM Program attended Saturdaymore » Academy sessions and a four week intensive, summer residential program. The information here provides a synopsis of the activities which were conducted through each program component.« less
An equivalent circuit model for terahertz quantum cascade lasers: Modeling and experiments
NASA Astrophysics Data System (ADS)
Yao, Chen; Xu, Tian-Hong; Wan, Wen-Jian; Zhu, Yong-Hao; Cao, Jun-Cheng
2015-09-01
Terahertz quantum cascade lasers (THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model. Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61404149), the Major National Development Project of Scientific Instrument and Equipment, China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the Major Project, China (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300).
Lessons Learned from Real-Time, Event-Based Internet Science Communications
NASA Technical Reports Server (NTRS)
Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.
NASA Astrophysics Data System (ADS)
Danch, J. M.
2015-12-01
In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.
Program for the Increased Participation of Minorities in NASA-Related Research
NASA Technical Reports Server (NTRS)
2003-01-01
The goal of this program is to increase the participation of minorities in NASA related research and "Science for the Nation s Interest". Collaborative research projects will be developed involving NASA-MSFC, National Space Science and Technology Center (NSSTC), other government agencies, industries and minority serving institutions (MSIs). The primary focus for the MSIs will be on Alabama A&M University and Tuskegee University, which are in partnership with the NSSTC. These schools have excellent Ph.D. programs in physics and materials science and engineering, respectively. The first phase of this program will be carried out at Alabama A&M University in the "Research and Development Office" in collaboration with Dr. Dorothy Huston, Vice President of Research and Development. The development assignment will be carried out at the NSSTC with Sandy Coleman/ RS01 and this will primarily involve working with Tuskegee University.A portion of the program will be devoted to identifying and contacting potential funding sources for use in establishing collaborative research projects between NASA-MSFC, other government agencies, NSSTC, industries, and MSIs. These potential funding sources include the National Science Foundation (NSF), National Institute of Health (NIH), Department of Defense (DOD), Army, Navy, and Air Force. Collaborative research projects will be written mostly in the following research areas: a. Cosmic radiation shielding materials b. Advanced propulsion material c. Biomedical materials and biosensors d. In situ resource utilization e. Photonics for NASA applications
A Community of Scientists and Educators: The Compass Project at UC Berkeley
NASA Astrophysics Data System (ADS)
Roth, Nathaniel; Schwab, Josiah
2016-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.
Project LASER: Learning about science, engineering, and research
NASA Technical Reports Server (NTRS)
1990-01-01
The number of American students entering science and engineering careers and their ranking in comparison with other countries is on the decline. This decline has alarmed Congress which, in 1987, established a Task Force on Women, Minorities, and the Handicapped in Science and Technology to define the problem and find solutions. If left unchanged, the task force has warned that the prospects for maintaining an advanced industrial society will diminish. NASA is supportive of the six goals outlined by the task force, which are paraphrase herein, and is carefully assessing its education programs to identify those offering the greatest potential for achieving the task force objectives with a reasonable range of resources. A major initiative is under way on behalf of NASA at its Marshall Space Flight Center, where highly effective features of several NASA education programs along with innovations are being integrated into a comprehensive pilot program. This program, dubbed Project LASER, is discussed.
Big Science and the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Giudice, Gian Francesco
2012-03-01
The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.
REGIONAL RESEARCH, METHODS, AND SUPPORT
The Human Exposure and Atmospheric Sciences Division (HEASD) has several collaborations with regional partners through the Regional Science Program (RSP) managed by ORD's Office of Science Policy (OSP). These projects resulted from common interests outlined in the Regional Appli...
High mobility ultrathin ZnO p–n homojunction modulated by Zn0.85Mg0.15O quantum barriers
NASA Astrophysics Data System (ADS)
Yang, Jing-Jing; Fang, Qing-Qing; Du, Wen-Han; Zhang, Ke-Ke; Dong, Da-Shun
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61540071 and 11705016), Project of Natural Science Research of Higher Education in Jiangsu Province, China (Grant Nos. 17KJB510001 and 17KJB140002), Changzhou Sci&Tech Program, China (Grant No. CJ20160026), and Changzhou Institute of Technology Science Foundation, China (Grant No. YN1408).
Optimize the thermoelectric performance of CdO ceramics by doping Zn
NASA Astrophysics Data System (ADS)
Zha, Xin-Yu; Gao, Lin-Jie; Bai, Hong-Chang; Wang, Jiang-Long; Wang, Shu-Fang
2017-09-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 51372064), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014201176 and E2017201209), the Outstanding Doctoral Cultivation Project of Hebei University (Grant No. YB201502), and the Hebei Province Universities Science and Technology Program funded by the Hebei Provincial Education Department, China (Grant Nos. ZD2014018 and QN2017017).
Abstracts and research accomplishments of university coal research projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-06-01
The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.
NASA Astrophysics Data System (ADS)
Bearlin, Margaret
1990-01-01
Female teachers predominate in primary schools, and tend both to have more negative perceptions of their teaching skills in the physical sciences than males, and to expect girls to perform less well in these areas than boys, with likely serious consequences for girls. In this context the WASTE (Women and Science Teacher Education) Project sought to identify characteristics for teacher education programs which, in the opinion of their conveners, were productive in changing the attitude toward the teaching of science, or in changing the actual mode of teaching science, of women preservice and practising teachers. This paper reports the findings of the WASTE Project which surveyed the conveners of pre- and inservice programs and outlined the three models of exemplary practice used to classify responses: subject-centred, learner-centred and knowledge and person-centred. These models were based largely on differing explanations given for attitude change and on implicit concepts of knowledge, persons, and teaching and learning, and on the importance attributed to gender as a variable. Secondly, it shows how the Primary and Early Childhood Science and Technology Education Project, a gender-sensitive action-research project, was built on these findings. Finally, using these models, it offers a critique of the gender perspective of the Discipline Review of Teacher Education (DEET, 1989).
Professional choices and teacher identities in the Science Teacher Education Program at EACH/USP
NASA Astrophysics Data System (ADS)
Dominguez, Celi Rodrigues Chaves; Viviani, Luciana Maria; Cazetta, Valéria; Guridi, Verónica Marcela; Faht, Elen Cristina; Pioker, Fabiana Curtopassi; Cubero, Josely
2015-12-01
In this article, we present results from a research project in which the main aim was to understand students' decision-making processes in choosing to become a teacher and to make sense of the relationships between this process and the formation of their identity as a teacher. The study was conducted with 39 students from the Science Teacher Education Program (LCN) at the São Paulo University (USP) School of Arts, Sciences, and Humanities (EACH) in Brazil while the students engaged in a supervised practical internship. The data used in this study was collected from narratives written by the students in which they provided their reasons for selecting the LCN program and for choosing a teaching career. The analysis showed several elements contributing to their decision making and the formation of their identities as teachers, including the nature of the undergraduate program, representational models of teaching/teachers, the possibility of being an agent for social transformation, and an affinity toward natural sciences and/or education. Findings from this research offer implications for improvement of the LCN program and suggestions for designing teacher education programs to include actions for improving the teaching career as a life project for new students.
Evaluating the High School Lunar Research Projects Program
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.
2012-12-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science instrument is an open-ended, modified version of the Views of Nature of Science questionnaire. The science attitudes Likert-scale instrument is a modified version of the Attitudes Toward Science Inventory. The lunar science content instrument was developed by CLSE education staff. All three of these instruments are administered to students before and after their research experience to measure the program's impact on student views of the nature of science, attitudes toward science, and knowledge of lunar science. All instruments are administered online via Survey Monkey®. When asked if the program changed the way they view the Moon, 77.4% of students (n=53) replied "yes" and described their increase in knowledge of the formation of the Moon, lunar surface processes, etc. Just under half (41.5%) of the students reported that their experience in the program has contributed to their consideration of a career in science. When asked about obstacles teams had to overcome, teachers described issues with time, student motivation and technology. However, every teacher enthusiastically agreed that the authentic research experience was worthwhile to their students. Detailed evaluation results for the 2011-2012 program will be presented.
LabNet: Toward A Community of Practice. Technology in Education Series.
ERIC Educational Resources Information Center
Ruopp, Richard, Ed.; And Others
Many educators advocate the use of projects in the science classroom. This document describes an effort (LabNet) that has successfully implemented a program that allows students to learn science using projects. Chapter 1, "An Introduction to LabNet" (Richard Ruopp, Megham Pfister), provides an initial framework for understanding the…
Derivation of persistent time for anisotropic migration of cells
NASA Astrophysics Data System (ADS)
Liu, Yan-Ping; Zhang, Xiao-Cui; Wu, Yu-Ling; Liu, Wen; Li, Xiang; Liu, Ru-Chuan; Liu, Li-Yu; Shuai, Jian-Wei
2017-12-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 31370830, 11675134, 11474345, and 11604030), the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the 111 Project, China (Grant No. B16029), and the China Postdoctoral Science Foundation (Grant No. 2016M602071).
NASA Astrophysics Data System (ADS)
Qin, Jing-Yu; Geng, Yi-Zhao; Lü, Gang; Ji, Qing; Fang, Hai-Ping
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11605038) and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5KF211CJ1).
Electronic Learning in the German Science Project "NAWI-Interaktiv"
ERIC Educational Resources Information Center
Wegner, Claas; Homann, Wiebke; Strehlke, Friederike
2014-01-01
The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…
NASA Astrophysics Data System (ADS)
Zhu, Bin; Cheng, Lingpeng; Liu, Hongrong
2018-05-01
Not Available Project supported by the National Key R&D Program of China (Grant No. 2016YFA0501100), the National Natural Science Foundation of China (Grant Nos. 91530321, 31570742, and 31570727), and Science and Technology Planning Project of Hunan Province, China (Grant No. 2017RS3033).
Project ASTRO: How-To Manual for Teachers and Astronomers.
ERIC Educational Resources Information Center
Richter, Jessica; Fraknoi, Andrew
Project ASTRO is an innovative program to support science education by linking teachers and students in grades 4-9 with amateur and professional astronomers with the overall goal being to increase students' interest in astronomy and science in general. This manual was designed for teachers, amateur and professional astronomers, youth group…
Diversifying the STEM Pipeline: Recommendations from the Model Replication Institutions Program
ERIC Educational Resources Information Center
Institute for Higher Education Policy, 2010
2010-01-01
Launched in 2006 to address issues of national competitiveness and equity in science, technology, engineering, and mathematics (STEM) fields, the National Science Foundation-funded Model Replication Institutions (MRI) program sought to improve the quality, availability, and diversity of STEM education. The project offered technical assistance to…
Simulation and Collaborative Learning in Political Science and Sociology Classrooms.
ERIC Educational Resources Information Center
Peters, Sandra; Saxon, Deborah
The program described here used cooperative, content-based computer writing projects to teach Japanese students at an intermediate level of English proficiency enrolled in first-year, English-language courses in political science/environmental issues and sociology/environmental issues in an international college program. The approach was taken to…
ERIC Educational Resources Information Center
Burk, Sandy
2006-01-01
Science trade books can spark real-life involvement in saving a threatened fish. A successful science program at the Westbrook Elementary School, in Bethesda, Maryland, does just that. The program--in which students participate in watershed restoration projects as part of a yearlong study of the local Chesapeake Bay and the Potomac River…
NASA Astrophysics Data System (ADS)
Mayer, A. S.; Vye, E.
2016-12-01
The Michigan Tech GlobalWatershed GK-12 Fellowship program bridges the gap between K-12 learning institutions and the scientific community with a focus on watershed research. Michigan Tech graduate students (fellows) work in tandem with teachers on the development of relevant hands-on, inquiry based lesson plans and activities based on their doctoral research projects in watershed science. By connecting students and teachers to state of the art academic research in watershed science, teachers are afforded a meaningful way in which to embed scientific research as a component of K-12 curricula, while mentoring fellows on the most pertinent and essential topics for lesson plan development. Fellows fulfill their vital responsibility of communicating their academic research to a broader public while fostering improved teaching and communication skills. A goal of the project is to increase science literacy among students so they may understand, communicate and participate in decisions made at local, regional, and global levels. The project largely works with schools located in Michigan's western Upper Peninsula but also partners with K-12 systems in Sonora, Mexico. While focusing on local and regional issues, the international element of the project helps expand student, teacher, and fellow worldviews and global awareness of watershed issues and creates meaningful partnerships. Lesson plans are available online and teacher workshops are held regularly to disseminate the wealth of information and resources available to the broader public. Evaluation results indicate that fellows' skill and confidence in their ability to communicate science increased as a results of their participation of the program, as well as their desire to communicate science in their future careers. Teachers' confidence in their capacity to present watershed science to their students increased, along with their understanding of how scientific research contributes to understanding of water-related issues. The GlobalWatershed GK-12 Fellowship program serves as a model for broadening scientific impacts among a wider public through shared communication and partnership.
NASA Astrophysics Data System (ADS)
Sloan, H.; Miele, E.; Powell, W.; MacDonald, M.
2004-12-01
The American Museum of Natural History (AMNH) in partnership with Lehman and Brooklyn Colleges of the City University of New York (CUNY) has initiated The Teacher Renewal for Urban Science Teaching (TRUST) project. TRUST combines informal and formal teacher education in a four-year initiative to enhance professional development and masters of science education programs, grades K-8 at Brooklyn College and 7-12 at Lehman College. This NSF-funded partnership brings together the resources of AMNH, CUNY, New York City school districts, New York City Department of Education-Museum Partnerships, and the expertise of scientists and teachers with research experiences. Following an initial planning year, TRUST will recruit and sustain 90 teachers over a period of 3 years as well as engage 30 school administrators in support of Earth science instruction. Program components include two new formal Earth systems science courses, intensive informal summer institutes, and a lecture and workshop series during which participants gain new Earth science content knowledge, develop action plans, and present their work on the local and national level. In addition, participants have access to ongoing resource and material support to enhance their learning and instruction. Continuous documentation and data collection by project investigators are being used to address questions regarding the impact various aspects of the TRUST participant experience on classroom instruction and learning, the acquisition of scientific knowledge in the new courses and institutes, and to examine the nature of the Museum experience in meeting certification goals. External formative and summative evaluation of the project is addressing issues surrounding the value of the program as a model for formal-informal partnership in urban Earth science teacher education and certification, analysis of policies that facilitate partnership arrangements, and how socialization of novices with experts affects retention and renewal. Details of the program's structure and preliminary results from the first two years will be presented.
NASA Astrophysics Data System (ADS)
Scogin, Stephen C.
