Sample records for science program research

  1. Electron Microscopy Lab

    Science.gov Websites

    Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Science Seaborg Institute Fellows Conferences Research Opportunities Center for Integrated

  2. Undergraduate Research Experience in Ocean/Marine Science (URE-OMS) with African Student Component

    DTIC Science & Technology

    2011-01-01

    The Undergraduate Research Experience in Ocean/Marine Science program supports active participation by underrepresented undergraduate students in remote sensing and Ocean/Marine Science research training activities. The program is based on a model for undergraduate research programs supported by the National Science Foundation . The

  3. Teacher Research Programs Participation Improves Student Achievement in Science

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2009-12-01

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers’ skills in communicating science to students. We have measured the impact of New York City public high school science teacher participation in Columbia University’s Summer Research Program for Science Teachers on their students’ academic performance in science. In the year prior to program entry, students of participating and non-participating teachers passed a New York State Regents science examination at the same rate. In years three and four following program entry, participating teachers’ students passed Regents science exams at a higher rate (p = 0.049) than non-participating teachers’ students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings.

  4. An Assessment of Research-Doctorate Programs in the United States: Social & Behavioral Sciences.

    ERIC Educational Resources Information Center

    Jones, Lyle V., Ed.; And Others

    U.S. research-doctorate programs in the social and behavioral sciences were assessed by a committee of the Conference Board of Associated Research Councils. Attention was focused on 639 research-doctorate programs in seven disciplines in the social and behavioral sciences: anthropology, economics, geography, history, political sciences,…

  5. Entering the Community of Practitioners: A Science Research Workshop Model

    ERIC Educational Resources Information Center

    Streitwieser, Bernhard; Light, Gregory; Pazos, Pilar

    2010-01-01

    This article describes the Science Research Workshop Program (SRW) and discusses how it provides students a legitimate science experience. SRW, which is funded by the National Science Foundation, is an apprenticeship-style program in which students write proposals requesting resources to research an original question. The program creates a…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less

  7. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  8. Teachers' participation in research programs improves their students' achievement in science.

    PubMed

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  9. What Is and Who Can Do Science? Supporting Youth of Colors' Identities as Learners, Doers, and Change Agents in Science

    NASA Astrophysics Data System (ADS)

    Visintainer, Tammie Ann

    This research explores trajectories of developing the practices of and identification with science for high school students of color as they participate in summer science research programs. This study examines students' incoming ideas of what science is (i.e. science practices) and who does/can do science and how these ideas shift following program participation. In addition, this study explores the aspects of students' identities that are most salient in the science programs and how these aspects are supported or reimagined based on the program resources made available. This research utilizes four main data sources: 1) pre and post program student surveys, 2) pre and post program focal student interviews, 3) scientist instructor interviews, and 4) program observations. Findings show that students' ideas about what science is (i.e. science practices) and who can do science shifted together through participation in the practices of science. Findings illustrate the emergence of an identity generative process: that engaging in science practices (e.g. collecting data) and the accompanying program resources generated new possibilities for students (e.g. capable science learner). Findings show that the program resources made available for science practices determined how the practices "functioned" for students. Furthermore, findings document links between an instructor's vision, the design of program resources that engage students in science practices, and students' learning and identity construction. For example, a mentor that employed a politically relevant and racially conscious lens made unique resources available that allowed students to identify as capable science learners and agents of change in their community. This research shows that youth of color can imagine and take up new possibilities for who they can be in science when their science and racial identities are supported in science programs. Findings highlight the need to re-center race in research involving science identity construction for youth of color. Findings from this research inform the design of learning environments that create multiple pathways for learning and identity construction in science. Findings can be applied to the creation of opportunities in science programs, classrooms and teacher education that foster successful and meaningful engagement with science practices and empower youth of color as capable learners, doers, and changes agents in science.

  10. A Program to Prepare Graduate Students for Careers in Climate Adaptation Science

    NASA Astrophysics Data System (ADS)

    Huntly, N.; Belmont, P.; Flint, C.; Gordillo, L.; Howe, P. D.; Lutz, J. A.; Null, S. E.; Reed, S.; Rosenberg, D. E.; Wang, S. Y.

    2017-12-01

    We describe our experiences creating a graduate program that addresses the need for a next generation of scientists who can produce, communicate, and help implement actionable science. The Climate Adaptation Science (CAS) graduate program, funded by the National Science Foundation Research Traineeship (NRT) program, prepares graduate students for careers at the interfaces of science with policy and management in the field of climate adaptation, which is a major 21st-century challenge for science and society. The program is interdisciplinary, with students and faculty from natural, social, and physical sciences, engineering, and mathematics, and is based around interdisciplinary team research in collaboration with partners from outside of academia who have climate adaptation science needs. The program embeds students in a cycle of creating and implementing actionable science through a two-part internship, with partners from government, non-governmental organizations, and industry, that brackets and informs a year of interdisciplinary team research. The program is communication-rich, with events that foster information exchange and understanding across disciplines and workplaces. We describe the CAS program, our experiences in developing it, the research and internship experiences of students in the program, and initial metrics and feedback on the effectiveness of the program.

  11. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... Visiting Fellow Measurement Science and Engineering Program are as follows: 1. To advance, through...

  12. STEM enrichment programs and graduate school matriculation: the role of science identity salience

    PubMed Central

    Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education. PMID:24578606

  13. STEM enrichment programs and graduate school matriculation: the role of science identity salience.

    PubMed

    Merolla, David M; Serpe, Richard T

    2013-12-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education.

  14. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less

  15. Microgravity science and applications. Program tasks and bibliography for FY 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.

  16. Microgravity science & applications. Program tasks and bibliography for FY 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.

  17. Undergraduate Research Experience in Ocean/Marine Science (URE-OMS)

    DTIC Science & Technology

    2003-09-30

    The URE-Ocean/Marine Science program supports active research participation by undergraduate students in remote sensing and GIS. The program is based on a model for undergraduate research programs supported by the National Science Foundation . URE project features mentors, research projects, and professional development opportunities. It is the long-term goal

  18. Department of Energy - Office of Science Early Career Research Program

    NASA Astrophysics Data System (ADS)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  19. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  20. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... only applications for the Postdoctoral Research Training Program in the Education Sciences. Research on... Science Education Social and Behavioral Outcomes to Support Learning Transition Outcomes for Special... grant applications for the Education Research, Education Research Training, Research on Statistical and...

  1. Institutional Research Productivity in Science Education for the 1990s: Top 30 Rankings

    NASA Astrophysics Data System (ADS)

    Barrow, Lloyd H.; Settlage, John; Germann, Paul J.

    2008-08-01

    The purpose of this study was to identify the major science education programs in the United States, where the science education researchers published their research. This research is the first study of the scholarly productivity of science education programs at domestic institutions of higher education. Each issue of the eight research journals ( Journal of Research in Science Teaching, Science Education, International Journal of Science Education, Journal of Science Teacher Education, School Science and Mathematics, Journal of Computers in Math and Science Teaching, Journal of Science Education and Technology, and Journal of Elementary Science Education) published in the 1990s provided the author(s) and their institutional affiliation. The resultant ranking of raw and weighted counts for the top 30 science educations programs shows variation in journals where research was published. Overall, regardless whether the total number of publications (raw) or weighted rating there was 90% agreement among top 10 and 70% agreement among the bottom 10. Potential explanations for variations and uses for rankings are discussed.

  2. A Curriculum for a Three Year High School Science Research Program

    NASA Astrophysics Data System (ADS)

    Darytichen, F.; Danch, J.

    2003-12-01

    A three-year high school science research program has been taught in Woodbridge Township School District - Woodbridge, New Jersey, since 1987. The program's focus is to foster originial science research projects for high school students that have shown an aptitude and an interest in science. Students are instructed in basic research skills, including developing and conducting original research projects, statistical analysis, scientific writing, and presentation of research at local and national symposia, and science fairs. Upon completion of the third year all students are required to submit a paper, suitable for journal publication, detailing their research. Participating students have gone on to win awards with Westinghouse, Intel, The National Junior Science and Humanities Symposium, the International Science and Engineering Fair, New Jersey Academy of Sciences, and local and regional science fairs and symposia. Participating teachers have been recoginized by the Sigma Xi Research Society of Rutgers University for excellence in science teaching. New Jersey awarded the curriulum a Best Practice Award for 2003. Goals and strategies of the curriculum are detailed in a guide written for the courses. Professional development for the courses and resources for mentoring programs are the responsibility of the District Science Supervisor, and have been fostered over the years with the assistance of local colleges and universities including Rutgers Univesity, Monmouth University, University of Medicine and Dentistry of New Jersey, Liberty Science Center of New Jersey's Partners in Science Program, as well as local industries including Hatco Corporation, Merck Corporation, Englehard Corporation, and Lucent Technologies. Science Research teachers have conducted developmental workshops for school districts interested in implementing similar curricula.

  3. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  4. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...

  5. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...

  6. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...

  7. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...

  8. Definition of Life Sciences laboratories for shuttle/Spacelab. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research requirements and the laboratories needed to support a Life Sciences research program during the shuttle/Spacelab era were investigated. A common operational research equipment inventory was developed to support a comprehensive but flexible Life Sciences program. Candidate laboratories and operational schedules were defined and evaluated in terms of accomodation with the Spacelab and overall program planning. Results provide a firm foundation for the initiation of a life science program for the shuttle era.

  9. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    ERIC Educational Resources Information Center

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an…

  10. Valuing Professional Development Components for Emerging Undergraduate Researchers

    NASA Astrophysics Data System (ADS)

    Cheung, I.

    2015-12-01

    In 2004 the Hatfield Marine Science Center (HMSC) at Oregon State University (OSU) established a Research Experience for Undergraduates (REU) program to engage undergraduate students in hands-on research training in the marine sciences. The program offers students the opportunity to conduct research focused on biological and ecological topics, chemical and physical oceanography, marine geology, and atmospheric science. In partnership with state and federal government agencies, this ten-week summer program has grown to include 20+ students annually. Participants obtain a background in the academic discipline, professional development training, and research experience to make informed decisions about careers and advanced degrees in marine and earth system sciences. Professional development components of the program are designed to support students in their research experience, explore career goals and develop skills necessary to becoming a successful young marine scientist. These components generally include seminars, discussions, workshops, lab tours, and standards of conduct. These componentscontribute to achieving the following professional development objectives for the overall success of new emerging undergraduate researchers: Forming a fellowship of undergraduate students pursuing marine research Stimulating student interest and understanding of marine research science Learning about research opportunities at Oregon State University "Cross-Training" - broadening the hands-on research experience Exploring and learning about marine science careers and pathways Developing science communication and presentation skills Cultivating a sense of belonging in the sciences Exposure to federal and state agencies in marine and estuarine science Academic and career planning Retention of talented students in the marine science Standards of conduct in science Details of this program's components, objectives and best practices will be discussed.

  11. US Army Research Office research in progress, July 1, 1991--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    The US Army Research Office, under the US Army Materiel Command (AMC), is responsible for coordinating and supporting research in the physical and engineering sciences, in materials science, geosciences, biology, and mathematics. This report describes research directly supported by the Army Research Projects Agency, and several AMC and other Army commands. A separate section is devoted to the research program at the US Army Research, Development and Standardization Group - United Kingdom. The present volume includes the research program in physics, chemistry, biological sciences, mathematics, engineering sciences, metallurgy and materials science, geosciences, electronics, and the European Research Program. It coversmore » the 12-month period from 1 July 1991 through 30 June 1992.« less

  12. NASA Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.

  13. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    ERIC Educational Resources Information Center

    Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2009-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…

  14. Research Ethics with Undergraduates in Summer Research Training Programs

    NASA Astrophysics Data System (ADS)

    Cheung, I.; Yalcin, K.

    2016-02-01

    Many undergraduate research training programs incorporate research ethics into their programs and some are required. Engaging students in conversations around challenging topics such as conflict of interest, cultural and gender biases, what is science and what is normative science can difficult in newly formed student cohorts. In addition, discussing topics with more distant impacts such as science and policy, intellectual property and authorship, can be difficult for students in their first research experience that have more immediate concerns about plagiarism, data manipulation, and the student/faculty relationship. Oregon State University's Research Experience for Undergraduates (REU) in Ocean Sciences: From Estuaries to the Deep Sea as one model for incorporating a research ethics component into summer undergraduate research training programs. Weaved into the 10-week REU program, undergraduate interns participate in a series of conversations and a faculty mentor panel focused on research ethics. Topics discussed are in a framework for sharing myths, knowledge and personal experiences on issues in research with ethical implications. The series follows guidelines and case studies outlined from the text, On Being A Scientist: Responsible Conduct In Research Committee on Science, Engineering, and Public Policy, National Academy of Sciences.

  15. 75 FR 18241 - Proposal Review Panel for Materials Research Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research Notice of Meeting In... Rieker, Program Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230...

  16. 77 FR 20852 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In.... Thomas Rieker, Program Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230...

  17. Health Science Students' Perception about Research Training Programs Offered in Saudi Universities

    ERIC Educational Resources Information Center

    Al Kuwaiti, Ahmed; Subbarayalu, Arun Vijay

    2015-01-01

    Purpose: The purpose of this paper was to examine the perceptions of students of health sciences on research training programs offered at Saudi universities. Design/methodology/approach: A cross-sectional survey design was adopted to capture the perceptions of health science students about research training programs offered at selected Saudi…

  18. Evaluation of the Long-Term Impact of a University High School Summer Science Program on Students' Interest and Perceived Abilities in Science

    ERIC Educational Resources Information Center

    Markowitz, Dina G.

    2004-01-01

    Many biomedical research universities have established outreach programs for precollege students and teachers and partnerships with local school districts to help meet the challenges of science education reform. Science outreach programs held in university research facilities can make science more exciting and innovative for high school students…

  19. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  20. Space Life Sciences Research and Education Program

    NASA Technical Reports Server (NTRS)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  1. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    NASA Astrophysics Data System (ADS)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one-third are the first in their families to attend college. For eight weeks, SURGE scholars conduct independent research with the guidance of faculty, research group mentors, and program assistants. The primary objectives of the SURGE program are to (1) provide undergraduates with a research experience in SES; (2) prepare undergraduates for the process of applying to graduate school; (3) introduce undergraduates to career opportunities in the geosciences and engineering; and (4) increase diversity in SES graduate programs. Independent research, network building, and intense mentoring culminate in a final oral and poster symposium. SESUR and SURGE scholars jointly participate in enrichment activities including faculty research seminars; career, graduate school, and software training workshops; GRE preparation classes; and geoscience-oriented field trips. Interaction among our students takes place through both research and enrichment activities, creating a critical mass of undergraduate scholars and promoting community development. Pre- and post-program surveys indicate that the overall goals of both programs are being achieved.

  2. Teacher Research Experience Programs = Increase in Student Achievement

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2010-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.

  3. Science Programs

    Science.gov Websites

    Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los Laboratory Delivering science and technology to protect our nation and promote world stability Science &

  4. 77 FR 61433 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Program Director, Materials Research Science and Engineering Centers Program, Division of Materials...

  5. 77 FR 2095 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Person: Dr. Thomas Rieker, Program Director, Materials Research Science and Engineering Centers Program...

  6. 77 FR 47676 - Comment Request: Experimental Program to Stimulate Competitive Research Jurisdictional Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... Research Jurisdictional Survey AGENCY: National Science Foundation. ACTION: Notice. SUMMARY: Under the... Program to Stimulate Competitive Research Jurisdictional Survey Evaluation for the National Science... objective of the Foundation to strengthen science and engineering research potential and education at all...

  7. 77 FR 6826 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Program Director, Materials Research Science and Engineering Centers Program, Division of Materials...

  8. 77 FR 25503 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...: Dr. Sean L. Jones, Program Director, Materials Research Science and Engineering Centers Program...

  9. 78 FR 5505 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site Visit review of the Materials Research Science and.... Charles Bouldin, Program Director, Materials Research Science and Engineering Centers Program, Division of...

  10. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the k · p Model

    NASA Astrophysics Data System (ADS)

    Wang, Chang; Pan, Wenwu; Kolokolov, Konstantin; Wang, Shumin

    2018-05-01

    Not Available Supported by the National Basic Research Program of China under Grant No 2014CB643902, the Key Program of Natural Science Foundation of China under Grant No 61334004, the National Natural Science Foundation of China under Grant No 61404152, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1, the Foundation of National Laboratory for Infrared Physics, the Key Research Program of the Chinese Academy of Sciences under Grant No KGZD-EW-804, and the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492.

  11. GSD Update: Year in Review: Spotlight on 2015 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah Finch

    2016-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research...

  12. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  13. NRC Grants for Federal Research

    NASA Astrophysics Data System (ADS)

    The National Research Council is accepting applications for the 1989 Resident, Cooperative, and Postdoctoral Research Associateship Programs in science and engineering. NRC administers the awards for 30 federal agencies and research institutions, which have 115 participating laboratories in the U.S.About 450 new full-time Associateships will be given for research in biological, health, behaviorial sciences and biotechnology; chemistry; Earth and atmospheric sciences; engineering and applied sciences; mathematics; physics; and space and planetary sciences. Most of the programs are open to recent Ph.D.s and senior investigators and to citizens of the U.S. and other countries. More than 5500 scientists have received Associateships since the programs began in 1954.

  14. Designing and implementing an authentic science research program

    NASA Astrophysics Data System (ADS)

    Rosvally, Harry Edward, Jr.

    Science research programs have become a popular elective course in high schools around the country. As the popularity of these programs grows, school districts need a guide by which to implement science research in their own schools. This study sought to provide this information by answering the following questions: (1) What are the most important features in existing research program models? (2) How do schools that have an existing research program define "success"? (3) How do different factors (i.e., budget, professional development, scheduling, recruitment effort, curriculum, and mentors) affect the scope and implementation of a research program? (4) Which features and factors support inclusiveness as a goal for a research program? (5) What kinds of indicators are appropriate for assessing the progress toward an inclusive science research program? After reviewing the literature, six sites with existing research programs were selected for participation in the study. Interviews with teachers and students were conducted during site visits. Interviews with mentors were conducted by telephone. Although the six models in this study were different from one another, there were common characteristics. Students conducted their own review of the literature. Upon completion of the actual research, students published or otherwise communicated their findings to the larger scientific community through regional and national competitions and non-competitive science symposia. This study was also able to identify significant elements that contribute to successful programs. These included: teacher selection; budget requirements; mentor qualities; recruitment and retention practices; and overall structure. As a result of the findings during the research, this study makes recommendations for the successful implementation of a research program.

  15. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  16. Environmental Management Science Program Workshop. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as thatmore » performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.« less

  17. Evaluating the High School Lunar Research Projects Program

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science instrument is an open-ended, modified version of the Views of Nature of Science questionnaire. The science attitudes Likert-scale instrument is a modified version of the Attitudes Toward Science Inventory. The lunar science content instrument was developed by CLSE education staff. All three of these instruments are administered to students before and after their research experience to measure the program's impact on student views of the nature of science, attitudes toward science, and knowledge of lunar science. All instruments are administered online via Survey Monkey®. When asked if the program changed the way they view the Moon, 77.4% of students (n=53) replied "yes" and described their increase in knowledge of the formation of the Moon, lunar surface processes, etc. Just under half (41.5%) of the students reported that their experience in the program has contributed to their consideration of a career in science. When asked about obstacles teams had to overcome, teachers described issues with time, student motivation and technology. However, every teacher enthusiastically agreed that the authentic research experience was worthwhile to their students. Detailed evaluation results for the 2011-2012 program will be presented.

  18. The Quantitative Evaluation of the Clinical and Translational Science Awards (CTSA) Program Based on Science Mapping and Scientometric Analysis

    PubMed Central

    Zhang, Yin; Wang, Lei

    2013-01-01

    Abstract The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. PMID:24330689

  19. The quantitative evaluation of the Clinical and Translational Science Awards (CTSA) program based on science mapping and scientometric analysis.

    PubMed

    Zhang, Yin; Wang, Lei; Diao, Tianxi

    2013-12-01

    The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. © 2013 Wiley Periodicals, Inc.

  20. Career Resources

    Science.gov Websites

    Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs

  1. New Hire

    Science.gov Websites

    Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs

  2. Science experiences of citizen scientists in entomology research

    NASA Astrophysics Data System (ADS)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and the value of qualitative methodologies in citizen science research. Citizen science is championed for its ability to extend the geographic, temporal and spatial reach of a research team. It can also extend the educational reach through citizen scientists that have acquired the role of expert.

  3. Teachers' voices: A comparison of two secondary science teacher preparation programs

    NASA Astrophysics Data System (ADS)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M-teachers' perceptions of the philosophy of their program revolved about research based teaching. S-teachers reported more research experiences. S-teachers perceived better student-science faculty relationship, while M-teachers reported stronger student-education faculty relationships. Teachers from both programs recommended more field experiences that resembled more closely the real life situations of teachers. They recommended smaller classes in both science and education courses. They suggested eliminating or altering courses that were not beneficial.

  4. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  5. Science to Protect Public Health and the Environment--EPA Research Program Overview 2016-2019

    EPA Pesticide Factsheets

    This document provides an overview of EPA’s research programs within the Office of Research and Development. This critically important work is providing the science needed to address the biggest problems facing environmental science.

  6. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  7. NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Szofran, Frank

    2008-01-01

    The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.

  8. Human Research Program Science Management: Overview of Research and Development Activities

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  9. People and the Arctic: A Prospectus for Research on the Human Dimensions of the Arctic System (HARC) for the National Science Foundation Arctic System Science Program.

    ERIC Educational Resources Information Center

    Arctic Research Consortium of the United States, Fairbanks, AK.

    The U.S. Global Change Research Program was established in 1990 to develop scientific projections of anticipated impacts of the changing biosphere on humans and social systems. As part of this program, the National Science Foundation created the Arctic System Science Program (ARCSS). This document describes the ARCSS Human Dimensions of the Arctic…

  10. Environmental Sciences Division annual progress report for period ending September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  11. Geocognition Research: An International Discipline (Invited)

    NASA Astrophysics Data System (ADS)

    Libarkin, J.

    2009-12-01

    Geocognition and geoscience education research have experienced a dramatic increase in research productivity and graduate student training in the past decade. At this writing, over twelve U.S. graduate programs dedicated to geocognition and geoscience education research exist within geoscience departments, with numerous other programs housed within education. International research programs are experiencing similar increases in these research domains. This insurgence of graduate training opportunities is due in large part to several factors, including: An increased awareness of the importance of Earth Systems Science to public understanding of science, particularly in light of global concern about climate change; new funding opportunities for science education, cognitive science, and geoscience education research; and, engagement of a significant part of the geosciences and education communities in writing new standards for Earth Systems literacy. Existing research programs blend geoscience content knowledge with research expertise in education, cognitive science, psychology, sociology and related disciplines. Research projects reflect the diversity of interests in geoscience teaching and learning, from investigations of pedagogical impact and professional development to studies of fundamental geocognitive processes.

  12. GSD Update: Year in Review: Spotlight on 2013 research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah M. Finch

    2014-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research priorities of the...

  13. GSD Update: Year in Review: Spotlight on 2014 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah Finch; David Hawksworth

    2015-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research priorities of the...

  14. Overview of Space Science and Information Research Opportunities at NASA

    NASA Technical Reports Server (NTRS)

    Green, James L.

    2000-01-01

    It is not possible to review all the opportunities that NASA provides to support the Space Science Enterprise, in the short amount of time allotted for this presentation. Therefore, only a few key programs will be discussed. The programs that I will discuss will concentrate on research opportunities for faculty, graduate and postdoctoral candidates in Space Science research and information technologies at NASA. One of the most important programs for research opportunities is the NASA Research Announcement or NRA. NASA Headquarters issues NRA's on a regular basis and these cover space science and computer science activities relating to NASA missions and programs. In the Space Sciences, the most important NRA is called the "Research Opportunities in Space Science or the ROSS NRA. The ROSS NRA is composed of multiple announcements in the areas of structure and evolution of the Universe, Solar System exploration, Sun-Earth connections, and applied information systems. Another important opportunity is the Graduate Student Research Program (GSRP). The GSRP is designed to cultivate research ties between a NASA Center and the academic community through the award of fellowships to promising students in science and engineering. This program is unique since it matches the student's area of research interest with existing work being carried out at NASA. This program is for U.S. citizens who are full-time graduate students. Students who are successful have made the match between their research and the NASA employee who will act as their NASA Advisor/ Mentor. In this program, the student's research is primarily accomplished under the supervision of his faculty advisor with periodic or frequent interactions with the NASA Mentor. These interactions typically involve travel to the sponsoring NASA Center on a regular basis. The one-year fellowships are renewable for up to three years and over $20,000 per year. These and other important opportunities will be discussed.

  15. Helping Teachers Teach Plasma Physics

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2008-11-01

    Lawrence Livermore National Laboratory's E/O program in Fusion Science and Plasma Physics now includes both `pre-service' as well as `in-service' high school science teacher professional development activities. Teachers are instructed and mentored by `master teachers' and LLNL plasma researchers working in concert. The Fusion/Plasma E/O program exploits a unique science education partnership that exists between LLNL's Science Education Program and the UC Davis Edward Teller Education Center. For `in-service' teachers, the Fusion & Astrophysics Teacher Research Academy (TRA) has four levels of workshops that are designed to give in-service high school science teachers experience in promoting and conducting research, most notably in the filed of plasma spectroscopy. Participating teachers in all four TRA levels may earn up to ten units of graduate credit from Cal-State University East Bay, and may apply these units toward a Masters of Science in Education. For `pre-service' teachers, the Science Teacher and Researcher (STAR) program, as a partnership with the California State University System, includes attracting undergraduate science majors to teaching careers by allowing them to pursue professional identities as both a research scientist as well as a science teacher. Participating `pre-service' STAR students are provided research internships at LLNL and work closely with the `in-service' TRA teachers. Results from the continuum `pre-service' to `in-service' science teacher professional development programs will be presented.

  16. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  17. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  18. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  19. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...

  20. Evaluation of NSF's Program of Grants and Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE)

    ERIC Educational Resources Information Center

    National Academies Press, 2009

    2009-01-01

    In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,…

  1. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  2. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    NASA Astrophysics Data System (ADS)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  3. Advancing Research in the National Science Foundation's Advanced Technological Education Program

    ERIC Educational Resources Information Center

    Wingate, Lori A.

    2017-01-01

    Advanced Technological Education is distinct from typical National Science Foundation programs in that it is essentially a training--not research--program, and most grantees are located at technical and two-year colleges. This article presents empirical data on the status of research in the program, discusses the program's role in supporting NSF's…

  4. Innovations in Ocean Sciences Education at the University of Washington

    NASA Astrophysics Data System (ADS)

    Robigou, V.

    2003-12-01

    A new wave of education collaborations began when the national science education reform documents (AAAS Project 2061 and National Science Education Standards) recommended that scientific researchers become engaged stakeholders in science education. Collaborations between research institutions, universities, nonprofits, corporations, parent groups, and school districts can provide scientists original avenues to contribute to education for all. The University of Washington strongly responded to the national call by promoting partnerships between the university research community, the K-12 community and the general public. The College of Ocean and Fishery Sciences and the School of Oceanography spearheaded the creation of several innovative programs in ocean sciences to contribute to the improvement of Earth science education. Two of these programs are the REVEL Project and the Marine Science Student Mobility (MSSM) program that share the philosophy of involving school districts, K-12 science teachers, their students and undergraduate students in current, international, cutting-edge oceanographic research. The REVEL Project (Research and Education: Volcanoes, Exploration and Life) is an NSF-funded, professional development program for middle and high school science teachers that are determined to use deep-sea research and seafloor exploration as tools to implement inquiry-based science in their classrooms, schools, and districts, and to share their experiences with their communities. Initiated in 1996 as a regional program for Northwest science educators, REVEL evolved into a multi-institutional program inviting teachers to practice doing research on sea-going research expeditions. Today, in its 7th year, the project offers teachers throughout the U. S. an opportunity to participate and contribute to international, multidisciplinary, deep-sea research in the Northeast Pacific ocean to study the relationship between geological processes such as earthquakes and volcanism, fluid circulation and life on our planet. http://www.ocean.washington.edu/outreach/revel/ The Marine Science Student Mobility program is a FIPSE-funded program that fosters communication and collaboration across cultural and linguistic boundaries for undergraduate students interested in pursuing careers in marine sciences. A consortium of six universities in Florida, Hawaii, Washington, Belgium, Spain and France offers a unique way to study abroad. During a six month exchange, students acquire foreign language skills, cultural awareness and ocean sciences field study in one of the four major oceanographic areas: the Atlantic, the Pacific, the Gulf of Mexico and the Mediterranean. The program not only promotes cultural understanding among the participant students but among faculty members from different educational systems, and even among language and science faculty members. Understanding how different cultures approach, implement, and interpret scientific research to better study the world's oceans is the cornerstone of this educational approach. http://www.marine-language-exch.org/ Similar collaborative, educational activities could be adapted by other research institutions on many campuses to provide many opportunities for students, teachers and the general public to get involved in Earth and ocean sciences.

  5. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  6. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.

  7. Mapping Out-of-School-Time Youth Science Programs: Organizational Patterns and Possibilities

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Archie, T.; Thiry, H.

    2012-12-01

    Out-of-school-time (OST) experiences promise to enrich young (K-12) people's experience of science, technology and engineering. Belief is widespread that OST programs are ideal locations to learn science, and that youth participation may enhance the science workforce and increase access to science for girls and minorities. Yet we know little about the scope or nature of science-focused OST youth programming. Variety poses a challenge for researchers, with OST sites in schools, museums, zoos, science and nature centers, aquariums, planetariums, and community centers; and formats including after-school clubs, camps, workshops, festivals, research apprenticeships, and more. Moreover, there is no single national network through which researchers might reach and recruit nationally representative samples of programs. Thus, to date there has been no systematic study of the broader national landscape of OST STEM programming. Our national study, Mapping Out-of-School-Time Science (MOST-Science), examines a national sample of OST programs focused on science, engineering, and/or technology. Here we describe first findings about the characteristics of these programs and their home organizations, including aspects of program design, structure, funding, staffing, and youth audience. Using an electronic survey, we collected data from 417 programs and classified their host institutions into eight organizational types: aquariums and zoos, museums, non-profits, national youth organizations, K-12 school districts, colleges and universities, government labs, and private sector organizations. We then examine key attributes of the youth programs hosted by these institution and discuss differences based on organizational types, including scientific organizations that are especially well equipped to offer research and field experiences. Programs engaging youth in research and field experiences are offered across all organizational types. Yet they vary notably in the size and demographics of the youth populations they serve, and their interest or ability to target particular youth groups. We observe that organizations implementing youth OST science programs are often networked to other organizations similar to themselves, but unaware of related work in other sectors. Therefore, understanding the characteristics of organizations that host youth science programs may help organizations to achieve general goals such as increasing diversity, increasing accessibility, improving funding, improving program evaluation, and improving program content. For example, smaller organizations with limited resources could adopt proven strategies to increase diversity and access from larger organizations with more resources to initially develop these strategies. University programs might draw effectively upon best practices of similar programs offered by museums or non-profits. By providing a better picture of the strengths of different organizations as youth OST science providers, we hope to suggest unfilled niches for practitioners to pursue, and to highlight potential networking opportunities among organizations that can enhance youth research and field-based learning programs.

  8. A 10-Year Review of the Food Science Summer Scholars Program: A Model for Research Training and for Recruiting Undergraduate Students into Graduate Programs and Careers in Food Science

    ERIC Educational Resources Information Center

    Roberts, Angela J.; Robbins, Janette; McLandsborough, Lynne; Wiedmann, Martin

    2010-01-01

    A pressing problem facing regulatory agencies, academia, and the food industry is a shortage of qualified food science graduates, particularly those with advanced degrees (that is, M.S. or Ph.D.). In 2000, the Cornell Institute of Food Science established the annual Food Science Summer Scholars Program as an experiential summer research program…

  9. What Works! Encouraging Diversity in Science, Mathematics, Engineering, and Technology through Effective Mentoring. A 5-Year Overview of the Research Careers for Minority Scholars Program.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Directorate for Education and Human Resources.

    The National Science Foundation's (NSF) Research Careers for Minority Scholars (RCMS) program was initiated to encourage individuals from underrepresented groups in science, mathematics, engineering and technology (SMET) disciplines to complete undergraduate degree programs and matriculate to SMET graduate degree programs. This report describes…

  10. Evaluation of the Initial Impacts of the National Science Foundation's Integrative Graduate Education and Research Traineeship Program: Final Report

    ERIC Educational Resources Information Center

    Carney, Jennifer; Chawla, Deepika; Wiley, Autumn; Young, Denise

    2006-01-01

    This report summarizes findings from an evaluation of the impacts of the National Science Foundation's (NSF) Integrative Graduate Education and Research Traineeships (IGERT) program. Through support of interdisciplinary graduate education programs in Science, Technology, Engineering, and Mathematics, the IGERT program aims to educate U.S.…

  11. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    NASA Astrophysics Data System (ADS)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  12. Effect of Hyper-Resistivity on Nonlinear Tearing Modes

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Li, Ding; Xu, Xue-qiao

    2018-06-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 11675257, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB16010300, the Key Research Program of Frontier Science of Chinese Academy of Sciences under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of Chinese Academy of Sciences under Grant No 112111KYSB20160039. This material is based upon the work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, LLNL-JRNL-748586.

  13. Developing a Successful High School Science Research Program via Teacher Training, Student Internships, and Community Support

    NASA Astrophysics Data System (ADS)

    Danch, J. M.; Darytichen, F.

    2004-12-01

    The purpose of the Science Research Program is to allow students to perform authentic scientific research in disciplines of their choosing over a period of 3 years. The success of the program has allowed for expansion including community involvement, student mentorship, and a series of professional development programs. Through state and national competition and community symposia, student research is evaluated, showcased, and subsequently supported both idealistically and financially by local government and industrial partnerships. Student internships and university/industrial mentorship programs allow students to pursue research topics and utilize equipment exceeding the scope of the secondary science classroom. Involved teachers have developed and delivered professional development workshops to foster the successful implementation of scientific research programs at additional high schools throughout the state.

