Sample records for science research groups

  1. The effect of science learning integrated with local potential to improve science process skills

    NASA Astrophysics Data System (ADS)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  2. Action research in gender issues in science education: Towards an understanding of group work with science teachers

    NASA Astrophysics Data System (ADS)

    Nyhof-Young, Joyce Marion

    Action research is emerging as a promising means of promoting individual and societal change in the context of university programmes in teacher education. However, significant gaps exist in the literature regarding the use of action research groups for the education of science teachers. Therefore, an action research group, dealing with gender issues in science education, was established within the context of a graduate course in action research at OISE. For reasons outlined in the thesis, action research was deemed an especially appropriate means for addressing issues of gender. The group met 14 times from September 1992 until May 1993 and consisted of myself and five other science teachers from the Toronto area. Two of us were in the primary panel, two in the intermediate panel, and two in the tertiary panel. Five teachers were female. One was male. The experiences of the group form the basis of this study. A methodology of participant observation supported by interviews, classroom visits, journals, group feedback and participant portfolios provides a means of examining experiences from the perspective of the participants in the group. The case study investigates the nature of the support and learning opportunities that the action research group provided for science teachers engaged in curiculum and professional development in the realm of gender issues in science education, and details the development of individuals, the whole group and myself (as group worker, researcher and participant) over the life of the project. The action research group became a resource for science teachers by providing most participants with: A place to personalize learning and research; a place for systematic reflection and research; a forum for discussion; a source of personal/professional support; a source of friendship; and a place to break down isolation and build self-confidence. This study clarifies important relational and political issues that impinge on action research in groups through a critical examination of the group dynamics and power issues arising within our group. The results of this study challenge us as educators to clarify our visions, to share power, to negotiate and to collaborate across our differences.

  3. 75 FR 57520 - NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Science Subcommittee; Supporting Research and Technology Working Group; Meeting AGENCY: National... announces a meeting of the Supporting Research and Technology Working Group of the Planetary Science... INFORMATION CONTACT: Dr. Michael New, Planetary Science Division, National Aeronautics and Space...

  4. Remote Sensing Information Sciences Research Group: Santa Barbara Information Sciences Research Group, year 4

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.

  5. Ability grouping and science education reform: Policy and research base

    NASA Astrophysics Data System (ADS)

    Lynch, Sharon

    This article reviews current policy trends concerning the practice of ability grouping in K-12 science education. Relevant statements of key policy-making, policy-influencing organizations such as the NSTA, AAAS, NSF, the National Research Council, the U.S. Office of Education Department of Civil Rights, NAACP, the National Governors' Association, programs related to the Jacob Javits Grants for the Gifted and Talented, and others are summarized. The author's interpretation of the various positions are presented herein. The article also explores the research base supporting the various policies on grouping by examining selected general research literature on grouping, followed by research that is science education specific. Methodological issues color the research findings. The ethical and pragmatic implications of developing research and policy are discussed. The conclusions are that there is a dearth of recent empirical research specifically related to ability grouping in science, and that the time is ripe for the concerted development of a research agenda by key players in science education reform. Moreover, as controversial and value-laden as the topic is, it should be noted that grouping practices alone are unlikely to influence science education reform unless considered in the context of comprehensive restructuring efforts at the local school level.Received: 10 April 1993; Revised: 26 August 1993;

  6. Research Staff | Photovoltaic Research | NREL

    Science.gov Websites

    -7511 Name Position Email Phone Al-Jassim, Mowafak Group Research Manager III-Materials Science , Teresa Acting Group Manager Teresa.Barnes@nrel.gov 303-384-6682 Beard, Matt Researcher VI-Chemistry @nrel.gov 303-384-7611 Blackburn, Jeffrey Group Research Manager III-Materials Science Jeffrey.Blackburn

  7. Developing Learning Progressions in Support of the New Science Standards: A RAPID Workshop Series

    ERIC Educational Resources Information Center

    Rogat, Aaron

    2011-01-01

    The hypothetical learning progressions presented here are the products of the deliberations of two working groups of science education researchers, each group also including a state science curriculum supervisor, organized by the Consortium for Policy Research in Education (CPRE), with support from the National Science Foundation. Their charge was…

  8. The Effect of Science Activities on Concept Acquisition of Age 5-6 Children Groups

    ERIC Educational Resources Information Center

    Dogru, Mustafa; Seker, Fatih

    2012-01-01

    Present research aims to determine the effect of science activities on concept development of preschool period age 5-6 children groups. Parallel to research objective, qualitative research pattern has been the selected method. Study group comprises of collectively 48 children from 5-6 age group attending to a private education institution in city…

  9. News Release: NREL Names Four Scientists Senior Research Fellows | News |

    Science.gov Websites

    , initially as a postdoctoral researcher. Now a group manager in the Materials Science Center, Al-Jassim is a . A principal engineer and platform leader in the Fuels Performance and Combustion Science Group-a group he created, McCormick leads the research team for advanced biofuels R&D. His research has

  10. Surface chemistry at Swiss Universities of Applied Sciences.

    PubMed

    Brodard, Pierre; Pfeifer, Marc E; Adlhart, Christian D; Pieles, Uwe; Shahgaldian, Patrick

    2014-01-01

    In the Swiss Universities of Applied Sciences, a number of research groups are involved in surface science, with different methodological approaches and a broad range of sophisticated characterization techniques. A snapshot of the current research going on in different groups from the University of Applied Sciences and Arts Western Switzerland (HES-SO), the Zurich University of Applied Sciences (ZHAW) and the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) is given.

  11. NASA/NSF Antarctic Science Working Group

    NASA Technical Reports Server (NTRS)

    Stoklosa, Janis H.

    1990-01-01

    A collection of viewgraphs on NASA's Life Sciences Biomedical Programs is presented. They show the structure of the Life Sciences Division; the tentative space exploration schedule from the present to 2018; the biomedical programs with their objectives, research elements, and methodological approaches; validation models; proposed Antarctic research as an analog for space exploration; and the Science Working Group's schedule of events.

  12. Social media connecting ocean sciences and the general public: the @OceanSeaIceNPI experiment

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.; Granskog, M. A.; Gerland, S.; Meyer, A.; Hudson, S. R.; Rösel, A.; King, J.; Itkin, P.; Cohen, L.; Dodd, P. A.; de Steur, L.

    2016-02-01

    As researchers we are constantly being encouraged by funding agencies, policy-makers and journalists to conduct effective outreach and to communicate our latest research findings. As environmental scientists we also understand the necessity of communicating our research to the general public. Many of us wish to become better science communicators but have little time and limited funding available to do so. How can we expend our science communication past project-based efforts that have a limited lifetime? Most critically, how can a small research groups do it without additional resources such as funds and communication officers? Social media is one answer, and has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and researchers are exploring the full breadth of possibilities brought by social media for reaching out to the general public, journalists, policy-makers, stake-holders, and research community. However, smaller research groups and labs are still underrepresented in social media. When it comes to practice, some essential difficulties can be encountered: identifying key target groups, defining the framework for sharing responsibilities and interaction within the research group, and finally, choosing a currently up-to-date social medium as a technical solution for communicating your research. Here, a group of oceanography and sea ice researchers (@OceanSeaIceNPI) share the positive experience of developing and maintaining for more than one year a researcher-driven outreach effort currently implemented through Instagram, Twitter and Facebook. We will present potential pitfalls and challenges that small research groups could face, and how to better overcome them. This will hopefully inspire and help other research groups and labs to conduct their own effective ocean science communication.

  13. Communicating polar science to the general public: sharing the social media experience of @OceanSeaIceNPI

    NASA Astrophysics Data System (ADS)

    Rösel, Anja; Pavlov, Alexey K.; Granskog, Mats A.; Gerland, Sebastian; Meyer, Amelie; Hudson, Stephen R.; King, Jennifer; Itkin, Polona; Cohen, Lana; Dodd, Paul; de Steur, Laura

    2016-04-01

    The findings of climate science need to be communicated to the general public. Researchers are encouraged to do so by journalists, policy-makers and funding agencies and many of us want to become better science communicators. But how can we do this at the lab or small research group level without specifically allocated resources in terms of funds and communication officers? And how do we sustain communication on a regular basis and not just during the limited lifetime of a specific project? One of the solutions is to use the emerging platform of social media, which has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. The group of oceanographers, sea ice and atmospheric scientists at the Norwegian Polar Institute (@OceanSeaIceNPI( will share our experiences developing and maintaining researcher-driven outreach for over a year through Instagram, Twitter and Facebook. We will present our solutions to some of the practical considerations such as identifying key target groups, defining the framework for sharing responsibilities and interactions within the research group, and choosing an up-to-date and appropriate social medium. By sharing this information, we aim to inspire and assist other research groups and labs in conducting their own effective science communication.

  14. Science Research Group Leader's Power and Members' Compliance and Satisfaction with Supervision

    ERIC Educational Resources Information Center

    Meng, Yi; He, Jia; Luo, Changkun

    2014-01-01

    This study investigated the correlations between science research group members' perceptions of power bases used by their group (lab, team) leader (coercive, reward, legitimate, expert and referent) and the effect of those perceptions on group members' attitudinal compliance, behavioral compliance, and satisfaction with supervision. Participants…

  15. Mapping a research agenda for the science of team science

    PubMed Central

    Falk-Krzesinski, Holly J; Contractor, Noshir; Fiore, Stephen M; Hall, Kara L; Kane, Cathleen; Keyton, Joann; Klein, Julie Thompson; Spring, Bonnie; Stokols, Daniel; Trochim, William

    2012-01-01

    An increase in cross-disciplinary, collaborative team science initiatives over the last few decades has spurred interest by multiple stakeholder groups in empirical research on scientific teams, giving rise to an emergent field referred to as the science of team science (SciTS). This study employed a collaborative team science concept-mapping evaluation methodology to develop a comprehensive research agenda for the SciTS field. Its integrative mixed-methods approach combined group process with statistical analysis to derive a conceptual framework that identifies research areas of team science and their relative importance to the emerging SciTS field. The findings from this concept-mapping project constitute a lever for moving SciTS forward at theoretical, empirical, and translational levels. PMID:23223093

  16. 78 FR 42976 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Heterogeneous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... Computer Science and Engineering, Seoul, REPUBLIC OF KOREA; Missouri University of Science and Technology, Rolla, MO; Industrial Technology Research Institute of Taiwan, Chutung, Hsinchu, TAIWAN, Northeastern... activity of the group research project. Membership in this group research project remains open, and HSA...

  17. A controlled experiment to evaluate the impact of summer research experiences on attitudes towards science in high school aged students

    NASA Astrophysics Data System (ADS)

    White, M. A.; Tcherednichenko, I.; Hamar, M.; Taylor, M. J.; Litizzette, L.

    2006-12-01

    United States funding agencies increasingly are supporting activities designed to increase the enrollment of United States high school students in science, math, or engineering careers. However, in many cases, the likely outcomes of educational activities are unknown. A common approach within the physical and natural sciences is to provide high school aged students with a summer research experience, with the expectation that such experiences will increase student interest in science, possibly as a career choice. With funding support from the National Aeronautics and Space Administration New Investigator Grant program, we conducted a controlled experiment to test this assumption. In collaboration with Mountain Crest High School in Logan, UT, we recruited 40 students currently enrolled in science courses, assessed attitudes towards science (with informed consent), and randomly assigned 20 students to a control group and 20 students to an experimental group. Students in the experimental group were paired with faculty and graduate students in a wide range of field and laboratory research groups in natural resources and biology. Students were employed in at least two different research groups for an average of 30-40 hours per week for eight weeks in the summer of 2006. Following the completion of the summer work experience, we again assessed attitudes towards science in both groups and gathered additional information from the experimental group on satisfaction with the work experience and reasons for participating. Results are presented and discussed.

  18. Toward Solutions: The Work of the Chemistry Action-Research Group. Learning in Science Project. Working Paper No. 35.

    ERIC Educational Resources Information Center

    Osborne, Roger; And Others

    In the action-research phase of the Learning in Science Project, four groups of people worked on problems identified in the project's second (in-depth) phase. The Chemistry Action-Research Group considered problems related to the teaching and learning of ideas associated with particles and physical/chemical changes. Based on findings during the…

  19. Precincts and Prospects in the Use of Focus Groups in Social and Behavioral Science Research

    ERIC Educational Resources Information Center

    Sagoe, Dominic

    2012-01-01

    Over the past few years, the focus group method has assumed a very important role as a method for collecting qualitative data in social and behavioural science research. This article elucidates theoretical and practical problems and prospects associated with the use of focus groups as a qualitative research method in social and behavioural science…

  20. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    ERIC Educational Resources Information Center

    Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2009-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…

  1. Toward Solutions: The Work of the Biology Action-Research Group. Learning in Science Project. Working Paper No. 29.

    ERIC Educational Resources Information Center

    Boe, Robyn; And Others

    Many students, even after formal science instruction, have not developed a scientifically acceptable concept of "living,""animal," or "plant." Therefore, as part of the action-research phase of the Learning in Science Project, a working group was formed to explore (with teachers) some possible strategies aimed at…

  2. Research Microcultures as Socialization Contexts for Underrepresented Science Students.

    PubMed

    Thoman, Dustin B; Muragishi, Gregg A; Smith, Jessi L

    2017-06-01

    How much does scientific research potentially help people? We tested whether prosocial-affordance beliefs (PABs) about science spread among group members and contribute to individual students' motivation for science. We tested this question within the context of research experience for undergraduates working in faculty-led laboratories, focusing on students who belong to underrepresented minority (URM) groups. Longitudinal survey data were collected from 522 research assistants in 41 labs at six institutions. We used multilevel modeling, and results supported a socialization effect for URM students: The aggregate PABs of their lab mates predicted the students' own initial PABs, as well as their subsequent experiences of interest and their motivation to pursue a career in science, even after controlling for individual-level PABs. Results demonstrate that research labs serve as microcultures of information about the science norms and values that influence motivation. URM students are particularly sensitive to this information. Efforts to broaden participation should be informed by an understanding of the group processes that convey such prosocial values.

  3. Focus Group Discussions: Three Examples from Family and Consumer Science Research.

    ERIC Educational Resources Information Center

    Garrison, M. E. Betsy; Pierce, Sarah H.; Monroe, Pamela A.; Sasser, Diane D.; Shaffer, Amy C.; Blalock, Lydia B.

    1999-01-01

    Gives examples of the focus group method in terms of question development, group composition and recruitment, interview protocols, and data analysis as applied to three family and consumer-sciences research projects: consumer behavior of working female adolescents, work readiness of adult males with low educational attainment, and definition of…

  4. Research Staff | Materials Science | NREL

    Science.gov Websites

    Nancy.Haegel@nrel.gov | 303-384-6548 | Photo of Mowafak Al-Jassim Mowafak Al-Jassim Group Research Manager III and Surface Science Group Manager Glenn.Teeter@nrel.gov | 303-384-6664 Photo of Philip Parilla. Philip Parilla Group Manager/Senior Scientist Philip.Parilla@nrel.gov | 303-384-6506 Name Position Email Phone

  5. Science teachers' attempts at integrating feminist pedagogy through collaborative action research

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.

    2007-01-01

    The purpose of this study was to examine the experiences of three science teachers attempting to transform their practice by conducting action research on feminist science teaching. The teachers engaged in systematic, self-critical inquiry of their own practice and joined 8 other science teachers to engage in collaborative conversations about the nature of science, science teaching, and science education as a way of coming to a better understanding of how science can be taught for a more diverse group of students. Data were gathered via semistructured interviews, whole-group discussions, classroom observations, and review of supporting documents. Data analysis was based on narrative inquiry, where particular attention was given to the construction and reconstruction of the teachers' stories of their practical inquiries. Results indicated that the teachers as researchers of their own practice gained new knowledge about feminist science teaching and, furthermore, generated a cluster of pedagogical possibilities for inclusive, dynamic science teaching.

  6. Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Smith, T.; Star, J. L.

    1986-01-01

    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.

  7. Promoting human subjects training for place-based communities and cultural groups in environmental research: curriculum approaches for graduate student/faculty training.

    PubMed

    Quigley, Dianne

    2015-02-01

    A collaborative team of environmental sociologists, community psychologists, religious studies scholars, environmental studies/science researchers and engineers has been working together to design and implement new training in research ethics, culture and community-based approaches for place-based communities and cultural groups. The training is designed for short and semester-long graduate courses at several universities in the northeastern US. The team received a 3 year grant from the US National Science Foundation's Ethics Education in Science and Engineering in 2010. This manuscript details the curriculum topics developed that incorporate ethical principles, particularly for group protections/benefits within the field practices of environmental/engineering researchers.

  8. Managing the space sciences

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  9. Authentic Science Research in Elementary School After-School Science Clubs

    ERIC Educational Resources Information Center

    Feldman, Allan; Pirog, Kelly

    2011-01-01

    In this paper we report on teachers' and students' participation in authentic science research in out of school time science clubs at elementary schools. In the program four to five teachers worked alongside practicing scientists as part of their research groups. Each teacher facilitated a club with 10-15 students who, by extension, were members…

  10. Science access, career choices, achievement, and motivation: Perceptions of female science olympians

    NASA Astrophysics Data System (ADS)

    Price, Kelly Rae

    Women remain under-represented in science career fields and this is especially evident in the physical sciences. Female students maintain equal science interest and achievement to male students in elementary school but by middle and high school they fall behind their male peers. Reasons cited for girls' declining interest in science include battling traditional gender stereotypes, lack of encouragement, and lack of female role models. Four main science concerns related to girls/women as indicated by research literature were science access, career choices, achievement, and motivation. In Georgia, some girls have made a break from the research trends by demonstrating their fervor for science through participation in the academic activity, Science Olympiad. The purpose of this study was to examine the science perceptions of girls who demonstrated science success by their participation in Science Olympiad. Utilizing phenomenological and feminist perspectives, the qualitative research method of focus group interviewing was used to address the research questions comprising the four science concerns of female science access, career choices, achievement, and motivation. The study participants were all girls/women who participated in Science Olympiad. A total of five focus groups were studied. One of the focus groups had current college undergraduates, former Science Olympians, in it while the others were composed of high school girls. Through the description of their science experiences, the participants shared their perceptions of the four science concerns. When addressing these science concerns, the participants revealed four factors that had most affected their science perceptions: the importance of support, science needs Serious Fun, teachers matter, and the bonuses of extracurricular involvement. In their experiences, the participants found success in science because they had teachers, parents, and peers who supported their academic interests, including science, and made science enjoyable. This study offered insight to the factors boosting the science success as perceived by a small group of female students. The application of these factors to other girls may provide a method of drawing more girls towards science instead of pushing them away from it.

  11. The impact of instructor grouping strategies on student efficacy in inquiry science labs: A phenomenological case study of grouping perceptions and strategies

    NASA Astrophysics Data System (ADS)

    Miller, Nathaniel J.

    Abundant educational research has integrated Albert Bandura's concepts of self-efficacy and collective efficacy within educational settings. In this phenomenological case study, the investigation sought to capture the manifestation of self-efficacy and collective efficacy within inquiry-based science laboratory courses. Qualitative data was derived from student efficacy surveys, direct classroom observations, and three-tiered interviews with teacher participants. Four high school science instructors and their students from two school districts in Northern Illinois were selected to participate in the study. This study sought to identify instructor strategies or criteria used to formulate student laboratory groups and the impact of such groupings on student self-efficacy and collective efficacy. Open coding of interview transcripts, observation logs, and student surveys led to the development of eight emerging themes. These themes included the purpose of science laboratory activities, instructor grouping strategies, instructor roles, instructor's perceptions, science laboratory assessment, student interactions, learner self-perceptions, and grouping preferences. Results from the study suggest that some students were innately inclined to assume leadership roles, smaller groupings had greater participation from all group members, students had a strong preference for working collaboratively in groups, and students desired to maintain stable laboratory groups in lieu of periodically changing laboratory partners. As with all case study methodologies, the findings of the study were limited to the individual participants at research sites and were not generalizable to all science classrooms. Additional research in the realms of group size, group autonomy, and student interviews would provide even greater insights into the observed phenomena.

  12. The International Space Life Sciences Strategic Planning Working Group

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  13. The effects of a technology-enhanced inquiry instructional model on students' understanding of science in Thailand

    NASA Astrophysics Data System (ADS)

    Lertwanasiriwan, Chaiwuti

    The study examined the effects of a technology-enhanced inquiry instructional model on students' understanding of science in Thailand. A mixed quantitative research design was selected for the research design. A pretest-posttest control-group design was implemented for the experimental research. A causal-comparative design using questionnaire and classroom observation was employed for the non-experimental research. Two sixth-grade classrooms at a medium-sized public school in Bangkok, Thailand were randomly selected for the study - one as the control group and the other as the experimental group. The 34 students in the control group only received the inquiry instructional model, while the 35 students in the experimental group received the technology-enhanced inquiry instructional model. Both groups of students had been taught by the same science teacher for 15 weeks (three periods per week). The results and findings from the study seemed to indicate that both the technology-enhanced inquiry instructional model and the inquiry instructional model significantly improve students' understanding of science. However, it might be claimed that students receiving the technology-enhanced inquiry instructional model gain more than students only receiving the inquiry instructional model. In addition, the technology-enhanced inquiry instructional model seemed to support the assessment during the 5E Model's evaluation stage. Most students appeared to have very good attitudes toward using it in the science classroom suggesting that the technology-enhanced inquiry instructional model motivates students to learn science.

  14. Collaborating in Life Science Research Groups: The Question of Authorship

    ERIC Educational Resources Information Center

    Muller, Ruth

    2012-01-01

    This qualitative study explores how life science postdocs' perceptions of contemporary academic career rationales influence how they relate to collaboration within research groups. One consequential dimension of these perceptions is the high value assigned to publications. For career progress, postdocs consider producing publications and…

  15. Undergraduate research experiences support science career decisions and active learning.

    PubMed

    Lopatto, David

    2007-01-01

    The present study examined the reliability of student evaluations of summer undergraduate research experiences using the SURE (Survey of Undergraduate Research Experiences) and a follow-up survey disseminated 9 mo later. The survey further examines the hypothesis that undergraduate research enhances the educational experience of science undergraduates, attracts and retains talented students to careers in science, and acts as a pathway for minority students into science careers. Undergraduates participated in an online survey on the benefits of undergraduate research experiences. Participants indicated gains on 20 potential benefits and reported on career plans. Most of the participants began or continued to plan for postgraduate education in the sciences. A small group of students who discontinued their plans for postgraduate science education reported significantly lower gains than continuing students. Women and men reported similar levels of benefits and similar patterns of career plans. Undergraduate researchers from underrepresented groups reported higher learning gains than comparison students. The results replicated previously reported data from this survey. The follow-up survey indicated that students reported gains in independence, intrinsic motivation to learn, and active participation in courses taken after the summer undergraduate research experience.

  16. Interrogating the Learning Sciences as a Design Science: Leveraging Insights from Chinese Philosophy and Chinese Medicine

    ERIC Educational Resources Information Center

    Chee, Yam San

    2014-01-01

    Design research has been positioned as an important methodological contribution of the learning sciences. Despite the publication of a handbook on the subject, the practice of design research in education remains an eclectic collection of specific approaches implemented by different researchers and research groups. In this paper, I examine the…

  17. From the Editor: An Introduction to the JSLHR Supplement on Implementation Science.

    PubMed

    Paul, Rhea

    2015-12-01

    The JSLHR Supplement on Implementation Science is aimed at providing discussion and examples of research in implementation science, the study of methods designed to promote the incorporation of research findings into clinical practice. Practitioners in the language science area were invited to submit articles that address their experience with various aspects of implementation science. Six articles from several research groups comprise this supplement. Implementation science is an aspect of intervention research that merits consideration by communication disorders scientists. More extensive practice of implementation science will improve uptake of evidence-based practice in the clinical community.

  18. 75 FR 55805 - National Institute of General Medical Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... General Medical Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Sciences Initial Review Group, Biomedical Research and Research Training Review Subcommittee A. Date... General Medical Sciences, National Institutes of Health, Natcher Building, Room 3AN18, Bethesda, MD 20892...

  19. Distributing Expertise: A Dutch Experiment in Public Interest Science.

    ERIC Educational Resources Information Center

    Nelkin, Dorothy; Rip, Arie

    1979-01-01

    In order to provide public access to scientific expertise, the Dutch have instituted a science shops program. Science advisory groups, located at five universities, promote socially relevant research in the universities and provide technical information to client groups. (BB)

  20. A U.S. Carbon Cycle Science Plan

    NASA Astrophysics Data System (ADS)

    Michalak, Anna M.; Jackson, Rob; Marland, Gregg; Sabine, Christopher

    2009-03-01

    First Meeting of the Carbon Cycle Science Working Group; Washington, D. C., 17-18 November 2008; The report “A U.S. carbon cycle science plan” (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies for nearly a decade. Building on this framework and subsequent reports (available at http://www.carboncyclescience.gov/docs.php), the Carbon Cycle Science Working Group (CCSWG) was formed in 2008 to develop an updated strategy for the next decade. The recommendations of the CCSWG will go to agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States.

  1. Fundamental Science with Pulsed Power: Research Opportunities and User Meeting.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattsson, Thomas Kjell Rene; Wootton, Alan James; Sinars, Daniel Brian

    The fifth Fundamental Science with Pulsed Power: Research Opportunities and User Meeting was held in Albuquerque, NM, July 20-­23, 2014. The purpose of the workshop was to bring together leading scientists in four research areas with active fundamental science research at Sandia’s Z facility: Magnetized Liner Inertial Fusion (MagLIF), Planetary Science, Astrophysics, and Material Science. The workshop was focused on discussing opportunities for high-­impact research using Sandia’s Z machine, a future 100 GPa class facility, and possible topics for growing the academic (off-Z-campus) science relevant to the Z Fundamental Science Program (ZFSP) and related projects in astrophysics, planetary science, MagLIF-more » relevant magnetized HED science, and materials science. The user meeting was for Z collaborative users to: a) hear about the Z accelerator facility status and plans, b) present the status of their research, and c) be provided with a venue to meet and work as groups. Following presentations by Mark Herrmann and Joel Lash on the fundamental science program on Z and the status of the Z facility where plenary sessions for the four research areas. The third day of the workshop was devoted to breakout sessions in the four research areas. The plenary-­ and breakout sessions were for the four areas organized by Dan Sinars (MagLIF), Dylan Spaulding (Planetary Science), Don Winget and Jim Bailey (Astrophysics), and Thomas Mattsson (Material Science). Concluding the workshop were an outbrief session where the leads presented a summary of the discussions in each working group to the full workshop. A summary of discussions and conclusions from each of the research areas follows and the outbrief slides are included as appendices.« less

  2. 77 FR 6809 - National Institute of General Medical Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Biomedical Research Support; 93.821, Cell Biology and Biophysics Research; 93.859, Pharmacology, Physiology, and Biological Chemistry Research; 93.862, Genetics and Developmental Biology Research; 93.88... Sciences Initial Review Group Biomedical Research and Research Training Review Subcommittee A. Date: March...

  3. Research on Same-Gender Grouping in Eighth Grade Science Classrooms

    ERIC Educational Resources Information Center

    Friend, Jennifer

    2006-01-01

    This study examined two hypotheses related to same-gender grouping of eighth grade science classes in a public middle school setting. The hypotheses were (a) male and female students enrolled in same-gender science classes demonstrate more positive science academic achievement than their peers enrolled in mixed-gender classes, and (b) same-gender…

  4. Science and Technology Teachers' Attitudes towards Educational Research in Turkey

    ERIC Educational Resources Information Center

    Sekerci, Ali Riza; Ilhan, Nail; Mustafa, Sozbilir; Yildirim, Ali

    2017-01-01

    This study reports on the attitudes of science and technology teachers' towards educational research that were investigated and analyzed with respect to certain demographic variables. The survey method was utilized as the research design. The study group consisted of 918 science and technology teachers working in middle schools in the Eastern…

  5. Astrobiology and society: building an interdisciplinary research community.

    PubMed

    Race, Margaret; Denning, Kathryn; Bertka, Constance M; Dick, Steven J; Harrison, Albert A; Impey, Christopher; Mancinelli, Rocco

    2012-10-01

    This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers-astrobiologists as well as scholars in the humanities and social sciences-to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology.

  6. Comparing the Math Anxiety of Secondary School Female Students in Groups (Science and Mathematical Physics) Public Schools

    ERIC Educational Resources Information Center

    Vakili, Khatoon; Pourrazavy, Zinat alsadat

    2017-01-01

    The aim of this study is comparing math anxiety of secondary school female students in groups (Science and Mathematical Physics) Public Schools, district 2, city of Sari. The purpose of the research is applied research, it is a development branch, and in terms of the nature and method, it is a causal-comparative research. The statistical…

  7. Leadership styles in secondary school science teachers

    NASA Astrophysics Data System (ADS)

    Lawson, Michael A.

    A comparison of United States secondary school science teachers who mentor high quality student research and teachers who do not mentor research was conducted using a demographic survey and the Multifactor Leadership Questionnaire-Form 5X. The major demographic difference between the two groups was a significantly greater number of years of teaching experience in the research group, a factor that correlated significantly with Extra Effort in students. Research group teachers self-reported higher mean scores than non-research group teachers on the five transformational leadership scales plus the transactional scale of Contingent Reward; however, a Multivariate Analysis of Variance found no significant difference between the groups. Independent t-tests found no significant difference between the groups based upon the remaining transactional scales. The research group was found to be significantly higher on the outcome variable of Extra Effort generated by students while the non-research group rated themselves significantly higher on Satisfaction of students. Transformational leadership in teachers should be addressed by future studies as a possible method of identifying motivational teachers.

  8. Meaningful Science: Teachers Doing Inquiry + Teaching Science.

    ERIC Educational Resources Information Center

    Kielborn, Terrie L., Ed.; Gilmer, Penny J., Ed.

    This publication relates the experiences of seven K-8 teachers who participated in a science education doctoral cohort group during which each of the teachers engaged in a different real-world scientific research project. The idea was to immerse teachers in scientific research so that they could experience inquiry in science first-hand and become…

  9. Science Perceptions of Prospective Class Teachers

    ERIC Educational Resources Information Center

    Ulucinar Sagir, Safak

    2017-01-01

    The perceptions of class teachers, who will deliver science education at the elementary school, of information and science are significant as these affect the quality of education received by children. The aim of this research is to determine perceptions of prospective class teachers of science. The sample group of the research consists of 120…

  10. An Examination of Understandings of Prospective Teachers about Science and Science History

    ERIC Educational Resources Information Center

    Yildiz, Cemalettin

    2018-01-01

    The purpose of this study was to reveal beliefs of prospective teachers about "science" and "science history." The qualitative research approach was employed in the study. The study group consisted of 150 prospective teachers. A form developed by the researcher was used for data collection. The form consisted of open-ended…

  11. Diversity and Equity in Science Education: Research, Policy, and Practice. Multicultural Education Series

    ERIC Educational Resources Information Center

    Lee, Okhee; Buxton, Cory A.

    2010-01-01

    Two leading science educators provide a comprehensive, state-of-the-field analysis of current trends in the research, policy, and practice of science education. This book offers valuable insights into why gaps in science achievement among racial, ethnic, cultural, linguistic, and socioeconomic groups persist, and points toward practical means of…

  12. About the Nutritional Science Research Group | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group (NSRG) promotes and supports studies establishing a comprehensive understanding of the precise role of diet and food components in modulating cancer risk and tumor cell behavior. This focus includes approaches to characterize molecular targets and variability in individual responses to nutrients and dietary patterns. |

  13. Research Opportunities in Information Science and Technology: Cognitive Aspects of Information Science, Information Technology, and Economics of Information.

    ERIC Educational Resources Information Center

    National Science Foundation. Washington, DC. Div. of Information Science and Technology.

    This volume contains the reports of three working groups which were convened separately over a 3-year period at the request of the Advisory Committee for the Division of Information Science and Technology of the National Science Foundation to obtain the opinion of experts concerning research opportunities and trends in information science and…

  14. Science achievement of students in the Republic of Yemen and implications for improvement of science instruction

    NASA Astrophysics Data System (ADS)

    Ismail, Nageeb Kassem

    The purpose of this study was to establish a research base from which strategies could be developed for improving science education in Yemen. The study measured the achievement in general science of Yemeni students attending primary, preparatory, and secondary schools, and their counterparts attending three- or five-year education programs in primary teacher training institutions. A sample of 1,984 students from six major cities in Yemen was given the Second International Science Study test in May 1988. Achievement scores of these selected groups were compared. The mean achievement in general science was 11.93 for science track students, 9.21 for three-year teacher training institution students, and 8.49 for five-year teacher training institution students. These mean scores were based on a total of 35 items. This low level of achievement was further verified by making comparisons of the achievement of selected groups from Yemeni high schools in six cities with each other. The following factors were measured in this study: location, grade level, gender and type of science program studied. Selected groups from Yemeni high schools were also compared to their peers in other nations. The researcher compared students of the science track and teacher training institutions to their counterparts in 13 nations and students of the literature track to their counterparts in eight nations. Fifth and ninth grade students' scores were compared with the scores of their counterparts in 15 and 17 nations respectively. In every comparison, every Yemeni group ranked at the bottom of the achievement list. (Jacobson W., & Doran, R. 1988) The outcomes of this research indicate the profound need for improving science programs in all grade levels in Yemen. The research recommendations for improvement in science education in Yemen fall into four areas: a change in attitudes toward education, a change in teacher education, a change in classroom conditions, and a change in educational opportunities for women. Because this research study was based on a sizable sample and many hypotheses were tested, this work has contributed appreciable to the base of data available to future researchers. This study also implemented use of the SISS instrument for the first time in Arabic.

  15. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    NASA Astrophysics Data System (ADS)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups including research scientists, formal and informal educators, business representatives, and non-profit groups to identify ocean-related problems, and develop solutions to share with their own communities. COSEE OLC practices and studies the skills of developing these collaborations.

  16. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  17. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    DTIC Science & Technology

    1988-04-29

    spread: " clusters " of mod- ern science-intensive firms have begun to be grouped around a large university or research center. Such a symbiosis of...Cost Accounting in Scientific Research [G. Lakhtin; PRAVDA, 30 Jan 88] 1 Facilities, Manpower Candidate Members of Ukrainian Academy of Sciences...Ovezgeldyyev; TURKMENSKAYA ISKRA 17 Nov 87] 75 Conversion of Research Organizations to Cost Accounting [A. Guniya; ZARYA VOSTOKA 16 Jan 88] ... 78

  18. Being scientifical: Popularity, purpose and promotion of amateur research and investigation groups in the U.S

    NASA Astrophysics Data System (ADS)

    Hill, Sharon A.

    21st century television and the Internet are awash in content regarding amateur paranormal investigators and research groups. These groups proliferated after reality investigation programs appeared on television. Exactly how many groups are active in the U.S. at any time is not known. The Internet provides an ideal means for people with niche interests to find each other and organize activities. This study collected information from 1000 websites of amateur research and investigation groups (ARIGs) to determine their location, area of inquiry, methodology and, particularly, to determine if they state that they use science as part of their mission, methods or goals. 57.3% of the ARIGs examined specifically noted or suggested use of science as part of the groups' approach to investigation and research. Even when not explicit, ARIGs often used science-like language, symbols and methods to describe their groups' views or activities. Yet, non-scientific and subjective methods were described as employed in conjunction with objective methods. Furthermore, what were considered scientific processes by ARIGs did not match with established methods and the ethos of the scientific research community or scientific processes of investigation. ARIGs failed to display fundamental understanding regarding objectivity, methodological naturalism, peer review, critical thought and theoretical plausibility. The processes of science appear to be mimicked to present a serious and credible reputation to the non-scientific public. These processes are also actively promoted in the media and directly to the local public as "scientific". These results highlight the gap between the scientific community and the lay public regarding the understanding of what it means to do science and what criteria are necessary to establish reliable knowledge about the world.

  19. Using inquiry-based instructional strategies in third-grade science

    NASA Astrophysics Data System (ADS)

    Harris, Fanicia D.

    The purpose of the study was to determine if the use of inquiry-based instructional strategies as compared to traditional instructional strategies would increase third-grade students' achievement in science, based on the pretest/posttest of the school system and the Georgia Criterion-Referenced Competency Test (CRCT). Inquiry-based instruction, presented students with a question, an observation, a data set, or a hypothesis for problem solving such as scientists use when working in real-world situations. This descriptive research employed a quantitative strategy using a pretest/posttest control group design. The research compared the science academic achievement levels of one Grade 3 class [N=14] exposed to a teacher's inquiry-based instructional strategies as compared to one Grade 3 class [ N=18] exposed to a teacher's traditional instructional strategies. The study compared the science academic performance levels of third-grade students as measured by pretest/posttest mean scores from the school system-based assessment and the Georgia CRCT. Four research hypotheses were examined. Based on the overall findings from this study, both the experimental group and the control group significantly increased their mean scores from the pretests to the posttests. The amount of gain from the pretest to the posttest was significantly greater for the experimental group than the control group for pretest/posttest 1 [t(12) = 8.79, p < .01] and pretest/posttest 2 [t(12) = 9.40, p < .01]. The experimental group significantly outperformed the control group with regard to their mean number of items answered correctly on the life sciences test [t(27) = -1.95, p = .06]. Finally, the control group did not outperform the experimental group on any of the comparisons made throughout this study. The results of this study provide empirical support for the effectiveness of the use of inquiry-based learning strategies, given that the experimental group outperformed the control group on all four posttests, on the science CRCT and on the individual Science portions on the test including earth, life and physical sciences. In fact, this study was able to detect significant differences between the experimental group and the control group with regard to the degree to which the students improved from the pretests to the posttests.

  20. Thinking Like a Scientist About Real-World Problems: The Cornell Institute for Research on Children Science Education Program

    ERIC Educational Resources Information Center

    Williams, Wendy, M.; Papierno, Paul, B.; Makel, Matthew, C.; Ceci, Stephen, J.