2016-06-01
PlantingScience is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific factors contributing to the program's effectiveness in engaging students. Using multiple data sources, grounded theory (Strauss and Corbin in Basics of qualitative research. Sage, Newbury Park, 1990) was used to develop a conceptual model identifying the central phenomenon, causal conditions, intervening conditions, strategies, contexts, and student outcomes of the project. Student motivation was determined to be the central phenomenon explaining the success of the program, with student empowerment, online mentor interaction, and authenticity of the scientific experiences serving as causal conditions. Teachers contributed to student motivation by giving students more freedom, challenging students to take projects deeper, encouraging, and scaffolding. Scientists contributed to student motivation by providing explanations, asking questions, encouraging, and offering themselves as partners in the inquiry process. Several positive student outcomes of the program were uncovered and included increased positivity, greater willingness to take projects deeper, better understanding of scientific concepts, and greater commitments to collaboration. The findings of this study provide relevant information on how to develop curriculum, use technology, and train practitioners and mentors to utilize strategies and actions that improve learners' motivation to engage in authentic science in the classroom.
Elementary and middle school science improvement project
NASA Technical Reports Server (NTRS)
Mcguire, Saundra Y.
1989-01-01
The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.
First Steps Toward Exploring NITARP's Impacts on Teachers' Knowledge, Attitudes, and Teaching
NASA Astrophysics Data System (ADS)
French, Debbie; Slater, T. F.; Burrows, A. C.
2013-06-01
Few high school science teachers have had opportunities to engage in authentic scientific research. As a result, many may find it difficult to communicate to their students how science is done. Moreover, without relevant experience, teachers have few pathways to be able to successfully implement scientific research and inquiry into the classroom. In response, astronomers created the NASA-IPAC Teacher Archive Research Program - NITARP, originally funded by NASA as part of the Spitzer Space Telescope Public Engagement Program, and more recently as an NSF-sponsored Research Experience for Teachers program (NSF 0742222). This project partners teachers and their students with a mentor scientist to work on a unique research project using Spitzer Space Telescope data. The year-long project culminates by having teachers and students present their scientific methods and findings at a professional conference, such as the American Astronomical Society. To determine how teachers’ attitudes toward science and scientific inquiry changed after participating in NITARP, five NITARP alumni teachers completed open-ended survey and interview questions describing how their experience changed how they thought about astronomy and what happened in their classroom as a direct result of their NITARP experiences. Teachers reported increasing their astronomy content knowledge, implementing new skills and computer programs into their curriculum, incorporating the use of real data, and are implementing, or are planning to implement research in their classrooms. Teachers also stated they feel more comfortable speaking the language of science and communicating with scientists. They also felt more confident in teaching how science is done. The results of this exploratory study showing positive impacts motivate us to more deeply study the underlying mechanisms in this and similar programs best poised to improve science education.
NASA Astrophysics Data System (ADS)
Peterman, Karen; Kermish-Allen, Ruth; Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra
2016-12-01
This article describes Energy for ME and Going Green! Middle Schoolers Out to Save the World, two Science, Technology, Engineering, and Mathematics (STEM) education programs with the common goal of improving students' attitudes about scientific careers. The authors represent two project teams, each with funding from the National Science Foundation's ITEST program. Using different approaches and technology, both projects challenged students to use electricity monitoring system data to create action plans for conserving energy in their homes and communities. The impact of each project on students' career interests was assessed via a multi-method evaluation that included the Career Interest Questionnaire (CIQ), a measure that was validated within the context of ITEST projects and has since become one of the instruments used most commonly across the ITEST community. This article explores the extent to which the CIQ can be used to document the effects of technology-enhanced STEM educational experiences on students' career attitudes and intentions in different environments. The results indicate that the CIQ, and the Intent subscale in particular, served as significant predictors of students' self-reported STEM career aspirations across project context. Results from each project also demonstrated content gains by students and demonstrated the impact of project participation and gender on student outcomes. The authors conclude that the CIQ is a useful tool for providing empirical evidence to document the impact of technology-enhanced science education programs, particularly with regard to Intent to purse a STEM career. The need for additional cross-project comparison studies is also discussed.
NASA Astrophysics Data System (ADS)
Obarski, Kelly Josephine
Each year, hundreds of graduate and undergraduate students, participate as Fellows in National Science Foundation GK-12 Grants throughout the U.S. These Fellowships create opportunities for university students to improve their communication skills, teaching proficiencies, and team-building skills, in addition to expanding their interest in educational endeavors in their respective communities while pursuing their college degrees. STEP (Science and Technology Enhancement Project) is one such project. University faculty, public school teachers, and community leaders collaborated together in order to bring scientists into middle and secondary classrooms to focus on increasing student interest and proficiency in science, technology, engineering, and mathematics (STEM) skills. Seventeen Fellows, in the previous four years, designed, developed, and implemented innovative, hands-on lessons in seven local schools. The evaluation team collected a tremendous amount of research evidence focused on the effect of the program on the Fellows while they were participants in the study, but there has been very little data collected about the Fellows after leaving the program. This research study, consisting of two-hour interviews, qualitatively explores how the skills learned while participating in the STEP program affected the Fellows' career and educational choices once leaving the project. This data was analyzed along with historical attitude surveys and yearly tracking documents to determine the effect that participation in the program had on their choices post-STEP. An extensive literature review has been conducted focusing on other GK-12 programs throughout the country, K-16 collaboration, Preparing Future Faculty Programs, as well as on teaching and learning literature. These bodies of literature provide the theoretical basis in which the research is framed in order to assess the impact on Fellow educational and professional choices since leaving the STEP program. This research project sheds new light on how participation in a GK-12 Fellowship impacts career and educational choices after the Fellow leaves the program.
MeerKAT Science: On the Pathway to the SKA
NASA Astrophysics Data System (ADS)
MeerKAT Science: On the Pathway to the SKA. MeerKAT is a next generation radio telescope under construction on the African SKA central site in the Karoo plateau of South Africa. When completed in 2017 MeerKAT will be a 64-element array of 13.5-m parabolic antennas distributed over an area with a diameter of 8 km. With a combination of wide bandwidth and field of view, with the large number of antennas and total collecting area, MeerKAT will be one of the world’s most powerful imaging telescopes operating at GHz frequencies. MeerKAT is a science and technology precursor of the SKA mid-frequency dish array, and following several years of operation as a South African telescope will be incorporated into the SKA phase-one facility. The MeerKAT science program will consist of a combination of key science, legacy-style, large survey projects, and smaller projects based on proposals for open time. This workshop, which took place in Stellenbosch in the Western Cape, was held to discuss and plan the broad range of scientific investigations that will be undertaken during the pre-SKA phase of MeerKAT. Topics covered included: technical development and roll out of the MeerKAT science capabilities, details of the large survey projects presented by the project teams, science program concepts for open time, commensal programs such as the Search for Extraterrestrial Intelligence, and the impact of MeerKAT on global Very Long Baseline Interferometry. These proceedings serve as a record of the scientific vision of MeerKAT in the year before its completion, foreshadowing a new era of radio astronomy on the African continent.
NASA Astrophysics Data System (ADS)
Frederick, M. E.; Cox, E. L.; Friedl, L. A.
2006-12-01
NASA's Earth Science Theme is charged with implementing NASA Strategic Goal 3A to "study Earth from space to advance scientific understanding and meet societal needs." In the course of meeting this objective, NASA produces research results, such as scientific observatories, research models, advanced sensor and space system technology, data active archives and interoperability technology, high performance computing systems, and knowledge products. These research results have the potential to serve society beyond their intended purpose of answering pressing Earth system science questions. NASA's Applied Sciences Program systematically evaluates the potential of the portfolio of research results to serve society by conducting projects in partnership with regional/national scale operational partners with the statutory responsibility to inform decision makers. These projects address NASA's National Applications and the societal benefit areas under the IEOS and GEOSS. Prototyping methods are used in two ways in NASA's Applied Sciences Program. The first is part of the National Applications program element, referred to as Integrated Systems Solutions (ISS) projects. The approach for these projects is to use high fidelity prototypes to benchmark the assimilation of NASA research results into our partners' decision support systems. The outcome from ISS projects is a prototype system that has been rigorously tested with the partner to understand the scientific uncertainty and improved value of their modified system. In many cases, these completed prototypes are adopted or adapted for use by the operational partners. The second falls under the Crosscutting Solutions program element, referred to as Rapid Prototyping (RP) experiments. The approach for RP experiments is to use low fidelity prototypes that are low cost and quickly produced to evaluate the potential of the breadth of NASA research results to serve society. The outcome from the set of RP experiments is an evaluation of many and varied NASA research results for their potential to be candidates for further development as an ISS project. The intention is to seed the community with many creative ideas for projects that use "un-applied" NASA research results to serve society, such as simulations of future missions.
Briefing to University of Porto on NASA Airborne Science Program and Ames UAVs
NASA Technical Reports Server (NTRS)
Fladeland, Matthew
2015-01-01
NASA Ames is exploring a partnership with the University of Portugal to jointly develop and test new autonomous vehicle technologies. As part of the discussions I will be briefing the University of Portugal faculty on the NASA Airborne Science Program (ASP) and associated activities at NASA Ames Research Center. The presentation will communicate the requirements that drive the program, the assets available to NASA researchers, and discuss research projects that have used unmanned aircraft systems including MIZOPEX, Surprise Valley, and Florida Keys Coral Reef assessment. Other topics will include the SIERRA and Dragon Eye UAV projects operated at Ames.
ERIC Educational Resources Information Center
Windsor, Alistair; Bargagliotti, Anna; Best, Rachel; Franceschetti, Donald; Haddock, John; Ivey, Stephanie; Russomanno, David
2015-01-01
MemphiSTEP is a five-year STEM Talent Expansion Program (STEP) at the University of Memphis sponsored by the National Science Foundation. The project focuses on retention and persistence to graduation to increase the number of STEM majors and graduates. The project includes a range of student retention programs, including a Summer Mathematics…
Science and Technology for a Safer Nation
2008-03-01
facilities. “Harvesting Innovation” gathers detailed information about efforts supporting Laboratory-Directed Research and Development ( LDRD ...programs and shares this with DHS directors, division heads and program managers. Energy Department labs allocate some $400 million per year in LDRD ...correlate LDRD projects with DHS S&T strategic goals and ongoing programs as well as planned projects in all six S&T divisions. This minimizes
Does Like Seek Like?: The Formation of Working Groups in a Programming Project
ERIC Educational Resources Information Center
Sanou Gozalo, Eduard; Hernández-Fernández, Antoni; Arias, Marta; Ferrer-i-Cancho, Ramon
2017-01-01
In a course of the degree of computer science, the programming project has changed from individual to teamed work, tentatively in couples (pair programming). Students have full freedom to team up with minimum intervention from teachers. The analysis of the working groups made indicates that students do not tend to associate with students with a…
Teaching and sharing about the Sun in the United States and with Spanish language resources
NASA Astrophysics Data System (ADS)
Peticolas, L. M.; Craig, N.; Hawkins, I.; Walker, C.
2007-05-01
The United States has many different scientific agencies that fund research on solar science, including the National Aeronautics and Space Agency (NASA) and the National Science Foundation (NSF). Because there is a large population of Spanish-speaking people in the US, some of the resources developed by the education components of research projects take into account broader cultural perspectives on science and are developed in Spanish. We will describe the education and outreach programs of three solar programs funded by NASA and NSF, the Solar TErrestrial RElations Observatory (STEREO) program, the "We Are One Under the Sun" Program, and the National Optical Astronomy Observatory (NOAO) education program. The STEREO program aims to teach about the Sun through different venues including teacher workshops and courses, teacher materials, turning solar data from STEREO into sound, working with museums, and creating solar posters, CDs, DVDs, and lenticulars. The "We are One Under the Sun" program focuses on Native Americans and Hispanics of Native heritage. It works by merging culture, ancient observatories, and the latest NASA solar science to engage children, youth, and the general public in science and technology through solar traditions in their own indigenous culture. The NOAO Educational Outreach Program was established to make the science and scientists of NOAO more accessible to the K-12 and college-level communities. We will focus on the NOAO solar projects and Spanish-Language Astronomy Materials Educational Center program, which provides multiple types of Spanish- language materials for teachers. These programs have had different levels of outreach in Spanish-speaking countries, namely Mexico (STEREO and "We are One Under the Sun") and Chile (NOAO). We will describe these efforts and give links to the Spanish and English resources available to learn and teach about the Sun.
78 FR 51734 - National Institute of Environmental Health Sciences; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel Expedited Review of Biorepository Project. Date: September 12..., Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review...
The Digital Woodlouse--Scaffolding in Science-Related Scratch Projects
ERIC Educational Resources Information Center
Weigend, Michael
2014-01-01
Scientific issues like the behavior of wild and domesticated animals can serve as a motivation to learn programming concepts. Instead of following a systematic introduction, the students directly dive into programming and start immediately with their projects. In this constructionist approach the educational challenge for the teacher is to provide…
Send Your Students to Mars for Their next Research Project
ERIC Educational Resources Information Center
Lindgren, Charles
2006-01-01
The NASA's Mars Student Imaging Project (MSIP) is led by the Arizona State University (ASU) Mars Education Program, a major partner of NASA's Mars Exploration Program. MSIP is based on the National Science Education Standards and includes curriculum on terrestrial planet characteristics, experimental design, and proposal writing. Three spacecraft…
NASA Astrophysics Data System (ADS)
Tebbens, S. F.; Coble, P. G.; Greely, T.
Three educational outreach programs designed for middle school students (grades 6, 7, and 8) by faculty at the University of South Florida (USF) Department of Marine Science are turning kids onto science. The programs are bringing marine science research and its various technologies into the classroom, where students follow up with hands-on activities. Project Oceanography (PO) is an interactive broadcast that exposes students to the concepts and tools of current marine science research. The Oceanography Camp for Girls (OCG) boosts girls' curiosity and interest in science and nature. And teachers become better equipped to present current marine science topics and technology to their students at the Teachers Oceanography Workshop (TOW). All of the programs created by USF are provided at no cost to students or their institutions.
Fidelity of test development process within a national science grant
NASA Astrophysics Data System (ADS)
Brumfield, Teresa E.