  14. In-Depth Science Research Experiences for Teens: The AMNH-ITEST High School Science Research Program. Summative Evaluation Report

    ERIC Educational Resources Information Center

    Smith, Anita

    2008-01-01

    In January 2005, the American Museum of Natural History (AMNH) was awarded a three-year ITEST grant (Innovative Technology Experiences for Students and Teachers) through the National Science Foundation (award #04-23417). This "AMNH-ITEST High School Science Research Program" aimed to target 120 urban high school youth, grades 10-12, from…

  15. Effects of an Inquiry-Based Science Program on Critical Thinking, Science Process Skills, Creativity, and Science Fair Achievement of Middle School Students

    ERIC Educational Resources Information Center

    Longo, Christopher M.

    2012-01-01

    This study investigated the impact of an inquiry-based science program on the critical thinking skills, science process skills, creativity, and science fair achievement of middle school students. Although research indicates the connection between inquiry and achievement, there is limited empirical research relating specific inquiry-based programs…

  16. Cognitive and Neural Sciences Division 1990 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Jr., Ed.

    Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…

  17. 77 FR 56876 - Agency Information Collection Activities; Comment Request: Office of Inspector General Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... assistance from the Foundation for science and engineering research or education describe in its grant... Research Program AGENCY: National Science Foundation. ACTION: Notice. SUMMARY: The National Science... NSF's Requirement for a Responsible Conduct of Research Program. OMB Approval Number: 3145-NEW...

  18. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less

  19. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  20. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    NASA Astrophysics Data System (ADS)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  1. The Effective Research-Based Characteristics of Professional Development of the National Science Foundation's GK-12 Program

    ERIC Educational Resources Information Center

    Cormas, Peter C.; Barufaldi, James P.

    2011-01-01

    This study investigates the effective research-based characteristics of professional development (ERBCPD) of the National Science Foundation's GK-12 Program--a program which partners institutions of higher education with local school districts and places science, technology, engineering, and mathematics graduates in the K-12 classroom with…

  2. Establishing a Student Research and Publishing Program in High School Physics

    ERIC Educational Resources Information Center

    Eales, Jonathan; Laksana, Sangob

    2016-01-01

    Student learning in science is improved by authentic personal experience of research projects and the publication of findings. Graduate students do this, but it is uncommon to find student research and publishing in high school science programs. We describe here the Student Research and Publishing Program (SRPP) established at International School…

  3. Phase 1 research program overview

    NASA Technical Reports Server (NTRS)

    Uri, J. J.; Lebedev, O. N.

    2001-01-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.

  4. Phase 1 research program overview.

    PubMed

    Uri, J J; Lebedev, O N

    2001-01-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.

  5. Microgravity science and applications projects and payloads

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.

    1987-01-01

    An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.

  6. Experimental Observation of the Ground-State Geometric Phase of Three-Spin XY Model

    NASA Astrophysics Data System (ADS)

    Hui, Zhou; Zhao-Kai, Li; Heng-Yan, Wang; Hong-Wei, Chen; Xin-Hua, Peng; Jiang-Feng, Du

    2016-06-01

    Not Available Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700, the National Science Fund for Distinguished Young Scholars under Grant No 11425523, the National Natural Science Foundation of China under Grant Nos 11375167, 11227901, 91021005 and 11575173, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01030400, the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044, the China Postdoctoral Science Foundation, and the Fundamental Research Funds for the Central Universities.

  7. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  8. Materials sciences programs, fiscal year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less

  9. Teacher Research Programs = Increased Student Achievement

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2011-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university professional development programs for science teachers in the U.S. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University's research faculty. In addition to the laboratory experience, all teachers meet weekly during the summer for a series of pedagogical activities to assist them in transferring the experience to their classrooms. The primary goal of the program is to provide K-12 science teachers with opportunities to work at the cutting edge of science and engineering, and thus to revitalize their teaching and help them to appreciate the use of inquiry-based methods in their classroom instruction. The secondary goals of the program are to give the pre-college teacher the ability to guide their students toward careers in science and engineering, to develop new teaching strategies, and to foster long-term scholarly collaborations. The last is especially important as it leads to a model of the teacher as active in science yet committed to the pre-college classroom. Since its inception, SRP has focused on an objective assessment of the program's impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors' laboratories, and most importantly, on the impact of their participation in the program has on student interest and performance in science. Our research resulted in a paper published in the journal Science. SRP also facilitates a multi-site survey-based evaluation of other teacher research programs around the country. The author will present the findings of both studies.

  10. GSD Update: Year in Review: Spotlight on 2017 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah M. Finch

    2018-01-01

    In this issue of the GSD Update, we feature selected studies of the RMRS Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that focus on the theme of fire. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic priorities and goals of the USDA Forest...

  11. GSD Update: Year in Review: Spotlight on 2016 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah M. Finch

    2017-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic priorities of the USDA...

  12. GSD Update: Year in Review: Spotlight on 2012 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah M. Finch

    2013-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystem Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science applications by GSD scientists are highlighted. We identify where program research lines up with the strategic priorities of the USDA...

  13. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Richey, Christina; Bernstein, Max; Rall, Jonathan

    2015-01-01

    Introduction: NASA's Planetary Science Division (PSD) solicits its Research and Analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD will be changing the structure of the program elements under which the majority of planetary science R&A is done. Major changes include the creation of five core research program elements aligned with PSD's strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submissionROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2014 submission changes: All PSD programs will use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.Additional Information: Additional details will be provided on the Cassini Data Analysis Program, the Exoplanets Research program and Discovery Data Analysis Program, for which Dr. Richey is the Lead Program Officer.

  14. Induction Programs for the Support and Development of Beginning Teachers of Science. National Science Teachers Association Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2007

    2007-01-01

    The National Science Teachers Association (NSTA) recommends that schools and teacher preparation programs provide new teachers of science with comprehensive induction programs. Research suggests these programs should address specifics for teachers of science, involve trained mentors, provide adequate time to support continual learning of new…

  15. Integrating emerging areas of nursing science into PhD programs.

    PubMed

    Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Stone, Patricia W; Redeker, Nancy S; McCarthy, Ann Marie; Alt-White, Anna C; Dunbar-Jacob, Jacqueline; Titler, Marita G; Moore, Shirley M; Heitkemper, Margaret M; Conley, Yvette P

    2015-01-01

    The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2010 American Association of Colleges of Nursing Position Statement "The Research-Focused Doctoral Program in Nursing: Pathways to Excellence," Idea Festival Advisory Committee members focused on emerging areas of science and technology that impact the ability of research-focused doctoral programs to prepare graduates for competitive and sustained programs of nursing research using scientific advances in emerging areas of science and technology. The purpose of this article is to describe the educational and scientific contexts for the Idea Festival, which will serve as the foundation for recommendations for incorporating emerging areas of science and technology into research-focused doctoral programs in nursing. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Does Doing Scientific Research in High School Correlate with Students Staying in Science? A Half-Century Retrospective Study

    NASA Astrophysics Data System (ADS)

    Roberts, Lesley F.; Wassersug, Richard J.

    2009-03-01

    The American Association for the Advancement of Science (AAAS) has declared in an advertising campaign that “you can’t start young enough” in science. However, there is no long-term data evaluating the effect of early exposure to original scientific research on producing career scientists. To address this issue, we examined a hands-on summer science research program for high school students that ran from 1958 to 1972. We compared participants in that program with science students that only began their hands-on research experience once in university. Our data indicate that students who are interested in science and have an opportunity to participate in original scientific research while in high school are significantly more likely ( p < .005) to both enter and maintain a career in science compared to students whose first research experience didn’t occur until university. Our data suggest that more hands-on high school science research programs could help increase the number of students entering and maintaining scientific careers, relieving the growing concern that North America is losing its leadership status in the international scientific community.

  17. Meyerhoff Scholars Program: a strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematics.

    PubMed

    Maton, Kenneth I; Pollard, Shauna A; McDougall Weise, Tatiana V; Hrabowski, Freeman A

    2012-01-01

    The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering, and mathematics PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are 5× more likely than comparison students to pursue a science, technology, engineering, and mathematics PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development, and emphasizing the importance of academic skills. Among Meyerhoff students, several precollege and college factors have emerged as predictors of successful entrance into a PhD program in the science, technology, engineering, and mathematics fields, including precollege research excitement, precollege intrinsic math/science motivation, number of summer research experiences during college, and college grade point average. Limitations of the research to date are noted, and directions for future research are proposed. © 2012 Mount Sinai School of Medicine.

  18. Actionable Science in the Gulf of Mexico: Connecting Researchers and Resource Managers

    NASA Astrophysics Data System (ADS)

    Lartigue, J.; Parker, F.; Allee, R.; Young, C.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) RESTORE Science Program was established in the wake of the Deepwater Horizon oil spill to to carry out research, observation, and monitoring to support the long-term sustainability of the Gulf of Mexico ecosystem, including its fisheries. Administered in partnership with the US Fish and Wildlife Service, the Science Program emphasizes a connection between science and decision-making. This emphasis translated into an engagement process that allowed for resource managers and other users of information about the ecosystem to provide direct input into the science plan for the program. In developing funding opportunities, the Science Program uses structured conversations with resource managers and other decision makers to focus competitions on specific end user needs. When evaluating proposals for funding, the Science Program uses criteria that focus on applicability of a project's findings and products, end user involvement in project planning, and the approach for transferring findings and products to the end user. By including resource managers alongside scientific experts on its review panels, the Science Program ensures that these criteria are assessed from both the researcher and end user perspectives. Once funding decisions are made, the Science Program assigns a technical monitor to each award to assist with identifying and engaging end users. Sharing of best practices among the technical monitors has provided the Science Program insight on how best to bridge the gap between research and resource management and how to build successful scientist-decision maker partnerships. During the presentation, we will share two case studies: 1) design of a cooperative (fisheries scientist, fisheries managers, and fishers), Gulf-wide conservation and monitoring program for fish spawning aggregations and 2) development of habitat-specific ecosystem indicators for use by federal and state resource managers.

  19. A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science

    PubMed Central

    Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa

    2015-01-01

    There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389

  20. Evaluating the High School Lunar Research Projects Program

    NASA Technical Reports Server (NTRS)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.

    2013-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.

  1. The influences and factors of an undergraduate research program in preparing women for science careers

    NASA Astrophysics Data System (ADS)

    Campbell, Ashley Mcdowell

    Progress has been made in diminishing barriers experienced by women in science in recent years, however obstacles still remain. One of the key elements of the Texas Tech University Howard Hughes Medical Institute (TTU/HHMI) Undergraduate Biological Sciences Education Program is to "support activities that broaden access to science for women." In light of the barriers women in science face, this dissertation examined how the experiences of females in the TTU/HHMI fellows program prepared them for a career in science. This study employed mixed methods, utilizing both a questionnaire involving all past female fellows, and in-depth interviews with seven fellows who chose a career as a professional scientist. According to the quantitative data, research experience, the relationship with mentors, and opportunities to present at state or national meetings were program factors that fellows identified as contributing to their career success. The TTU/HHMI program experiences positively influenced the fellows' level of interest in science, confidence in science, and motivation to pursue a science-related career. Encouragement from the mentor and increased confidence regarding the ability to be successful in science were significant predictors of career advantages. Motivation to pursue a science-related career was the most significant predictor of the fellows' preparation to overcome barriers. Qualitatively, six themes were identified for coding, which included (1) research experience, (2) the mentor, (3) support and interactions, (4) self-confidence, (5) career decisions, and (6) time demands related to a science career. The themes identified were important factors in preparing these past female fellows for a career in science by initiating a change in their attitudes, knowledge, and skills. With over 90% of past fellows currently pursuing a science career, the program, through research experience and encouraging mentors, made a large impact on the career paths of fellows. Data from this study support the premise that the TTU/HHMI program and similar programs that provide undergraduate women with research experiences and mentoring have the potential to increase the number of women pursuing and continuing in science careers.

  2. Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments

    Treesearch

    Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy

    2016-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...

  3. Charting the Impact of Federal Spending for Education Research: A Bibliometric Approach

    ERIC Educational Resources Information Center

    Milesi, Carolina; Brown, Kevin L.; Hawkley, Louise; Dropkin, Eric; Schneider, Barbara L.

    2014-01-01

    Impact evaluation plays a critical role in determining whether federally funded research programs in science, technology, engineering, and mathematics are wise investments. This paper develops quantitative methods for program evaluation and applies this approach to a flagship National Science Foundation-funded education research program, Research…

  4. Microgravity Research Results and Experiences from the NASA Mir Space Station Program

    NASA Technical Reports Server (NTRS)

    Schagheck, R. A.; Trach, B.

    2000-01-01

    The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Most importantly this paper highlights the various disciplines of microgravity research conducted during the International Space Station, Phase 1 Program onboard the Mir Station. A capsulation of significant research and the applicability of our findings are provided. In addition, a brief discussion of how future microgravity science gathering capabilities, hardware development and payload operations techniques have enhanced our ability to conduct long duration microgravity research.

  5. An Assessment of the Computer Science Activities of the Office of Naval Research

    DTIC Science & Technology

    1986-01-01

    A Panel of the Naval Studies Board of the National Research Council met for two days in October 1985 to assess the computer science programs of the ... Office of Naval (ONR). These programs are supported by the Contract Research Program (CRP) as well as the Naval Research Laboratory (NRL), the Naval

  6. A Balancing Act in the Third Space: Graduate-Level Earth Science in an Urban Teacher-Residency Program

    ERIC Educational Resources Information Center

    Zirakparvar, N. Alex

    2015-01-01

    This article describes a museum-based urban teacher-residency (UTR) program's approach to building subject-specific content knowledge and research experience in Earth Science teacher candidates. In the museum-based program, graduate-level science courses and research experiences are designed and implemented specifically for the UTR by active Earth…

  7. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  8. Cooperative Program In Space Science

    NASA Technical Reports Server (NTRS)

    Black, David

    2003-01-01

    The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  9. Program Qualities That Make a Field Research Experience Valuable to Classroom Teachers

    NASA Astrophysics Data System (ADS)

    Beckendorf, K.; Hammond, J.; McMahon, E.; Williams, E.; Bates, T.

    2005-12-01

    Numerous programs exists that pair K-12 teachers with scientists for summer research projects, and, overall, these programs are quite beneficial in a variety of ways. Some benefits of these programs to the teacher include providing real-world experiences that can be turned into classroom lessons, increasing the science teacher's own level of knowledge, and helping to reignite the teacher's enthusiasm for teaching. However, teacher research programs are not all created equal. Indeed, a vast gap exists between what a middle school science teacher experiences in his or her classroom and what a teacher experiences among a group of PhD researchers for a few weeks. To be effective, a teacher research program must bridge this gap. During my 14 years of teaching middle school science, I have participated in a number of authentic research experiences. Some of these include NOAA's Teacher at Sea (NEAQS/ICARTT), Teacher in the Woods (Portland State University- Andrew's Experimental Forest), and Teacher on Summer Assignment (Oregon Forest Resource Institute- Ochoco National Forest). During these programs and others, I have encountered various approaches to my preparation, support, and partnering, some of which were quite effective at helping me bridge the gap between the field and the classroom, and others which were less effective at doing so. As a middle school science teacher I have three goals. First, I want to teach in such a way that my students become curious and want to learn more about science. Secondly, I want to help students discover how to learn and process information in the manner that best suites their learning styles. Finally, I want to give students a strong science foundation on which to build future learning. Additionally, I must meet certain state, federal and local standards in my teaching of the sciences. Through my participation in teacher research programs, I have learned that certain aspects of these programs have been more effective than others in helping me bridge the gap between meeting these teaching goals in a middle school science classroom and being able to truly utilize, in the classroom, what I learn in these research programs. Thus, by highlighting these aspects I hope to aid in the ongoing improvement of these teacher research programs.

  10. U.S. Climate Change Science Program. Vision for the Program and Highlights of the Scientific Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The vision document provides an overview of the Climate Change Science Program (CCSP) long-term strategic plan to enhance scientific understanding of global climate change.This document is a companion to the comprehensive Strategic Plan for the Climate Change Science Program. The report responds to the Presidents direction that climate change research activities be accelerated to provide the best possible scientific information to support public discussion and decisionmaking on climate-related issues.The plan also responds to Section 104 of the Global Change Research Act of 1990, which mandates the development and periodic updating of a long-term national global change research plan coordinated through the National Science and Technology Council.This is the first comprehensive update of a strategic plan for U.S. global change and climate change research since the origal plan for the U.S. Global Change Research Program was adopted at the inception of the program in 1989.

  11. PhD programs in nursing in the United States: visibility of American Association of Colleges of Nursing core curricular elements and emerging areas of science.

    PubMed

    Wyman, Jean F; Henly, Susan J

    2015-01-01

    Preparing nursing doctoral students with knowledge and skills for developing science, stewarding the discipline, and educating future researchers is critical. This study examined the content of 120 U.S. PhD programs in nursing as communicated on program websites in 2012. Most programs included theory, research design, and statistics courses. Nursing inquiry courses were evidenced on only half the websites. Course work or research experiences in informatics were mentioned on 22.5% of the websites; biophysical measurement and genetics/genomics were mentioned on fewer than 8% of program websites. Required research experiences and instruction in scientific integrity/research ethics were more common when programs had Institutional Training Award funding (National Institutes of Health T32 mechanism) or were located at a university with a Clinical and Translational Science Award. Changes in education for the next generation of PhD students are critically needed to support advancement of nursing science. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Evolution of a Teacher Professional Development Program that Promotes Teacher and Student Research

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Croft, S. K.; Garmany, C. D.; Walker, C. E.

    2005-12-01

    The Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory have been evolving for nearly ten years. Our current program is actually a team of programs aiding teachers in doing research with small telescopes, large research-grade telescopes, astronomical data archives, and the Spitzer Space Telescope. Along the way, as these programs evolved, a number of basic questions were continuously discussed by the very talented program team. These questions included: 1) What is real research and why should we encourage it? 2) How can it be successfully brought to the classroom? 3) What is the relative importance of teacher content knowledge versus science process knowledge? 4) How frustrating should an authentic research experience be? 5) How do we measure the success of our professional development program? 6) How should be evaluate and publish student work? 7) How can teachers work together on a team to pursue research? 8) What is the model for interaction of teachers and researchers - equal partners versus the graduate student/apprentice model? 9) What is the ideal mix of skills for a professional development team at NOAO? 10) What role can distance learning play in professional preparation? 11) What tools are needed for data analysis? 12) How can we stay funded? Our evolving program has also been used as a test bed to examine new models of teacher's professional development that may aid our outreach efforts in the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program is funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  13. Mendelian genetics: Paradigm, conjecture, or research program

    NASA Astrophysics Data System (ADS)

    Oldham, V.; Brouwer, W.

    Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos's methodology of competing research programs are applied to a historical episode in biology. Each of these three models offers a different explanatory system for the development, neglect, and eventual acceptance of Mendel's paradigm of inheritance. The authors conclude that both rational and nonrational criteria play an important role during times of crisis in science, when different research programs compete for acceptance. It is suggested that Kuhn's model, emphasizing the nonrational basis of science, and Popper's model, emphasizing the rational basis of science, can be used fruitfully in high school science courses.

  14. Incorporating "Ethics in Science" into a Summer Undergraduate Research Program.

    ERIC Educational Resources Information Center

    Shachter, Amy M.; McNelis, Brian J.; Shanks, Thomas

    1999-01-01

    Describes a program at Santa Clara University, California where undergraduates participated in weekly Ethics in Science discussions while conducting scientific research. The program was successful in improving the ethical sensitivity, judgment, and commitment of the undergraduates. (WRM)

  15. Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana

    NASA Astrophysics Data System (ADS)

    Akinyemi, Felicia O.

    2018-05-01

    Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.

  16. Materials and Chemical Sciences Division annual report, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  17. Programs of the Office of the Science Advisor (OSA)

    EPA Pesticide Factsheets

    Office of the Science Advisor provides leadership in cross-Agency science and science policy. Program areas: Risk Assessment, Science and Technology Policy, Human Subjects Research, Environmental Measurement and Modeling, Scientific Integrity.

  18. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    NASA Technical Reports Server (NTRS)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  19. Outreach and education in urban Los Angeles Schools: integration of research into middle and high school science curriculum through the NSF GK-12 SEE-LA program

    NASA Astrophysics Data System (ADS)

    Daniel, J. C.; Hogue, T. S.; Moldwin, M. B.; Nonacs, P.

    2012-12-01

    A National Science Foundation Graduate Teaching Fellows in K- 12 Education program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/ ) partners UCLA faculty and graduate students (fellows) with urban middle and high school science teachers and their students to foster programs of science and engineering exploration that bring the environment of Los Angeles into the classroom. UCLA science and engineering graduate fellows serve as scientists-in-residence at four partner schools to integrate inquiry-based science lessons, facilitate advancements in science content teaching, and ultimately, to improve their own science communication skills. As part of their fellowship, graduate students are required to develop three "major" lessons, including one based on their PhD research at UCLA. During the first four years of the project, the SEE-LA fellows have developed a range of research-based activities, including lessons on sustainable fisheries, ecosystems and remote sensing, earthquakes, urban water quality including invertebrate observations, and post-fire soil chemistry, among others. This presentation will provide an overview of the SEE-LA GK-12 program and development of research lessons that also address California State Science Standards. We also discuss potential sustainability of GK-12 type outreach and education programs. The SEE-LA program has provided development of graduate student communication and teaching skills while also contributing significantly to the integration of science education into K-12 curriculum in Los Angeles schools.

  20. Engaging underserved audiences in informal science education through community-based partnerships

    NASA Astrophysics Data System (ADS)

    Bouzo, Suzanne

    This thesis explores the impact of the Science Education and Engagement of Denver (SEED) Partnership on three of its participant families. The partnership, consisting of large informal science organizations, as well as small community-based organizations, created its programming based on prior research identifying barriers to minority participation in informal science education programs. SEED aims to engage youth and families of emerging populations in science and nature. Three families were examined as a case study to have an in depth investigation about their involvement in the programs sponsored by the partnership. Findings suggest a positive impact on participant feelings and engagement in science and nature. Future recommendations are made for furthering programming as well as conducting a larger scale, more comprehensive program evaluation. This research addresses prior studies that have identified several barriers toward participation of underserved audiences in informal science education programs and how the SEED partnership has addressed specific identified barriers.

  1. Thinking Like a Scientist About Real-World Problems: The Cornell Institute for Research on Children Science Education Program

    ERIC Educational Resources Information Center

    Williams, Wendy, M.; Papierno, Paul, B.; Makel, Matthew, C.; Ceci, Stephen, J.

    2004-01-01

    We describe a new educational program developed by the Cornell Institute for Research on Children (CIRC), a research and outreach center funded by the National Science Foundation. Thinking Life A Scientist targets students from groups historically underrepresented in science (i.e., girls, people of color, and people from disadvantaged…

  2. Fire, Fuel, and Smoke Science Program: 2013 Research accomplishments

    Treesearch

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2014-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station, focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in...

  3. Tides, Krill, Penguins, Oh My!: Scientists and Teachers Partner in Project CONVERGE to Bring Collaborative Antarctic Research, Authentic Data, and Scientific Inquiry into the Hands of NJ and NY Students

    NASA Astrophysics Data System (ADS)

    Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.

    2016-02-01

    How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and education program.

  4. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  5. The Junior Science & Humanities Symposium: Management and Operations, 2003-2004. Theme--Atmosphere--The Other Ocean.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document reviews the Pacific Region Junior Science and Humanities Symposium (PJSHS) program for 2003-2004 which is a 10-month, precollege student research program held in Japan. The theme is AtmosphereThe Other Ocean. The program includes a one-week symposium of student delegates who have completed research projects in the sciences or have…

  6. Laboratory Directed Research and Development Program FY2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports themore » Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.« less

  7. Education programs of the Institute for Optical Sciences at the University of Toronto

    NASA Astrophysics Data System (ADS)

    Istrate, Emanuel; Miller, R. J. Dwayne

    2009-06-01

    The Institute for Optical Sciences at the University of Toronto is an association of faculty members from various departments with research interests in optics. The institute has an extensive program of academic activities, for graduate and undergraduate students, as well as public outreach. For undergraduate students, we have a course on holography. We provide opportunities for students to gain optics experience through research by providing access to summer research positions and by enrolling them in the Research Skills Program, a summer course teaching the basic skills needed in research. For graduate students, we offer the Distinguished Visiting Scientists program, where world-renowned researchers come for a week, giving a series of 3 lectures and interacting closely with students and professors. The extended stay allows the program to run like a mini-course. We launched a Collaborative Master's Program in Optics, where students earn a degree from their home department, along with a certification of participation in the collaborative program. Physics, Chemistry and Engineering students attending together are exposed to the various points of view on optics, ranging from the pure to the applied sciences. For the general public, we offer the Stoicheff Lecture, a yearly public lecture on optics, organized with the Royal Canadian Institute. Our institute also initiated Science Rendezvous, a yearly public celebration of science across the Greater Toronto Area, with lab tours, demonstrations, and other opportunities to learn about science and those who are actively advancing it. This year, this event attracted over 20,000 attendees.

  8. United States Air Force Graduate Student Research Program for 1990. Program Management Report

    DTIC Science & Technology

    1992-06-05

    were extensively studied using pencil lead breaks in a center notch. For the fatigue studies center crack samples of 2024 - T351 aluminum were used...Research Program (SFRP) provides opportunities for research in the physical sciences, engineering, and life sciences. The program has been effective ...positive effect on teaching. (WRDC/FDL) Several mentioned the opportunity for introduction to research interests of the Air Force and the opportunity to work

  9. Program of Research in Aeronautics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  10. An Investigation of Pre-Service Science Teachers' Level of Efficacy in the Undergraduate Science Teacher Education Program and Pedagogical Formation Program

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2017-01-01

    The purpose of this research is to comparatively investigate the efficacy levels of pre-service science (Science, Biology, Physics, and Chemistry) teachers enrolled at the Undergraduate Program of Science Teacher Education and Pedagogical Formation Program. A total of 275 pre-service teachers who were studying in different programmes in the…

  11. Harvard, Wisconsin Programs Aim to Improve Science Education.

    ERIC Educational Resources Information Center

    Krieger, James

    1983-01-01

    Describes two programs to improve science education. Harvard University will provide a teacher training program for mid- to late-career mathematicians/scientists in industry and will provide inservice programs for current science/mathematics teachers. University of Wisconsin's program involves a national institute to foster research in chemical…

  12. NASA/NSF Antarctic Science Working Group

    NASA Technical Reports Server (NTRS)

    Stoklosa, Janis H.

    1990-01-01

    A collection of viewgraphs on NASA's Life Sciences Biomedical Programs is presented. They show the structure of the Life Sciences Division; the tentative space exploration schedule from the present to 2018; the biomedical programs with their objectives, research elements, and methodological approaches; validation models; proposed Antarctic research as an analog for space exploration; and the Science Working Group's schedule of events.

  13. The Australian Science Facilities Program: A Study of Its Influence on Science Education in Australian Schools.

    ERIC Educational Resources Information Center

    Ainley, John G.

    This report is a study conducted by the Australian Council for Educational Research to evaluate the influence of science material resources, provided under the Australian Science Facilities Program, on science education in Australia. Under the Australian Science Facilities Program some $123 million was spent, between July 1964 and June 1975, on…

  14. The Intersections of Science and Practice: Examples From FitnessGram® Programming.

    PubMed

    Welk, Gregory J

    2017-12-01

    The FitnessGram® program has provided teachers with practical tools to enhance physical education programming. A key to the success of the program has been the systematic application of science to practice. Strong research methods have been used to develop assessments and standards for use in physical education, but consideration has also been given to ensure that programming meets the needs of teachers, students, parents, and other stakeholders. This essay summarizes some of these complex and nuanced intersections between science and practice with the FitnessGram® program. The commentaries are organized into 5 brief themes: science informing practice; practice informing science; balancing science and practice; promoting evidence-based practice; and the integration of science and practice. The article draws on personal experiences with the FitnessGram® program and is prepared based on comments shared during the 37th Annual C. H. McCloy Research Lecture at the 2017 SHAPE America - Society of Health and Physical Educators Convention.

  15. A Rapid Prototyping Look at NASA's Next Generation Earth-Observing Satellites; Opportunities for Global Change Research and Applications

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.

    2006-12-01

    The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.

  16. Mendelian Genetics: Paradigm, Conjecture, or Research Program.

    ERIC Educational Resources Information Center

    Oldham, V.; Brouwer, W.

    1984-01-01

    Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…

  17. 34 CFR 637.14 - What are special projects?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2012-07-01 2012-07-01 false What are special projects? 637.14 Section 637.14...

  18. 34 CFR 637.14 - What are special projects?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2013-07-01 2013-07-01 false What are special projects? 637.14 Section 637.14...

  19. 34 CFR 637.14 - What are special projects?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2010-07-01 2010-07-01 false What are special projects? 637.14 Section 637.14...

  20. 34 CFR 637.14 - What are special projects?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2014-07-01 2014-07-01 false What are special projects? 637.14 Section 637.14...

  1. 34 CFR 637.14 - What are special projects?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of... science research or education skills; (4) Research in science education; (5) Programs for visiting... 34 Education 3 2011-07-01 2011-07-01 false What are special projects? 637.14 Section 637.14...

  2. The perspectives and experiences of African American students in an informal science program

    NASA Astrophysics Data System (ADS)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  3. Publications of the biospheric research program: 1981-1987

    NASA Technical Reports Server (NTRS)

    Wallace, Janice S. (Editor)

    1988-01-01

    Presented is a list of publications of investigators supported by the Biospheric Research Program of the Biological Systems Research Branch, Life Sciences Division, and the Office of Space Science and Applications. It includes publications dated as of December 31, 1987 and entered into the Life Sciences Bibliographic Database at the George Washington University. Publications are organized by the year published.

  4. Institutional Context of Carbon Cycle Science Research in the U.S. and North America - A SOCCR perspective

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Cavallaro, N.; Ste-Marie, C.

    2016-12-01

    Carbon cycle science has been a research priority in the U.S. for decades. Interagency coordination interests and research needs in U.S. carbon cycle science led to the establishment of the U.S. Carbon Cycle Science Program, the North American Carbon Program (NACP), the Ocean Carbon and Biogeochemistry Program (OCB) and other intergovernmental collaboration platforms such as CarboNA, involving the U.S., Mexico and Canada. This presentation highlights some of these activities, and the historical context, the institutional frameworks and the operational mechanisms that have helped to facilitate and advance large scale collaborative research in carbon cycle in the U.S. and North America.

  5. One-dimensional ZnO nanostructure-based optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Kang, Zhuo; Liao, Qingliang; Zhang, Xiaomei; Zhang, Yue

    2017-10-01

    Not Available Project supported by the National Major Research Program of China (Grant No. 2013CB932602), the National Key Research and Development Program of China (Grant No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities, China (Grant No. B14003), the National Natural Science Foundation of China (Grant Nos. 51527802, 51232001, 51602020, 51672026, and 51372020), China Postdoctoral Science Foundation (Grant Nos. 2015M580981 and 2016T90033) Beijing Municipal Science & Technology Commission, China, the State Key Laboratory for Advanced Metals and Materials, China (Grant No. 2016Z-06), the Fundamental Research Funds for the Central Universities, China, and JST in Japan, Research and Education Consortium for Innovation of Advanced Integrated Science.

  6. NASA supported research programs

    NASA Technical Reports Server (NTRS)

    Libby, W. F.

    1975-01-01

    A summary of the scientific NASA grants and achievements accomplished by the University of California, Los Angles, is presented. The development of planetary and space sciences as a major curriculum of the University, and statistical data on graduate programs in aerospace sciences are discussed. An interdisciplinary approach to aerospace science education is emphasized. Various research programs and scientific publications that are a direct result of NASA grants are listed.

  7. 78 FR 35982 - Meetings of Humanities Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... History, Social Science, and Education, submitted to the Division of Research Programs. 5. Date: July 17..., Anthropology, Psychology, and History of Science, submitted to the Division of Research Programs. 11. Date...

  8. Community input requested

    NASA Astrophysics Data System (ADS)

    Fine, Rana A.; Walker, Dan

    In June 1996, the National Research Council (NRC) formed the Committee on Major U.S. Oceanographic Research Programs to foster coordination among the large programs (e.g., World Ocean Circulation Experiment, Ocean Drilling Program, Ridge Interdisciplinary Global Experiment, and others) and examine their role in ocean research. In particular, the committee is charged with (1) enhancing information sharing and the coordinated implementation of the research plans of the major ongoing and future programs; (2) assisting the federal agencies and ocean sciences community in identifying gaps, as well as appropriate followon activities to existing programs; (3) making recommendations on how future major ocean programs should be planned, structured and organized; and (4) evaluating the impact of major ocean programs on the understanding of the oceans, development of research facilities, education, and collegiality in the academic community. The activity was initiated at the request of the National Science Foundation (NSF) Division of Ocean Sciences, is overseen by the NRC's Ocean Studies Board (OSB), and is funded by both NSF and the Office of Naval Research.

  9. International Opportunities and Programs at NSF

    NASA Astrophysics Data System (ADS)

    Wodarczyk, F.

    2006-05-01

    The National Science Foundation's Office of International Science and Engineering (OISE) promotes the development of an integrated, Foundation-wide international strategy for international science and engineering activities both inside and outside NSF and manages international programs that are innovative, catalytic, and responsive to a broad range of NSF interests. Specifically, OISE supports programs to expand and enhance leading-edge international research and education opportunities for U.S. scientists and engineers, especially at the early career stage. It works to build and strengthen effective institutional partnerships throughout the global science and engineering research and education community, and it supports international collaborations in NSF's priority research areas. This talk will highlight opportunities for international collaboration for individuals at all levels of their careers, from student to established researcher, with examples of supported programs. Some recent activities focus on bringing together researchers in scientific disciplines and experts in cyberinfrastructure to promote and enable international data collection, manipulation, storage, and sharing via high-speed networks.