    2004-01-01

    We describe a new educational program developed by the Cornell Institute for Research on Children (CIRC), a research and outreach center funded by the National Science Foundation. Thinking Life A Scientist targets students from groups historically underrepresented in science (i.e., girls, people of color, and people from disadvantaged…

  1. US Army Research Office research in progress, July 1, 1991--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    The US Army Research Office, under the US Army Materiel Command (AMC), is responsible for coordinating and supporting research in the physical and engineering sciences, in materials science, geosciences, biology, and mathematics. This report describes research directly supported by the Army Research Projects Agency, and several AMC and other Army commands. A separate section is devoted to the research program at the US Army Research, Development and Standardization Group - United Kingdom. The present volume includes the research program in physics, chemistry, biological sciences, mathematics, engineering sciences, metallurgy and materials science, geosciences, electronics, and the European Research Program. It coversmore » the 12-month period from 1 July 1991 through 30 June 1992.« less

  2. Experiences of Mentors Training Underrepresented Undergraduates in the Research Laboratory

    ERIC Educational Resources Information Center

    Prunuske, Amy J.; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity…

  3. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    PubMed

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy.

  4. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    PubMed Central

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy. PMID:27428071

  5. Research Staff | Chemistry and Nanoscience Research | NREL

    Science.gov Websites

    Jeffrey Blackburn Jeffrey Blackburn Group Research Manager III-Materials Science Dr. Blackburn is a Senior Scientist and Group Manager at NREL, leading projects on a variety of fundamental and applied research -Electrical Engineering Guido.Bender@nrel.gov 303-275-3810 Blackburn, Jeffrey Group Research Manager III

  6. Global oral health inequalities: dental caries task group--research agenda.

    PubMed

    Pitts, N; Amaechi, B; Niederman, R; Acevedo, A-M; Vianna, R; Ganss, C; Ismail, A; Honkala, E

    2011-05-01

    The IADR Global Oral Health Inequalities Task Group on Dental Caries has synthesized current evidence and opinion to identify a five-year implementation and research agenda which should lead to improvements in global oral health, with particular reference to the implementation of current best evidence as well as integrated action to reduce caries and health inequalities between and within countries. The Group determined that research should: integrate health and oral health wherever possible, using common risk factors; be able to respond to and influence international developments in health, healthcare, and health payment systems as well as dental prevention and materials; and exploit the potential for novel funding partnerships with industry and foundations. More effective communication between and among the basic science, clinical science, and health promotion/public health research communities is needed. Translation of research into policy and practice should be a priority for all. Both community and individual interventions need tailoring to achieve a more equal and person-centered preventive focus and reduce any social gradient in health. Recommendations are made for both clinical and public health implementation of existing research and for caries-related research agendas in clinical science, health promotion/public health, and basic science.

  7. The Perspective of Women Managing Research Teams in Social Sciences

    ERIC Educational Resources Information Center

    Tomas, Marina; Castro, Diego

    2013-01-01

    This article presents a research study that focuses on how women manage research teams. More specifically, the study aims to ascertain the perception of female researchers who are leaders of research groups in social sciences with regard to the formation, operation and management of their research teams. Fifteen interviews were carried out, eight…

  8. Scientifically speaking: Identifying, analyzing, and promoting science talk in small groups

    NASA Astrophysics Data System (ADS)

    Holthuis, Nicole Inamine

    In this dissertation I define, document, and analyze the nature of students' science talk as they work in cooperative learning groups. Three questions form the basis of this research. First, what is science talk? Second, how much and what kind of science talk did students do? And, third, what conditions help promote or inhibit students' science talk? This study was conducted in a total of six classrooms in three high schools. I videotaped and audiotaped students as they worked in small groups during the course of an ecology unit. I analyzed this videotape data and field notes using both quantitative and qualitative methods. I define science talk as talk that serves to move students along in terms of the science (both content and process) required or suggested by the activity. More specifically, I identified five epistemological characteristics that delineate what counts as scientific knowledge and, subsequently, science talk. From this definition, I developed an analytic framework and science talk observation instrument to document the quantity and level of student and teacher talk during groupwork. Analysis of the data from this instrument indicates that the overall level of students' science talk is considerable and students do significantly more science talk than school talk. I also found that while the overall level and type of science talk does not vary by class or by school, it does vary by activity type. Finally, my analysis suggests that science talk does not vary by gender composition of the group. I explored the classroom conditions that promote or inhibit science talk during groupwork. My findings suggest that, among other things, teachers can promote science talk by delegating authority to students, by emphasizing content and the big idea, by implementing open-ended tasks, and by modeling science talk. In conclusion, the findings described in this dissertation point teachers and researchers toward ways in which they may improve practice in order to foster more science talk. In addition, my Science Talk Instrument and analytic framework provides teachers, teacher educators, and researchers a means of understanding and evaluating student talk in small groups.

  9. Effects of a Long-Term Participatory Action Research Project on Science Teachers' Professional Development

    ERIC Educational Resources Information Center

    Eilks, Ingo; Markic, Silvija

    2011-01-01

    This paper describes the potential of long-term co-operation between science educators and science teachers concerning the teachers' continuous professional development, based on Participatory Action Research in science education. The discussion is based on a six-year case study observing a group of about ten German chemistry teachers by chemistry…

  10. Turkish Version of Students' Ideas about Nature of Science Questionnaire: A Validation Study

    ERIC Educational Resources Information Center

    Cansiz, Mustafa; Cansiz, Nurcan; Tas, Yasemin; Yerdelen, Sundus

    2017-01-01

    Mass assessment of large samples' nature of science views has been one of the core concerns in science education research. Due to impracticality of using open-ended questionnaires or conducting interviews with large groups, another line of research has been required for mass assessment of pupils' nature of science conception meaningfully.…

  11. Contemporary Issues in Group Learning in Undergraduate Science Classrooms: A Perspective from Student Engagement

    ERIC Educational Resources Information Center

    Hodges, Linda C.

    2018-01-01

    As the use of collaborative-learning methods such as group work in science, technology, engineering, and mathematics classes has grown, so has the research into factors impacting effectiveness, the kinds of learning engendered, and demographic differences in student response. Generalizing across the range of this research is complicated by the…

  12. A Longitudinal Study of Preservice Elementary Teachers' Personal and Science Teaching Efficacy.

    ERIC Educational Resources Information Center

    Ginns, Ian S.; Watters, James J.

    This paper reports the results of a longitudinal study into the personal and science teaching efficacy of a group of preservice elementary teachers. Quantitative and qualitative research methods were employed in the study. Using a pretest and a post-test one group research design, quantitative data were obtained from the administration of a…

  13. Changes in science classrooms resulting from collaborative action research initiatives

    NASA Astrophysics Data System (ADS)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a variety of pedagogical functions. Students perceived Group-Investigations and Peer Assessments as positive in that they contributed to realizing constructivist features in their classrooms. The students also reported that they gained several learning outcomes through Group-Investigations, including more positive attitudes, new knowledge, greater learning capabilities, and improved self-esteem. However, the Group-Investigation and Peer Assessment methods were perceived as negative and problematic by those who had rarely been exposed to such inquiry-based, student-centered approaches.

  14. Collaboration patterns in the German political science co-authorship network.

    PubMed

    Leifeld, Philip; Wankmüller, Sandra; Berger, Valentin T Z; Ingold, Karin; Steiner, Christiane

    2017-01-01

    Research on social processes in the production of scientific output suggests that the collective research agenda of a discipline is influenced by its structural features, such as "invisible colleges" or "groups of collaborators" as well as academic "stars" that are embedded in, or connect, these research groups. Based on an encompassing dataset that takes into account multiple publication types including journals and chapters in edited volumes, we analyze the complete co-authorship network of all 1,339 researchers in German political science. Through the use of consensus graph clustering techniques and descriptive centrality measures, we identify the ten largest research clusters, their research topics, and the most central researchers who act as bridges and connect these clusters. We also aggregate the findings at the level of research organizations and consider the inter-university co-authorship network. The findings indicate that German political science is structured by multiple overlapping research clusters with a dominance of the subfields of international relations, comparative politics and political sociology. A small set of well-connected universities takes leading roles in these informal research groups.

  15. Collaboration patterns in the German political science co-authorship network

    PubMed Central

    Wankmüller, Sandra; Berger, Valentin T. Z.; Ingold, Karin; Steiner, Christiane

    2017-01-01

    Research on social processes in the production of scientific output suggests that the collective research agenda of a discipline is influenced by its structural features, such as “invisible colleges” or “groups of collaborators” as well as academic “stars” that are embedded in, or connect, these research groups. Based on an encompassing dataset that takes into account multiple publication types including journals and chapters in edited volumes, we analyze the complete co-authorship network of all 1,339 researchers in German political science. Through the use of consensus graph clustering techniques and descriptive centrality measures, we identify the ten largest research clusters, their research topics, and the most central researchers who act as bridges and connect these clusters. We also aggregate the findings at the level of research organizations and consider the inter-university co-authorship network. The findings indicate that German political science is structured by multiple overlapping research clusters with a dominance of the subfields of international relations, comparative politics and political sociology. A small set of well-connected universities takes leading roles in these informal research groups. PMID:28388621

  16. Research Microcultures as Socialization Contexts for Underrepresented Science Students

    PubMed Central

    Thoman, Dustin B.; Muragishi, Gregg A.; Smith, Jessi L.

    2017-01-01

    How much does scientific research potentially help others? We tested whether such prosocial purpose beliefs spread among group members, contributing to each individual student’s motivation for science. We tested this question within the context of research experience for undergraduates working in faculty-led laboratories, with a focus on underrepresented minority (URM) students. Longitudinal survey data were collected from 522 research assistants in 41 labs at 6 institutions. Using multilevel modeling, results supported a socialization effect for URMs, the aggregate prosocial purpose beliefs of one’s labmates predicted the student’s own initial beliefs, as well as students’ subsequent experiences of interest and their motivation to pursue a future science career. Results demonstrate that research labs serve as microcultures of information about science norms and values that influence motivation, which URM students are particularly sensitive to, and efforts to broaden participation should include understanding group processes that convey such values. PMID:28459648

  17. The Effect of Scientific Process Skills Education on Students' Scientific Creativity, Science Attitudes and Academic Achievements

    ERIC Educational Resources Information Center

    Aktamis, Hilal; Ergin, Omer

    2008-01-01

    The aim of this study is to investigate the effects of teaching scientific process skills education to students to promote their scientific creativity, attitudes towards science, and achievements in science. The research includes a pre-test post-test research model with a control group. The subjects of the research consist of 40 students reading…

  18. Army Institutional Training: Current Status and Future Research

    DTIC Science & Technology

    2010-03-01

    one-group posttest 2. two-group posttest only with nonequivalent comparison group 3. two-group pretest - posttest with nonequivalent comparison group...multiple posttests ii. What problems have you encountered in conducting this type of experimental/quasi-experimental research ? 10. If you were...U.S. Army Research Institute for the Behavioral and Social Sciences Research Report 1921 Army Institutional Training: Current

  19. Report of the Office of Science and Technology Policy Working Group on Basic Research in the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    The OSTP Working Group was commissioned to advise on the scope and quality of basic research conducted by and on behalf of DOE. The Group formed Subgroups in these areas: large-scale solar, fossil, fusion, small technology, and geothermal, environment and life sciences, social sciences, transportation, and fission. Work of the Subgroups forms the basis of much of this report, which has five sections. Following the introduction, preface, and executive summary (Section II), there is discussion of broad problem areas as they pertain to research (Section III). Section IV consists of general recommendations regarding policies for, as well as management andmore » scope of, research within the DOE: this section has four parts: Part A pertains to research in programmatic areas under the aegis of the Assistant Secretaries; Part B deals with the role and structure of the Office of Energy Research; Part C is concerned with broad research issues; and Part D addresses DOE Laboratories and Energy Research Centers. In Section V, research needs and opportunities for selected programs are discussed.« less

  20. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  1. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  2. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  3. Evolution of NASA's Earth Science Digital Object Identifier Registration System

    NASA Technical Reports Server (NTRS)

    Wanchoo, Lalit; James, Nathan

    2017-01-01

    NASA's Earth Science Data and Information System (ESDIS) Project has implemented a fully automated system for assigning Digital Object Identifiers (DOIs) to Earth Science data products being managed by its network of 12 distributed active archive centers (DAACs). A key factor in the successful evolution of the DOI registration system over last 7 years has been the incorporation of community input from three focus groups under the NASA's Earth Science Data System Working Group (ESDSWG). These groups were largely composed of DOI submitters and data curators from the 12 data centers serving the user communities of various science disciplines. The suggestions from these groups were formulated into recommendations for ESDIS consideration and implementation. The ESDIS DOI registration system has evolved to be fully functional with over 5,000 publicly accessible DOIs and over 200 DOIs being held in reserve status until the information required for registration is obtained. The goal is to assign DOIs to the entire 8000+ data collections under ESDIS management via its network of discipline-oriented data centers. DOIs make it easier for researchers to discover and use earth science data and they enable users to provide valid citations for the data they use in research. Also for the researcher wishing to reproduce the results presented in science publications, the DOI can be used to locate the exact data or data products being cited.

  4. A New U.S. Carbon Cycle Science Plan

    NASA Astrophysics Data System (ADS)

    Michalak, A. M.; Jackson, R.; Marland, G.; Sabine, C.

    2009-05-01

    The report "A U.S. carbon cycle science plan" (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies in the United States for nearly a decade. Building on this framework and subsequent reports (http://www.carboncyclescience.gov/docs.php), a working group comprised of 27 scientists was formed in 2008 under the United States Carbon Cycle Science Program to review the 1999 Science Plan, and to develop an updated strategy for carbon cycle research for the period from 2010 to 2020. This comprehensive review is being conducted with wide input from the research and stakeholder communities. The recommendations of the Carbon Cycle Science Working Group (CCSWG) will go to U.S. agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States. This presentation will provide an update on the ongoing planning process, will outline the steps that the CCSWG is undertaking in building consensus towards an updated U.S. Carbon Cycle Science Plan, and will seek input on the best ways in which to coordinate efforts with ongoing and upcoming research in Canada and Mexico, as well as with ongoing work globally.

  5. A Health Newsletter To Teach Science Knowledge: BioRAP!

    ERIC Educational Resources Information Center

    Froman, Robin D.; Owen, Steven V.; Del Rio-Parent, Lourdes

    This research describes the evaluation of a science curriculum newsletter called BioRAP which serves as a vehicle to teach current health science content. The research objectives were to estimate the relationships of socioeconomic status, ethnic group, gender, grade, student ability, and classroom use characteristics with student knowledge and…

  6. Asian Network for Biological Sciences (ANBS).

    ERIC Educational Resources Information Center

    Asian Network for Biological Sciences.

    The Asian Network for Biological Sciences (ANBS) is a group of institutions, laboratories, research centers, and scholars who are willing to cooperate in programs and activities aimed at improving teaching and research in the biological sciences. This publication: (1) outlines ANBS aims and objectives; (2) describes major activities in the past;…

  7. Invasive Species Science Update (No. 3)

    Treesearch

    Mee-Sook Kim; Jack Butler

    2009-01-01

    Although scientific journals are the traditional method for disseminating research results, information must be distributed more rapidly and widely using approaches that connect researchers directly with managers. The exchange of information between science producer and science user would appear to be straightforward because, for the most part, the two groups speak the...

  8. Inspired by Fieldwork: A Teacher Research Experience Energizes and Ignites a Group of Elementary Students

    NASA Astrophysics Data System (ADS)

    Munroe, C. H.

    2010-12-01

    Through involvement in authentic research experiences teachers improve their content knowledge, deepen their understanding of the research process, and rejuvenate their interest in science. These positive results of fieldwork transfer into the classroom, directly benefiting students. The ARMADA project provided me with a three week research experience aboard the Amundsen (Canadian Coast Guard science vessel) which enriched and strengthened me professionally. Guided by master and early career scientists, I took part in specific research techniques and deep scientific discourse. My immersion in ocean science was so stimulating that I was inspired to share that excitement with my students. The fascination my students showed for basic experiments and ocean related activities fueled my interest further and I began to research more deeply which led to Climate Literacy and Polar Studies as essentials in my science curriculum. Over the following years I continued to expand and refine the workshops and activities students take part in. Three years after the research experience students still love the science explorations we embark upon together. This past year a group of students became so excited about Polar Science and Climate that they authored a 36 page non fiction book for upper elementary and middle school students entitled, "Changing Poles, Changing Planet: Climate Change vs. The Earth". Seven of the authors decided to continue their science outreach work by creating an educational video focusing on the basics of climate science and what children can do to lower carbon emissions. The book and video were distributed to educators as well as scientists at the International Polar Year Science Conference in June, 2010. In August some of these students presented their work at a Sustainability festival that was organized by M-CAN a local climate action group. Two of these students (who have left my class and started 6th grade at the middle school)recently decided to form a Climate Club and their goal is to continue to research and teach others about climate science. Their enthusiasm and desire to teach others is a result of exposure to authentic science issues in school and my research experience is what changed the way I teach science which made this possible.

  9. 78 FR 28601 - National Institute of General Medical Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... Sciences; Initial Review Group, Training and Workforce Development Subcommittee--A. Date: June 19, 2013..., Physiology, and Biological Chemistry Research; 93.862, Genetics and Developmental Biology Research; 93.88...

  10. A Comparison of the Expertise of University Faculty and Students in American Political Science: Implications for Future Research on High School Civics and Government

    ERIC Educational Resources Information Center

    Budano, Christopher

    2012-01-01

    This study investigated the disciplinary knowledge and nature of expertise among political science experts studying American political science. A comparison group of students who had completed an introductory undergraduate course in American political science also participated in the study. Numerous research studies have found that civics and…

  11. Analysis of Nature of Science Included in Recent Popular Writing Using Text Mining Techniques

    ERIC Educational Resources Information Center

    Jiang, Feng; McComas, William F.

    2014-01-01

    This study examined the inclusion of nature of science (NOS) in popular science writing to determine whether it could serve supplementary resource for teaching NOS and to evaluate the accuracy of text mining and classification as a viable research tool in science education research. Four groups of documents published from 2001 to 2010 were…

  12. Elementary school children's science learning from school field trips

    NASA Astrophysics Data System (ADS)

    Glick, Marilyn Petty

    This research examines the impact of classroom anchoring activities on elementary school students' science learning from a school field trip. Although there is prior research demonstrating that students can learn science from school field trips, most of this research is descriptive in nature and does not examine the conditions that enhance or facilitate such learning. The current study draws upon research in psychology and education to create an intervention that is designed to enhance what students learn from school science field trips. The intervention comprises of a set of "anchoring" activities that include: (1) Orientation to context, (2) Discussion to activate prior knowledge and generate questions, (3) Use of field notebooks during the field trip to record observations and answer questions generated prior to field trip, (4) Post-visit discussion of what was learned. The effects of the intervention are examined by comparing two groups of students: an intervention group which receives anchoring classroom activities related to their field trip and an equivalent control group which visits the same field trip site for the same duration but does not receive any anchoring classroom activities. Learning of target concepts in both groups was compared using objective pre and posttests. Additionally, a subset of students in each group were interviewed to obtain more detailed descriptive data on what children learned through their field trip.

  13. Operationalizing Cognitive Science and Technologies’ Research and Development; the “Brain and Cognition Study Group (BCSG)” Initiative from Shiraz, Iran

    PubMed Central

    Ashjazadeh, Nahid; Boostani, Reza; Ekhtiari, Hamed; Emamghoreishi, Masoumeh; Farrokhi, Majidreza; Ghanizadeh, Ahmad; Hatam, Gholamreza; Hadianfard, Habib; Lotfi, Mehrzad; Mortazavi, Seyed Mohammad Javad; Mousavi, Maryam; Montakhab, Afshin; Nili, Majid; Razmkon, Ali; Salehi, Sina; Sodagar, Amir Mohammad; Setoodeh, Peiman; Taghipour, Mousa; Torabi-Nami, Mohammad; Vesal, Abdolkarim

    2014-01-01

    Recent advances in brain and cognitive science studies have revolutionized concepts in neural dynamics, regulating mechanisms, coding systems and information processing networks which govern our function and behavior. Hidden aspects of neurological and psychiatric diseases are being understood and hopes for their treatment are emerging. Although the two comprehensive mega-projects on brain mapping are in place in the United States and Europe; the proportion of science contributed by the developing countries should not be downsized. With the granted supports from the Cognitive Sciences and Technologies Council (CSTC), Iran can take its role in research on brain and cognition further. The idea of research and development in Cognitive Sciences and Technologies (CST) is being disseminated across the country by CSTC. Towards this goal, the first Shiraz interdisciplinary meeting on CST was held on 9 January 2014 in Namazi hospital, Shiraz. CST research priorities, infrastructure development, education and promotion were among the main topics discussed during this interactive meeting. The steering committee of the first CST meeting in Shiraz decided to frame future research works within the “Brain and Cognition Study Group-Shiraz” (BCSG-Shiraz). The study group comprises scientific leaders from various allied disciplines including neuroscience, neurosurgery, neurology, psychiatry, psychology, radiology, physiology, bioengineering, biophysics, applied physics and telecommunication. As the headquarter for CST in the southern Iran, BCSG-Shiraz is determined to advocate “brain and cognition” awareness, education and research in close collaboration with CSTC. Together with CSTC, Shiraz Neuroscience Research center (SNRC) will take the initiative to cross boundaries in interdisciplinary works and multi-centric research projects within the study group. PMID:25337368

  14. Operationalizing Cognitive Science and Technologies' Research and Development; the "Brain and Cognition Study Group (BCSG)" Initiative from Shiraz, Iran.

    PubMed

    Ashjazadeh, Nahid; Boostani, Reza; Ekhtiari, Hamed; Emamghoreishi, Masoumeh; Farrokhi, Majidreza; Ghanizadeh, Ahmad; Hatam, Gholamreza; Hadianfard, Habib; Lotfi, Mehrzad; Mortazavi, Seyed Mohammad Javad; Mousavi, Maryam; Montakhab, Afshin; Nili, Majid; Razmkon, Ali; Salehi, Sina; Sodagar, Amir Mohammad; Setoodeh, Peiman; Taghipour, Mousa; Torabi-Nami, Mohammad; Vesal, Abdolkarim

    2014-01-01

    Recent advances in brain and cognitive science studies have revolutionized concepts in neural dynamics, regulating mechanisms, coding systems and information processing networks which govern our function and behavior. Hidden aspects of neurological and psychiatric diseases are being understood and hopes for their treatment are emerging. Although the two comprehensive mega-projects on brain mapping are in place in the United States and Europe; the proportion of science contributed by the developing countries should not be downsized. With the granted supports from the Cognitive Sciences and Technologies Council (CSTC), Iran can take its role in research on brain and cognition further. The idea of research and development in Cognitive Sciences and Technologies (CST) is being disseminated across the country by CSTC. Towards this goal, the first Shiraz interdisciplinary meeting on CST was held on 9 January 2014 in Namazi hospital, Shiraz. CST research priorities, infrastructure development, education and promotion were among the main topics discussed during this interactive meeting. The steering committee of the first CST meeting in Shiraz decided to frame future research works within the "Brain and Cognition Study Group-Shiraz" (BCSG-Shiraz). The study group comprises scientific leaders from various allied disciplines including neuroscience, neurosurgery, neurology, psychiatry, psychology, radiology, physiology, bioengineering, biophysics, applied physics and telecommunication. As the headquarter for CST in the southern Iran, BCSG-Shiraz is determined to advocate "brain and cognition" awareness, education and research in close collaboration with CSTC. Together with CSTC, Shiraz Neuroscience Research center (SNRC) will take the initiative to cross boundaries in interdisciplinary works and multi-centric research projects within the study group.

  15. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less

  16. Development of Metacognitive Skills: Designing Problem-Based Experiment with Prospective Science Teachers in Biology Laboratory

    ERIC Educational Resources Information Center

    Denis Çeliker, Huriye

    2015-01-01

    The purpose of this study is to investigate the effect of designing problem-based experiments (DPBE) on the level of metacognitive skills of prospective science teachers. For this purpose, pre test-post test design, without control group, was used in the research. The research group of the study comprised 113 second-grade prospective science…

  17. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    NASA Astrophysics Data System (ADS)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.

  18. Invasive Species Science Update (No. 5)

    Treesearch

    Dean Pearson; Yvette Ortega

    2011-01-01

    Welcome to the fifth issue of the Rocky Mountain Research Station's (RMRS) Invasive Species Science Update. The newsletter is produced by the RMRS Invasive Species Working Group (ISWG), which is a core group of scientists who volunteer to coordinate outreach of RMRS invasive species science to managers and the public. After publishing the past four newsletters, we...

  19. Introduction of International Microgravity Strategic Planning Group

    NASA Technical Reports Server (NTRS)

    Rhome, Robert

    1998-01-01

    Established in May 6, 1995, the purpose of this International Strategic Planning Group for Microgravity Science and Applications Research is to develop and update, at least on a biennial basis, an International Strategic Plan for Microgravity Science and Applications Research. The member space agencies have agreed to contribute to the development of a Strategic Plan, and seek the implementation of the cooperative programs defined in this Plan. The emphasis of this plan is the coordination of hardware construction and utilization within the various areas of research including biotechnology, combustion science, fluid physics, materials science and other special topics in physical sciences. The Microgravity Science and Applications International Strategic Plan is a joint effort by the present members - ASI, CNES, CSA, DLR, ESA, NASA, and NASDA. It represents the consensus from a series of discussions held within the International Microgravity Strategic Planning Group (IMSPG). In 1996 several space agencies initiated multilateral discussions on how to improve the effectiveness of international microgravity research during the upcoming Space Station era. These discussions led to a recognition of the need for a comprehensive strategic plan for international microgravity research that would provide a framework for cooperation between international agencies. The Strategic Plan is intended to provide a basis for inter-agency coordination and cooperation in microgravity research in the environment of the International Space Station (ISS) era. This will be accomplished through analysis of the interests and goals of each participating agency and identification of mutual interests and program compatibilities. The Plan provides a framework for maximizing the productivity of space-based research for the benefit of our societies.

  20. A systems theory approach to career development: Exploring factors that affect science as a career choice

    NASA Astrophysics Data System (ADS)

    Liskey, Brian K.

    This research project was designed to examine the factors that affect students' choice in a career. Specifically, the factors of (a) achievement, (b) interest, (c) self-efficacy, (d) perceived preparation for a career, and (e) being informed about a career will be under investigation. Of key importance to the study is how these factors can affect a student's perception about choosing a science career. A quantitative analysis of secondary data from the 2006 and 2009 Program for International Student Assessment (PISA) international assessment and attitudinal questionnaire provided data on student perceptions and aptitude in science. The sample from PISA included over 400,000 15 year-old students from 57 countries. From the 57 countries, 30 countries, comprised by Organization for Economic and Cooperative Development (OECD), were isolated for analysis. Within this group of 30, 11 were selected for comparison based on their questionnaire response to expectations for a career in science at age 30. The Institute for Educational Science's, International Data Explorer was utilized to acquire and analyze data from the 2006 and 2009 PISA international tests and questionnaires to determine significance between scaled scores and PISA indices. Variables were chosen as factors affecting student's perception on various systems outlined by the Systems Theory of Career Development (Patton & McMahon, 1997) and the Systems Theory of Career Development Framework (Patton & McMahon, 1999). Four country groups were established based on student responses to question 30a from the 2006 PISA attitudinal questionnaire, which asks what career students expected to have at age 30. The results from comparing country groups showed that countries in Group A, which showed the highest values for students expecting a career in science, also had the highest average values for achievement on the PISA science literacy assessment. Likewise, countries that had the lowest values for expecting a career in science (Group B) also had the lowest average values for achievement in science as assessed by science literacy score according to PISA. The United States (Group C) and the International Average (Group D) were both intermediate in each of the two categories. The analysis also showed an identical country group sequence from highest responses to lowest responses for the "systems" or variables of a) self-efficacy, b) preparation for a science career, and c) information about a career in science. The group sequence from high to low values was Group C, Group B, Group D, Group A. When comparing this country group sequence there appears to be a weak negative association between students in countries that expect a career in science and the values for self-efficacy, being prepared for, and informed about a career in science. The findings from this study indicate that the greatest factor affecting students' perception for expecting a career in science is high achievement in science. These results provide key insight on the Systems Theory of Career Development missing from the existing body of literature. Leaders in the fields of education and educational policy can use this information to guide practices and promote programs that will aid in higher achievement in science and engineering. This research can also be used by leaders in career counseling to advise students on appropriate career paths and prepare students for future careers in science and technology. Finally, leadership within state and federal institutions can utilize results from this study to guide future research and funding that encourages students on career pathways in the fields of Science Technology Engineering and Mathematics (STEM).

  1. Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on unconventional natural gas drilling operations.

    PubMed

    Penning, Trevor M; Breysse, Patrick N; Gray, Kathleen; Howarth, Marilyn; Yan, Beizhan

    2014-11-01

    Unconventional natural gas drilling operations (UNGDO) (which include hydraulic fracturing and horizontal drilling) supply an energy source that is potentially cleaner than liquid or solid fossil fuels and may provide a route to energy independence. However, significant concerns have arisen due to the lack of research on the public health impact of UNGDO. Environmental Health Sciences Core Centers (EHSCCs), funded by the National Institute of Environmental Health Sciences (NIEHS), formed a working group to review the literature on the potential public health impact of UNGDO and to make recommendations for needed research. The Inter-EHSCC Working Group concluded that a potential for water and air pollution exists that might endanger public health, and that the social fabric of communities could be impacted by the rapid emergence of drilling operations. The working group recommends research to inform how potential risks could be mitigated. Research on exposure and health outcomes related to UNGDO is urgently needed, and community engagement is essential in the design of such studies.

  2. Wildlife, Snow, Coffee, and Video: The IPY Activities of the University of Alaska Young Researchers' Network

    NASA Astrophysics Data System (ADS)

    Pringle, D.; Alvarez-Aviles, L.; Carlson, D.; Harbeck, J.; Druckenmiller, M.; Newman, K.; Mueller, D.; Petrich, C.; Roberts, A.; Wang, Y.

    2007-12-01

    The University of Alaska International Polar Year (IPY) Young Researchers' Network is a group of graduate students and postdoctoral fellows. Our interdisciplinary group operates as a volunteer network to promote the International Polar Year through education and outreach aimed at the general public and Alaskan students of all ages. The Young Researchers' Network sponsors and organizes science talks or Science Cafés by guest speakers in public venues such as coffee shops and bookstores. We actively engage high school students in IPY research concerning the ionic concentrations and isotopic ratios of precipitation through Project Snowball. Our network provides hands-on science activities to encourage environmental awareness and initiate community wildlife monitoring programs such as Wildlife Day by Day. We mentor individual high school students pursuing their own research projects related to IPY through the Alaska High School Science Symposium. Our group also interacts with the general public at community events and festivals to share the excitement of IPY for example at the World Ice Art Championship and Alaska State Fair. The UA IPY Young Researchers' Network continues to explore new partnerships with educators and students in an effort to enhance science and education related to Alaska and the polar regions in general. For more information please visit: http://ipy-youth.uaf.edu or e-mail: ipy-youth@alaska.edu

  3. Embedding Publication Skills in Science Research Training: A Writing Group Programme Based on Applied Linguistics Frameworks and Facilitated by a Scientist

    ERIC Educational Resources Information Center

    Cargill, Margaret; Smernik, Ronald

    2016-01-01

    Few systematic efforts have been reported to develop higher degree by research student skills for writing publishable articles in science and technology fields. There is a need to address this lack in the light of the current importance of publication to science research students and the high supervisor workload entailed in repeated draft…

  4. Integrating Social Science into the Long-Term Ecological Research (LTER) Network: Social Dimensions of Ecological Change and Ecological Dimensions of Social Change

    Treesearch

    Charles L. Redman; J. Morgan Grove; Lauren H. Kuby; Lauren H. Kuby

    2004-01-01

    The integration of the social sciences into long-term ecological research is an urgent priority. To address this need, a group of social, earth, and life scientists associated with the National Science Foundation's (NSF) Long-Term Ecological Research (LTER) Network have articulated a conceptual framework for understanding the human dimensions of ecological change...

  5. Exposure Science in the 21st Century Federal Working Group

    EPA Pesticide Factsheets

    This group represents 20 agencies across the government. Partnerships are important to identify efficiencies and collaborative opportunities in exposure research. The ES21 group will implement ideas from the National Research Council report.

  6. The effect of inquiry based science instruction on student understanding

    NASA Astrophysics Data System (ADS)

    Nail, Jessica Lynette

    According to the TIMSS Study (2007), the United States is falling behind in the subjects of math and science. In order for the students in the United States to develop scientific literacy and remain competitive globally, inquiry must be the priority when teaching science (NRC, 1996; AAAS, 1990). The main purpose of this research was to see if inquiry-based instruction in the science classroom had a significant effect on student understanding and retention of information in a rural school in Virginia. The effect of inquiry-based science instruction on gender was also examined. The researcher implemented a four-week, inquiry-based unit on Virginia Sol 6.7, written in the 5 E learning style to 358 sixth-grade students and compared their posttest gains and delayed posttest scores to a control group consisting of 268 students. The control group received traditional teaching methods. The results for the posttest gains produced a p = 0.01. Therefore, there was a significant difference in the experimental group, which received the treatment, when compared to the control group, which did not receive treatment. A t test was also used to compare the delayed test scores of the experimental group to the control group. The results showed a p < 0.0001 when comparing the experimental group, which received the four-week inquiry-based science instruction treatment, to the control, which did not receive the treatment. This t test showed a very highly significant difference between the experimental group and the control group. Based on these results, it is imperative that Virginia begin implementing inquiry-based instruction in the science classroom.

  7. The effects of different gender groupings on middle school students' performance in science lab

    NASA Astrophysics Data System (ADS)

    Drab, Deborah D.

    Grouping students for labs in science classes is a common practice. This mixed methods quasi-experimental action research study examines homogeneous and heterogeneous gender grouping strategies to determine what gender grouping strategy is the most effective in a coeducational science classroom setting. Sixth grade students were grouped in same-gender and mixed-gender groups, alternating each quarter. Over the course of an academic year, data were collected from four sources. The teacher-researcher observed groups working during hands-on activities to collect data on student behaviors. Students completed post-lab questionnaires and an end-of-course questionnaire about their preferences and experiences in the different grouping strategies. Student scores on written lab assignments were also utilized. Data analysis focused on four areas: active engagement, student achievement, student perceptions of success and cooperative teamwork. Findings suggest that teachers may consider grouping students of different ability levels according to different gender grouping strategies to optimize learning.

  8. 78 FR 59654 - Possible Models for the Administration and Support of Discipline-Specific Guidance Groups for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... science by improving coordination across a broad range of forensic science disciplines. The new initiative... intended to provide structured forums for the exchange of ideas among operational, technical, research, and... needs of forensic science research and measurement standards, and verifying the scientific basis exists...

  9. Action Research Study. A Framework To Help Move Teachers toward an Inquiry-Based Science Teaching Approach.

    ERIC Educational Resources Information Center

    Staten, Mary E.

    This action research study developed a framework for moving teachers toward an inquiry-based approach to teaching science, emphasizing elements, strategies, and supports necessary to encourage and sustain teachers' use of inquiry-based science instruction. The study involved a literature review, participant observation, focus group discussions,…

  10. Lewy Body Dementia Association

    MedlinePlus

    ... Services Local LBD Support Groups Caregiver Link Caregiving Materials Virtual Groups Caregiver Resources Related Organizations LBD stories submit a caregiver story forums Research Research News LBD: State of the Science Learn About Clinical Trials Participate in Research Funding ...

  11. Science is for me: Meeting the needs of English language learners in an urban, middle school science classroom through an instructional intervention

    NASA Astrophysics Data System (ADS)

    Johnson, Joseph A.

    2011-12-01

    This study involved an intervention in which I explored how the multimodal, inquiry-based teaching strategies from a professional development model could be used to meet the educational needs of a group of middle school students, who were refugees, newly arrived in the United States, now residing in a large urban school district in the northeastern United States, and learning English as a second language. This group remains unmentioned throughout the research literature despite the fact that English Language Learners (ELLs) represent the fastest growing group of K-12 students in the United States. The specific needs of this particular group were explored as I attempted daily to confront a variety of obstacles to their science achievement and help to facilitate the development of a scientific discourse. This research was done in an effort to better address the needs of ELLs in general and to inform best practices for teachers to apply across a variety of different cultural and linguistic subgroups. This study is an autoethnographic case study analysis of the practices of the researcher, working in a science classroom, teaching the described group of students.

  12. The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments

    NASA Astrophysics Data System (ADS)

    Beutel, Ann M.; Nelson, Donna J.

    This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.

  13. Peripheral and subversive: Women making connections and challenging the boundaries of the science community

    NASA Astrophysics Data System (ADS)

    Davis, Kathleen S.

    2001-07-01

    Researchers continue to report the underrepresentation of females in the science professions (AAUW, 1992; NSF, 1999; Vetter, 1992). Investigators have illuminated many factors that contribute to the insider status in the science community of some groups and the peripheral/outsider status of women and girls (Brickhouse, 1994; Delamont, 1989; Harding, 1991; Schiebinger, 1989). Some research has shown that supportive science networks have had a positive influence on women's participation and retention in science practices (AAUW, 1992; Keith & Keith, 1989; Kreinberg & Lewis, 1996; Varanka-Martin, 1996). In order to provide a better understanding of the role social capital plays in women's legitimate participation in science, I draw upon the findings of a qualitative study that examines the valued capital, ways, and practices of a support group for women working in the sciences at an academic research institution. Findings from this study indicate how women 1) were given little access to powerful networks in science that would provide them with opportunities to acquire the knowledge, skills, and resources necessary to be legitimate in the traditional sense, and 2) encountered many obstacles in their attempts to develop networks and make such connections between themselves and other women. Findings also indicate that, despite these impediments, the support group provided a meaningful and resourceful network through which they developed a critical perspective of legitimacy as they sought to make explicit the culture of science. Participants not only employed the traditional methods of scientific inquiry, but also acknowledged and valued the voices and experiences of those from nondominant groups. They constructed a new discourse that was inclusive of diverse voices, created new career pathways, and developed a vision of mentoring that facilitated females' development of a critical view of the science community and their legitimate participation.