In 2002, a math-science partnership (MSP) program was initiated by a national science grant. The purpose of the MSP program was to promote the development, implementation, and sustainability of promising partnerships among institutions of higher education, K-12 schools and school systems, as well as other important stakeholders. One of the funded projects included a teacher-scientist collaborative that instituted a professional development system to prepare teachers to use inquiry-based instructional modules. The MSP program mandated evaluations of its funded projects. One of the teacher-scientist collaborative project's outcomes specifically focused on teacher and student science content and process skills. In order to provide annual evidence of progress and to measure the impact of the project's efforts, and because no appropriate science tests were available to measure improvements in content knowledge of participating teachers and their students, the project contracted for the development of science tests. This dissertation focused on the process of test development within an evaluation and examined planned (i.e., expected) and actual (i.e., observed) test development, specifically concentrating on the factors that affected the actual test development process. Planned test development was defined as the process of creating tests according to the well-established test development procedures recommended by the AERA/APA/NCME 1999 Standards for Educational and Psychological Testing. Actual test development was defined as the process of creating tests as it actually took place. Because case study provides an in-depth, longitudinal examination of an event (i.e., case) in a naturalistic setting, it was selected as the appropriate methodology to examine the difference between planned and actual test development. The case (or unit of analysis) was the test development task, a task that was bounded by the context in which it occurred---and over which this researcher had no control---and by time. The purpose for studying the case was to gain a more in-depth, holistic understanding of the real-life test development task that took place within a project evaluation context. In particular, this case study investigated how the actual test development process was affected by: (1) the national and state (i.e., NC) science standards, (2) the NSF's definition of "evidence" in a project evaluation, (3) the MSP project's understanding of the role of the to-be-developed tests in their project evaluation, (4) the MSP project's understanding of the test development process, and (5) the MSP project's participants (e.g., teacher item-writers and scientists). From an investigation of this case, it was concluded that: (a) constructing psychometrically sound tests within an evaluation is not easy, (b) sufficient time and resources to construct such measures properly are seldom provided, and (c) test construction---at least within an evaluation---is not routine and unproblematic. Based upon the results from this case study, it was recommended that stakeholders (i.e., program managers, project directors, and evaluators) be familiar with the steps and standards used to develop psychometrically sound tests. Additionally, it was recommended that, for future research, a meta-analysis that examines only the test development process be conducted of all other MSP projects. A second suggested future research area was to establish a protocol that provides a systematic means by which to examine an existing or proposed MSP project for alignment with state science standards. Such a protocol would be cost-effective in that demonstrated alignment with state science standards would enable projects to use existing state science assessments, which must be in place, according to NCLB, by the 2007-2008 school year, to demonstrate student achievement. In this way, project directors and evaluators, typically with limited familiarity with the steps and standards by which psychometrically sound assessments are created, would not be placed in the role of test developer.
ERIC Educational Resources Information Center
Instructor, 1981
1981-01-01
Describes the winners of the Space Traveler Project, a contest jointly sponsored by Rockwell International, NASA, and this magazine to identify worthwhile elementary science programs relating to the Space Shuttle. (SJL)
NASA Technical Reports Server (NTRS)
Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.;
2016-01-01
NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".
NASA Opportunities in Visualization, Art, and Science (NOVAS)
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III
2014-12-01
Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.
Atmospheric Science Program. Summaries of research in FY 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded bymore » a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.« less
NASA Astrophysics Data System (ADS)
Herzfeld, U. C.; Mayer, H.
2009-12-01
In the course of research programs to develop a methodology for the study of microtopography of ice and snow surfaces, we placed a strong emphasis on the involvement of students. This project provided the opportunity to engage students in every step from building the instrument through development of the data processing, the actual field measurements, processing of the resultant data, their evaluation and interpretation to the final publication in scientific journals. The development of the Glacier Roughness Sensor (GRS) incorporating Global Positioning System (GPS) technology and the fieldwork on the Greenland Inland Ice were particularly fascinating and instructive for students. In a related snow-hydrological research project on Niwot Ridge in the Colorado Front Range, we involved students in two season-long measurement campaigns in a high alpine environment. Students from the Universität Trier, Germany, and the University of Colorado Boulder participated in this project to learn about the value of international collaboration in science. Funding was provided by Deutsche Forschungsgemeinschaft (Antarctic and Arctic Program) and the U.S. National Science Foundation (Hydrological Sciences Program). Students participated in preparatory classes and field camps, selected their own research projects and received university credit towards their degrees in geography or environmental sciences. All student participants in the MICROTOP projects have gone on to higher university education and become professionally exceptionally successful. Students setting up camp on the Greenland Ice Sheet during expedition MICROTOP 99.
Assessment of the CATTS Students Across Borders Program: Implications for other GK-12 Programs
NASA Astrophysics Data System (ADS)
Reynolds, A. C.; Regens, N. L.; Gray, F.; Hartstone, L. C.; Donovan, C.
2005-12-01
The Collaboration for the Advancement of Teaching Technology and Science (CATTS) is a Track 2 GK-12 program based at the University of Arizona which partners with local school districts to improve science, mathematics and technology teaching at all levels. The partnership provides students selected for the CATTS program a prestigious NSF Graduate Teaching Fellowship in K-12 Education to work with K-12 teachers as resource agents. The goals of the CATTS program are to establish sustainable partnerships with K-12 educators that integrate science, mathematics, engineering and technology research into classroom learning experiences, to create opportunities for graduate and undergraduate students to be active participants in K-12 education, and to foster effective teaching and a greater understanding of learning at all levels. One project within the CATTS program is the Students Across Borders (SAB) program. SAB, established in 2002, welcomes Hispanic and other minority high school students in their sophomore and junior years to the University of Arizona campus for a week-long, summer workshop in the natural sciences. The program is designed to nurture the Earth science interests of these students and to mentor them through the college application process. The vision of SAB is to empower students to change their fortunes by guiding them through borders that often separate them from success in higher education and careers in science. As a second component of the program, SAB sends graduate and undergraduate students (CATTS fellows) from the University into local high schools during the school year following the summer workshop to work directly with participating educators in the classroom environment. For three years, SAB has proven successful in both components of the program, as evidenced by the success of SAB alumni entering college and by the enthusiasm and continued involvement of educators in accepting fellows into their classrooms. Numerous lessons and student science fair projects have directly resulted from the CATTS/SAB presence in the classroom. However, maintaining links between goals of the summer workshop and the goals in the classroom continues to be a challenge. This poster examines the design and implementation of the SAB program, including fellows' transition from workshop to classroom, and attempts to identify areas where the linkages between the two components of the program can be strengthened. In addition, the strengths and weaknesses of the SAB program are assessed using follow-up interviews with participants and past Fellows and educators. These assessments strengthen the SAB project and the CATTS program, in general. These assessment findings have wide applicability to other educational GK-12 preparation workshops. This program is sponsored by the National Science Foundations 's Track 2 GK-12 program under grant DGE0228247.
Microgravity science and applications projects and payloads
NASA Technical Reports Server (NTRS)
Crouch, R. K.
1987-01-01
An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.
Learning from Action Research about Science Teacher Preparation
ERIC Educational Resources Information Center
Mitchener, Carole P.; Jackson, Wendy M.
2012-01-01
In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…
Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.
ERIC Educational Resources Information Center
Hovey, Larry Michael
Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…
Pathways to space: A mission to foster the next generation of scientists and engineers
NASA Astrophysics Data System (ADS)
Dougherty, Kerrie; Oliver, Carol; Fergusson, Jennifer
2014-06-01
The first education project funded under the Australian Government's Australian Space Research Program (ASRP), Pathways to Space was a unique project combining education, science communication research and research in astrobiology and robotics. It drew upon the challenges of space exploration to inspire students to consider study and careers in science and engineering. A multi-faceted program, Pathways to Space provided hands-on opportunities for high school and university students to participate in realistic simulations of a robotic Mars exploration mission for astrobiology. Its development was a collaboration between the Australian Centre for Astrobiology (University of New South Wales), the Australian Centre for Field Robotics (University of Sydney), the Powerhouse Museum and industry partner, Cisco. Focused on students in Years 9-10 (15-16 years of age), this program provided them with the opportunity to engage directly with space engineers and astrobiologists, while carrying out a simulated Mars mission using the digital learning facilities available at the Powerhouse Museum. As a part of their program, the students operated robotic mini-rovers in the Powerhouse Museum's “Mars Yard”, a highly accurate simulation of the Martian surface, where university students also carry out the development and testing of experimental Mars roving vehicles. This aspect of the program has brought real science and engineering research into the public space of the museum. As they undertook the education program, the students participated in a research study aimed at understanding the effectiveness of the project in achieving its key objective - encouraging students to consider space related courses and careers. This paper outlines the development and operation of the Pathways to Space project over its 3-year funding period, during which it met and exceeded all the requirements of its ASRP grant. It will look at the goals of the project, the rationale behind the education and science communications research, the challenges of developing such a multi-faceted education project in collaboration with several partners and the results that have already been achieved within the study.
NASA Technical Reports Server (NTRS)
Deering, D. W.
1985-01-01
The Scene Radiation and Atmospheric Effects Characterization (SRAEC) Project was established within the NASA Fundamental Remote Sensing Science Research Program to improve our understanding of the fundamental relationships of energy interactions between the sensor and the surface target, including the effect of the atmosphere. The current studies are generalized into the following five subject areas: optical scene modeling, Earth-space radiative transfer, electromagnetic properties of surface materials, microwave scene modeling, and scatterometry studies. This report has been prepared to provide a brief overview of the SRAEC Project history and objectives and to report on the scientific findings and project accomplishments made by the nineteen principal investigators since the project's initiation just over three years ago. This annual summary report derives from the most recent annual principal investigators meeting held January 29 to 31, 1985.
Performance analysis of LDPC codes on OOK terahertz wireless channels
NASA Astrophysics Data System (ADS)
Chun, Liu; Chang, Wang; Jun-Cheng, Cao
2016-02-01
Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).
NASA Astrophysics Data System (ADS)
Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.
2009-12-01
NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.
Space life sciences: Programs and projects
NASA Technical Reports Server (NTRS)
1989-01-01
NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.
NASA Astrophysics Data System (ADS)
Shah, Ishfaq Ahmad; Hassan, Najam ul; Rauf, Abdur; Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Xu, Feng
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), Jiangsu Natural Science Foundation for Distinguished Young Scholars, China (Grant No. BK20140035), China Postdoctoral Science Foundation (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833 and BK20160829), Qing Lan Project of Jiangsu Province, China, Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and NMG-NJUST Joint Scholarship Program for Ishfaq Ahmad Shah (Student ID: 914116020118).
Undergraduate-driven interventions to increase representation in science classrooms
NASA Astrophysics Data System (ADS)
Freilich, M.; Aluthge, D.; Bryant, R. M.; Knox, B.; McAdams, J.; Plummer, A.; Schlottman, N.; Stanley, Z.; Suglia, E.; Watson-Daniels, J.
2014-12-01
Recognizing that racial, ethnic, and gender underrepresentation in science classrooms persists despite intervention programs and institutional commitments to diversity, a group of undergraduates from a variety of backgrounds and academic disciplines came together for a group independent study to (a) study the theoretical foundations of the current practice of science and of programs meant to increase diversity, (b) utilize the experiences of course participants and our peers to better understand the drivers of underrepresentation, and (c) design and implement interventions at Brown University. We will present on individual and small group projects designed by course members in collaboration with faculty. The projects emerged from an exploration of literature in history, philosophy, and sociology of science, as well as an examination of anthropological and psychological studies. We also evaluated the effectiveness of top-down and bottom-up approaches that have already been attempted in developing our projects. They focus on the specific problems faced by underrepresented minorities, women, LGBTQ+ people, and well-represented minorities. We will share experiences of faculty-student collaboration and engaged scholarship focused on representation in science and discuss student-designed interventions.
Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)
NASA Technical Reports Server (NTRS)
Herring, Rodney; Tryggvason, Bjarni; Duval, Walter
1998-01-01
Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.
NASA Astrophysics Data System (ADS)
Dong-Wei, Jiang; Wei, Xiang; Feng-Yun, Guo; Hong-Yue, Hao; Xi, Han; Xiao-Chao, Li; Guo-Wei, Wang; Ying-Qiang, Xu; Qing-Jiang, Yu; Zhi-Chuan, Niu
2016-04-01
Not Available Supported by the National Basic Research Program of China under Grant Nos 2014CB643903, 2013CB932904, 2012CB932701 and 2011CB922201, the National Special Funds for the Development of Major Research Equipment and Instruments of China under Grant No 2012YQ140005, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01010200, the China Postdoctoral Science Foundation-funded Project under Grant No 2014M561029, the Program for New Century Excellent Talents in University under Grant No NCET-10-0066, the National High-Technology Research and Development Program of China under Grant No 2013AA031502, the Science and Technology Innovation Project of Harbin City under Grant No 2011RFLXG006, the National Natural Science Foundation of China under Grant Nos 61274013, U1037602, 61306013, 51202046, and 61290303, the China Postdoctoral Science Foundation under Grant Nos 2012M510144 and 2013T60366, and the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2013006 and HIT.BRETIII.201403.
NASA Astrophysics Data System (ADS)
Sloan, H.; Drantch, K.; Steenhuis, J.
2006-12-01
We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition to presenting these results, participating teachers from the 2004 and 2006 cohorts discuss their TRUST experiences and the subsequent impact the program has had on their respective Earth science teaching practices and professional lives.
A facile and efficient dry transfer technique for two-dimensional Van derWaals heterostructure
NASA Astrophysics Data System (ADS)
Xie, Li; Du, Luojun; Lu, Xiaobo; Yang, Rong; Shi, Dongxia; Zhang, Guangyu
2017-08-01
Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934500 and 2013CBA01602), the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, and 51572289), the Key Research Program of Frontier Sciences, CAS, (Grant No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program (B), CAS (Grant No. XDB07010100).
ERIC Educational Resources Information Center
Hope, Jennifer Michelle Gauble
2012-01-01
In a mixed-methods study of high school student participants in the National Science Foundation-funded Science Literacy through Science Journalism (SciJourn) project, the new Youth Engagement with Science & Technology (YEST) Survey and classroom case studies were used to determine program impact on participant engagement with science and…
K-4 Keepers Collection: A Service Learning Teacher Professional Development Program
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; Blaney, L.; Myers, R. J.
2011-12-01
This poster focuses on the K-4 Keepers Collection, a service-learning program developed for the Earth System Science Education Alliance (ESSEA). ESSEA is a NOAA-, NASA- and NSF-supported program of teacher professional development that increases teachers' pedagogical content knowledge of climate-related Earth system science. The ESSEA program -- whether used in formal higher education courses or frequented by individual teachers who look for classroom activities in the environmental sciences -- provides a full suite of activities, lessons and units for teachers' use. The ESSEA network consists of 45 universities and education centers addressing climate and environment issues. K-4 Keepers Collection - ESSEA K-4 module collections focus on five specific themes of content development: spheres, Polar Regions, oceans, climate and service learning. The K-4 Keepers collection provides the opportunity for teachers to explore topics and learning projects promoting stewardship of the Earth's land, water, air and living things. Examination of the impacts of usage and pollution on water, air, land and living things through service-learning projects allows students to become informed stewards. All of the modules include short-term sample projects that either educate or initiate action involving caring for the environment. The K-4 Keepers course requires teachers to develop similar short or long-term projects for implementation in their classrooms. Objectives include: 1. Increase elementary teachers' environmental literacy addressing ocean, coastal, Great Lakes, stewardship, weather and climate science standards and using NOAA and NASA resources. 2. Develop elementary teachers' efficacy in employing service learning projects focused on conserving and preserving Earth's land, air, water and living things. 3. Prepare college faculty to incorporate service learning and environmental literacy into their courses through professional development and modules on the ESSEA website.