  10. Environmental Sciences Division: Summaries of research in FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principalmore » investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.« less

  11. Middle and high school students shine

    NASA Astrophysics Data System (ADS)

    Asher, Pranoti; Saltzman, Jennifer

    2012-02-01

    Middle and high school students participating in after-school and summer research experiences in the Earth and space sciences are invited to participate in AGU's Bright Students Training as Research Scientists (Bright STaRS) program. The Bright STaRS program provides a dedicated forum for these students to present their research results to the scientific community at AGU's Fall Meeting, where they can also learn about exciting research, education, and career opportunities in the Earth and space sciences. Last year's program included 33 abstracts from middle and high school students involved with the Stanford University School of Earth Sciences; Raising Interest in Science and Engineering summer internship program sponsored by the Office of Science Outreach at Stanford; Lawrence Hall of Science at the University of California, Berkeley; the University of California, Santa Cruz; California Academy of Science; San Francisco State University; the University of Arizona; and the National Oceanic and Atmospheric Administration's Gulf of the Farallones National Marine Sanctuary. Their work spanned a variety of topics ranging from structural geology and paleontology to environmental geology and polar science. Nearly 100 Bright STaRS students presented their research posters on Thursday morning (8 December) of the Fall Meeting and had a chance to interact with scientists, AGU staff, and other meeting attendees.

  12. Improving undergraduate biology education in a large research university.

    PubMed Central

    Bender, C; Ward, S; Wells, M A

    1994-01-01

    The campus-wide Undergraduate Biology Research Program (UBRP) at the University of Arizona improves undergraduate science education by expanding student opportunities for independent research in faculty laboratories. Within the supportive community of a research laboratory, underclassmen, nonscience majors, and those aspiring to scientific careers all learn to appreciate the process of science. The Program impacts more than the students, promoting departmental cooperation, interdisciplinary collaborations, and improvements in undergraduate science education throughout a Research I University. PMID:8018999

  13. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Bernstein, Max; Richey, Christina; Rall, Jonathan

    2015-11-01

    Introduction: NASA’s Planetary Science Division (PSD) solicits its research and analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD changed the structure of the program elements under which the majority of planetary science R&A is done. Major changes included the creation of five core research program elements aligned with PSD’s strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submission.ROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2015 submission changes: All PSD programs will continue to use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.

  14. The HSCaRS Summer Enrichment Program; Research Opportunities for Minority and Women Undergraduates in Global Change Science

    NASA Technical Reports Server (NTRS)

    Estes, Jr., Maurice G.; Perkey, Donald J.; Coleman, T. L.

    1997-01-01

    The primary objective of the HSCaRS Summer Enrichment Program (SEP) is to make significant contributions to the NASA Mission to Planet Earth (MTPE) and the Alabama A&M University (AAMU) Center for Hydrology, Soil Climatology and Remote Sensing (HSCaRS) research missions by providing undergraduate student research internships with an emphasis on minority and women students. Additional objectives are to encourage more minority and women students to pursue advanced degrees in Earth system and global change science and to increase the participation of minority institutions in the U.S. Global Change Research Program. Also, the SEP strives to make students in the traditional science disciplines more aware of the opportunities in Earth System Science. In designing the SEP, it was acknowledged that HSCaRS was a new research effort and Center. Consequently, students were not expected to immediately recognize the Center as one would older, more established research laboratories with national reputations, such as Los Alamos, Battelle, National Consortium for Atmospheric Research (NCAR), etc. Yet we still wanted to compete nationally for the best students. Therefore, we designed the program with a competitive financial package that includes a stipend of $400 per week, round-trip transportation from home to the summer research site, and free campus housing and meal plans provided by Alabama A&M University. Students also received a modest living allowance of approximately $25 per week. The internship program was 10 weeks in residence at Alabama A&M University or IGCRE, and gave students the opportunity to select from six general research areas: micro-meteorology, soil data analysis, soil moisture modeling, instrumentation, geographic information systems, and computer science. Student participants also enrolled in an introductory global change science course as part of the summer program (a copy of the course outline is in the appendix). The program included participation in a field program for approximately two weeks. All students were required to participate in the field program as a learning experience, regardless of the relationship of the field program to their majors or particular research project.

  15. Alliance for Computational Science Collaboration HBCU Partnership at Fisk University. Final Report 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. E.

    2004-08-16

    Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less

  16. 78 FR 38410 - Notice of Intent To Seek Approval To Establish an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... to address the effects of question design on survey estimates of public science knowledge and the... with Factual Knowledge of Science Survey Items. OMB Approval Number: 3145-NEW. Expiration Date: Not... research and programs to strengthen scientific research potential and science education programs in the...

  17. United States Air Force Summer Faculty Research Program for 1990. Program Management Report

    DTIC Science & Technology

    1991-06-05

    propagation characteristics were extensively studied using pencil lead breaks in a center notch. For the fatigue studies center crack samples of 2024 - T351 ... aluminum specimens during fatigue cycling. The experimental procedure involved excitation of Rayleigh waves on the surface of each specimen and...Research Program (SFRP) provides opportunities for research in the physical sciences, engineering, and life sciences. The program has been effective

  18. Undergraduates study climate change science, philosophy, and public policy

    NASA Astrophysics Data System (ADS)

    Bullock, Mark A.; Frodeman, Robert L.

    The National Science Foundation's (NSF) Research Experience for Undergraduates (REU) program provides undergraduate students with the opportunity to participate in ongoing scientific research. Existing either as stand-alone summer programs or as supplementary components to existing NSF research grants, the REU program focuses on introducing aspiring young scientists to the delights and complexities of science. Global Climate Change and Society (GCCS) is an intensive, 8-week REU program that began a 3-year run in the summer of 2001.Developed by a philosopher at the Colorado School of Mines, and a planetary scientist at Southwest Research Institute in Boulder, Colrado, GCCS is a unique experiment in research and pedagogy that introduces students to science by using a distinctive approach. Choosing as its topic the questions surrounding global climate change, the program explores the interwoven scientific, philosophical, and public policy issues that make the climate change debate such a volatile topic in contemporary society. Last summer, the program selected 12 undergraduates through a nationally advertised competition. Student interns came from diverse academic and cultural backgrounds and included physics, philosophy and public policy majors from elite liberal arts schools, major research institutions, and mainstream state universities. The program was held at the University of Colorado and the National Center for Atmospheric Research (NCAR), in Boulder, Colorado (Figure 1).

  19. NanoJapan: international research experience for undergraduates program: fostering U.S.-Japan research collaborations in terahertz science and technology of nanostructures

    NASA Astrophysics Data System (ADS)

    Phillips, Sarah R.; Matherly, Cheryl A.; Kono, Junichiro

    2014-09-01

    The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or `TeraNano'), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.

  20. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  1. 2002 NASA-HU Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    DePriest, Douglas J. (Compiler); Murray, Deborah B. (Compiler); Berg, Jennifer J. (Compiler)

    2004-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering and science faculty members spend 10 weeks working with professional peers on research. NASA HQs and the American Society for Engineering Education supervise the program. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate an exchange of ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of the participants' institutions; (4) To contribute to the research objectives of the NASA Center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program consisting of lectures and seminars relevant to the Fellows' research.

  2. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  3. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  4. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  5. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Frederick, Martin

    2006-01-01

    This presentation highlights the NASA Applied Sciences Program. The goal of the program is to extend the results of scientific research and knowledge beyond the science community to contribute to NASA's partners' applications of national priority, such as agricultural efficiency, energy management and Homeland Security. Another purpose of the program's scientific research is to increase knowledge of the Earth-Sun system to enable improved predictions of climate, weather, and natural hazards. The program primarily optimizes benefits for citizens by contributing to partnering on applications that are used by state, local and tribal governments.

  6. Distinction between critical current effects and intrinsic anomalies in the point-contact Andreev reflection spectra of unconventional superconductors

    NASA Astrophysics Data System (ADS)

    He, Ge; Wei, Zhong-Xu; Brisbois, Jérémy; Jia, Yan-Li; Huang, Yu-Long; Zhou, Hua-Xue; Ni, Shun-Li; Silhanek, Alejandro V.; Shan, Lei; Zhu, Bei-Yi; Yuan, Jie; Dong, Xiao-Li; Zhou, Fang; Zhao, Zhong-Xian; Jin, Kui

    2018-04-01

    Not Available Project supported by the National Key Basic Research Program of China (Grant Nos. 2015CB921000, 2016YFA0300301, and 2017YFA0302902), the National Natural Science Foundation of China (Grant Nos. 11674374 and 1474338), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH008), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07020100 and XDB07030200), the Beijing Municipal Science and Technology Project (Grant No. Z161100002116011), the Fonds de la Recherche Scientifique–FNRS and the ARC Grant 13/18-08 for Concerted Research Actions, financed by the French Community of Belgium (Wallonia-Brussels Federation). Jérémy Brisbois acknowledges the support from F.R.S.–FNRS (Research Fellowship), The work of Alejandro V Silhanek is partially supported by PDR T.0106.16 of the F.R.S.–FNRS..

  7. Academic and Research Programs in Exercise Science, South Korea

    PubMed Central

    PARK, KYUNG-SHIN; SONG, WOOK

    2009-01-01

    We appreciate the opportunity to review academic curriculum and current research focus of Exercise Science programs in South Korea. The information of this paper was collected by several different methods, including e-mail and phone interviews, and a discussion with Korean professors who attended the 2009 ACSM annual conference. It was agreed that exercise science programming in South Korea has improved over the last 60 years since being implemented. One of distinguishable achievement is that exercise science programs after the 1980’s has been expanded to several different directions. It does not only produce physical education teachers but also attributes more to research, sports medicine, sports, leisure and recreation. Therefore, it has produced various jobs in exercise-related fields. Some of exercise science departments do not require teacher preparation course work in their curriculum which allows students to focus more on their specialty. Secondly, we believe we South Korea has caught up with advanced countries in terms of research quality. Many Korean researchers have recently published and presented their investigations in international journals and conferences. The quality and quantity of these studies introduced to international societies indicate that Exercise Science programs in South Korea is continuing to develop and plays an important part in the world. PMID:27182314

  8. 75 FR 9001 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science...

  9. 75 FR 4876 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science...

  10. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    NASA Astrophysics Data System (ADS)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five NASA centers (GSFC, LaRC, SSC, MSFC, ARC) participated and are currently conducting fifteen prototyping experiments covering eight of the twelve national priority applications - Energy, Coastal, Carbon, and Disaster Management; Agricultural Efficiency, Aviation, Air Quality, and Ecological Forecasting. Results from six experiments will be discussed highlighting purpose, expected results, enhancement to the decision-making process achieved, and the potential plans for future collaboration and sustainable projects.

  11. The Transforming Earth System Science Education (TESSE) program

    NASA Astrophysics Data System (ADS)

    Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.

    2007-12-01

    A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.

  12. Research and technology operating plan summary: Fiscal year 1975 research and technology program. [space programs, energy technology, and aerospace sciences

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Summaries are presented of Research and Technology Operating Plans currently in progress throughout NASA. Citations and abstracts of the operating plans are presented along with a subject index, technical monitor index, and responsible NASA organization index. Research programs presented include those carried out in the Office of Aeronautics and Space Technology, Office of Energy Programs, Office of Applications, Office of Space Sciences, Office of Tracking and Data Acquisition, and the Office of Manned Space Flight.

  13. The contributions and future direction of Program Science in HIV/STI prevention.

    PubMed

    Becker, Marissa; Mishra, Sharmistha; Aral, Sevgi; Bhattacharjee, Parinita; Lorway, Rob; Green, Kalada; Anthony, John; Isac, Shajy; Emmanuel, Faran; Musyoki, Helgar; Lazarus, Lisa; Thompson, Laura H; Cheuk, Eve; Blanchard, James F

    2018-01-01

    Program Science is an iterative, multi-phase research and program framework where programs drive the scientific inquiry, and both program and science are aligned towards a collective goal of improving population health. To achieve this, Program Science involves the systematic application of theoretical and empirical knowledge to optimize the scale, quality and impact of public health programs. Program Science tools and approaches developed for strategic planning, program implementation, and program management and evaluation have been incorporated into HIV and sexually transmitted infection prevention programs in Kenya, Nigeria, India, and the United States. In this paper, we highlight key scientific contributions that emerged from the growing application of Program Science in the field of HIV and STI prevention, and conclude by proposing future directions for Program Science.

  14. 2016 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs.

  15. Women in STEM: The Effect of Undergraduate Research on Persistence

    NASA Astrophysics Data System (ADS)

    Wilker, Jodi

    The underrepresentation of women in science, technology, engineering, and math (STEM) careers constitutes a major issue in postsecondary science education. Perseverance of women in STEM is linked to a strong science identity. Experiential learning activities, such as undergraduate research, increase science identity and thus should help keep women in STEM. Most studies on research program development are from 4-year institutions, yet many women start at community colleges. The goal of this study was to fill this gap. Science identity and experiential learning theories provided the framework for this case study at a local institution (LECC). Semistructured interviews determined college science faculty and administrators perceptions of advantages and disadvantages of undergraduate research, the viability of developing a research program, and specific research options feasible for LECC. Transcripted data were analyzed through multiple rounds of coding yielding five themes: faculty perception of undergraduate research, authentic experiences, health technologies/nursing programs, LECC students career focus, and the unique culture at LECC. The most viable type of undergraduate research for LECC is course-based and of short timeframe. The project study advocates the use of citizen science (CS) studies in the classroom as they are relatively short-term and can take the place of lab sessions. The true benefit is that students perform authentic science by contributing to an actual scientific research project. CS projects can effect social change by developing science literate citizens, empowering faculty to create authentic learning experiences, and by sparking interest in science and directing women into STEM careers.

  16. Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction

    NASA Astrophysics Data System (ADS)

    Dai, Li-Dong; Hu, Hai-Ying; Li, He-Ping; Sun, Wen-Qing; Jiang, Jian-Jun

    2018-02-01

    Not Available Project supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB 18010401), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDB-SSW-DQC009), the “135” Program of the Institute of Geochemistry of CAS, the Hundred-Talent Program of CAS, and the National Natural Science Foundation of China (Grant Nos. 41474078, 41774099, and 41772042).

  17. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  18. Improving Geoscience Education through the PolarTREC Teacher Research Experience Model (Invited)

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Timm, K.; Larson, A. M.

    2010-12-01

    Teacher Research Experiences (TRE’s) are not new. For more than a decade, the National Science Foundation (NSF) as well as other federal agencies have been funding programs that place teachers with researchers in efforts to invigorate science education by bringing educators and researchers together through hands-on experiences. Many of the TRE’s are successful in providing a hands-on field experience for the teachers and researchers however many of the programs lack the resources to continue the collaborations and support the growing network of teachers that have had these field experiences. In 2007, NSF provided funding for PolarTREC—Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS). PolarTREC is a TRE where K-12 teachers participate in polar field research, working closely with scientists as a pathway to improving science education. In just three years, it has become a successful TRE. What makes PolarTREC different than other the teacher research experience programs and how can others benefit from what we have learned? During this presentation, we will share data collected through the program evaluation and on how PolarTREC contributes to the discipline of Science, Technology, Engineering, and Mathematics (STEM) education and pedagogy through a model program conceived and organized according to current best practices, such as pre-research training, mentoring, support for classroom transfer, and long-term access to resources and support. Data shows that PolarTREC’s comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person in today’s world, as well as increased self-reported knowledge and interest in numerous science content areas. PolarTREC provides a tested approach and a clear route for varying levels of researcher participation in the education community, therefore facilitating the types of positive benefits and understanding that ensure increased educator, student, and community understanding of science and the polar regions during times of interrelated global change.

  19. The Effect of a Literature-Based Program Integrated into Literacy and Science Instruction on Achievement, Use, and Attitudes toward Literacy and Science. Reading Research Report No. 37.

    ERIC Educational Resources Information Center

    Morrow, Lesley Mandel; And Others

    A study determined the impact of integrating literacy and science programs on literacy achievement, use of literature, and attitude toward reading and science. Six third-grade classes (128 students) of ethnically diverse children were assigned to one control and two experimental groups (literature/science program and literature only program).…

  20. NITARP: Changing Perceptions of Science Among Secondary Students and Teachers

    NASA Astrophysics Data System (ADS)

    Kohrs, Russell; Kilts, Kelly; Urbanowski, Vincent; Rutherford, Thomas; Gorjian, Varoujan

    2017-01-01

    The NASA/IPAC Teacher Archival Research Program (NITARP) provides secondary teachers and their students with an authentic, high-level research experience. NITARP participants work alongside one another as colleagues, allowing both teachers and students to experience the challenges of actual research. Teachers and students learn that science doesn’t always follow the prescriptive methodology taught in most high schools. Current NITARP students and teachers were interviewed on how their perceptions of the methods by which science is really conducted changed over the course of the program. Following participation in the NITARP program, both teacher and student perceptions of how science operates were found to have changed in many ways.

  1. A new program in earth system science education

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  2. Exercise Science Academic Programs and Research in the Philippines

    PubMed Central

    MADRIGAL, NORBERTO; REYES, JOSEPHINE JOY; PAGADUAN, JEFFREY; ESPINO, REIL VINARD

    2010-01-01

    In this invited editorial, professors from leading institutions in the Philippines, share information regarding their programs relating to Exercise Science. They have provided information on academic components such as entrance requirements, progression through programs, and professional opportunities available to students following completion; as well as details regarding funding available to students to participate in research, collaboration, and specific research interests. PMID:27182343

  3. A Comprehensive Approach to Partnering Scientists with Education and Outreach Activities at a National Laboratory

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.

    2002-12-01

    With the establishment of an Office of Education and Outreach (EO) in 2000 and the adoption of a five-year EO strategic plan in 2001, the University Corporation for Atmospheric Research (UCAR) committed to augment the involvement of AGU scientists and their partners in education and public outreach activities that represent the full spectrum of research in the atmospheric and related sciences. In 2002, a comprehensive program is underway which invites scientists from UCAR, the National Center for Atmospheric Research (NCAR), and UCAR Office of Programs (UOP) into partnership with EO through volunteer orientation workshops, program specific training, skill-building in pedagogy, access to classroom resources, and program and instructor evaluation. Scientists contribute in one or several of the following roles: program partners who bridge research to education through collaborative grant proposals; science content advisors for publications, web sites, exhibits, and informal science events; science mentors for high school and undergraduate students; NCAR Mesa Laboratory tour guides; scientists in the schools; science education ambassadors to local and national community events; science speakers for EO programs, conferences, and meetings of local organization; and science wizards offering demonstrations at public events for children and families. This new EO initiative seeks to match the expertise and specific interests of scientists with appropriate activities, while also serving as a communications conduit through which ideas for new activities and resources can be seeded and eventually developed into viable, fully funded programs.

  4. Growing a Science Internship One Year at a Time: Updates to the Science Undergraduate Laboratory Internship Program D. Ortiz-Arias, A. Dominguez, A. Zwicker, S. Greco

    NASA Astrophysics Data System (ADS)

    Ortiz, Deedee; Dominguez, Arturo; Zwicker, Andrew; Greco, Shannon

    2016-10-01

    Between 1993-2014, the National Undergraduate Fellowship (NUF) program, sponsored by the DOE Office of Fusion Energy Sciences, provided summer research internships for outstanding undergraduate students from around the country. Since then, the NUF program was merged into the Science Undergraduate Laboratory Internship (SULI) program, sponsored by the DOE Office of Workforce Development for Teachers and Students. While there were many similarities between the two programs, the SULI program did not include the one-week introductory course in plasma physics or the opportunity for participants to present their summer research results at this meeting. In the past two years, working with representatives from both OFES and WDTS, we have again implemented some of the most important components of the NUF program. The week-long, introductory course in plasma physics is included and streamed live- especially important since most undergraduate physics students have not taken a plasma physics course before they begin their research. Students are again able to present their research to our community, a critical component of a full research experience and plans are underway to obtain additional funding to once again include universities as eligible host sites.

  5. Air Toxics Under the Big Sky: examining the effectiveness of authentic scientific research on high school students' science skills and interest

    NASA Astrophysics Data System (ADS)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-04-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  6. Summaries of FY 1979 research in the chemical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemicalmore » Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.« less

  7. An Assessment of the Impact of a Science Outreach Program, Science In Motion, on Student Achievement, Teacher Efficacy, and Teacher Perception

    ERIC Educational Resources Information Center

    Herring, Phillip Allen

    2009-01-01

    The purpose of the study was to analyze the science outreach program, Science In Motion (SIM), located in Mobile, Alabama. This research investigated what impact the SIM program has on student cognitive functioning and teacher efficacy and also investigated teacher perceptions and attitudes regarding the program. To investigate student…

  8. The Technology in the Programs of Life Sciences in Turkey and Sachunterricht in Germany

    ERIC Educational Resources Information Center

    Keskin, Tuba

    2017-01-01

    The purpose of this study is to compare the gains of the Life Sciences program in Turkey and the Life sciences program (Sachunterricht) used in the state of Niedersachsen in Germany. The study aiming to compare the technology-related acquisitions in Life sciences program in Turkey and Germany is a comparative education research that used…

  9. Response to science education reforms: The case of three science education doctoral programs in the United States

    NASA Astrophysics Data System (ADS)

    Gwekwerere, Yovita Netsai

    Doctoral programs play a significant role in preparing future leaders. Science Education doctoral programs play an even more significant role preparing leaders in a field that is critical to maintaining national viability in the face of global competition. The current science education reforms have the goal of achieving science literacy for all students and for this national goal to be achieved; we need strong leadership in the field of science education. This qualitative study investigated how doctoral programs are preparing their graduates for leadership in supporting teachers to achieve the national goal of science literacy for all. A case study design was used to investigate how science education faculty interpreted the national reform goal of science literacy for all and how they reformed their doctoral courses and research programs to address this goal. Faculty, graduate students and recent graduates of three science education doctoral programs participated in the study. Data collection took place through surveys, interviews and analysis of course documents. Two faculty members, three doctoral candidates and three recent graduates were interviewed from each of the programs. Data analysis involved an interpretive approach. The National Research Council Framework for Investigating Influence of the National Standards on student learning (2002) was used to analyze interview data. Findings show that the current reforms occupy a significant part of the doctoral coursework and research in these three science education doctoral programs. The extent to which the reforms are incorporated in the courses and the way they are addressed depends on how the faculty members interpret the reforms and what they consider to be important in achieving the goal of science literacy for all. Whereas some faculty members take a simplistic critical view of the reform goals as a call to achieve excellence in science teaching; others take a more complex critical view where they question who 'all students' refers to and what science literacy means for learners with diverse cultural, linguistic or economic backgrounds. Faculty members' views significantly influence the nature and content of the courses as well as the program focus. It was also shown that a relationship exists between faculty views and the views of their doctoral students and recent graduates. In general, faculty exhibited narrower and more in-depth views about issues they consider being important in the field of science education, than doctoral students and recent graduates. External funding is critical in doctoral studies as it enables faculty to enact their visions of achieving science literacy for all. The study provides some implications for practice, policy and research. In order to achieve both equity and excellence in science teaching, there is need for dialogue among science educators to enable them to address issues of equity more effectively than at present. If doctoral programs are to continue preparing graduates who can address important issues in the field, there is need for external funding for specific research programs.

  10. Philippine Astronomy Convention 2009 Abstract: Program Offerings in Astronomy in the Philippines

    NASA Astrophysics Data System (ADS)

    Torres, J. R. F.

    2009-03-01

    The formal academic programs in Astronomy of the Rizal Technological University are the first such programs in the Philippines. The Master of Science in Astronomy program is envisioned to provide the student with a wide range of knowledge in many areas of Astronomy, leaning towards the descriptive aspects of knowledge. The student will choose the field or research most suitable to his or her interests. Three of these researches done while enrolled in the program, and even researches completed before the student actually enrolled in the program, may be considered as his or her thesis. The program suits professionals in all persuasions who wish to study Astronomy either for professional advancement or plainly for the love of the science or for intellectual satisfaction. Non-science majors can enroll. In 2008, the RTU Graduate School decided to ladderize the MS program and the Graduate Diploma in Astronomy was designed. This program is suited for science educators, astronomy lecturers and entrepreneurs, members of astronomical societies, and plain astronomy enthusiasts who like to gain in-depth knowledge in the most important aspects of astronomy. A bachelor's degree in any field is required. The program can be finished in two semesters and one summer. If the student opts to continue in the MS in Astronomy program, all the courses he or she has earned in the Diploma will be credited. The Bachelor of Science in Astronomy Technology is an intensive baccalaureate degree program designed to prepare students to become future research scientists and technologists in the field of Astronomy. The BS in Astronomy Technology is a cross-fertilized program, integrating interrelated sciences, such as engineering, geology, remote sensing, physics, atmospheric and environmental science, biology and biochemistry, and even philosophy and entrepreneurship into the study. Thus, the B.S. in Astronomy Technology program gives the student excellent job opportunities in many fields.

  11. Extension through Partnerships: Research and Education Center Teams with County Extension to Deliver Programs

    ERIC Educational Resources Information Center

    Mullahey, J. Jeffrey

    2011-01-01

    Budget reductions have severely affected resources available to deliver agriculture and natural resource Extension programs in Florida. University of Florida/Institute of Food and Agricultural Sciences delivers Extension programming through a unique partnership between research and education centers and county Extension. Science-based information…

  12. Applied Information Systems Research Program Workshop

    NASA Technical Reports Server (NTRS)

    Bredekamp, Joe

    1991-01-01

    Viewgraphs on Applied Information Systems Research Program Workshop are presented. Topics covered include: the Earth Observing System Data and Information System; the planetary data system; Astrophysics Data System project review; OAET Computer Science and Data Systems Programs; the Center of Excellence in Space Data and Information Sciences; and CASIS background.

  13. 42 CFR 64.1 - Programs to which these regulations apply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.1 Programs to which these regulations...) in library science and the field of communications of information pertaining to sciences relating to... apply to research training support under the National Research Service Awards Program (see part 66 of...

  14. 42 CFR 64.1 - Programs to which these regulations apply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.1 Programs to which these regulations...) in library science and the field of communications of information pertaining to sciences relating to... apply to research training support under the National Research Service Awards Program (see part 66 of...

  15. 42 CFR 64.1 - Programs to which these regulations apply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.1 Programs to which these regulations...) in library science and the field of communications of information pertaining to sciences relating to... apply to research training support under the National Research Service Awards Program (see part 66 of...

  16. 42 CFR 64.1 - Programs to which these regulations apply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.1 Programs to which these regulations...) in library science and the field of communications of information pertaining to sciences relating to... apply to research training support under the National Research Service Awards Program (see part 66 of...

  17. Opportunities in Education and Public Outreach for Scientists at the School of Ocean and Earth Sciences and Technology

    NASA Astrophysics Data System (ADS)

    Hicks, T.

    2004-12-01

    The School of Ocean and Earth Sciences and Technology (SOEST) at the University of Hawaii at Manoa is home to twelve diverse research institutes, programs and academic departments that focus on a wide range of earth and planetary sciences. SOEST's main outreach goals at the K-12 level are to increase the awareness of Hawaii's schoolchildren regarding earth, ocean, and space science, and to inspire them to consider a career in science. Education and public outreach efforts in SOEST include a variety of programs that engage students and the public in formal as well as informal educational settings, such as our biennial Open House, expedition web sites, Hawaii Ocean Science Bowl, museum exhibits, and programs with local schools. Some of the projects that allow for scientist involvement in E/PO include visiting local classrooms, volunteering in our outreach programs, submitting lessons and media files to our educational database of outreach materials relating to earth and space science research in Hawaii, developing E/PO materials to supplement research grants, and working with local museum staff as science experts.

  18. Creative Collaboration between Chevron and CSUB: Research Experience Vitalizing Science -- University Program

    ERIC Educational Resources Information Center

    Wang, Jianjun

    2013-01-01

    Since 2007, Chevron has funded the Research Experience Vitalizing Science -- University Program (REVS-UP), which lasts four weeks each summer to develop Science, Technology, Engineering, and Mathematics (STEM) projects at CSUB [California State University, Bakersfield]. Over the past six years, a total of 26 STEM professors have led the…

  19. What's New in...Science Teacher Preparation.

    ERIC Educational Resources Information Center

    Borowiec, Jonathan B., James, Robert K.

    2000-01-01

    Argues that NASA's 20-year research effort which will culminate with a manned flight to Mars is an opportunity to involve students in the science of that effort. Describes the National Space Biomedical Research Institute (NSBRI) Teacher Academy Program, a program designed to reach science teachers so that they can prepare their students to…

  20. IGERT Implementation and Early Outcomes. Final Report

    ERIC Educational Resources Information Center

    Giancola, Jennifer; Chase, Anne; Koepnick, Rebecca

    2001-01-01

    Responding to changes in the demands on the country's science and engineering research community since the end of the Cold War, the National Science Foundation (NSF) introduced the Integrative Graduate Education and Research Traineeship (IGERT) program in 1997 to encourage science and engineering Ph.D. programs to provide their students with…

  1. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  2. The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Whitworth, C.; Clavier, D.; Owen, L.; Barker, T.

    2012-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 7 funded students participated in 2011. Mentors for the interns include PARI's Science, Education, and Information Technology Directors and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.

  3. The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Cline, J.; Whitworth, C.; Clavier, D.

    2011-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 9 funded students participated in 2010. Mentors for the interns include PARI's Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and applets for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.

  4. Design of a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Daou, D.; Thaller, M.

    2004-12-01

    Under the sponsorship of the NASA Spitzer Science Center, we have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Science Center Archives, observation planning process, and telescope and instrument capabilities in order to plan observations. They also received fundamental training in infrared astronomy and infrared observational techniques, before they began planning their observing program. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the OSS/NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the Spitzer Space Telescope and work with infrared archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. With the goal of leveraging on a well-established teacher professional development, the program serves teachers in the NSF-sponsored Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing Public Affairs and Educational Outreach Department program at the National Optical Astronomy Observatory (NOAO) in Tucson. The program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. There are currently 68 teachers (and their students) participating in TLRBSE with an additional 57 teachers in the still-supported precursor RBSE program. The Spitzer educational research program also reaches an additional national audience of students through an informal education program based at the University of Arizona's Astronomy Camp, directed by Dr. Don McCarthy, who has been active in both the RBSE and TLRBSE programs. The TLRBSE Project is funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation. JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. JPL is a division of Caltech.

  5. Teaching marine science to the next generation: Innovative programs for 6th”8th Graders gain momentum

    NASA Astrophysics Data System (ADS)

    Tebbens, S. F.; Coble, P. G.; Greely, T.

    Three educational outreach programs designed for middle school students (grades 6, 7, and 8) by faculty at the University of South Florida (USF) Department of Marine Science are turning kids onto science. The programs are bringing marine science research and its various technologies into the classroom, where students follow up with hands-on activities. Project Oceanography (PO) is an interactive broadcast that exposes students to the concepts and tools of current marine science research. The Oceanography Camp for Girls (OCG) boosts girls' curiosity and interest in science and nature. And teachers become better equipped to present current marine science topics and technology to their students at the Teachers Oceanography Workshop (TOW). All of the programs created by USF are provided at no cost to students or their institutions.

  6. Revised research plan for the U.S. Climate Change Science Program

    DOT National Transportation Integrated Search

    2008-05-01

    The U.S. Climate Change Science Program (CCSP) released its Strategic Plan in 2003.This Revised Research Plan, in compliance with Section 104(a) of the Global Change Research Act of 1990, is an update to the 2003 Strategic Plan. It reflects both scie...

  7. Challenge: Reframing, communicating, and finding relevance. Solution: Teachers on the research team

    NASA Astrophysics Data System (ADS)

    Bartholow, S.; Warburton, J.

    2013-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a program in which K-12 teachers spend 2-6 weeks participating in hands-on field research experiences in the polar regions. The goal of PolarTREC is to invigorate polar science education and understanding by bringing K-12 educators and polar researchers together. Program data has illuminated a crucial dynamic that increases the potential for a successful climate change science campaign. We contend that the inclusion of a teacher into the field research campaign can tackle challenges such as reframing climate change science to better address the need for a particular campaign, as well as garnering the science project the necessary support through effective, authentic, and tangible communication efforts to policymakers, funders, students, and the public. The program evaluation queried researchers on a.) the teachers' primary roles in the field b.) the impact teachers on the team's field research, and c.) the teachers' role conducting outreach. Additionally, researchers identified the importance of the facilitator, the Arctic Research Consortium of the United States (ARCUS), as an integral component to the challenge of providing a meaningful broader impact statement to the science proposal. Researchers reported the value of explaining their science, in-situ, allowed them to reframe and rework the objectives of the science project to attain meaningful outcomes. More than half of the researchers specifically noted that one of the strengths of the PolarTREC project is its benefit to the scientific process. The researchers also viewed PolarTREC as an essential outreach activity for their research project. Other researchers said that the outreach provided by their teacher also improved the research project's public image and articulated complex ideas to the public at large. This presentation will speak to the practices within the PolarTREC program and how researchers can meet outreach expectations, impact the public, and refine their science with teachers in the field.

  8. [JSPS-NRCT Core university program on natural medicine in pharmaceutical sciences].

    PubMed

    Saiki, Ikuo; Yamazaki, Mikako; Matsumoto, Kinzo

    2009-04-01

    The Core University Program provides a framework for international cooperative research in specifically designated fields and topics, centering around a core university in Japan and its counterpart university in other countries. In this program, individual scientists in the affiliated countries carry out cooperative research projects with sharply focused topics and explicitly delineated goals under leadership of the core universities. The Core University Program which we introduce here has been renewed since 2001 under the support of both the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT). Our program aims to conduct cooperative researches particularly focusing on Natural Medicine in the field of Pharmaceutical Sciences. Institute of Natural Medicine at University of Toyama (Japan), Faculty of Pharmaceutical Sciences at Chulalongkorn University (Thailand), and Chulabhorn Research Institute (Thailand) have been taking part in this JSPS-NRCT Core University Program as core universities. The Program is also supported by the 20 institution members in both countries. This program is running the five research subject under a key word of natural medicine which are related to i) age-related diseases, ii) allergy and cancer, iii) hepatitis and infectious diseases, iv) structure, synthesis, and bioactivity of natural medicines, and v) molecular biology of Thai medicinal plant components and database assembling of Thai medicinal plants. The program also encourages university members to strengthen related research activities, to share advanced academic and scientific knowledge on natural medicines.