  14. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    NASA Astrophysics Data System (ADS)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups: sophisticated beliefs group students focused on their insecurity of not knowing how to complete the activities correctly, and naive beliefs group students focused on the amount of work and how long it took them to complete it. The description of the improvement in learning was at a basic level for the naive beliefs group and at a more complex level for the sophisticated beliefs group. Implications for researchers and educators are discussed.

  15. Reaching out to the hard to reach: using a science centre model to deliver public engagement with research.

    NASA Astrophysics Data System (ADS)

    Gagen, M.; Allton, C.; Bryan, W. A.; O'Leary, M.

    2017-12-01

    Science communication is at an all-time high but public faith in expertise is low. However, within this climate of suspicion, research scientists remain a publicly trusted expert group. While there is both academic and public appetite for Public Engagement with Research (PER), there are barriers to reaching a wide range of publics. Attempts to connect the public with research often end up targeting the `already engaged'; the hard-to-reach remain just that. Engaging scientific curiosity in a wider demographic is crucial to promote scientific curiosity, itself known to profoundly counter the politically motivated reasoning that threatens informed debate around contemporary environmental issues. This requires the creation of opportunities for the public to engage with research in places in which they feel they belong. We report here on an 8 month pilot of a science centre model for PER. Oriel Science (www.orielscience.co.uk) is a research-led science exhibition in Swansea city centre delivering Swansea University's PER and run by academics and student ambassadors. Oriel Science (Oriel is Gallery in Welsh) received 16,000 visitors in 8 months, 40% of whom had no previous interaction with the university or its research and >40% of whom came from socio-economically deprived areas. We report on the public engagement leadership we enabled, working with 18 research groups over 8 months and our achievements in giving a broad range of publics the most direct access to participate in contemporary science.

  16. Explainers' development of science-learner identities through participation in a community of practice

    NASA Astrophysics Data System (ADS)

    Richardson, Anne E.

    The urgent environmental issues of today require science-literate adults to engage in business and political decisions to create solutions. Despite the need, few adults have the knowledge and skills of science literacy. This doctoral dissertation is an analytical case study examining the science-learner identity development of Exploratorium Field Trip Explainers. Located in San Francisco, CA, the Exploratorium is a museum of science, art, and human perception dedicated to nurturing curiosity and exploration. Data collected included semi-structured interviews with sixteen former Field Trip Explainers, participant observation of the current Field Trip Explainer Program, and review of relevant documentation. Data analysis employed constant comparative analysis, guided by the communities of practice theoretical framework (Wenger, 1998) and the National Research Council's (2009) Six Strands of Science Learning. Findings of this research indicate that Exploratorium Field Trip Explainers participate in a community of practice made up of a diverse group of people that values curiosity and openness to multiple ways of learning. Many participants entered the Field Trip Explainer Program with an understanding of science learning as a rigid process reserved for a select group of people; through participation in the Field Trip Explainer community of practice, participants developed an understanding of science learning as accessible and a part of everyday life. The findings of this case study have implications for research, theory, and practice in informal adult science learning, access of non-dominant groups to science learning, and adult workplace learning in communities of practice.

  17. Contemporary Issues in Group Learning in Undergraduate Science Classrooms: A Perspective from Student Engagement.

    PubMed

    Hodges, Linda C

    2018-06-01

    As the use of collaborative-learning methods such as group work in science, technology, engineering, and mathematics classes has grown, so has the research into factors impacting effectiveness, the kinds of learning engendered, and demographic differences in student response. Generalizing across the range of this research is complicated by the diversity of group-learning approaches used. In this overview, I discuss theories of how group-work formats support or hinder learning based on the ICAP (interactive, constructive, active, passive) framework of student engagement. I then use this model to analyze current issues in group learning, such as the nature of student discourse during group work, the role of group learning in making our classrooms inclusive, and how classroom spaces factor into group learning. I identify key gaps for further research and propose implications from this research for teaching practice. This analysis helps identify essential, effective, and efficient features of group learning, thus providing faculty with constructive guidelines to support their work and affirm their efforts.

  18. High School Students' Reasons for Their Science Dispositions: Community-Based Innovative Technology-Embedded Environmental Research Projects

    NASA Astrophysics Data System (ADS)

    Ebenezer, Jazlin; Kaya, Osman Nafiz; Kasab, Dimma

    2018-05-01

    The purpose of this investigation was to qualitatively describe high school students' reasons for their science dispositions (attitude, perception, and self-confidence) based on their long-term experience with innovative technology-embedded environmental research projects. Students in small groups conducted research projects in and out of school with the help of their teachers and community experts (scientists and engineers). During the 3-year period of this nationally funded project, a total of 135 students from five schools in a mid-west State participated in research activities. Of the 135 students, 53 students were individually interviewed to explore reasons for their science dispositions. Students' reasons for each disposition were grouped into categories, and corresponding frequency was converted to a percentage. The categories of reasons were not only attributed to the use of innovative technologies in environmental research but also the contexts and events that surrounded it. The reasons that influenced students' science dispositions positively were because engaging in environmental research projects with technology contributed to easing fear and difficulty, building a research team, disseminating findings, communicating with the community, researching with scientists, training by teachers, and acknowledging teachers' knowledge. These results advanced how and why students develop science dispositions in the positive direction, which are as follows: building science teacher capacity, developing a community of inquirers, and committing to improve pedagogical practices.

  19. Characteristics of the Navy Laboratory Warfare Center Technical Workforce

    DTIC Science & Technology

    2013-09-29

    Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information

  20. Growing minds: The effect of school gardening programs on the science achievement of elementary students

    NASA Astrophysics Data System (ADS)

    Klemmer, Cynthia Davis

    Science literacy refers to a basic knowledge and understanding of science concepts and processes needed to consider issues and make choices on a daily basis in an increasingly technology-driven society. A critical precursor to producing science literate adults is actively involving children in science while they are young. National and state (TX) science standards advocate the use of constructivist methods including hands-on, experiential activities that foster the development of science process skills through real-world investigations. School gardens show promise as a tool for implementing these guidelines by providing living laboratories for active science. Gardens offer opportunities for a variety of hands-on investigations, enabling students to apply and practice science skills. School gardens are increasing in popularity; however, little research data exists attesting to their actual effectiveness in enhancing students' science achievement. The study used a quasi-experimental posttest-only research design to assess the effects of a school gardening program on the science achievement of 3rd, 4th, and 5th grade elementary students. The sample consisted of 647 students from seven elementary schools in Temple, Texas. The experimental group participated in school gardening activities as part of their science curriculum. The control group did not garden and were taught using traditional classroom-based methods. Results showed higher scores for students in the experimental group which were statistically significant. Post-hoc tests using Scheffe's method revealed that these differences were attributed to the 5th grade. No statistical significance was found between girls and boys in the experimental group, indicating that gardening was equally effective for both genders. Within each gender, statistical significance was found between males in the experimental and control groups at all three grade levels, and for females in the 5 th grade. This research indicated that gardening was a successful teaching method for raising science achievement scores for boys in 3rd, 4 th, and 5th grades, and for girls in the 5th grade. The finding for girls may be important because it mediated a trend of decreasing scores in the control group at an age just prior to the onset of adolescence, when achievement and interest in science typically decrease.

  1. Effect of Cooperative Learning on Achievement of Students in General Science at Secondary Level

    ERIC Educational Resources Information Center

    Parveen, Qaisara; Batool, Sadia

    2012-01-01

    The aim of the study was to explore the effects of cooperative learning on General Science achievement among 9th class students. Based upon previous research literature it was hypothesized that significant difference existed between the mean posttest scores of General Science achievement of experimental group and control group. The pretest…

  2. Inquiry and groups: student interactions in cooperative inquiry-based science

    NASA Astrophysics Data System (ADS)

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-03-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic inquiry based primary science class setting. Thirty-one upper primary students were videotaped working in cooperative inquiry based science activities. Cooperative talk and negotiation of the science content was analysed to identify any high-level group interactions. The data show that while all groups have incidences of high-level content-related group interactions, the frequency and duration of these interactions were limited. No specific pattern of preceding events was identified and no episodes of high-level content-related group interactions were immediately preceded by the teacher's interactions with the groups. This in situ study demonstrated that even without any kind of scaffolding, specific skills in knowing how to implement cooperative inquiry based science, high-level content-related group interactions did occur very briefly. Support for teachers to develop their knowledge and skills in facilitating cooperative inquiry based science learning is warranted to ensure that high-level content-related group interactions and the associated conceptual learning are not left to chance in science classrooms.

  3. Psychological Sciences Division: 1985 Programs.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Psychological Sciences Div.

    This booklet describes research carried out under sponsorship of the Psychological Sciences Division of the U.S. Office of Naval Research during Fiscal Year 1985. The booklet is divided into three programmatic research areas: (1) Engineering Psychology; (2) Personnel and Training; and (3) Group Psychology. Each program is described by an overview…

  4. Formative Assessment Probes: Teachers as Classroom Researchers

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    This column focuses on promoting learning through assessment. In 1999, a group of researchers from Indiana University and Purdue University decided to investigate data about students' ideas in science by inviting National Science Teachers Association members to participate in a research study about children's conceptions of animals. Published in…

  5. Outrageous Outreach — Unconventional Ways of Communicating Science

    NASA Astrophysics Data System (ADS)

    Sandu, O.; Christensen, L. L.

    2011-07-01

    The golden rule of communication, advertising, public relations and marketing is "follow your target group". In this article, we look at how this mantra is applied in science communication and public outreach. Do we really follow our target groups? Do we regularly research the behaviour, interests and preferences of the individuals behind the demographic categories? Or do we just believe that we are following them when in fact we are "preaching to the converted" — the demographic group that is already intrinsically interested in science and actively scours the science sections of the national newspapers?

  6. Impact of Integrated Science and English Language Arts Literacy Supplemental Instructional Intervention on Science Academic Achievement of Elementary Students

    NASA Astrophysics Data System (ADS)

    Marks, Jamar Terry

    The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction with traditional science classroom instruction as compared to when instructed using solely traditional science classroom instruction. The targeted sample population consisted of fourth-grade students enrolled in a public elementary school located in the southeastern region of the United States. The convenience sample size consisted of 115 fourth-grade students enrolled in science classes. The pretest and posttest academic achievement data collected consisted of the science segment from the Spring 2015, and Spring 2016 state standardized assessments. Pretest and posttest academic achievement data were analyzed using an ANCOVA statistical procedure to test for differences, and the researcher reported the results of the statistical analysis. The results of the study show no significant difference in science academic achievement between treatment and control groups. An interpretation of the results and recommendations for future research were provided by the researcher upon completion of the statistical analysis.

  7. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    DTIC Science & Technology

    2015-10-01

    calibration of the flow in the test section of the Research Wind Tunnel at DST Group. The calibration was performed to establish the flow quality and to...of the Flow in the Test Section of the Research Wind Tunnel at DST Group Executive Summary The Defence Science and Technology Group (DST

  8. The effects of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Logerwell, Mollianne G.

    The purpose of this study was to investigate the impact of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science. Master's degree students enrolled in the elementary Fairfax Partnership Schools (FPS, n = 21) cohort served as the treatment group, while those enrolled in the Loudoun Partnership Schools (LPS, n = 15) and Professional Development Schools (PDS, n = 24) cohorts at George Mason University served as the control groups. The treatment group planned for and taught a two-week inquiry- and problem-based summer science camp as part of their science methods course, while the control groups did not. The Science Teaching Efficacy Belief Instrument (STEBI), a science content assessment, a personal data questionnaire, and a modified version of the Views of Nature of Science Questionnaire (VNOS-C) were administered to the participants at the beginning and end of their science methods course. Analyses revealed significant increases for the FPS group in general science teaching efficacy, personal science teaching efficacy, science teaching outcome expectancy, general science knowledge, biology content knowledge, chemistry content knowledge, and understanding of NOS; the LPS group in general science teaching efficacy, personal science teaching efficacy, chemistry content knowledge, and understanding of NOS; and, the PDS group in general science teaching efficacy, personal science teaching efficacy, and chemistry content knowledge. Additionally, the FPS group had significantly higher general science teaching efficacy than both control groups, personal science teaching efficacy than the PDS group, and understanding of NOS than the LPS group. Overall, the findings indicate that course length is not as important for developing preservice teachers' teaching efficacy and understanding of content as having connected, authentic field-based teaching experiences that are based on best-practices research and coupled with methodological instruction.

  9. 2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being †

    PubMed Central

    Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio

    2014-01-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”. PMID:25390795

  10. "You Need to Have a Street Beat": A Qualitative Study of Faculty Research Needs and Challenges

    ERIC Educational Resources Information Center

    Monroe-Gulick, Amalia; Valentine, Greta; Brooks-Kieffer, Jamene

    2017-01-01

    In the spring of 2015, 14 faculty members in social science or in science, technology, engineering, and mathematics (STEM) spoke with a working group from the University of Kansas (KU) Libraries regarding their research needs and challenges. Their responses highlighted a dynamic research environment in which individual researchers desire to…

  11. International trends in health science librarianship part 17: a comparison of health science libraries with academic and research libraries.

    PubMed

    Murphy, Jeannette

    2015-12-01

    Over the last 4 years this Regular Feature has looked at trends in health science librarianship in the 21st century. Although there are still a few more regions to be covered in this series, this issue explores general trends in academic and research libraries with a view to discovering whether the trends identified for health science libraries are similar. Are health science libraries unique? Or do their experiences mirror those found in the wider world of academic and research libraries? © 2015 Health Libraries Group.

  12. Research and Teaching. The Science Identity of College Students: Exploring the Intersection of Gender, Race, and Ethnicity

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sadler, Philip M.; Sonnert, Gerhard

    2013-01-01

    This study explores students' self-perceptions across science subjects (biology, chemistry, and physics) by gender and underrepresented minority group membership. The data are drawn from the Persistence Research in Science and Engineering (PRiSE) project, which surveyed 7,505 students (enrolled in college English courses required for all majors)…

  13. Student Staff Partnership to Create an Interdisciplinary Science Skills Course in a Research Intensive University

    ERIC Educational Resources Information Center

    Woolmer, Cherie; Sneddon, Peter; Curry, Gordon; Hill, Bob; Fehertavi, Szonja; Longbone, Charlotte; Wallace, Katherine

    2016-01-01

    This paper reflects upon the development of a multidisciplinary lesson plan aimed at developing science skills for Physics and Astronomy, Geographical and Earth Sciences, and Chemistry students at a research intensive Scottish university. The lesson plan was co-developed with a small group of staff and undergraduate students from these…

  14. Seeking to Improve African American Girls' Attitudes toward Science: A Participatory Action Research Project

    ERIC Educational Resources Information Center

    Buck, Gayle A.; Cook, Kristin L.; Quigley, Cassie F.; Prince, Pearl; Lucas, Yvonne

    2014-01-01

    In this participatory action research study, we answered the question, How can we improve attitudes toward science education of the African American girls at an elementary school? Girls in grades 3-6 completed the Modified Attitudes toward Science Inventory. A purposeful sample of 30 girls participated in several focus-group interviews throughout…

  15. Forest science in the South - 2006

    Treesearch

    Southern Research Station USDA Forest Service

    2007-01-01

    Welcome to the Southern Research Station's 2006 Forest Science in the South. Our summary highlights key accomplishments and activities from this past fiscal year, October 1, 2005, through September 30, 2006.This was a dynamic year for the Station! We recently realigned our 28 research work units (RWUs) into 15 RWUs grouped under five science areas –...

  16. From Planning to Implementation: An Examination of Changes in the Research Design, Sample Size, and Precision of Group Randomized Trials Launched by the Institute of Education Sciences

    ERIC Educational Resources Information Center

    Spybrook, Jessaca; Puente, Anne Cullen; Lininger, Monica

    2013-01-01

    This article examines changes in the research design, sample size, and precision between the planning phase and implementation phase of group randomized trials (GRTs) funded by the Institute of Education Sciences. Thirty-eight GRTs funded between 2002 and 2006 were examined. Three studies revealed changes in the experimental design. Ten studies…

  17. @OceanSeaIceNPI: Positive Practice of Science Outreach via Social Media

    NASA Astrophysics Data System (ADS)

    Meyer, A.; Pavlov, A.; Rösel, A.; Granskog, M. A.; Gerland, S.; Hudson, S. R.; King, J.; Itkin, P.; Negrel, J.; Cohen, L.; Dodd, P. A.; de Steur, L.

    2016-12-01

    As researchers, we are keen to share our passion for science with the general public. We are encouraged to do so by colleagues, journalists, policy-makers and funding agencies. How can we best achieve this in a small research group without having specific resources and skills such as funding, dedicated staff, and training? How do we sustain communication on a regular basis as opposed to the limited lifetime of a specific project? The emerging platforms of social media have become powerful and inexpensive tools to communicate science for various audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. A small group of oceanographers, sea ice, and atmospheric scientists at the Norwegian Polar Institute have been running their social media science outreach for two years @OceanSeaIceNPI. Here we share our successful experience of developing and maintaining a researcher-driven outreach through Instagram, Twitter and Facebook. We present our framework for sharing responsibilities within the group to maximize effectiveness. Each media channel has a target audience for which the posts are tailored. Collaboration with other online organizations and institutes is key for the growth of the channels. The @OceanSeaIceNPI posts reach more than 4000 followers on a weekly basis. If you have questions about our @OceanSeaIceNPI initiative, you can tweet them with a #ask_oceanseaicenpi hashtag anytime.

  18. Cultural politics: Linguistic identity and its role as gatekeeper in the science classroom

    NASA Astrophysics Data System (ADS)

    Hilton-Brown, Bryan Anthony

    This dissertation investigated how participation in the cultural practices of science classrooms creates intrapersonal conflict for ethnic minority students. Grounded in research perspectives of cultural anthropology, sociocultural studies of science education, and critical pedagogy, this study examined the cultural tensions encountered by minority students as they assimilate into the culture of the science classroom. Classroom interaction was viewed from the perspective of instructional congruence---the active incorporation of students' culture into science pedagogy. Ogbu's notion of "oppositional identity", Fordham's "fictive kinship", Bahktin's "antidialogics", and Freire's "critical consciousness" were brought together to examine how members of marginalized cultures develop non-normative behaviors as a means of cultural resistance. Choice of genre for public discourse was seen as a political act, representing students' own cultural affiliations. Conducted in a diverse Southern Californian high school with an annual population of over 3,900 students, this study merged ethnographic research, action research, and sociolinguistic discourse analysis. Post hoc analysis of videotaped classroom activities, focus group interviews, and samples of student work revealed students' discursive behavior to shift as a product of the context of their discursive exchanges. In whole class discussions students explained their understanding of complex phenomena to classmates, while in small group discussions they favored brief exchanges of group data. Four domains of discursive identities were identified: Opposition Status, Maintenance Status, Incorporation Status, and Proficiency Status. Students demonstrating Opposition Status avoided use of science discourse. Those students who demonstrated Maintenance Status were committed to maintaining their own discursive behavior. Incorporation Status students were characterized by an active attempt to incorporate science discourse into their cultural speech patterns. Proficiency Status students demonstrated a fluency in applying features of scientific discourse into their current speech genre. Focus group interviews confirmed students' cultural resistance to science discourse, despite their complex understanding of the role, purpose, and function of science discourse as social practice. These findings contribute to an ongoing discussion of how scientists, science teachers, and science education researchers can create equitable learning environments that reflect the components of students' ethnic and cultural backgrounds.

  19. Inquiry and Groups: Student Interactions in Cooperative Inquiry-Based Science

    ERIC Educational Resources Information Center

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-01-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic…

  20. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the k · p Model

    NASA Astrophysics Data System (ADS)

    Wang, Chang; Pan, Wenwu; Kolokolov, Konstantin; Wang, Shumin

    2018-05-01

    Not Available Supported by the National Basic Research Program of China under Grant No 2014CB643902, the Key Program of Natural Science Foundation of China under Grant No 61334004, the National Natural Science Foundation of China under Grant No 61404152, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1, the Foundation of National Laboratory for Infrared Physics, the Key Research Program of the Chinese Academy of Sciences under Grant No KGZD-EW-804, and the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492.

  1. “Not Designed for Us”: How Science Museums and Science Centers Socially Exclude Low-Income, Minority Ethnic Groups

    PubMed Central

    Dawson, Emily

    2014-01-01

    This paper explores how people from low-income, minority ethnic groups perceive and experience exclusion from informal science education (ISE) institutions, such as museums and science centers. Drawing on qualitative data from four focus groups, 32 interviews, four accompanied visits to ISE institutions, and field notes, this paper presents an analysis of exclusion from science learning opportunities during visits alongside participants’ attitudes, expectations, and conclusions about participation in ISE. Participants came from four community groups in central London: a Sierra Leonean group (n = 21), a Latin American group (n = 18), a Somali group (n = 6), and an Asian group (n = 13). Using a theoretical framework based on the work of Bourdieu, the analysis suggests ISE practices were grounded in expectations about visitors’ scientific knowledge, language skills, and finances in ways that were problematic for participants and excluded them from science learning opportunities. It is argued that ISE practices reinforced participants preexisting sense that museums and science centers were “not for us.” The paper concludes with a discussion of the findings in relation to previous research on participation in ISE and the potential for developing more inclusive informal science learning opportunities. PMID:25574059

  2. Elementary Science Literature Review

    ERIC Educational Resources Information Center

    Gustafson, Brenda; MacDonald, Dougal; d'Entremont, Yvette

    2007-01-01

    This report presents a literature review of elementary science and design technology education research. The review is intended to provide direction to the elementary science working groups charged with the responsibility to revise the "Alberta Elementary Science Program" (1996) by reflecting current ideas reported in research…

  3. Strategic research in the social sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainbridge, W.S.

    1995-12-31

    The federal government has identified a number of multi-agency funding initiatives for science in strategic areas, such as the initiatives on global environmental change and high performance computing, that give some role to the social sciences. Seven strategic areas for social science research are given with potential for federal funding: (1) Democratization. (2) Human Capital. (3) Administrative Science. (4) Cognitive Science. (5) High Performance Computing and Digital Libraries. (6) Human Dimensions of Environmental Change. and (7) Human Genetic Diversity. The first two are addressed in detail and the remainder as a group. 10 refs.

  4. Exploring Pre-Service Science Teacher Methods and Strategies for the Driving Questions in Research Inquiry: From Consulting an Instructor to Group Discussion

    ERIC Educational Resources Information Center

    Aydin, Miraç

    2016-01-01

    An important stage in any research inquiry is the development of research questions that need to be answered. The strategies to develop research questions should be defined and described, but few studies have considered this process in greater detail. This study explores pre-service science teachers' research questions and the strategies they can…

  5. Fostering collaborative inquiries by prospective and practicing elementary and middle school teachers

    NASA Astrophysics Data System (ADS)

    van Zee, Emily; Lay, Diantha; Roberts, Deborah

    2003-07-01

    The purpose of this study was to document the perspectives and experiences of participants in a complex collaboration. Prospective teachers planned and conducted science lessons and small educational research projects with mentoring from teacher researchers who are science enthusiasts. These group investigations seemed to be effective in modifying the self-perceptions of many of the prospective teachers enrolled in a course on methods of teaching science in elementary school. According to responses on an informal evaluation at the end of the Spring 2000 group investigation, for example, most of the prospective teachers indicated that they perceived themselves to be more confident and more competent to teach science than at the beginning of the course; a few indicated they had already felt confident and competent. Common themes in the prospective teachers' responses indicated that they had learned about teaching science through inquiry, taking ownership of their own learning, researching while teaching, working in groups, and understanding themselves as learners and teachers. The teacher researchers also perceived themselves as benefiting from the collaborative process. Their responses to an e-mail questionnaire suggested that they found working with the prospective teachers to be stimulating and cheering. They enjoyed the discussions, appreciated the help with demanding activities, grew in their own knowledge about teaching and learning, and valued the opportunities for reflection. However, organizing the group investigation was complex, due to time issues, driving distances, school schedules, unexpected teacher responsibilities, and unpredictable weather.

  6. Sensitivity to Structure in the Speech Signal by Children with Speech Sound Disorder and Reading Disability

    ERIC Educational Resources Information Center

    Johnson, Erin Phinney; Pennington, Bruce F.; Lowenstein, Joanna H.; Nittrouer, Susan

    2011-01-01

    Research Design;Intervention;Biology;Biotechnology;Teaching Methods;Hands on Science;Professional Development;Comparative Analysis;Genetics;Evaluation;Pretests Posttests;Control Groups;Science Education;Science Instruction;Pedagogical Content Knowledge;

  7. Why and How Political Science Can Contribute to Public Health? Proposals for Collaborative Research Avenues

    PubMed Central

    Gagnon, France; Bergeron, Pierre; Clavier, Carole; Fafard, Patrick; Martin, Elisabeth; Blouin, Chantal

    2017-01-01

    Written by a group of political science researchers, this commentary focuses on the contributions of political science to public health and proposes research avenues to increase those contributions. Despite progress, the links between researchers from these two fields develop only slowly. Divergences between the approach of political science to public policy and the expectations that public health can have about the role of political science, are often seen as an obstacle to collaboration between experts in these two areas. Thus, promising and practical research avenues are proposed along with strategies to strengthen and develop them. Considering the interdisciplinary and intersectoral nature of population health, it is important to create a critical mass of researchers interested in the health of populations and in healthy public policy that can thrive working at the junction of political science and public health. PMID:28949461

  8. An Initial Analysis of Learning Styles Exhibited by High School Science Students

    NASA Astrophysics Data System (ADS)

    Donelson, Frederick; Bensel, H.; Miller, D.; Seebode, S.; Ciardi, D. R.; Howell, S. B.

    2014-01-01

    Educational research magazines are filled with information on learning styles and how they affect the learning process, but few studies have been conducted to specifically look at learning styles exhibited by high school science students. This project attempted to obtain a general “snapshot” of learning styles found in the high school science classroom, and then compare that to one derived from a subgroup of highly motivated science students involved in a NITARP student team. Control students (N=54) from elective science courses at four high schools (urban, suburban, and rural) were administered the Felder Learning Style (FLS) assessment and rated on Likert scales in four learning constructs: Active/Reflective, Sensing/Intuitive, Visual/Verbal, and Sequential/Global. NITARP student team members (N=7) were given the FLS before project work began, and then re-tested approximately three months later, after project work concluded. Chi Square Analysis showed no clear significant difference between the general group and the NITARP group (p = .52). Both groups tended to be very visual and sequential, but more reflective than active. The results suggest several concerns that science teachers may need to address: (1) Research shows best practice science classes often are hands on, yet a majority of students are more reflective than active; (2) Big ideas tend to be better understood by global students, but a majority are more sequential; (3) Since a majority of students are visual, information given verbally may not be very effective. Further research is indicated for these areas of discontinuity. This research was conducted as part of the NASA/IPAC Training in Archival Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  9. Engaging undergradate students in interdisciplinary courses in nanotechnology

    NASA Astrophysics Data System (ADS)

    Goodchild, Fiona

    2008-03-01

    Two new courses at UCSB engage both undergraduate and graduate students in situated learning so that they can acquire the knowledge and skills they will need for future academic courses and career development. These courses are designed and taught by research faculty and education staff at the California Nanosystems Institute (CNSI) at UC Santa Barbara. The speaker, Dr. Goodchild, Education Director at CNSI, collaborated in the course design and is advisor on assessment and pedagogy for both courses. The first course, entitled INSCITES, is aimed at first and second year students who are interested in the impacts of science and technology in society. This general education course is team taught by three Graduate Teaching Scholars from across engineering, science and social sciences. They collaborate with lead faculty from Materials Science and History to design both the curriculum and instructional format for the 10 week course that is supported by the National Science Foundation. INSCITES was taught for the first time in Spring 2007 and feedback indicated that the course had convinced the undergraduate students that they would like to take further courses outside their majors. The second course, entitled the Practice of Science is open to all majors in science and engineering, especially those in second and third year who are interested in scientific research and related career opportunities. The course has been taught for the past 4 years as a two quarter course by two research faculty who focus on the nature of scientific discovery, the role of graduate researchers and faculty, the challenges of collaboration across disciplines and the mechanisms for funding research in academia and industry. In the first quarter each students is expected to identify a mentor and a research group in which they can pursue an individual research project, to be completed during the second quarter when the classes are designed to operate like research group meetings. Evaluation indicates that both courses attract students from underrepresented groups in science who value gaining a broader perspective about nanotechnology and the career opportunities that it offers to undergraduate students.

  10. An Examination of High School Social Science Students' Levels Motivation towards Learning Geography

    ERIC Educational Resources Information Center

    Yildirim, Tahsin

    2017-01-01

    This aim of this research was to examine the levels of motivation among high school social science students towards learning geography. The study group consisted of 397 students from different classes at Aksaray Ahmet Cevdet Pasa High School in the College of Social Science. The research was carried out with a scanning model, with data obtained…

  11. What Works! Encouraging Diversity in Science, Mathematics, Engineering, and Technology through Effective Mentoring. A 5-Year Overview of the Research Careers for Minority Scholars Program.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Directorate for Education and Human Resources.

    The National Science Foundation's (NSF) Research Careers for Minority Scholars (RCMS) program was initiated to encourage individuals from underrepresented groups in science, mathematics, engineering and technology (SMET) disciplines to complete undergraduate degree programs and matriculate to SMET graduate degree programs. This report describes…

  12. Practice-Based Measures of Elementary Science Teachers' Content Knowledge for Teaching: Initial Item Development and Validity Evidence. Research Report. ETS RR-17-43

    ERIC Educational Resources Information Center

    Mikeska, Jamie N.; Phelps, Geoffrey; Croft, Andrew J.

    2017-01-01

    This report describes efforts by a group of science teachers, teacher educators, researchers, and content specialists to conceptualize, develop, and pilot practice-based assessment items designed to measure elementary science teachers' content knowledge for teaching (CKT). The report documents the framework used to specify the content-specific…

  13. Analysis of Primary School Student's Science Learning Anxiety According to Some Variables

    ERIC Educational Resources Information Center

    Karakaya, Ferhat; Avgin, Sakine Serap; Kumperli, Ethem

    2016-01-01

    On this research, it is analyzed if the science learning anxiety level shows difference according to variables which are gender, grade level, science lesson grade, mother education, father education level. Scanning Design is used for this study. Research working group is consisted of 294 primary school from 6th, 7th and 8th graders on 2015-2016…

  14. The U.S. Geological Survey cartographic and geographic information science research activities 2006-2010

    USGS Publications Warehouse

    Usery, E. Lynn

    2011-01-01

    The U.S. Geological Survey (USGS) produces geospatial databases and topographic maps for the United States of America. A part of that mission includes conducting research in geographic information science (GIScience) and cartography to support mapping and improve the design, quality, delivery, and use of geospatial data and topographic maps. The Center of Excellence for Geospatial Information Science (CEGIS) was established by the USGS in January 2006 as a part of the National Geospatial Program Office. CEGIS (http://cegis.usgs.gov) evolved from a team of cartographic researchers at the Mid-Continent Mapping Center. The team became known as the Cartographic Research group and was supported by the Cooperative Topographic Mapping, Geographic Analysis and Monitoring, and Land Remote Sensing programs of the Geography Discipline of the USGS from 1999-2005. In 2006, the Cartographic Research group and its projects (http://carto-research.er.usgs.gov/) became the core of CEGIS staff and research. In 2006, CEGIS research became focused on The National Map (http://nationalmap.gov).

  15. Group Work in Elementary Science: Towards Organisational Principles for Supporting Pupil Learning

    ERIC Educational Resources Information Center

    Howe, Christine; Tolmie, Andy; Thurston, Allen; Topping, Keith; Christie, Donald; Livingston, Kay; Jessiman, Emma; Donaldson, Caroline

    2007-01-01

    Group work has been promoted in many countries as a key component of elementary science. However, little guidance is given as to how group work should be organized, and because previous research has seldom been conducted in authentic classrooms, its message is merely indicative. A study is reported, which attempts to address these limitations.…

  16. Collaborative Inquiry and the Professional Development of Science Teachers.

    ERIC Educational Resources Information Center

    Erickson, Gaalen L.

    1991-01-01

    Argues that the nature and meaning of collaborative relationships depend upon their particular, practical context. Describes an ongoing collaborative research project, the Students' Intuitions and Science Instruction Group (University of British Columbia), detailing its research agenda, postulates pertaining to teacher development, collaborative…

  17. Disciplinary differences of the impact of altmetric.

    PubMed

    Ortega, José Luis

    2018-04-01

    The main objective of this work was to group altmetric indicators according to their relationships and detect disciplinary differences with regard to altmetric impact in a set of 3793 research articles published in 2013. Three of the most representative altmetric providers (Altmetric, PlumX and Crossref Event Data) and Scopus were used to extract information about these publications and their metrics. Principal component analysis was used to summarize the information on these metrics and detect groups of indicators. The results show that these metrics can be grouped into three components: social media, gathering metrics from social networks and online media; usage, including metrics on downloads and views; and citations and saves, grouping metrics related to research impact and saves in bookmarking sites. With regard to disciplinary differences, articles in the General category attract more attention from social media, Social Sciences articles have higher usage than Physical Sciences, and General articles are more cited and saved than Health Sciences and Social Sciences articles.

  18. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  19. A study of the role expectations of the science supervisor and the fostering of collaboration within the high school science department

    NASA Astrophysics Data System (ADS)

    Hughes, Janet

    2001-07-01

    The purpose of this study was to determine the extent of agreement among science supervisors and public high school science teachers regarding Actual and Desired role responsibilities for science supervisors in six categories, Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment and a seventh category measuring the supervisor's degree of Fostering Collaboration within the department. The Science Supervisor Questionnaire was developed specifically for this study and consisted of items that comprised the most current research on the roles of the science supervisor. The instrument was based on the responsibilities of department heads as delineated through a consolidation of the current research. Although the supervisors and the science teachers agreed among themselves to some extent on the seven subscales, the six role expectations of supervisors (Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment) and the Fostering of Collaboration, the amount and degree of consensus varied. There was more consensus in the desired roles of science supervisors suggesting that the groups understand and agree upon the expectations of the position. Those top priorities of science supervisor role expectations for both groups were Methodology, Curriculum, Procedural Duties and Staff Development. There was a difference in perceptions between the two groups of the actual role of the supervisor, indicating that what is actually happening in the science supervisor role conflicts with what is expected. Fostering Collaboration ranked lowest for both groups in both perceived actual and desired science supervisor performance. Fostering Collaboration was not seen as a priority by the supervisors and teachers in the teaching and learning environment. Teachers report that supervisors did not play a key role in fostering collaboration in this study.

  20. The effectivenes of science domain-based science learning integrated with local potency

    NASA Astrophysics Data System (ADS)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  1. NASA Laser Remote Sensing Technology Needs for Earth Science in the Next Decade and Beyond

    NASA Technical Reports Server (NTRS)

    Trait, David M.; Neff, Jon M.; Valinia, Azita

    2007-01-01

    In late 2005 the NASA Earth Science Technology Office convened a working group to review decadal-term technology needs for Earth science active optical remote sensing objectives. The outcome from this effort is intended to guide future NASA investments in laser remote sensing technologies. This paper summarizes the working group findings and places them in context with the conclusions of the National Research Council assessment of Earth science needs, completed in 2007.

  2. Effects of a Collaborative Science Intervention on High Achieving Students' Learning Anxiety and Attitudes toward Science

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.

    2010-10-01

    This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty-eight eighth-grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants' learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow-up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.

  3. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  4. Successes, Challenges and Lessons Learned for Recruiting, Engaging and Preparing a Diverse Student Population for 21st Century Careers in Ocean Sciences.

    NASA Astrophysics Data System (ADS)

    Clarkston, B. E.; Garza, C.

    2015-12-01

    Diversity within the Ocean Sciences workforce is still underperforming relative to other scientific disciplines, a problem that will be only be solved by recruiting, engaging and retaining a more diverse student population. The Monterey Bay Regional Ocean Science Research Experiences for Undergraduates program is housed at California State University, Monterey Bay (CSUMB), an HSI with strong connections to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system. From this unique position, 11 sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students engage in rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for a program designed to prepare students for 21st century Ocean Science careers.

  5. Institute Study Report

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann; Steadman, Jackie; Little, Sally; Underwood, Debra; Blackman, Mack; Simonds, Judy

    1997-01-01

    This report documents a study conducted by the MSFC working group on Institutes in 1995 on the structure, organization and business arrangements of Institutes at a time when the agency was considering establishing science institutes. Thirteen institutes, ten science centers associated with the state of Georgia, Stanford Research Institute (SRI), and IIT Research Institute (IITRI), and general data on failed institutes were utilized to form this report. The report covers the working group's findings on institute mission, structure, director, board of directors/advisors, the working environment, research arrangements, intellectual property rights, business management, institute funding, and metrics.

  6. "Science Is Not My Thing": Exploring Deaf Non-Science Majors' Science Identities

    ERIC Educational Resources Information Center

    Gormally, Cara L.; Marchut, Amber

    2017-01-01

    Students who are deaf and hard-of-hearing are underrepresented in science majors, yet we know little about why. Students from other underrepresented groups in science--women and people of color--tend to highly value altruistic or communal career goals, while perceiving science as uncommunal. Research suggests that holding stereotypical conceptions…

  7. A Model for Postdoctoral Education That Promotes Minority and Majority Success in the Biomedical Sciences

    PubMed Central

    Eisen, Arri; Eaton, Douglas C.