NASA Astrophysics Data System (ADS)
Dabiru, L.; O'Hara, C. G.; Shaw, D.; Katragadda, S.; Anderson, D.; Kim, S.; Shrestha, B.; Aanstoos, J.; Frisbie, T.; Policelli, F.; Keblawi, N.
2006-12-01
The Research Project Knowledge Base (RPKB) is currently being designed and will be implemented in a manner that is fully compatible and interoperable with enterprise architecture tools developed to support NASA's Applied Sciences Program. Through user needs assessment, collaboration with Stennis Space Center, Goddard Space Flight Center, and NASA's DEVELOP Staff personnel insight to information needs for the RPKB were gathered from across NASA scientific communities of practice. To enable efficient, consistent, standard, structured, and managed data entry and research results compilation a prototype RPKB has been designed and fully integrated with the existing NASA Earth Science Systems Components database. The RPKB will compile research project and keyword information of relevance to the six major science focus areas, 12 national applications, and the Global Change Master Directory (GCMD). The RPKB will include information about projects awarded from NASA research solicitations, project investigator information, research publications, NASA data products employed, and model or decision support tools used or developed as well as new data product information. The RPKB will be developed in a multi-tier architecture that will include a SQL Server relational database backend, middleware, and front end client interfaces for data entry. The purpose of this project is to intelligently harvest the results of research sponsored by the NASA Applied Sciences Program and related research program results. We present various approaches for a wide spectrum of knowledge discovery of research results, publications, projects, etc. from the NASA Systems Components database and global information systems and show how this is implemented in SQL Server database. The application of knowledge discovery is useful for intelligent query answering and multiple-layered database construction. Using advanced EA tools such as the Earth Science Architecture Tool (ESAT), RPKB will enable NASA and partner agencies to efficiently identify the significant results for new experiment directions and principle investigators to formulate experiment directions for new proposals.
Research and technology of the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1988-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
ERIC Educational Resources Information Center
Lynch, Joanne
Cognitive Academic Language Learning Approach (Project CALLA) was a federally funded program serving 960 limited-English-proficient students in 10 Manhattan (New York) elementary schools in 1992-93 its third year of operation. The project provided instruction in English as a Second Language (ESL), mathematics, science, and social studies in…
7 CFR 3402.12 - Project summary.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Project summary. 3402.12 Section 3402.12 Agriculture... AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Preparation of an Application § 3402.12 Project summary. Using the Project Summary, Form NIFA-2003, applicants must summarize...
7 CFR 3402.12 - Project summary.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Project summary. 3402.12 Section 3402.12 Agriculture... AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Preparation of an Application § 3402.12 Project summary. Using the Project Summary, Form NIFA-2003, applicants must summarize...
7 CFR 3402.12 - Project summary.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Project summary. 3402.12 Section 3402.12 Agriculture... AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Preparation of an Application § 3402.12 Project summary. Using the Project Summary, Form NIFA-2003, applicants must summarize...
7 CFR 3402.12 - Project summary.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Project summary. 3402.12 Section 3402.12 Agriculture... AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Preparation of an Application § 3402.12 Project summary. Using the Project Summary, Form CSREES-2003, applicants must summarize...
NASA Astrophysics Data System (ADS)
Degnan, Frank
1993-12-01
The Comet Rendezvous Asteroid Flyby (CRAF)/Cassini program was first funded by the Congress in fiscal year 1990. Since then, it has encountered difficulties that resulted in the cancellation of CRAF, reduction of Cassini's original scientific capabilities, and extension of its launch date. At the request of the former Chairman of the Investigations and Oversight Subcommittee, House Committee on Science, Space, and Technology, GAO reviewed the program to identify the factors that led to the cancellation of the CRAF project and the prospects for continuation of the Cassini project.
Citizen Science Data and Scaling
NASA Astrophysics Data System (ADS)
Henderson, S.; Wasser, L. A.
2013-12-01
There is rapid growth in the collection of environmental data by non experts. So called ';citizen scientists' are collecting data on plant phenology, precipitation patterns, bird migration and winter feeding, mating calls of frogs in the spring, and numerous other topics and phenomena related to environmental science. This data is generally submitted to online programs (e.g Project BudBurst, COCORaHS, Project Feederwatch, Frogwatch USA, etc.)and is freely available to scientists, educators, land managers, and decisions makers. While the data is often used to address specific science questions, it also provides the opportunity to explore its utility in the context of ecosystem scaling. Citizen science data is being collected and submitted at an unprecedented rate and is of a spatial and temporal scale previously not possible. The amount of citizen science data vastly exceeds what scientists or land managers can collect on their own. As such, it provides opportunities to address scaling in the environmental sciences. This presentation will explore data from several citizen science programs in the context of scaling.
7 CFR 3402.24 - Evaluation of program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM... analyze both the institutional context and the impact of any supported project. ...
7 CFR 3402.24 - Evaluation of program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM... analyze both the institutional context and the impact of any supported project. ...
7 CFR 3402.24 - Evaluation of program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM... analyze both the institutional context and the impact of any supported project. ...
7 CFR 3402.24 - Evaluation of program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM... analyze both the institutional context and the impact of any supported project. ...
Science Education Newsletter, No. 51.
ERIC Educational Resources Information Center
British Council, London (England).
A variety of science and mathematics education activities are reported in two sections. These activities include: conferences (both past and future); innovative projects/programs and initiatives at the primary, secondary, and teacher-education levels; instructional materials development/use; instructional strategies; science education research;…
NASA Astrophysics Data System (ADS)
Coopersmith, A.; Cie, D. K.; Calder, S.; Naho`olewa, D.; Rai, B.
2014-12-01
The Advanced Technology Solar Telescope (ATST) Mitigation Initiative and the Kahikina O Ka Lā Program are NSF-funded projects at the University of Hawai`i Maui College. These projects offer instruction and activities intended to increase diversity in STEM careers. Ke Alahaka, the 2014 summer bridge program, was offered to Native Hawaiian high-school students who indicated an interest in STEM areas. Content workshops were offered in Marine Science, Physics, Biotechnology, and Computer Science and Engineering as well as a Hawaiian Studies course designed to provide a cultural context for the STEM instruction. Focus groups and other program assessments indicate that 50% of the students attending the workshops intend to pursue a STEM major during their undergraduate studies.
STEM Education Efforts in the Ares Projects
NASA Technical Reports Server (NTRS)
Doreswamy, Rajiv; Armstrong, Robert C.
2010-01-01
According to the National Science Foundation, of the more than 4 million first university degrees awarded in science and engineering in 2006, students in China earned about 21%, those in the European Union earned about 19%, and those in the United States earned about 11%. Statistics like these are of great interest to NASA's Ares Projects, which are responsible for building the rockets for the U.S. Constellation Program to send humans beyond low-Earth orbit. Science, technology, engineering, and mathematics students are essential for the long-term sustainability of any space program. Since the Projects creation, the Ares Outreach Team has used a variety of STEM-related media, methods, and materials to engage students, educators, and the general public in Constellation's mission. Like Project Apollo, the nation s exploration destinations and the vehicles used to get there can inspire students to learn more about STEM. Ares has been particularly active in public outreach to schools in Northern Alabama; on the Internet via outreach and grade-specific educational materials; and in more informal social media settings such as YouTube and Facebook. These combined efforts remain integral to America s space program, regardless of its future direction.
ERIC Educational Resources Information Center
Tseng, Kuo-Hung; Chang, Chi-Cheng; Lou, Shi-Jer; Chen, Wen-Ping
2013-01-01
Many scholars claimed the integration of science, technology, engineering and mathematics (STEM) education is beneficial to the national economy and teachers and institutes have been working to develop integrated education programs. This study examined a project-based learning (PjBL) activity that integrated STEM using survey and interview…
Tri-P-LETS: Changing the Face of High School Computer Science
ERIC Educational Resources Information Center
Sherrell, Linda; Malasri, Kriangsiri; Mills, David; Thomas, Allen; Greer, James
2012-01-01
From 2004-2007, the University of Memphis carried out the NSF-funded Tri-P-LETS (Three P Learning Environment for Teachers and Students) project to improve local high-school computer science curricula. The project reached a total of 58 classrooms in eleven high schools emphasizing problem solving skills, programming concepts as opposed to syntax,…
Teaching Science with Web-Based Inquiry Projects: An Exploratory Investigation
ERIC Educational Resources Information Center
Webb, Aubree M.; Knight, Stephanie L.; Wu, X. Ben; Schielack, Jane F.
2014-01-01
The purpose of this research is to explore a new computer-based interactive learning approach to assess the impact on student learning and attitudes toward science in a large university ecology classroom. A comparison was done with an established program to measure the relative impact of the new approach. The first inquiry project, BearCam, gives…
ERIC Educational Resources Information Center
Balajthy, Ernest
A study examined a new collaborative consultation process to enhance the classroom implementation of whole language science units that make use of computers and multimedia resources. The overall program was divided into three projects, two at the fifth-grade level and one at the third grade level. Each project was staffed by a team of one…
Quantum light storage in rare-earth-ion-doped solids
NASA Astrophysics Data System (ADS)
Hua, Yi-Lin; Zhou, Zong-Quan; Li, Chuan-Feng; Guo, Guang-Can
2018-02-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304100), the National Natural Science Foundation of China (Grant Nos. 61327901, 11774331, 11774335, 11504362, 11325419, and 11654002), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH003), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. WK2470000023 and WK2470000026).
An Assessment of Factors Relating to High School Students' Science Self-Efficacy
NASA Astrophysics Data System (ADS)
Gibson, Jakeisha Jamice
This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within the school curriculum and in OST programs. Nationwide, many OST programs are offered for students but few have engaged in an in-depth assessment. This study included an assessment of two different types of OST programs and direct observations by the researcher. This study involved two advisors (one male, one female), 111 students, and their parents during 2016. Student participants completed two standardized surveys, one to determine their Science Self-Efficacy and another to assess their engagement in science during their OST programs. Parents described their parental involvement and their child's interest in the OST program(s). The OST program advisors participated in lengthy interviews. Additionally, the advisors rated their perceived interest level of the enrolled students and recorded attendance data. Bandura's Social Cognitive Theory (1997a) provided the theoretical framework. This theory describes the multidirectional influence of behavioral factors, personal factors, and environmental factors have on a student's Self-Efficacy. Compiled data from the teachers, students, and parents were used to determine the relationship of selected variables on Science Self-Efficacy of students. A correlational analysis revealed that students who participated in these OST programs possessed a high Mindset for the Enjoyment of science and that teacher ratings were also positively correlated to Mindset and Enjoyment of Science. Descriptive analyses showed that (a) girls who chose to participate in these OST programs possessed higher school grades in their in-school coursework than boys, (b) that parents of girls participated in more parental activities, and (c) the teachers rated student's interest in the science OST programs as high. Student comments on the survey and the qualitative analysis by trained coders revealed that success of the program was related to the collaborative and hands-on activities/projects of their OST program. In addition, students felt more involved in projects during after-school and weekend activities than in OST lunch break programs.
ERIC Educational Resources Information Center
Kenny, John Daniel; Hobbs, Linda; Herbert, Sandra; Chittleborough, Gail; Campbell, Coral; Jones, Mellita; Gilbert, Andrew; Redman, Christine
2014-01-01
This paper reports on the STEPS project which addressed international concerns about primary teachers' lack of confidence to teach science, and on-going questions about the effectiveness of teacher education. The five universities involved had each independently established a science education program incorporating school-based partnerships…
Science/Technology/Society. Focus on Excellence, Volume 1, Number 5.
ERIC Educational Resources Information Center
Penick, John E., Ed.; Meinhard-Pellens, Richard, Ed.
This document describes 10 examples of innovative and outstanding science/technology/society (STS) programs. These programs were selected using state criteria and at least four independent reviewers. While Project Synthesis offered a desired state, these examples of excellence provided views of what is already a reality. The goals of an exemplary…
NPOI: recent technology and science
NASA Astrophysics Data System (ADS)
Benson, James A.; Hutter, Donald J.; Johnston, Kenneth J.; Zavala, Robert T.; White, Nathaniel M.; Pauls, Thomas A.; Gilbreath, G. C.; Armstrong, J. T.; Hindsley, Robert B.
2004-10-01
We describe recent science projects that the Navy Prototype Optical Interferometer (NPOI) scientific staff and collaborators are pursuing. Recent results from the wide angle astrometric program and imaging programs (rapid rotators, binaries and Be stars) will be summarized. We discuss some of the technology that enables the NPOI to operate routinely as an observatory astronomical instrument.
Animal Science Basic Core Curriculum. Kansas Postsecondary Farm and Ranch Management Project.
ERIC Educational Resources Information Center
Albracht, James, Ed.
Thirty-six units of instruction are included in this core curriculum in animal science for postsecondary farm and ranch management programs. Units of instruction are divided into seven instructional areas: (1) Livestock Types, (2) Livestock Programs, (3) Nutrition, (4) Animal Health, (5) Animal Breeding, (6) Animal Improvement, and (7) Livestock…
Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
NASA Astrophysics Data System (ADS)
Zhang, YK; Zhou, RJ; Hu, LQ; Chen, MW; Chao, Y.; EAST team
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11775263 and 11405219), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics, China (Grant No. 11261140328), and the National Magnetic Confnement Fusion Science Program of China (Grant No. 2015GB102004).
Collaboration at the Nanoscale: Exploring Viral Genetics with Electron Microscopy
ERIC Educational Resources Information Center
Duboise, S. Monroe; Moulton, Karen D.; Jamison, Jennifer L.
2009-01-01
The Maine Science Corps is a project sponsored by the National Science Foundation's (NSF) Graduate Teaching Fellows in K-12 Education (GK-12 ) program. Through this program, the University of Southern Maine's (USM) virology and transmission electron microscopy (TEM) research group provides high school teachers and students in rural areas with…
NASA Astrophysics Data System (ADS)
Ramirez-Andreotta, M.; Brusseau, M. L. L.; Artiola, J. F.; Maier, R. M.; Gandolfi, A. J.