  9. The UCAR SOARS Program: Strategies for Supplementing Undergraduate Research Experience

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2005-12-01

    Many REU programs have a goal of recruiting students to continue in the sciences. Undergraduate research is a successful strategy for engaging talented undergraduates to think about a career in science, encouraging them to purse graduate degrees, and for preparing them to succeed in graduate school. In the Significant Opportunities for Atmospheric Research (SOARS) program, we supplement undergraduate research with several strategies as part of an undergraduate-to-graduate bridge program aimed at broadening participation in the atmospheric and related sciences. In addition to a 10-week research program, SOARS also includes a formal mentoring program, writing workshop, vigorous learning community, and extensive professional development opportunities. Our presentation will describe these research-extending strategies in SOARS in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw on the results of a major, independent evaluation of the SOARS program to determine the relative importance of these strategies in the overall success of the SOARS program. In the 10 yeas since SOARS creations, 98 students have participated in the program. Of those participants, 18 are still enrolled as undergraduates, and 55 have gone on to purse graduate school in the atmospheric sciences. Overall, this represents a graduate school placement rate of 69% and an overall retention rate of 82%. Of the 27 SOARS participants who have entered the workforce, 23 are in STEM related disciplines. Finally, 3 SOARS participants have already earned their PhD, and 32 have earned Master's. These numbers are especially significant given that SOARS participants come from groups that have been historically under-represented in the atmospheric sciences.

  10. CESDIS

    NASA Technical Reports Server (NTRS)

    1994-01-01

    CESDIS, the Center of Excellence in Space Data and Information Sciences was developed jointly by NASA, Universities Space Research Association (USRA), and the University of Maryland in 1988 to focus on the design of advanced computing techniques and data systems to support NASA Earth and space science research programs. CESDIS is operated by USRA under contract to NASA. The Director, Associate Director, Staff Scientists, and administrative staff are located on-site at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The primary CESDIS mission is to increase the connection between computer science and engineering research programs at colleges and universities and NASA groups working with computer applications in Earth and space science. The 1993-94 CESDIS year included a broad range of computer science research applied to NASA problems. This report provides an overview of these research projects and programs as well as a summary of the various other activities of CESDIS in support of NASA and the university research community, We have had an exciting and challenging year.

  11. Programs for attracting under-represented minority students to graduate school and research careers in computational science. Final report for period October 1, 1995 - September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno

    1997-10-01

    Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this programmore » to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.« less

  12. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Prioritiesmore » and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.« less

  13. Evaluating Student Success and Progress in the Maryland Sea Grant REU Program

    NASA Astrophysics Data System (ADS)

    Moser, F. C.; Allen, M. R.; Clark, J.

    2012-12-01

    The Maryland Sea Grant's Research Experiences for Undergraduate (REU) 12-week summer program is in its 24th year. This estuarine science-focused program has evolved, based in part on our use of assessment tools to measure the program's effectiveness. Our goal is to understand the REU program's effectiveness in such areas as improving student understanding of scientific research, scientific ethics and marine science careers. Initially, our assessment approach was limited to short surveys that used qualitative answers from students about their experience. However, in the last decade we have developed a more comprehensive approach to measure program effectiveness. Currently, we use paired pre- and post-survey questions to estimate student growth during the program. These matching questions evaluate the student's change in knowledge and perception of science research over the course of the summer program. Additionally, we administer several surveys during the 12 weeks of the program to measure immediate responses of students to program activities and to gauge the students' evolving attitudes to customize each year's program. Our 2011 cohort showed consistent improvement in numerous areas, including understanding the nature of science (pre: 4.35, post: 4.64 on a 5 point scale), what graduate school is like (3.71, 4.42), the job of a researcher (4.07, 4.50), and career options in science (3.86, 4.42). Student confidence also increased in numerous skills required for good scientists. To analyze the long-term impact of our program, we survey our alumni to assess graduate degrees earned and career choices. A large percentage (72%) of our tracked alumni have continued on to graduate school, with subsequent careers spanning the academic (51%), public (24%) and private (25%) sectors. These assessments demonstrate that our program is successful in meeting our key objectives of strengthening the training of undergraduates in the sciences and retaining them in marine science careers.

  14. The University of Texas Science and Engineering Apprentice Program as a Model for an REU Site

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Blankenship, D. D.; Ellins, K. E.

    2004-12-01

    The University of Texas Institute for Geophysics at (UTIG) is one of five research labs in the Austin area that hosts recent high school graduates for summer research projects through the Applied Research Lab Science and Engineering Apprenticeship Program (SEAP). The SEAP is a program designed to provide summer research opportunities to recent high school undergraduates who excel in science and math. UTIG has been a large proponent of the SEAP and has typically mentored two to four students each year and a total alumni of about twenty. The program has successfully targeted groups that are typically underrepresented in sciences and engineering. Current statistics show that 25% of past SEAP students are members of an ethnic minority and 80% of SEAP students are female. Many of these students have stayed on after the summer program and continued to work part-time or return during summers to UTIG while completing their undergraduate careers. A significant portion of these students present results at professional meetings and ultimately commit to careers in science and engineering, both in industry and academia. SEAP students at UTIG work alongside scientists and graduate students as part of a team, and, through this interaction, improve their scientific knowledge and problem solving skills. Both graduate and undergraduate students involved in NSF-funded research grants mentor the SEAP students, giving them the opportunity to work on their own research problem while contributing data and interpretation to a more fundamental research problem. By uniting student research under the umbrella of Antarctic ice sheet research, students learn how their individual research projects relate to the more unifying science problem centered on ice sheet variability, and Antarctic continental evolution. They also gain an understanding of how research is carried out. At the same time, scientists and graduate students learn how to communicate their knowledge so that it is interesting and relevant to student learning. We are interested in expanding the SEAP model for student research to a scale that can support multidisciplinary REU site activities by extending research possibilities into polar research, marine studies, seismology, planetary science, and science education at UTIG in future years.

  15. Summary of Research 1997, Department of Computer Science.

    DTIC Science & Technology

    1999-01-01

    Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704...contains summaries of research projects in the Department of Computer Science . A list of recent publications is also included which consists of conference...parallel programming. Recently, in a joint research project between NPS and the Russian Academy of Sciences Systems Programming Insti- tute in Moscow

  16. Quantum light storage in rare-earth-ion-doped solids

    NASA Astrophysics Data System (ADS)

    Hua, Yi-Lin; Zhou, Zong-Quan; Li, Chuan-Feng; Guo, Guang-Can

    2018-02-01

    Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304100), the National Natural Science Foundation of China (Grant Nos. 61327901, 11774331, 11774335, 11504362, 11325419, and 11654002), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH003), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. WK2470000023 and WK2470000026).

  17. Tools to Assess the Impact of Teacher Enhancement Programs

    NASA Astrophysics Data System (ADS)

    Heatherly, S. A.; Maddalena, R. J.; Govett, A.; Hemler, D.

    1997-05-01

    Beginning in 1994, the NRAO has hosted an NSF-funded program, ``Research Experience in Teacher Preparation (RETP),'' in which inservice and preservice science teachers participate in residential institutes lasting one or two weeks. While on site, they conduct open-ended investigations using a 40-foot diameter working radio telescope. The aim of RETP has been to deepen and personalize participants' understanding of the nature of science, and to assist them in applying their newfound knowledge to their classroom teaching. So far RETP, and the teacher enhancement programs from which it evolved, have trained 434 inservice and 69 preservice teachers. The impact of the research experience on teachers' perceptions of themselves as professionals and their views of science was initially assessed through open-ended questionnaires and participant journals. From teachers' responses we learned that the research experience has a profound, positive influence on participants' views of science and increased their confidence in using research-based teaching methods. However, determining what actually happens in the classroom is harder to evaluate and requires a more structured approach. Therefore, to determine what changes occurred in teachers and their students, five survey instruments were developed. The instruments: 1) assess changes in teachers' perceptions of their ability to conduct research; 2) gauge teachers' perceptions of three aspects of the institute; 3) measure changes in teachers' concerns about implementing classroom research projects; 4) evaluate the development of teachers' understanding into the nature of science; and 5) determine changes in their students' perceptions of science and science class. To increase the reliability of the instruments, the survey questions were tested for internal consistency. Early results show that the RETP program has significantly affected participants and their students. These instruments are useful not only for evaluating this program but also for evaluating other teacher enhancement and preparation programs.

  18. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest.

    PubMed

    Ward, Tony J; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path . Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  19. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students’ Science Skills and Interest

    PubMed Central

    Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom. PMID:28286375

  20. 77 FR 61432 - Proposal Review for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...

  1. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    NASA Astrophysics Data System (ADS)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  2. Exploration of the Moon and Asteroids by Secondary Students

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Bakerman, M. N.; Buxner, S.

    2016-12-01

    Since 2014, the Exploration of the Moon and Asteroids by Secondary Students, or ExMASS, program provides an opportunity for students to participate in authentic scientific research. The ExMASS program is an effort managed by the Center for Lunar Science and Exploration (CLSE). Led by the Lunar and Planetary Institute and Johnson Space Center, CLSE is one of nine teams comprising NASA's Solar System Exploration Research Virtual Institute (SSERVI). Over the course of one academic year, 10 teams of U.S. high school students conduct their own scientific investigations of Earth's Moon, or asteroids, with guidance from a scientist advisor. The program includes two elements: 1) two guided-inquiry introductory research activities that builds student knowledge of current lunar/asteroid science and lunar/asteroid data, and 2) an open-inquiry research project in which the students apply their knowledge to a self-defined project. Because the research is student-driven, it is not necessarily original research; original research is therefore not required. However, one team's research has been published in a professional journal. At the end of the school year, teams submit an abstract and research poster which are scored by a panel a judges. The top four scoring teams gather virtually to give short presentations to the judges. After presentations and time for Q&A, the judges choose one team to present in person at the Exploration Science Forum (ESF). The posters of all finalist schools are displayed at the ESF. The ExMASS program is evaluated by collecting data on changes in students' lunar/asteroid content knowledge, student attitudes toward science and science careers, and student perceptions of the processes of science in which their team participated. Exit surveys for teachers, students, and advisors are also distributed at the end of each program year to gather general feedback about the program and its impact. Results of this data from the first two years of the ExMASS program (2014 and 2015) will be discussed.

  3. Using Interdisciplinary research to enrich teachers and classrooms

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Timm, K.; Huffman, L. T.; Peart, L. W.; Hammond, J.; McMahon, E.

    2011-12-01

    Imagine being on the stern of a ship in the Atlantic Ocean off the coast of New England as the crew dumps thousands of scallops on the deck, searching the Greenland ice sheet for a remote weather station, or uncovering secrets to past climates as you join an ocean sediment drilling team in Antarctica. So you ask yourself, what would you be doing in all of these places? What you would be doing is what hundreds of educators from around the world have done for over 20 years, participating in field-based Teacher Research Experience (TRE) programs. Teacher Research Experiences involve educators from varying grade levels and backgrounds in hands-on research as a member of a scientific research team. The teacher works side by side with actual research scientists, often on tasks similar to a field assistant or graduate student. As an important member of the research team teachers learn more about science content and the process of science. Subsequently, the educators play a key role in digesting and communicating the science to their students and the general public. TRE programs vary in many ways. Programs take place in a variety of settings-from laboratories to field camps, and from university campuses to aircraft or ships. The primary commonality of the TRE programs in this presentation-PolarTREC (Teachers and Researchers Exploring and Collaborating), ANDRILL (ANtarctic geological DRILLing) Research Immersion for Science Educators (ARISE); Integrated Ocean Drilling Program (IODP) School of Rock (SOR); and the National Oceanic and Atmospheric Administration Teacher at Sea (TAS) program-is that these programs provide an authentic field-based research experience for teachers outside of a laboratory setting, frequently in harsh, remote, or unusual settings. In addition, each of these programs is federally funded, possess dedicated program management staff, leverage existing scientific and programmatic resources, and are usually national, and sometimes international, in scope. Sharing their unique lessons learned and program results, authors will describe how TRE's improve and enrich interdisciplinary science education by connecting teachers, researchers, students, and the public around the globe for involvement in scientific research and global issues.

  4. Center for Prostate Disease Research

    MedlinePlus

    ... 2017 Cancer Statistics programs Clinical Research Program Synopsis Leadership Multi-Disciplinary Clinic Staff Listing 2017 Cancer Statistics Basic Science Research Program Synopsis Leadership Gene Expression Data Research Achievements Staff Listing Lab ...

  5. A facile and efficient dry transfer technique for two-dimensional Van derWaals heterostructure

    NASA Astrophysics Data System (ADS)

    Xie, Li; Du, Luojun; Lu, Xiaobo; Yang, Rong; Shi, Dongxia; Zhang, Guangyu

    2017-08-01

    Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934500 and 2013CBA01602), the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, and 51572289), the Key Research Program of Frontier Sciences, CAS, (Grant No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program (B), CAS (Grant No. XDB07010100).

  6. "I Actually Contributed to Their Research": The Influence of an Abbreviated Summer Apprenticeship Program in Science and Engineering for Diverse High-School Learners

    ERIC Educational Resources Information Center

    Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III

    2015-01-01

    This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research…

  7. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.

  8. TAPESTRY on Display.

    ERIC Educational Resources Information Center

    Rapp, Katie

    1992-01-01

    Describes three programs funded by the Toyota Appreciation Program for Excellence to Science Teachers Reaching Youth (TAPESTRY) program: (1) High School Hawk Watch promotes wildlife awareness student research; (2) Science without Bounds makes science accessible to at-risk and minority students; and (3) Kansas Environmental Monitoring Network…

  9. The effect of a science work experience program for teachers on the classroom environment: A qualitative program evaluation

    NASA Astrophysics Data System (ADS)

    Frazier, Wendy Michelle

    Science Work Experience Programs for Teachers (SWEPTs) provide an opportunity for science and math teachers to work in research laboratories during the summer to experience science as it is practiced in the laboratory-setting. Through the use of interviews with teachers and students, classroom observations, and an analysis of printed student sheets and student work, the lived experience of a cohort of program participants in Columbia University's Summer Research Program for Secondary School Science Teachers was recorded in an effort to describe the effect of experience in a SWEPT on the classroom environment of teacher participants and student outcomes. Relying on Social Learning Theory and science education reform documentation as a theoretical framework the following dimensions of the classroom were examined: (1) emergent themes that include the participants' perceptions of the importance of technology in the classroom, (2) interpersonal relationships with the teachers at the participants' schools, fellow program participants, research scientists, and students, and (3) changes in epistemological structure, curriculum, instructional strategies, and classroom practices. Methodological and theoretical implications are addressed with respect to future studies, and suggestions for refinement of SWEPTs are provided.

  10. Emerging areas of science: Recommendations for Nursing Science Education from the Council for the Advancement of Nursing Science Idea Festival.

    PubMed

    Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Heitkemper, Margaret M; Redeker, Nancy S; Titler, Marita G; McCarthy, Ann Marie; Stone, Patricia W; Moore, Shirley M; Alt-White, Anna C; Conley, Yvette P; Dunbar-Jacob, Jacqueline

    2015-01-01

    The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation's Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. BiteScis: Connecting K-12 teachers with science graduate students to produce lesson plans on modern science research

    NASA Astrophysics Data System (ADS)

    Battersby, Cara

    2016-01-01

    Many students graduate high school having never learned about the process and people behind modern science research. The BiteScis program addresses this gap by providing easily implemented lesson plans that incorporate the whos, whats, and hows of today's scienctific discoveries. We bring together practicing scientists (motivated graduate students from the selective communicating science conference, ComSciCon) with K-12 science teachers to produce, review, and disseminate K-12 lesson plans based on modern science research. These lesson plans vary in topic from environmental science to neurobiology to astrophysics, and involve a range of activities from laboratory exercises to art projects, debates, or group discussion. An integral component of the program is a series of short, "bite-size" articles on modern science research written for K-12 students. The "bite-size" articles and lesson plans will be made freely available online in an easily searchable web interface that includes association with a variety of curriculum standards. This ongoing program is in its first year with about 15 lesson plans produced to date.

  12. Science Operations of the International Ultraviolet Explorer (IUE) Observatory

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to support competitively selected astronomical research program. Through the IUE program, researchers make IUE observations, have their scientific data reduced in a meaningful way, and receive data products in a form amenable to the pursuit of scientific research. The IUE Observatory is key to the program since it is the central control and support facility for all science support functions within the IUE project.

  13. Psychological Sciences Division: 1985 Programs.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Psychological Sciences Div.

    This booklet describes research carried out under sponsorship of the Psychological Sciences Division of the U.S. Office of Naval Research during Fiscal Year 1985. The booklet is divided into three programmatic research areas: (1) Engineering Psychology; (2) Personnel and Training; and (3) Group Psychology. Each program is described by an overview…

  14. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  15. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  16. STAIRSTEP -- a research-oriented program for undergraduate students at Lamar University

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian

    2011-03-01

    The relative low number of undergraduate STEM students in many science disciplines, and in particular in physics, represents a major concern for our faculty and the administration at Lamar University. Therefore, a collaborative effort between several science programs, including computer science, chemistry, geology, mathematics and physics was set up with the goal of increasing the number of science majors and to minimize the retention rate. Lamar's Student Advancing through Involvement in Research Student Talent Expansion Program (STAIRSTEP) is a NSF-DUE sponsored program designed to motivate STEM students to graduate with a science degree from one of these five disciplines by involving them in state-of-the-art research projects and various outreach activities organized on-campus or in road shows at the secondary and high schools. The physics program offers hands-on experience in optics, such as computer-based experiments for studying the diffraction and interference of light incident on nettings or electronic wave packets incident on crystals, with applications in optical imaging, electron microscopy, and crystallography. The impact of the various activities done in STAIRSTEP on our Physics Program will be discussed.

  17. Predicting scientific oral presentation scores in a high school photonics science, technology, engineering and mathematics (STEM) program

    NASA Astrophysics Data System (ADS)

    Gilchrist, Pamela O.; Carpenter, Eric D.; Gray-Battle, Asia

    2014-07-01

    A hybrid teacher professional development, student science technology mathematics and engineering pipeline enrichment program was operated by the reporting research group for the past 3 years. Overall, the program has reached 69 students from 13 counties in North Carolina and 57 teachers from 30 counties spread over a total of five states. Quantitative analysis of oral presentations given by participants at a program event is provided. Scores from multiple raters were averaged and used as a criterion in several regression analyses. Overall it was revealed that student grade point averages, most advanced science course taken, extra quality points earned in their most advanced science course taken, and posttest scores on a pilot research design survey were significant predictors of student oral presentation scores. Rationale for findings, opportunities for future research, and implications for the iterative development of the program are discussed.

  18. Teacher Research Programs: An Effective Form of Professional Development to Increase Student Achievement and Benefit the Economy

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2008-12-01

    U.S. high school students perform markedly less well in science, technology, engineering and math (STEM) than students in other economically advanced countries. This low level of STEM performance endangers our democracy and economy. The President's Council of Advisors in Science and Technology's 2004 report attributed the shortfall of students attracted to the sciences is a result of the dearth of teachers sufficiently conversant with science and scientists to enable them to communicate to their students the excitement of scientific exploration and discovery, and the opportunities science provides for highly rewarding and remunerative careers. Nonetheless, the United States has made little progress in correcting these deficiencies. Studies have shown that high-quality teaching matters more to student achievement than anything else schools do. This belief is buttressed by evidence from Columbia University's Summer Research Program for Science Teachers (SRP) that highly motivated, in-service science teachers require professional development to enable them and their students to perform up to their potential. Columbia's Summer Research Program is based on the premise that to teach science effectively requires experience in using the tools of contemporary science to answer unsolved questions. From its inception, SRP's goal has been to enhance interest and improve performance in science of students. It seeks to achieve this goal by increasing the professional competence of teachers. The reports of Elmore, Sanders and Rivers, and our own studies, show that professional development is a "key lever for improving student outcomes." While most middle and high school science teachers have taken college science courses that include cookbook laboratory exercises, the vast majority of them have never attempted to answer an unsolved question. Just as student learning depends on the expertise of teachers, the expertise of teachers depends on the quality of their professional development. Columbia University's teacher research program is a very effective form of professional development for pre- college science teachers and has a direct correlation to increased student motivation and achievement in science. The Program is premised on the beliefs that hands-on experience in the practice of science improves the quality and authenticity of science teaching, and that improved science teaching is correlated with increased student interest and achievement in science. The author will present the methodology of the program's evaluation citing statistically significant findings. The author will also show the economic benefits of teacher participation in a well-designed research program.

  19. STAR - Research Experiences at National Laboratory Facilities for Pre-Service and Early Career Teachers

    NASA Astrophysics Data System (ADS)

    Keller, J. M.; Rebar, B.; Buxner, S.

    2012-12-01

    The STEM Teacher and Researcher (STAR) Program provides pre-service and beginning teachers the opportunity to develop identity as both teachers and researchers early in their careers. Founded and implemented by the Center for Excellence in Science and Mathematics Education (CESaME) at California Polytechnic State University on behalf of the California State University (CSU) system, STAR provides cutting edge research experiences and career development for students affiliated with the CSU system. Over the past three summers, STAR has also partnered with the NSF Robert Noyce Teacher Scholarship Program to include Noyce Scholars from across the country. Key experiences are one to three summers of paid research experience at federal research facilities associated with the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Association (NOAA), and the National Optical Astronomy Observatory (NOAO). Anchoring beginning teachers in the research community enhances participant understanding of what it means to be both researchers and effective teachers. Since its inception in 2007, the STAR Program has partnered with 15 national lab facilities to provide 290 research experiences to 230 participants. Several of the 68 STAR Fellows participating in the program during Summer 2012 have submitted abstracts to the Fall AGU Meeting. Through continued partnership with the Noyce Scholar Program and contributions from outside funding sources, the CSU is committed to sustaining the STAR Program in its efforts to significantly impact teacher preparation. Evaluation results from the program continue to indicate program effectiveness in recruiting high quality science and math majors into the teaching profession and impacting their attitudes and beliefs towards the nature of science and teaching through inquiry. Additionally, surveys and interviews are being conducted of participants who are now teaching in the classroom as part of a project to investigate the impact of the STAR Program on teaching practices. Preliminary analyses indicate that STAR fellows have maintained a strong distributed community of support following their summer experience, including continued contact with their research mentors and other fellows. The STAR research experience has also reinforced and strengthened many of the teachers' commitment to teaching. Additionally, teachers report how their STAR experience contributed to specific practices they use in the classroom to help students develop hypotheses, design experiments, and report their findings to the class. The STAR Program was presented to and cited by the Presidential Council of Advisors on Science and Technology (PCAST) as a national model for addressing K-12 science and math teacher workforce needs. It has also been recognized as a uniquely promising model for recruiting, preparing and retaining outstanding STEM teachers in such national publications as the American Association of Colleges and Universities (AAC&U) Peer Review journal and the National Science Teachers Association NSTA Reports. STAR was also recently cited in an editorial in Science (May 4, 2012) as a model teacher-researcher program that enhances professionalism in science teaching.

  20. Research and technology report, 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Marshall Space Flight Center programs of research and technology for 1981 in various areas of aerospace science are reviewed. Each activity reviewed has a high probability of application to current or future programs or is an application of the results of current programs. Projects in atmospheric and magnetospheric science, solar physics, astronomy, and space technology are included.

  1. A Learning Research Informed Design and Evaluation of a Web-Enhanced Object Oriented Programming Seminar

    ERIC Educational Resources Information Center

    Georgantaki, Stavroula C.; Retalis, Symeon D.

    2007-01-01

    "Object-Oriented Programming" subject is included in the ACM Curriculum Guidelines for Undergraduate and Graduate Degree Programs in Computer Science as well as in Curriculum for K-12 Computer Science. In a few research studies learning problems and difficulties have been recorded, and therefore, specific pedagogical guidelines and…

  2. Effects of a Modified Thinking Science Program for Year 8 Students of Various Abilities

    ERIC Educational Resources Information Center

    Mobbs, Ellen

    2016-01-01

    The aim of this research was to identify whether students of various academic abilities would achieve positive gains in cognitive ability after completing a modified cognitive acceleration program based on the Cognitive Acceleration through Science Education (CASE) program. This research was quasi-experimental in design, with small samples of…

  3. The George Engelmann Mathematics & Science Institute. Scholar Research Program Annual Report 1993.

    ERIC Educational Resources Information Center

    Missouri Univ., St. Louis. George Englemann Mathematics & Science Inst.

    This publication is a comprehensive report on the George Engelmann Mathematics and Science Institute's Scholar Research Program (SRP) and its activities in 1993. The SRP provides high school students who have successfully completed an earlier Engelmann program the opportunity to experience and practice the active components of the scientific…

  4. The journey of a science teacher: Preparing female students in the Training Future Scientists after school program

    NASA Astrophysics Data System (ADS)

    Robinson-Hill, Rona M.

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal science programs, urban girls, self-efficacy, cooperative learning, peer learning, female adolescents, and after-school urban education This dissertation study was funded by two grants, the 2013 spring dissertation grant from the University of Missouri St. Louis and a philanthropic grant from Dr. Courtney Crim.

  5. Evaluation of the National Science Foundation's Partnerships for International Research and Education (PIRE) Program, Volume 2: Supplementary Materials. Final Report

    ERIC Educational Resources Information Center

    Martinez, Alina; Epstein, Carter; Parsad, Amanda

    2015-01-01

    The National Science Foundation contracted with Abt Associates to conduct an evaluation of its Partnerships for International Research and Education (PIRE) program, which supports intellectually substantive collaborations between U.S. and foreign researchers in which the international partnership is essential to the research effort. The evaluation…

  6. Evaluation of the National Science Foundation's Partnerships for International Research and Education (PIRE) Program, Volume 1: Final Report

    ERIC Educational Resources Information Center

    Martinez, Alina; Epstein, Carter; Parsad, Amanda

    2015-01-01

    The National Science Foundation contracted with Abt Associates to conduct an evaluation of its Partnerships for International Research and Education (PIRE) program, which supports intellectually substantive collaborations between U.S. and foreign researchers in which the international partnership is essential to the research effort. The evaluation…

  7. Consistency of Practical and Formal Epistemologies of Science Held by Participants of a Research Apprenticeship

    ERIC Educational Resources Information Center

    Burgin, Stephen R.; Sadler, Troy D.

    2013-01-01

    The purpose of this research was to examine the consistency between students' practical and formal understandings of scientific epistemologies (also known as nature of science (NOS) understandings) in the context of a research apprenticeship program. Six high school student participants of a residential summer research apprenticeship program at a…

  8. Creating a Pipeline for African American Computing Science Faculty: An Innovative Faculty/Research Mentoring Program Model

    ERIC Educational Resources Information Center

    Charleston, LaVar J.; Gilbert, Juan E.; Escobar, Barbara; Jackson, Jerlando F. L.

    2014-01-01

    African Americans represent 1.3% of all computing sciences faculty in PhD-granting departments, underscoring the severe underrepresentation of Black/African American tenure-track faculty in computing (CRA, 2012). The Future Faculty/Research Scientist Mentoring (FFRM) program, funded by the National Science Foundation, was found to be an effective…

  9. Nursing Students' Attitudes toward Science in the Nursing Curricula

    ERIC Educational Resources Information Center

    Maroo, Jill Deanne

    2013-01-01

    The nursing profession combines the art of caregiving with scientific concepts. Nursing students need to learn science in order to start in a nursing program. However, previous research showed that students left the nursing program, stating it included too much science (Andrew et al., 2008). Research has shown a correlation between students'…

  10. 78 FR 11903 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site Visit review of the Materials Research Science and... Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National...

  11. 77 FR 56236 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...

  12. 77 FR 57162 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...

  13. 77 FR 14441 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065...

  14. 77 FR 57161 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National...

  15. Norfolk State University Research Experience in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  16. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with Stony Brook's Department of Technology and Society. During the academic year, a college-level Earth science course is offered to tenth graders from Sayville, New York. In both programs, students conduct research projects as one of their primary responsibilities. In collaboration with the Museum of Long Island Natural Sciences on the Stony Brook campus, two programs have been developed that enable visiting K-12 school classes to investigate earthquakes and phenomena that operate in the Earth's deep interior. From 1997 to 1999, the weekly activity-based Science Enrichment for the Early Years (SEEY) program, focusing on common Earth materials and fundamental Earth processes, was conducted at a local pre-K school. Since 2002, ESERC has worked with the Digital Library for Earth System Education (DLESE) to organize the Skills Workshops for their Annual Meeting and with EarthScope for the development of their Education and Outreach Program Plan. Future education programs and tools developed through COMPRES partnerships will place an increased emphasis on deep Earth materials and phenomena.

  17. Accommodating life sciences on the Space Station

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  18. Bringing Engineering Research Coupled With Art Into The K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Cola, J.

    2016-12-01

    The Partnerships for Research, Innovation and Multi-Scale Engineering Program, a Research Experiences for K-12 Teachers at Georgia Institute of Technology demonstrates a successful program that blends the fine arts with engineering research. Teachers selected for the program improve their science and engineering content knowledge, as well as their understanding of how to use STEAM to increase student comprehension and engagement. Participants in the program designed Science, Technology, Engineering, Art, and Mathematics (STEAM)- based lessons based on faculty engineering research. Examples of some STEAM lessons created will be discussed along with lessons learned.

  19. Interfacial nanobubbles produced by long-time preserved cold water

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Min; Wang, Shuo; Qiu, Jie; Wang, Lei; Wang, Xing-Ya; Li, Bin; Zhang, Li-Juan; Hu, Jun

    2017-09-01

    Not Available Project supported by the Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, the Open Research Project of the Large Scientific Facility of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11079050, 11290165, 11305252, 11575281, and U1532260), the National Key Basic Research Program of China (Grant Nos. 2012CB825705 and 2013CB932801), the National Natural Science Foundation for Outstanding Young Scientists, China (Grant No. 11225527), the Shanghai Academic Leadership Program, China (Grant No. 13XD1404400), and the Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-EW-W09 and QYZDJ-SSW-SLH019)

  20. A Mentoring Program in Environmental Science for Underrepresented Groups

    NASA Astrophysics Data System (ADS)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing excellent support. Looking at goals more specifically, we find: Improved student academic performance: Most students credit the program with a positive impact on their academic performance. Students’ continued study of environmental science: Students report increased or continued interest in environmental science as a result of participating in the program. Continued study at UVM: In both 2007 and 2009 there was a nearly unanimous report that students remain at UVM because of their involvement in the program. The program provides valuable opportunities, advisory support, community of peers, and financial stipend. It is has attracted and kept these students at this university. Increased interest in science careers: Students have been exposed to a range of science careers and credit the program with providing this exposure. Most of these students expect to pursue a career in science. Created a welcoming environment: One student specifically credits the program with increasing the number of students of color in the department. Other students credit the program with creating an environment in which students have established relationships with many faculty, certainly contributing to a welcoming atmosphere. Taken together, results indicate that the program is indeed achieving its goals.

  1. United States Air Force Graduate Student Summer Support Program 1986. Program Technical Report. Volume 1

    DTIC Science & Technology

    1986-12-01

    Oxidant Damage Mediates Variant Red Cell Resistance to Malaria. Nature. 280 (1979) p. 245-47. 14. Geary, Timothy G. and James B. Jensen. Effects of...for research in the physical sciences, engineering, life sciences, business, and administrative sciences. The program has been effective in providing...Researcher Volume I 1 The Effects of Fourier Limited Targets Susan M. Abrams Upon Peripheral Perception 2 Studies of the Dimenslonality of William H

  2. Opportunities for Scientists to Engage the Public & Inspire Students in Science

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Worssam, J.; Vaughan, A. F.

    2014-12-01

    Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology projects, which the students then present at year's end. From the perspective of an active research scientist, such outreach activities take little time & effort (~ 0.05 FTE), but pay large dividends in the long run, in inciting public support for science & inspiring the next generation of scientists & engineers.

  3. Ocean Science in a K-12 setting: Promoting Inquiry Based Science though Graduate Student and Teacher Collaboration

    NASA Astrophysics Data System (ADS)

    Lodico, J. M.; Greely, T.; Lodge, A.; Pyrtle, A.; Ivey, S.; Madeiros, A.; Saleem, S.

    2005-12-01

    The University of South Florida, College of Marine Science Oceans: GK-12 Teaching Fellowship Program is successfully enriching science learning via the oceans. Funded by the National Science Foundation, the program provides a unique opportunity among scientists and K-12 teachers to interact with the intention of bringing ocean science concepts and research to the classroom environment enhance the experience of learning and doing science, and to promote `citizen scientists' for the 21st century. The success of the program relies heavily on the extensive summer training program where graduate students develop teaching skills, create inquiry based science activities for a summer Oceanography Camp for Girls program and build a relationship with their mentor teacher. For the last year and a half, two graduate students from the College of Marine Science have worked in cooperation with teachers from the Pinellas county School District, Southside Fundamental Middle School. Successful lesson plans brought into a 6th grade Earth Science classroom include Weather and climate: Global warming, The Geologic timescale: It's all about time, Density: Layering liquids, and Erosion processes: What moves water and sediment. The school and students have benefited greatly from the program experiencing hands-on inquiry based science and the establishment of an after school science club providing opportunities for students to work on their science fair projects and pursuit other science interests. Students are provided scoring rubrics and their progress is creatively assessed through KWL worksheets, concept maps, surveys, oral one on one and classroom discussions and writing samples. The year culminated with a series of hands on lessons at the nearby beach, where students demonstrated their mastery of skills through practical application. Benefits to the graduate student include improved communication of current science research to a diverse audience, a better understanding of the perspective of teachers and their content knowledge, and experience working with children and youth. The GK-12 teacher mentor benefits include a resource of inquiry based ocean science activities and increased knowledge of current scientific ocean research. The K-12 students gain an opportunity to be engage with young passionate scientists, learn about current ocean science research, and experience inquiry based science activities relating to concepts already being taught in their classroom. This program benefits all involved including the graduate students, the teachers, the K-12 students and the community.