    2017-01-01

    How does the United States maintain the highest-quality research and teaching in its professional science workforce and ensure that those in this workforce are effectively trained and representative of national demographics? In the pathway to science careers, the postdoctoral stage is formative, providing the experiences that define the independent work of one’s first faculty position. It is also a stage in which underrepresented minorities (URMs) disproportionately lose interest in pursuing academic careers in science and, models suggest, a point at which interventions to increase proportions of URMs in such careers could be most effective. We present a mixed-methods, case study analysis from 17 years of the Fellowships in Research and Science Teaching (FIRST) postdoctoral program, to our knowledge the largest and longest continuously running science postdoctoral program in the United States. We demonstrate that FIRST fellows, in sharp contrast to postdocs overall, are inclusive of URMs (50% African American; 70% women) and as or more successful in their fellowships and beyond as a comparison group (measured by publication rate, attainment of employment in academic science careers, and eventual research grant support). Analysis of alumni surveys and focus group discussions reveals that FIRST fellows place highest value on the cohort-driven community and the developmental teaching and research training the program provides. PMID:29196426

  8. How Do You Like Your Science, Wet or Dry? How Two Lab Experiences Influence Student Understanding of Science Concepts and Perceptions of Authentic Scientific Practice

    PubMed Central

    Munn, Maureen; Knuth, Randy; Van Horne, Katie; Shouse, Andrew W.; Levias, Sheldon

    2017-01-01

    This study examines how two kinds of authentic research experiences related to smoking behavior—genotyping human DNA (wet lab) and using a database to test hypotheses about factors that affect smoking behavior (dry lab)—influence students’ perceptions and understanding of scientific research and related science concepts. The study used pre and post surveys and a focus group protocol to compare students who conducted the research experiences in one of two sequences: genotyping before database and database before genotyping. Students rated the genotyping experiment to be more like real science than the database experiment, in spite of the fact that they associated more scientific tasks with the database experience than genotyping. Independent of the order of completing the labs, students showed gains in their understanding of science concepts after completion of the two experiences. There was little change in students’ attitudes toward science pre to post, as measured by the Scientific Attitude Inventory II. However, on the basis of their responses during focus groups, students developed more sophisticated views about the practices and nature of science after they had completed both research experiences, independent of the order in which they experienced them. PMID:28572181

  9. Children's Oncology Group's 2013 blueprint for research: behavioral science.

    PubMed

    Noll, Robert B; Patel, Sunita K; Embry, Leanne; Hardy, Kristina K; Pelletier, Wendy; Annett, Robert D; Patenaude, Andrea; Lown, E Anne; Sands, Stephen A; Barakat, Lamia P

    2013-06-01

    Behavioral science has long played a central role in pediatric oncology clinical service and research. Early work focused on symptom relief related to side effects of chemotherapy and pain management related to invasive medical procedures. As survival rates improved, the focused has shifted to examination of the psychosocial impact, during and after treatment, of pediatric cancer and its treatment on children and their families. The success of the clinical trials networks related to survivorship highlights an even more critical role in numerous domains of psychosocial research and care. Within the cooperative group setting, the field of behavioral science includes psychologists, social workers, physicians, nurses, and parent advisors. The research agenda of this group of experts needs to focus on utilization of psychometrically robust measures to evaluate the impact of treatment on children with cancer and their families during and after treatment ends. Over the next 5 years, the field of behavioral science will need to develop and implement initiatives to expand use of standardized neurocognitive and behavior batteries; increase assessment of neurocognition using technology; early identification of at-risk children/families; establish standards for evidence-based psychosocial care; and leverage linkages with the broader behavioral health pediatric oncology community to translate empirically supported research clinical trials care to practice. Copyright © 2012 Wiley Periodicals, Inc.

  10. Impact of instructional Approaches to Teaching Elementary Science on Student Achievement

    NASA Astrophysics Data System (ADS)

    Kensinger, Seth H.

    Strengthening our science education in the United States is essential to the future success of our country in the global marketplace. Immersing our elementary students with research-based quality science instruction is a critical component to build a strong foundation and motivate our students to become interested in science. The research for this study pertained to the type of elementary science instruction in correlation to academic achievement and gender. Through this study, the researcher answered the following questions: 1. What is the difference in achievement for elementary students who have been taught using one of the three science instructional approaches analyzed in this study: traditional science instruction, inquiry-based science instruction with little or no professional development and inquiry-based science instruction with high-quality professional development? 2. What is the difference in student achievement between inquiry-based instruction and non-inquiry based (traditional) instruction? 3. What is the difference in student achievement between inquiry with high quality professional development and inquiry with little or no professional development? 4. Do the three instructional approaches have differentiated effects across gender? The student achievement was measured using the 2010 fourth grade Pennsylvania System of School Assessment (PSSA) in Science. Data was collected from 15 elementary schools forming three main groupings of similar schools based on the results from the 2009 third grade PSSA in Mathematics and student and community demographics. In addition, five sub-group triads were formed to further analyze the data and each sub-group was composed of schools with matching demographic data. Each triad contained a school using a traditional approach to teaching science, a school utilizing an inquiry science approach with little or no professional development, and a school incorporating inquiry science instruction with high quality professional development. The five schools which provided its students with inquiry science and high quality professional development were Science Its Elementary (SIE) schools, as provided through a grant from the Pennsylvania Department of Education (PDE). The findings of the study indicated that there is evidence to suggest that elementary science achievement improves significantly when teachers have utilized inquiry instruction after receiving high-quality professional development. Specifically, the analysis of the whole group and the majority of the triad sub-groupings did result in a consistent trend to support science instruction utilizing inquiry with high-quality professional development compared to a traditional approach and an inquiry-based approach with little or no professional development. The gender analysis of this study focused on whether or not girls at the elementary school level would perform better than boys depending upon method of science instruction. The study revealed no relationship between approach to teaching science and achievement level based on gender. The whole group results and sub-group triads produced no significant findings for this part of the data analysis.

  11. Learning to teach science in a professional development school program

    NASA Astrophysics Data System (ADS)

    Hildreth, David P.

    1997-09-01

    The purpose of this study was to determine the effects of learning to teach science in a Professional Development School (PDS) program on university elementary education preservice teachers' (1) attitudes toward science, (2) science process skills achievement, and (3) sense of science teaching efficacy. Data were collected and analyzed using both quantitative and qualitative methods. Quantitative data were collected using the Science Attitude Inventory (North Carolina Math and Science Education Network (1994), the Test of Integrated Process Skills, TIPS, (Dillashaw & Okey, 1980), and the Science Teaching Efficacy Belief Instrument, STEBI, form B (Enochs & Riggs, 1990). A pretest posttest research design was used for the attitude and process skills constructs. These results were analyzed using paired t test procedures. A pre-experimental group comparison group research design was used for the efficacy construct. Results from this comparison were analyzed using unpaired t test procedures. Qualitative data were collected through students' responses to open-ended questionnaires, narrative interviews, journal entries, small messages, and unsolicited conversations. These data were analyzed via pattern analysis. Posttest scores were significantly higher than pretests scores on both the Science Attitude Inventory and the TIPS. This indicated that students had improved attitudes toward science and science teaching and higher process skills achievement after three semesters in the science-focused PDS program. Scores on the STEBI were significantly higher for students in the pre-experimental group when compared to students in the comparison group. This indicates that students in the science-focused PDS program possessed more efficacious beliefs about science teaching than did the comparison group. Quantitative data were supported by analysis of qualitative data. Implications from this study point to the effectiveness of learning to teach science in a science-focused PDS program with respect to attitudes toward science, science process skills achievement, and sense of science teaching efficacy. In addition, qualitative data indicated that the most effective components of the science-focused PDS program rests largely on the fact that students learned to teach in a collaborative cohort team and that students spent extended periods of time in clinical internships and student teaching.

  12. Talking Science: The Research Evidence on the Use of Small Group Discussions in Science Teaching

    ERIC Educational Resources Information Center

    Bennett, Judith; Hogarth, Sylvia; Lubben, Fred; Campbell, Bob; Robinson, Alison

    2010-01-01

    This paper reports the findings of two systematic reviews of the use and effects of small group discussions in high school science teaching. Ninety-four studies were included in an overview (systematic map) of work in the area, and 24 studies formed the basis of the in-depth reviews. The reviews indicate that there is considerable diversity in the…

  13. Professional development in inquiry-based science for elementary teachers of diverse student groups

    NASA Astrophysics Data System (ADS)

    Lee, Okhee; Hart, Juliet E.; Cuevas, Peggy; Enders, Craig

    2004-12-01

    As part of a larger project aimed at promoting science and literacy for culturally and linguistically diverse elementary students, this study has two objectives: (a) to describe teachers' initial beliefs and practices about inquiry-based science and (b) to examine the impact of the professional development intervention (primarily through instructional units and teacher workshops) on teachers' beliefs and practices related to inquiry-based science. The research involved 53 third- and fourth-grade teachers at six elementary schools in a large urban school district. At the end of the school year, teachers reported enhanced knowledge of science content and stronger beliefs about the importance of science instruction with diverse student groups, although their actual practices did not change significantly. Based on the results of this first year of implementation as part of a 3-year longitudinal design, implications for professional development and further research are discussed.

  14. Bringing Inquiry Science to K-5 Classrooms

    NASA Astrophysics Data System (ADS)

    Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.

    2006-12-01

    As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)

  15. Investigating minority student participation in an authentic science research experience

    NASA Astrophysics Data System (ADS)

    Preston, Stephanie Danette

    In the United States, a problem previously overlooked in increasing the total number of scientifically literate citizens is the lack of diversity in advanced science classes and in science, technology, engineering, and mathematics (STEM) fields. Groups traditionally underserved in science education and thus underrepresented in the STEM fields include: low-income, racial/ethnic minorities, and females of all ethnic and racial backgrounds. Despite the number of these students who are initially interested in science very few of them thrive in the discipline. Some scholars suggest that the declining interest for students underrepresented in science is traceable to K-12th grade learning experiences and access to participating in authentic science. Consequently, the diminishing interest of minorities and women in science contributes negatively to the representation of these groups in the STEM disciplines. The purpose of this study was to investigate a summer science research experience for minority students and the nature of students' participation in scientific discourse and practices within the context of the research experience. The research questions that guided this study are: The nature of the Summer Experience in Earth and Mineral Science (SEEMS) research experience . (A) What are the SEEMS intended outcomes? (B) To what extent does SEEMS enacted curriculum align with the intended outcomes of the program? The nature of students engagement in the SEEMS research. (A) In what ways do students make sense of and apply science concepts as they engage in the research (e.g., understand problem, how they interpret data, how they construct explanations), and the extent to which they use the science content appropriately? (B) In what ways do students engage in the cultural practices of science, such as using scientific discourse, interpreting inscriptions, and constructing explanations from evidence (engaging in science practices, knowing science and doing science)? The following data sources were used in this study: SEEMS curriculum and documentation, interviews with program staff and participants, TRIO program documentation, Upward Bound Math Science (UBMS) promotional material, and audio/video recordings and field notes of students' daily interactions in the research setting. Findings revealed that students who participated in the research experience were able to successfully engage in some cultural practices of science, such as using inscriptions, constructing explanations, and collecting data. Analysis and observations of their engagement demonstrated a need for programs similar to SEEMS to focus on: (1) understanding how students make sense of science as they engage in the cultural practices, and (2) incorporating aspects of students' culture and social practices into the experience.

  16. Connecting Arctic/Antarctic Researchers and Educators (CARE): Supporting Teachers and Researchers Beyond the Research Experience

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Warnick, W. K.; Breen, K.; Fischer, K.; Wiggins, H.

    2007-12-01

    Teacher research experiences (TREs) require long-term sustained support for successful transfer of research experiences into the classroom. Specifically, a support mechanism that facilitates focused discussion and collaboration among teachers and researchers is critical to improve science content and pedagogical approaches in science education. Connecting Arctic/Antarctic Researchers and Educators (CARE) is a professional development network that utilizes online web meetings to support the integration of science research experiences into classroom curriculum. CARE brings together teachers and researchers to discuss field experiences, current science issues, content, technology resources, and pedagogy. CARE is a component of the Arctic Research Consortium of the U.S. (ARCUS) education program PolarTREC--Teachers and Researchers Exploring and Collaborating. PolarTREC is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. The CARE network was established to develop a sustainable learning community through which teachers and researchers will further their work to bring polar research into classrooms. Through CARE, small groups of educators are formed on the basis of grade-level and geographic region; each group also contains a teacher facilitator. Although CARE targets educators with previous polar research experiences, it is also open to those who have not participated in a TRE but who are interested in bringing real-world polar science to the classroom. Researchers are regularly invited to attend the web meetings, and some CARE meetings host specific researchers to talk about their work and their experiences working with teachers in the field. Facilitated group meetings focus on discussions of field experiences, current scientific research, and application of experiences to classrooms and curriculum. CARE is designed to be mindful of participants' needs; the meeting agendas reflect the stated concerns of participating teachers and researchers, such as incorporating real data into everyday curriculum, teaching about the impacts of climate change in a meaningful and educational way, developing polar related lessons and units that include State and National standards, and incorporating scientific tools and instruments into everyday curriculum. In addition to the regularly scheduled CARE group meetings, a series of CARE Seminars will be held in spring 2008 and open to the public. The public CARE Seminars will focus on issues that are of interest to a wider range of educators (e.g. clues from past climates, impacts of climate change on the Arctic, cultural sensitivity and working with indigenous peoples, and women and minorities of polar science. CARE provides a mechanism for teachers and researchers to interact, leveraging their diverse experiences and expertise to form long-term professional relationships that continue beyond the research experience. To learn more about CARE and PolarTREC visit the website at: http://www.polartrec.com or contact info@polartrec.com or 907-474-1600. PolarTREC is funded by the National Science Foundation.

  17. Distributed Leadership in Online Groups

    ERIC Educational Resources Information Center

    Gressick, Julia; Derry, Sharon J.

    2010-01-01

    We conducted research within a program serving future mathematics and science teachers. Groups of teachers worked primarily online in an asynchronous discussion environment on a 6-week task in which they applied learning-science ideas acquired from an educational psychology course to design interdisciplinary instructional units. We employed an…

  18. The Integration of Creative Drama in an Inquiry-Based Elementary Program: The Effect on Student Attitude and Conceptual Learning

    NASA Astrophysics Data System (ADS)

    Hendrix, Rebecca; Eick, Charles; Shannon, David

    2012-11-01

    Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science System™ (FOSS) modules of sound (fourth grade) and solar energy (fifth grade) with the integration of creative drama activities in treatment classes. A 2 × 2 × (2) Mixed ANOVA was used to examine differences in the learning outcomes and attitudes toward science between groups (drama and non-drama) and grade levels (4th and 5th grades) over time (pre/post). Learning was measured using the tests included with the FOSS modules. A shortened version of the Three Dimension Elementary Science Attitude Survey measured attitudes toward science. Students in the drama treatment group had significantly higher learning gains ( F = 160.2, p < 0.001) than students in the non-drama control group with students in grade four reporting significantly greater learning outcomes ( F = 14.3, p < 0.001) than grade five. There was a significantly statistical decrease in student attitudes toward science ( F = 7.5, p < 0.01), though a small change. Creative drama was an effective strategy to increase science conceptual learning in this group of diverse elementary enrichment students when used as an active extension to the pre-existing inquiry-based science curriculum.

  19. Employing inquiry-based computer simulations and embedded scientist videos to teach challenging climate change and nature of science concepts

    NASA Astrophysics Data System (ADS)

    Cohen, Edward Charles

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known as Web-based Inquiry Science Environment (WISE). For this research, students from a suburban, diverse, middle school setting use the simulations as part of a two week-long class unit on climate change. A pilot study was conducted during phase one of the research that informed phase two, which encompasses the dissertation. During the pilot study, as students worked through the simulation, evidence of shifts in student motivation, understanding of science content, and ideas about the nature of science became present using a combination of student interviews, focus groups, and students' conversations. Outcomes of the pilot study included improvements to the pedagogical approach. Allowing students to do "Extreme Testing" (e.g., making the world as hot or cold as possible) and increasing the time for free exploration of the simulation are improvements made as a result of the findings of the pilot study. In the dissertation (phase two of the research design) these findings were implemented in a new curriculum scaled for 85 new students from the same school during the next school year. The modifications included new components implementing simulations as an assessment tool for all students and embedded modeling tools. All students were asked to build pre and post models, however due to technological constraints these were not an effective tool. A non-video group of 44 students was established and another group of 41 video students had a WISE curriculum which included twelve minutes of scientists' conversational videos referencing explicit aspects on the nature of science, specifically the use of models and simulations in science. The students in the video group had marked improvement compared to the non-video group on questions regarding modeling as a tool for representing objects and processes of science modeling aspects as evident by multiple data sources. The findings from the dissertation have potential impacts on improving Nature of Science (NOS) concepts around modeling by efficiently embedding short authentic scientific videos that can be easily used by many educators. Compared to published assessments by the American Association for the Advancement of Science (AAAS), due to the curriculum interventions both groups scored higher than the average United States middle school student on many NOS and climate content constructs.

  20. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos To Teach Challenging Climate Change and Nature of Science Concepts

    NASA Astrophysics Data System (ADS)

    Cohen, E.

    2013-12-01

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known as Web-based Inquiry Science Environment (WISE). For this research, students from a suburban, diverse, middle school setting use the simulations as part of a two week-long class unit on climate change. A pilot study was conducted during phase one of the research that informed phase two, which encompasses the dissertation. During the pilot study, as students worked through the simulation, evidence of shifts in student motivation, understanding of science content, and ideas about the nature of science became present using a combination of student interviews, focus groups, and students' conversations. Outcomes of the pilot study included improvements to the pedagogical approach. Allowing students to do 'Extreme Testing' (e.g., making the world as hot or cold as possible) and increasing the time for free exploration of the simulation are improvements made as a result of the findings of the pilot study. In the dissertation (phase two of the research design) these findings were implemented in a new curriculum scaled for 85 new students from the same school during the next school year. The modifications included new components implementing simulations as an assessment tool for all students and embedded modeling tools. All students were asked to build pre and post models, however due to technological constraints these were not an effective tool. A non-video group of 44 students was established and another group of 41 video students had a WISE curriculum which included twelve minutes of scientists' conversational videos referencing explicit aspects on the nature of science, specifically the use of models and simulations in science. The students in the video group had marked improvement compared to the non-video group on questions regarding modeling as a tool for representing objects and processes of science modeling aspects as evident by multiple data sources. The findings from the dissertation have potential impacts on improving Nature of Science (NOS) concepts around modeling by efficiently embedding short authentic scientific videos that can be easily used by many educators. Compared to published assessments by the American Association for the Advancement of Science (AAAS), due to the curriculum interventions both groups scored higher than the average United States middle school student on many NOS and climate content constructs.

  1. Colloquium on Selected Topics in Behavioral Science Basic Research. (Alexandria, Virginia, April 23-25, 1980).

    ERIC Educational Resources Information Center

    Nogami, Glenda Y., Ed.; And Others

    The 21 summaries of research programs, funded by the United States Army Research Institute (ARI) for the Behavioral and Social Sciences which are presented are grouped in five broad topic areas: computer-based systems; information processing; learning, memory and transfer; human relations; and related issues and trends. Papers presented include:…

  2. The Effect on Retention of Computer Assisted Instruction in Science Education

    ERIC Educational Resources Information Center

    Kara, Izzet

    2008-01-01

    The aim of this research is to determine the retention effect of Computer Assisted Instruction (CAI) on students' academic achievement for teaching the Physics topics. The research includes the Force and Pressure units of 7th grade Science Lesson. In this research, 132 students were structured as both control and experiment groups. Traditional…

  3. Successful Women Researchers in the Social Sciences: A Case Study of Catalan Public Universities

    ERIC Educational Resources Information Center

    Ion, Georgeta; Duran Belloch, Maria del Mar

    2013-01-01

    This article examines the factors which contribute to the success of female academics engaging in research in social sciences. The data were obtained through a series of interviews carried out at public universities in Catalonia with women, all of whom were the heads of research groups recognized by the Generalitat de Catalunya (Catalan…

  4. Development of Pre-Service Science Teachers' Awareness of Sustainable Water Use

    ERIC Educational Resources Information Center

    Cankaya, Cemile; Filik Iscen, Cansu

    2015-01-01

    Water is a vital resource for sustainable development. The aim of this research was to develop and evaluate pre-service science teachers' awareness of sustainable water usage. This research was based on a mixed method. The qualitative part of the research was based on a single group pretest-posttest experimental design, and the qualitative data…

  5. Analogical-mapping-based comparison tasks as a scaffold for argumentation

    NASA Astrophysics Data System (ADS)

    Emig, Brandon R.

    Given the centrality of the argumentation process to science and consequent importance to science education, inviting science students to engage in argumentation and scaffolding that argumentation in order that it lead to learning and not frustration is important. The present research invites small groups of science content learners (54 preservice elementary teachers at a large research university) to use analogical-mapping-based comparison tasks in service of argumentation to determine which of two possible analogues, in this case simple machines, is most closely related to a third. These activities and associated instruction scaffolded student small-groups' argumentation in four ways: (1) supporting new analogical correspondences on the heels of prior correspondences; (2) discerning definitions and descriptions for simple machine elements; (3) identifying and dealing with ambiguity in potential correspondences; and (4) making reflections on prior analogical correspondences in service of their final arguments. Analogical-mapping-based comparison activities scaffolded student small groups both in their argumentation and in content learning about simple machines. Implications, limitations, and directions for future related research are also discussed.

  6. Using graphic organizers to enhance students' science vocabulary and comprehension of nonfiction science text

    NASA Astrophysics Data System (ADS)

    Buchanan, Edna

    The purpose of this research was to investigate the effectiveness of Frayer Model and the Hierarchical Organizer as a literacy strategy to improve ninth grade students' science vocabulary and comprehension of non-fictions text in Environmental Science course. The study implemented a sequential explanatory methodology design that included quantitative and qualitative instruments. The research sample consisted of one hundred and two (102) high school environmental science students entering the ninth grade for the first time. The two treatment groups each consisted of thirty-five (35) students, and the control group consisted of 32 students. Treatment group one used the Frayer Model; treatment group two used Hierarchical Organizer and the control group used the traditional teaching methods without the use of a graph organizer. The investigator taught both treatment groups and the control group to ensure reliability. The two treatment groups were taught using graphic organizers as the main lesson plan tool and the control group was taught using guided notes lecture with PowerPoint. A pretest and post-test were administered to each student. Student test scores were evaluated to determine whether knowledge gains differed between the treatment groups and the control group. It was found that the use of graphic organizer instruction was significantly better for student achievement when compared to the use of PowerPoint instruction and that there was much more interaction between student and teacher during the graphic organizer lessons. The delivery of the lesson by the use of graphic organizers seemed to promote more success than the use of the PowerPoint and lecture.

  7. A Comparison of Earth Science Science Classes Taught by Using Original Data in a Research-Approach Technique Versus Classes Taught by Conventional Approaches not Using Such Data

    ERIC Educational Resources Information Center

    Agne, Russell M.

    1972-01-01

    Students in classes using a self-instructional unit on meteorology and climatology which provided research data from which generalizations could be drawn increased their critical thinking skills more than groups using conventional earth science texts but did not differ significantly in performance on an achievement test. (AL)

  8. The effects of inquiry-based summer enrichment activities on rising eighth graders' knowledge of science processes, attitude toward science, and perceptions of scientists

    NASA Astrophysics Data System (ADS)

    Moore, Juanita Martin

    The purpose of this research was to examine the effects of summer science enrichment on eighth-graders' science process skills knowledge, attitude toward science and perceptions of scientists. A single group pre- and post-test design was used to test participants in a summer science enrichment camp, which took place over a three-week period in the summer of 2000. Participants, all of whom were residents of the Mississippi area known as the Delta, lived on the campus of Mississippi Valley State University for the entire course of the camp. Activities included several guided inquiry-based projects such as water rocket design and solar or battery-powered car design. Participants also took trips to an environmental camp in north Mississippi and to the Stennis Space Center on the Mississippi Gulf Coast. Participants worked on their projects in groups, supervised by an undergraduate student "mentor". Participants were encouraged to keep journals of their experiences throughout the camp, and the researcher developed a rubric to evaluate student journals for process knowledge, evidence of planning, reflective thought, and disposition toward science. Tests were used to evaluate student knowledge of process skills, attitude toward science, and perceptions of scientists. On the Test of Integrated Process Skills (Dillashaw & Okey, 1983), the students showed significant improvement overall, but when evaluated separately, males showed significant improvement while females did not. On the Attitude toward Science in School Assessment (Germane, 1988), data indicated that attitude toward science improved significantly for the group as a whole, but upon closer inspection, indicated a significant improvement for the female students only. On Chamber's Draw-a-Scientist Test (1983), analysis of student drawings indicated no significant change in stereotypical images of scientists for the group overall. However, boys' scores indicated a significant improvement when analyzed separately. Journal analysis revealed a need for instruction in their use, but provided an interesting glimpse into students' thoughts. The researcher concluded that summer enrichment camps have potential m terms of helping students improve their science knowledge and their thinking about science. Further research on summer opportunities, inquiry-based instruction, work with mentors, and use of journals is suggested by this work.

  9. The effects of collaborative concept mapping on the achievement, science self-efficacy and attitude toward science of female eighth-grade students

    NASA Astrophysics Data System (ADS)

    Ledger, Antoinette Frances

    This study sought to examine whether collaborative concept mapping would affect the achievement, science self-efficacy and attitude toward science of female eighth grade science students. The research questions are: (1) Will the use of collaborative concept mapping affect the achievement of female students in science? (2) Will the use of collaborative concept mapping affect the science self-efficacy of female students? (3) Will the use of collaborative concept mapping affect the attitudes of females toward science? The study was quasi-experimental and utilized a pretest-posttest design for both experimental and control groups. Eighth grade female and male students from three schools in a large northeastern school district participated in this study. The achievement test consisted of 10 multiple choice and two open-response questions and used questions from state-wide and national assessments as well as teacher-constructed items. A 29 item Likert type instrument (McMillan, 1992) was administered to measure science self-efficacy and attitude toward science. The study was of 12 weeks duration. During the study, experimental group students were asked to perform collaborative concept map construction in single sex dyads using specific terms designated by the classroom teacher and the researcher. During classroom visitations, student perceptions of collaborative concept mapping were collected and were used to provide insight into the results of the quantitative data analysis. Data from the pre and posttest instruments were analyzed for both experimental and control groups using t-tests. Additionally, the three teachers were interviewed and their perceptions of the study were also used to gain insight into the results of the study. The analysis of data showed that experimental group females showed significantly higher gains in achievement than control group females. An additional analysis of data showed experimental group males showed significantly greater gains in achievement than experimental group females. The analysis of science self-efficacy data showed that neither experimental nor control group females increased their scores pre to posttest, both showed small decreases in scores. However, the posttest scores of the experimental group females were significantly higher than the posttest scores of the control group females. The analysis of the attitude toward science survey data showed that the scores of the experimental group females did not change from pre to posttest. However, scores of the control group females declined from pre to posttest. (Abstract shortened by UMI.)

  10. Applying Principles from Complex Systems to Studying the Efficacy of CAM Therapies

    PubMed Central

    Nahin, Richard L.; Calabrese, Carlo; Folkman, Susan; Kimbrough, Elizabeth; Shoham, Jacob; Haramati, Aviad

    2010-01-01

    Abstract In October 2007, a National Center for Complementary and Alternative Medicine (NCCAM)–sponsored workshop, entitled “Applying Principles from Complex Systems to Studying the Efficacy of CAM Therapies,” was held at Georgetown University in Washington, DC. Over a 2-day period, the workshop engaged a small group of experts from the fields of complementary and alternative medicine (CAM) research and complexity science to discuss and examine ways in which complexity science can be applied to CAM research. After didactic presentations and small-group discussions, a number of salient themes and ideas emerged. This paper article describes the workshop program and summarizes these emergent ideas, which are divided into five broad categories: (1) introduction to complexity; (2) challenges to CAM research; (3) applications of complexity science to CAM; (4) CAM as a model of complexity applied to medicine; and (5) future directions. This discusses possible benefits and challenges associated with applying complexity science to CAM research. By providing an introductory framework for this collaboration and exchange, it is hoped that this article may stimulate further inquiry into this largely unexplored area of research. PMID:20715978

  11. Astrobiology and Society: Building an Interdisciplinary Research Community

    PubMed Central

    Denning, Kathryn; Bertka, Constance M.; Dick, Steven J.; Harrison, Albert A.; Impey, Christopher; Mancinelli, Rocco

    2012-01-01

    Abstract This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers—astrobiologists as well as scholars in the humanities and social sciences—to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology. Key Words: Astrobiology—Extraterrestrial life—Life detection. Astrobiology 12, 958–965. PMID:23046203

  12. The effectiveness of CPI model to improve positive attitude toward science (PATS) for pre-service physics teacher

    NASA Astrophysics Data System (ADS)

    Sunarti, T.; Wasis; Madlazim; Suyidno; Prahani, B. K.

    2018-03-01

    In the previous research, learning material based Construction, Production, and Implementation (CPI) model has been developed to improve scientific literacy and positive attitude toward science for pre-service physics teacher. CPI model has 4 phases, included: 1) Motivation; 2) Construction (Cycle I); 3) Production (Cycle II); and 4) Evaluation. This research is aimed to analyze the effectiveness of CPI model towards the improvement Positive Attitude toward Science (PATS) for pre-service physics teacher. This research used one group pre-test and post-test design on 160 pre-service physics teacher divided into 4 groups at Lambung Mangkurat University and Surabaya State University (Indonesia), academic year 2016/2017. Data collection was conducted through questioner, observation, and interview. Positive attitude toward science for pre-service physics teacher measurement were conducted through Positive Attitude toward Science Evaluation Sheet (PATSES). The data analysis technique was done by using Wilcoxon test and n-gain. The results showed that there was a significant increase in positive attitude toward science for pre-service physics teacher at α = 5%, with n-gain average of high category. Thus, the CPI model is effective for improving positive attitude toward science for pre-service physics teacher.

  13. Leveraging Multimedia at Millipore

    ERIC Educational Resources Information Center

    Caporizzo, Marilyn

    2009-01-01

    Millipore Corp.--a global company of 6,100 employees for which the author serves as the science and patent information specialist--supplies products and expertise that span the research, development, and production stages in the life science research and biologic drug manufacturing fields. Millipore's corporate library, the information group,…

  14. 78 FR 59041 - National Institute of Neurological Disorders and Stroke; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... Disorders and Stroke Initial Review, Group Neurological Sciences and Disorders C. Date: October 17-18, 2013... Officer, Scientific Review Branch, Division of Extramural Research, NINDS, NIH, NSC, 6001 Executive Blvd...: National Institute of Neurological Disorders and Stroke Initial Review, Group Neurological Sciences and...

  15. Research and Teaching: Aligning Assessment to Instruction--Collaborative Group Testing in Large- Enrollment Science Classes

    ERIC Educational Resources Information Center

    Siegel, Marcelle; Roberts, Tina M.; Freyermuth, Sharyn K.; Witzig, Stephen B.; Izci, Kemal

    2015-01-01

    The authors describe a collaborative group-testing strategy implemented and studied in undergraduate science classes. This project investigated how the assessment strategy relates to student performance and perceptions about collaboration and focused on two sections of an undergraduate biotechnology course taught in separate semesters.

  16. Is There a Relationship between Brain Type, Sex and Motivation to Learn Science?

    ERIC Educational Resources Information Center

    Zeyer, Albert; Wolf, Sarah

    2010-01-01

    Whilst sex is considered to be one of the most significant factors influencing attitudes towards science, previous research seems to suggest that, at least in non-science classes, there is no correlation between sex and motivation to learn science. The present study investigates a mixed group of science and non-science students of upper secondary…

  17. Production Mechanisms, Number Concentration, Size Distribution. Chemical Composition, and Optical Properties of Sea Spray Aerosols

    NASA Technical Reports Server (NTRS)

    Meskhidze, Nicholas; Petters, Markus; Tsigaridis, Kostas; Bates. Tim; O'Dowd, Colin; Reid, Jeff; Lewis, Ernie R.; Gantt, Brett; Anguelova, Magdalena D.; Bhave, Prakash V.; hide

    2013-01-01

    Over forty scientists from six countries convened in Raleigh, NC on June 4-6 2012 to review the status and prospects of sea spray aerosol research. Participants were researchers from the oceanography and atmospheric science communities, including academia, private industry, and government agencies. The recommendations from the working groups are summarized in a science prioritization matrix that is meant to prioritize the research agenda and identify areas of investigation by the magnitude of their impact on proposed science questions. Str

  18. Original science-based music and student learning

    NASA Astrophysics Data System (ADS)

    Smolinski, Keith

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework of brain-based learning, the purpose of this study was to examine the impact of original, science-based music on student content learning and student perceptions of the music and its impact on learning. Students in the treatment group at a public middle school learned songs with lyrics related to the content of a 4-week cells unit in science; whereas an equally sized control group was taught the same material using existing methods. The content retention and learning experiences of the students in this study were examined using a concurrent triangulation, mixed-methods study. Independent sample t test and ANOVA analyses were employed to determine that the science posttest scores of students in the treatment group (N = 93) were significantly higher than the posttest scores of students in the control group (N = 93), and that the relative gains of the boys in the treatment group exceeded those of the girls. The qualitative analysis of 10 individual interviews and 3 focus group interviews followed Patton's method of a priori coding, cross checking, and thematic analysis to examine the perceptions of the treatment group. These results confirmed that the majority of the students thought the music served as an effective learning tool and enhanced recall. This study promoted social change because students and teachers gained insight into how music can be used in science classrooms to aid in the learning of science content. Researchers could also utilize the findings for continued investigation of the interdisciplinary use of music in educational settings.

  19. Implementation of small group discussion as a teaching method in earth and space science subject

    NASA Astrophysics Data System (ADS)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  20. The space shuttle payload planning working groups. Volume 4: Life sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Life Sciences working group of the space shuttle payload planning activity are presented. The objectives of the Life Sciences investigations are: (1) to continue the research directed at understanding the origin of life and the search for extraterrestrial evidence of life, (2) biomedical research to understand mechanisms and provide criteria for support of manned flight, (3) technology development for life support, protective systems, and work aids for providing environmental control, and (4) to study basic biological functions at all levels or organization influenced by gravity, radiation, and circadian rhythms. Examples of candidate experimental schedules and the experimental package functional requirements are included.

  1. Teacher content knowledge in the context of science education reform

    NASA Astrophysics Data System (ADS)

    Doby, Janice Kay

    1997-12-01

    The decline of science education in elementary schools has been well documented. While numerous efforts have been made for the purpose of reforming science education, most of those efforts have targeted science programs, assessment techniques, and setting national, state, and local standards, stressing teacher accountability for meeting those standards. However, inadequate science content knowledge of preservice teachers limits their ability to master effective teaching strategies, and also may foster negative attitudes toward science and science teaching. It is, therefore, highly unlikely that any significant reform in science education will be realized until this major underlying problem is addressed and resolved. The purpose of this study was to examine the effects of an experimental elementary science methods course, which employs the use of laser videodisc technology and instructional implications from cognitive science and instructional design, in terms of preservice teacher gains in Earth and physical science content knowledge and locus of control in science. The experimental elementary science methods course was compared to a more traditional approach to the same course which focused primarily on methods of teaching in the physical sciences and other science domains. The experimental and traditional groups were compared before and after treatment in terms of preservice teachers' content knowledge in Earth and physical science and locus ofcontrol in science. Results indicated that the experimental and traditional groups were comparable prior to treatment. The experimental group (89 preservice teachers) responded correctly to 45% of the items on the Elementary Science Concepts Test (ESCT) pretest and the traditional group (78 preservice teachers) responded correctly to 42% of the pretest items, the difference between groups being nonsignificant. Further, the experimental and traditional groups scored similarly on the pre-assessment of locus of control in science with scores on the Preservice Teacher Information and Science Opinion Questionnaire (ISOQ) of 162.12 and 163.65, respectively, the difference also being nonsignificant. The pre- and post-administrations of both the ESCT and ISOQ were all found to be statistically significant (F (4, 162) = 271.18343, p<0.05) in predicting group membership. Analyses of variance indicated significantly greater gains in Earth and physical science content knowledge (F (1,165) = 743.7746, p<0.025) and locus of control in science (F (1,165) = 45.7477, p<0.025) for the experimental group compared to the traditional group. A significant difference (F = (2,162) = 31.82279, p<0.05) was found between the combined effect of locus of control in science and Earth and physical science content knowledge in respect to treatment, indicating that the curriculum and instructional design of the experimental course significantly influenced preservice teachers' science content knowledge and locus of control in science. Suggestions for further research included: (a) determining whether the results of this present research may also apply to inservice teachers, (b) determining the effects of such preservice and inservice training on actual classroom practice, (c) relating increased science knowledge with improvement in science lesson planning and mastery of pedagogical skills, and (d) more detailed analysis of instructional implications from cognitive science and instructional design in regard to their application to the teaching of science (as well as other content areas).

  2. Education in the Field Influences Children's Ideas and Interest toward Science

    NASA Astrophysics Data System (ADS)

    Zoldosova, Kristina; Prokop, Pavol

    2006-10-01

    This paper explores the idea of informal science education in scientific field laboratory (The Science Field Centre). The experimental group of pupils ( N = 153) was experienced with approximately 5-day lasting field trips and experiments in the Field Centre in Slovakia. After finishing the course, two different research methods were used to discover their interest and ideas toward science. Pupils from the experimental group showed significant differences from those that did not experience education in the Field Centre (control group, N = 365). In comparison to the control group, pupils of the experimental group highly preferred book titles that were related to their program in the Field Centre. There were differences between the drawings of ideal school environment from both pupils groups. In the drawings of the experimental group, we found significantly more items connected with the educational environment of the Field Centre (e.g. laboratory equipment, live animals). We suppose field science education would be one of the most effective ways to increase interest of pupils to study science and to invaluable intrinsic motivation at the expense extrinsic motivation.