2015-12-01
A research project that is only expert-driven may ignore the role of local knowledge in research, often gives low priority to the development of a comprehensive strategy to engage the community, and may not deliver the results of the study to the community in an effective way. To date, only a limited number of co-created citizen science projects, where community members are involved in most or all steps of the scientific process, have been initiated at contaminated sites and even less in conjunction with risk communication. Gardenroots: The Dewey-Humboldt AZ Garden Project was a place-based, co-created citizen science project where community members and researchers together: defined the question for study, developed hypotheses, collected environmental samples, disseminated results broadly, translated the results into action, and posed new research questions. This co-created environmental research project produced new data and addressed an additional exposure route (consumption of vegetables grown in soils with elevated arsenic levels) that was not being evaluated in the current site assessment. Furthermore, co-producing science led to both individual learning and social-ecological outcomes. This approach illustrates the benefits of a co-created citizen-science program in addressing the complex problems that arise in communities neighboring a hazardous waste sites. Such a project increased the community's involvement in regional environmental assessment and decision-making, which has the potential to help mitigate environmental exposures and thereby reduce associated risks.
The REVEL Project: Long-Term Investment in K-12 Education at a RIDGE 2000 Integrated Study Site
NASA Astrophysics Data System (ADS)
Robigou, V.
2005-12-01
The REVEL Project has provided dozens of science teachers from throughout the U.S. an opportunity to explore the links between mid-ocean ridge processes and life along the RIDGE 2000 Juan de Fuca Ridge Integrated Study Site. In turn, these educators have facilitated deep-sea, research-based teaching and learning in hundreds of classrooms, contributed to mid-ocean ridge curriculum and programs development ranging from IMAX movies and museum exhibits to the R2K-SEAS (Student Experiment At Sea) program. In addition, the REVEL educators take on the mission to champion the importance of science in education and to bring ocean sciences into their local and regional communities. For the scientific community, research in an environment as large, dynamic and remote as the ocean intrinsically requires long-term investment to advance the understanding of the interactions between the processes shaping our planet. Similarly, research-based education requires long-term investment to incrementally change the way science is taught in schools, informal settings or even at home. It takes even longer to perceptibly measure the result of new teaching methods on students' learning and the impact of these methods on citizens' scientific literacy. Research-based education involving teachers practicing research in the field, and collaborating with scientists to experience and understand the process of science is still in its infancy - despite 20 years of NSF's efforts in teachers' professional development. This poster reports on strategies that the REVEL Project has designed over 9 years to help teachers that adopt research-based education transform their way of teaching in the classroom and bring cutting-edge, exciting science into schools through rigorous science learning. Their teaching approaches encourage students' interest in science, and engage students in the life-long skills of reasoning and decision making through the practice of science. Evaluation results of how the research-based teacher development program REVEL contributes to changing the way teachers view the scientific process once they have 'done' science and how the program supports teachers to change their teaching methods will be presented. The REVEL Project is funded by the National Science Foundation and receives additional support from the University of Washington and private donors. REVEL - Research and Education: Volcanoes-Exploration-Life.
34 CFR 637.12 - What are institutional projects?
Code of Federal Regulations, 2010 CFR
2010-07-01
... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... minority women, for careers in science. (b) Activities that the Secretary may assist under an institutional...
Evaluating the High School Lunar Research Projects Program
NASA Technical Reports Server (NTRS)
Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.
2013-01-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.
NASA Opportunities in Visualization, Art, and Science (NOVAS)
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III
2015-12-01
Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reif, R.J.; Lock, C.R.
1998-11-01
This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers.more » In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.« less
MRCI+Q study of the low-lying electronic states of CdF including spin-orbit coupling
NASA Astrophysics Data System (ADS)
Zhao, Shu-Tao; Yan, Bing; Li, Rui; Wu, Shan; Wang, Qiu-Ling
2017-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11604052, 11404180, and 11574114 ), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2015010), the Natural Science Foundation of Anhui Province, China (Grant No. 1608085MA10), the International Science & Technology Cooperation Program of Anhui Province, China (Grant No. 1403062027), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. 2015095), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC).
NASA Astrophysics Data System (ADS)
Du, Li-Jun; Song, Hong-Fang; Chen, Shao-Long; Huang, Yao; Tong, Xin; Guan, Hua; Gao, Ke-Lin
2018-04-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304401), the National Natural Science Foundation of China (Grant Nos. 11622434, 11474318, 91336211, and 11634013), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), Hubei Province Science Fund for Distinguished Young Scholars (Grant No. 2017CFA040), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015274).
Earth Science Applications Showcase
2014-08-05
NASA Administrator Charles Bolden speaks with young professionals about their project during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)
Earth Science Applications Showcase
2014-08-05
Michael Gao presents his project on Southeast Asian disasters during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)
Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery
NASA Technical Reports Server (NTRS)
1993-01-01
A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.
NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow
NASA Technical Reports Server (NTRS)
Ianson, Eric E.
2016-01-01
NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.
NASA Astrophysics Data System (ADS)
Ezin, Jean-Pierre
2010-02-01
Physics, which is widely touted as the most fundamental of the sciences, underpins the progress in all other branches of science and has a wide range of applications in economic development, including in health, energy research, food security, communication technology and climate change. The African Union (AU) Commission articulates the continental vision of its Member States and its programs are designed to directly contribute to its social and economic development and integration efforts. In the area of science and technology the Department has developed Africa's Science and Technology Consolidated Plan of Action as a strategic policy document through the AU system of conference of ministers responsible for science to guide the continent on common priority programs. The programs in this plan of action that have been transformed into bankable projects under the Book of ``lighthouse projects Phase 1'', adequately respond to Africa's challenges and development needs using science. They can be summarized into three main themes: a pan-African university (PAU) initiative (to combine higher education and scientific research as a network of differentiated PAU in each of the five African regions), African research grants (to strengthen the research capacity of the African institutions and upgrading infrastructures, consolidating their accumulated asset of scientific knowledge), popularization of science and technology and promotion of public participation (to build public understanding and raising awareness on science and technology as a driving agent for social and economic progress for Africa and its integration process) and a science and technology institutional capacity building program). This talk will review these programs as well as the vision of the African Development Bank role in it. )
NASA Astrophysics Data System (ADS)
Devore, E.; Gillespie, C.; Hull, G.; Koch, D.
1993-05-01
Flight Opportunities for Science Teacher EnRichment (FOSTER) is a new educational program from the Imitative to Develop Education through Astronomy in the Astrophysics Division at NASA Headquarters. Now in its first year of the pilot program, the FOSTER project brings eleven Bay Area teaaaachers to NASA Ames to participate in a year-long program of workshops, educational programs at their schools and the opportunity to fly aboard the Kuiper Airborne Observatory (KAO) on research missions. As science and math educators, FOSTER teachers get a close-up look at science in action and have the opportunity to interact with the entire team of scientists, aviators and engineers that support the research abord the KAO. In June, a second group of FOSTER teachers will participate in a week-long workshop at ASes to prepare for flights during the 1993-94 school year. In addition, the FOSTER project trains teachers to use e-mail for ongoing communication with scientists and the KAO team, develops educational materials and supports opportunities for scientists to become directly involved in local schools. FOSTER is supported by a NASA grant (NAGW 3291).
Double Wronskian Solution and Soliton Properties of the Nonisospectral BKP Equation
NASA Astrophysics Data System (ADS)
Wang, Deng-Shan; Li, Xiang-Gui; Chan, C. K.; Zhou, Jian
2016-03-01
Based on the Wronskian technique and Lax pair, double Wronskian solution of the nonisospectral BKP equation is presented explicitly. The speed and dynamical influence of the one soliton are discussed. Soliton resonances of two soliton are shown by means of density distributions. Soliton properties are also investigated in the inhomogeneous media. Supported by the Research Committee of The Hong Kong Polytechnic University under Grant No. G-YM37, the AMSS-PolyU Joint Research Institute for Engineering and Management Mathematics under Grant No. 1-ZVA8, National Natural Science Foundation of China under Grant Nos. 11271362 and 11375030, Beijing Natural Science Fund Project and Beijing City Board of Education Science and Technology Key Project under Grant No. KZ201511232034, Beijing Natural Science Foundation under Grant No. 1153004, Beijing Nova Program No. Z131109000413029, and Beijing Finance Funds of Natural Science Program for Excellent Talents under Grant No. 2014000026833ZK19
Best Practices in NASA's Astrophysics Education and Public Outreach Projects
NASA Astrophysics Data System (ADS)
Hasan, H.; Smith, D.
2015-11-01
NASA's Astrophysics Education and Public Outreach (EPO) program has partnered scientists and educators since its inception almost twenty years ago, leading to authentic STEM experiences and products widely used by the education and outreach community. We present examples of best practices and representative projects. Keys to success include effective use of unique mission science/technology, attention to audience needs, coordination of effort, robust partnerships and publicly accessible repositories of EPO products. Projects are broadly targeted towards audiences in formal education, informal education, and community engagement. All NASA programs are evaluated for quality and impact. New technology is incorporated to engage young students being raised in the digital age. All projects focus on conveying the excitement of scientific discoveries from NASA's Astrophysics missions, advancing scientific literacy, and engaging students in science and technology careers.
The NGEE Arctic Data Archive -- Portal for Archiving and Distributing Data and Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boden, Thomas A; Palanisamy, Giri; Devarakonda, Ranjeet
2014-01-01
The Next-Generation Ecosystem Experiments (NGEE Arctic) project is committed to implementing a rigorous and high-quality data management program. The goal is to implement innovative and cost-effective guidelines and tools for collecting, archiving, and sharing data within the project, the larger scientific community, and the public. The NGEE Arctic web site is the framework for implementing these data management and data sharing tools. The open sharing of NGEE Arctic data among project researchers, the broader scientific community, and the public is critical to meeting the scientific goals and objectives of the NGEE Arctic project and critical to advancing the mission ofmore » the Department of Energy (DOE), Office of Science, Biological and Environmental (BER) Terrestrial Ecosystem Science (TES) program.« less
NASA Astrophysics Data System (ADS)
Ross, K. W.; Childs-Gleason, L. M.; Cripps, G. S.; Clayton, A.; Remillard, C.; Watkins, L. E.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.
2017-12-01
The NASA DEVELOP National Program carries out many projects every year with the goal of bringing the benefits of NASA Earth science to bear on decision-making challenges that are local in scale. Every DEVELOP project partners end users with early/transitioning science professionals. Many of these projects invited communities to consider NASA science data in new ways to help them make informed decisions. All of these projects shared three characteristics: they were rapid, nimble and risk-taking. These projects work well for some communities, but might best be suited as a feasibility studies that build community/institutional capacity towards eventual solutions. This presentation will discuss DEVELOP's lessons learned and best practices in conducting short-term feasibility projects with communities, as well as highlight several past successes.
Project ASTRO-Tucson: An Educational Outreach Program For All Seasons
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.; Wilson, R.
2002-12-01
Project ASTRO-Tucson represents a flexible program that is broad in content coverage and has utility for a diverse educational audience. As such, Project ASTRO forms the core of the National Optical Astronomy Observatory's successful regional outreach program. The program is aligned with the National Science Education Standards, appeals to different teaching and learning styles and can be adapted for space, staff, and money constraints at individual schools. ASTRO is broad in its astronomy content coverage and also addresses the scientific process, best practices and pedagogy, student misconceptions, and authentic assessment issues. In Tucson it has been used successfully with elementary, middle and high school students of different ethnic backgrounds, as well as with handicap-challenged and under-served students. ASTRO-Tucson is one of 13 sites nationally that have collectively reached over 100,000 students in the last 6 years. The program's core element is the partnering of professional and amateur astronomers with K-12 teachers and community educators who want to enrich their astronomy and science teaching. The partnerships are extended through a training workshop, hands-on activities, effective educational materials, follow-up workshops, continued staff support, and connections to community resources. In turn, the interest generated by Project ASTRO has fostered new programs such as Family ASTRO (just begun in Tucson), which invites families to evening or weekend family events doing fun astronomy activities together. We will describe some of the lessons learned from the Project ASTRO and Family ASTRO programs in Tucson and discuss efforts to jump-start and localize a Project ASTRO-type program in Chile at Cerro Tololo Inter-American Observatory.
NASA Astrophysics Data System (ADS)
Cooper, S. K.; Petronotis, K. E.; Ferraro, C.; Johnson, K. T. M.; Yarincik, K.
2017-12-01
The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. The JOIDES Resolution is the flagship vessel of IODP and is operated by the National Science Foundation. It is an inspirational hook for STEM Earth and ocean topics for children and the general public of all ages, but is not easily accessible due to its international travels and infrequent U.S. port calls. In response, a consortium of partners has created the Pop-Up/Drill Down Science project. The multi-year project, funded by NSF's Advancing Informal Science Learning program, aims to bring the JR and its science to under-served and rural populations throughout the country. Consisting of an inflatable walk-through ship, a multi-media experience, a giant interactive seafloor map and a series of interactive exhibit kiosks, the exhibit, entitled, In Search of Earth's Secrets: A Pop-Up Science Encounter, will travel to 12 communities throughout the next four years. In each community, the project will partner with local institutions like public libraries and small museums as hosts and to train local Girl Scouts to serve as exhibit facilitators. By working with local communities to select events and venues for pop-up events, the project hopes to bring cutting edge Earth and ocean science in creative new ways to underserved populations and inspire diverse audiences to explore further. This presentation will provide details of the project's goals, objectives and development and provide avenues to become involved.
Spin depolarization dynamics of WSe2 bilayer
NASA Astrophysics Data System (ADS)
Niu, Binghui; Ye, Jialiang; Li, Ting; Li, Ying; Zhang, Xinhui
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11474276) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDPB0603).
ERIC Educational Resources Information Center
Romey, William D.
1972-01-01
Environmental Studies for Urban Youth (ES) for first grade through college and the primary concerns of the Earth Science Teacher Preparation Project (ESTPP), both developed by the AGI's Earth Science Education Program, are considered. (PR)
NASA Astrophysics Data System (ADS)
Chen, Yizhen; Wang, Xiangxian; Wang, Ru; Yang, Hua; Qi, Yunping
2017-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61505074), the National Basic Research Program of China (Grant No. 2013CBA01703), the HongLiu Young Teachers Training Program Funded Projects of Lanzhou University of Technology, China (Grant No. Q201509), and the National Undergraduate Innovation Training Program of China (Grant No. 201610731030).
Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A
2017-01-01
The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.
NASA Astrophysics Data System (ADS)
Singer, J.; Ryan, J. G.