  4. Partnership of Environmental Education and Research-A compilation of student research, 1999-2008

    USGS Publications Warehouse

    Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.

    2011-01-01

    The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.

  5. Strategic implementation plan

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Life Science Division of the NASA Office of Space Science and Applications (OSSA) describes its plans for assuring the health, safety, and productivity of astronauts in space, and its plans for acquiring further fundamental scientific knowledge concerning space life sciences. This strategic implementation plan details OSSA's goals, objectives, and planned initiatives. The following areas of interest are identified: operational medicine; biomedical research; space biology; exobiology; biospheric research; controlled ecological life support; flight programs and advance technology development; the life sciences educational program; and earth benefits from space life sciences.

  6. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    PubMed

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  7. Science News Stories as Boundary Objects Affecting Engagement with Science

    ERIC Educational Resources Information Center

    Polman, Joseph L.; Hope, Jennifer M. G.

    2014-01-01

    This paper explores how participating in a program spanning an informal science institution and multiple school sites engaged youth with science in a different way. In particular, teens in the program selected and researched science topics of personal interest, and then authored, revised, and published science news stories about those topics in an…

  8. The potential impact of microgravity science and technology on education

    NASA Technical Reports Server (NTRS)

    Wargo, M. J.

    1992-01-01

    The development of educational support materials by NASA's Microgravity Science and Applications Division is discussed in the light of two programs. Descriptions of the inception and application possibilities are given for the Microgravity-Science Teacher's Guide and the program of Undergraduate Research Opportunities in Microgravity Science and Technology. The guide is intended to introduce students to the principles and research efforts related to microgravity, and the undergraduate program is intended to reinforce interest in the space program. The use of computers and electronic communications is shown to be an important catalyst for the educational efforts. It is suggested that student and teacher access to these programs be enhanced so that they can have a broader impact on the educational development of space-related knowledge.

  9. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during which 20 participants have been involved and significant feedback has been received.

  10. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  11. Authentic Research in the Classroom: NITARP Teachers Connect Astronomy with NGSS.

    NASA Astrophysics Data System (ADS)

    Pruett, Lee; Gibbs, John; Palmer, Robert; Young, Diedre; Gorjian, Varoujan

    2016-01-01

    The NASA/IPAC Teacher Archive Research Program (NITARP) uses authentic astronomical research to bring the Next Generation Science Standards (NGSS) into the classroom. The creation of the NGSS was a collaborative effort between teams composed of teachers, scientists and other professionals from twenty-six states. These standards provide a framework for the change in how science is taught at all levels from kindergarten to twelfth grade in participating states. Scientific concepts are grouped into broad categories (physical, biological and earth sciences), and call for an interdisciplinary approach to content, along with the integration of engineering practices into the curriculum. This approach to the teaching of science has led educators to place more emphasis on authentic learning and problem-solving in their curricula. Project-based learning is a strategy that can effectively allow students to learn core scientific concepts within the context of a focused and complex scientific problem.The NASA/IPAC Teacher Archive Research Program (NITARP) pairs teams of teachers and students with NASA astronomers. These teams are immersed in an astronomy research project over the course of the year, and are responsible for writing a project proposal, doing original research and presenting that research at a professional conference. The students who are involved in the NITARP research are provided with a rich hands-on experience that both exposes them to a deep understanding of an astronomical problem (and the core physics and math behind it), as well as the process of doing real science. The NITARP program offers a unique opportunity to bring project-based learning into K-12 science classrooms. We will highlight the ways in which this program has been implemented in classrooms across the country, as well as the connections to the NGSS.This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  12. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students

    ERIC Educational Resources Information Center

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L.

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend…

  13. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Science Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.

  14. NASA's Student Airborne Research Program as a model for effective professional development experience in Oceanography

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Kudela, R. M.; Clinton, N. E.; Atkins, N.; Austerberry, D.; Johnson, M.; McGonigle, J.; McIntosh, K.; O'Shea, J. J.; Shirshikova, Z.; Singer, N.; Snow, A.; Woods, R.; Schaller, E.; Shetter, R. E.

    2011-12-01

    With over half of the current earth and space science workforce expected to retire within the next 15 years, NASA has responded by cultivating young minds through programs such as the Student Airborne Research Program (SARP). SARP is a competitive internship that introduces upper-level undergraduates and early graduate students to Earth System Science research and NASA's Airborne Science Program. The program serves as a model for recruitment of very high caliber students into the scientific workforce. Its uniqueness derives from total vertical integration of hands-on experience at every stage of airborne science: aircraft instrumentation, flight planning, mission participation, field-work, analysis, and reporting of results in a competitive environment. At the conclusion of the program, students presented their work to NASA administrators, faculty, mentors, and the other participants with the incentive of being selected as best talk and earning a trip to the fall AGU meeting to present their work at the NASA booth. We hope lessons learned can inform the decisions of scientists at the highest levels seeking to broaden the appeal of research. In 2011, SARP was divided into three disciplinary themes: Oceanography, Land Use, and Atmospheric Chemistry. Each research group was mentored by an upper-level graduate student who was supervised by an expert faculty member. A coordinator managed the program and was supervised by a senior research scientist/administrator. The program is a model of knowledge transfer among the several levels of research: agency administration to the program coordinator, established scientific experts to the research mentors, and the research mentors to the pre-career student participants. The outcomes from this program include mission planning and institutional knowledge transfer from administrators and expert scientists to the coordinator and research mentors; personnel and project management from the coordinator and expert scientists to the research mentors; and scholarship and training in specific analytical techniques for Earth Science research from the mentors to the student participants. Across every level, the program allowed for networking and career advice to help students gain entry to future job or graduate school opportunities. This poster details "engaging the next generation" by highlighting specific research questions proposed and developed by the students in the Oceanography group.

  15. NASA Land Cover and Land Use Change (LCLUC): an interdisciplinary research program.

    PubMed

    Justice, Chris; Gutman, Garik; Vadrevu, Krishna Prasad

    2015-01-15

    Understanding Land Cover/Land Use Change (LCLUC) in diverse regions of the world and at varied spatial scales is one of the important challenges in global change research. In this article, we provide a brief overview of the NASA LCLUC program, its focus areas, and the importance of satellite remote sensing observations in LCLUC research including future directions. The LCLUC Program was designed to be a cross-cutting theme within NASA's Earth Science program. The program aims to develop and use remote sensing technologies to improve understanding of human interactions with the environment. Since 1997, the NASA LCLUC program has supported nearly 280 research projects on diverse topics such as forest loss and carbon, urban expansion, land abandonment, wetland loss, agricultural land use change and land use change in mountain systems. The NASA LCLUC program emphasizes studies where land-use changes are rapid or where there are significant regional or global LCLUC implications. Over a period of years, the LCLUC program has contributed to large regional science programs such as Land Biosphere-Atmosphere (LBA), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the Monsoon Area Integrated Regional Study (MAIRS). The primary emphasis of the program will remain on using remote sensing datasets for LCLUC research. The program will continue to emphasize integration of physical and social sciences to address regional to global scale issues of LCLUC for the benefit of society. Copyright © 2014. Published by Elsevier Ltd.

  16. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    NASA Astrophysics Data System (ADS)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the researchers involved in this complex solar system.

  17. Building capacity in implementation science research training at the University of Nairobi.

    PubMed

    Osanjo, George O; Oyugi, Julius O; Kibwage, Isaac O; Mwanda, Walter O; Ngugi, Elizabeth N; Otieno, Fredrick C; Ndege, Wycliffe; Child, Mara; Farquhar, Carey; Penner, Jeremy; Talib, Zohray; Kiarie, James N

    2016-03-08

    Health care systems in sub-Saharan Africa, and globally, grapple with the problem of closing the gap between evidence-based health interventions and actual practice in health service settings. It is essential for health care systems, especially in low-resource settings, to increase capacity to implement evidence-based practices, by training professionals in implementation science. With support from the Medical Education Partnership Initiative, the University of Nairobi has developed a training program to build local capacity for implementation science. This paper describes how the University of Nairobi leveraged resources from the Medical Education Partnership to develop an institutional program that provides training and mentoring in implementation science, builds relationships between researchers and implementers, and identifies local research priorities for implementation science. The curriculum content includes core material in implementation science theory, methods, and experiences. The program adopts a team mentoring and supervision approach, in which fellows are matched with mentors at the University of Nairobi and partnering institutions: University of Washington, Seattle, and University of Maryland, Baltimore. A survey of program participants showed a high degree satisfaction with most aspects of the program, including the content, duration, and attachment sites. A key strength of the fellowship program is the partnership approach, which leverages innovative use of information technology to offer diverse perspectives, and a team model for mentorship and supervision. As health care systems and training institutions seek new approaches to increase capacity in implementation science, the University of Nairobi Implementation Science Fellowship program can be a model for health educators and administrators who wish to develop their program and curricula.

  18. Over a Decade of Lessons Learned from an REU Program in the Science of Global Change and Sustainability

    NASA Astrophysics Data System (ADS)

    Hersh, E. S.; James, E. W.; Banner, J. L.

    2014-12-01

    The Research Experience for Undergraduates (REU) in "The Science of Global Change and Sustainability" at the University of Texas at Austin Environmental Science Institute (ESI) has just completed its twelfth summer. The program has 113 REU alumni plus 5 Research Experience for Teachers (RET) alumni, selected from a competitive pool of 976 applicants (~14% acceptance rate), 68% from 61 smaller colleges and universities (of 79 schools represented), 40% of those who self-reported coming from demographics underrepresented in STEM, and with nearly 70% women. Students conduct independent research under the supervision of a faculty mentor in four major interdisciplinary themes: Impacts on Ecosystems, Impacts on Watersheds and the Land Surface, Campus Sustainability, and Reconstructing Past Global Change. These themes bridge chemistry, biology, ecology, environmental policy, civil and environmental engineering, marine science, and geological science. The summer cohort participates in weekly research and professional development seminars along with group field exercises. Topics include graduate school, career preparation, research ethics, sustainability, global change, environmental justice, and research communication. These activities plus the student's individual research comprise a portfolio that culminates in a reflection essay integrating the concepts, methods, and perspectives gained over the 10-week program. Program alumni were surveyed in 2014 to gauge long-term impact and outcomes. Of the 76 surveyed from 2006-2013, 39% responded. 67% have earned or are working on a graduate degree, and 94% of the graduate programs are in STEM. 93% of the responding alumni felt that the program "influenced my job and educational choices" and 97% felt that the program "helped me better understand scientific research." 40% presented their findings at a conference and 17% authored or co-authored a peer-reviewed publication. This presentation will include a discussion of best practices and lessons learned over twelve years, such as strategies to increase cohort diversity, innovative activities, and results from long-term program evaluation on attitudes toward STEM careers and program outcomes.

  19. Community-Driven Support in the Hydrologic Sciences through Data, Education and Outreach

    NASA Astrophysics Data System (ADS)

    Clark, E.

    2015-12-01

    The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is a non-profit funded by the National Science Foundation to support water science research and education. As outlined in the CUAHSI Education and Outreach Strategy, our objectives are: 1) helping the member institutions communicate water science; 2) cross-disciplinary water education; 3) dissemination of research; 4) place-based water education using data services; and 5) broadening participation. Through the CUAHSI Water Data Center, online tools and resources are available to discover, download, and analyze multiple time-series water datasets across various parameters. CUAHSI supports novel graduate student research through the Pathfinder Fellowship program which has enhanced the interdisciplinary breadth of early-career research. Public outreach through the Let's Talk About Water film symposium and cyberseminar programs have proven effective in distributing research, leading to more recent development of virtual training workshops. By refining and building upon CUAHSI's existing programs, new training opportunities, collaborative projects, and community-building activities for the hydrologic sciences have come to fruition, such as the recent National Flood Interoperability Experiment with the NOAA's National Water Center.

  20. Community-Driven Support in the Hydrologic Sciences through Data, Education and Outreach

    NASA Astrophysics Data System (ADS)

    Cox, P. R.

    2014-12-01

    The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is a non-profit funded by the National Science Foundation to support water science research and education. As outlined in the CUAHSI Education and Outreach Strategy, our objectives are: 1) helping the member institutions communicate water science; 2) cross-disciplinary water education; 3) dissemination of research; 4) place-based water education using data services; and 5) broadening participation. Through the CUAHSI Water Data Center, online tools and resources are available to discover, download, and analyze multiple time-series water datasets across various parameters. CUAHSI supports novel graduate student research through the Pathfinder Fellowship program which has enhanced the interdisciplinary breadth of early-career research. Public outreach through the Let's Talk About Water film symposium and cyberseminar programs have proven effective in distributing research, leading to more recent development of virtual training workshops. By refining and building upon CUAHSI's existing programs, new training opportunities, collaborative projects, and community-building activities for the hydrologic sciences have come to fruition, such as the recent National Flood Interoperability Experiment with the NOAA's National Water Center.

  1. Coexistence of Polaronic States and Superconductivity in Iron-Pnictide Compound Ba2Ti2Fe2As4O

    NASA Astrophysics Data System (ADS)

    Rong, Li-Yuan; Shi, Xun; Richard, Pierre; Sun, Yun-Lei; Cao, Guang-Han; Zhang, Xiang-Zhi; Ma, Jun-Zhang; Shi, Ming; Huang, Yao-Bo; Qian, Tian; Ding, Hong; Tai, Ren-Zhong

    2018-05-01

    Not Available Supported by the National Basic Research Program of China under Grant Nos 2013CB921700, 2015CB921300 and 2015CB921301, the National Natural Science Foundation of China under Grant Nos 11234014, 11622435, 11274362, 11674371 and 11474340, the National Key Research and Development Program of China under Grant Nos 2016YFA0300300, 2016YFA0300600, 2016YFA0401000 and 2016YFA0400902, the Open Large Infrastructure Research of Chinese Academy of Sciences, and the Pioneer Hundred Talents Program (Type C) of Chinese Academy of Sciences.

  2. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    NASA Astrophysics Data System (ADS)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning assistants, increased interest in K-12 teaching as a career, and increased appreciation and understanding of student-centered and inquiry-based learning. Data to support these claims will be presented. Neuschatz, M. & McFarling, M. (2003). Broadning the Base: High School Physics Education at the Turn of a New Century, AIP Report No. R-439.

  3. Path to a Research Plan

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    2003-01-01

    This viewgraph presentation discusses the status and goals for the NASA OBPR Physical Science Research Program. The following text was used to summarize the presentation. The OBPR Physical Sciences Research program has been comprehensively reviewed and endorsed by National Research Council. The value and need for the research have been re-affirmed. The research program has been prioritized and resource re-allocations have been carried out through an OBPR-wide process. An increasing emphasis on strategic, mission-oriented research is planned. The program will strive to maintain a balance between strategic and fundamental research. A feasible ISS flight research program fitting within the budgetary and ISS resource envelopes has been formulated for the near term (2003-2007). The current ISS research program will be significantly strengthened starting 2005 by using discipline dedicated research facility racks. A research re-planning effort has been initiated and will include active participation from the research community in the next few months. The research re-planning effort will poise PSR to increase ISS research utilization for a potential enhancement beyond ISS IP Core Complete. The Physical Sciences research program readily integrates the cross-disciplinary requirements of the NASA and OBPR strategic objectives. Each fundamental research thrust will develop a roadmap through technical workshops and Discipline Working Groups (DWGs). Most fundamental research thrusts will involve cross-disciplinary efforts. A Technology Roadmap will guide the Strategic Research for Exploration thrust. The Research Plan will integrate and coordinate fundamental Research Thrusts Roadmaps with the Technology Roadmap. The Technology Roadmap will be developed in coordination with other OBPR programs as well as other Enterprise (R,S,M,N). International Partners will contribute to the roadmaps and through research coordination. The research plan will be vetted with the discipline working groups, the BPRAC subcommittees, and with the BPRAC. Recommendations from NRC past and current committees will be implemented whenever appropriate.Proposed theme element content will be "missionized" around planned content and potential new projects (facilities, modules, initiatives) on approximately a five-year horizon, with the approval of PSRD management. Center/science working group teams will develop descriptions of "mission" objectives, value, and requirements. Purpose is to create a competitive environment for concept development and to stimulate community ownership/advocacy. Proposed theme elements reviewed and approved by PSRD management. Strawman roadmaps for themes developed. Program budget and technology requirements verified. Theme elements are prioritized with the input of advisory groups. Integration into program themes (questions) and required technology investments are defined by science and technology roadmaps. Review and assessment by OBPR management.

  4. NASA's Microgravity Science Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The ongoing challenge faced by NASA's Microgravity Science Research Program is to work with the scientific and engineering communities to secure the maximum return from our Nation's investments by: assuring that the best possible science emerges from the science community for microgravity investigations; ensuring the maximum scientific return from each investigation in the most timely and cost-effective manner; and enhancing the distribution of data and applications of results acquired through completed investigations to maximize their benefits.

  5. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  6. Early Exposure to Research: Outcomes of the ASTER Certification Program

    ERIC Educational Resources Information Center

    Griffard, Phyllis Baudoin; Golkowska, Krystyna

    2013-01-01

    This paper discusses a novel structure for providing a high-impact, first year experience for science students. ASTER (Access to Science Through Experience in Research) is an extracurricular certification program designed to introduce our students to the research culture via seminar attendance, journal clubs, book clubs, and lab visits.…

  7. Joint Antarctic School Expedition - An International Collaboration for High School Students and Teachers on Antarctic Science

    NASA Astrophysics Data System (ADS)

    Botella, J.; Warburton, J.; Bartholow, S.; Reed, L. F.

    2014-12-01

    The Joint Antarctic School Expedition (JASE) is an international collaboration program between high school students and teachers from the United States and Chile aimed at providing the skills required for establishing the scientific international collaborations that our globalized world demands, and to develop a new approach for science education. The National Antarctic Programs of Chile and the United States worked together on a pilot program that brought high school students and teachers from both countries to Punta Arenas, Chile, in February 2014. The goals of this project included strengthening the partnership between the two countries, and building relationships between future generations of scientists, while developing the students' awareness of global scientific issues and expanding their knowledge and interest in Antarctica and polar science. A big component of the project involved the sharing by students of the acquired knowledge and experiences with the general public. JASE is based on the successful Chilean Antarctic Science Fair developed by Chile´s Antarctic Research Institute. For 10 years, small groups of Chilean students, each mentored by a teacher, perform experimental or bibliographical Antarctic research. Winning teams are awarded an expedition to the Chilean research station on King George Island. In 2014, the Chileans invited US participation in this program in order to strengthen science ties for upcoming generations. On King George Island, students have hands-on experiences conducting experiments and learning about field research. While the total number of students directly involved in the program is relatively small, the sharing of the experience by students with the general public is a novel approach to science education. Research experiences for students, like JASE, are important as they influence new direction for students in science learning, science interest, and help increase science knowledge. We will share experiences with the planning of the pilot program as well as the expedition itself. We also share the results of the assessment report prepared by an independent party. Lastly, we will offer recommendations for initiating international science education collaborations. United States participation was funded by the NSF Division of Polar Programs.

  8. Careers in Drug and Alcohol Research: AN Innovative Program for Young Appalachian Women

    NASA Astrophysics Data System (ADS)

    Noland, Melody Powers; Leukefeld, Carl; Reid, Caroline

    Supported by a grant from the National Institute on Drug Abuse, the University of Kentucky's Center on Drug and Alcohol Research developed the Young Women in Science Program to encourage young women from Appalachia to pursue scientific careers гп drug and alcohol research. This 3-year program, which involved 26 young women entering the ninth grade in 13 counties in southeastern Kentucky, included a summer residential program, community educational sessions, and matching students with mentors. When participants' scores prior to and after the 3-week residential program were compared, it was found that participants increased their science knowledge and improved their scores on confidence in science. Other significant changes occurred as well. These preliminary data indicated that some positive changes resulted from the program, even though contact time with the young women has been modest to date. The program shows considerable promise for providing the encouragement and skills needed for these young women to pursue careers in drug and alcohol research.

  9. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookless, W.

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for hismore » laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.« less

  10. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    ERIC Educational Resources Information Center

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  11. [The development of European Union common research and development policy and programs with special regard to life sciences].

    PubMed

    Pörzse, Gábor

    2009-08-09

    Research and development (R&D) has been playing a leading role in the European Community's history since the very beginning of European integration. Its importance has grown in recent years, after the launch of the Lisbon strategy. Framework programs have always played a considerable part in community research. The aim of their introduction was to fine tune national R&D activities, and to successfully divide research tasks between the Community and the member states. The Community, from the very outset, has acknowledged the importance of life sciences. It is no coincidence that life sciences have become the second biggest priority in the last two framework programs. This study provides a historical, and at the same time analytical and evaluative review of community R&D policy and activity from the starting point of its development until the present day. It examines in detail how the changes in structure, conditional system, regulations and priorities of the framework programs have followed the formation of social and economic needs. The paper puts special emphasis on the analysis of the development of life science research, presenting how they have met the challenges of the age, and how they have been built into the framework programs. Another research area of the present study is to elaborate how successfully Hungarian researchers have been joining the community research, especially the framework programs in the field of life sciences. To answer these questions, it was essential to survey, process and analyze the data available in the national and European public and closed databases. Contrary to the previous documents, this analysis doesn't concentrate on the political and scientific background. It outlines which role community research has played in sustainable social and economic development and competitiveness, how it has supported common policies and how the processes of integration have been deepening. Besides, the present paper offers a complete review of the given field, from its foundation up until the present day, by elaborating the newest initiatives and ideas for the future. This work is also novel from the point of view of the given professional field, the life sciences in the framework programs, and processing and evaluating of data of Hungarian participation in the 5th and 6th framework programs in the field of life sciences.

  12. Climate Variability Program

    NASA Technical Reports Server (NTRS)

    Halpern, David (Editor)

    2002-01-01

    The Annual Report of the Climate Variability Program briefly describes research activities of Principal Investigators who are funded by NASA's Earth Science Enterprise Research Division. The report is focused on the year 2001. Utilization of satellite observations is a singularity of research on climate science and technology at JPL (Jet Propulsion Laboratory). Research at JPL has two foci: generate new knowledge and develop new technology.

  13. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Science Mission Directorate Projects at Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.

  14. Evaluation of the National Science Foundation's Integrative Graduate Education and Research Traineeship Program (IGERT): Follow-Up Study of IGERT Graduates. Final Report

    ERIC Educational Resources Information Center

    Carney, Jennifer; Martinez, Alina; Dreier, John; Neishi, Kristen; Parsad, Amanda

    2011-01-01

    The National Science Foundation's Integrative Graduate Education and Research Traineeship (IGERT) program supports students in science, technology, engineering, and mathematics (STEM) fields who participate in university-developed interdisciplinary graduate training experiences. Faculty members at each IGERT site develop a series of education…

  15. Research and Teaching: Association of Summer Bridge Program Outcomes with STEM Retention of Targeted Demographic Groups

    ERIC Educational Resources Information Center

    Tomasko, David L.; Ridgway, Judith S.; Waller, Rocquel J.; Olesik, Susan V.

    2016-01-01

    Retention of students to science, technology, engineering, and mathematics (STEM) major has been studied for four cohorts participating in a summer bridge program supported by the National Science Foundation. Students participated in a 6-week program prior to their first term of enrollment at a research-intensive land grant university. Comparisons…

  16. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  17. Applied Science and Research Applications: Recent Research Reports.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Applied Science and Research Applications.

    This report contains abstracts of new technical reports and other documents resulting from research supported by the directorate for Applied Science and Research Applications of the National Science Foundation. Research reports from current programs include work in the areas of public policy and regulation; public service delivery and urban…

  18. The Ridge 2000 Program: Promoting Earth Systems Science Literacy Through Science Education Partnerships

    NASA Astrophysics Data System (ADS)

    Simms, E.; Goehring, E.; Larsen, J.; Kusek, K.

    2007-12-01

    Sponsored by the National Science Foundation, Ridge 2000 (R2K) is a mid-ocean ridge and hydrothermal vent research program with a history of successful education and public outreach (EPO) programs and products. This presentation will share general science and education partnership strategies and best practices employed by the R2K program, with a particular emphasis on the innovative R2K project From Local to EXtreme Environments (FLEXE). As a new project of the international NSF and NASA sponsored GLOBE earth science education program, FLEXE involves middle and high school students in structured, guided analyses and comparisons of real environmental data. The science and education partnership model employed by FLEXE relies on experienced education coordinators within the R2K and international InterRidge and ChEss science research programs, who directly solicit and facilitate the involvement of an interdisciplinary community of scientists in the project based on their needs and interests. Concurrently, the model also relies on the GLOBE program to facilitate awareness and access to a large, established network of international educators who are interested in the process of science and interacting with the scientific community. The predominantly web-based interfaces that serve to effectively link together the FLEXE science and education communities have been developed by the Center for Science and the Schools at Penn State University, and are based on researched educational pedagogy, tools and techniques. The FLEXE partnership model will be discussed in the context of both broad and specific considerations of audience needs, scientist and educator recruitment, and the costs and benefits for those involved in the project.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SLAC,

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  20. Materials sciences programs: Fiscal Year 1987

    NASA Astrophysics Data System (ADS)

    1987-09-01

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into seven sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, gives distribution of funding, and Section G has various indexes.

  1. 78 FR 39017 - Proposal Review Panel for Materials Research, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research, Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...: Part open. Contact Person: Dr. Chuck Bouldin, Program Director, Materials Research Science and...

  2. 78 FR 40519 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...: Part open Contact Person: Dr. Charles Ying, Program Director, Materials Research Science and...

  3. Knowledge Engineering for Young Scholars. Evaluation Report.

    ERIC Educational Resources Information Center

    Nye, Gloria T.

    The Knowledge Engineering for Young Scholars (KEYS) Program was a National Science Foundation (NSF) program conducted at Louisiana State University during 1989 and 1990. The program's goals were to increase 8th-12th grade students' exposure to science, acquaint them with university research, stimulate interest in science, and build their…

  4. A Program Aimed toward Inclusive Excellence for Underrepresented Undergraduate Women in the Sciences

    ERIC Educational Resources Information Center

    Katz, Laura A.; Aloisio, Kathryn M.; Horton, Nicholas J.; Ly, Minh; Pruss, Sara; Queeney, Kate; Rowen, Cate; DiBartolo, Patricia Marten

    2017-01-01

    Created to foster inclusive excellence, Smith College's Achieving Excellence in Mathematics, Engineering, and Science (AEMES) Scholars program provides early faculty-mentored research opportunities and other programming as a way to foster success in academic outcomes for underrepresented women in science. Using academic record data, we compared…

  5. An Interdisciplinary Program in Materials Science at James Madison University.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  6. 42 CFR 66.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... purposes of Awards under the Minority Access to Research Careers programs of the National Institute of General Medical Sciences and the Career Opportunities in Research Education and Training programs of the..., veterinary medicine, engineering, nursing sciences, public health, or equivalent degree. [48 FR 24880, June 3...

  7. Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength

    NASA Astrophysics Data System (ADS)

    Dong-Wei, Jiang; Wei, Xiang; Feng-Yun, Guo; Hong-Yue, Hao; Xi, Han; Xiao-Chao, Li; Guo-Wei, Wang; Ying-Qiang, Xu; Qing-Jiang, Yu; Zhi-Chuan, Niu

    2016-04-01

    Not Available Supported by the National Basic Research Program of China under Grant Nos 2014CB643903, 2013CB932904, 2012CB932701 and 2011CB922201, the National Special Funds for the Development of Major Research Equipment and Instruments of China under Grant No 2012YQ140005, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01010200, the China Postdoctoral Science Foundation-funded Project under Grant No 2014M561029, the Program for New Century Excellent Talents in University under Grant No NCET-10-0066, the National High-Technology Research and Development Program of China under Grant No 2013AA031502, the Science and Technology Innovation Project of Harbin City under Grant No 2011RFLXG006, the National Natural Science Foundation of China under Grant Nos 61274013, U1037602, 61306013, 51202046, and 61290303, the China Postdoctoral Science Foundation under Grant Nos 2012M510144 and 2013T60366, and the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2013006 and HIT.BRETIII.201403.

  8. Research projects in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016): a cohort study.

    PubMed

    Goldenberg, Neil M; Steinberg, Benjamin E; Rutka, James T; Chen, Robert; Cabral, Val; Rosenblum, Norman D; Kapus, Andras; Lee, Warren L

    2016-01-01

    Physicians have traditionally been at the forefront of medical research, bringing clinical questions to the laboratory and returning with ideas for treatment. However, we have anecdotally observed a decline in the popularity of basic science research among trainees. We hypothesized that fewer resident physicians have been pursuing basic science research training over time. We examined records from residents in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016). Research by residents was categorized independently by 2 raters as basic science, clinical epidemiology or education-related based on the title of the project, the name of the supervisor and Pubmed searches. The study population was divided into quintiles of time, and the proportion pursuing basic science training in each quintile was calculated. Agreement between the raters was 100%; the categorization of the research topic remained unclear in 9 cases. The proportion of trainees pursuing basic science training dropped by 60% from 1987 to 2016 ( p = 0.005). Significantly fewer residents in the Surgeon-Scientist and Clinician-Investigator Programs at the University of Toronto are pursuing training in the basic sciences as compared with previous years.

  9. Community development in a Research Experience for Teachers (RET) program: Teacher growth and translation of the experience back to the classroom

    NASA Astrophysics Data System (ADS)

    Johnston, Carol Suzanne Chism

    This qualitative study explores how a scientific research experience helped seven secondary science teachers to grow professionally. The design of this Research Experience for Teachers (RET) program emphasized having teachers become members of university scientific research communities---participating in experimental design, data collection, analysis, and presenting of findings---in order to have a better understanding of research science. I conducted individual interviews with teacher and scientist participants, visited the teachers in their laboratories, videotaped classroom visits, and videotaped group meetings during the summers to learn what teachers brought back to their classrooms about the processes of science. I examined the teachers' views of research science, views shaped by their exposure to research science under the mentorship of a scientist participant. The teachers observed the collaborative efforts of research scientists and experienced doing scientific research, using technology and various experimental methods. Throughout their two-year experience, the teachers continually refined their images of scientists. I also examined how teachers in this program built a professional community as they developed curricula. Further, I investigated what the teachers brought from their experiences back to the classroom, deciding on a theme of "Communicating Science" as a way to convey aspects of scientific inquiry to students. Teacher growth as a result of this two-year program included developing more empathy for student learning and renewing their enthusiasm for both learning and teaching science. Teacher growth also included developing curricula to involve students in behaving as scientists. The teachers identified a few discrete communication practices of scientists that they deemed appropriate for students to adopt to increase their communication skills. Increased community building in classes to model scientific communities was seen as a way to motivate students and to help them to understand scientific concepts.

  10. Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth.

  11. Science in the Eyes of Preschool Children: Findings from an Innovative Research Tool

    NASA Astrophysics Data System (ADS)

    Dubosarsky, Mia D.

    How do young children view science? Do these views reflect cultural stereotypes? When do these views develop? These fundamental questions in the field of science education have rarely been studied with the population of preschool children. One main reason is the lack of an appropriate research instrument that addresses preschool children's developmental competencies. Extensive body of research has pointed at the significance of early childhood experiences in developing positive attitudes and interests toward learning in general and the learning of science in particular. Theoretical and empirical research suggests that stereotypical views of science may be replaced by authentic views following inquiry science experience. However, no preschool science intervention program could be designed without a reliable instrument that provides baseline information about preschool children's current views of science. The current study presents preschool children's views of science as gathered from a pioneering research tool. This tool, in the form of a computer "game," does not require reading, writing, or expressive language skills and is operated by the children. The program engages children in several simple tasks involving picture recognition and yes/no answers in order to reveal their views about science. The study was conducted with 120 preschool children in two phases and found that by the age of 4 years, participants possess an emergent concept of science. Gender and school differences were detected. Findings from this interdisciplinary study will contribute to the fields of early childhood, science education, learning technologies, program evaluation, and early childhood curriculum development.

  12. Investigating minority student participation in an authentic science research experience

    NASA Astrophysics Data System (ADS)

    Preston, Stephanie Danette

    In the United States, a problem previously overlooked in increasing the total number of scientifically literate citizens is the lack of diversity in advanced science classes and in science, technology, engineering, and mathematics (STEM) fields. Groups traditionally underserved in science education and thus underrepresented in the STEM fields include: low-income, racial/ethnic minorities, and females of all ethnic and racial backgrounds. Despite the number of these students who are initially interested in science very few of them thrive in the discipline. Some scholars suggest that the declining interest for students underrepresented in science is traceable to K-12th grade learning experiences and access to participating in authentic science. Consequently, the diminishing interest of minorities and women in science contributes negatively to the representation of these groups in the STEM disciplines. The purpose of this study was to investigate a summer science research experience for minority students and the nature of students' participation in scientific discourse and practices within the context of the research experience. The research questions that guided this study are: The nature of the Summer Experience in Earth and Mineral Science (SEEMS) research experience . (A) What are the SEEMS intended outcomes? (B) To what extent does SEEMS enacted curriculum align with the intended outcomes of the program? The nature of students engagement in the SEEMS research. (A) In what ways do students make sense of and apply science concepts as they engage in the research (e.g., understand problem, how they interpret data, how they construct explanations), and the extent to which they use the science content appropriately? (B) In what ways do students engage in the cultural practices of science, such as using scientific discourse, interpreting inscriptions, and constructing explanations from evidence (engaging in science practices, knowing science and doing science)? The following data sources were used in this study: SEEMS curriculum and documentation, interviews with program staff and participants, TRIO program documentation, Upward Bound Math Science (UBMS) promotional material, and audio/video recordings and field notes of students' daily interactions in the research setting. Findings revealed that students who participated in the research experience were able to successfully engage in some cultural practices of science, such as using inscriptions, constructing explanations, and collecting data. Analysis and observations of their engagement demonstrated a need for programs similar to SEEMS to focus on: (1) understanding how students make sense of science as they engage in the cultural practices, and (2) incorporating aspects of students' culture and social practices into the experience.

  13. Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less

  14. 75 FR 9000 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal/Award...