  3. Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    2000-01-01

    The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

  4. Digging into Inquiry-Based Earth Science Research

    ERIC Educational Resources Information Center

    Schultz, Bryan; Yates, Crystal; Schultz, Jayne M.

    2008-01-01

    To help eighth-grade students experience the excitement of Earth science research, the authors developed an inquiry-based project in which students evaluated and cataloged their campus geology and soils. Following class discussions of rock-weathering and soil-forming processes, students worked in groups to excavate multiple soil pits in the school…

  5. Outcomes of Integrated Agriscience Processes: A Synthesis of Research

    ERIC Educational Resources Information Center

    Wilson, Elizabeth B.; Curry, Kevin W., Jr.

    2011-01-01

    As the trend to integrate science and agriculture education has reemerged, so has the research related to the integration of science into secondary agricultural education. The American Association of Agricultural Education responded to this trend by creating a special interest group called "Strengthening Academic Learning through Agricultural…

  6. The development of a consensus definition for healthcare improvement science (HIS) in seven European countries: A consensus methods approach.

    PubMed

    Skela-Savič, Brigita; Macrae, Rhoda; Lillo-Crespo, Manuel; Rooney, Kevin D

    2017-06-01

    There is a limited body of research in the field of healthcare improvement science (HIS). Quality improvement and 'change making' should become an intrinsic part of everyone's job, every day in all parts of the healthcare system. The lack of theoretical grounding may partly explain the minimal transfer of health research into health policy. This article seeks to present the development of the definition for healthcare improvement science. A consensus method approach was adopted with a two-stage Delphi process, expert panel and consensus group techniques. A total of 18 participants were involved in the expert panel and consensus group, and 153 answers were analysed as a part of the Delphi survey. Participants were researchers, educators and healthcare professionals from Scotland, Slovenia, Spain, Italy, England, Poland, and Romania. A high level of consensus was achieved for the broad definition in the 2nd Delphi iteration (86%). The final definition was agreed on by the consensus group: 'Healthcare improvement science is the generation of knowledge to cultivate change and deliver person-centred care that is safe, effective, efficient, equitable and timely. It improves patient outcomes, health system performance and population health.' The process of developing a consensus definition revealed different understandings of healthcare improvement science between the participants. Having a shared consensus definition of healthcare improvement science is an important step forward, bringing about a common understanding in order to advance the professional education and practice of healthcare improvement science.

  7. Path to a Research Plan

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    2003-01-01

    This viewgraph presentation discusses the status and goals for the NASA OBPR Physical Science Research Program. The following text was used to summarize the presentation. The OBPR Physical Sciences Research program has been comprehensively reviewed and endorsed by National Research Council. The value and need for the research have been re-affirmed. The research program has been prioritized and resource re-allocations have been carried out through an OBPR-wide process. An increasing emphasis on strategic, mission-oriented research is planned. The program will strive to maintain a balance between strategic and fundamental research. A feasible ISS flight research program fitting within the budgetary and ISS resource envelopes has been formulated for the near term (2003-2007). The current ISS research program will be significantly strengthened starting 2005 by using discipline dedicated research facility racks. A research re-planning effort has been initiated and will include active participation from the research community in the next few months. The research re-planning effort will poise PSR to increase ISS research utilization for a potential enhancement beyond ISS IP Core Complete. The Physical Sciences research program readily integrates the cross-disciplinary requirements of the NASA and OBPR strategic objectives. Each fundamental research thrust will develop a roadmap through technical workshops and Discipline Working Groups (DWGs). Most fundamental research thrusts will involve cross-disciplinary efforts. A Technology Roadmap will guide the Strategic Research for Exploration thrust. The Research Plan will integrate and coordinate fundamental Research Thrusts Roadmaps with the Technology Roadmap. The Technology Roadmap will be developed in coordination with other OBPR programs as well as other Enterprise (R,S,M,N). International Partners will contribute to the roadmaps and through research coordination. The research plan will be vetted with the discipline working groups, the BPRAC subcommittees, and with the BPRAC. Recommendations from NRC past and current committees will be implemented whenever appropriate.Proposed theme element content will be "missionized" around planned content and potential new projects (facilities, modules, initiatives) on approximately a five-year horizon, with the approval of PSRD management. Center/science working group teams will develop descriptions of "mission" objectives, value, and requirements. Purpose is to create a competitive environment for concept development and to stimulate community ownership/advocacy. Proposed theme elements reviewed and approved by PSRD management. Strawman roadmaps for themes developed. Program budget and technology requirements verified. Theme elements are prioritized with the input of advisory groups. Integration into program themes (questions) and required technology investments are defined by science and technology roadmaps. Review and assessment by OBPR management.

  8. Frontiers in Ecosystem Science: Energizing the Research Agenda

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Groffman, P. M.; VanDolah, E.

    2014-12-01

    Ecosystem science has a long history as a core component of the discipline of Ecology, and although topics of research have fluctuated over the years, it retains a clear identity and continues to be a vital field. As science is becoming more interdisciplinary, particularly the science of global environmental change, ecosystem scientists are addressing new and important questions at the interface of multiple disciplines. Over the last two years, we organized a series of workshops and discussion groups at multiple scientific-society meetings, including AGU to identify frontiers in ecosystem research. The workshops featured short "soapbox" presentations where speakers highlighted key questions in ecosystem science. The presentations were recorded (video and audio) and subjected to qualitative text analysis for identification of frontier themes, attendees completed surveys, and a dozen additional "key informants" were interviewed about their views about frontiers of the discipline. Our effort produced 253 survey participants; the two largest groups of participants were full professors (24%) and graduate students (24%); no other specific group was > 10%. Formal text analysis of the soapbox presentations produced three major themes; "frontiers," "capacity building," and "barriers to implementation" with four or five sub-themes within each major theme. Key "frontiers" included; 1) better understanding of the drivers of ecosystem change, 2) better understanding of ecosystem process and function, 3) human dimensions of ecosystem science, and 4) problem-solving/applied research. Under "capacity building," key topics included: holistic approaches, cross-disciplinary collaboration, public support for research, data, training, and technology investment. Under "barriers" key topics included: limitations in theoretical thinking, insufficient funding/support, fragmentation across discipline, data access and data synthesis. In-depth interviews with 13 experts validated findings from analysis of soapbox presentations and surveys and also resulted in a conceptual model for understanding disciplinary frontiers.

  9. A CHAT Approach of Light and Colors in Science Teaching for the Early Grades

    ERIC Educational Resources Information Center

    Kolokouri, Eleni; Plakitsi, Katerina

    2016-01-01

    This article describes a research study on the connection of Cultural Historical Activity Theory (CHAT) with Science Education in the early grades. The research study took place in the University of Ioannina, Greece with the support of the @fise research group. Within this frame, a narrative about light, colors and shadows was written as part of…

  10. JPRS Report, Soviet Union, International Affairs.

    DTIC Science & Technology

    1988-11-23

    reequipment and reconstruction of produc- tion, scientific research , experimental design and other work, these funds can also be used for other purposes...electronics enterprises in that association, which are joined together in 28 research centers and groups , develop new products and engage in marketing and...philosophical sciences, senior research fellow of the USSR Academy of Sciences International Workers Movement Institute: "Noncapitalist Development: Vis- tas

  11. Fabrication and Measurement of High-Temperature Superconductor YBa2Cu3O7-δ: Activity Report of Science Club

    NASA Astrophysics Data System (ADS)

    Shigeta, Iduru; Nishisako, Yuya; Urakawa, Shinpei; Murayama, Osamu; Ito, Masakazu; Hiroi, Masahiko

    We report our activities of the science club for the intensive education in science and mathematics at the Faculty of Science in Kagoshima University. The science club has been organized for undergraduate students in the first and second years as an extracurricular activities. For the science club in our research group, attending undergraduate students have tried to fabricate and measure polycrystals of high-temperature superconductors. They have studied features of superconductivity though the activities of advanced research experiences in the science club. We conclude that the science club was useful for the increase of scientific interest and understanding of undergraduate students.

  12. Public culture and public understanding of genetics: a focus group study.

    PubMed

    Bates, Benjamin R

    2005-01-01

    As the role of genetic science in everyday life has grown, policymakers have become concerned about Americans' understandings of this science. Much effort has been devoted to formal schooling, but less attention has been paid to the role of public culture in shaping public understanding of genetics. Research into public cultural messages about genetics has claimed that the public is likely to adopt problematic accounts, but few studies have explored the public's articulation of these messages. This study is based on 25 focus groups convened to explore the lay public's understanding of genetics. The study found that the public processed a greater variety of messages than assumed by previous researchers, including documentaries, non-science-fiction films, and popular television in addition to previous researchers' focus on science fiction and news media. The study also found that the public does not process the messages through the linear, transmission model assumed by previous research. The public processes messages about genetics complexly and critically. On the basis of these findings, the study suggests that researchers should include a greater variety of texts about genetics in their research and attend more fully to audience processing in addition to content analyses of these texts.

  13. Global Oral Health Inequalities

    PubMed Central

    Pitts, N.; Amaechi, B.; Niederman, R.; Acevedo, A.-M.; Vianna, R.; Ganss, C.; Ismail, A.; Honkala, E.

    2011-01-01

    The IADR Global Oral Health Inequalities Task Group on Dental Caries has synthesized current evidence and opinion to identify a five-year implementation and research agenda which should lead to improvements in global oral health, with particular reference to the implementation of current best evidence as well as integrated action to reduce caries and health inequalities between and within countries. The Group determined that research should: integrate health and oral health wherever possible, using common risk factors; be able to respond to and influence international developments in health, healthcare, and health payment systems as well as dental prevention and materials; and exploit the potential for novel funding partnerships with industry and foundations. More effective communication between and among the basic science, clinical science, and health promotion/public health research communities is needed. Translation of research into policy and practice should be a priority for all. Both community and individual interventions need tailoring to achieve a more equal and person-centered preventive focus and reduce any social gradient in health. Recommendations are made for both clinical and public health implementation of existing research and for caries-related research agendas in clinical science, health promotion/public health, and basic science. PMID:21490233

  14. Interpreting Outcomes: Using Focus Groups in Evaluation Research

    ERIC Educational Resources Information Center

    Ansay, Sylvia J.; Perkins, Daniel F.; Nelson, John

    2004-01-01

    Although focus groups continue to gain popularity in marketing and social science research, their use in program evaluation has been limited. Here we demonstrate how focus groups can benefit evaluators, program staff, policy makers and administrators by providing an in-depth understanding of program effectiveness from the perspective of…

  15. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    NASA Astrophysics Data System (ADS)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for an innovative program designed to recruit, engage and prepare students for Ocean Science careers.

  16. Earth Sciences annual report, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  17. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  18. Teaching implementation science in a new Master of Science Program in Germany: a survey of stakeholder expectations.

    PubMed

    Ullrich, Charlotte; Mahler, Cornelia; Forstner, Johanna; Szecsenyi, Joachim; Wensing, Michel

    2017-04-27

    Implementation science in healthcare is an evolving discipline in German-speaking countries. In 2015, the Medical Faculty of the University of Heidelberg, Germany, implemented a two-year full-time Master of Science program Health Services Research and Implementation Science. The curriculum introduces implementation science in the context of a broader program that also covers health services research, healthcare systems, research methods, and generic academic skills. Our aim was to assess the expectations of different stakeholder groups regarding the master's program. An online survey listing desired competencies of prospective graduates was developed and administered to four groups: national experts in the field (including potential employers of graduates), teaching staff, enrolled students, and prospective students (N = 169). Competencies were extracted from the curriculum's module handbook. A five-point Likert scale was used for the assessment of 42 specific items. Data were analyzed descriptively. A total of 83 people participated in the survey (response rate 49%). The online survey showed a strong agreement across the groups concerning the desired competencies of graduates. About two-thirds of the listed competencies (27 items) were felt to be crucial or very important by 80% or more of participants, with little difference between stakeholder groups. Of the eight items specifically related to implementation in practice, six were in this category. Knowledge of implementation strategies (90% very important), knowledge of barriers and enablers of implementation (89%), and knowledge of evidence-based practice (89%) were the top priorities. The master's program is largely orientated towards the desired competencies of graduates according to students, teaching staff, and national experts.

  19. Key Challenges and Future Directions for Educational Research on Scientific Argumentation

    ERIC Educational Resources Information Center

    Henderson, J. Bryan; McNeill, Katherine L.; González-Howard, María; Close, Kevin; Evans, Mat

    2018-01-01

    At the 2015 "NARST: A Worldwide Organization for Improving Science Teaching and Learning Through Research" Annual International Conference, a group of scholars held an extended pre-conference workshop to discuss key challenges and future directions faced by argumentation researchers around the world. This wide-ranging group of…

  20. Effect of structure in problem based learning on science teaching efficacy beliefs and science content knowledge of elementary preservice teachers

    NASA Astrophysics Data System (ADS)

    Sasser, Selena Kay

    This study examined the effects of differing amounts of structure within the problem based learning instructional model on elementary preservice teachers' science teaching efficacy beliefs, including personal science teaching efficacy and science teaching outcome expectancy, and content knowledge acquisition. This study involved sixty (60) undergraduate elementary preservice teachers enrolled in three sections of elementary science methods classes at a large Midwestern research university. This study used a quasi-experimental nonequivalent design to collect and analyze both quantitative and qualitative data. Participants completed instruments designed to assess science teaching efficacy beliefs, science background, and demographic data. Quantitative data from pre and posttests was obtained using the science teaching efficacy belief instrument-preservice (STEBI-B) developed by Enochs and Riggs (1990) and modified by Bleicher (2004). Data collection instruments also included a demographic questionnaire, an analytic rubric, and a structured interview; both created by the researcher. Quantitative data was analyzed by conducting ANCOVA, paired samples t-test, and independent samples t-test. Qualitative data was analyzed using coding and themes. Each of the treatment groups received the same problem scenario, one group experienced a more structured PBL setting, and one group experienced a limited structure PBL setting. Research personnel administered pre and posttests to determine the elementary preservice teachers' science teaching efficacy beliefs. The results show elementary preservice teachers'science teaching efficacy beliefs can be influence by the problem based learning instructional model. This study did not find that the amount of structure in the form of core ideas to consider and resources for further research increased science teaching efficacy beliefs in this sample. Results from the science content knowledge rubric indicated that structure can increase science content knowledge in this sample. Qualitative data from the tutor, fidelity raters, and interviews indicated the participants were excited about the problem and were interested in the science content knowledge related to the problem. They also indicated they were motivated to continue informal study in the problem area. Participants indicated, during the interview, their initial frustration with the lack of knowledge gained from the tutor; however, indicated this led to more learning on their part. This study will contribute to the overall knowledge of problem based learning and its structures, science teaching efficacy beliefs of elementary preservice teachers, and to current teaching and learning practices.

  1. Sharpening the lens of culturally responsive science teaching: a call for liberatory education for oppressed student groups

    NASA Astrophysics Data System (ADS)

    Codrington, Jamila

    2014-12-01

    Wallace and Brand's framing of culturally responsive science teaching through the lens of critical race theory honors the role of social justice in science education. In this article, I extend the discussion through reflections on the particular learning needs of students from oppressed cultural groups, specifically African Americans. Understanding the political nature of education, I explore the importance of transforming science education so that it has the capacity to provide African American students with tools for their own liberation. I discuss Wallace and Brand's research findings in relation to the goal of liberatory education, and offer ideas for how science educators might push forward this agenda as they strive for culturally responsive teaching with oppressed student groups.

  2. ClimateNet: A Machine Learning dataset for Climate Science Research

    NASA Astrophysics Data System (ADS)

    Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.

    2017-12-01

    Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.

  3. Analogical-Mapping-Based Comparison Tasks as a Scaffold for Argumentation

    ERIC Educational Resources Information Center

    Emig, Brandon R.

    2011-01-01

    Given the centrality of the argumentation process to science and consequent importance to science education, inviting science students to engage in argumentation and scaffolding that argumentation in order that it lead to learning and not frustration is important. The present research invites small groups of science content learners (54 preservice…

  4. Student explanations of their science teachers' assessments, grading practices and how they learn science

    NASA Astrophysics Data System (ADS)

    del Carmen Gomez, María

    2018-03-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.

  5. 77 FR 24971 - National Institute of Neurological Disorders and Stroke; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Disorders and Stroke Initial Review Group; Neurological Sciences and Disorders C. Date: June 18-19, 2012..., Scientific Review Branch, Division of Extramural Research, NINDS, NIH, NSC, 6001 Executive Blvd., Suite 3204...: Neurological Sciences Training Initial Review Group; NST-2 Subcommittee. Date: June 25-26, 2012. Time: 8 a.m...

  6. 77 FR 59939 - National Institute of Neurological Disorders and Stroke; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Disorders and Stroke Initial Review Group; Neurological Sciences and Disorders B. Date: October 25-26, 2012... Officer, Scientific Review Branch, Division of Extramural Research, NINDS/NIH/DHHS, NSC, 6001 Executive...: Neurological Sciences Training Initial Review Group; NST-2 Subcommittee. Date: November 5-6, 2012. Time: 8:00 a...

  7. Student Attitudes, Student Anxieties, and How to Address Them; A handbook for science teachers

    NASA Astrophysics Data System (ADS)

    Kastrup, Helge

    2016-02-01

    This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called 'science anxiety'. Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the USA. The first chapter discusses student attitudes towards science and the second discusses science anxiety. The connection between the two is discussed before the introduction of constructivism as a pedagogy that can aid science learning if it also addresses attitudes and anxieties. Much of the book elucidates what the authors have learned as science teachers and science education researchers. They studied various groups including university students majoring in the sciences, mathematics, humanities, social sciences, business, nursing, and education; high-school students; teachers' seminary students; science teachers at all levels from middle school through college; and science administrators. The insights of these groups constitute the most important feature of the book, and by sharing them, the authors hope to help their fellow science teachers to understand student attitudes about science, to recognize the connections between these and science anxiety, and to see how a pedagogy that takes these into account can improve science learning.

  8. Optics outreach in Irish context

    NASA Astrophysics Data System (ADS)

    McHugh, Emer; Smith, Arlene

    2009-06-01

    The Applied Optics Group, National University of Ireland Galway is a research centre involved in programmes that cover a wide variety of topics in applied optics and imaging science, including smart optics, adaptive optics, optical scattering and propagation, and engineering optics. The Group have also developed significant outreach programmes both in Primary and Post-Primary schools. It is recognised that there is a need for innovation in Science Education in Ireland and we are committed to working extensively with schools. The main aim of these outreach programmes is to increase awareness and interest in science with students and enhance the communication skills of the researchers working in the Group. The education outreach team works closely with the relevant teachers in both Primary and Post-Primary schools to design and develop learning initiatives to match the needs of the target group of students. The learning programmes are usually delivered in the participating schools during normal class time by a team of Applied Optics specialists. We are involved in running these programmes in both Primary and Post-Primary schools where the programmes are tailored to the curriculum and concentrating on optics and light. The students may also visit the Groups research centre where presentations and laboratory tours are arranged.

  9. Student leadership in small group science inquiry

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  10. Voices of Hispanic College Students: A Content Analysis of Qualitative Research within the "Hispanic Journal of Behavioral Sciences"

    ERIC Educational Resources Information Center

    Storlie, Cassandra A.; Moreno, Luis S.; Portman, Tarrell Awe Agahe

    2014-01-01

    As Hispanic students continue to be an underrepresented cultural group in higher education, researchers are called to uncover the challenging and complex experience of this diverse group of students. Using the constant comparative method, these researchers conducted a content analysis of the qualitative research on the experiences of Hispanic…

  11. An Exploratory Case Study of Olympiad Students' Attitudes towards and Passion for Science

    ERIC Educational Resources Information Center

    Oliver, Mary; Venville, Grady

    2011-01-01

    Much is known about high school students' attitudes towards science but there is almost no research on what passion for science might look like and how it might be manifested. This exploratory case study took advantage of a unique group of highly gifted science students participating in the Australian Science Olympiad (N = 69) to explore their…

  12. Cornell Astronomy REU: Casting a Wide Net to Increase Access to Research Opportunities

    NASA Astrophysics Data System (ADS)

    Fernandez de Castro, Patricia; Haynes, Martha P.

    2018-01-01

    We describe a Research Experience for Undergraduates program in astrophysics and planetary science hosted in a major university setting that is geared especially but not exclusively to students who matriculate at smaller colleges and universities without major astronomy research programs, have not previously had off-campus research experiences and/or have non-traditional academic backgrounds.Individual research projects which students undertake with faculty mentors and their research groups are the keystone of the program. Built around this central activity are a set of other components that aim to expose students to the broad areas of astrophysical and planetary science research and to foster their appreciation of the research enterprise and their possible place within it. We describe the professional development activities that are offered to students, including lectures and workshops on a broad range of topics in astrophysics and planetary science, research group meetings, tutorials on research and scientific presentation skills, participation in outreach, education on the graduate school experience and application process, and discussions of the scientific enterprise, career paths and options in astronomy and related fields as well as the role REU group meetings with the program director (which complement meetings students attend within the context of their research group) play in developing students’ scientific competencies and pre-professional development. Also described are program elements that aim to make the program accessible to all students, including older students, those in relationships or with children as well as cohort building. Finally, we discuss lessons learned on how recruiting on merit and suitability to the research projects on offer, with a strong emphasis on smaller colleges and universities without major astronomy research programs can work towards a broader and more inclusive recruitment.This work was supported by NSF award AST-1156780.

  13. African-American males in computer science---Examining the pipeline for clogs

    NASA Astrophysics Data System (ADS)

    Stone, Daryl Bryant

    The literature on African-American males (AAM) begins with a statement to the effect that "Today young Black men are more likely to be killed or sent to prison than to graduate from college." Why are the numbers of African-American male college graduates decreasing? Why are those enrolled in college not majoring in the science, technology, engineering, and mathematics (STEM) disciplines? This research explored why African-American males are not filling the well-recognized industry need for Computer Scientist/Technologists by choosing college tracks to these careers. The literature on STEM disciplines focuses largely on women in STEM, as opposed to minorities, and within minorities, there is a noticeable research gap in addressing the needs and opportunities available to African-American males. The primary goal of this study was therefore to examine the computer science "pipeline" from the African-American male perspective. The method included a "Computer Science Degree Self-Efficacy Scale" be distributed to five groups of African-American male students, to include: (1) fourth graders, (2) eighth graders, (3) eleventh graders, (4) underclass undergraduate computer science majors, and (5) upperclass undergraduate computer science majors. In addition to a 30-question self-efficacy test, subjects from each group were asked to participate in a group discussion about "African-American males in computer science." The audio record of each group meeting provides qualitative data for the study. The hypotheses include the following: (1) There is no significant difference in "Computer Science Degree" self-efficacy between fourth and eighth graders. (2) There is no significant difference in "Computer Science Degree" self-efficacy between eighth and eleventh graders. (3) There is no significant difference in "Computer Science Degree" self-efficacy between eleventh graders and lower-level computer science majors. (4) There is no significant difference in "Computer Science Degree" self-efficacy between lower-level computer science majors and upper-level computer science majors. (5) There is no significant difference in "Computer Science Degree" self-efficacy between each of the five groups of students. Finally, the researcher selected African-American male students attending six primary schools, including the predominately African-American elementary, middle and high school that the researcher attended during his own academic career. Additionally, a racially mixed elementary, middle and high school was selected from the same county in Maryland. Bowie State University provided both the underclass and upperclass computer science majors surveyed in this study. Of the five hypotheses, the sample provided enough evidence to support the claim that there are significant differences in the "Computer Science Degree" self-efficacy between each of the five groups of students. ANOVA analysis by question and total self-efficacy scores provided more results of statistical significance. Additionally, factor analysis and review of the qualitative data provide more insightful results. Overall, the data suggest 'a clog' may exist in the middle school level and students attending racially mixed schools were more confident in their computer, math and science skills. African-American males admit to spending lots of time on social networking websites and emailing, but are 'dis-aware' of the skills and knowledge needed to study in the computing disciplines. The majority of the subjects knew little, if any, AAMs in the 'computing discipline pipeline'. The collegian African-American males, in this study, agree that computer programming is a difficult area and serves as a 'major clog in the pipeline'.

  14. Meyerhoff Scholars Program: a strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematics.

    PubMed

    Maton, Kenneth I; Pollard, Shauna A; McDougall Weise, Tatiana V; Hrabowski, Freeman A

    2012-01-01

    The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering, and mathematics PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are 5× more likely than comparison students to pursue a science, technology, engineering, and mathematics PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development, and emphasizing the importance of academic skills. Among Meyerhoff students, several precollege and college factors have emerged as predictors of successful entrance into a PhD program in the science, technology, engineering, and mathematics fields, including precollege research excitement, precollege intrinsic math/science motivation, number of summer research experiences during college, and college grade point average. Limitations of the research to date are noted, and directions for future research are proposed. © 2012 Mount Sinai School of Medicine.

  15. The Benefits of Peer-to-Peer Mentoring: Lessons from The Earth Science Women's Network (ESWN)

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Steiner, A.; Fiore, A.; Hastings, M.; McKinley, G.; Staudt, A.; Wiedinmyer, C.

    2007-12-01

    The Earth Science Women's Network (ESWN) is a grassroots organization that began with the meeting of six women graduate students and recent Ph.D.s at the Spring 2002 AGU meeting in Washington, DC. Since then, the group has grown to over 400 members, completely by word of mouth. We provide an informal, peer-to-peer network developed to promote and support careers of women in the Earth sciences. Through the network, women have found jobs, established research collaborations, shared strategies on work/life balance, and built a community stretching around the world. We maintain an email list for members to develop an expanded peer network outside of their own institution, and we have recently launched a co-ed jobs list to benefit the wider geoscience community. We will present a summary of strategies that have been discussed by group members on how to transition to a new faculty position, build a research group, develop new research collaborations, and balance career and family.

  16. Effects of gender and role selection in cooperative learning groups on science inquiry achievement

    NASA Astrophysics Data System (ADS)

    Affhalter, Maria Geralyn

    An action research project using science inquiry labs and cooperative learning groups examined the effects of same-gender and co-educational classrooms on science achievement and teacher-assigned or self-selected group roles on students' role preferences. Fifty-nine seventh grade students from a small rural school district participated in two inquiry labs in co-educational classrooms or in an all-female classroom, as determined by parents at the beginning of the academic year. Students were assigned to the same cooperative groups for the duration of the study. Pretests and posttests were administered for each inquiry-based science lab. Posttest assessments included questions for student reflection on role assignment and role preference. Instruction did not vary and a female science teacher taught all class sections. The same-gender classroom and co-ed classrooms produced similar science achievement scores on posttests. Students' cooperative group roles, whether teacher-assigned or self-selected, produced similar science achievement scores on posttests. Male and female students shared equally in favorable and unfavorable reactions to their group roles during the science inquiry labs. Reflections on the selection of the leader role revealed a need for females in co-ed groups to be "in charge". When reflecting on her favorite role of leader, one female student in a co-ed group stated, "I like to have people actually listen to me".

  17. Nonlocal Effects of Crack Curving.

    DTIC Science & Technology

    1982-07-01

    Structures Research Division Marine Corps Development Langley Research Center and Education Comand Langley Station Quantice , Virginia 22134i~l EaptOn, Vtiina...Advanced lomn 3C128 Research and Technology The Pentagon Washington. D.C. 2054 Washington, D.C* 20301 Air Force Dr. G Sans National Science Foundation... Science and Technology Division (FIS) Washingtono DOC* 20540 AM (XIM)Director Chief Applied Mechanics Group Defense Nuclear Agency U.S.. Air Force

  18. Visual Form Detection in 3-Dimensional Space.

    DTIC Science & Technology

    1982-10-01

    RR04209 Ann Arbor, Michigan 48109 RR0429002; NR 197-070 - II CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Engineering Psychology Group ( Code...93940 Pasadena, CA 91106 Dean of Research Administration Office of Naval Research Naval Postgraduate School Scientific Liaison Group Monterey, CA...Eisenhower Avenue Dr. Gloria Chisum Alexandria, VA 22333 Sciences Research Group Code 6003 Naval Air Development Center Warminste.’, PA 18974 -4- Department

  19. Battalion Command Group Performance in Simulated Combat

    DTIC Science & Technology

    1979-03-01

    public release; distribution unlinrited. ARI Research Reports and Technicai,, Papaers are -6tended",for sponsors of R&D0,tasks-and other, research and...FORT LEAVENWORTH, KANSAS DD C _UN 19 1979 ’I •U. S. Army Research Institute for the Behavioral and Social Sciences March 1979 Approved for public...release; distribution unlimited. -0’. S, ARMY RESEARCH INSTITUTE FOR T-HE BEHAVIORAL AND-SOCIAL SCIENCES A Field -Operating, Agency under’,the

  20. Effect of Reflective Practice on Student Recall of Acoustics for Speech Science

    ERIC Educational Resources Information Center

    Walden, Patrick R.; Bell-Berti, Fredericka

    2013-01-01

    Researchers have developed models of learning through experience; however, these models are rarely named as a conceptual frame for educational research in the sciences. This study examined the effect of reflective learning responses on student recall of speech acoustics concepts. Two groups of undergraduate students enrolled in a speech science…

  1. Constructivist Viewpoints for School Teaching and Learning in Mathematics and Science. Research Report 131.

    ERIC Educational Resources Information Center

    Ahtee, Maija, Ed.; Pehkonen, Erkki, Ed.

    This research report contains a fairly concise overview of the role of constructivism in the teaching of mathematics and science in Finland. Included papers have been grouped into three parts. The first part, "General Considerations," consists of the seven articles on theoretical considerations, social constructivism, teachers' and pupils'…

  2. Pentagon Spending on Research Sees Largest Increase in a Decade.

    ERIC Educational Resources Information Center

    Brainard, Jeffrey

    1999-01-01

    Examines trends in Pentagon support of campus-based military research and reports that lawmakers gave the Defense Department a science budget 11 percent higher in 2000 than in 1999. Notes critics' concerns about Pentagon priorities versus the nation's science needs and lobbying by university and industry groups in the Coalition for National…

  3. Understanding the Information Needs of Academic Scholars in Agricultural and Biological Sciences

    ERIC Educational Resources Information Center

    Kuruppu, Pali U.; Gruber, Anne Marie

    2006-01-01

    This study investigates the information needs of faculty and graduate students in agricultural and biological sciences. Qualitative research methods, interviews and focus groups, were used to examine what types of information these scholars need for their research, teaching and learning, how they seek that information, and perceptions. The…

  4. Science Content Knowledge of 5-6 Year Old Preschool Children

    ERIC Educational Resources Information Center

    Olcer, Sevinc

    2017-01-01

    The present study is a descriptive research in the scanning model. In the present study is research conducted to determine five to six-year-old children's knowledge of science content, study group constitutes of 360 children attending preschool educational institutions in Burdur city center and their parents and teachers. In the study, Science…

  5. Product Development and Commercialization of Diagnostic or Life Science Products for Scientists and Researchers.

    PubMed

    Alonso, Meghan M

    2017-01-01

    Commercializing a diagnostic or life science product often encompasses different goals than that of research and grant funding. There are several necessary steps, and a strategy needs to be well defined in order to be successful. Product development requires input from and between various groups within a company and, for academia, outside entities. The product development stakeholder groups/entities are research, marketing, development, regulatory, manufacturing, clinical, safety/efficacy, and quality. After initial research and development, much of the work in product development can be outsourced or jointly created using public-private partnerships. This chapter serves as an overview of the product development process and provides a guide to best define a product strategy.

  6. A study in the use of the position of discrepant events in the teaching of science

    NASA Astrophysics Data System (ADS)

    Frassinelli, John James

    The purpose of this study was to determine whether alternative placement of discrepant events would impact affective and cognitive outcomes of ninth-grade physical science students grouped into intact classes and classified as either "high" or "low" in prior academic achievement. Although researchers have found discrepant events to be effective in terms of cognition and recall, their chronological placement within science lessons had not been empirically researched. In this study, discrepant events were presented before, during, and after specific science lessons involving thermodynamics and heat. Discrepant events were withheld from the control group. To measure affective outcomes, the "enjoyment" and "motivation" scales taken from Sandman's (1973) Attitudes Towards Science Inventory (ATSI) were used to index subjects' global feelings about studying science, while a 20-item set of Semantic Differential (SD) scales was employed to determine their attitudes regarding the specific subject matter taught. To measure cognitive outcomes, a 20-item, selected response test was constructed by the researcher, with 6 items intended to assess subjects' knowledge of unit materials, and 14 items designed to query their understanding of unit concepts. Each subject (N = 131) was administered identical forms of each test in both pre-and post-test formats, both before and after the four-week study. Analyzed using a 4 x 2 mixed Analysis of Variance (ANOVA) model, data pertinent to the ATSI suggested neither between- nor within-group differences in subjects' global attitudes about studying science, although data pertinent to the SD scales indicated generally improved attitudes about studying thermodynamics and heat (F (1,122) = 2.759, p < .10). On the cognitive pretests and posttests, significant two-way interactions were observed for the overall test and experimental condition (F (3,121) = 4.068, p < .01), as well as for the overall test and higher prior achievement in physical science (F (1,121) = 7.059,p < .01). As contrasted with negligible changes in the control group's scores, robust mean-difference effect sizes were observed for all three treatment groups---"beginning" (d = 1.24), "during" (d = 0.70), and "after" ( d = 0.78)---but particularly for the "beginning" group. Subsequent analysis revealed that the apparent advantage of the "beginning" group was largely attributable to a particularly strong showing on the six test items concerned with knowledge (d = 2.06).

  7. Science learning based on local potential: Overview of the nature of science (NoS) achieved

    NASA Astrophysics Data System (ADS)

    Wilujeng, Insih; Zuhdan Kun, P.; Suryadarma, IGP.

    2017-08-01

    The research concerned here examined the effectiveness of science learning conducted with local potential as basis from the point of a review of the NoS (nature of science) achieved. It used the non equivalent control group design and took place in the regions of Magelang and Pati, Province of Central Java, and the regions of Bantul and Sleman, Province of the Special Region of Yogyakarta. The research population consisted of students of the first and second grades at each junior high school chosen with research subjects sampled by means of cluster sampling. The instruments used included: a) an observation sheet, b) a written test, and c) a questionnaire. The learning and research instruments had been declared valid and reliable according to previous developmental research. In conclusion, the science learning based on local potential was effective in terms of all the NoS aspects.

  8. What is `Agency'? Perspectives in Science Education Research

    NASA Astrophysics Data System (ADS)

    Arnold, Jenny; Clarke, David John

    2014-03-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development of this new research agenda and to argue that there is a need for research in science education that attends to agency as a social practice. Despite increasing interest in student agency in educational research, the term 'agency' has lacked explicit operationalisation and, across the varied approaches, such as critical ethnography, ethnographies of communication, discourse analysis and symbolic interactionism, there has been a lack of coherence in its research usage. There has also been argument concerning the validity of the use of the term 'agency' in science education research. This article attempts to structure the variety of definitions of 'student agency' in science education research, identifies problems in the research related to assigning intentionality to research participants and argues that agency is a kind of discursive practice. The article also draws attention to the need for researchers to be explicit in the assumptions they rely upon in their interpretations of social worlds. Drawing upon the discursive turn in the social sciences, a definition of agency is provided, that accommodates the discursive practices of both individuals and the various functional social groups from whose activities classroom practice is constituted. The article contributes to building a focused research agenda concerned with understanding and promoting student agency in science.

  9. The delta cooperative model: a dynamic and innovative team-work activity to develop research skills in microbiology.

    PubMed

    Rios-Velazquez, Carlos; Robles-Suarez, Reynaldo; Gonzalez-Negron, Alberto J; Baez-Santos, Ivan

    2006-05-01

    The Delta Cooperative Model (DCM) is a dynamic and innovative teamwork design created to develop fundamentals in research skills. High school students in the DCM belong to the Upward Bound Science and Math (UBSM) program at the Inter American University, Ponce Campus. After workshops on using the scientific method, students were organized into groups of three students with similar research interests. Each student had to take on a role within the group as either a researcher, data analyst, or research editor. Initially, each research team developed hypothesis-driven ideas on their proposed project. In intrateam research meetings, they emphasized team-specific tasks. Next, interteam meetings were held to present ideas and receive critical input. Finally, oral and poster research presentations were conducted at the UBSM science fair. Several team research projects covered topics in medical, environmental, and general microbiology. The three major assessment areas for the workshop and DCM included: (i) student's perception of the workshops' effectiveness in developing skills, content, and values; (ii) research team self- and group participation evaluation, and (iii) oral and poster presentation during the science fair. More than 91% of the students considered the workshops effective in the presentation of scientific method fundamentals. The combination of the workshop and the DCM increased student's knowledge by 55% from pre- to posttests. Two rubrics were designed to assess the oral presentation and poster set-up. The poster and oral presentation scores averaged 83% and 75% respectively. Finally, we present a team assessment instrument that allows the self- and group evaluation of each research team. While the DCM has educational plasticity and versatility, here we document how the this model has been successfully incorporated in training and engaging students in scientific research in microbiology.

  10. Characteristics of Abductive Inquiry in Earth and Space Science: An Undergraduate Teacher Prospective Case Study

    NASA Astrophysics Data System (ADS)

    Ramalis, T. R.; Liliasari; Herdiwidjaya, D.

    2016-08-01

    The purpose this case study was to describe characteristic features learning activities in the domain of earth and space science. Context of this study is earth and space learning activities on three groups of student teachers prospective, respectively on the subject of the shape and size of Earth, land and sea breeze, and moon's orbit. The analysis is conducted qualitatively from activity data and analyze students doing project work, student worksheets, group project report documents, note and audio recordings of discussion. Research findings identified the type of abduction: theoretical models abduction, factual abduction, and law abduction during the learning process. Implications for science inquiry learning as well as relevant research were suggested.