2012-12-01
The Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) program seeks to improve the quality of science, technology, engineering, and mathematics (STEM) education for all undergraduate students. Activities supported by the TUES program include the creation, adaptation, and dissemination of learning materials and teaching strategies, development of faculty expertise, implementation of educational innovations, and research on STEM teaching and learning. The TUES program especially encourages projects that have the potential to transform undergraduate STEM education and active dissemination and building a community of users are critical components of TUES projects. To raise awareness about the TUES program and increase both the quality and quantity of proposals submitted by geoscientists to the program, information sessions and proposal writing retreats are being conducted. Digital resources developed especially for the geosciences community are available at www.buffalostate.edu/RTUGeoEd to share information about the TUES program and the many ways this NSF program supports innovation in geoscience education. This presentation also addresses identified impediments to submitting a TUES proposal and strategies for overcoming reasons discouraging geoscientists from preparing a proposal and/or resubmitting a declined proposal.
NASA Astrophysics Data System (ADS)
Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.
2010-12-01
This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the researchers involved in this complex solar system.
Social Science Research Serving Rural America.
ERIC Educational Resources Information Center
Miron, Mary, Ed.
This collection of articles provides an overview of some of the recent social science research projects performed by state agricultural experiment stations. The examples highlight social science's contribution to problem-solving in rural business, industry, farming, communities, government, education, and families. The following programs are…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory... to eight legacy Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration (demo) Project Plans resulting from section 1107(c) of the National Defense Authorization Act...
Enhanced thermoelectric performance in p-type Mg 3 Sb 2 via lithium doping
NASA Astrophysics Data System (ADS)
Wang, Hao; Chen, Jin; Lu, Tianqi; Zhu, Kunjie; Li, Shan; Liu, Jun; Zhao, Huaizhou
2018-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. U1601213 and 51572287) and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH013).
NASA Technical Reports Server (NTRS)
Denkins, Pamela S.; Saganti, P.; Obot, V.; Singleterry, R.
2006-01-01
This viewgraph document reviews the Radiation Interuniversity Science and Engineering (RaISE) Project, which is a project that has as its goals strengthening and furthering the curriculum in radiation sciences at two Historically Black Colleges and Universities (HBCU), Prairie View A&M University and Texas Southern University. Those were chosen in part because of the proximity to NASA Johnson Space Center, a lead center for the Space Radiation Health Program. The presentation reviews the courses that have been developed, both in-class, and on-line.
NASA Technical Reports Server (NTRS)
1990-01-01
NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.
Partnering for science: proceedings of the USGS Workshop on Citizen Science
Hines, Megan; Benson, Abigail; Govoni, David; Masaki, Derek; Poore, Barbara; Simpson, Annie; Tessler, Steven
2013-01-01
What U.S. Geological Survey (USGS) programs use citizen science? How can projects be best designed while meeting policy requirements? What are the most effective volunteer recruitment methods? What data should be collected to ensure validation and how should data be stored? What standard protocols are most easily used by volunteers? Can data from multiple projects be integrated to support new research or existing science questions? To help answer these and other questions, the USGS Community of Data Integration (CDI) supported the development of the Citizen Science Working Group (CSWG) in August 2011 and funded the working group’s proposal to hold a USGS Citizen Science Workshop in fiscal year 2012. The stated goals for our workshop were: raise awareness of programs and projects in the USGS that incorporate citizen science, create a community of practice for the sharing of knowledge and experiences, provide a forum to discuss the challenges of—and opportunities for—incorporating citizen science into USGS projects, and educate and support scientists and managers whose projects may benefit from public participation in science.To meet these goals, the workshop brought together 50 attendees (see appendix A for participant details) representing the USGS, partners, and external citizen science practitioners from diverse backgrounds (including scientists, managers, project coordinators, and technical developers, for example) to discuss these topics at the Denver Federal Center in Colorado on September 11–12, 2012. Over two and a half days, attendees participated in four major plenary sessions (Citizen Science Policy and Challenges, Engaging the Public in Scientific Research, Data Collection and Management, and Technology and Tools) comprised of 25 invited presentations and followed by structured discussions for each session designed to address both prepared and ad hoc "big questions." A number of important community support and infrastructure needs were identified from the sessions and discussions, and a subteam was formed to draft a strategic vision statement to guide and prioritize future USGS efforts to support the citizen science community. Attendees also brainstormed proposal ideas for the fiscal year 2013 CDI request for proposals: one possible venue to support the execution of the vision.
The Advanced Communications Technology Satellite (ACTS) capabilities for serving science
NASA Technical Reports Server (NTRS)
Meyer, Thomas R.
1990-01-01
Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.
NASA Astrophysics Data System (ADS)
Rebull, L. M.; Gorjian, V.; Squires, G.; Nitarp Team
2012-08-01
How many times have you gotten a question from the general public, or read a news story, and concluded that "they just don't understand how real science works?" One really good way to get the word out about how science works is to have more people experience the process of scientific research. Since 2004, the way we have chosen to do this is to provide authentic research experiences for teachers using real data (the program used to be called the Spitzer Teacher Program for Teachers and Students, which in 2009 was rechristened the NASA/IPAC Teacher Archive Research Program, or NITARP). We partner small groups of teachers with a mentor astronomer, they do research as a team, write up a poster, and present it at an American Astronomical Society (AAS) meeting. The teachers incorporate this experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program differs from other similar programs in several important ways. First, each team works on an original, unique project. There are no canned labs here! Second, each team presents their results in posters at the AAS, in science sessions (not outreach sessions). The posters are distributed throughout the meeting, in amongst other researchers' work; the participants are not "given a free pass" because they are teachers. Finally, the "product" of this project is the scientific result, not any sort of curriculum packet. The teachers adapt their project to their classroom environment, and we change the way they think about science and scientists.
Project Learning Tree. A Program of the American Forest Foundation.
ERIC Educational Resources Information Center
American Forest Foundation, Washington, DC.
Project Learning Tree (PLT) is a supplementary environmental education program intended for use in and out of the classroom with young people, their leaders, and teachers in kindergarten through grade 12. The PLT curriculum provides supplementary activities in various subject areas, such as social studies, language arts, mathematics, science, and…
Science Shorts: Project BudBurst--Analyzing Data
ERIC Educational Resources Information Center
Davis, Kimberly J.; Coskie, Tracy L.
2008-01-01
Project BudBurst is a national program intended to get students and other "citizen scientists" to participate in a real study about plants, the environment, and climate change. It also provides an excellent opportunity for students to build data-analysis skills. A collaboration of several agencies and universities, the program began last year and…
34 CFR 637.11 - What kinds of projects are supported by this program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 3 2014-07-01 2014-07-01 false What kinds of projects are supported by this program? 637.11 Section 637.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...
34 CFR 637.11 - What kinds of projects are supported by this program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 3 2013-07-01 2013-07-01 false What kinds of projects are supported by this program? 637.11 Section 637.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...
34 CFR 637.11 - What kinds of projects are supported by this program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 3 2011-07-01 2011-07-01 false What kinds of projects are supported by this program? 637.11 Section 637.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...
34 CFR 637.11 - What kinds of projects are supported by this program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 3 2012-07-01 2012-07-01 false What kinds of projects are supported by this program? 637.11 Section 637.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...
34 CFR 637.11 - What kinds of projects are supported by this program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false What kinds of projects are supported by this program? 637.11 Section 637.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...
Fulbright-Hays Seminars Abroad Program and Special Bilateral Projects
ERIC Educational Resources Information Center
Office of Postsecondary Education, US Department of Education, 2012
2012-01-01
The Fulbright-Hays Seminars Abroad Program and Special Bilateral Projects provides short-term study and travel seminars abroad for U.S. educators in the social sciences and humanities for the purpose of improving their understanding and knowledge of the people and culture of other countries. There are approximately 10 seminars with 16 participants…
34 CFR 263.21 - What priority is given to certain projects and applicants?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 1 2014-07-01 2014-07-01 false What priority is given to certain projects and... PROGRAMS Demonstration Grants for Indian Children Program § 263.21 What priority is given to certain... subject matters, including math and science, to enable Indian students to successfully transition to...
Learning radio astronomy by doing radio astronomy
NASA Astrophysics Data System (ADS)
Vaquerizo Gallego, J. A.
2011-11-01
PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.
Science Operations of the International Ultraviolet Explorer (IUE) Observatory
NASA Technical Reports Server (NTRS)
1996-01-01
The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to support competitively selected astronomical research program. Through the IUE program, researchers make IUE observations, have their scientific data reduced in a meaningful way, and receive data products in a form amenable to the pursuit of scientific research. The IUE Observatory is key to the program since it is the central control and support facility for all science support functions within the IUE project.
NASA Astrophysics Data System (ADS)
Shah, Ishfaq Ahmad; Hassan, Najam ul; Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Xu, Feng
2017-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51271093, 51571121, 11604148, and 51601092), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30920140111010, 30916011344, and 30916011345), Jiangsu Natural Science Foundation for Distinguished Young Scholars, China (Grant No. BK20140035), China Postdoctoral Science Foundation (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833 and BK20160829), Qing Lan Project, Six Talent Peaks Project in Jiangsu Province, China, and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
NASA Astrophysics Data System (ADS)
Browning, S.
2011-12-01
Non-science majors often misunderstand the process of science, potentially leading to a fear or mistrust of scientific inquiry and current scientific theory. Citizen science projects are a critical means of reaching this audience, as many will only take a limited number of science courses during their undergraduate careers. For the past three years, our freshman Earth Science students have participated in both Globe at Night and the Great Worldwide Star Count, citizen science programs that encourage simple astronomical observations which can be compiled globally to investigate a number of issues. Our focus has been introducing students to the effect of light pollution on observational astronomy in an effort to highlight the effect of increasing urbanization in the U.S. on amateur astronomy. These programs, although focused on astronomy, often awaken natural curiosity about the Earth and man's effect on the natural world, a concept that can easily be translated to other areas of Earth science. Challenges encountered include content specific issues, such as misinterpreting the location or magnitude of the constellation being observed, as well as student disinterest or apathy if the project is not seen as being vital to their performance in the course. This presentation reports on lessons learned in the past three years, and offers suggestions for engaging these students more fully in future projects.
NASA Astrophysics Data System (ADS)
Malina, Roger F.
2012-01-01
In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds of metrics for impact. Astronomy because of its strong networks of amateur scientists is in a good position to develop innovative public engagement via the arts and culture.
ERIC Educational Resources Information Center
Hall, Donna M.; Curtin-Soydan, Amanda J.; Canelas, Dorian A.
2014-01-01
How can colleges and universities keep an open gateway to the science disciplines for the least experienced first-year science students while also maintaining high standards that challenge the students with the strongest possible high school backgrounds? The Science Advancement through Group Engagement (SAGE) project targets cohorts of less…
ERIC Educational Resources Information Center
Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David
2015-01-01
A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…
Space Projects and Research by Kids (SPARK): A Web Based Research Journal for Middle School Students
NASA Astrophysics Data System (ADS)
Limaye, S. S.; Pertzborn, R. A.
1999-05-01
Project SPARK is designed to facilitate opportunities for upper elementary and middle school students to develop the necessary skills to conduct investigations that focus on the subjects of astronomy, space exploration, and earth remote sensing. This program actively engages students in conducting their own research project to acquire increased understanding and content knowledge in the space sciences. While the development of scientific inquiry skills and content literacy is the primary focus, students also enhance their critical thinking, analytical, technological and communications skills. As in the professional science community, the web based SPARK Journal presents an avenue for students to effectively communicate the results of their investigations and work to classmates as well as the "global learning community" via the world wide web. Educational outreach staff at the Sapce Science and Engineering Center have developed active partnerships with teachers and schools throughout Wisconsin to facilitate the development of standards based curriculum and research projects focusing on current topics in the space sciences. Student research projects and activities arising from these initiatives were submitted in the Spring and Fall of 1998 for inclusion in SPARK, Volume 1. The second volume of SPARK will be published in Spring, 1999. Support for the development of this journal was provided by the NASA/IDEAS Program.
NASA Technical Reports Server (NTRS)
1959-01-01
The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.
2011-07-19
NASA Chief Scientist Dr. Waleed Abdalati visited Stennis Space Center on July 19, to learn about the extensive science capabilities onsite. Shown at right are: (seated, l to r), Stennis Center Director Patrick Scheuermann; Dr. Abdalati; U.S. Navy Rear Adm. Jonathan White; NOAA National Data Buoy Center Program Manager Shannon McArthur; (standing, l to r) Stennis Project Directorate Assistant Director Anne Peek; Stennis Applied Science & Technology Project Office Chief Duane Armstrong; and Stennis Project Directorate Director Keith Brock.
Wettability of Si and Al–12Si alloy on Pd-implanted 6H–SiC
NASA Astrophysics Data System (ADS)
Wang, Ting-Ting; Liu, Gui-Wu; Huang, Zhi-Kun; Zhang, Xiang-Zhao; Xu, Zi-Wei; Qiao, Guan-Jun
2018-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51572112 and 51172177), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151340), the Six Talent Peaks Project of Jiangsu Province, China (Grant Nos. 2014-XCL-002 and TD-XCL-004), the Innovation/Entrepreneurship Program of Jiangsu Province, China (Grant No. [2015]26), and the Qing Lan Project of Jiangsu Province, China (Grant No. [2016]15).
NASA Astrophysics Data System (ADS)
Hao, Hui-Ming; Liu, Yao-Yao; Zhang, Ping; Cai, Ming-Lei; Wang, Xiao-Yan; Zhu, Ji-Liang; Ye, Wen-Jiang
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087 and 11504080), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2017202004), the Research Project of the Education Department of Hebei Province, China (Grant No. QN2014130), the Key Subject Construction Project of Hebei Provincial University, and the Undergraduate Innovation and Entrepreneurship Training Program, China (Grant No. 201610080016).
NEON Citizen Science: Planning and Prototyping
NASA Astrophysics Data System (ADS)
Newman, S. J.; Henderson, S.; Gardiner, L. S.; Ward, D.; Gram, W.
2011-12-01
The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of "human sensors." As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include "citizens" or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was chosen as the focus of this citizen science campaign because it is a visible and comprehensible way of demonstrating the effects of climate change. In addition, plants are readily accessible in nearly every neighborhood and park, and wild area across the continent, so people can make observations whether they live near an inner city park or in the rural countryside. Recently, NEON developed data visualization tools for Project BudBurst to engage citizen science participants in "doing science" beyond data collection. By prototyping NEON citizen science through Project BudBurst, NEON is developing a better understanding of how to build a citizen science program that addresses areas of awareness, mastery, and leadership of scientific information like that which NEON will produce over the next 30 years.