  15. Science and Technology in Africa: The African Union New Initiative and Financial Support Perspectives

    NASA Astrophysics Data System (ADS)

    Ezin, Jean-Pierre

    2010-02-01

    Physics, which is widely touted as the most fundamental of the sciences, underpins the progress in all other branches of science and has a wide range of applications in economic development, including in health, energy research, food security, communication technology and climate change. The African Union (AU) Commission articulates the continental vision of its Member States and its programs are designed to directly contribute to its social and economic development and integration efforts. In the area of science and technology the Department has developed Africa's Science and Technology Consolidated Plan of Action as a strategic policy document through the AU system of conference of ministers responsible for science to guide the continent on common priority programs. The programs in this plan of action that have been transformed into bankable projects under the Book of ``lighthouse projects Phase 1'', adequately respond to Africa's challenges and development needs using science. They can be summarized into three main themes: a pan-African university (PAU) initiative (to combine higher education and scientific research as a network of differentiated PAU in each of the five African regions), African research grants (to strengthen the research capacity of the African institutions and upgrading infrastructures, consolidating their accumulated asset of scientific knowledge), popularization of science and technology and promotion of public participation (to build public understanding and raising awareness on science and technology as a driving agent for social and economic progress for Africa and its integration process) and a science and technology institutional capacity building program). This talk will review these programs as well as the vision of the African Development Bank role in it. )

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrick, M.

    These proceedings document a number of aspects of a big science facility and its impact on science, on technology, and on the continuing program of a major US research institution. The Zero Gradient Synchrotron (ZGS) was a 12.5 GeV weak focusing proton accelerator that operated at Argonne for fifteen years--from 1964 to 1979. It was a major user facility which led to new close links between the Laboratory and university groups: in the research program; in the choice of experiments to be carried out; in the design and construction of beams and detectors; and even in the Laboratory management. Formore » Argonne, it marked a major move from being a Laboratory dominated by nuclear reactor development to one with a stronger basic research orientation. The present meeting covered the progress in accelerator science, in the applications of technology pioneered or developed by people working at the ZGS, as well as in physics research and detector construction. At this time, when the future of the US research programs in science is being questioned as a result of the ending of the Cold War and plans to balance the Federal budget, the specific place of the National Laboratories in the spectrum of research activities is under particular examination. This Symposium highlights one case history of a major science program that was completed more than a decade ago--so that the further developments of both the science and the technology can be seen in some perspective. The subsequent activities of the people who had worked in the ZGS program as well as the redeployment of the ZGS facilities were addressed. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  17. About the Atmospheric Science Data Center (ASDC)

    Atmospheric Science Data Center

    2017-12-14

    ... in the Science Directorate located at the NASA Langley Research Center (LaRC), in Hampton, Virginia. The Science Directorate's ... Earth Science enterprise and the U.S. Global Change Research Program , and is one of several Distributed Active Archive Centers ...

  18. How well do middle school science programs measure up? Findings from Project 2061's curriculum review

    NASA Astrophysics Data System (ADS)

    Kesidou, Sofia; Roseman, Jo Ellen

    2002-08-01

    The purposes of this study were to examine how well middle school programs support the attainment of key scientific ideas specified in national science standards, and to identify typical strengths and weaknesses of these programs using research-based criteria. Nine widely used programs were examined by teams of teachers and specialists in research on teaching and learning. Reviewers found that whereas key ideas were generally present in the programs, they were typically buried between detailed or even unrelated ideas. Programs only rarely provided students with a sense of purpose for the units of study, took account of student beliefs that interfere with learning, engaged students with relevant phenomena to make abstract scientific ideas plausible, modeled the use of scientific knowledge so that students could apply what they learned in everyday situations, or scaffolded student efforts to make meaning of key phenomena and ideas presented in the programs. New middle school science programs that reflect findings from learning research are needed to support teachers better in helping students learn key ideas in science. The criteria and findings from this study on the inadequacies in existing programs could serve as guidelines in new curriculum development.

  19. The Changing Roles of Science Specialists during a Capacity Building Program for Primary School Science

    ERIC Educational Resources Information Center

    Herbert, Sandra; Xu, Lihua; Kelly, Leissa

    2017-01-01

    Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…

  20. 75 FR 18240 - Proposal Review Panel for Materials Research Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and.... Type of Meeting: Part-open. Contact Person: Thomas Rieker, Program Director, Materials Research Science...

  1. 77 FR 19362 - Proposal Review Panel for Materials Research, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research, Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...: Part open. Contact Person: Dr. Sean L. Jones, Program Director, Materials Research Science and...

  2. 78 FR 4464 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463 as amended), the National Science..., Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065...

  3. Board on Earth Sciences and Resources and its activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committeemore » on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.« less

  4. Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.

  5. Review of 1953-2003 ORAU Follow-Up Studies on Science Education Programs: Impacts on Participants' Education and Careers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oak Ridge Associated Universities

    2006-06-01

    Through sponsorship of science education programs for undergraduates and graduates, such as research participation programs and fellowships, the Department of Energy (DOE) encouraged the development of adequate numbers of qualified science and engineering (S&E) personnel to meet its current and future research and development (R&D) needs. This retrospective study summarizes impacts of selected programs on these participants. The summary data are from follow-up studies conducted from 1953 through 2003 by Oak Ridge Associated Universities and its predecessor, the Oak Ridge Institute for Nuclear Studies (ORINS).

  6. Program of Policy Studies in Science and Technology, supplement to seven year review

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    The activities of the Program of Policy Studies are described and evaluated. Awards, seminars, publications are included along with student researcher profiles, graduate program in science, technology, and public policy, and a statement of program capability.

  7. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  8. What good is a scientist in the classroom? Participant outcomes and program design features for a short-duration science outreach intervention in K-12 classrooms.

    PubMed

    Laursen, Sandra; Liston, Carrie; Thiry, Heather; Graf, Julie

    2007-01-01

    Many short-duration science outreach interventions have important societal goals of raising science literacy and increasing the size and diversity of the science workforce. Yet, these long-term outcomes are inherently challenging to evaluate. We present findings from a qualitative research study of an inquiry-based, life science outreach program to K-12 classrooms that is typical in design and excellent in execution. By considering this program as a best case of a common outreach model, the "scientist in the classroom," the study examines what benefits may be realized for each participant group and how they are achieved. We find that K-12 students are engaged in authentic, hands-on activities that generate interest in science and new views of science and scientists. Teachers learn new science content and new ways to teach it, and value collegial support of their professional work. Graduate student scientists, who are the program presenters, gain teaching and other skills, greater understanding of education and diversity issues, confidence and intrinsic satisfaction, and career benefits. A few negative outcomes also are described. Program elements that lead to these benefits are identified both from the research findings and from insights of the program developer on program design and implementation choices.

  9. Collaborative, Early-undergraduate-focused REU Programs at Savannah State University have been Vital to Growing a Demographically Diverse Ocean Science Community

    NASA Astrophysics Data System (ADS)

    Gilligan, M. R.; Cox, T. M.; Hintz, C. J.

    2011-12-01

    Formal support for undergraduates to participate in marine/ocean science research at Savannah State University (SSU), a historically-Black unit of the University System of Georgia, began in 1989 with funding from the National Science Foundation for an unsolicited proposal (OCE-8919102, 34,935). Today SSU, which has offered B.S degrees since 1979 and M.S. degrees since 2001 in Marine Sciences, is making major contributions nationally to demographic diversity in ocean sciences. 33% of Master's degrees in marine/ocean sciences earned by African Americans in the U.S. from 2004-2007 were earned at SSU. 10% of African American Master's and Doctoral students in marine/ ocean sciences in 2007 were either enrolled in the Master's program at SSU or were former SSU students enrolled in Doctoral programs elsewhere. Collaborative REU programs that focus on early (freshman and sophomore) undergraduate students have been a consistent and vital part of that success. In the most recent iteration of our summer REU program we used six of the best practices outlined in the literature to increase success and retention of underrepresented minority students in STEM fields: early intervention, strong mentoring, research experience, career counseling, financial support, workshops and seminars. The early intervention with strong mentoring has proven successful in several metrics: retention in STEM majors (96%), progression to graduate school (50%), and continuation to later research experiences (75%). Research mentors include faculty at staff at SSU, the Skidaway Institute of Oceanography, Gray's Reef National Marine Sanctuary and Georgia Tech-Savannah. Formal collaborative and cooperative agreements, externally-funded grants, and contracts in support of student research training have proven to be critical in providing resources for growth and improvement marine science curricular options at the University. Since 1981 the program has had four formal partnerships and 36 funded grant awards and contracts totaling 11.7 million. HBCUs are disproportionately more effective in training significant numbers of African American students in the sciences. Although they enrolled only 11.1% of African-American undergraduates and 9.4% of African American graduate students in fall 2007 in the U.S., they awarded 33.3% of undergraduate and 24% of master's degrees earned by African-Americans in Biological, biomedical and, physical sciences, and science technologies in 2006 and 2007. Commitments to the development of non-traditional academic and research programs at HBCUs and other minority serving institutions should be expanded to increase demographic diversity in the ocean sciences.

  10. The Future of New Discoveries on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian

    2000-01-01

    The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.

  11. UC Merced Center for Computational Biology Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Michael; Watanabe, Masakatsu

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformationmore » of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs made possible by the CCB from its inception until August, 2010, at the end of the final extension. Although DOE support for the center ended in August 2010, the CCB will continue to exist and support its original objectives. The research and academic programs fostered by the CCB have led to additional extramural funding from other agencies, and we anticipate that CCB will continue to provide support for quantitative and computational biology program at UC Merced for many years to come. Since its inception in fall 2004, CCB research projects have continuously had a multi-institutional collaboration with Lawrence Livermore National Laboratory (LLNL), and the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, as well as individual collaborators at other sites. CCB affiliated faculty cover a broad range of computational and mathematical research including molecular modeling, cell biology, applied math, evolutional biology, bioinformatics, etc. The CCB sponsored the first distinguished speaker series at UC Merced, which had an important role is spreading the word about the computational biology emphasis at this new campus. One of CCB's original goals is to help train a new generation of biologists who bridge the gap between the computational and life sciences. To archive this goal, by summer 2006, a new program - summer undergraduate internship program, have been established under CCB to train the highly mathematical and computationally intensive Biological Science researchers. By the end of summer 2010, 44 undergraduate students had gone through this program. Out of those participants, 11 students have been admitted to graduate schools and 10 more students are interested in pursuing graduate studies in the sciences. The center is also continuing to facilitate the development and dissemination of undergraduate and graduate course materials based on the latest research in computational biology.« less

  12. A concept for performance management for Federal science programs

    USGS Publications Warehouse

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  13. Fire, Fuel, and Smoke Program: 2014 Research Accomplishments

    Treesearch

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2015-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in FFS...

  14. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  15. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  16. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    NASA Astrophysics Data System (ADS)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  17. Teamwork in Task Analysis. Training Manual V

    DTIC Science & Technology

    1975-11-01

    Research Programs Psychological Sciences Division Office of Naval Research Contract No. N00014-74-A-0436-0001 NR 151-370 Approved for public...Corps (Code RD) And Monitored By Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research Contract No...survival in the hidden warfare of the destructive psychological win-lose game. Win-lose behavior stems from individual attitudes and manage- ment climate

  18. The Translational Science Training Program at NIH: Introducing Early Career Researchers to the Science and Operation of Translation of Basic Research to Medical Interventions

    ERIC Educational Resources Information Center

    Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.

    2017-01-01

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with…

  19. The 1984 NASA/ASEE summer faculty fellowship program

    NASA Technical Reports Server (NTRS)

    Mcinnis, B. C.; Duke, M. B.; Crow, B.

    1984-01-01

    An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy.

  20. Research Opportunities in Solid Earth Science (RESESS): Broadening Participation in Geology and Geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Hubenthal, M.

    2009-12-01

    RESESS is a multi-year, paid, summer research internship program designed for students from underrepresented groups. The students receive extensive mentoring in science research and communication and become part of a community that provides ongoing support. This has been possible in the initial 5 years of the program through collaboration with Significant Opportunities in Atmospheric Research and Science (SOARS), where solid earth students have been an integral part of the SOARS cohort, benefiting from social as well as educational interactions. 11 students have taken part in RESESS for at least one year and of these, four students have graduated in geoscience and entered graduate programs in geophysics and one was recently awarded an NSF graduate fellowship. Students have presented over 20 posters at national science meetings, and one has co-authored a peer-reviewed article. 23 scientists have mentored students over the past 5 years and 17 percent of these mentors are from underrepresented groups in science; 19 other scientists and university/science consortia staff have mentored students in written and verbal presentations and supported their integration into the local communities. Mentorship over a period of years is one important hallmark of this program as students have benefited from the support of UNAVCO, IRIS, USGS, and university scientists and staff during the summer, academic year, and at professional meetings such as AGU, GSA, NABGG, and SACNAS as well as consortia and project science workshops (UNAVCO, IRIS, and EarthScope). One goal of the project has been to educate the scientific community on the benefits of mentoring undergraduate students from underrepresented groups in STEM fields. Increasingly, scientists are approaching RESESS to include this program in their implementation of broader impacts. RESESS has been funded by NSF for the next five years with plans to expand the number of students, geographic and scientific diversity, and sources of funding for a sustainable program. Collaboration with the IRIS REU program and major research programs such as POLENET began over the past three years. Synergistic activities will be increased with the inauguration of the IRIS Minority Speakers Series, partnership with the Colorado Diversity Initiative, and expanded recruitment and research opportunities from universities and colleges nation-wide.

  1. Environmental Management Science Program Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  2. Outcomes and Processes in the Meyerhoff Scholars Program: STEM PhD Completion, Sense of Community, Perceived Program Benefit, Science Identity, and Research Self-Efficacy

    ERIC Educational Resources Information Center

    Maton, Kenneth I.; Beason, Tiffany S.; Godsay, Surbhi; Domingo, Mariano R. Sto.; Bailey, TaShara C.; Sun, Shuyan; Hrabowski, Freeman A., III

    2016-01-01

    Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs…

  3. Factors Affecting the Functionality of Postgraduate Programs in Natural Sciences and Engineering in a Northwest State in Mexico

    ERIC Educational Resources Information Center

    Valdés Cuervo, Angel Alberto; Estévez Nenninger, Etty Haydeé; Wendlandt Amezaga, Teodoro Rafael; Vera Noriega, José Ángel

    2015-01-01

    From the researchers' perspective, the study aimed to identify factors affecting the functionality of postgraduate programs in natural sciences and engineering in a north-western Mexican state. Through the typical cases method, 25 researchers who worked in six doctorate programs in the region were selected. From the perception of these…

  4. The Integration of Creative Drama in an Inquiry-Based Elementary Program: The Effect on Student Attitude and Conceptual Learning

    ERIC Educational Resources Information Center

    Hendrix, Rebecca; Eick, Charles; Shannon, David

    2012-01-01

    Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science…

  5. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    NASA Astrophysics Data System (ADS)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other institutions are also volunteering to be mentors. Second, each student will participate in the GLOBE-FLEXE pilot program that involves comparing environmental conditions of local environments to those of extreme environments, like hydrothermal vents in the deep sea. This real-world science program is being coordinated through the FLEXE Project Office at Penn State University, and the GLOBE Program Office in Boulder, Co. We will spend 18 class periods collecting local weather data and analyzing meteorological data from around the world, writing scientific reports, and peer reviewing other students reports. The NHMFL is a sponsor of the Communtiy Classroom Consortium in Tallahassee that is has funded a grant for equipment needed to conduct the data collection portion of this process. Finally, the students will share their research with other students, parents, teachers, and scientists at a school science fair in the fall, and a scientific poster session in the spring. The NHMFL will be supplying judges for the two sessions. They will also be offering the use of their facilities at the laboratory in the spring. Scientists from the lab will mingle with the students, discuss their research, and critique and encourage the young scientists at the first annual Middle School Research Symposium in May, 2008.

  6. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    NASA Astrophysics Data System (ADS)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.

  7. Engaging Students and Teachers in Immersive Learning Experiences Alongside NASA Scientists and With Support from Institutional Partnerships

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Bleacher, L.; Glotch, T. D.; Heldmann, J. L.; Bleacher, J. E.; Young, K. E.; Selvin, B.; Firstman, R.; Lim, D. S. S.; Johnson, S. S.; Kobs-Nawotniak, S. E.; Hughes, S. S.

    2015-12-01

    The Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) and Field Investigations to Enable Solar System Science and Exploration (FINESSE) teams of NASA's Solar System Exploration Research Virtual Institute conduct research that will help us more safely and effectively explore the Moon, Near Earth Asteroids, and the moons of Mars. These teams are committed to making their scientific research accessible and to using their research as a lens through which students and teachers can better understand the process of science. In partnership with the Alan Alda Center for Communicating Science at Stony Brook University, in spring of 2015 the RIS4E team offered a semester-long course on science journalism that culminated in a 10-day reporting trip to document scientific fieldwork in action during the 2015 RIS4E field campaign on the Big Island of Hawaii. Their work is showcased on ReportingRIS4E.com. The RIS4E science journalism course is helping to prepare the next generation of science journalists to accurately represent scientific research in a way that is appealing and understandable to the public. It will be repeated in 2017. Students and teachers who participate in FINESSE Spaceward Bound, a program offered in collaboration with the Idaho Space Grant Consortium, conduct science and exploration research in Craters of the Moon National Monument and Preserve. Side-by-side with NASA researchers, they hike through lava flows, operate field instruments, participate in science discussions, and contribute to scientific publications. Teachers learn about FINESSE science in the field, and bring it back to their classrooms with support from educational activities and resources. The second season of FINESSE Spaceward Bound is underway in 2015. We will provide more information about the RIS4E and FINESSE education programs and discuss the power of integrating educational programs within scientific programs, the strength institutional partnerships can provide, and the impact participating in immersive field experiences can have on learners.

  8. 76 FR 4947 - Comment Request: National Science Foundation Proposal & Award Policies and Procedures Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal & Award Policies...

  9. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...

  10. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...

  11. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...

  12. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...

  13. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Charles; Bell, Greg; Canon, Shane

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SCmore » organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.« less

  14. Cardiopulmonary discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area.

  15. Teaching Experiences for Graduate Student Researchers: A Study of the Design and Implementation of Science Courses for Secondary Students

    NASA Astrophysics Data System (ADS)

    Collins, Anne Wrigley

    Modern science education reform recommends that teachers provide K-12 science students a more complete picture of the scientific enterprise, one that lies beyond content knowledge and centers more on the processes and culture of scientists. In the case of Research Experience for Teachers (RET) programs, the "teacher" becomes "researcher" and it is expected that he/she will draw from the short-term science research experience in his/her classroom, offering students more opportunities to practice science as scientists do. In contrast, this study takes place in a program that allows graduate students, engaged in research full-time, to design and implement a short-duration course for high school students on Saturdays; the "researcher" becomes "teacher" in an informal science program. In this study, I investigated eleven graduate students who taught in the Saturday Science (SS) program. Analyses revealed participants' sophisticated views of the nature of science. Furthermore, participants' ideas about science clearly resonated with the tenets of NOS recommended for K-12 education (McComas et al., 1998). This study also highlighted key factors graduate students considered when designing lessons. Instructors took great care to move away from models of traditional, "lecture"-based, university science teaching. Nonetheless, instruction lacked opportunities for students to engage in scientific inquiry. In instances when instructors included discussions of NOS in SS courses, opportunities for high school students to learn NOS were not explicit enough to align with current science reform recommendations (e.g., AAAS, 2009). Graduate students did, however, offer high school students access to their own science or engineering research communities. These findings have significant implications for K-12 classroom reform. Universities continue to be a valuable resource for K-12 given access to scientists, materials or equipment, and funding. Nonetheless, and as was the case with graduate students in this study, scientists who engage in partnerships with K-12 need explicit training on effective science teaching methodologies just as classroom teachers need this training. In other words, despite membership in the science research community -- thus sound understanding of authentic science practice -- university scientists may not be prepared to or understand the importance of translating this for K-12 partners.

  16. Research and technology annual report, FY 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Given here is the annual report of the John C. Stennis Space Center (SSC), a NASA center responsible for testing NASA's large propulsion systems, developing supporting test technologies, conducting research in a variety of earth science disciplines, and facilitating the commercial uses of NASA-developed technologies. Described here are activities of the Earth Sciences Research Program, the Technology Development Program, commercial programs, the Technology Utilization Program, and the Information Systems Program. Work is described in such areas as forest ecosystems, land-sea interface, wetland biochemical flux, thermal imaging of crops, gas detectors, plume analysis, synthetic aperture radar, forest resource management, applications engineering, and the Earth Observations Commercial Applications Program.

  17. Program for the Increased Participation of Minorities in NASA-Related Research

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The goal of this program is to increase the participation of minorities in NASA related research and "Science for the Nation s Interest". Collaborative research projects will be developed involving NASA-MSFC, National Space Science and Technology Center (NSSTC), other government agencies, industries and minority serving institutions (MSIs). The primary focus for the MSIs will be on Alabama A&M University and Tuskegee University, which are in partnership with the NSSTC. These schools have excellent Ph.D. programs in physics and materials science and engineering, respectively. The first phase of this program will be carried out at Alabama A&M University in the "Research and Development Office" in collaboration with Dr. Dorothy Huston, Vice President of Research and Development. The development assignment will be carried out at the NSSTC with Sandy Coleman/ RS01 and this will primarily involve working with Tuskegee University.A portion of the program will be devoted to identifying and contacting potential funding sources for use in establishing collaborative research projects between NASA-MSFC, other government agencies, NSSTC, industries, and MSIs. These potential funding sources include the National Science Foundation (NSF), National Institute of Health (NIH), Department of Defense (DOD), Army, Navy, and Air Force. Collaborative research projects will be written mostly in the following research areas: a. Cosmic radiation shielding materials b. Advanced propulsion material c. Biomedical materials and biosensors d. In situ resource utilization e. Photonics for NASA applications

  18. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    NASA Astrophysics Data System (ADS)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  19. Graphene/Mo2C heterostructure directly grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Deng, Rongxuan; Zhang, Haoran; Zhang, Yanhui; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Liang, Yijian; Hu, Shike; Yu, Guanghui; Jiang, Da

    2017-06-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 1402342, 11574338, and 11274333), the Hundred Talents Program of Chinese Academy of Sciences, the International Collaboration and Innovation Program on High Mobility Materials Engineering, Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences (Grant No. XDB04040300).

  20. The Translational Science Training Program at NIH: Introducing Early Career Researchers to the Science and Operation of Translation of Basic Research to Medical Interventions

    PubMed Central

    Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.

    2016-01-01

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP)1. The TSTP is an intensive 2–3 day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. PMID:27231204

  1. The Impact of a Citizen Science Program on Student Achievement and Motivation: A Social Cognitive Career Perspective

    ERIC Educational Resources Information Center

    Hiller, Suzanne E.

    2012-01-01

    Citizen science programs are joint efforts between hobbyists and professional scientists designed to collect data to support scientific research. Through these programs, biologists study species population trends while citizen scientists improve their content knowledge and science skills. The purpose of the present mixed method quasi-experimental…

  2. The Effects of Activity-Based Elementary Science Programs on Student Outcomes and Classroom Practices: A Meta Analysis of Controlled Studies.

    ERIC Educational Resources Information Center

    Bredderman, Ted

    A quantitative synthesis of research findings on the effects of three major activity-based elementary science programs developed with National Science Foundation support was conducted. Controlled evaluation studies of the Elementary Science Study (ESS), Science-A Process Approach (SAPA), or The Science Curriculum Improvement Study (SCIS) were used…

  3. The development of a TED-Ed online resident research training program.

    PubMed

    Moreau, Katherine A; Pound, Catherine M; Peddle, Beth; Tokarewicz, Jaclyn; Eady, Kaylee

    2014-01-01

    Pediatric health research is important for improving the health and well-being of children and their families. To foster the development of physicians' research competencies, it is vital to integrate practical and context-specific research training into residency programs. To describe the development of a resident research training program at one tertiary care pediatric academic health sciences center in Ontario, Canada. We surveyed residents and pediatricians/research staff to establish the need and content for a resident research training program. Residents and resident research supervisors agreed or strongly agreed that research training is important for residents. However, few residents and supervisors believed that their academic health sciences center provided adequate training and resources to support resident research. As such, an online resident research training program was established. Residents and supervisors agreed that the program should focus on the following topics: 1) critically evaluating research literature, 2) writing a research proposal, 3) submitting an application for research funding, and 4) writing a manuscript. This highly accessible, context-specific, and inexpensive online program model may be of interest and benefit to other residency programs as a means to enhance residents' scholarly roles. A formal evaluation of the research training program is now underway.

  4. Resources

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  5. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael

    2004-01-01

    Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  6. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  7. Thermal-Structures and Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    1997-01-01

    Since its inception and successful implementation in 1997 at James Madison University, the Thermal Structures and Materials Testing Laboratory (T-SaMTL) funded by the NASA Langley Research Center is evolving into one of the University's premier and exemplary efforts to increase minority representation in the sciences and mathematics. Serving ten (10) students and faculty directly and almost fifty (50) students indirectly, T-SAMTL, through its recruitment efforts, workshops, mentoring program, tutorial services and its research and computational laboratories has marked the completion of the first year with support from NASA totaling $ 100,000. Beginning as an innovative academic research and mentoring program for underrepresented minority science and mathematics students, the program now boasts a constituency which consists of 50% graduating seniors in the spring of 1998 with 50% planning to go to graduate school. The program's intent is to increase the number of underrepresented minorities who receive doctoral degrees in the sciences by initiating an academically enriched research program aimed at strengthening the academic and self actualization skills of undergraduate students with the potential to pursue doctoral study in the sciences. The program provides financial assistance, academic enrichment, and professional and personal development support for minority students who demonstrate the potential and strong desire to pursue careers in the sciences and mathematics. James Madison University was awarded the first $100,000, in April 1997, by The NASA Langley Research Center for establishment and support of its Thermal Structures and Materials Testing

  8. Physical Sciences Research Priorities and Plans in OBPR

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  9. Life sciences payloads for Shuttle

    NASA Technical Reports Server (NTRS)

    Dunning, R. W.

    1974-01-01

    The Life Sciences Program for utilization of the Shuttle in the 1980's is presented. Requirements for life sciences research experiments in space flight are discussed along with study results of designs to meet these requirements. The span of life sciences interests in biomedicine, biology, man system integration, bioinstrumentation and life support/protective systems is described with a listing of the research areas encompassed in these descriptions. This is followed by a description of the approach used to derive from the life sciences disciplines, the research functions and instrumentation required for an orbital research program. Space Shuttle design options for life sciences experiments are identified and described. Details are presented for Spacelab laboratories for dedicated missions, mini-labs with carry on characteristics and carry on experiments for shared payload missions and free flying satellites to be deployed and retrieved by the Shuttle.

  10. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  11. Human Pulmonary Hyperpolarized 129Xe MRI: a Preliminary Study

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Wang, Ke; Zhang, Hui-Ting; Xie, Jun-Shuai; Wu, Guang-Yao; Zhou, Xin

    2018-05-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 81227902 and 81625011, the National Key Research and Development Program of China under Grant No 2016YFC1304702, and the Key Research Program of Frontier Sciences of CAS (QYZDY-SSW-SLH018).

  12. Life sciences report 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  13. Entering a New ERA: Education Resources and AGU

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Johnson, R. M.

    2001-12-01

    Professional societies play a unique role in the on-going battle to improve public education in the Earth and space sciences. With guidance from its Committee on Education and Human Resources (CEHR), AGU has traditionally sponsored strong programs that provide mechanisms for linking its research membership with the formal/informal science education communities. Among the most successful of these are tutorials for K-12 teachers taught by AGU members during national meetings (e.g., GIFT - Geophysical Information For Teachers) and internships that allow teachers to experience geophysical science research first-hand (e.g., STaRS - Science Teacher and Research Scientist). AGU also co-sponsors major symposia to discuss and develop strategies for Earth science education reform (e.g., the NSF-sponsored Shaping the Future workshop) and provides an annual forum for the Heads and Chairs of undergraduate geoscience departments to discuss common problems and share solutions. In the fall of 2001, AGU expects to unveil a major new education and outreach website that will provide enhanced opportunities for communicating to students, teachers and the public about AGU members' research and new directions in geophysical science education. The most important contribution that AGU makes, however, is to validate and prominently endorse the education and outreach efforts of its members, both by sponsoring well-attended, education-related special sessions at AGU national meetings and by annually honoring individuals or groups with the Excellence in Geoscience Education award. Recent staff changes at AGU headquarters have brought new opportunities to expand upon these successful existing programs and move in other directions that capitalize on the strengths of the organization. Among new initiatives being considered are programs that partner education efforts with those being developed as part of several large research programs, curriculum modules that will promote teaching earth sciences-related materials within core physics, chemistry, and math curricula, and more sophisticated informal science education programs. Efforts to better coordinate AGU's education programs with those being developed by other professional geoscience organizations are also underway.

  14. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  15. Chinese Space Program for Heliophysics

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Gan, Weiqun; Wang, Chi; Liu, Weining; Yan, Yihua; Liu, Yong; Sun, Lilin; Liu, Ying

    As one of the major field of space science, heliophysics research in China has not only long history but also strong research forces. Many space missions have been proposed by the community but with few got support. Since 2006, Chinese Academy of Science has organized a long term strategic study in space science. In 2011, the space science program has been kicked off with several new missions being selected for Phase A study. In this presentation, first a brief review on past programs, such as Double Star, Chang’e, and an introduction on the space science strategic study are given. Under the guidance of this strategic study or roadmap, a few missions have been proposed or re-proposed with new element, such as DSO, KUAFU, MIT, SPORT and ASO-S. Brief introductions of these programs and their current status will be given.

  16. Space shuttle and life sciences

    NASA Technical Reports Server (NTRS)

    Mason, J. A.

    1977-01-01

    During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.

  17. Quantitative evaluation of space charge effects of laser-cooled three-dimensional ion system on a secular motion period scale

    NASA Astrophysics Data System (ADS)

    Du, Li-Jun; Song, Hong-Fang; Chen, Shao-Long; Huang, Yao; Tong, Xin; Guan, Hua; Gao, Ke-Lin

    2018-04-01

    Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304401), the National Natural Science Foundation of China (Grant Nos. 11622434, 11474318, 91336211, and 11634013), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), Hubei Province Science Fund for Distinguished Young Scholars (Grant No. 2017CFA040), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015274).

  18. Designing Inductive Instructional Activities in a Teacher Training Program to Enhance Conceptual Understandings in Science for Thai Science and Non-Science Teachers

    ERIC Educational Resources Information Center

    Narjaikaew, Pattawan; Jeeravipoonvarn, Varanya; Pongpisanou, Kanjana; Lamb, Dennis

    2016-01-01

    Teachers are viewed as the most significant factor affecting student learning. However, research in science education showed that teachers often demonstrate misunderstandings of science very similar to students. The purpose of this research was to correct conceptual difficulties in science of Thai primary school science and non-science teachers…

  19. Aeroacoustics Research Program in JIAFS

    NASA Technical Reports Server (NTRS)

    Myers, Michael K.

    2000-01-01

    This paper presents a final report on Aeroacoustics Research Program in JIAFS (Joint Institute For Advancement of Flight Sciences). The objectives of the program were to conduct research at the NASA Langley Research Center and to provide a comprehensive education program at the Center leading to advanced degrees in aeroacoustics.

  20. Langley's DEVELOP Team Applies NASA's Earth Observations to Address Environmental Issues Across the Country and Around the Globe

    NASA Technical Reports Server (NTRS)

    Childs, Lauren M.; Miller, Joseph E.

    2011-01-01

    The DEVELOP National Program was established over a decade ago to provide students with experience in the practical application of NASA Earth science research results. As part of NASA's Applied Sciences Program, DEVELOP focuses on bridging the gap between NASA technology and the public through projects that innovatively use NASA Earth science resources to address environmental issues. Cultivating a diverse and dynamic group of students and young professionals, the program conducts applied science research projects during three terms each year (spring, summer, and fall) that focus on topics ranging from water resource management to natural disasters.

  1. 78 FR 9071 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... research potential; Science and engineering education programs at all levels and in all the various fields... science and engineering and enhancing the potential for research and education to contribute to the Nation... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal/Award...

  2. Integrating Research and Education in NSF's Office of Polar Programs

    NASA Astrophysics Data System (ADS)

    Wharton, R. A.; Crain, R. D.

    2003-12-01

    The National Science Foundation invests in activities that integrate research and education, and that develop reward systems to support teaching, mentoring and outreach. Effective integration of research and education at all levels can infuse learning with the excitement of discovery. It can also ensure that the findings and methods of research are quickly and effectively communicated in a broader context and to a larger audience. This strategy is vital to the accomplishment of NSF's strategic goals of ensuring a world-class science and engineering workforce, new knowledge across the frontiers of science and engineering, and the tools to get the job done efficiently and effectively. The NSF's Office of Polar Programs sponsors educational projects at all levels of learning, making full use of the variety of disciplinary and interdisciplinary studies in the polar regions to attract and invigorate students. An array of efforts from the Arctic and Antarctic scientific communities link research activities with education. There has been an advance from the beneficial but isolated impacts of individual researcher visits to K-12 classrooms to large-scale developments, such as field research experiences for teachers and undergraduate students, online sharing of polar field experiences with rural classrooms, the institution of interdisciplinary graduate research programs through NSF initiatives, and opportunities for minority and underrepresented groups in polar sciences. The NSF's criterion for evaluating proposals based upon the broader impacts of the research activity has strengthened efforts to link research and education, resulting in partnerships and innovations that infuse research into education from kindergarten through postdoctoral studies and reaching out to the general public. In addition, the Office of Polar Programs partners with other directorates at NSF to broaden OPP's efforts and benefit from resources and experience in the Education and Human Resources Directorate, the Geosciences Education program, the Environmental Research and Education program and others. This presentation will provide an overview of the direction of science education in the Office of Polar Programs and highlight some important and long-lasting ventures. It is intended to encourage the Arctic and Antarctic scientific communities to look for additional avenues to bridge their research with education.

  3. Quality Science Teacher Professional Development and Student Achievement

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  4. Undergraduate Research Collaborations with Government Agencies Involving the Effects of Climate Change

    NASA Astrophysics Data System (ADS)

    Gurtler, G.