  11. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less

  12. 76 FR 43347 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; Network Centric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... circumstances. Specifically, Wakelight Technologies, Inc., Honolulu, HI; LinQuest Corporation, Los Angeles, CA; and Computer Sciences Corporation, Rockville, MD, have withdrawn as parties to this venture. In... activity of the group research project. Membership in this group research project remains open, and NCOIC...

  13. Three Approaches for Developing Training Materials and Curriculum Policies.

    ERIC Educational Resources Information Center

    Doxey, Isabel

    Agencies funding early childhood education projects, policy analysts, and research consumers have created a demand for research tools generating data with applied reliability. This paper examines the focus group as a social science research tool which meets this demand. Part 1 defines a focus group as a carefully planned discussion designed to…

  14. Generating a desired state for master's degree programs in science education through grounded theory research

    NASA Astrophysics Data System (ADS)

    Spector, Barbara S.

    This is the report of a two-year study using qualitative research methods to assess the training needs of science teachers in southern Florida. The respondents included individuals and groups comprising the educational enterprise and those outside the enterprise with the ability to influence policy in science education and implementation of that policy in Florida. The study resulted in recommendations describing the desired state for graduate training leading to a master's degree in science education and has implications for noncredit inservice activities.

  15. Historical theses on nursing and caring sciences in Finland: a literature review.

    PubMed

    Lukana, Anne; Leena, Salminen; Marjo, Kaartinen; Helena, Leino-Kilpi

    2013-12-01

    The purpose of this literature review was to review the theses (masters, licentiate and doctoral theses) on the history of nursing and caring sciences in Finland. The research questions were as follows: 1.What is the number and characteristics of these historical theses (target groups, methods and sources) on nursing and caring sciences have been produced in Finland? 2.What periods of time have been under investigation in these theses? 3.What topics have been investigated in these theses? The theses on the history of nursing and caring sciences were retrieved from the theses index of the universities that offer education in nursing and caring sciences in Finland. The literature search covered the time period 1979-2010. Altogether, 58 theses were reviewed and analysed via content analysis. Of all of the theses (n = 3969) produced in nursing and caring sciences, 58 of them focused on historical topics (<2%). The most common target group was healthcare personnel. The most common research method was the traditional historical method. Primary and secondary sources were used both together and separately. Nearly all of the theses examined the history of the 1900s, whereas only a few of them examined time periods before that. The four main topics of the theses were nursing practice, nursing education, nursing management and philosophy of nursing. The most common topic was nursing practice, especially psychiatric nursing. Research on the history of nursing and caring sciences in Finland has received only marginal attention from researchers. This literature review offers a description of the historical research produced on nursing and caring sciences and the topics of interest. In future, it will be necessary to more closely examine several historical topics that have been neglected in the study of nursing and caring sciences. © 2012 The Authors Scandinavian Journal of Caring Sciences © 2012 Nordic College of Caring Science.

  16. Research on same-gender grouping in eighth-grade science classrooms

    NASA Astrophysics Data System (ADS)

    Friend, Jennifer Ingrid

    This study examined two hypotheses related to same-gender grouping of eighth-grade science classes in a public middle-school setting in suburban Kansas City. The first hypothesis, male and female students enrolled in same-gender eighth-grade science classes demonstrate more positive science academic achievement than their male and female peers enrolled in mixed-gender science classes. The second hypothesis, same-gender grouping of students in eighth-grade science has a positive effect on classroom climate. The participants in this study were randomly assigned to class sections of eighth-grade science. The first experimental group was an eighth-grade science class of all-male students (n = 20) taught by a male science teacher. The control group used for comparison to the male same-gender class consisted of the male students (n = 42) in the coeducational eighth-grade science classes taught by the same male teacher. The second experimental group was an eighth-grade science class of all-female students (n = 23) taught by a female science teacher. The control group for the female same-gender class consisted of female students (n = 61) in the coeducational eighth-grade science classes taught by the same female teacher. The male teacher and the female teacher did not vary instruction for the same-gender and mixed-gender classes. Science academic achievement was measured for both groups through a quantitative analysis using grades on science classroom assessment and overall science course grades. Classroom climate was measured through qualitative observations and through qualitative and quantitative analysis of a twenty-question student survey administered at the end of each trimester grading period. The results of this study did not indicate support for either hypothesis. Data led to the conclusions that same-gender grouping did not produce significant differences in student science academic achievement, and that same-gender classes did not create a more positive classroom climate for male or female students. There is evidence in the literature to support further investigations in gender differences in science education to address the unique needs of male and female students in order to create gains in student science achievement and to encourage positive attitudes toward science.

  17. Senior Science Enrichment Modules. S.S.T.A. Research Centre Report No. 58.

    ERIC Educational Resources Information Center

    Fedorak, Allen; And Others

    Presented is a set of learning modules intended for teaching science to students in grades eleven and twelve. Each module incorporates problem solving using the scientific viewpoint and emphasizing the interface between science and society. The fifteen modules presented include the following topics: group dynamics; the value of science; a puzzle…

  18. Who Aspires to a Science Career? A Comparison of Survey Responses from Primary and Secondary School Students

    ERIC Educational Resources Information Center

    DeWitt, Jennifer; Archer, Louise

    2015-01-01

    There is broad international agreement about the importance of increasing participation in science once it is no longer compulsory in school, particularly among groups who have been historically underrepresented in science. Previous research reflects that despite broadly positive attitudes to science in and outside of school, there is limited…

  19. Teaching Science in the Primary School: Surveying Teacher Wellbeing and Planning for Survival

    ERIC Educational Resources Information Center

    Morgan, Anne-Marie

    2012-01-01

    A teacher-researcher in a primary school setting surveyed the middle years' teachers of her school and those in the local science hub group, to determine their confidence and satisfaction levels in relation to teaching science. Her results confirm feelings of inadequacy and reluctance to teach Science, but also indicate ways that schools can…

  20. 76 FR 28793 - Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ...: ``Strategies to Educate Non-Traditional Audiences about Dual Use Research in the Life Sciences: Amateur Biologists and Scientists in Non-Life Science Disciplines;'' (3) update on activities of NSABB Working Groups... Activities, Office of Science Policy, Office of the Director; Notice of Meeting Pursuant to section 10(a) of...

  1. Student Explanations of Their Science Teachers' Assessments, Grading Practices and How They Learn Science

    ERIC Educational Resources Information Center

    del Carmen Gomez, María

    2018-01-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During…

  2. Young Scientists Discuss Recent Advances, Future Challenges.

    ERIC Educational Resources Information Center

    Baum, Rudy M.

    1989-01-01

    Discusses a National Academy of Science forum at which a group of outstanding young researchers in astronomy, molecular and developmental biology, physics, chemistry, mathematics, atmospheric science, and materials science met for three days of formal presentations and informal conversations. Provides a short synopsis of major speakers. (MVL)

  3. Synergies and Distinctions between Computational Disciplines in Biomedical Research: Perspective from the Clinical and Translational Science Award Programs

    PubMed Central

    Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.

    2010-01-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  4. Trends and topics in sports research in the Social Science Citation Index from 1993 to 2008.

    PubMed

    Gau, Li-Shiue

    2013-02-01

    This descriptive study evaluated behavioral and social science research on sport for 1993 through 2008, examined the characteristics of sport research, and identified mainstream issues appearing during these 16 years. Based on the Social Science Citation Index (SSCI) database from 1993 to 2008, 7,655 articles referring to sport or sports were available. The publication analyses showed that 13 core journals published the most articles in the behavioral sciences of sport. By analyzing all titles, author keywords, and KeyWords Plus, the results showed that physical education, athlete performance, and sports participation were the mainstream issues of sport research in the 16-year study period. The words adolescent, youth, and children frequently appeared, indicating that the emphasis of sport research focused on these participant groups. This bibliometric study reviewed global sports research in SSCI, and described certain patterns or trends in prior research on sport.

  5. The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science

    ERIC Educational Resources Information Center

    Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.

    2015-01-01

    Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning…

  6. JILA Science | Exploring the frontiers of physics

    Science.gov Websites

    group are lighting up dark excitons. Specifically, the Raschke group developed a method to observe dark into a highly reactive hydroxyl radical (OH). And when CO and OH meet, one byproduct is carbon dioxide one of the nation's leading research institutes in the physical sciences. Learn more about JILA -->

  7. Invasive Species Science Update (No. 8)

    Treesearch

    Dean Pearson; Yvette Ortega; Jack Butler

    2015-01-01

    Invasive Species Science Updates are designed to keep managers and other users up-to-date with recently completed and ongoing research by RMRS scientists, as well as highlight breaking news related to invasive species issues. The newsletter is produced by the RMRS Invasive Species Working Group (ISWG), which is a core group of scientists who volunteer to coordinate...

  8. Communicating the Nature of Science through "The Big Bang Theory": Evidence from a Focus Group Study

    ERIC Educational Resources Information Center

    Li, Rashel; Orthia, Lindy A.

    2016-01-01

    In this paper, we discuss a little-studied means of communicating about or teaching the nature of science (NOS)--through fiction television. We report some results of focus group research which suggest that the American sitcom "The Big Bang Theory" (2007-present), whose main characters are mostly working scientists, has influenced…

  9. Faculty Conceptualizations and Approaches to Assessing Critical Thinking in the Humanities and Natural Sciences--A Grounded Theory Study

    ERIC Educational Resources Information Center

    Nicholas, Mark C.

    2011-01-01

    Empirical research on how faculty across disciplines conceptualize or assess CT is scarce. This investigation focused on a group of 14 faculty drawn from multiple disciplines in the humanities and natural sciences. Using in-depth interviews, focus group discussions, assessment artifacts and qualitative coding strategies, this study examined how…

  10. Learning Effects of a Science Textbook Designed with Adapted Cognitive Process Principles on Grade 5 Students

    ERIC Educational Resources Information Center

    Cheng, Ming-Chang; Chou, Pei-I; Wang, Ya-Ting; Lin, Chih-Ho

    2015-01-01

    This study investigates how the illustrations in a science textbook, with their design modified according to cognitive process principles, affected students' learning performance. The quasi-experimental design recruited two Grade 5 groups (N?=?58) as the research participants. The treatment group (n?=?30) used the modified version of the textbook,…

  11. Efficacy of Multimedia Learning Modules as Preparation for Lecture-Based Tutorials in Electromagnetism

    ERIC Educational Resources Information Center

    Moore, James Christopher

    2018-01-01

    We have investigated the efficacy of on-line, multimedia learning modules (MLMs) as preparation for in-class, lecture-based tutorials in electromagnetism in a physics course for natural science majors (biology and marine science). Specifically, we report the results of a multiple-group pre/post-test research design comparing two groups receiving…

  12. Invasive Species Science Update (No. 7)

    Treesearch

    Dean Pearson; Yvette Ortega; Jack Butler

    2014-01-01

    Invasive Species Science Updates are designed to keep managers and other users up-to-date with recently completed and ongoing research by RMRS scientists, as well as highlight breaking news related to invasive species issues. The newsletter is produced by the RMRS Invasive Species Working Group (ISWG), which is a core group of scientists who volunteer to coordinate...

  13. The Impact of Instructor Grouping Strategies on Student Efficacy in Inquiry Science Labs: A Phenomenological Case Study of Grouping Perceptions and Strategies

    ERIC Educational Resources Information Center

    Miller, Nathaniel J.

    2015-01-01

    Abundant educational research has integrated Albert Bandura's concepts of self-efficacy and collective efficacy within educational settings. In this phenomenological case study, the investigation sought to capture the manifestation of self-efficacy and collective efficacy within inquiry-based science laboratory courses. Qualitative data was…

  14. The development of a consensus definition for healthcare improvement science (HIS) in seven European countries: A consensus methods approach

    PubMed Central

    Macrae, Rhoda; Lillo-Crespo, Manuel; Rooney, Kevin D

    2017-01-01

    Abstract Introduction There is a limited body of research in the field of healthcare improvement science (HIS). Quality improvement and ‘change making’ should become an intrinsic part of everyone’s job, every day in all parts of the healthcare system. The lack of theoretical grounding may partly explain the minimal transfer of health research into health policy. Methods This article seeks to present the development of the definition for healthcare improvement science. A consensus method approach was adopted with a two-stage Delphi process, expert panel and consensus group techniques. A total of 18 participants were involved in the expert panel and consensus group, and 153 answers were analysed as a part of the Delphi survey. Participants were researchers, educators and healthcare professionals from Scotland, Slovenia, Spain, Italy, England, Poland, and Romania. Results A high level of consensus was achieved for the broad definition in the 2nd Delphi iteration (86%). The final definition was agreed on by the consensus group: ‘Healthcare improvement science is the generation of knowledge to cultivate change and deliver person-centred care that is safe, effective, efficient, equitable and timely. It improves patient outcomes, health system performance and population health.’ Conclusions The process of developing a consensus definition revealed different understandings of healthcare improvement science between the participants. Having a shared consensus definition of healthcare improvement science is an important step forward, bringing about a common understanding in order to advance the professional education and practice of healthcare improvement science. PMID:28289467

  15. Collaboration for Actionable Climate Science in Hawaii and the US-Affiliated Pacific Islands

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Grecni, Z. N.; Helweg, D. A.

    2016-12-01

    Hawaii and the US-Affiliated Pacific Islands (USAPI) encompass more than 2000 islands spread across millions of square miles of ocean. Islands can be high volcanic or low atolls, and vary widely in terms of geography, climate, ecology, language, culture, economies, government, and vulnerability to climate change impacts. For these reasons, meaningful collaboration across research groups and climate organizations is not only helpful, it is mandatory. No single group can address all the needs of every island, stakeholder, or sector, which has led to close collaboration and leveraging of research in the region to fill different niches. The NOAA-funded Pacific Regional Integrated Sciences & Assessments (RISA) program, DOI Pacific Islands Climate Science Center (PICSC), and the DOI LCC the Pacific Islands Climate Change Cooperative (PICCC) all take a stakeholder oriented approach to climate research, and have successfully collaborated on both specific projects and larger initiatives. Examples of these collaborations include comprising the core team of the Pacific Islands Regional Climate Assessment (PIRCA), the regional arm of the US National Climate Assessment, co-sponsoring a workshop on regional downscaling for scientists and managers, leveraging research projects across multiple sectors on a single island, collaborating on communication products such as handouts and websites to ensure a consistent message, and in the case of the Pacific RISA and the PICSC, jointly funding a PIRCA Sustained Assessment Specialist position. Barriers to collaboration have been around topics such as roles of research versus granting groups, perceived research overlap, and funding uncertainties. However, collaborations have been overwhelming positive in the Pacific Islands region due to communication, recognition of partners' strengths and expertise, and especially because of the "umbrella" organization and purpose provided by the PIRCA structure, which provides a shared platform for all regional groups working on climate science and adaptation, not owned by any one group. This work will give examples of successes and barriers encountered in the region.

  16. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    NASA Astrophysics Data System (ADS)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and professional careers in science? (2) How do female chemistry students perceive their educational experiences in science? Implications of the study serve to inform and raise the awareness of science educators and other stakeholders about improving and enhancing the participation of females in science (National Science Foundation [NSF], 2002; National Research Council [NRC], 2006).

  17. Science with a vengeance: How the Military created the US Space Sciences after World War II

    NASA Astrophysics Data System (ADS)

    Devorkin, David H.

    The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.

  18. Top management and management science: An exploratory study in 15 Federal civilian agencies

    NASA Technical Reports Server (NTRS)

    White, M. J.

    1971-01-01

    A study of the relation between top managers in Federal agencies and the operations research and management science (OR/MS) group is reported. Sixteen managers were questioned about the following characteristics: closeness of top managers to OR/MS groups; top managers' attitudes toward the OR/MS activities; relation between closeness and these attitudes; and top managers' use of OR/MS groups. It is concluded that OR/MS is relevant to many top managers and that OR/MS has begun to play a role in decisions. Top management attitudes and actions are not related in obvious ways. The consequences to top management's use of and closeness to an OR/MS group need not be the success of the group as a professional, innovative, research-oriented unit.

  19. Using process drama to enhance pre-service teachers' understanding of science and religion

    NASA Astrophysics Data System (ADS)

    Pongsophon, Pongprapan

    2010-03-01

    I report an action research study that aimed at improving Thai pre-service teachers' understanding of the relationship between science and religion and at assisting them to respond to this issue in a science classroom. The participants were twelve post-grad students pursuing Master of Art in Teaching Science at Kasetsart University. They took a course, Philosophy of Science, taught by the researcher in Semester A, academic year 2007. Process drama is the teaching strategy employed. The students were fully engaged in the process drama; doing research, producing, distributing, and criticizing the drama. Focus group, student journal, and observation were used to gather the data and the data was analyzed using qualitative analysis techniques. The focus groups revealed that the drama could help students reflect on the complexity and sensitivity of the issue. They found there was no inherent conflict between science and religion since they answered different questions and used different methods to achieve their results. However, the conflicts occurred when people were not aware of the basic differences between the two so they justified one on the basis of purpose and method of one another. The pre-service teachers also found consistency between science and Buddhism. They thought that the teachers of science should respond to the conflicts in a respectful, compromising, and neutral manner.[InlineMediaObject not available: see fulltext.

  20. Successful Project Based Learning (PBL) Across Disciplines Geared Towards Middle School: An Example from a Wetlands PBL Unit in Reno, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Howard, K. L.; Suchy-Mabrouk, A.; Noble, P. J.; Mensing, S. A.; Ewing-Taylor, J.

    2014-12-01

    A growing need for broad dissemination of current scientific research and improved scientific literacy requires new models of professional development that allow for direct collaboration between educators and university researchers. One example is a project funded by the National Science Foundation (NSF) as part of a study titled, "Reconstructing 2500 years of environmental change at the periphery of Rome: Integrating paleoecology and socioeconomic history to understand human response to climate." This project involves a team of middle school teachers working with researchers at the University of Nevada, Reno (UNR) to gain first-hand knowledge in multidisciplinary research connecting science and society, and applies a similar approach in the classroom. In 2013, the team's science teacher traveled to Italy as a member of the science research group. A series of workshops introduced the remaining teachers to the research project. Teachers collaborated to develop a Project Based Learning (PBL) unit that incorporated Next Generation Science Standards and encompassed English, Social Studies, Math, and Science curricula using a pedagogical approach different from the single subject-based PBL's usually taught in their school district. The PBL unit draws on the NSF study and focuses on exploring the balance between economic and environmental issues surrounding local wetlands. In May 2014, 160 middle school students worked in groups to create and test a question about physio-chemical parameters in a nearby wetland and used these data to discuss local economic development. Initially, students claimed polarized views of environmental issues or economic development interests; however, during a multimedia session showcasing results, students communicated more informed perspectives that clearly incorporated knowledge gained from their own research. Some students were able to make recommendations for good practices involving planned economic development near the wetland. Preliminary outcomes suggests this model: 1) permits authentic exploration of the role of scientific research in making informed policy decisions; 2) promotes diverse perspectives when approaching environmental and socioeconomic problems; and 3) enhances group engagement in developing scientific literacy.

  1. Laboratory for Nuclear Science. High Energy Physics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, Richard

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group aremore » given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.« less

  2. Comparison of textbook passages, nonfiction trade book passages and fiction trade book passages as instructional tools for learning science

    NASA Astrophysics Data System (ADS)

    Kelly, Cynthia

    This study examined the impact of different types of text on student achievement in elementary school science. Gender was also examined to see if the type of text passage read had any differential effect on boys' and girls' achievement. This study was a pretest/posttest/retention test design. Eighty-four fourth grade students from a public charter elementary school in South Florida were randomly assigned a passage from a physical science textbook, a physical science nonfiction trade book, a physical science fiction trade book, a biological science textbook or a biological science nonfiction trade book. Results in the physical science content area revealed that students in the textbook passage group had higher posttest and retention test results than students in the nonfiction and fiction trade book passage groups. There was no difference on the posttest results of students in the biological science textbook and nonfiction trade book passage groups. Students in the biological science textbook passage group had higher retention results than students in the biological science nonfiction passage group. Gender results in the physical science content area revealed that boys had a higher retention score than girls in the fiction trade book passage group. There were no gender achievement differences as a result of the text passage read in the biological science content area. It was concluded that no definitive answer as to the efficacy of textbooks versus trade books was possible based upon results of the study. Recommendations for future research include examining the effects of different types of texts in conjunction with other authentic teaching methods.

  3. The NASA/NSERC Student Airborne Research Program Land Focus Group - a Paid Training Program in Multi-Disciplinary STEM Research for Terrestrial Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kefauver, S. C.; Ustin, S.; Davey, S. W.; Furey, B. J.; Gartner, A.; Kurzweil, D.; Siebach, K. L.; Slawsky, L.; Snyder, E.; Trammell, J.; Young, J.; Schaller, E.; Shetter, R. E.

    2011-12-01

    The Student Airborne Research Program (SARP) of the National Aeronautics and Space Administration (NASA) and the National Suborbital Education and Research Center (NSERC) is a unique six week multidisciplinary paid training program which directly integrates students into the forefront of airborne remote sensing science. Students were briefly trained with one week of lectures and laboratory exercises and then immediately incorporated into ongoing research projects which benefit from access to the DC-8 airborne platform and the MODIS-ASTER Airborne Simulator (MASTER) sensor. Students were split into three major topical categories of Land, Ocean, and Air for the data collection and project portions of the program. This poster details the techniques and structure used for the student integration into ongoing research, professional development, hypothesis building and results as developed by the professor and mentor of the Land focus group. Upon assignment to the Land group, students were issued official research field protocols and split into four field specialty groups with additional specialty reading assignments. In the field each group spent more time in their respective specialty, but also participated in all field techniques through pairings with UC Davis research team members using midday rotations. After the field campaign, each specialty group then gave summary presentations on the techniques, preliminary results, and significance to overall group objectives of their specialty. Then students were required to submit project proposals within the bounds of Land airborne remote sensing science and encouraging, but not requiring the use of the field campaign data. These proposals are then reviewed by the professor and mentor and students are met with one by one to discuss the skills of each student and objectives of the proposed research project. The students then work under the supervision of the mentor and benefit again from professor feedback in a formal practice presentation session. At the end of the six week program, students present to all SARP program focus groups, mentors, professors, and, in addition, NSERC and NASA airborne science and education program directors and personnel.

  4. United Nations Educational, Scientific and Cultural Organization International Symposium on "Trends in Social Science Research on Children" (Austin, Texas, September 9-13, 1979). Final Report and Recommendations.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Hogg Foundation for Mental Health.

    The purpose of this report is to highlight common themes and issues expressed in papers presented at the International Symposium on "Trends in Social Science Research on Children." Issues fall into four general areas: children's needs, particular groups of children, child-rearing environments, and research methodology. Major issues and…

  5. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    NASA Astrophysics Data System (ADS)

    Kim, Sun Young; Irving, Karen E.

    2010-02-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in genetics instruction; and (3) suggests a modified concept mapping assessment tool for both NOS and GCK. A quasi-experimental control group research design was utilized with pretests, posttests, and delayed posttests, combining qualitative data and quantitative data. The experimental group was taught with historical curricular lessons, while the control group was taught with non-historical curricular lessons. The results indicated that students in the experimental group developed better understanding in targeted aspects of NOS immediately after the intervention and retained their learning 2 months after the intervention. Both groups developed similar genetics knowledge in the posttest, and revealed a slight decay in their understanding in the delayed posttest.

  6. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    PubMed

    Nisbet, Matthew; Markowitz, Ezra M

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  7. CESDIS

    NASA Technical Reports Server (NTRS)

    1994-01-01

    CESDIS, the Center of Excellence in Space Data and Information Sciences was developed jointly by NASA, Universities Space Research Association (USRA), and the University of Maryland in 1988 to focus on the design of advanced computing techniques and data systems to support NASA Earth and space science research programs. CESDIS is operated by USRA under contract to NASA. The Director, Associate Director, Staff Scientists, and administrative staff are located on-site at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The primary CESDIS mission is to increase the connection between computer science and engineering research programs at colleges and universities and NASA groups working with computer applications in Earth and space science. The 1993-94 CESDIS year included a broad range of computer science research applied to NASA problems. This report provides an overview of these research projects and programs as well as a summary of the various other activities of CESDIS in support of NASA and the university research community, We have had an exciting and challenging year.

  8. Trends of E-Learning Research from 2000 to 2008: Use of Text Mining and Bibliometrics

    ERIC Educational Resources Information Center

    Hung, Jui-long

    2012-01-01

    This study investigated the longitudinal trends of e-learning research using text mining techniques. Six hundred and eighty-nine (689) refereed journal articles and proceedings were retrieved from the Science Citation Index/Social Science Citation Index database in the period from 2000 to 2008. All e-learning publications were grouped into two…

  9. Scientific Value and Educational Goals: Balancing Priorities and Increasing Adult Engagement in a Citizen Science Project

    ERIC Educational Resources Information Center

    Sickler, Jessica; Cherry, Tammy Messick; Allee, Leslie; Smyth, Rebecca Rice; Losey, John

    2014-01-01

    The Lost Ladybug Project is a citizen science project that engages individuals and groups in research and learning about ladybug population dynamics. With a dual purpose of advancing scientists' research about ladybug populations and achieving learning outcomes with participants, the project's summative evaluation led to critical reflection on the…

  10. Learning to Teach Argumentation: Research and Development in the Science Classroom

    ERIC Educational Resources Information Center

    Simon, Shirley; Erduran, Sibel; Osborne, Jonathan

    2006-01-01

    The research reported in this study focuses on an investigation into the teaching of argumentation in secondary science classrooms. Over a 1-year period, a group of 12 teachers from schools in the greater London area attended a series of workshops to develop materials and strategies to support the teaching of argumentation in scientific contexts.…

  11. A View of Oral Communication Activities in Food Science from the Perspective of a Communication Researcher

    ERIC Educational Resources Information Center

    Vrchota, Denise Ann

    2015-01-01

    Food science researchers have pronounced the Institute of Food Technologists Success Skills to be the most important competency mastered by graduates entering the work force. Much of the content and outcomes of the Success Skills pertains to oral communication skills of public speaking and interpersonal and group communication. This qualitative…

  12. Teachers' Professional Development: The Case of WhatsApp

    ERIC Educational Resources Information Center

    Cansoy, Ramazan

    2017-01-01

    In this study, the kinds of shares made by science teachers in a WhatsApp group as an online community of practice to support professional development were examined. The netnographic research method, one of the qualitative research methods, was used in the study. The messages shared by 12 science teachers, who worked at a private school between…

  13. The Effect of Metacognitive Strategies on Prospective Teachers' Metacognitive Awareness and Self Efficacy Belief

    ERIC Educational Resources Information Center

    Yildiz, Hatice; Akdag, Mustafa

    2017-01-01

    The purpose of the research study was to investigate the effects of the metacognitive strategies used in the course Science and Technology Instruction-II on prospective teachers' metacognitive awareness, science teaching self efficacy belief and teacher self efficacy belief. The research group was composed of 87 third grade students from the…

  14. Research and Teaching: Association of Summer Bridge Program Outcomes with STEM Retention of Targeted Demographic Groups

    ERIC Educational Resources Information Center

    Tomasko, David L.; Ridgway, Judith S.; Waller, Rocquel J.; Olesik, Susan V.

    2016-01-01

    Retention of students to science, technology, engineering, and mathematics (STEM) major has been studied for four cohorts participating in a summer bridge program supported by the National Science Foundation. Students participated in a 6-week program prior to their first term of enrollment at a research-intensive land grant university. Comparisons…

  15. Rodent Habitat on ISS: Advances in Capability for Determining Spaceflight Effects on Mammalian Physiology

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Choi, S.; Gong, C.; Leveson-Gower, D.; Ronca, A.; Taylor, E.; Beegle, J.

    2016-01-01

    Rodent research is a valuable essential tool for advancing biomedical discoveries in life sciences on Earth and in space. The National Research Counsel's Decadal survey (1) emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, new flight hardware, operations, and science capabilities were developed at NASA ARC to support commercial and government-sponsored research. The flight phases of two separate spaceflight missions (Rodent Research-1 and Rodent Research-2) have been completed and new capabilities are in development. The first flight experiments carrying 20 mice were launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4; Rodent Research-1 was dedicated to achieving both NASA validation and CASIS science objectives, while Rodent Reesearch-2 extended the period on orbit to 60 days. Groundbased control groups (housed in flight hardware or standard cages) were maintained in environmental chambers at Kennedy Space Center. Crewmembers previously trained in animal handling transferred mice from the Transporter into Habitats under simultaneous veterinary supervision by video streaming and were deemed healthy. Health and behavior of all mice on the ISS was monitored by video feed on a daily basis, and post-flight quantitative analyses of behavior were performed. The 10 mice from RR-1 Validation (16wk old, female C57Bl6/J) ambulated freely and actively throughout the Habitat, relying heavily on their forelimbs for locomotion. The first on-orbit dissections of mice were performed successfully, and high quality RNA (RIN values>9) and liver enzyme activities were obtained, validating the quality of sample recovery. Post-flight sample analysis revealed that body weights of FLT animals did not differ from ground controls (GC) housed in the same hardware, or vivarium controls (VIV) housed in standard cages. Organ weights analyzed post-flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space.

  16. The Effects of Aesthetic Science Activities on Improving At-Risk Families Children's Anxiety About Learning Science and Positive Thinking

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.; Lin, Huann-shyang; Chen, Hsiang-Ting; Wang, Hsin-Hui; Lin, Chia-Jung

    2014-01-01

    The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families' children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families' children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.

  17. Engaging High School Youth in Paleobiology Research

    NASA Astrophysics Data System (ADS)

    Saltzman, J.; Heim, N. A.; Payne, J.

    2013-12-01

    The chasm between classroom science and scientific research is bridged by the History of Life Internships at Stanford University. Nineteen interns recorded more than 25,500 linear body size measurements of fossil echinoderms and ostracods spanning more than 11,000 species. The interns were selected from a large pool of applicants, and well-established relationships with local teachers at schools serving underrepresented groups in STEM fields were leveraged to ensure a diverse mix of applicants. The lead investigator has been hosting interns in his research group for seven years, in the process measuring over 36,000 foraminfera species as well as representatives from many other fossil groups. We (faculty member, researcher, and educators) all find this very valuable to engage youth in novel research projects. We are able to create an environment where high school students can make genuine contributions to jmportant and unsolved scientific problems, not only through data collection but also through original data analysis. Science often involves long intervals of data collection, which can be tedious, and big questions often require big datasets. Body size evolution is ideally suited to this type of program, as the data collection process requires substantial person-power but not deep technical expertise or expensive equipment. Students are therefore able to engage in the full scientific process, posing previously unanswered questions regarding the evolution of animal size, compiling relevant data, and then analyzing the data in order to test their hypotheses. Some of the projects students developed were truly creative and fun to see come together. Communicating is a critical step in science yet is often lost in the science classroom. The interns submitted seven abstracts to this meeting for the youth session entitled Bright STaRS based on their research projects. To round out the experience, students also learn about the broad field of earth sciences through traditional lectures, active learning exercises, discussions of primary and secondary literature, guest speakers, lab tours and field trips (including to the UC Museum of Paleontology, Hayward fault, fossiliferous Pliocene outcrops, and tidepools). We will use a survey to assess the impact of the History of Life Internships on participant attitudes toward science and careers in science.

  18. Research Opportunities in Solid Earth Science (RESESS): Broadening Participation in Geology and Geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Hubenthal, M.

    2009-12-01

    RESESS is a multi-year, paid, summer research internship program designed for students from underrepresented groups. The students receive extensive mentoring in science research and communication and become part of a community that provides ongoing support. This has been possible in the initial 5 years of the program through collaboration with Significant Opportunities in Atmospheric Research and Science (SOARS), where solid earth students have been an integral part of the SOARS cohort, benefiting from social as well as educational interactions. 11 students have taken part in RESESS for at least one year and of these, four students have graduated in geoscience and entered graduate programs in geophysics and one was recently awarded an NSF graduate fellowship. Students have presented over 20 posters at national science meetings, and one has co-authored a peer-reviewed article. 23 scientists have mentored students over the past 5 years and 17 percent of these mentors are from underrepresented groups in science; 19 other scientists and university/science consortia staff have mentored students in written and verbal presentations and supported their integration into the local communities. Mentorship over a period of years is one important hallmark of this program as students have benefited from the support of UNAVCO, IRIS, USGS, and university scientists and staff during the summer, academic year, and at professional meetings such as AGU, GSA, NABGG, and SACNAS as well as consortia and project science workshops (UNAVCO, IRIS, and EarthScope). One goal of the project has been to educate the scientific community on the benefits of mentoring undergraduate students from underrepresented groups in STEM fields. Increasingly, scientists are approaching RESESS to include this program in their implementation of broader impacts. RESESS has been funded by NSF for the next five years with plans to expand the number of students, geographic and scientific diversity, and sources of funding for a sustainable program. Collaboration with the IRIS REU program and major research programs such as POLENET began over the past three years. Synergistic activities will be increased with the inauguration of the IRIS Minority Speakers Series, partnership with the Colorado Diversity Initiative, and expanded recruitment and research opportunities from universities and colleges nation-wide.

  19. How Do You Like Your Science, Wet or Dry? How Two Lab Experiences Influence Student Understanding of Science Concepts and Perceptions of Authentic Scientific Practice.

    PubMed

    Munn, Maureen; Knuth, Randy; Van Horne, Katie; Shouse, Andrew W; Levias, Sheldon

    2017-01-01

    This study examines how two kinds of authentic research experiences related to smoking behavior-genotyping human DNA (wet lab) and using a database to test hypotheses about factors that affect smoking behavior (dry lab)-influence students' perceptions and understanding of scientific research and related science concepts. The study used pre and post surveys and a focus group protocol to compare students who conducted the research experiences in one of two sequences: genotyping before database and database before genotyping. Students rated the genotyping experiment to be more like real science than the database experiment, in spite of the fact that they associated more scientific tasks with the database experience than genotyping. Independent of the order of completing the labs, students showed gains in their understanding of science concepts after completion of the two experiences. There was little change in students' attitudes toward science pre to post, as measured by the Scientific Attitude Inventory II. However, on the basis of their responses during focus groups, students developed more sophisticated views about the practices and nature of science after they had completed both research experiences, independent of the order in which they experienced them. © 2017 M. Munn et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Geoscience Education and Cognition Research at George Mason University

    NASA Astrophysics Data System (ADS)

    Mattietti, G. K.; Peters, E. E.; Verardo, S.

    2009-12-01

    Cognition research in Geoscience is the focus of a small group of faculty from the College of Science and the College of Education and Human Development at George Mason University. We approached this research when we were involved in an Institution-wide effort to assess critical thinking, one of the competencies mandated for evaluation by the State Council of Higher Education of Virginia. Our group started spontaneously and informally from personal interests and enthusiasm for what and how our students are learning about Geology and in general about science. We want to understand what our students bring to the course, their attitude towards science, their knowledge of the scientific enterprise and preconceived ideas—and what our students take away from the course, beyond the course content. We believe that, with the support of cognitive science, we can improve the learning experience and therefore enhance the learning outcomes for science and non-science majors alike. Our Institution offers introductory Physical and Historical Geology classes populated primarily by non-science-major undergraduates. Geology lectures range in size from 90 to over 220 students per session per semester, with laboratory sessions averaging 27 students per session. With this large student population, it is necessary to use research tools that give us valuable information about student cognition, while being efficient in terms of time use and logistics. Some examples of our work include critical readings on Geoscience topics, surveys on students’ understanding of science as a way of knowing, exercises with built-in self-efficacy assessments, and concept mapping. The common denominator among these tools is that they are calibrated to address one or more of the higher levels in the revised Bloom’s Taxonomy of the Cognitive Domain, which form a complex assessment of student learning processes. These tools, once refined, can provide us with a better view of how our students learn in Geology. While we are still working on our data and fine-tuning our research, we have already started to apply the results to how we teach Physical Geology in the laboratory. For example, we have designed a new laboratory workbook (Kysar-Mattietti and Verardo, 2009), and, this Fall 2009, a few sessions of Physical Geology laboratory are experimenting with enhancing students’ awareness of their learning. We have recently started to publish our work by presenting it at meetings and submitting journal articles, in this sense presenting ourselves officially as a group. At present, our group is not supported as a research entity per se, though the Center for Teaching Excellence and the College of Education and Human Development is providing most of the resources needed at this stage. At this point, we are looking for ways to sustain and acquire visibility and support for our group within our own Institution and to establish connections with other Institutions of higher education where there are programs for research in “geocognition”.

  1. Life Sciences Division annual report, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  2. Bridging the Science/Policy Gap through Boundary Chain Partnerships and Communities of Practice

    NASA Astrophysics Data System (ADS)

    Kalafatis, S.

    2014-12-01

    Generating the capacity to facilitate the informed usage of climate change science by decision makers on a large scale is fast becoming an area of great concern. While research demonstrates that sustained interactions between producers of such information and potential users can overcome barriers to information usage, it also demonstrates the high resource demand of these efforts. Our social science work at Great Lakes Integrated Sciences and Assessments (GLISA) sheds light on scaling up the usability of climate science through two research areas. The first focuses on partnerships with other boundary organizations that GLISA has leveraged - the "boundary chains" approach. These partnerships reduce the transaction costs involved with outreach and have enhanced the scope of GLISA's climate service efforts to encompass new users such as First Nations groups in Wisconsin and Michigan and underserved neighborhoods in St. Paul, Minnesota. The second research area looks at the development of information usability across the regional scale of the eight Great Lakes states. It has identified the critical role that communities of practice are playing in making information usable to large groups of users who work in similar contexts and have similar information needs. Both these research areas demonstrate the emerging potential of flexible knowledge networks to enhance society's ability to prepare for the impacts of climate change.