NASA Astrophysics Data System (ADS)
Gao, Jian; Yu, Qian-Qian; Zhang, Juan; Liu, Yang; Jia, Ruo-Fei; Han, Jun; Wu, Xiao-Ming; Hua, Yu-Lin; Yin, Shou-Gen
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 60906022), the Natural Science Foundation of Tianjin, China (Grant No. 10JCYBJC01100), the Key Science and Technology Support Program of Tianjin, China (Grant No. 14ZCZDGX00006), and the National High Technology Research and Development Program of China (Grant No. 2013AA014201).
Goldenberg, Neil M; Steinberg, Benjamin E; Rutka, James T; Chen, Robert; Cabral, Val; Rosenblum, Norman D; Kapus, Andras; Lee, Warren L
2016-01-01
Physicians have traditionally been at the forefront of medical research, bringing clinical questions to the laboratory and returning with ideas for treatment. However, we have anecdotally observed a decline in the popularity of basic science research among trainees. We hypothesized that fewer resident physicians have been pursuing basic science research training over time. We examined records from residents in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016). Research by residents was categorized independently by 2 raters as basic science, clinical epidemiology or education-related based on the title of the project, the name of the supervisor and Pubmed searches. The study population was divided into quintiles of time, and the proportion pursuing basic science training in each quintile was calculated. Agreement between the raters was 100%; the categorization of the research topic remained unclear in 9 cases. The proportion of trainees pursuing basic science training dropped by 60% from 1987 to 2016 ( p = 0.005). Significantly fewer residents in the Surgeon-Scientist and Clinician-Investigator Programs at the University of Toronto are pursuing training in the basic sciences as compared with previous years.
ANDRILL Education and Public Outreach: A Legacy of the IPY
NASA Astrophysics Data System (ADS)
Rack, F. R.; Huffman, L. T.; Reed, J.; Harwood, D. M.; Berg, M.; Diamond, J.; Fox, A.; Dahlman, L. E.; Levy, R. H.
2009-12-01
ANDRILL field projects during the IPY included the McMurdo Ice Shelf (MIS) and Southern McMurdo Sound (SMS) drilling projects, and the Mackay Sea Valley (MSV) and Offshore New Harbor (ONH) seismic surveys. ANDRILL's international network of scientists, engineers, students and educators work together to convey an understanding of geoscience research and the process of science to non-technical audiences. ANDRILL education and public outreach (EPO) program goals are to: (1) promote environmental and polar science literacy for all audiences; (2) develop and disseminate engaging resources for formal and informal education; (3) develop and nurture a network of polar science educators; (4) spark the curiosity of students and the general public; (5) encourage students to pursue careers in science; (6) challenge misconceptions about scientific research; (7) provide professional development opportunities for educators; and, (8) encourage inquiry teaching in science education. During the IPY, ANDRILL established partnerships with several IPY projects to enhance science literacy and promote the IPY in formal and informal education and outreach venues. ANDRILL-led initiatives include the ARISE (ANDRILL Research Immersion for Science Educators) Program, Project Iceberg, the FLEXHIBIT (FLEXible exHIBIT; in partnership with Antarctica’s Climate Secrets/IPY Engaging Antarctica), and the Project Circle. ANDRILL partnerships developed with several museums and school districts for teacher professional development workshops and a variety of public events. A polar learning community was created from the ARISE participants and their many contacts, the Project Circle participants, and interested educators who contacted ANDRILL. EPO activities are continuing in the post-IPY period with additional funding. The ARISE program has been successful in building a team of educators and a network of international collaborations across grade levels and cultures. The ANDRILL website has expanded to include project outcomes, video journals, ARISE blogs, and other resources. The web pages continue to provide key educational outcomes by providing resources for students, teachers and the general public. The FLEXHIBIT banners and posters focus on five (5) Antarctic themes with a booklet of polar science activities. The banners are translated into German, Italian, French, Spanish, and Kiwi English with Maori subheadings. Smaller FLEXHIBIT posters with activities on the backs have been bundled into Teachers Packets that include two DVDs of ANDRILL’s educational content. The FLEXHIBIT posters have been translated into Italian, Spanish and Arabic. ANDRILL has demonstrated the value of EPO and has invested time and resources to improve polar and climate science literacy. ANDRILL’s EPO efforts give teachers, students and the public exposure to key scientific findings regarding climate change and the new knowledge interpreted from the ANDRILL cores.
Barnes, Marianne B.; Barnes, Lehman W.; Cooper, Lou Ann; Bokor, Julie R.; Koroly, Mary Jo
2017-01-01
A three-year, National Institutes of Health-funded residential project at a southeastern research university immersed 83 secondary science teachers in a summer institute called “Bench to Bedside.” Teachers were provided with knowledge, skills, experiences, and incentives to improve their science teaching and increase their awareness of scientific processes, technologies, and careers by examining the translational medicine continuum of basic to clinical research. This was done with the help of medical school researchers, clinical personnel, biotechnology entrepreneurs, program mentors, and prior year participants. A critical component of the institute was the preparation and implementation of an action research project that reflected teachers’ newly acquired knowledge and skills. Action research proposals were critiqued by project team members and feedback provided prior to action research implementation in schools during the following year. Teachers shared their action research with colleagues and project team at a symposium and online as a critical step in networking the teachers. Results of a mixed methods program evaluation strategy indicate that the program produced significant gains in teachers’ confidence to explain advanced biosciences topics, development of action research skills, and formation of a statewide biosciences network of key stakeholders. Constraints of time, variation in teacher content and action research background, technology availability, and school-related variables, among others, are discussed. PMID:29733086
ESSEA as an Enhancement to K-12 Earth Systems Science Efforts at San José State University
NASA Astrophysics Data System (ADS)
Messina, P.; Metzger, E. P.; Sedlock, R. L.
2002-12-01
San José State University's Geology Department has implemented and maintained a two-fold approach to teacher education efforts. Both pre-service and in-service populations have been participants in a wide variety of content-area enrichment, training, and professional development endeavors. Spearheading these initiatives is the Bay Area Earth Science Institute (BAESI); organized in 1990, this program has served more than 1,000 teachers in weekend- and summer-workshops, and field trips. It sustains a network of Bay Area teachers via its Website (http://www.baesi.org), newsletter, and allows teachers to borrow classroom-pertinent materials through the Earth Science Resource Center. The Department has developed a course offering in Earth Systems Science (Geology 103), which targets pre-service teachers within SJSU's multiple-subject credential program. The curriculum satisfies California subject matter competency requirements in the geosciences, and infuses pedagogy into the syllabus. Course activities are intended for pre-service and in-service teachers' adaptation in their own classrooms. The course has been enhanced by two SJSU-NASA collaborations (Project ALERT and the Sun-Earth Connection Education Forum), which have facilitated incorporation of NASA data, imagery, and curricular materials. SJSU's M.A. in Natural Science, a combined effort of the Departments of Geology, Biology, and Program in Science Education, is designed to meet the multi-disciplinary needs of single-subject credential science teachers by providing a flexible, individually-tailored curriculum that combines science course work with a science education project. Several BAESI teachers have extended their Earth science knowledge and teaching skills through such projects as field guides to local sites of geological interest; lab-based modules for teaching about earthquakes, rocks and minerals, water quality, and weather; and interactive online materials for students and teachers of science. In keeping with SJSU's alliance with NASA Centers, the Geology Department is proud to offer ESSEA online courses as part of its multi-dimensional approach to Earth Systems teacher education. SJSU plans to offer both the middle- and high-school courses to a national audience, beginning spring 2003. The addition of ESSEA courses will complement existing projects, and will help to build a stronger Earth Systems-savvy community.
Diminishing the Gap between University and High School Research Programs: Computational Physics
ERIC Educational Resources Information Center
Vondracek, Mark
2007-01-01
There are many schools (grades K-12) around the country that offer some sort of science research option for students to pursue. Often this option is a local science fair, where students do smaller projects that are then presented at poster sessions. Many times the top local projects can advance to some type of regional and, possibly, state science…
ERIC Educational Resources Information Center
Williams-Robertson, Lydia
This document describes Project A+, a cooperative school and privately funded program designed to assist the Austin Independent School District (AISD) in becoming an exemplary school district by the year 2000. The project is divided into four components. The curriculum development component presents three new curricula piloted in AISD schools in…
Supporting and Resourcing Secondary Science Teachers in Rural and Regional Schools
ERIC Educational Resources Information Center
Kenny, John; Seen, Andrew; Purser, John
2008-01-01
This paper reports on the outcomes of a pilot project to support secondary teachers of science in rural and regional Tasmania. The pilot project involved eight regional schools and was based on the provision of a kit of materials and an associated learning program that used brine shrimp or "sea-monkeys" to test for water quality. The…
Ultra-broadband and polarization-independent planar absorber based on multilayered graphene
NASA Astrophysics Data System (ADS)
Wang, Jiao; Gao, Chao-Ning; Jiang, Yan-Nan; Nwakanma Akwuruoha, Charles
2017-10-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, 61361005, and 61561013), the Natural Science Foundation of Guangxi, China (Grant No. 2017JJB160028), the Program for Innovation Research Team of Guilin University of Electronic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.
The Extreme Ultraviolet Explorer science instruments development - Lessons learned
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Battel, S.
1991-01-01
The science instruments development project for the Extreme Ultraviolet Explorer (EUVE) satellite is reviewed. Issues discussed include the philosophical basis of the program, the establishment of a tight development team, the approach to planning and phasing activities, the handling of the most difficult technical problems, and the assessment of the work done during the preimplemntation period of the project.
EarthTrek - helping scientists to get citizens involved in real science. (Invited)
NASA Astrophysics Data System (ADS)
Lewis, G.
2010-12-01
Citizen science programs are not new and many scientists can report good success at engaging the public in their research. However, many scientists who could really benefit from the collective pool of eager volunteers do not have the time or patience to develop system to track and manage the collective “enthusiasm”. EarthTrek takes on that role and provides scientists with the support for their venture into a citizen science program. EarthTrek manages the people, rewards them for their involvement and provides avenues for scientists to communicate with the participants. Scientists concentrate on developing sounds collection protocols (with EarthTrek’s help if needed) and then provide feedback once the data stars to come in. EarthTrek is about linking people with real research. EarthTrek will work with scientists from every field as long as projects are collecting data for research, are time constrained and the lead scientists agree to a communication schedule for results back to participants. Examples of active science projects include weathering rates on gravestones, invasive plant species and phenology. EarthTrek is a project of the Geological Society of America and partners around the globe. EarthTrekker collecting data for the Gravestone Project
Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)
NASA Astrophysics Data System (ADS)
Pierce, D. L.
2016-12-01
These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.
ERIC Educational Resources Information Center
School Science Review, 1985
1985-01-01
Presents 23 experiments, activities, field projects and computer programs in the biological and physical sciences. Instructional procedures, experimental designs, materials, and background information are suggested. Topics include fluid mechanics, electricity, crystals, arthropods, limpets, acid neutralization, and software evaluation. (ML)
Hardré, Patricia L; Slater, Janis; Nanny, Mark
2010-11-01
This paper examines the redesign of evaluation components for a teacher professional development project funded by the National Science Foundation. It focuses on aligning evaluation instrumentation and strategies with program goals, research goals and program evaluation best practices. The study identifies weaknesses in the original (year 1) program evaluation design and implementation, develops strategies and tracks changes for year 2 implementation, and then reports enhancement of findings and recommendations for year 3. It includes lessons learned about assessment and evaluation over the project lifespan, with implications for research and evaluation of a range of related programs. This study functions as a classic illustration of how critical it is to observe first principles of assessment and evaluation for funded programs, the risks that arise when they are ignored, and the benefits that accrue when they are systematically observed. Copyright (c) 2009. Published by Elsevier Ltd.
Structural, magnetic properties, and electronic structure of hexagonal FeCoSn compound
NASA Astrophysics Data System (ADS)
Li, Yong; Dai, Xue-Fang; Liu, Guo-Dong; Wei, Zhi-Yang; Liu, En-Ke; Han, Xiao-Lei; Du, Zhi-Wei; Xi, Xue-Kui; Wang, Wen-Hong; Wu, Guang-Heng
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51431009 and 51271038), the Joint NSFC-ISF Research Program, Jointly Funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 51561145003).
The Science Discovery Book Grades 4-6.
ERIC Educational Resources Information Center
Fredericks, Anthony D.; And Others
Developed to supplement and enhance regular science texts and programs, this collection of activities, experiments, and ideas aims to involve middle school students in the processes of science. The 42 projects in this book have been drawn from daily living experiences and focus on providing students with a better understanding of science related…
NASA Astrophysics Data System (ADS)
Bostick, B. C.; Newton, R.; Vincent, S.; Peteet, D. M.; Sambrotto, R.; Schlosser, P.; Corbett, E.
2015-12-01
Conventional instruction in science often proceeds from the general to the specific and from text to action. Fundamental terminologies, concepts, and ideas that are often abstract are taught first and only after such introductory processes can a student engage in research. Many students struggle to find relevance when presented information without context specific to their own experiences. This challenge is exacerbated for students whose social circles do not include adults who can validate scientific learning from their own experiences. Lamont-Doherty's Secondary School Field Research Program inverts the standard paradigm and places small groups of students in research projects where they begin by performing manageable tasks on complex applied research projects. These tasks are supplemented with informal mentoring and relevant articles (~1 per week). Quantitative metrics suggest the approach is highly successful—most participants report a dramatic increase in their enthusiasm for science, 100% attend college, and approximately 50% declare majors in science or technology. We use one project, the construction of a microbial battery, to illustrate this novel model of science learning and argue that it should be considered a best practice for project-based science education. The goal of this project was to build a rechargeable battery for a mobile phone based on a geochemical cycle, to generate and store electricity. The students, mostly from ethnic groups under-represented in the STEM fields, combined concepts and laboratory methods from biology, chemistry and physics to isolate photosynthetic bacteria from a natural salt marsh, and made an in situ device capable of powering a light bulb. The younger participants had been exposed to neither high school chemistry nor physics at the start of the project, yet they were able to use the project as a platform to deepen their science knowledge and their desire for increased participation in formal science education.
Thermal conductivity of nanowires
NASA Astrophysics Data System (ADS)
Zhang, Zhongwei; Chen, Jie
2018-03-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0406000), the National Natural Science Foundation of China (Grant Nos. 51506153 and 11334007), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 17ZR1448000), and the National Youth 1000 Talents Program in China and the Startup Grant at Tongji University, China.
Dust charging and levitating in a sheath of plasma containing energetic particles
NASA Astrophysics Data System (ADS)
Ou, Jing; Zhao, Xiao-Yun; Lin, Bin-Bin
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11475223), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB101003), and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (Grant Nos. 11261140328 and 2012K2A2A6000443).