    2017-12-01

    We discuss the challenges and achievements that a small HSI college had integrating undergraduate research experiences into an existing natural sciences program. Like most introductory college science courses, our natural science courses used textbooks, PowerPoint presentations, and lectures to illustrate basic scientific concepts. Though a collective decision was made by our science faculty to incorporate undergraduate research projects into various STEM courses, our greatest challenge was incorporating mandatory research courses into the degree plans of our Natural Science program. We found that students made considerable progress in understanding natural science by critically evaluating primary research articles and undertaking small research projects. Many of these student projects were conducted in cooperation with the Albuquerque District of the US Army Corps of Engineers, United States Geological Survey in Denver, and the National Ice Core Laboratory. These projects illustrated the effects of climate change on the water quality, sediment buildup, and biodiversity at local reservoirs. Other projects involved the analysis of ice core samples from Greenland and Antarctica. Students presented research posters at various research venues, including Community College Undergraduate Research Initiative colloquiums.

  5. Educational program using four-dimensional presentation of space data and space-borne data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, Akinori; Yoshida, Daiki; Odagi, Yoko; Takahashi, Midori; Tsugawa, Takuya; Kumano, Yoshisuke

    We developed an educational program of space science data and science data observed from the space using a digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system. The educational program using Dagik Earth has been carried out in classrooms of schools, science museums, and research institutes to show the scientific data of the earth and planets in an intuitive way. We are developing the hardware system, data contents, and education manuals in cooperation with teachers, museum staffs and scientists. The size of the globe used in this system is from 15cm to 2m in diameter. It is selected according to the environment of the presentation. The contents cover the space science, such as aurora and geomagnetic field, the earth science, such as global clouds and earthquakes, and planetary science. Several model class plans are ready to be used in high school and junior high school. In public outreach programs of universities, research institutes, and scientific meetings, special programs have been carried out. We are establishing a community to use and develop this program for the space science education.

  6. Sustainability Goals

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  7. Service Unavailable

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  8. Factors Impacting on Teachers' Job Satisfaction Related to Science Teaching: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Song, S.; Mustafa, M.

    2015-01-01

    Science teachers' job satisfaction is identified as a major factor that affects the quality of a science program. This research investigated to what extent a science program supports science teachers in terms of curriculum materials or extracurricular activities. It also examined the relationships among schools' curriculum support, the number of…

  9. A distributed model: redefining a robust research subject advocacy program at the Harvard Clinical and Translational Science Center.

    PubMed

    Winkler, Sabune J; Cagliero, Enrico; Witte, Elizabeth; Bierer, Barbara E

    2014-08-01

    The Harvard Clinical and Translational Science Center ("Harvard Catalyst") Research Subject Advocacy (RSA) Program has reengineered subject advocacy, distributing the delivery of advocacy functions through a multi-institutional, central platform rather than vesting these roles and responsibilities in a single individual functioning as a subject advocate. The program is process-oriented and output-driven, drawing on the strengths of participating institutions to engage local stakeholders both in the protection of research subjects and in advocacy for subjects' rights. The program engages stakeholder communities in the collaborative development and distributed delivery of accessible and applicable educational programming and resources. The Harvard Catalyst RSA Program identifies, develops, and supports the sharing and distribution of expertise, education, and resources for the benefit of all institutions, with a particular focus on the frontline: research subjects, researchers, research coordinators, and research nurses. © 2014 Wiley Periodicals, Inc.

  10. US Department of Energy education programs catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples ofmore » some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.« less

  11. US Department of Energy education programs catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples ofmore » some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.« less

  12. One Model for Scientist Involvement in K-12 Education: Teachers Experiencing Antarctica and the Arctic Program

    NASA Astrophysics Data System (ADS)

    Meese, D.; Shipp, S. S.; Porter, M.; Bruccoli, A.

    2002-12-01

    Scientists involved in the NSF-funded Teachers Experiencing Antarctica and the Arctic (TEA) Program integrate a K-12 science teacher into their polar field project. Objectives of the program include: having the science teacher immersed in the experience of research; 2) through the teacher, leveraging the research experience to better inform teaching practices; and 3) sharing the experience with the broader educational and general community. The scientist - or qualified team member - stays involved with the teacher throughout the program as a mentor. Preparation of the teacher involves a week-long orientation presented by the TEA Program, and a two week pre-expedition visit at the scientist's institution. Orientation acquaints teachers with program expectations, logistical information, and an overview of polar science. While at the scientist's institution, the teacher meets the team, prepares for the field, and strengthens content knowledge. In the field, the teacher is a team member and educational liaison, responding to questions from students and colleagues by e-mail, and posting electronic journals describing the research experience. Upon return, the teachers work closely with colleagues to bring the experience of research into classrooms through creation of activities, design of longer-term student investigations, and presentations at scientific, educational, and community meetings. Interaction with the scientific team continues with a visit by the scientist to the teacher's classrooms, collaboration on presentations at scientific meetings, and consultation on classroom activities. In some cases, the teacher may participate in future expeditions. The involvement by scientists in mentor relationships, such as those of the TEA Program, is critical to improving science education. Many teachers of science have not had the opportunity to participate in field research, which offers valuable first-hand experience about the nature of science, as well as about specific content. The value to the scientist lies in deepening the understanding of current science education, increasing exposure to new ways to communicate information, and developing a path to having the research shared with the classroom and community via the TEA teacher's outreach. This long-term interaction between a scientist and a teacher can result in meaningful impact through increasing depth of understanding - not just about science content, but about the process of science. Equipped with this understanding based on experience, the teacher can multiply the impact with colleagues and students.

  13. Office of Educational Programs 2009 Summer Internship Symposium and Poster Session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White,K.; Morris, M.; Osiecki, C.

    2009-08-06

    Brookhaven National Laboratory offers college and pre-college faculty and students many opportunities to participate in Laboratory educational programs. The programs administered by the Office of Educational Programs are primarily funded by the U.S. Department of Energy, Brookhaven Science Associates, and other federal and non-federal agencies. Faculty and student research participation is welcomed in physical and life sciences, computer science and engineering, as well as in a variety of applied research areas relating to alternative energy, conservation, environmental technology, and national security. Visit our website at http://www.bnl.gov/education for application deadlines and more details. Following is a description of the programs managedmore » by the Office of Educational Programs.« less

  14. Involving scientists in public and pre-college education at Princeton University

    NASA Astrophysics Data System (ADS)

    Steinberg, D. J.

    2011-12-01

    The Princeton Center for Complex Materials (PCCM) is a National Science Foundation (NSF) funded Materials Research Science and Engineering Center (MRSEC). As a MRSEC, it is part of the PCCM's mission to inspire and educate school children, teachers and the public about STEM and materials science. Research shows that it is critical to excite students at a young age and maintain that excitement, and without that these students are two to three times less likely to have any interest in science and engineering and pursue science careers as adults. We conduct over a dozen different education programs at Princeton University, in which scientists and engineers are directly involved with students, teachers and the public. As an ongoing MRSEC education and outreach program, we have developed many successful educational partnerships to increase our impact. The scientists and engineers who participate in our programs are leading experts in their research field and excellent communicators to their peers. They are not experts in precollege pedagogy or in communication to the public. Scientists often require some preparation in order to have the greatest chance of success. The amount and type of professional development required for these scientists to succeed in education programs depends on many factors. These include the age of the audience, the type of interaction, and the time involved. Also different researchers require different amount of help, advice, and training. Multiple education programs that involve Princeton University researchers will be discussed here. We will focus on what has worked best when preparing scientists and engineers for involvement in education programs. The Princeton University Materials Academy (PUMA) is a three week total immersion in science for minority high school students involving many faculty and their research groups. Our Making Stuff day reaches 100's of middle school students in which faculty interact directly with students and teachers at activity tables give auditorium presentations. Teacher development programs and holiday lectures will be highlighted as well.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focusmore » research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.« less

  16. CaTs Lab (CHAOS and Thermal Sciences Laboratory)

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    2002-01-01

    The CHAOS and Thermal Sciences Laboratory (CaTs) at James Madison University evolved into a noteworthy effort to increase minority representation in the sciences and mathematics. Serving ten students and faculty directly, and nearly 50 students indirectly, CaTs, through recruitment efforts, workshops, mentoring programs, tutorial services and research and computational laboratories, fulfilled its intent to initiate an academically enriched research program aimed at strengthening the academic and self-actualization skills of undergraduate students with potential to pursue doctoral study in the sciences. The stated goal of the program was to increase by 5% the number of enrolled mathematics and science students into the program. Success far exceeded the program goals by producing 100% graduation rate of all supported recipients during its tenure, with 30% of the students subsequently in pursuit of graduate degrees. Student retention in the program exceeded 90% and faculty participation exceeded the three members involved in mentoring and tutoring, gaining multi-disciplinary support. Aggressive marketing of the program resulted in several paid summer internships and commitments from NASA and an ongoing relationship with CHROME, a nationally recognized organization which focuses on developing minority students in the sciences and mathematics. Success of the program was only limited by the limited fiscal resources at NASA which resulted in phasing out of the program.

  17. Participation in Research Program: A Novel Course in Undergraduate Education of Life Science

    ERIC Educational Resources Information Center

    Zhou, Xuanwei; Lin, Juan; Yin, Yizhou; Sun, Xiaofen; Tang, Kexuan

    2007-01-01

    A novel course, "Participation in Research Program (PRP)" in life sciences is open for 1st to 3rd year undergraduates. PRP introduces the principles of a variety of biological methods and techniques and also offers an opportunity to explore some specific knowledge in more detail prior to thesis research. In addition, the PRP introduces some…

  18. Student Perceptions of Staged Transfer to Independent Research Skills during a Four-Year Honours Science Undergraduate Program

    ERIC Educational Resources Information Center

    Symons, Sarah L.; Colgoni, Andrew; Harvey, Chad T.

    2017-01-01

    We describe interim results of an ongoing longitudinal pedagogical study investigating the efficacy of the Honours Integrated Science Program (iSci). We describe the pedagogical methods we use to prompt research skill development in a model from instructor-dependence to independent original research. We also describe a tool we use to help students…

  19. 75 FR 41551 - Meetings of Humanities Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... Psychology in Fellowships, submitted to the Division of Research Programs at the May 4, 2010 deadline. 21... applications for Advanced Social Science Research on Japan in Fellowships, submitted to the Division of...:30 a.m. to 5 p.m. Room: 415. Program: This meeting will review applications for Social Sciences and...

  20. Superconductivity in Undoped CaFe2As2 Single Crystals

    NASA Astrophysics Data System (ADS)

    Dong-Yun, Chen; Jia, Yu; Bin-Bin, Ruan; Qi, Guo; Lei, Zhang; Qing-Ge, Mu; Xiao-Chuan, Wang; Bo-Jin, Pan; Gen-Fu, Chen; Zhi-An, Ren

    2016-06-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 11474339, the National Basic Research Program of China under Grant Nos 2010CB923000 and 2011CBA00100, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020100.

  1. Cognitive and Neural Sciences Division, 1989 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed by principal investigators under the sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during fiscal year 1989. Programs are conducted under contracts and grants awarded on the basis of proposals received in response to a Broad Agency Announcement in the…

  2. Badging, Badge Office

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  3. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  4. ESNIB (European Science Notes Information Bulletin): Reports on Current European/Middle Eastern Science

    DTIC Science & Technology

    1989-11-01

    tool for planning, programming , The TERMOS is a digital terrain modeling system and simulating, initiating, and surveying small-scale was developed ...workshop fea- (FRG) turing the European Strategic Program for Research and Conference Language: English Development in Information Technologies...self- * Research and Development in the Numerical addressed mailer and return it to ONREUR. Aerodynamic Systems Program , R. Bailey, NASA

  5. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  6. Education and Outreach Opportunities in New Astronomical Facilities

    NASA Astrophysics Data System (ADS)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating research into the classroom. An example is the Large Synoptic Survey Telescope, which will put within public reach on a weekly basis a digital survey of the changing sky. The Giant Segmented Mirror Telescope is a key ingredient in the search for extrasolar planets and the National Virtual Observatory will allow unprecedented data access using powerful data mining and visualization tools. NOAO scientists and educators are designing educational programs around these new initiatives in order to capitalize on their national and international educational value. Our most significant challenge is to find ways to consolidate and institutionalize successful prototype and experimental astronomy education programs into permanent national resources for the earth and space science educational community. If we are successful, there is an enormous potential for future research discoveries to be made from the classroom and for NOAO educational programs to serve as models for other science research institutions.

  7. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  8. Engaging High School Science Teachers in Field-Based Seismology Research: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Long, M. D.

    2015-12-01

    Research experiences for secondary school science teachers have been shown to improve their students' test scores, and there is a substantial body of literature about the effectiveness of RET (Research Experience for Teachers) or SWEPT (Scientific Work Experience Programs for Teachers) programs. RET programs enjoy substantial support, and several opportunities for science teachers to engage in research currently exist. However, there are barriers to teacher participation in research projects; for example, laboratory-based projects can be time consuming and require extensive training before a participant can meaningfully engage in scientific inquiry. Field-based projects can be an effective avenue for involving teachers in research; at its best, earth science field work is a fun, highly immersive experience that meaningfully contributes to scientific research projects, and can provide a payoff that is out of proportion to a relatively small time commitment. In particular, broadband seismology deployments provide an excellent opportunity to provide teachers with field-based research experience. Such deployments are labor-intensive and require large teams, with field tasks that vary from digging holes and pouring concrete to constructing and configuring electronics systems and leveling and orienting seismometers. A recently established pilot program, known as FEST (Field Experiences for Science Teachers) is experimenting with providing one week of summer field experience for high school earth science teachers in Connecticut. Here I report on results and challenges from the first year of the program, which is funded by the NSF-CAREER program and is being run in conjunction with a temporary deployment of 15 seismometers in Connecticut, known as SEISConn (Seismic Experiment for Imaging Structure beneath Connecticut). A small group of teachers participated in a week of field work in August 2015 to deploy seismometers in northern CT; this experience followed a visit of the PI to the classroom of one of the teacher participants during spring 2015 to give a series of talks on Connecticut earthquakes and geology. This presentation will focus on the challenges and opportunities of running small, PI-driven, field-based RET programs.

  9. The Effect of a Computer Program Designed with Constructivist Principles for College Non-Science Majors on Understanding of Photosynthesis and Cellular Respiration

    ERIC Educational Resources Information Center

    Wielard, Valerie Michelle

    2013-01-01

    The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…

  10. The Seeds Left in Italy by the E&O Program of the Andrill Research

    NASA Astrophysics Data System (ADS)

    Cattadori, M.

    2010-12-01

    One of the main purposes of the ARISE program, the educational initiative by the ANDRILL research, was to “integrate polar geoscience content into a range of learning environments”. In the range of this program, an Italian science teacher created and developed through 2006 and 2007 a specific project called progettosmilla.it (www.progettosmilla.it). With the services consequently created, this initiative managed to involve more then 2000 students and 100 teachers across the Italian territory. Though, what is left of that experience four years later? This contribution focuses on the description of the long-term effects of that event on the earth system science education in Italy. It offers the chance to analyze some of the most significant educational projects rooted in the network of (local and national) institutions which supported the progettosmilla.it-ANDRILL program. Among these: - the Ortles project: an E&O initiative developed in the range of an international paleoclimatic research on the biggest ice-cap of the Eastern Alps (by Italian and U.S. universities and centers of research); - the I-CLEEN (Inquiring on Climate & ENergy) project: an information gateway collecting educational resources, which promotes an enquiry-based approach and is managed by science teachers (by the Natural Science Museum of Trento- Italy); - the SPEs (Summer Polar School for Teachers): a summer class where research, researchers and teachers illustrate polar themes and lectures to be introduced in scholastic programs (by the National Museum of Antarctica- Italy); - the first European edition of IESO (International Earth Science Olympiad), initiative to be held in Italy in 2011 (by University of Modena and Reggio Emilia - Italy). Through the analysis of these projects it will be possible to gain useful clues and answer more complex questions, such as: Which are the key factors for the success of such a project, aimed to the cooperation between scientists and teachers? Why an Educational & Outreach program of a scientific research should invest on science teachers?

  11. Authentic Science Research in Elementary School After-School Science Clubs

    ERIC Educational Resources Information Center

    Feldman, Allan; Pirog, Kelly

    2011-01-01

    In this paper we report on teachers' and students' participation in authentic science research in out of school time science clubs at elementary schools. In the program four to five teachers worked alongside practicing scientists as part of their research groups. Each teacher facilitated a club with 10-15 students who, by extension, were members…

  12. Creating a Research-Rich Curriculum at Miami University

    NASA Astrophysics Data System (ADS)

    Rauckhorst, William H.

    2007-10-01

    Miami University has attempted in recent years to build upon a collection of individual student research participation opportunities at the University, and develop a comprehensive ``research-rich'' undergraduate curriculum. A major step in this direction was the creation of the Undergraduate Summer Scholars (USS) program. This program provides 10-week summer research experiences with faculty mentors for 100 juniors or seniors each year. The USS Program is not limited to science and engineering areas, as approximately 30 academic departments participate annually. Development of the USS program at Miami was motivated by the University's prior experience with student research appointments funded by the National Science Foundation, the Howard Hughes Medical Institute, and other sponsoring agencies. The University's evaluation of these earlier student research experiences provided evidence that such experiences were at least as significant in a student's education as formal course work. A second important step in Miami's effort was obtaining a grant from the National Science Foundation's Comprehensive Reform of Undergraduate Education program. This funding enabled the University to enhance the Undergraduate Summer Scholars (USS) Program and evaluate student intellectual growth within the program. Two outcomes of this NSF-funded project are noteworthy: first, the USS program now is firmly established within the University's offerings; second, the evaluation ndicated profound student intellectual growth as a result of mentored research experiences. We will describe the development of the Undergraduate Summer Scholars Program, our evaluation of the Program, and ongoing efforts to extend the benefits of research experience to more students by incorporating research components within traditional coursework.

  13. Increasing the Presence of Underrepresented Minorities in the Geosciences: The Woods Hole Partnership Education Program Model and Outcomes

    NASA Astrophysics Data System (ADS)

    George, A.; Gutierrez, B.; Jearld, A.; Liles, G.; Scott, O.; Harden, B.

    2017-12-01

    Launched in 2009, the Partnership Education Program (PEP) is supported by six scientific institutions in Woods Hole, Massachusetts through the Woods Hole Diversity Initiative. PEP, which was shaped by experience with other diversity programs as well as input from scientists in Woods Hole, is designed to promote a diverse scientific community by recruiting talent from minority groups that are under-represented in marine and environmental sciences. Focused on college juniors and seniors with course work in marine and/or environmental sciences, PEP is comprised of a four-week course, "Ocean and Environmental Sciences: Global Climate Change," and a six to eight week individual research project under the guidance of a research mentor. Investigators from the six science institutions serve as course faculty and research mentors. Course credit is through PEP's academic partner, the University of Maryland Eastern Shore. PEP students also participate in seminars, workshops, field trips, at-sea experiences, career development activities, and attend lectures at participating science institutions throughout the summer. Students present their research results at the end of the summer with a 15-minute public presentation. A number of PEP participants then presented their work at professional and scientific meetings, such as AGU, using the program as a gateway to graduate education and career opportunities in the marine and environmental sciences. From 2009 through 2017, 138 students from 86 colleges and universities, including many that previously had sent few or no students or faculty to Woods Hole, have participated in the program. Participating organizations are: Northeast Fisheries Science Center (NOAA Fisheries), Marine Biological Laboratory (MBL), Sea Education Association (SEA), U.S. Geological Survey (USGS), Woods Hole Oceanographic Institution (WHOI), Woods Hole Research Center (WHRC), and University of Maryland Eastern Shore (UMES) - academic partner.

  14. RIS4E Science Journalism Program

    NASA Astrophysics Data System (ADS)

    Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.

    2017-12-01

    NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience and confidence with using journalistic equipment in the field and an improved understanding of how scientific research is conducted. Survey results indicate that the majority of participants are more likely to pursue science journalism as a career as a result of participating in this program. Their work is presented at ReportingRIS4E.com.

  15. Educational opportunities within the NASA specialized center of research and training in gravitational biology

    NASA Technical Reports Server (NTRS)

    Guikema, James A.; Spooner, Brian S.

    1994-01-01

    The NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology was established at Kansas State University, supported through NASA's Life Science Division, Office of Space Science and Applications. Educational opportunities, associated with each of the research projects which form the nucleus of the Center, are complemented by program enrichments such as scholar exchanges and linkages to other NASA and commercial programs. The focus of this training program, and a preliminary assessment of its successes, are described.

  16. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1990

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler)

    1990-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are to further the professional knowledge of qualified engineering and science members; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA center. The study program consists of lectures and seminars on topics of interest or that are directly relevant to the research topics.

  17. Linking Research, Education and Public Engagement in Geoscience: Leadership and Strategic Partnerships

    NASA Astrophysics Data System (ADS)

    Spellman, K.

    2017-12-01

    A changing climate has impacted Alaska communities at unprecedented rates, and the need for efficient and effective climate change learning in the Boreal and Arctic regions is urgent. Learning programs that can both increase personal understanding and connection to climate change science and also inform large scale scientific research about climate change are an attractive option for building community adaptive capacity at multiple scales. Citizen science has emerged as a powerful tool for facilitating learning across scales, and for building partnerships across natural sciences research, education, and outreach disciplines. As an early career scientist and interdisciplinary researcher, citizen science has become the centerpiece of my work and has provided some of the most rewarding moments of my career. I will discuss my early career journey building a research and leadership portfolio integrating climate change research, learning research, and public outreach through citizen science. I will share key experiences from graduate student to early career PI that cultivated my leadership skills and ability to build partnerships necessary to create citizen science programs that emphasize synergy between climate change research and education.

  18. Microgravity research in NASA ground-based facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack

    1989-01-01

    An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.

  19. Compliance with National Ethics Requirements for Human-Subject Research in Non-biomedical Sciences in Brazil: A Changing Culture?

    PubMed

    de Albuquerque Rocha, Karina; Vasconcelos, Sonia M R

    2018-02-06

    Ethics regulation for human-subject research (HSR) has been established for about 20 years in Brazil. However, compliance with this regulation is controversial for non-biomedical sciences, particularly for human and social sciences (HSS), the source of a recent debate at the National Commission for Research Ethics. We hypothesized that for these fields, formal requirements for compliance with HSR regulation in graduate programs, responsible for the greatest share of Brazilian science, would be small in number. We analyzed institutional documents (collected from June 2014 to May 2015) from 171 graduate programs at six prestigious Brazilian universities in São Paulo and Rio de Janeiro, the states that fund most of the science conducted in Brazil. Among these programs, 149 were in HSS. The results suggest that non-compliance with standard regulation seems to be the rule in most of these programs. The data may reflect not only a resistance from scientists in these fields to comply with standard regulations for ethics in HSR but also a disciplinary tradition that seems prevalent when it comes to research ethics in HSR. However, recent encounters between Brazilian biomedical and non-biomedical scientists for debates over ethics in HSR point to a changing culture in the approach to research ethics in the country.

  20. NSF Factbook. Guide to National Science Foundation Programs and Activities.

    ERIC Educational Resources Information Center

    Renetzky, Alvin, Ed.; Flynn, Barbara J., Ed.

    This publication is a thorough guide to National Science Foundation (NSF) programs and activities. Research activities and science education programs supported by NSF during the fiscal year 1970 are reviewed in part one of this volume. Comprehensive listings of NSF grants and awards are presented in the second section which includes a list of…

  1. gidakiimanaaniwigamig (Seek To Know)--A Native Youths Science Immersion Program Created Through a Partnership Between a Tribal College, a Research Laboratory and a Science Museum

    NASA Astrophysics Data System (ADS)

    Dalbotten, D. M.; Pellerin, H.; Steiner, M.

    2004-12-01

    The National Center for Earth-surface Dynamics, an NSF-sponsored Science and Technology Center, through a partnership between the University of Minnesota, the Science Museum of Minnesota, and the Fond du Lac Tribal and Community College, has created gidakiimanaaniwigamig (Seek to Know), where students in middle and high school participate in hands-on research projects on topics in environmental science through a series of four yearly seasonal camps combined with field trips and after school programming. Through meetings with Native elders, community leaders and educators, we know that the major issues that must be addressed are student retention, gaps in programming that allow students who have been performing successfully in math and science to drift away from their interest in pursuing STEM careers, and concern about moving away from the community to pursue higher education. After-school and summer programs are an effective means of creating interest in STEM careers, but single-contact programs don't have the long-term impact that will create a bridge from grade school to college and beyond. Often children who have learned to love science in grade school gradually move away from this interest as they enter middle and high school. While a single intervention offered by a science camp or visit to a laboratory can be life-altering, once the student is back in their everyday life they may forget that excitement and get sidetracked from the educational goals they formed based on this single experience. We want to build on the epiphany (science is fun!) with continued interaction that allows the students to grow in their ability to understand and enjoy science. In order to foster STEM careers for underrepresented youths we need to create a sustained, long-term, program that takes youths through programs that stimulate that initial excitement and gradually become more intensive and research-oriented as the youths get older. NCED's approach to these challenges is to bring youths into a long-lasting program with repeat contacts; to involve community leaders they trust, such as elders, parents, and teachers; to make connections to traditional Native culture; to provide high-quality hands-on science and involve scientists working on NCED research; and to keep it fun!

  2. Effects of NIGMS Training Programs on Graduate Education in the Biomedical Sciences. An Evaluative Study of the Training Programs of the National Institute of General Medical Sciences 1958-1967.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This report was prepared by the National Research Council, at the request of the National Institutes of Health, in an attempt to evaluate the Graduate Research Training Grant Program and Fellowship Program in bioscience. One of the purposes of the study was to collect objective data that would provide answers to such questions as: What have been…

  3. Enabling Research Tools for Sustained Climate Assessment

    NASA Technical Reports Server (NTRS)

    Leidner, Allison K.; Bosilovich, Michael G.; Jasinski, Michael F.; Nemani, Ramakrishna R.; Waliser, Duane Edward; Lee, Tsengdar J.

    2016-01-01

    The U.S. Global Change Research Program Sustained Assessment process benefits from long-term investments in Earth science research that enable the scientific community to conduct assessment-relevant science. To this end, NASA initiated several research programs over the past five years to support the Earth observation community in developing indicators, datasets, research products, and tools to support ongoing and future National Climate Assessments. These activities complement NASA's ongoing Earth science research programs. One aspect of the assessment portfolio funds four "enabling tools" projects at NASA research centers. Each tool leverages existing capacity within the center, but has developed tailored applications and products for National Climate Assessments. The four projects build on the capabilities of a global atmospheric reanalysis (MERRA-2), a continental U.S. land surface reanalysis (NCA-LDAS), the NASA Earth Exchange (NEX), and a Regional Climate Model Evaluation System (RCMES). Here, we provide a brief overview of each enabling tool, highlighting the ways in which it has advanced assessment science to date. We also discuss how the assessment community can access and utilize these tools for National Climate Assessments and other sustained assessment activities.

  4. Whales and Hermit Crabs: Integrated Programming and Science.

    ERIC Educational Resources Information Center

    Kataoka, Joy C.; Lock, Robin

    1995-01-01

    This article describes an integrated program in marine biology. The program was implemented in a nongraded inclusive setting with second- to fourth-grade students whose abilities ranged from gifted to learning disabled. The program integrated science, art, music, language arts, and research and computer skills. (DB)

  5. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  6. Directions in implementation research methods for behavioral and social science.

    PubMed

    Irwin, Molly; Supplee, Lauren H

    2012-10-01

    There is a growing interest, by researchers, policymakers, and practitioners, in evidence-based policy and practice. As a result, more dollars are being invested in program evaluation in order to establish "what works," and in some cases, funding is specifically tied to those programs found to be effective. However, reproducing positive effects found in research requires more than simply adopting an evidence-based program. Implementation research can provide guidance on which components of an intervention matter most for program impacts and how implementation components can best be implemented. However, while the body of rigorous research on effective practices continues to grow, research on implementation lags behind. To address these issues, the Administration for Children and Families and federal partners convened a roundtable meeting entitled, Improving Implementation Research Methods for Behavioral and Social Science, in the fall of 2010. This special section of the Journal of Behavioral Health Services & Research includes papers from the roundtable and highlights the role implementation science can play in shedding light on the difficult task of taking evidence-based practices to scale.

  7. Advancing Earth System Science Literacy and Preparing the Future Geoscience Workforce Through Strategic Investments at the National Science Foundation (Invited)

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Patino, L. C.; Rom, E. L.; Weiler, C. S.

    2010-12-01

    The National Science Foundation (NSF) is an independent federal agency created 60 years ago by the U.S. Congress "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" NSF is the primary funding agency in the U.S. to support basic, frontier research across all fields in science, engineering, and education, except for medical sciences. With a FY 2011 budget request of more than $955 million, the NSF Directorate for Geosciences (GEO) is the principle source of federal funding for university-based fundamental research in the geosciences and preparation of the next generation of geoscientists. Since its inception, GEO has supported the education and training of a diverse and talented pool of future scientists, engineers, and technicians in the Earth, Ocean, Atmospheric and Geospatial Sciences sub-fields, through support of graduate research assistants, post-doctoral fellows, and undergraduate research experiences. In the late 1990’s and early 2000’s, GEO initiated several programs that expanded these investments to also support improvements in pre-college and undergraduate geoscience education through a variety of mechanisms (e.g., professional development support for K-12 teachers, development of innovative undergraduate curricula, and scientist-mentored research experiences for elementary and secondary students). In addition to GEO’s Geoscience Education (GeoEd), Opportunities for Enhancing Diversity in the Geosciences (OEDG), Global Learning and Observations to Benefit the Environment (GLOBE), and Geoscience Teacher Training (GEO-Teach) programs, GEO participates in a number of cross-Foundation programs, including the Research Experiences for Undergraduates (REU), Integrative Graduate Education and Research Traineeship (IGERT), Ethics Education in Science and Engineering (EESE), NSF Graduate STEM Fellows in K-12 Education (GK-12), and Partnerships for International Research and Education (PIRE) programs, and the new Climate Change Education Partnership (CCEP) program. Many broader impact activities associated with individual research grants supported by GEO contribute to the mix, through integration of research and education. Improving access to high quality geoscience education, developing educational resources and pedagogies that reflect current understandings based on cognitive research on how people learn science in formal and informal settings, cultivating a diverse talent pool for the future, and developing robust mechanisms to evaluate the quality of these various approaches and tools are challenges faced by the entire geosciences research and education community, not just NSF/GEO. In the past two years, GEO has worked collaboratively with the Education and Human Resources (EHR) Directorate, and sister agencies NOAA and NASA, to establish a new GEO Education and Diversity Strategic Framework, that will guide our investments in the future, and identify opportunities for a more cohesive, collaborative, and synergistic approach across NSF and the federal government. Details of this new strategic framework, results of recent program evaluations, and their implications for future NSF/GEO education program funding will be discussed.

  8. Candidates for office 2004-2006

    NASA Astrophysics Data System (ADS)

    Timothy L. Killeen. AGU member since 1981. Director of the National Center for Atmospheric Research (NCAR); Senior Scientist, High Altitude Observatory; Adjunct Professor, University of Michigan. Major areas of interest include space physics and aeronomy remote sensing, and interdisciplinary science education. B.S., Physics and Astronomy (first class honors), 1972, University College London; Ph.D., Atomic and Molecular Physics, 1975, University College London. University of Michigan: Researcher and Professor of Atmospheric, Oceanic, and Space Sciences, 1978-2000 Director of the Space Physics Research Laboratory 1993-1998 Associate Vice-President for Research, 1997-2000. Visiting senior scientist at NASA Goddard Space Flight Center, 1992. Program Committee, American Association for the Advancement of Science; Council Member, American Meteorological Society; Editor-in-Chief, Journal of Atmospheric and Solar-Terrestrial Physics; Chair, Jerome K.Weisner National Policy Symposium on the Integration of Research and Education, 1999. Authored over 140 publications, 57 in AGU journals. Significant publications include: Interaction of low energy positrons with gaseous atoms and molecules, Atomic Physics, 4, 1975; Energetics and dynamics of the thermosphere, Reviews of Geophysics, 1987; The upper mesosphere and lower thermosphere, AGU Geophysical Monograph, 1995, Excellence in Teaching and Research awards, College of Engineering, University of Michigan; recipient of two NASA Achievement Awards; former chair, NASA Space Physics Subcommittee; former chair, National Science Foundation (NSF) Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program; former member, NSF Advisory Committee for Geosciences, and chair of NSF's Atmospheric Sciences Subcommittee, 1999-2002 member, NASA Earth Science Enterprise Advisory Committee; member of various National Academy of Science/National Research Council Committees; cochair, American Association for the Advancement of Science National Meeting, 2003. AGU service includes: term as associate editor of Journal of Geophysical Research-Space Physics; chair, Panel on International Space Station; Global Climate Change Panel; Federal Budget Review Committee; member of AGU Program, Public Information, Awards, and Public Affairs committees; Chapman Conference Convener and Monograph editor; Section Secretary and Program Chair, Space and Planetary Relations Section; President of Space Physics and Aeronomy Section; AGU Council Member.

  9. What Good Is a Scientist in the Classroom? Participant Outcomes and Program Design Features for a Short-Duration Science Outreach Intervention in K–12 Classrooms

    PubMed Central

    Liston, Carrie; Thiry, Heather; Graf, Julie

    2007-01-01

    Many short-duration science outreach interventions have important societal goals of raising science literacy and increasing the size and diversity of the science workforce. Yet, these long-term outcomes are inherently challenging to evaluate. We present findings from a qualitative research study of an inquiry-based, life science outreach program to K–12 classrooms that is typical in design and excellent in execution. By considering this program as a best case of a common outreach model, the “scientist in the classroom,” the study examines what benefits may be realized for each participant group and how they are achieved. We find that K–12 students are engaged in authentic, hands-on activities that generate interest in science and new views of science and scientists. Teachers learn new science content and new ways to teach it, and value collegial support of their professional work. Graduate student scientists, who are the program presenters, gain teaching and other skills, greater understanding of education and diversity issues, confidence and intrinsic satisfaction, and career benefits. A few negative outcomes also are described. Program elements that lead to these benefits are identified both from the research findings and from insights of the program developer on program design and implementation choices. PMID:17339394

  10. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    ERIC Educational Resources Information Center

    Ball, Lois A.