  3. 75 FR 30408 - National Institute of General Medical Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ..., Minority Biomedical Research Support; 93.821, Cell Biology and Biophysics Research; 93.859, Pharmacology, Physiology, and Biological Chemistry Research; 93.862, Genetics and Developmental Biology Research; 93.88... Review Group; [[Page 30409

  4. Science responses to IUCN Red Listing.

    PubMed

    Jarić, Ivan; Roberts, David L; Gessner, Jörn; Solow, Andrew R; Courchamp, Franck

    2017-01-01

    The IUCN Red List of Threatened Species is often advocated as a tool to assist decision-making in conservation investment and research focus. It is frequently suggested that research efforts should prioritize species in higher threat categories and those that are Data Deficient (DD). We assessed the linkage between IUCN listing and research effort in DD and Critically Endangered (CR) species, two groups generally advocated as research priorities. The analysis of the change in the research output following species classification indicated a listing effect in DD species, while such effect was observed in only a minority of CR species groups. DD species, while chronically understudied, seem to be recognized as research priorities, while research effort for endangered species appears to be driven by various factors other than the IUCN listing. Optimized conservation research focus would require international science planning efforts, harmonized through international mechanisms and promoted by financial and other incentives.

  5. A cross-cultural comparison of high school students' responses to a science centre show on the physics of sound in South Africa.

    PubMed

    Fish, Derek; Allie, Saalih; Pelaez, Nancy; Anderson, Trevor

    2017-10-01

    We report on the attitudes and ideas developed by students from three distinct school groups to a science show about sound. We addressed two research questions: (1) How do the students compare with respect to their (a) attitudes to the sound show and to science in general and (b) changes in conceptual understanding as a result of the show and (2) what changes could be made to the show, and to science shows in general, that would be sensitive to the cultural and language differences of the groups? These were addressed by multiple-choice, pre- and post-tests comprising both attitudinal and conceptual questions. Our results pointed to a common enjoyment of the show but a different understanding of concepts and consequent learning, which suggest that science shows (and science teaching) need to be adjusted to accommodate different cultural groups for maximum impact.

  6. A prototype Upper Atmospheric Research Collaboratory (UARC)

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Atkins, D. E; Weymouth, T. E.; Olson, G. M.; Niciejewski, R.; Finholt, T. A.; Prakash, A.; Rasmussen, C. E.; Killeen, T.; Rosenberg, T. J.

    1995-01-01

    The National Collaboratory concept has great potential for enabling 'critical mass' working groups and highly interdisciplinary research projects. We report here on a new program to build a prototype collaboratory using the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland and a group of associated scientists. The Upper Atmospheric Research Collaboratory (UARC) is a joint venture of researchers in upper atmospheric and space science, computer science, and behavioral science to develop a testbed for collaborative remote research. We define the 'collaboratory' as an advanced information technology environment which enables teams to work together over distance and time on a wide variety of intellectual tasks. It provides: (1) human-to-human communications using shared computer tools and work spaces; (2) group access and use of a network of information, data, and knowledge sources; and (3) remote access and control of instruments for data acquisition. The UARC testbed is being implemented to support a distributed community of space scientists so that they have network access to the remote instrument facility in Kangerlussuaq and are able to interact among geographically distributed locations. The goal is to enable them to use the UARC rather than physical travel to Greenland to conduct team research campaigns. Even on short notice through the collaboratory from their home institutions, participants will be able to meet together to operate a battery of remote interactive observations and to acquire, process, and interpret the data.

  7. Thrombosis in Cancer: Research Priorities Identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group.

    PubMed

    Key, Nigel S; Khorana, Alok A; Mackman, Nigel; McCarty, Owen J T; White, Gilbert C; Francis, Charles W; McCrae, Keith R; Palumbo, Joseph S; Raskob, Gary E; Chan, Andrew T; Sood, Anil K

    2016-07-01

    The risk for venous thromboembolism (VTE) is increased in cancer and particularly with chemotherapy, and it portends poorer survival among patients with cancer. However, many fundamental questions about cancer-associated VTE, or Trousseau syndrome, remain unanswered. This report summarizes the proceedings of a working group assembled by the NCI and NHLBI in August 2014 to explore the state of the science in cancer-associated VTE, identify clinically important research gaps, and develop consensus on priorities for future research. Representing a convergence of research priorities between the two NIH Institutes, the workshop addressed epidemiologic, basic science, clinical, and translational issues in cancer-associated VTE. Cancer Res; 76(13); 3671-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. The Drawbacks of Project Funding for Epistemic Innovation: Comparing Institutional Affordances and Constraints of Different Types of Research Funding.

    PubMed

    Franssen, Thomas; Scholten, Wout; Hessels, Laurens K; de Rijcke, Sarah

    2018-01-01

    Over the past decades, science funding shows a shift from recurrent block funding towards project funding mechanisms. However, our knowledge of how project funding arrangements influence the organizational and epistemic properties of research is limited. To study this relation, a bridge between science policy studies and science studies is necessary. Recent studies have analyzed the relation between the affordances and constraints of project grants and the epistemic properties of research. However, the potentially very different affordances and constraints of funding arrangements such as awards, prizes and fellowships, have not yet been taken into account. Drawing on eight case studies of funding arrangements in high performing Dutch research groups, this study compares the institutional affordances and constraints of prizes with those of project grants and their effects on organizational and epistemic properties of research. We argue that the prize case studies diverge from project-funded research in three ways: 1) a more flexible use, and adaptation of use, of funds during the research process compared to project grants; 2) investments in the larger organization which have effects beyond the research project itself; and 3), closely related, greater deviation from epistemic and organizational standards. The increasing dominance of project funding arrangements in Western science systems is therefore argued to be problematic in light of epistemic and organizational innovation. Funding arrangements that offer funding without scholars having to submit a project-proposal remain crucial to support researchers and research groups to deviate from epistemic and organizational standards.

  9. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    NASA Astrophysics Data System (ADS)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic <0.44> is higher than students who received lesson with ILD without science magic <0.25>. Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  10. Why and How Political Science Can Contribute to Public Health? Proposals for Collaborative Research Avenues.

    PubMed

    Gagnon, France; Bergeron, Pierre; Clavier, Carole; Fafard, Patrick; Martin, Elisabeth; Blouin, Chantal

    2017-04-05

    Written by a group of political science researchers, this commentary focuses on the contributions of political science to public health and proposes research avenues to increase those contributions. Despite progress, the links between researchers from these two fields develop only slowly. Divergences between the approach of political science to public policy and the expectations that public health can have about the role of political science, are often seen as an obstacle to collaboration between experts in these two areas. Thus, promising and practical research avenues are proposed along with strategies to strengthen and develop them. Considering the interdisciplinary and intersectoral nature of population health, it is important to create a critical mass of researchers interested in the health of populations and in healthy public policy that can thrive working at the junction of political science and public health. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  11. Coaching to Augment Mentoring to Achieve Faculty Diversity: A Randomized Controlled Trial.

    PubMed

    Williams, Simon N; Thakore, Bhoomi K; McGee, Richard

    2016-08-01

    The Academy for Future Science Faculty (the Academy) is a novel coaching intervention for biomedical PhD students designed to address limitations in previous efforts to promote faculty diversity. Unlike traditional research mentoring, the Academy includes both group and individual coaching, coaches have no research or evaluation roles with the students, and it is based on social science theories. The authors present a qualitative case study of one of the coaching groups and provide statistical analyses indicating whether one year in the Academy effects students' perceptions of the achievability and desirability of an academic career. The authors tested (July 2012-July 2013), with Northwestern University ethical approval, the Academy via a longitudinal randomized controlled trial. Participants were 121 latter-stage biomedical PhD students. The authors collected data via questionnaires, interviews, and meeting recordings. The case study shows how group career coaching can effectively supplement traditional one-to-one research mentoring; provide new role models for underrepresented minority students; and provide theory-based lenses through which to engage in open conversations about race, gender, and science careers. Repeated-measures analysis of variance showed that perceived achievability increased in the Academy group from baseline to one-year follow-up (mean, 5.75 versus 6.39) but decreased in the control group (6.58 versus 5.81). Perceived desirability decreased significantly less (P < .05) in the Academy group (7.00 versus 6.36) than in the control group (7.83 versus 5.97). Early results suggest that an academic career coaching model can effectively supplement traditional research mentoring and promote persistence toward academic careers.

  12. BiteScis: Connecting K-12 teachers with science graduate students to produce lesson plans on modern science research

    NASA Astrophysics Data System (ADS)

    Battersby, Cara

    2016-01-01

    Many students graduate high school having never learned about the process and people behind modern science research. The BiteScis program addresses this gap by providing easily implemented lesson plans that incorporate the whos, whats, and hows of today's scienctific discoveries. We bring together practicing scientists (motivated graduate students from the selective communicating science conference, ComSciCon) with K-12 science teachers to produce, review, and disseminate K-12 lesson plans based on modern science research. These lesson plans vary in topic from environmental science to neurobiology to astrophysics, and involve a range of activities from laboratory exercises to art projects, debates, or group discussion. An integral component of the program is a series of short, "bite-size" articles on modern science research written for K-12 students. The "bite-size" articles and lesson plans will be made freely available online in an easily searchable web interface that includes association with a variety of curriculum standards. This ongoing program is in its first year with about 15 lesson plans produced to date.

  13. Cooperative Learning about Nature of Science with a Case from the History of Science

    ERIC Educational Resources Information Center

    Wolfensberger, Balz; Canella, Claudia

    2015-01-01

    This paper reports a predominantly qualitative classroom study on cooperative learning about nature of science (NOS) using a case from the history of science. The purpose of the research was to gain insight into how students worked with the historical case study during cooperative group work, how students and teachers assessed the teaching unit,…

  14. A Study on the Evaluation of Science Projects of Primary School Students Based on Scientific Criteria

    ERIC Educational Resources Information Center

    Gungor, Sema Nur; Ozer, Dilek Zeren; Ozkan, Muhlis

    2013-01-01

    This study re-evaluated 454 science projects that were prepared by primary school students between 2007 and 2011 within the scope of Science Projects Event for Primary School Students. Also, submitted to TUBITAK BIDEB Bursa regional science board by MNE regional work groups in accordance with scientific research methods and techniques, including…

  15. The Effect of Physical Activity on Science Competence and Attitude towards Science Content

    NASA Astrophysics Data System (ADS)

    Klinkenborg, Ann Maria

    This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one instructional method to consider. Researchers have typically focused on integration with English/language arts (ELA) and mathematics. The purpose of this study was to determine the effect of physical activity on science competence and attitude towards science. Fifty-three third grade children participated in this investigation; one group received science instruction with a physical activity intervention while the other group received traditional science instruction. Participants in both groups completed a modified version of What I Really Think of Science attitude scale (Pell & Jarvis, 2001) and a physical science test of competence prior to and following the intervention. Children were videotaped during science instruction and their movement coded to measure the proportion of time spent in MVPA. Results revealed that children in the intervention group demonstrated greater MVPA during the instructional period. A moderate to large effect size (partial eta squared = .091) was seen in the intervention group science competence post-test indicating greater understanding of force, motion, work, and simple machines concepts than that of the control group who were less physically active. There was no statistically significant attitude difference between the intervention and control groups post-test, (F(1,51) = .375, p = .543). These results provide evidence that integration can effectively present physical science content and have a positive impact on the number of minutes of health-enhancing physical activity in a school day.

  16. The Effect of a Literature-Based Program Integrated into Literacy and Science Instruction on Achievement, Use, and Attitudes toward Literacy and Science. Reading Research Report No. 37.

    ERIC Educational Resources Information Center

    Morrow, Lesley Mandel; And Others

    A study determined the impact of integrating literacy and science programs on literacy achievement, use of literature, and attitude toward reading and science. Six third-grade classes (128 students) of ethnically diverse children were assigned to one control and two experimental groups (literature/science program and literature only program).…

  17. Actitudes y practicas educativas hacia la inclusion de estudiantes con impedimentos en la ensenanza de Ciencia

    NASA Astrophysics Data System (ADS)

    Vargas Rodriguez, Mayra

    This research is about the attitudes and educational practices towards inclusion of students with disabilities in science classroom. Four research questions were raised: (1) What are the attitudes of science teachers about the inclusion of students with disabilities?, (2) What is the relationship between attitudes and teachers demographics characteristics?, (3) What are the factors that influence the attitudes of science teachers? and (4) What does the Science teachers do in their educational practices to teach students with disabilities? A mixed design of two phases was performed to answer this question. In the first phase a questionnaire was submit to 79 Science teachers from the middle and high school level. This questionnaire with the title Attitudes and educational practices towards inclusion of students with disabilities in Science teaching was developed by the researcher. In the second phase a focus group was conducted with Science and Special Education teachers. Also, two structured interviews by telephone were conducted. The findings indicate that the attitudes of science teachers who participated in the first phase of this research seems to be neutral. However, in their responses to the interview or focus group the attitudes were perceived negative. This attitudes are influences by a number of factors that hinder the process of inclusion. Using a nonparametric test with a chi-square test, it was determined that the number of students in a classroom is one of the factors that have a significant relationship with attitudes. The modifications that Science teachers do in their educational practices these will depend on the discapacities. But usually the modification will be in the evaluation of the students. Using assessments as a technique. Also, individualized instruction and peers are educational practices that highlight.

  18. An Example of Large-Group Drama and Cross-Year Peer Assessment for Teaching Science in Higher Education

    ERIC Educational Resources Information Center

    Sloman, Katherine; Thompson, Richard

    2010-01-01

    Undergraduate students pursuing a three-year marine biology degree programme (n = 86) experienced a large-group drama aimed at allowing them to explore how scientific research is funded and the associated links between science and society. In the drama, Year 1 students played the "general public" who decided which environmental research…

  19. Science With A Vengeance

    NASA Astrophysics Data System (ADS)

    Devorkin, David H.

    The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.

  20. The first Research Consensus Summit of the Society for Simulation in Healthcare: conduction and a synthesis of the results.

    PubMed

    Dieckmann, Peter; Phero, James C; Issenberg, S Barry; Kardong-Edgren, Suzie; Ostergaard, Doris; Ringsted, Charlotte

    2011-08-01

    In this article, we describe the preparation and execution of the first Research Consensus Summit (Summit) of the Society for Simulation in Healthcare (SSH) held in January 2011 in New Orleans, Louisiana. The goals of the Summit were to provide guidance for better simulation-related research, to broaden the scope of topics investigated, and to highlight the importance of simulation-related research. An international Core Group (the authors of this article) worked with the SSH Research Committee to identify 10 topic areas relevant for future research that would be examined by the 10 Topic Groups composed of Topic Chairs and Topic Group Members. Each Topic Group prepared a monograph and slide presentation on their topic which was presented at the 2-day Summit. The audience provided feedback on each presentation. Based on this feedback, the Topic Groups revised their presentations and monographs for publication in this supplement to Simulation in Healthcare. The Core Group has synthesized an overview of the key Summit themes in this article. In some groups, the agreement was that there is currently no consensus about the state of the science in certain topic aspects. Some key themes emerged from the Topic Groups. The conceptual and theoretical bases of simulation-related research, as well as the methods used and their methodological foundations, need to be more explicitly described in future publications. Although no single method is inherently better, the mix of research methods chosen should match the goal of each study. The impact of simulation, whether direct or indirect, needs to be assessed across different levels of training, and larger, more complex contexts need to be taken into account. When interpreting simulation-related research, the ecological validity of the results needs to be taken into consideration. The scope of simulation-related research can be widened from having simulation as the focus of research (research about simulation), to using simulation to investigate other research questions (research with simulation). Simulation-related research can benefit from an improved understanding of structural differences and similarities with other domains. The development of simulation equipment and concepts will benefit from applying known and available science-based design frameworks. Overall, the context of simulation-related research needs to be better understood. The progress of research depends on building overarching and sustainable research programs that relate individual studies with each other. The Summit was successful in taking a snapshot of the state of the science. Future summits might explore these topics further, monitor progress, and address new topics.

  1. Food-based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    PubMed Central

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students’ understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. Previous studies have shown that students experiencing the FoodMASTER curriculum were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations. The purpose of this study was to: 1) assess 4th graders food-related multidisciplinary science knowledge, and 2) compare gains in food-related science knowledge after implementation of an integrated, food-based curriculum. During the 2009–2010 school year, FoodMASTER researchers implemented a hands-on, food-based intermediate curriculum in eighteen 4th grade classrooms in Ohio (n=9) and North Carolina (n=9). Sixteen classrooms in Ohio (n=8) and North Carolina (n=8), following their standard science curricula, served as comparison classrooms. Students completed a researcher-developed science knowledge exam, consisting of 13 multiple-choice questions administered pre- and post-test. Only subjects with pre- and post-test scores were entered into the sample (Intervention n=343; Control n=237). No significant differences were observed between groups at pre-test. At post-test, the intervention group scored (9.95±2.00) significantly higher (p=.000) than the control group (8.84±2.37) on a 13-point scale. These findings suggest the FoodMASTER intermediate curriculum is more effective than a standard science curriculum in increasing students’ multidisciplinary science knowledge related to food. PMID:25152539

  2. The role of political affiliation in employment decisions: A model and research agenda.

    PubMed

    Roth, Philip L; Goldberg, Caren B; Thatcher, Jason B

    2017-09-01

    Organizational researchers have studied how individuals identify with groups and organizations and how this affiliation influences behavior for decades (e.g., Tajfel, 1982). Interestingly, investigation into political affiliation and political affiliation similarity in the organizational sciences is extremely rare. This is striking, given the deep political divides that exist between groups of individuals described in the political science literature. We draw from theories based on similarity, organizational identification, and person-environment fit, as well as theoretical notions related to individuating information, to develop a model, the political affiliation model (PAM), which describes the implications of political affiliation and political similarity for employment decisions. We set forth a number of propositions based on PAM, to spur future research in the organizational sciences for a timely topic which has received little attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Effects of Web based inquiry on physical science teachers and students in an urban school district

    NASA Astrophysics Data System (ADS)

    Stephens, Joanne

    An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study provides insights about utilizing technology to promote science inquiry teaching and learning. This study describes students' and teachers' perceptions of using web based inquiry to support scientific inquiry.

  4. Rethinking the Way We Do Research: The Benefits of Community-Engaged, Citizen Science Approaches and Nontraditional Collaborators.

    PubMed

    Dick, Danielle M

    2017-11-01

    There is tremendous opportunity for basic scientists to enhance the impact of our research by engaging more deeply with nontraditional partners and expanding the way we think about interdisciplinary research teams. These efforts can include more deeply engaging our participants, and the broader public, in our research; working with individuals from other fields to take a more active role in the dissemination and translation of our research; and working with collaborators from the arts and communication sciences to make our research more engaging and understandable. In this review, I provide an overview of our efforts along these lines in a project called Spit for Science (https://spit4science.vcu.edu/). This project draws from concepts central to community-engaged participatory research and citizen science. Although conducting research in this way involves a considerable time commitment, it has many potential benefits, including raising awareness about our research areas and findings; creating a public that is more connected to and aware of the importance of research, which can have potential implications for funding for science; creating new job opportunities for students; and increasing participation rates in our studies. By thinking creatively about how we conduct our research, and more broadly engaging diverse groups of individuals in the research process, we have the potential to significantly increase the reach and impact of our science. Copyright © 2017 by the Research Society on Alcoholism.

  5. Nanotechnology in Dutch science cafés: Public risk perceptions contextualised.

    PubMed

    Dijkstra, Anne M; Critchley, Christine R

    2016-01-01

    Understanding public perceptions of and attitudes to nanotechnology is important in order to understand and facilitate processes of dialogue and public participation. This research quantitatively analysed risk perceptions and attitudes of Dutch science café participants (n = 233) and compared these with members of the Dutch public (n = 378) who had not attended a café but were interested in science and technology as well. A qualitative analysis of the meetings contextualised and enriched the quantitative findings. Both groups shared similar key attitudes and were positive about nanotechnology while the Dutch café participants were even more positive about nanotechnology than the group of non-participants. The perception that nanotechnology would lead to risk applications was only predictive of attitudes for the non-participants. The qualitative analysis showed that café participants and speakers considered discussion of the risks, benefits and related issues important. Further research could investigate how science cafés can play a role in the science-society debate. © The Author(s) 2014.

  6. Developing Environmentally Responsible Behaviours Through the Implementation of Argumentation- and Problem-Based Learning Models

    NASA Astrophysics Data System (ADS)

    Fettahlıoğlu, Pınar; Aydoğdu, Mustafa

    2018-04-01

    The purpose of this research is to investigate the effect of using argumentation and problem-based learning approaches on the development of environmentally responsible behaviours among pre-service science teachers. Experimental activities were implemented for 14 weeks for 52 class hours in an environmental education class within a science teaching department. A mixed method was used as a research design; particularly, a special type of Concurrent Nested Strategy was applied. The quantitative portion was based on the one-group pre-test and post-test models, and the qualitative portion was based on the holistic multiple-case study method. The quantitative portion of the research was conducted with 34 third-year pre-service science teachers studying at a state university. The qualitative portion of the study was conducted with six pre-service science teachers selected among the 34 pre-service science teachers based on the pre-test results obtained from an environmentally responsible behaviour scale. t tests for dependent groups were used to analyse quantitative data. Both descriptive and content analyses of the qualitative data were performed. The results of the study showed that the use of the argumentation and problem-based learning approaches significantly contributed to the development of environmentally responsible behaviours among pre-service science teachers.

  7. Improving Mobile Infrastructure for Pervasive Personal Computing

    DTIC Science & Technology

    2007-11-01

    fulfillment of the requirements for the degree of Master of Science. Copyright c© 2007 Ajay Surie This research was supported by the National Science Foundation...NSF) under grant number CNS-0509004 and by the Army Research Office (ARO) through grant number DAAD19-02-1-0389 (“Perpetually Available and Secure...efforts my final project could not have been successful. Working with the members of my research group, Niraj Tolia, Benjamin Gilbert, Jan Harkes, Adam

  8. College-Age & Young Adults

    MedlinePlus

    ... 15, 2018. press ctrl+c to copy ​Research Reports ​Research Reports This series of reports simplifies the science of research findings for the ... public, legislators, educational groups, and practitioners. The series reports on research findings of national interest. View all ​ ...

  9. 77 FR 27480 - Outer Continental Shelf Scientific Committee; Announcement of Plenary Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... current issues. On Wednesday, May 23, the Committee will meet in discipline breakout groups (i.e., biology/ecology, physical sciences, and social sciences) to review the specific research plans of BOEM's regional...

  10. Enabling Research without Geographical Boundaries via Collaborative Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Gesing, S.

    2016-12-01

    Collaborative research infrastructures on global scale for earth and space sciences face a plethora of challenges from technical implementations to organizational aspects. Science gateways - also known as virtual research environments (VREs) or virtual laboratories - address part of such challenges by providing end-to-end solutions to aid researchers to focus on their specific research questions without the need to become acquainted with the technical details of the complex underlying infrastructures. In general, they provide a single point of entry to tools and data irrespective of organizational boundaries and thus make scientific discoveries easier and faster. The importance of science gateways has been recognized on national as well as on international level by funding bodies and by organizations. For example, the US NSF has just funded a Science Gateways Community Institute, which offers support, consultancy and open accessible software repositories for users and developers; Horizon 2020 provides funding for virtual research environments in Europe, which has led to projects such as VRE4EIC (A Europe-wide Interoperable Virtual Research Environment to Empower Multidisciplinary Research Communities and Accelerate Innovation and Collaboration); national or continental research infrastructures such as XSEDE in the USA, Nectar in Australia or EGI in Europe support the development and uptake of science gateways; the global initiatives International Coalition on Science Gateways, the RDA Virtual Research Environment Interest Group as well as the IEEE Technical Area on Science Gateways have been founded to provide global leadership on future directions for science gateways in general and facilitate awareness for science gateways. This presentation will give an overview on these projects and initiatives aiming at supporting domain researchers and developers with measures for the efficient creation of science gateways, for increasing their usability and sustainability under consideration of the breadth of topics in the context of science gateways. It will go into detail for the challenges the community faces for collaborative research on global scale without geographical boundaries and will provide suggestions for further enhancing the outreach to domain researchers.

  11. Contradictions in stem cell research education amongst science educators and Buddhist, Christian and Muslim theologians

    NASA Astrophysics Data System (ADS)

    Elhayboubi, Samira Nawal

    We examine how teachers approach stem cell research (SCR) as a controversial religio-scientific issue, and how theologians derive rulings in SCR. We also examine the contradictions teachers have regarding religio-scientific aspect of SCR. Two observations were the igniters of this study, increasing public involvement in political decision-making and changing demographics among voters. Two samples were gathered, a teachers' group and a theologians' group. The teachers' group consisted of 43 graduate-level Science education teachers and teachers-in-training from the University of Texas at Dallas and Stanford University. The theologian's group consisted of theologians from 3 denominations, Buddhism, Christianity and Islam. Data was obtained using Likert-surveys, open-ended questions and interviews. Results show that majority of the teachers' group are open to discussing SCR but fear retaliation.

  12. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.

  13. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.

  14. A study of the historical role of African Americans in science, engineering and technology

    NASA Astrophysics Data System (ADS)

    Jones, Keith Wayne

    2000-11-01

    The purpose of this study was to determine if there is adequate documentation of an historical role of African and African American involvement in science, engineering, and technology. Through the use of history of science and technology research methodology, along with an examination of the sociological and economic impacts of adequately accredited innovations and inventions contributed by Africans and African Americans, the researcher investigated their contributions to the following areas of science and technology: life science, physical sciences and chemistry, engineering, and science education. In regard to the timeframe for this study, the researcher specifically investigated African and African American involvement in science and technology that includes periods prior to black enslavement, scientific racism and colonialism, as well as during and after those periods. This research study reveals that there are adequate historical data regarding African and African American contributions to science, engineering, and technology. The data reveals that for many millennia African peoples have been continually involved in science and world science histories. The data further show that the numbers of African Americans acquiring BS, MS, Ph.D., Doctor of Science and Doctor of Engineering degrees in science and engineering disciplines are increasing. That these increases are not happening at a rate representative of the present or future African American percentages of the population. Consequently, because of future changes in our nation's demographics, increasing the numbers of people from under-represented groups who pursue scientific and engineering professions has become a matter of national security at the highest levels of government. Moreover, African Americans, Hispanics, and Native Americans are not pursuing careers or taking courses in science and engineering at a rate high enough to fulfill the prospective needs for the United States' industries, government, and military. Projections are that, in the 21st century, there will be even greater needs for more scientists, engineers, information technologists, and other types of scientific workers. The data from this study indicate that more inclusive history of science and technology can be used as a means for encouraging more people from under-represented groups to become scientifically literate and to pursue science and engineering careers.

  15. Prospective Science Teachers' Perception Related to Formative Assessment Approaches in Turkey

    ERIC Educational Resources Information Center

    Yasar, M. Diyaddin

    2017-01-01

    In this study, it was aimed to investigate the perceptions and competences of prospective science teachers about formative assessment approaches. Qualitative case study methodology was used in the study. Research group consisted of 17 senior students of science education. As a data collection tool, a semi-structured "Formative Assessment…

  16. The Effect on Elementary Science Education Based on Student's Pre-Inquiry

    ERIC Educational Resources Information Center

    Kang, Houn Tae; Noh, Suk Goo

    2017-01-01

    In this research, after extracting the pre-inquiries (student-level question) for which students had curiosity in the elementary science and analyzing their correlation with the elementary science curriculum, highly correlated inquiries (meaningful pre-inquiries) were selected and applied in class. After organizing an experiment group and a…

  17. National Association for Research in Science Teaching (NARST). Annual Meeting (65th, Cambridge, Massachusetts, March 21-25, 1992). Abstracts of Presented Papers.

    ERIC Educational Resources Information Center

    Govindarajan, Girish, Ed.

    This product of an annual meeting presents abstracts of symposia, contributed papers, paper sets, discussion groups, reports, poster sessions, and panel presentations. Topics include: science teaching, gender differences, science education reform, constructivism, biological concepts, concept mapping, attitude/behavior change, conceptual…

  18. Moving the Lab into the Field: The Making of Pathologized (Non)Citizens in US Science Education

    ERIC Educational Resources Information Center

    Kirchgasler, Kathryn L.

    2018-01-01

    This article examines how notions of health and citizenship have become entangled in US science education reforms targeting particular populations. Current science education policy assumes that marginalized groups have been historically ignored, and that new research is required to "make diversity visible" in order to adapt instruction…

  19. The future of 'pure' medical science: the need for a new specialist professional research system.

    PubMed

    Charlton, Bruce G; Andras, Peter

    2005-01-01

    Over recent decades, medical research has become mostly an 'applied' science which implicitly aims at steady progress by an accumulation of small improvements, each increment having a high probability of validity. Applied medical science is, therefore, a social system of communications for generating pre-publication peer-reviewed knowledge that is ready for implementation. However, the need for predictability makes modern medical science risk-averse and this is leading to a decline in major therapeutic breakthroughs where new treatments for new diseases are required. There is need for the evolution of a specialized professional research system of pure medial science, whose role would be to generate and critically evaluate radically novel and potentially important theories, techniques, therapies and technologies. Pure science ideas typically have a lower probability of being valid, but the possibility of much greater benefit if they turn out to be true. The domination of medical research by applied criteria means that even good ideas from pure medical science are typically ignored or summarily rejected as being too speculative. Of course, radical and potentially important ideas may currently be published, but at present there is no formal mechanism by which pure science publications may be received, critiqued, evaluated and extended to become suitable for 'application'. Pure medical science needs to evolve to constitute a typical specialized scientific system of formal communications among a professional community. The members of this putative profession would interact via close research groupings, journals, meetings, electronic and web communications--like any other science. Pure medical science units might arise as elite grouping linked to existing world-class applied medical research institutions. However, the pure medical science system would have its own separate aims, procedures for scientific evaluation, institutional organization, funding and support arrangements; and a separate higher-professional career path with distinctive selection criteria. For instance, future leaders of pure medical science institutions would need to be selected on the basis of their specialized cognitive aptitudes and their record of having generated science-transforming ideas, as well as their research management skills. Pure medical science would work most effectively and efficiently if practiced in many independent and competing institutions in several different countries. The main 'market' for pure medical science would be the applied medical scientists, who need radical strategies to solve problems which are not yielding to established methods. The stimulus to create such elite pure medical science institutions might come from the leadership of academic 'entrepreneurs' (for instance, imaginative patrons in the major funding foundations), or be triggered by a widespread public recognition of the probable exhaustion of existing applied medical science approaches to solving major therapeutic challenges.

  20. Effects of the Sense-Based Science Education Program on Scientific Process Skills of Children Aged 60-66 Months

    ERIC Educational Resources Information Center

    Tekerci, Hacer; Kandir, Adalet

    2017-01-01

    Purpose: This study aimed to examine the effects of the Sense-Based Science Education Program on 60-66 months old children's scientific process skills. Research Methods: In this study, which carries experimental attribute features, the pre-test/final-test/observing-test control grouped experimental pattern, and qualitative research were used.…

  1. News

    NASA Astrophysics Data System (ADS)

    2001-01-01

    MASTERCLASSES Researchers help motivate school students; HIGHER EDUCATION Undergraduate physics inquiry launched Sir Peter; PUBLIC UNDERSTANDING OF SCIENCE Chemists take the lead to get science groups pulling together; RESEARCH FRONTIERS Spintronic Chips; LOWER SECONDARY CURRICULUM Why do we teach physics? TEACHING COMMUNITY e-Teachers; AWARDS Nobel Prize; HIGHER EDUCATION Project Phoenics; PARTICLE PHYSICS LEP Closure; TEACHER TRAINING Training salary fails to attract recruits; EVENTS Physics moves into the spotlight

  2. A Coding System for Qualitative Studies of the Information-Seeking Process in Computer Science Research

    ERIC Educational Resources Information Center

    Moral, Cristian; de Antonio, Angelica; Ferre, Xavier; Lara, Graciela

    2015-01-01

    Introduction: In this article we propose a qualitative analysis tool--a coding system--that can support the formalisation of the information-seeking process in a specific field: research in computer science. Method: In order to elaborate the coding system, we have conducted a set of qualitative studies, more specifically a focus group and some…

  3. The Art and Science of Educational Inquiry: Analysis of Performance-Based Focus Groups with Novice Bilingual Teachers

    ERIC Educational Resources Information Center

    Cahnmann-Taylor, Melisa; Wooten, Jennifer; Souto-Manning, Mariana; Dice, Jaime L.

    2009-01-01

    Background/Context: For over two decades, the boundaries between the social sciences and the humanities have become blurred, and numerous articles and books have been written about the infusion of the arts in qualitative research as a means to collect and analyze data and to represent findings. Yet these arts-based research processes, although…

  4. A study of the effects of gender and different instructional media (computer-assisted instruction tutorials vs. textbook) on student attitudes and achievement in a team-taught integrated science class

    NASA Astrophysics Data System (ADS)

    Eardley, Julie Anne

    The purpose of this study was to determine the effect of different instructional media (computer assisted instruction (CAI) tutorial vs. traditional textbook) on student attitudes toward science and computers and achievement scores in a team-taught integrated science course, ENS 1001, "The Whole Earth Course," which was offered at Florida Institute of Technology during the Fall 2000 term. The effect of gender on student attitudes toward science and computers and achievement scores was also investigated. This study employed a randomized pretest-posttest control group experimental research design with a sample of 30 students (12 males and 18 females). Students had registered for weekly lab sessions that accompanied the course and had been randomly assigned to the treatment or control group. The treatment group used a CAI tutorial for completing homework assignments and the control group used the required textbook for completing homework assignments. The Attitude toward Science and Computers Questionnaire and Achievement Test were the two instruments administered during this study to measure students' attitudes and achievement score changes. A multivariate analysis of covariance (MANCOVA), using hierarchical multiple regression/correlation (MRC), was employed to determine: (1) treatment versus control group attitude and achievement differences; and (2) male versus female attitude and achievement differences. The differences between the treatment group's and control group's homework averages were determined by t test analyses. The overall MANCOVA model was found to be significant at p < .05. Examining research factor set independent variables separately resulted in gender being the only variable that significantly contributed in explaining the variability in a dependent variable, attitudes toward science and computers. T test analyses of the homework averages showed no significant differences. Contradictory to the findings of this study, anecdotal information from personal communication, course evaluations, and homework assignments indicated favorable attitudes and higher achievement scores for a majority of the students in the treatment group.

  5. Methamphetamine: Glossary

    MedlinePlus

    ... Need to Know Marijuana: Facts for Teens ​Research Reports This series of reports simplifies the science of research findings for the ... public, legislators, educational groups, and practitioners. The series reports on research findings of national interest. View all ​ ...

  6. Using Climate Change for Teaching Experimental Sciences in Teacher Education through Research Projects on Recycling at the University of Lleida (Western Catalonia)

    NASA Astrophysics Data System (ADS)

    Sebastia, M. T.; Verdú, N.

    2016-12-01

    Although climate change is one of the most pressing challenges faced by humankind, climate change illiteracy is frequent among primary school teacher college students reaching the second school year at the University of Lleida (UdL). Climate change was chosen to structure the course on Experimental Sciences of the bilingual group because this topic involves all sciences, and because of the importance of the subject for future educators. In the bilingual group of the Education Faculty, Experimental Sciences is taught in English, and there are usually 1-2 international students in addition to around 20 local students. To increase the awareness about climate change and make this topic closer to the students' daily experience, a research project on recycling at the University of Lleida was assigned per groups of 4 students. The assignment was semi-structured, the students received a reduced set of instructions and large freedom to focus their particular projects. Additional instructions were provided along the way. We present results from the comparisons among faculties at UdL, and among the different users: students, professors and researchers, and administration staff. We also discuss the impact that this project had in the learning ability of the students and their awareness about climate change.

  7. USRA/RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1992-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under a cooperative agreement with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing; Advanced Methods for Scientific Computing; Learning Systems; High Performance Networks and Technology; Graphics, Visualization, and Virtual Environments.

  8. Engaging Research Groups: Rethinking Information Literacy for Graduate Students

    ERIC Educational Resources Information Center

    Fong, Bonnie L.; Hansen, Darren B.

    2012-01-01

    Librarians have traditionally taught information literacy skills to science graduate students in separate courses dedicated to information-seeking, during assignment(s)-based library sessions for other courses, or through workshops. There is little mention in the professional literature of teaching graduate students within their research groups.…

  9. Scientific Disclosure: Social Representations of Brazilian Researchers Acting in the Field of Astronomy

    NASA Astrophysics Data System (ADS)

    Carneiro, D. L. C. M.

    2014-10-01

    Science dissemination has unquestioned role on intermediate science and society and it is a wide subject of research in education, considering that the construction of knowledge flows in different spaces, and, consequently, produces and disseminates representations. It presents as a motivator for reflection and as a necessary tool to prevent that knowledge do not become synonymous with domination and power. Thereby, the Astronomy assumes a remarkable role as a trigger of scientific dissemination process, due to its interdisciplinary character. From this viewpoint and the theoretical and methodological framework of the Theory of Social Representations (TRS), grounded by Serge Moscovici, this research, qualitative in nature, seek to answer: What are the social representations about scientific dissemination of Brazilian researchers that act in the field of astronomy? The work was based on Longhini, Gomide and Fernandes (2013) research, which delineate the Brazilian scientific community involved in Astronomy, identifying two groups of researchers with different training paths: one with postgraduate in education and related fields, and other with postgraduate in Physics or Astronomy. Thus, this study had the subquestion: Does the researchers of these groups have different conceptions about the practices of science dissemination? A sample was composed of six subjects, three of each formative course, who participated in semi-structured interviews analyzed following the steps outlined by Spink (2012). The results show that the science dissemination is part of the researches schedule's, with a positive image relative to promote scientific knowledge to population and similar on practical approach between the two groups. Point to two social representations of science dissemination: one for society in general, moved by passion, anchored in values and beliefs, in satisfaction of seeing the results that their actions bring to people's lives; and the other to their pairs. Regarding the first, the core of this work, emerge gaps that hinder the practice of science dissemination, such as lack of professionalism and difficulty of using language accessible to the lay public; the lack of appreciation, so far, of the area and the bureaucracy required in the execution of projects, which come from institutions and sponsoring agencies, and the negative representation about the media, in general, are added to the list of obstacles, inferring that science dissemination is a paradigm in construction. Other considerations are that astronomy is not part of basic education systematic way or the media in general and, not infrequently, in these areas, this science presents with misconceptions. And there is an intersection between science education and science dissemination, wherein the researcher must approach to the elementary school teachers and the population. There is an indication of expanding non-formal spaces of education and the creation of a specific policy for Astronomy. In short, the found representations ponder some of the concerns currently present in society and that are echoed in the theoretical framework of this study, demonstrating that, in Brazil, despite advances, in general, science dissemination, science education, and, specifically, Astronomy Education, are in a social fragility context.