Application of microdosimetry on biological physics for ionizing radiation
NASA Astrophysics Data System (ADS)
Chen, Dandan; Sun, Liang
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11304212 and 11575124), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130279), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the International Thermonuclear Experimental Reactor (ITER) Special Program of China (Grant No. 2014GB112006).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillings, Neil; Wenk, Laura
Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achievesmore » this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is compatible with existing state curriculum frameworks and produces students who understand and are positively inclined toward science. Funds from this Department of Energy grant supported three projects that involved K-16 science outreach: 1. Teaching Issues and Experiments in Ecology (TIEE). TIEE a peer-reviewed online journal and curriculum resource for postsecondary science teachers. 2. The Collaboration for Excellence in Science Education (CESE). CESE is a partnership with the Amherst, Massachusetts school system to foster the professional development of science teachers, and to perform research on student learning in the sciences and on teacher change. The project draws on Hampshire's long experience with inquiry-oriented and interdisciplinary education, as well as on its unique strengths in cognitive science. The project is run as design research, working with teachers to improve their practices and studying student and/or teacher outcomes. 3. Day in the Lab. Grant funds partially supported the expansion of the ongoing science outreach activities of the School of Natural Science. These activities are focused on local districts with large minority enrollments, including the Amherst, Holyoke and Springfield Public School Districts, and the Pioneer Valley Performing Arts Charter School (PVPA). Each of the three projects supported by the grant met or exceeded its goals. In part, the successes we met were due to continuity and communication among the staff of the programs. At the beginning of the CESE project, a science outreach coordinator was recruited. He worked throughout the grant period along with a senior researcher and the project's curriculum director. Additionally, the director and an undergraduate student conducted research on teacher change. The science outreach coordinator acted as a liaison among Hampshire College, the school districts, and a number of local businesses and agencies, providing organizational support, discussion facilitation, classroom support for teachers, and materials purchase. His presence in the schools kept teachers engaged and supported. He also brought the PVPA Charter School into the project. He worked closely with the educational outreach coordinator at Hampshire who oversaw the Day in the Lab program. Together, they have ensured the continuity of support to the schools through the use and placement of student interns. Finally, the director and coordinators worked with the Hitchock Center for the Environment to bring the two science professional development efforts in Amherst together. The joint development of workshops for elementary teachers was extremely successful. A major reason for the successes of the CESE program was the strength of the teacher outreach team and the sheer number of hours spent building relationships, talking about teaching and learning, planning projects, developing curriculum, and working with experts throughout the Pioneer Valley.« less
Space Science in Project SMART: A UNH High School Outreach Program
NASA Astrophysics Data System (ADS)
Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.
2016-12-01
Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .
Galileoscope: From IYA 2009 to IYL 2015
NASA Astrophysics Data System (ADS)
Arion, Douglas N.; Tresch Fienberg, Richard
2015-01-01
The Galileoscope program (http://galileoscope.org) was originally launched as a Cornerstone Project for the 2009 International Year of Astronomy. By design, the Galileoscope is not only a telescope kit but also an optics kit, promoted for and useful in classrooms and by individuals to learn optics principles. As such, it is well placed to be a major component of the 2015 International Year of Light, as part of the 'Cosmic Light' Cornerstone Project managed under the auspices of the International Astronomical Union. The successful donation and teacher-education programs conducted during IYA 2009 have motivated us to launch a similar campaign for IYL 2015, with the goal to place at least 100,000 Galileoscopes into classrooms for science education in optics and astronomy. The ready availability of teaching materials and classroom activities tied to national science standards, combined with the existing worldwide network of Galileoscope users and the large number of workshops and education programs already utilizing Galileoscopes, makes this a particularly valuable program for teachers and other science educators for IYL 2015.
Röthlisberger, Michael
2012-01-01
The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.
Anton Grdina Primary Achievement Program
NASA Technical Reports Server (NTRS)
1993-01-01
The Anton project presents a partnership between NASA Lewis, CMHA, and the Cleveland Public Schools. The intent of this project is to empower parents to work with their children in science and math activities.
NASA Astrophysics Data System (ADS)
Sjoberg, W.; McWilliams, G.
2017-12-01
This presentation will focus on the continuity of the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) and key activities of the PGRR Initiatives. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. The JPSS Program Office has used two PGRR Project Proposals to establish an effective approach to managing its science and algorithm teams in order to focus on key NOAA missions. The presenter will provide details of the Initiatives and the processes used by the initiatives that have proven so successful. Details of the new 2017 PGRR Call-for-Proposals and the status of project selections will be discussed.
In Brief: Science teaching certificate
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-11-01
More than 200 educators will receive fellowships over the next 5 years to participate in NASA's Endeavor Science Teaching Certificate Project, the agency announced on 14 November. Through workshops, online and on-site graduate courses, and NASA educational materials, the project will expose educators to NASA science and engineering and support them in translating the information for use in classrooms. ``Through the program, educators will learn to deliver cutting-edge science into the classroom, promoting science, technology, engineering, and mathematics education,'' according to Joyce Winterton, assistant administrator for education at NASA Headquarters, in Washington, D. C. Project fellows will earn a certificate from Teachers College Innovations at Teachers College, Columbia University, New York, and graduate credit from other institutional partners. For more information, visit http://education.nasa.gov/home/index.html.
Laboratory Directed Research and Development FY2011 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, W; Sketchley, J; Kotta, P
2012-03-22
A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.« less
Earth-to-Orbit Education Program 'Makes Science Cool'
NASA Technical Reports Server (NTRS)
2002-01-01
In this photograph, students from all over the country gathered and discussed their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center in Huntsville, Alabama. These students who are just 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student, and any teacher, even those without technical backgrounds. Student in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Ternessee, Virginia, and Washington, are taking part in MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. One of the students' teachers, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Justin O'Connor and Jeff Alden, students of Lane Middle School in Portland, Oregon, participated in the ETO program and said being involved in a real engineering project has made them realize that 'science is cool.'
NASA Astrophysics Data System (ADS)
Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.
2006-12-01
The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.
Integrated Design for Geoscience Education with Upward Bound Students
NASA Astrophysics Data System (ADS)
Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.
2009-05-01
Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive implications of the project. On-line learning modules continue to expand the number impacted by the program. Through collaboration with both GLOBE headquarters and the GLOBE Country Coordinator, an international teacher workshop in Costa Rica provided GLOBE training and equipment necessary for a true GLOBE student collaborative project. IDGE continues to expand the impacts beyond the limited participants involved in the program. Overall, the preliminary results show sufficient data that IDGE is successful in: exposing students to an inquiry-based hands-on science experience; providing a positive challenging yet enjoyable science experience for students; providing a science experience which was different than their formal science class; enhancing or maintaining positive attitudes and habits of mind about science; improving some student perceptions of science, science processes, and the nature of science; increasing the number of students considering science careers; enhanced student understanding of the importance of science knowledge and coursework for everyone. Through the practice of field research and inquiry-based learning, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award #0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.
OceanGLOBE: an Outdoor Research and Environmental Education Program for K-12 Students
NASA Astrophysics Data System (ADS)
Perry, R. B.; Hamner, W. M.
2006-12-01
OceanGLOBE is an outdoor environmental research and education program for upper elementary, middle and high school students, supplemented by online instructional materials that are available without charge to any educator. OceanGLOBE was piloted in 1995 with support from a National Science Foundation Teacher Enhancement project, "Leadership in Marine Science" (award no.ESI-9454413 to UCLA). Continuing support by a second NSF Teacher Enhancement project (award no. ESI-9819424 to UCLA) and by COSEE-West (NSF awards OCE-215506 to UCLA and OCE-0215497 to USC) has enabled OceanGLOBE to expand to a growing number of schools and to provide an increasingly robust collection of marine science instructional materials on its website, http://www.msc.ucla.edu/oceanglobe/ OceanGLOBE provides a mechanism for students to conduct inquiry-based, hands-on marine science research, providing experiences that anchor the national and state science content standards learned in the classroom. Students regularly collect environmental and biological data from a beach site over an extended period of time. In the classroom they organize, graph and analyze their data, which can lead to a variety of student-created science products. Beach research is supported by instructional marine science materials on the OceanGLOBE website. These online materials also can be used in the classroom independent of the field component. Annotated PowerPoint slide shows explain research protocols and provide marine science content. Field guides and photographs of marine organisms (with emphasis on the Southern California Bight) and a growing collection of classroom investigations (applicable to any ocean location) support the science content presented in the beach research program and slide shows. In summary, OceanGLOBE is a comprehensive learning package grounded in hands-on, outdoor marine science research project in which students are the principal investigators. By doing scientific work repetitively over an extended time period students learn about how science is done as much as they learn science content.
Current status and future direction of NASA's Space Life Sciences Program
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.
NASA's Microgravity Technology Report, 1996: Summary of Activities
NASA Technical Reports Server (NTRS)
Kierk, Isabella
1996-01-01
This report covers technology development and technology transfer activities within the Microgravity Science Research Programs during FY 1996. It also describes the recent major tasks under the Advanced Technology Development (ATD) Program and identifies current technology requirements. This document is consistent with NASA,s Enteprise for the Human Exploration and development of Space (HEDS) Strategic Plan. This annual update reflects changes in the Microgravity Science Research Program's new technology activities and requirements. Appendix A. FY 1996 Advanced Technology Development. Program and Project Descriptions. Appendix B. Technology Development.
NASA Astrophysics Data System (ADS)
Johnson, K. R.; Polequaptewa, N.; Leon, Y.
2012-12-01
Native Americans remain severely underrepresented in the geosciences, despite a clear need for qualified geoscience professionals within Tribal communities to address critical issues such as natural resource and land management, water and air pollution, and climate change. In addition to the need for geoscience professionals within Tribal communities, increased participation of Native Americans in the geosciences would enhance the overall diversity of perspectives represented within the Earth science community and lead to improved Earth science literacy within Native communities. To address this need, the Department of Earth System Science and the American Indian Resource Program at the University California have organized a two-week residential American Indian Summer Institute in Earth System Science (AISESS) for high-school students (grades 9-12) from throughout the nation. The format of the AISESS program is based on the highly-successful framework of a previous NSF Funded American Indian Summer Institute in Computer Science (AISICS) at UC Irvine and involves key senior personnel from the AISICS program. The AISESS program, however, incorporates a week of camping on the La Jolla Band of Luiseño Indians reservation in Northern San Diego County, California. Following the week of camping and field projects, the students spend a week on the campus of UC Irvine participating in Earth System Science lectures, laboratory activities, and tours. The science curriculum is closely woven together with cultural activities, native studies, and communication skills programs The program culminates with a closing ceremony during which students present poster projects on environmental issues relevant to their tribal communities. The inaugural AISESS program took place from July 15th-28th, 2012. We received over 100 applications from Native American high school students from across the nation. We accepted 40 students for the first year, of which 34 attended the program. The objective of the program is to introduce students to Earth System Science and, hopefully, inspire them to pursue Earth or Environmental Science degrees. Towards this end, we developed a fairly broad curriculum which will be presented here. Evaluation planning was conducted during the first quarter of 2012 during recruitment. A longitudinal database was established for the project to track college preparatory course-taking, GPA, school attendance, participation in earth science activities, and attitudes and interest in attending college and completing a degree after high school. Based on attendance during AISESS, schools and students will be selected as descriptive case studies. A pre-post design for evaluating the Summer Institute includes a survey about student background, attitudes, and knowledge about preparing to complete high school and attend college after graduation and focus groups of participants immediately after the Institute to capture qualitative data about their experiences in the field and at the University. Initial evaluation results will be presented here.
34 CFR 611.32 - What are the program's general selection criteria?
Code of Federal Regulations, 2012 CFR
2012-07-01
... provided by the school of arts and sciences; (iii) Includes well-designed academic and student support... those who would implement the project have important roles in project design, implementation, governance...
34 CFR 611.32 - What are the program's general selection criteria?
Code of Federal Regulations, 2013 CFR
2013-07-01
... provided by the school of arts and sciences; (iii) Includes well-designed academic and student support... those who would implement the project have important roles in project design, implementation, governance...
34 CFR 611.32 - What are the program's general selection criteria?
Code of Federal Regulations, 2014 CFR
2014-07-01
... provided by the school of arts and sciences; (iii) Includes well-designed academic and student support... those who would implement the project have important roles in project design, implementation, governance...
Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency
NASA Astrophysics Data System (ADS)
Petrone, C.
2017-12-01
Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.
Dragonfly: strengthening programming skills by building a game engine from scratch
NASA Astrophysics Data System (ADS)
Claypool, Mark
2013-06-01
Computer game development has been shown to be an effective hook for motivating students to learn both introductory and advanced computer science topics. While games can be made from scratch, to simplify the programming required game development often uses game engines that handle complicated or frequently used components of the game. These game engines present the opportunity to strengthen programming skills and expose students to a range of fundamental computer science topics. While educational efforts have been effective in using game engines to improve computer science education, there have been no published papers describing and evaluating students building a game engine from scratch as part of their course work. This paper presents the Dragonfly-approach in which students build a fully functional game engine from scratch and make a game using their engine as part of a junior-level course. Details on the programming projects are presented, as well as an evaluation of the results from two offerings that used Dragonfly. Student performance on the projects as well as student assessments demonstrates the efficacy of having students build a game engine from scratch in strengthening their programming skills.
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, a rocket built by Johnson High School students soars to it projected designation.
Citizen Science as a REAL Environment for Authentic Scientific Inquiry
ERIC Educational Resources Information Center
Meyer, Nathan J.; Scott, Siri; Strauss, Andrea Lorek; Nippolt, Pamela L.; Oberhauser, Karen S.; Blair, Robert B.
2014-01-01
Citizen science projects can serve as constructivist learning environments for programming focused on science, technology, engineering, and math (STEM) for youth. Attributes of "rich environments for active learning" (REALs) provide a framework for design of Extension STEM learning environments. Guiding principles and design strategies…
NASA Astrophysics Data System (ADS)
Miller, Diane
2008-04-01
This session features Youth Exploring Science (YES), Saint Louis Science Center's nationally recognized work-based teen development program. In YES, underserved audiences develop interest and understanding in physics through design engineering projects. I will discuss breaking down barriers, helping youth develop skills, and partnering with community organizations, universities and engineering firms.
Selection rules for electric multipole transition of triatomic molecule in scattering experiments
NASA Astrophysics Data System (ADS)
Tian, Hong-Chun; Xu, Long-Quan; Zhu, Lin-Fan
2018-04-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant No. U1732133), and the Science Fund from Chinese Academy of Sciences (Grant No. 11320101003).