    2012-01-01

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which…

  11. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2003-01-01

    NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  12. Science and Engineering of the Environment of Los Angeles: A GK-12 Experiment at Developing Science Communications Skills in UCLA's Graduate Program

    NASA Astrophysics Data System (ADS)

    Moldwin, M. B.; Hogue, T. S.; Nonacs, P.; Shope, R. E.; Daniel, J.

    2008-12-01

    Many science and research skills are taught by osmosis in graduate programs with the expectation that students will develop good communication skills (speaking, writing, and networking) by observing others, attending meetings, and self reflection. A new National Science Foundation Graduate Teaching Fellows in K- 12 Education (GK-12; http://ehrweb.aaas.org/gk12new/) program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/overview.html ) attempts to make the development of good communication skills an explicit part of the graduate program of science and engineering students. SEE-LA places the graduate fellows in two pairs of middle and high schools within Los Angeles to act as scientists-in- residence. They are partnered with two master science teachers and spend two-days per week in the classroom. They are not student teachers, or teacher aides, but scientists who contribute their content expertise, excitement and experience with research, and new ideas for classroom activities and lessons that incorporate inquiry science. During the one-year fellowship, the graduate students also attend a year-long Preparing Future Faculty seminar that discusses many skills needed as they begin their academic or research careers. Students are also required to include a brief (two-page) summary of their research that their middle or high school students would be able to understand as part of their published thesis. Having students actively thinking about and communicating their science to a pre-college audience provides important science communication training and helps contribute to science education. University and local pre- college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the dissemination of sound science to K-12 teachers and students.

  13. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  14. Toward a microgravity research strategy

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Recommendations of the Committee on Microgravity Research (CMGR) of the Space Studies Board of the National Research Council are found in the Summary and Recommendations in the front of the report. The CMGR recommends a long-range research strategy. The main rationale for the microgravity research program should be to improve our fundamental scientific and technical knowledge base, particularly in the areas that are likely to lead to improvements in processing and manufacturing on earth. The CMGR recommends research be categorized as Biological science and technology, Combustion, Fluid science, Fundamental phenomena, Materials, and Processing science and technology. The committee also recommends that NASA apply a set of value criteria and measurement indicators to define the research and analysis program more clearly. The CMGR recommends that the funding level for research and analysis in microgravity science be established as a fixed percentage of the total program of NASA's Microgravity Science and Applications Division in order to build a strong scientific base for future experiments. The committee also recommends a cost-effective approach to experiments. Finally the CMGR recommends that a thorough technical review of the centers for commercial development of space be conducted to determine the quality of their activities and to ascertain to what degree their original mission has been accomplished.

  15. THE MEYERHOFF SCHOLARS PROGRAM: A STRENGTHS-BASED, INSTITUTION-WIDE APPROACH TO INCREASING DIVERSITY IN SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS

    PubMed Central

    Maton, Kenneth I.; Pollard, Shauna A.; McDougall Weise, Tatiana V.; Hrabowski, Freeman A.

    2012-01-01

    The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering and mathematics (STEM) PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are five times more likely than comparison students to pursue a STEM PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development and emphasizing the importance of academic skills. Among Meyerhoff students, several pre-college and college factors have emerged as predictors of successful entrance into a PhD program in the STEM fields, including pre-college research excitement, pre-college intrinsic math/science motivation, number of summer research experiences during college, and college GPA. Limitations of the research to date are noted, and directions for future research are proposed. PMID:22976367

  16. Engage: The Science Speaker Series - A novel approach to improving science outreach and communication

    NASA Astrophysics Data System (ADS)

    Mitchell, R.; Hilton, E.; Rosenfield, P.

    2011-12-01

    Communicating the results and significance of basic research to the general public is of critical importance. Federal funding and university budgets are under substantial pressure, and taxpayer support of basic research is critical. Public outreach by ecologists is an important vehicle for increasing support and understanding of science in an era of anthropogenic global change. At present, very few programs or courses exist to allow young scientists the opportunity to hone and practice their public outreach skills. Although the need for science outreach and communication is recognized, graduate programs often fail to provide any training in making science accessible. Engage: The Science Speaker Series represents a unique, graduate student-led effort to improve public outreach skills. Founded in 2009, Engage was created by three science graduate students at the University of Washington. The students developed a novel, interdisciplinary curriculum to investigate why science outreach often fails, to improve graduate student communication skills, and to help students create a dynamic, public-friendly talk. The course incorporates elements of story-telling, improvisational arts, and development of analogy, all with a focus on clarity, brevity and accessibility. This course was offered to graduate students and post-doctoral researchers from a wide variety of sciences in the autumn of 2010. Students who participated in the Engage course were then given the opportunity to participate in Engage: The Science Speaker Series. This free, public-friendly speaker series is hosted on the University of Washington campus and has had substantial public attendance and participation. The growing success of Engage illustrates the need for such programs throughout graduate level science curricula. We present the impetus for the development of the program, elements of the curriculum covered in the Engage course, the importance of an interdisciplinary approach, and discuss strategies for implementing similar programs at research institutions nationally.

  17. Engage: The Science Speaker Series - A novel approach to improving science outreach and communication

    NASA Astrophysics Data System (ADS)

    Mitchell, R.; Hilton, E.; Rosenfield, P.

    2012-12-01

    Communicating the results and significance of basic research to the general public is of critical importance. Federal funding and university budgets are under substantial pressure, and taxpayer support of basic research is critical. Public outreach by ecologists is an important vehicle for increasing support and understanding of science in an era of anthropogenic global change. At present, very few programs or courses exist to allow young scientists the opportunity to hone and practice their public outreach skills. Although the need for science outreach and communication is recognized, graduate programs often fail to provide any training in making science accessible. Engage: The Science Speaker Series represents a unique, graduate student-led effort to improve public outreach skills. Founded in 2009, Engage was created by three science graduate students at the University of Washington. The students developed a novel, interdisciplinary curriculum to investigate why science outreach often fails, to improve graduate student communication skills, and to help students create a dynamic, public-friendly talk. The course incorporates elements of story-telling, improvisational arts, and development of analogy, all with a focus on clarity, brevity and accessibility. This course was offered to graduate students and post-doctoral researchers from a wide variety of sciences in the autumn of 2010 and 2011, and will be retaught in 2012. Students who participated in the Engage course were then given the opportunity to participate in Engage: The Science Speaker Series. This free, public-friendly speaker series has been hosted at the University of Washington campus and Seattle Town Hall, and has had substantial public attendance and participation. The growing success of Engage illustrates the need for such programs throughout graduate level science curricula. We present the impetus for the development of the program, elements of the curriculum covered in the Engage course, the importance of an interdisciplinary approach, and discuss strategies for implementing similar programs at research institutions nationally.

  18. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance learning center, and enhancements to the atmospheric and earth science suite of instrumentation.

  19. First Steps Toward Exploring NITARP's Impacts on Teachers' Knowledge, Attitudes, and Teaching

    NASA Astrophysics Data System (ADS)

    French, Debbie; Slater, T. F.; Burrows, A. C.

    2013-06-01

    Few high school science teachers have had opportunities to engage in authentic scientific research. As a result, many may find it difficult to communicate to their students how science is done. Moreover, without relevant experience, teachers have few pathways to be able to successfully implement scientific research and inquiry into the classroom. In response, astronomers created the NASA-IPAC Teacher Archive Research Program - NITARP, originally funded by NASA as part of the Spitzer Space Telescope Public Engagement Program, and more recently as an NSF-sponsored Research Experience for Teachers program (NSF 0742222). This project partners teachers and their students with a mentor scientist to work on a unique research project using Spitzer Space Telescope data. The year-long project culminates by having teachers and students present their scientific methods and findings at a professional conference, such as the American Astronomical Society. To determine how teachers’ attitudes toward science and scientific inquiry changed after participating in NITARP, five NITARP alumni teachers completed open-ended survey and interview questions describing how their experience changed how they thought about astronomy and what happened in their classroom as a direct result of their NITARP experiences. Teachers reported increasing their astronomy content knowledge, implementing new skills and computer programs into their curriculum, incorporating the use of real data, and are implementing, or are planning to implement research in their classrooms. Teachers also stated they feel more comfortable speaking the language of science and communicating with scientists. They also felt more confident in teaching how science is done. The results of this exploratory study showing positive impacts motivate us to more deeply study the underlying mechanisms in this and similar programs best poised to improve science education.

  20. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual-Degree Program.

    PubMed

    Gillman, Jennifer; Pillinger, Michael; Plottel, Claudia S; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S; Cronstein, Bruce N; Gold-von Simson, Gabrielle

    2015-12-01

    To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU-NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU-HHC CTSI) developed the Master's of Science in Clinical Investigation dual-degree (MD/MSCI) program. This 5-year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010-2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time-limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual-degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow-up is warranted to evaluate the academic trajectory of these students. © 2015 Wiley Periodicals, Inc.

  1. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual‐Degree Program

    PubMed Central

    Pillinger, Michael; Plottel, Claudia S.; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S.; Cronstein, Bruce N.; Gold‐von Simson, Gabrielle

    2015-01-01

    Abstract To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU‐NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU‐HHC CTSI) developed the Master's of Science in Clinical Investigation dual‐degree (MD/MSCI) program. This 5‐year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010–2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time‐limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual‐degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow‐up is warranted to evaluate the academic trajectory of these students. PMID:26365704

  2. User needs as a basis for advanced technology. [U.S. civil space program

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Reck, Gregory M.

    1992-01-01

    The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.

  3. Closing the Gap: Inquiry in Research and the Secondary Science Classroom

    ERIC Educational Resources Information Center

    Gengarelly, Lara M.; Abrams, Eleanor D.

    2009-01-01

    Teaching students how to conduct authentic scientific inquiry is an essential aspect of recent science education reform efforts. Our National Science Foundation-funded GK-12 program paired science graduate students--fellows--with secondary science teachers in order to enhance inquiry-based instruction. This research examined the roles of the…

  4. Learning from Action Research about Science Teacher Preparation

    ERIC Educational Resources Information Center

    Mitchener, Carole P.; Jackson, Wendy M.

    2012-01-01

    In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…

  5. Teachers, Research, and Reform: Improving Teaching and Learning in High School Science Courses.

    ERIC Educational Resources Information Center

    Kaiser, Bonnie

    One of the challenges issued by the National Science Education Standards is for students to learn the content and process of modern scientific inquiry by engaging in research and entering science competitions. The Rockefeller University Precollege Science Education Outreach Programs (Science Outreach) provide access for about 70 students from…

  6. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less

  7. Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris

    2009-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.

  8. Environmental Protection: Controlling the Present

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  9. Annual program analysis of the NASA Space Life Sciences Research and Education Support Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.

  10. Increasing Diversity in the Earth Sciences - Impact of the IDES Program in Oregon

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Guerrero, E. F.; Duncan, R. A.; de Silva, L. L.; Eriksson, S. C.

    2014-12-01

    The NSF-OEDG funded Increasing Diversity in the Earth Sciences (IDES) program hosted at Oregon State University targets undergraduate students from diverse backgrounds and diverse ethnicity to engage in research. Partnering with local community colleges, non-traditional students are the hallmark of this program. The IDES program has several components to support the students in the transition from community college to the four-year universities of Oregon State University and Portland State University. Over the four years, the program has adapted while adhering to its primary goals: (1) to increase the number of students from underrepresented groups who prepare for and pursue careers in Earth Science research and education, and (2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Now in its final year under an extension, 53 participants have participated in the program. An ongoing external evaluation of the program reveals that the various stakeholders consider IDES very successful. Participant surveys and interviews document several impacts: expanded opportunities, making professional contacts, building self-confidence, enhanced ability to be employable, and personal acknowledgement. Research mentors and administrators from partner institutions see positive impacts on the students and on their organizations. Challenges include better communication between the IDES program, mentors, and students. IDES is poised to move forward with its current experiences and successes as a foundation for further funding. IDES-like activities can be funded from private sources and it is a good fit for funding from Research Experiences for Undergraduates at NSF. The new emphasis on education and research at community colleges is an exciting opportunity and Oregon State University has already used aspects of the IDES program in current grant proposals to obtain funds for more undergraduate research.

  11. The Woods Hole Partnership Education Program (PEP): Broadening Participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Scott, O.; Jearld, A., Jr.; Liles, G.; Gutierrez, B.

    2015-12-01

    In March 2009, the Woods Hole Diversity Initiative launched the Partnership Education Program (PEP), a multi-institutional effort to increase diversity in the student population (and ultimately the work force) in the Woods Hole science community. PEP, a summer research internship program, is open to students of all backgrounds but is designed especially to provide opportunities for URM in science, technology, engineering, and mathematics (STEM). PEP is a 10-week program which provides intensive mentored research, a credit-bearing course and supplemental career and professional development activities. Students have opportunities to work in various research areas of geosciences. PEP is emerging as an effective and sustainable approach to bringing students into the STEM research community. PEP is carefully structured to provide critical support for students as they complete their undergraduate experience and prepare for geosciences careers and/or graduate school. The PEP experience is intended to provide students with an entry into the Woods Hole science community, one of the most vibrant marine and environmental research communities in the world. The program aims to provide a first-hand introduction to emerging issues and real-world training in the research skills that students need to advance in science, either as graduate students or bachelors-level working scientists. This is a long-recognized need and efforts are being made to ensure that the students begin to acquire skills and aptitudes that position them to take advantage of a wide range of opportunities. Of note is that the PEP is transitioning into a two year program where students are participating in a second year as a research intern or employee. Since 2013, at least four partner institutions have invited PEP alumni to participate in their respective programs as research assistants and/or full-time technicians.

  12. Evaluating the Effectiveness of the 2003-2004 NASA SCIence Files(trademark) Program

    NASA Technical Reports Server (NTRS)

    Caton, Randall H.; Ricles, Shannon S.; Pinelli, Thomas E.; Legg, Amy C.; Lambert, Matthew A.

    2005-01-01

    The NASA SCI Files is an Emmy award-winning series of instructional programs for grades 3-5. Produced by the NASA Center for Distance Learning, programs in the series are research-, inquiry-, standards-, teacher- and technology-based. Each NASA SCI Files program (1) integrates mathematics, science, and technology; (2) uses Problem-Based Learning (PBL) to enhance and enrich the teaching and learning of science; (3) emphasizes science as inquiry and the scientific method; (4) motivates students to become critical thinkers and active problem solvers; and (5) uses NASA research, facilities, and personnel to raise student awareness of careers and to exhibit the "real-world" application of mathematics, science, and technology. In April 2004, 1,500 randomly selected registered users of the NASA SCI Files were invited to complete a survey containing a series of questions. A total of 263 surveys were received. This report contains the quantitative and qualitative results of that survey.

  13. Integrating to Learn and Learning to Integrate: A Case Study of an Online Master's Program on Science-Mathematics Integration for Middle School Teachers

    ERIC Educational Resources Information Center

    Lee, Mimi Miyoung; Chauvot, Jennifer; Plankis, Brian; Vowell, Julie; Culpepper, Shea

    2011-01-01

    iSMART (Integration of Science, Mathematics, and Reflective Teaching) Program is an online science and mathematics integrated graduate program for middle school teachers across the state of Texas. As part of a large design-based research project, this paper describes the initial stages of the design process of the iSMART program for its first…

  14. Science Educational Outreach Programs That Benefit Students and Scientists

    PubMed Central

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  15. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 2, Environmental sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, L.K.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions withmore » Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.« less

  16. Professional Development for Secondary Science Teachers in a Contextual Setting.

    ERIC Educational Resources Information Center

    Nelson, C. Riley; Hanegan, Nikki L.

    This paper discusses an intensive professional development program designed by a science education specialist in conjunction with university science research professors demonstrating quality science teaching practices for secondary teachers in a contextual setting. The intensive professional development model was designed using research based,…

  17. SCUBAnauts International: Exploration and Discovery in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Moses, C. S.; Palandro, D.; Coble, P.; Hu, C.

    2007-12-01

    The SCUBAnauts International program originated in 2001, as a 501(c)(3) non-profit organization designed to increase the attraction to science and technology careers in today's youth. SCUBAnauts International (SNI) consists of a diverse group of 12 to 18 year-old young men and women mentored by academic, federal, and state research scientists in an informal education environment. The program's mission is to promote interest in science and technology topics and careers by involving secondary education students as young explorers in the marine sciences and research activities, such as special environmental and undersea conservation projects that educate, promote active citizenship, and develop effective leadership skills. With help from mentors, SNI students collect and interpret research-quality data to meet the needs of ocean scientists, maintaining direct interaction between the scientists and the young men and women in the program. The science component of the program includes collection of benthic habitat, water quality, optics, and coral reef health data. During the school year, the SCUBAnauts are tasked with sharing their experiences to raise the environmental awareness of a larger audience by providing education outreach in formal and informal venues. Here we highlight results from recent SNI activities including data collection and program methodologies, and discuss future plans for the program.

  18. Neuroscience discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  19. Budget estimates: Fiscal year 1994. Volume 3: Research and program management

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The research and program management (R&PM) appropriation provides the salaries, other personnel and related costs, and travel support for NASA's civil service workforce. This FY 1994 budget funds costs associated with 23,623 full-time equivalent (FTE) work years. Budget estimates are provided for all NASA centers by categories such as space station and new technology investments, space flight programs, space science, life and microgravity sciences, advanced concepts and technology, center management and operations support, launch services, mission to planet earth, tracking and data programs, aeronautical research and technology, and safety, reliability, and quality assurance.

  20. Principles of Training in Marine Corps Task Analysis. Training Manual 1

    DTIC Science & Technology

    1975-12-01

    Training Research Programs Psychological Sciences Division Office of Naval Research Contract No. N00014-74-A-0436-0001 NR 151-370 Approved for...and Training Research Programs Psychological Sciences Division Office of Naval Research Contract No. N00014-74-A-0436-0001 NR 151-370 Approved... psychological reward; the trainee loses the connection between performance and the pat on the back that is its consequence. DIMENSIONS OF THE TRAINING

  1. Guidelines for Research Planning and Design in Task Analysis

    DTIC Science & Technology

    1975-09-01

    Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research Contract No. N00014-74-A-0436-0001 NR 151-370...Programs Psychological Sciences Division Office of Naval Research Contract No. N00014-74-A-0436-0001 NR 151-370 Approved for public release...for ways in which the hypothesis can be tested . There are 11 several ways to do this and they are often used jointly. 1* Review of the Literature

  2. A Program Aimed toward Inclusive Excellence for Underrepresented Undergraduate Women in the Sciences

    PubMed Central

    Katz, Laura A.; Aloisio, Kathryn M.; Horton, Nicholas J.; Ly, Minh; Pruss, Sara; Queeney, Kate; Rowen, Cate; DiBartolo, Patricia Marten

    2017-01-01

    Created to foster inclusive excellence, Smith College’s Achieving Excellence in Mathematics, Engineering, and Science (AEMES) Scholars program provides early faculty-mentored research opportunities and other programming as a way to foster success in academic outcomes for underrepresented women in science. Using academic record data, we compared Scholars’ outcomes over time with those of underrepresented students before program launch and to relevant peer comparison groups. Since its launch, AEMES Scholars have achieved significantly higher gateway life sciences course grade point averages (GPAs), rates of persistence in life and natural sciences, and participation in natural sciences advanced research relative to baseline. Gains for Scholars in gateway course GPA eliminated the significant gap that previously existed between science, technology, engineering, and mathematics (STEM)-underrepresented and other students, whereas gains in natural sciences persistence now has Scholars continuing in STEM at significantly higher rates than all other students. Many of the gains for AEMES Scholars were echoed in findings of improved outcomes for our STEM students overall since AEMES’ launch. Underrepresented students who were not part of the Scholars program also evidenced increased gateway course GPA over this same period. We discuss potential explanations for these outcomes and ongoing work aimed at achieving further inclusive excellence for women in the sciences. PMID:28213581

  3. Developing science talent in minority students: Perspectives of past participants in a summer mentorship program

    NASA Astrophysics Data System (ADS)

    Schimmel, Dale Bishop

    The underrepresentation of women and ethnic minorities in science has been well documented. Research efforts are directed toward understanding the high attrition rate in science course selection as students advance through high school and college. The attrition rate is especially high for females and minority students. Since 1980 the Department of Biological Sciences at the University of Connecticut has conducted a "Minority Research Apprentice Program" to attract students by expanding their knowledge of research and technology. The goal of the program is to encourage students from underrepresented groups to eventually select careers in the field of science. This qualitative study of past participants explored factors that related to students' decisions to pursue or not to pursue careers in science. Descriptive statistics and qualitative data collected from surveys and interviews of twenty former apprentices, along with comparative case studies of four selected individuals, revealed the educational interventions, personal traits and social supports that helped guide students' eventual career choice decisions. Participation in gifted programs, advanced placement courses, and talented high school science teachers all played a critical role in assisting these individuals in developing their potential interest. Qualitative data revealed the role of the Minority Research Apprentice Program played in helping talented individuals gain an appreciation of the nature of scientific research through apprenticeship and involvement with authentic projects. For all those involved, it assisted them in clarifying their eventual career choices. Individuals identified the lack of challenge of the introductory science courses, the commitment science requires, and the nature of laboratory work as reasons for leaving the field. Females who left science switched majors more frequently than males. Qualitative data revealed the dilemma that multipotentiality and lack of career counseling played in the confusion over which profession to pursue. Ethnicity played a significant role in the retention of minority apprentices in science. Asian American males and females reported having more restricted career choices due to their parents' expectations. Females from all ethnic groups, including those who selected careers in other fields, experienced career conflict, switched majors more frequently, and had a greater sense of dissatisfaction with their eventual career choice.

  4. Can Programming Frameworks Bring Smartphones into the Mainstream of Psychological Science?

    PubMed

    Piwek, Lukasz; Ellis, David A

    2016-01-01

    Smartphones continue to provide huge potential for psychological science and the advent of novel research frameworks brings new opportunities for researchers who have previously struggled to develop smartphone applications. However, despite this renewed promise, smartphones have failed to become a standard item within psychological research. Here we consider the key issues that continue to limit smartphone adoption within psychological science and how these barriers might be diminishing in light of ResearchKit and other recent methodological developments. We conclude that while these programming frameworks are certainly a step in the right direction it remains challenging to create usable research-orientated applications with current frameworks. Smartphones may only become an asset for psychology and social science as a whole when development software that is both easy to use and secure becomes freely available.

  5. 1997 Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In 1980, NASA initiated the Graduate Student Research Program (GSRP) to cultivate additional research ties to the academic community and to support a culturally diverse group of students pursuing advanced degrees in science and engineering. Eligibility requirements for this program are described, and program administrators are listed. Research areas are detailed for NASA Headquarters and all Research and Flight Centers.

  6. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  7. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    ERIC Educational Resources Information Center

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  8. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Warnick, W. K.

    2008-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of current ARCUS science planning activities include: serving as the project office for the multi- agency Study of Environmental Arctic Change (SEARCH) program, providing support to the related Bering Ecosystem Study (BEST), and serving as the Science Management Office for the National Science Foundation (NSF) Arctic System Science (ARCSS) Program. ARCUS" central educational activity is PolarTREC (Teachers and Researchers Exploring and Collaborating), an International Polar Year (IPY) program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. Additional science planning, educational, information, and outreach activities include, among many others, the Witness the Arctic newsletter, the Arctic Visiting Speakers" Series, the ArcticInfo listserve, the Internet Media Archive (IMA), and the annual Arctic Forum conference. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  9. The Arctic Research Consortium of the United States

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Wiggins, H. V.

    2007-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broad science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of current ARCUS science planning activities include: serving as the project office for the multi-agency Study of Environmental Arctic Change (SEARCH) program and providing support to the related Bering Ecosystem Study (BEST), and serving as the Science Management Office for the National Science Foundation (NSF) Arctic System Science (ARCSS) Program. ARCUS' central educational activity is PolarTREC (Teachers and Researchers Exploring and Collaborating), an International Polar Year (IPY) program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. Additional science planning, educational, information, and outreach activities include the Witness the Arctic newsletter, the Arctic Visiting Speakers' Series, the ArcticInfo listserve, the Internet Media Archive (IMA), the annual Arctic Forum conference, and many others. More information about these and other ARCUS activities can be found at the ARCUS website at www.arcus.org.

  10. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Creek, K. R.; Fox, S. E.; Wiggins, H. V.

    2010-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of current ARCUS science planning activities include: serving as the project office for the multi-agency Study of Environmental Arctic Change (SEARCH) program, providing support to the related Bering Ecosystem Study (BEST), and serving as the Science Management Office for the National Science Foundation (NSF) Arctic System Science (ARCSS) Program. ARCUS’ central educational activity is PolarTREC (Teachers and Researchers Exploring and Collaborating), an International Polar Year (IPY) program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. Additional science planning, educational, information, and outreach activities include, among many others, the Witness the Arctic newsletter, the Arctic Visiting Speakers’ Series, the ArcticInfo listserve, the Internet Media Archive (IMA), and the annual Arctic Forum conference. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  11. The development of a TED-Ed online resident research training program

    PubMed Central

    Moreau, Katherine A.; Pound, Catherine M.; Peddle, Beth; Tokarewicz, Jaclyn; Eady, Kaylee

    2014-01-01

    Background Pediatric health research is important for improving the health and well-being of children and their families. To foster the development of physicians’ research competencies, it is vital to integrate practical and context-specific research training into residency programs. Purpose To describe the development of a resident research training program at one tertiary care pediatric academic health sciences center in Ontario, Canada. Methods We surveyed residents and pediatricians/research staff to establish the need and content for a resident research training program. Results Residents and resident research supervisors agreed or strongly agreed that research training is important for residents. However, few residents and supervisors believed that their academic health sciences center provided adequate training and resources to support resident research. As such, an online resident research training program was established. Residents and supervisors agreed that the program should focus on the following topics: 1) critically evaluating research literature, 2) writing a research proposal, 3) submitting an application for research funding, and 4) writing a manuscript. Discussion This highly accessible, context-specific, and inexpensive online program model may be of interest and benefit to other residency programs as a means to enhance residents’ scholarly roles. A formal evaluation of the research training program is now underway. PMID:25526717

  12. The development of a TED-Ed online resident research training program.

    PubMed

    Moreau, Katherine A; Pound, Catherine M; Peddle, Beth; Tokarewicz, Jaclyn; Eady, Kaylee

    2014-01-01

    Background Pediatric health research is important for improving the health and well-being of children and their families. To foster the development of physicians' research competencies, it is vital to integrate practical and context-specific research training into residency programs. Purpose To describe the development of a resident research training program at one tertiary care pediatric academic health sciences center in Ontario, Canada. Methods We surveyed residents and pediatricians/research staff to establish the need and content for a resident research training program. Results Residents and resident research supervisors agreed or strongly agreed that research training is important for residents. However, few residents and supervisors believed that their academic health sciences center provided adequate training and resources to support resident research. As such, an online resident research training program was established. Residents and supervisors agreed that the program should focus on the following topics: 1) critically evaluating research literature, 2) writing a research proposal, 3) submitting an application for research funding, and 4) writing a manuscript. Discussion This highly accessible, context-specific, and inexpensive online program model may be of interest and benefit to other residency programs as a means to enhance residents' scholarly roles. A formal evaluation of the research training program is now underway.

  13. Attracting Students Into Science: Insights From a Summer Research Internship Program for Community College Students in Colorado

    NASA Astrophysics Data System (ADS)

    Anderson, S. P.; Smith, L. K.; Gold, A. U.; Batchelor, R. L.; Monday, B.

    2014-12-01

    Research Experience for Undergraduates (REU) programs commonly serve students already committed to careers in science. To spark student interest in the sciences early in their college career, the CIRES diversity initiative teamed with the Boulder Creek Critical Zone Observatory to build an REU for Colorado community college students. A group of 7 students was selected from consideration of diversity, prior training, and personal statements. Each student was paired with a research science mentor. Field excursions and team-building exercises filled the first week of the 8-week program. Students received weekly training in science communication, responsible conduct of research, use of spreadsheet and graphing software, and statistical analysis. Each student presented their research in a poster session, an oral presentation, and a written report. Several aspects of this pilot program worked well. The students formed a very supportive cohort, despite the fact that they were not in residence. Cohesion grew out of the immersion in field trips, and was reinforced with weekly check-ins. The trainings were essential for seeing projects through to written and oral presentations. Teaming students for fieldwork was an effective strategy to build support, and reduce mentor fatigue. Each student produced useful data. In the future, we would include a workshop on personal finances to address a clear need. Transportation support will be provided. A residential program might attract some but could preclude participation of students with families or other life-issues. Personal tutoring tailored to research projects would address low math skills. All 7 students completed the program; several elected to submit to the undergraduate virtual poster session at Fall AGU. Students all reported enormous personal and academic growth. Some are discussing transfer and graduate school opportunities with their mentors. The enthusiasm and appreciation of the students was unparalleled.

  14. Science Writer-At-Sea: A New InterRidge Education Outreach Project Joining Scientists and Future Journalists

    NASA Astrophysics Data System (ADS)

    Kusek, K. M.; Freitag, K.; Devey, C.

    2005-12-01

    The Science Writer-at-Sea program is one small step in a marathon need for improved coverage of science and environmental issues. It targets two significant links in the Earth science communication pipeline: marine scientists and journalists; and attempts to reconnect people with the Earth by boosting their understanding of Earth science and its relevance to society. How it works: Journalism graduate students are invited to participate in oceanographic expeditions affiliated with InterRidge, an international organization dedicated to promoting ocean ridge research. InterRidge's outreach coordinator and science writer prepares each student for the expedition experience using materials she developed based on years of at-sea reporting. The students work side-by-side with the science writer and the scientists to research and write innovative journalistic stories for a general audience that are featured on a uniquely designed multimedia website that includes videos and images. The science, journalism and public communities benefit from this cost-effective program: science research is effectively showcased, scientists benefit from interactions with journalists, science outreach objectives are accomplished; student journalists enjoy a unique hands-on, `boot camp' experience; and the website enhances public understanding of `real' Earth science reported `on scene at sea.' InterRidge completed its first pilot test of the program in August 2005 aboard a Norwegian research cruise. A student writer entering the science journalism program at Columbia University participated. The results exceeded expectations. The team discovered the world's northernmost vent fields on the cruise, which expanded the original scope of the website to include a section specifically designed for the international press. The student was inspired by the cruise, amazed at how much she learned, and said she entered graduate school with much more confidence than she had prior to the program. The site, translated into German, and is being showcased in a museum in Germany. Given the great response from a diverse suite of reviewers, the team is now pursuing long term funding; additional partners in the science, education and journalism communities; and partnerships with marine science and education magazines.

  15. Translational Educational Research

    PubMed Central

    Issenberg, S. Barry; Cohen, Elaine R.; Barsuk, Jeffrey H.; Wayne, Diane B.

    2012-01-01

    Medical education research contributes to translational science (TS) when its outcomes not only impact educational settings, but also downstream results, including better patient-care practices and improved patient outcomes. Simulation-based medical education (SBME) has demonstrated its role in achieving such distal results. Effective TS also encompasses implementation science, the science of health-care delivery. Educational, clinical, quality, and safety goals can only be achieved by thematic, sustained, and cumulative research programs, not isolated studies. Components of an SBME TS research program include motivated learners, curriculum grounded in evidence-based learning theory, educational resources, evaluation of downstream results, a productive research team, rigorous research methods, research resources, and health-care system acceptance and implementation. National research priorities are served from translational educational research. National funding priorities should endorse the contribution and value of translational education research. PMID:23138127

  16. The Conceptual Complexity of Vocabulary in Elementary-Grades Core Science Program Textbooks

    ERIC Educational Resources Information Center

    Fitzgerald, W. Jill; Elmore, Jeff; Kung, Melody; Stenner, A. Jackson

    2017-01-01

    The researchers explored the conceptual complexity of vocabulary in contemporary elementary-grades core science program textbooks to address two research questions: (1) Can a progression of concepts' complexity level be described across grades? (2) Was there gradual developmental growth of the most complex concepts' networks of associated concepts…

  17. Student Perceptions of Interest, Learning, and Engagement from an Informal Traveling Science Museum

    ERIC Educational Resources Information Center

    Sample McMeeking, Laura B.; Weinberg, Andrea E.; Boyd, Kathryn J.; Balgopal, Meena M.

    2016-01-01

    Informal Science Education (ISE) programs have been increasing in popularity in recent years. The National Research Council has laid out six strands that ISE programs should try to address, including increasing interest, knowledge, and allowing participants to engage in scientific activities. Past research suggests that informal settings can…

  18. Unique collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Lepine, S.; Nadeau, P.; Flores, K.; Sessa, J.; Zirakparvar, N.; Ustunisik, G.; Kinzler, R.; Macdonald, M.; Contino, J.; Cooke-Nieves, N.; Zachowski, M.

    2013-01-01

    Abstract: The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The dearth of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and real-world teaching experience in local urban classrooms. The program is part of New York State’s Race to the Top initiative and particularly targets high-needs schools with diverse student populations. Because of this, the MAT program has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of teacher candidates entered the MAT program in June of 2012. They represent diverse scientific expertise levels, geographic backgrounds, and career stages. We report on the first six months of this pilot program as well as the future plans and opportunities for prospective teacher candidates.

  19. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1992

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler)

    1992-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA center.

  20. Programming Digital Stories and How-to Animations

    ERIC Educational Resources Information Center

    Hansen, Alexandria Killian; Iveland, Ashley; Harlow, Danielle Boyd; Dwyer, Hilary; Franklin, Diana

    2015-01-01

    As science teachers continue preparing for implementation of the "Next Generation Science Standards," one recommendation is to use computer programming as a promising context to efficiently integrate science and engineering. In this article, a interdisciplinary team of educational researchers and computer scientists describe how to use…

Top