  10. Broadening the voice of science: Promoting scientific communication in the undergraduate classroom.

    PubMed

    Cirino, Lauren A; Emberts, Zachary; Joseph, Paul N; Allen, Pablo E; Lopatto, David; Miller, Christine W

    2017-12-01

    Effective and accurate communication of scientific findings is essential. Unfortunately, scientists are not always well trained in how to best communicate their results with other scientists nor do all appreciate the importance of speaking with the public. Here, we provide an example of how the development of oral communication skills can be integrated with research experiences at the undergraduate level. We describe our experiences developing, running, and evaluating a course for undergraduates that complemented their existing undergraduate research experiences with instruction on the nature of science and intensive training on the development of science communication skills. Students delivered science talks, research monologues, and poster presentations about the ecological and evolutionary research in which they were involved. We evaluated the effectiveness of our approach using the CURE survey and a focus group. As expected, undergraduates reported strong benefits to communication skills and confidence. We provide guidance for college researchers, instructors, and administrators interested in motivating and equipping the next generation of scientists to be excellent science communicators.

  11. Pacific CRYSTAL Teacher Professional Development Models: Lessons Learned

    NASA Astrophysics Data System (ADS)

    van der Flier-Keller, E.; Yore, L.

    2010-12-01

    From 2005 to 2010 Pacific CRYSTAL (Centre for Research in Youth Science Teaching and Learning) has been engaged in community-based research fostering teacher leadership in innovative science education through a variety of approaches to teacher professional development. Pacific CRYSTAL is a University of Victoria based, NSERC funded project founded on a collaborative research model involving scentists, science educators and community members including schools, teachers, community groups and government. Pacific CRYSTAL professional development approaches embrace both in-service teachers and pre-service teachers, and include Lighthouse schools, workshops (ongoing as well as one-time), community-based partnerships in Pacific CRYSTAL research projects, teachers as researchers, and university science courses and workshops for pre-education and education students. A number of common themes, identified through these approaches, should be considered in the development and implementation of future science professional development initiatives. They include; teacher turnover, expanding and adding schools and participating teachers, teacher apprehension, building leadership capacity, further engagement of 'tourist' teachers, continuing professional support for teachers, as well as on-going mentoring.

  12. Undergraduate science research: a comparison of influences and experiences between premed and non-premed students.

    PubMed

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non-premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non-premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non-premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non-premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school.

  13. Undergraduate Science Research: A Comparison of Influences and Experiences between Premed and Non–Premed Students

    PubMed Central

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non–premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non–premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non–premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non–premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school. PMID:21633068

  14. Intergenerational groups and emerging science: How can museums facilitate learning?

    NASA Astrophysics Data System (ADS)

    Holm, Jessica

    New research in science and technology is emerging today at a faster pace than ever, and staying informed can be challenging for the public, especially families with younger children. Museums are already a resource to promote science literacy, and museum educators are trained to make all kinds of scientific ideas accessible to a variety of audiences. Unfortunately, because emerging science is fast-paced and ever-changing, many museums -- especially smaller institutions -- do not have the staff or budgetary resources to present this research to a wide audience. This study surveyed current literature in museum education and science learning, and current museum professionals from a range of institutions, to create a gallery guide that is flexible and easy to update for a museum, and that provides a fun and educational tool for family visitors. The study also includes a protocol to assist museum educators in collaborating with the researchers providing the science content.

  15. Telepresence-enabled research and developing work practices

    NASA Astrophysics Data System (ADS)

    Mirmalek, Z.

    2016-02-01

    In the fall of 2014, a group of scientists and students conducted two weeks of telepresence-enabled research from the University of Rhode Island Inner Space Center and Woods Hole Oceanographic Institution with the Exploration Vessel Nautilus, which was at sea studying the Kick'em Jenny submarine volcano and Barbados Mud Volcanoes. The way that they conducted their work was not so different from other telepresence-enabled ocean science exploration. As a group, they spanned geographic distance, science expertise, exploration experience, and telepresence-enabled research experience. They were connected through technologies and work culture (e.g., shared habits, values, and practices particular to a community). Uniquely, their project included an NSF-sponsored cultural study on the workgroups' own use of technologies and social processes. The objective of the cultural study was, in part, to identify social and technical features of the work environment that present opportunities to better support science exploration via telepresence. Drawing from this case, and related research, I present some analysis on the developing work culture of telepresence-enabled research and highlight potential adjustments.

  16. Technical Working Group on Career and Technical Education Meeting. Meeting Summary (Washington, DC, September 22, 2017)

    ERIC Educational Resources Information Center

    Ahn, Judie

    2017-01-01

    On September 22, 2017, the National Center for Special Education Research (NCSER) and the National Center for Education Research (NCER) at the Institute of Education Sciences (IES) convened a group of experts in policy, practice, and research related to Career and Technical Education (CTE). The goal of the meeting was to seek input from…

  17. Facilitating practitioner research into strategies for improving communication in classroom groups: Action research and interaction analysis — A reconciliation?

    NASA Astrophysics Data System (ADS)

    Sadler, Jo; Fawns, Rod

    1993-12-01

    This study involved collaborative classroom-based observation of student communication and cognition in small groups after the implementation of two management strategies in science departments in several schools. The paper presents the data and provides insights into the conduct of research and teacher development in the midst of educational change.

  18. How Effective Is the Jigsaw Method when Used to Introduce New Science Curricula in Middle School Science?

    ERIC Educational Resources Information Center

    Dollard, Mark W.; Mahoney, Kate

    2010-01-01

    The purpose of this study was to determine the effects of the Jigsaw method, a cooperative learning tool, on content knowledge and attitude toward learning science. A group of 64 students in an 8th grade physical science class located in rural western New York participated in this study. As an intervention for this action research study, science…

  19. The National Ocean Sciences Bowl: Extending the Reach of a High School Academic Competition to College, Careers, and a Lifelong Commitment to Science

    ERIC Educational Resources Information Center

    Bishop, Kristina; Walters, Howard

    2007-01-01

    Researchers have begun tracking a group of high ability high school students from high school into college study. These students indicated an interest in Science, Technology, Engineering, and Mathematics (STEM) content areas, and specifically ocean sciences, through participation in a regional or national academic competition in high school--The…

  20. Brazilian research groups in nursing: comparison of 2006 and 2016 profiles.

    PubMed

    Erdmann, Alacoque Lorenzini; Peiter, Caroline Cechinel; Lanzoni, Gabriela Marcellino de Melo

    2017-07-13

    To compare the profile of nursing research groups registered at the CNPq Research Groups Directory in 2006 and 2016. Descriptive and documentary analysis, The data has been collected in 2006 and in 2016, with parameterized search with the term "nursing" at the CNPq Research Groups Directory. The selected variables have been organized in a Microsoft Office Exce spreadsheetl. The research groups have increased from 251 in 2006 to 617 in 2016, with important increase of the number of participants, among students and researchers. There was a decrease of the number of groups without students. However, 22% remain without undergraduate students' participation. It has been observed an important increase regarding the interest on research activities, when comparing both scenarios. The nursing research groups reflect structural and political advances in generation of science, technology and innovation, however, the undergraduate students' and the foreign researchers' participation should still be encouraged.

  1. A Case Study Investigating Secondary Science Teachers' Perceptions of Science Literacy Instruction

    NASA Astrophysics Data System (ADS)

    Blackmon, Phyllis Ann

    This project study addressed the lack of inclusion of discipline literacy pedagogy in secondary classrooms in a rural school district in eastern North Carolina. Discipline literacy practices are recommended in the Common Core Standards for History/Social Studies, Science, and Technical Subjects. The district had implemented content area reading strategies across content areas, yet no significant progress in secondary students' reading abilities had been demonstrated in statewide or national assessments. The conceptual framework that drove this study was disciplinary literacy, founded by the literacy research of Shanahan, Shanahan, and Zygouris-Coe. Within a qualitative case study method, this investigation of 8 secondary science teachers' experiences teaching literacy during content instruction focused on practices of embedding science-specific reading strategies into lessons and factors that influence teachers' decisions to participate in professional development to advance their learning of discipline-specific literacy methods. Data were collected and triangulated using a focus group and 8 individual interviews. Data from both methods were analyzed into codes and categories that developed into emergent themes. Findings from the focus group and individual interviews revealed that the science teachers possessed limited knowledge of science-specific reading strategies; used random, general literacy practices; and had completed inadequate professional development on science-related topics. Positive change may occur if district leaders support teachers in expanding their knowledge and application of discipline literacy strategies through participation in discipline literacy-focused professional development. The study may provide educators and researchers a deeper understanding of disciplinary literacy and increase research on the topic.

  2. The effect of constructivist teaching strategies on science test scores of middle school students

    NASA Astrophysics Data System (ADS)

    Vaca, James L., Jr.

    International studies show that the United States is lagging behind other industrialized countries in science proficiency. The studies revealed how American students showed little significant gain on standardized tests in science between 1995 and 2005. Little information is available regarding how reform in American teaching strategies in science could improve student performance on standardized testing. The purpose of this quasi-experimental quantitative study using a pretest/posttest control group design was to examine how the use of a hands-on, constructivist teaching approach with low achieving eighth grade science students affected student achievement on the 2007 Ohio Eighth Grade Science Achievement Test posttest (N = 76). The research question asked how using constructivist teaching strategies in the science classroom affected student performance on standardized tests. Two independent samples of 38 students each consisting of low achieving science students as identified by seventh grade science scores and scores on the Ohio Eighth Grade Science Half-Length Practice Test pretest were used. Four comparisons were made between the control group receiving traditional classroom instruction and the experimental group receiving constructivist instruction including: (a) pretest/posttest standard comparison, (b) comparison of the number of students who passed the posttest, (c) comparison of the six standards covered on the posttest, (d) posttest's sample means comparison. A Mann-Whitney U Test revealed that there was no significant difference between the independent sample distributions for the control group and the experimental group. These findings contribute to positive social change by investigating science teaching strategies that could be used in eighth grade science classes to improve student achievement in science.

  3. Understanding adolescent student perceptions of science education

    NASA Astrophysics Data System (ADS)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and interests of non-mainstream students and urban students whose representation in this study was limited; (b) investigation of topics where students expressed low interests topics; and (c) development and design of authentic communities of practice in the science classroom.

  4. Impacts of Professional Development in Integrated STEM Education on Teacher Self-Efficacy, Outcome Expectancy, and Stem Career Awareness

    NASA Astrophysics Data System (ADS)

    Knowles, J. Geoff

    This research analyzed the effects of teacher professional development and lesson implementation in integrated Science, Technology, Engineering, and Math (STEM) on: 1.) Teacher self-efficacy and their confidence to teach specific STEM subjects; 2.) Teaching outcome expectancy beliefs concerning the impact of actions by teachers on student learning; and 3.) Teacher awareness of STEM careers. High school science and technology education teachers participating in the Teachers and Researchers Advancing Integrated Lessons in STEM (TRAILS) project experimental group attended a ten-day summer professional development institute designed to educate teachers in using an integrated STEM education model to implement integrated STEM lessons. The research design utilized a quasi-experimental nonequivalent comparison group design that incorporated an experimental group and an untreated comparison group with both pretest, posttest, and delayed posttest assessments on non-randomized participants. Teacher self-efficacy has been identified as a key factor in effective teaching and student learning, and teacher awareness of STEM careers impacts students as they consider career choices. The T-STEM Survey for teachers was given for the pretest and posttest assessments to measure attitudes and beliefs toward the specific constructs of this study. Significant effects of the TRAILS professional development were found in the teacher group (experimental or comparison) and teacher subject (technology or science) in pretest and posttest scores using cumulative link models for the constructs of teacher self-efficacy and beliefs to teach STEM subjects, teacher outcome expectancy beliefs, and teacher awareness of STEM careers. Effect sizes ranged from small to large varying by construct and assessment time. Highly significant p-values and effect sizes revealed impacts on science teachers were greater when teacher subject groups were analyzed separately.

  5. Understanding Public Opinion in Debates over Biomedical Research: Looking beyond Political Partisanship to Focus on Beliefs about Science and Society

    PubMed Central

    Nisbet, Matthew; Markowitz, Ezra M.

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed. PMID:24558393

  6. The effects of using guided notes and review of science achievement for male and female students

    NASA Astrophysics Data System (ADS)

    Tyrrell, Diann Marie

    2000-11-01

    The National Science Foundation predicts a shortage of scientists and engineers within the next 15 years. Some agree that the participation of women in science will be required to help meet the future demand for scientists (Malcom, 1990). Consequently, conscientious teachers search for learning strategies that provide opportunities for young women to achieve success with others in their science classes. This research concerns a note taking and teaching strategy that involves seventh grade science students. The investigation measured student achievement under three prescribed conditions. The treatment conditions were reviewing, guided notes, and guided notes with reviewing. For this experiment, the Solomon four-group design was utilized. This 2 x 2 factorial design tested for treatment effect and pretest sensitivity. Data was collected on seventh grade boys (n = 119) and seventh grade girls (n = 139) in science. Comparisons were made between the boys and girls groups. The results showed that achievement improved significantly when reviewing car using guided notes independently. The results also shower that significant improvements in achievement were not observed when participants used guided notes and reviewing together. Analysis was completed to measure how well the participants performed according to gender. This research showed that both boys and girls significantly improved their achievement in science equally well for all treatment conditions. This research went a step further by factoring in cognitive ability test scores and comparing them to the treatment results. This provided the researcher with information on which treatment condition worked best for high or low achieving students.

  7. The Role of Reflection and Collaboration in the Evolution of a Group of Novice Secondary Education Science Teachers

    ERIC Educational Resources Information Center

    Cuesta, Josefa; Azcárate, Pilar; Cardeñoso, José Maria

    2016-01-01

    The present article analyses the changes in practices, ideas, and attitudes proposed by a group of novice science teachers during a further education teacher training program. The research on which it is based is focused on monitoring the training program and its impact on the participating teachers. The training program has as its starting point…

  8. Women's Studies and the Curriculum. Proceedings of the Conference on "Scholars and Women" (College Park, MD, March 13-15, 1981).

    ERIC Educational Resources Information Center

    Triplette, Marianne, Ed.

    Twenty-three conference papers related to the topic of women and curriculum are presented. Keynote addresses have been grouped together in the first section to provide an overview of the field of women's studies. Papers covering research about women in the sciences, social sciences, and the humanities are grouped together in Part II. The text…

  9. Education and Outreach Opportunities in New Astronomical Facilities

    NASA Astrophysics Data System (ADS)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating research into the classroom. An example is the Large Synoptic Survey Telescope, which will put within public reach on a weekly basis a digital survey of the changing sky. The Giant Segmented Mirror Telescope is a key ingredient in the search for extrasolar planets and the National Virtual Observatory will allow unprecedented data access using powerful data mining and visualization tools. NOAO scientists and educators are designing educational programs around these new initiatives in order to capitalize on their national and international educational value. Our most significant challenge is to find ways to consolidate and institutionalize successful prototype and experimental astronomy education programs into permanent national resources for the earth and space science educational community. If we are successful, there is an enormous potential for future research discoveries to be made from the classroom and for NOAO educational programs to serve as models for other science research institutions.

  10. Is research into ethnicity and health racist, unsound, or important science?

    PubMed Central

    Bhopal, R.

    1997-01-01

    Much historical research on race, intelligence, and health was racist, unethical, and ineffective. The concepts of race and ethnicity are difficult to define but continue to be applied to the study of the health of immigrant and ethnic minority groups in the hope of advancing understanding of causes of disease. While a morass of associations has been generated, race and ethnicity in health research have seldom given fundamental new understanding of disease. Most such research is "black box epidemiology." Researchers have not overcome the many conceptual and technical problems of research into ethnicity and health. By emphasising the negative aspects of the health of ethnic minority groups, research may have damaged their social standing and deflected attention from their health priorities. Unless researchers recognise the difficulties with research into ethnicity and health and correct its weaknesses, 20th century research in this subject may suffer the same ignominious fate as that of race science in the 19th century. PMID:9202509

  11. Increasing Persistence in Undergraduate Science Majors: A Model for Institutional Support of Underrepresented Students

    PubMed Central

    Toven-Lindsey, Brit; Levis-Fitzgerald, Marc; Barber, Paul H.; Hasson, Tama

    2015-01-01

    The 6-yr degree-completion rate of undergraduate science, technology, engineering, and mathematics (STEM) majors at U.S. colleges and universities is less than 40%. Persistence among women and underrepresented minorities (URMs), including African-American, Latino/a, Native American, and Pacific Islander students, is even more troubling, as these students leave STEM majors at significantly higher rates than their non-URM peers. This study utilizes a matched comparison group design to examine the academic achievement and persistence of students enrolled in the Program for Excellence in Education and Research in the Sciences (PEERS), an academic support program at the University of California, Los Angeles, for first- and second-year science majors from underrepresented backgrounds. Results indicate that PEERS students, on average, earned higher grades in most “gatekeeper” chemistry and math courses, had a higher cumulative grade point average, completed more science courses, and persisted in a science major at significantly higher rates than the comparison group. With its holistic approach focused on academics, counseling, creating a supportive community, and exposure to research, the PEERS program serves as an excellent model for universities interested in and committed to improving persistence of underrepresented science majors and closing the achievement gap. PMID:25828403

  12. Experiences of mentors training underrepresented undergraduates in the research laboratory.

    PubMed

    Prunuske, Amy J; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors' experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students' experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research.

  13. Experiences of Mentors Training Underrepresented Undergraduates in the Research Laboratory

    PubMed Central

    Prunuske, Amy J.; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors’ experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students’ experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research. PMID:24006389

  14. A Model for Postdoctoral Education That Promotes Minority and Majority Success in the Biomedical Sciences.

    PubMed

    Eisen, Arri; Eaton, Douglas C

    2017-01-01

    How does the United States maintain the highest-quality research and teaching in its professional science workforce and ensure that those in this workforce are effectively trained and representative of national demographics? In the pathway to science careers, the postdoctoral stage is formative, providing the experiences that define the independent work of one's first faculty position. It is also a stage in which underrepresented minorities (URMs) disproportionately lose interest in pursuing academic careers in science and, models suggest, a point at which interventions to increase proportions of URMs in such careers could be most effective. We present a mixed-methods, case study analysis from 17 years of the Fellowships in Research and Science Teaching (FIRST) postdoctoral program, to our knowledge the largest and longest continuously running science postdoctoral program in the United States. We demonstrate that FIRST fellows, in sharp contrast to postdocs overall, are inclusive of URMs (50% African American; 70% women) and as or more successful in their fellowships and beyond as a comparison group (measured by publication rate, attainment of employment in academic science careers, and eventual research grant support). Analysis of alumni surveys and focus group discussions reveals that FIRST fellows place highest value on the cohort-driven community and the developmental teaching and research training the program provides. © 2017 A. Eisen and D. C. Eaton. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Using Creative Dramatics to Foster Conceptual Learning in a Science Enrichment Program

    NASA Astrophysics Data System (ADS)

    Hendrix, Rebecca Compton

    This study made analysis of how the integration of creative drama into a science enrichment program enhanced the learning of elementary school students' understanding of sound physics and solar energy. The study also sought to determine if student attitudes toward science could be improved with the inclusion of creative drama as an extension to a well-known science inquiry program. The qualitative portion of this study explored the treatment groups' perceptions of how the use of creative drama helped them to learn science. A treatment group of fourth and fifth grade students were taught using the Full Option Science System (FOSS) kit in sound physics and solar energy with the inclusion of creative drama, while a control group of fourth and fifth grade students were taught using only the FOSS kit. The quantitative data analysis revealed that the students who were taught science with the inclusion of creative drama showed greater understanding of the science content than the students in the control group taught without the inclusion of creative drama. Both groups and grade levels in this study showed a slight decline in science attitudes from pre to post survey. Although the overall change was small it was statistically significant. The conclusion from this data is that the inclusion of creative drama in a science inquiry science program does not increase student's attitudes toward learning science any better than inquiry based instruction without creative drama. The drama treatment group students reported that they enjoyed participating in creative drama activities and generally viewed the creative drama intervention as a fun way to learn more about science. The students indicated that the creative drama activities helped them to remember and think about science. The researcher concluded that creative drama when used as an extension to an inquiry science program increases student understanding of science content better than the use of a science inquiry program alone. Although students in both treatment and control groups showed a small decline in attitude toward science, the drama treatment students responded favorably to creative drama's use and implementation in helping them to learn more about science.

  16. 4th Annual Conference for African-American Researchers in the Mathematical Sciences (CAARMS4). Preliminary Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tapia, Richard

    1998-06-01

    In June, The Center for Research on Parallel Computation (CRPC), an NSF-funded Science and Technology Center, hosted the 4th Annual Conference for African-American Reserachers in the Mathematical Sciences (CAARMS4) at Rice University. The main goal of this conference was to highlight current work by African-American researchers and graduate students in mathematics. This conference strengthened the mathematical sciences by encouraging the increased participation of African-American and underrepresented groups into the field, facilitating working relationships between them and helping to cultivate their careers. In addition to the talks there was a graduate student poster session and tutorials on topics in mathematics andmore » computer science. These talks, presentations, and discussions brought a broader perspective to the critical issues involving minority participation in mathematics.« less

  17. Reshaping clinical science: Introduction to the Special Issue on Psychophysiology and the NIMH Research Domain Criteria (RDoC) initiative.

    PubMed

    Patrick, Christopher J; Hajcak, Greg

    2016-03-01

    The National Institute of Mental Health's (NIMH) Research Domain Criteria (RDoC) initiative seeks to establish new dimensional conceptions of mental health problems, through the investigation of clinically relevant "process" constructs that have neurobiological as well as psychological referents. This special issue provides a detailed overview of the RDoC framework by NIMH officials Michael Kozak and Bruce Cuthbert, and spotlights RDoC-oriented investigative efforts by leading psychophysiological research groups as examples of how clinical science might be reshaped through application of RDoC principles. Accompanying commentaries highlight key aspects of the work by each group, and discuss reported methods/findings in relation to promises and challenges of the RDoC initiative more broadly. © 2016 Society for Psychophysiological Research.

  18. Around Marshall

    NASA Image and Video Library

    2002-05-29

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.

  19. Around Marshall

    NASA Image and Video Library

    2003-04-09

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.

  20. Influence of social cognitive and ethnic variables on academic goals of underrepresented students in science and engineering: a multiple-groups analysis.

    PubMed

    Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan

    2010-04-01

    This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the study's findings are considered as well as future research directions.

  1. Influence of Social Cognitive and Ethnic Variables on Academic Goals of Underrepresented Students in Science and Engineering: A Multiple-Groups Analysis

    PubMed Central

    Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan

    2010-01-01

    This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the study’s findings are considered as well as future research directions. PMID:20495610

  2. Early-Years Teachers' Professional Upgrading in Science: a Long-Term Programme

    NASA Astrophysics Data System (ADS)

    Kallery, Maria

    2017-04-01

    In this paper, we present a professional development/upgrading programme in science for early-years teachers and investigate its impact on the teachers' competencies in relation to their knowledge and teaching of science. The basic idea of the programme was to motivate the teachers by making them members of an action research group aimed at developing and implementing curriculum activities to which they would contribute and thus meaningfully engaging them in their own learning. The programme used a `collaborative partnership' model for the development of the activities. In this model, the collaborative notion is defined as an act of `shared creation': partners share a goal and members bring their expertise to the partnership. Within this context, the partners were a researcher in science education with a background in physics, who also served as a facilitator, and six in-service early-years teachers with a background in early-years pedagogy and developmental sciences, who had many years of experience (classroom experts). These teachers participated in the programme as co-designers, but were involved to a significantly lesser degree than the researcher. The programme procedures comprised group work and individual teachers' class work. Data sources included teachers' essays, field-notes, lesson recordings and group-work records. Data were qualitatively analysed. The main results indicate improvement of teachers' `transformed' knowledge of the subject matter, development/improvement of knowledge of instructional strategies, including factors related to quality of implementation of the activities, knowledge of the pupils and improvement of the teachers' efficacy.

  3. Developing science talent in minority students: Perspectives of past participants in a summer mentorship program

    NASA Astrophysics Data System (ADS)

    Schimmel, Dale Bishop

    The underrepresentation of women and ethnic minorities in science has been well documented. Research efforts are directed toward understanding the high attrition rate in science course selection as students advance through high school and college. The attrition rate is especially high for females and minority students. Since 1980 the Department of Biological Sciences at the University of Connecticut has conducted a "Minority Research Apprentice Program" to attract students by expanding their knowledge of research and technology. The goal of the program is to encourage students from underrepresented groups to eventually select careers in the field of science. This qualitative study of past participants explored factors that related to students' decisions to pursue or not to pursue careers in science. Descriptive statistics and qualitative data collected from surveys and interviews of twenty former apprentices, along with comparative case studies of four selected individuals, revealed the educational interventions, personal traits and social supports that helped guide students' eventual career choice decisions. Participation in gifted programs, advanced placement courses, and talented high school science teachers all played a critical role in assisting these individuals in developing their potential interest. Qualitative data revealed the role of the Minority Research Apprentice Program played in helping talented individuals gain an appreciation of the nature of scientific research through apprenticeship and involvement with authentic projects. For all those involved, it assisted them in clarifying their eventual career choices. Individuals identified the lack of challenge of the introductory science courses, the commitment science requires, and the nature of laboratory work as reasons for leaving the field. Females who left science switched majors more frequently than males. Qualitative data revealed the dilemma that multipotentiality and lack of career counseling played in the confusion over which profession to pursue. Ethnicity played a significant role in the retention of minority apprentices in science. Asian American males and females reported having more restricted career choices due to their parents' expectations. Females from all ethnic groups, including those who selected careers in other fields, experienced career conflict, switched majors more frequently, and had a greater sense of dissatisfaction with their eventual career choice.

  4. Collaborative science activities and the social construction of understanding of physical science concepts by pre-service teachears in Fiji

    NASA Astrophysics Data System (ADS)

    Taylor, Neil; Lucas, Keith B.; Watters, James J.

    1999-12-01

    The research reported was part of a larger study that was founded on the belief that the introduction of a teaching style informed by a constructivist view of teaching and learning and utilising collaborative group work would improve the understanding of science concepts held by pre-service primary teacher education studients in Fuji. It sought to test this belief, and to explore whether such an approach would be effective for students from different ethnic groups. Two intact classes in a teachers' college studied a physical science unit, one class being involved in extensive collaborative group activities and the other, the comparison group, being taught in the usual transmissive fashion. An interpretive methodology was adopted, involving a range of data sources and analytical techniques. Data presented here support the claim that the collaborative group work stimulated increased levels of discussion and fostered deeper conceptual understanding. There were, however, some unexpected learning outcomes for some students. Implications for science education in Fiji and similar locations are discussed.

  5. Coaching to Augment Mentoring to Achieve Faculty Diversity: A Randomized Controlled Trial

    PubMed Central

    Williams, Simon N.; Thakore, Bhoomi K.; McGee, Richard

    2015-01-01

    Purpose The Academy for Future Science Faculty (the Academy) is a novel coaching intervention for biomedical PhD students designed to address limitations in previous efforts to promote faculty diversity. Unlike traditional research mentoring, the Academy includes both group and individual coaching, coaches have no research or evaluation roles with the students, and it is based on social science theories. The authors present a qualitative case study of one of the coaching groups and provide statistical analyses indicating whether one year in the Academy effects students’ perceptions of the achievability and desirability of an academic career. Method The authors have tested (July 2012-July 2013), with Northwestern University ethical approval, the Academy via a longitudinal randomized controlled trial. Participants were 121 latter-stage biomedical PhD students. The authors collected data via questionnaires, interviews, and meeting recordings. Results The case study shows how group career coaching can effectively supplement traditional one-to-one research mentoring; provide new role models for underrepresented minority students; and provide theory-based lenses through which to engage in open conversations about race, gender, and science careers. Repeated-measures analysis of variances showed perceived achievability increased in the Academy group from baseline to 1-year follow-up (means, 5.75 vs. 6.39), but decreased in the control group (6.58 vs. 5.81). Perceived desirability decreased significantly less (P < 0.05) in the Academy group (7.00 vs. 6.36), than in the control group (7.83 vs. 5.97). Conclusions Early results suggest that an academic career-coaching model can effectively supplement traditional research mentoring and promote persistence towards academic careers. PMID:26675187

  6. Multilevel approach to mentoring in the Research Experiences for Undergraduates programs

    NASA Astrophysics Data System (ADS)

    Bonine, K. E.; Dontsova, K.; Pavao-Zuckerman, M.; Paavo, B.; Hogan, D.; Oberg, E.; Gay, J.

    2015-12-01

    This presentation focuses on different types of mentoring for students participating in Research Experiences for Undergraduates programs with examples, including some new approaches, from The Environmental and Earth Systems Research Experiences for Undergraduates Program at Biosphere 2. While traditional faculty mentors play essential role in students' development as researchers and professionals, other formal and informal mentoring can be important component of the REU program and student experiences. Students receive mentoring from program directors, coordinators, and on site undergraduate advisors. While working on their research projects, REU students receive essential support and mentoring from undergraduate and graduate students and postdoctoral scientists in the research groups of their primary mentors. Cohort living and group activities give multiple opportunities for peer mentoring where each student brings their own strengths and experiences to the group. Biosphere 2 REU program puts strong emphasis on teaching students to effectively communicate their research to public. In order to help REUs learn needed skills the outreach personnel at Biosphere 2 mentor and advise students both in groups and individually, in lecture format and by personal example, on best outreach approaches in general and on individual outreach projects students develop. To further enhance and strengthen outreach mentoring we used a novel approach of blending cohort of REU students with the Cal Poly STAR (STEM Teacher And Researcher) Program fellows, future K-12 STEM teachers who are gaining research experience at Biosphere 2. STAR fellows live together with the REU students and participate with them in professional development activities, as well as perform research side by side. Educational background and experiences gives these students a different view and better preparation and tools to effectively communicate and adapt science to lay audiences, a challenge commonly facing researchers but rarely taught to future scientists. In addition, REU students act as mentors themselves to the middle and high school students in Biosphere 2 Science Academy sharing with them exciting research they are doing and their experiences about doing science and life in college.

  7. The Effects of Prior-knowledge and Online Learning Approaches on Students' Inquiry and Argumentation Abilities

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Tsung; Lin, Yu-Ren; She, Hsiao-Ching; Huang, Kai-Yi

    2015-07-01

    This study investigated the effects of students' prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students in each class were divided into three groups according to their level of prior science knowledge; they then took either our social- or individual-based online science learning program. The results show that students in the social online argumentation group performed better in argumentation and online argumentation learning. Qualitative analysis indicated that the students' social interactions benefited the co-construction of sound arguments and the accurate understanding of science concepts. In constructing arguments, students in the individual online argumentation group were limited to knowledge recall and self-reflection. High prior-knowledge students significantly outperformed low prior-knowledge students in all three aspects of science learning. However, the difference in inquiry and argumentation performance between low and high prior-knowledge students decreased with the progression of online learning topics.

  8. Problems with Feminist Standpoint Theory in Science Education

    NASA Astrophysics Data System (ADS)

    Landau, Iddo

    2008-11-01

    Feminist standpoint theory has important implications for science education. The paper focuses on difficulties in standpoint theory, mostly regarding the assumptions that different social positions produce different types of knowledge, and that epistemic advantages that women might enjoy are always effective and significant. I conclude that the difficulties in standpoint theory render it too problematic to accept. Various implications for science education are indicated: we should return to the kind of science education that instructs students to examine whether arguments, experiments, etc. are successful, rather than ask who presented them; when considering researchers and students for science education programs we should examine their scholarly achievements, rather than the group to which they belong; women should not be discouraged from engaging in “mainstream” science research and education (or other spheres of knowledge considered as “men’s topics”) and men should not be discouraged from engaging in what are considered “women’s topics” in science (or outside it); we should not assume that there are different types of science for women and for men, nor different ways for women and men to study science or conduct scientific research.

  9. Can medical schools teach high school students to be scientists?

    PubMed

    Rosenbaum, James T; Martin, Tammy M; Farris, Kendra H; Rosenbaum, Richard B; Neuwelt, Edward A

    2007-07-01

    The preeminence of science in the United States is endangered for multiple reasons, including mediocre achievement in science education by secondary school students. A group of scientists at Oregon Health and Science University has established a class to teach the process of scientific inquiry to local high school students. Prominent aspects of the class include pairing of the student with a mentor; use of a journal club format; preparation of a referenced, hypothesis driven research proposal; and a "hands-on" laboratory experience. A survey of our graduates found that 73% were planning careers in health or science. In comparison to conventional science classes, including chemistry, biology, and algebra, our students were 7 times more likely to rank the scientific inquiry class as influencing career or life choices. Medical schools should make research opportunities widely available to teenagers because this experience dramatically affects one's attitude toward science and the likelihood that a student will pursue a career in science or medicine. A federal initiative could facilitate student opportunities to pursue research.

  10. Understanding Male Underachievement in Middle School Science: Challenging the Assumptions

    NASA Astrophysics Data System (ADS)

    Holbrooks, Marilyn Jane

    The overall purpose of this collaborative action research study was to explore the experiences of eight middle school science teachers. This collaborative action research study concerned itself with male student underachievement in science at the middle school level. The study was conducted at Sherwood Forest Middle School (a pseudonym) with sixth through eighth grade science teachers with more than three years of experience, various teaching backgrounds within academic subjects as well as special education, and different grade levels. The interviews probed the teachers' personal experiences and insights regarding male underachievement in science. This collaborative action research study relied on qualitative data from interviews and other pieces of evidence that might support the teachers' observations, specifically standardized test data and class grades. In addition, four of the seven teachers participated in a focus group, developing strategies for more effective teaching in science for all students. Understanding the experiences of science educators for sixth through eighth grade students can assist local, state, and federal policymakers in educational decision-making processes for the future.

  11. Science as a Web of Trails: Redesigning Science Education with the Tools of the Present to Meet the Needs of the Future

    NASA Astrophysics Data System (ADS)

    Karno, Donna; Glassman, Michael

    2013-12-01

    Science education has experienced significant changes since the mid-20th century, most recently with the creation of STEM curricula (DeBoer 1991; Yager 2000). The emergence of the World Wide Web as a tool in research and discovery offers Pre-K-12 science education an opportunity to share information and perspectives which engage students with the scientific community (Zoller 2011). Students are able to access open, transparent sites creating common resources pools and autonomous working groups which can be used for shared problem solving. Science teachers should carefully build web 2.0 technology into their practice based on a changing pedagogy. Instead of focusing on teaching rule-based concepts and processes in which the teacher's role is that of expert, education should be focusing on possibilities of the web both in scientific research and understanding. In addition, web-focused education can also help remake scientific product as a public good in the lives of both science researchers and science consumers.

  12. Development of Environmental Knowledge, Team Working Skills and Desirable Behaviors on Environmental Conservation of Matthayomsuksa 6 Students Using Good Science Thinking Moves Method with Metacognition Techniques

    ERIC Educational Resources Information Center

    Ladawan, Charinrat; Singseewo, Adisak; Suksringarm, Paitool

    2015-01-01

    The research aimed to investigate environmental knowledge, team working skills, and desirable behaviors of students learning through the good science thinking moves method with metacognition techniques. The sample group included Matthayomsuksa 6 students from Nadoon Prachasan School, Nadoon District, Maha Sarakham Province. The research tools were…

  13. The Effect of Three Levels of Inquiry on the Improvement of Science Concept Understanding of Elementary School Teacher Candidates

    ERIC Educational Resources Information Center

    Artayasa, I. Putu; Susilo, Herawati; Lestari, Umie; Indriwati, Sri Endah

    2018-01-01

    This research aims to compare the effect of the implementation of three levels of inquiry: level 2 (structured inquiry), level 3 (guided inquiry), and level 4 (open inquiry) toward science concept understanding of elementary school teacher candidates. This is a quasi experiment research with pre-test post-test nonequivalent control group design.…

  14. Students' Regulation of Their Emotions in a Science Classroom

    ERIC Educational Resources Information Center

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  15. Frequency and Efficacy of Talk-Related Tasks in Primary Science

    ERIC Educational Resources Information Center

    Braund, Martin; Leigh, Joanne

    2013-01-01

    Pupil talk and discussion are seen as having important social and cognitive outcomes. In science classes, pupils' collaborative talk supports the construction of meaning and helps examine the status of evidence, theory and knowledge. However, pupil interactive talk in groups is rare in science lessons. The research reported is part of a project to…

  16. Early-Years Teachers' Professional Upgrading in Science: A Long-Term Programme

    ERIC Educational Resources Information Center

    Kallery, Maria

    2018-01-01

    In this paper, we present a professional development/upgrading programme in science for early-years teachers and investigate its impact on the teachers' competencies in relation to their knowledge and teaching of science. The basic idea of the programme was to motivate the teachers by making them members of an action research group aimed at…

  17. Investigation of Inquiry-Based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    ERIC Educational Resources Information Center

    Weiland, Sunny Minelli

    2012-01-01

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level…

  18. The Value of "Dialogue Events" as Sites of Learning: An Exploration of Research and Evaluation Frameworks

    ERIC Educational Resources Information Center

    Lehr, Jane L.; McCallie, Ellen; Davies, Sarah R.; Caron, Brandiff R.; Gammon, Benjamin; Duensing, Sally

    2007-01-01

    In the past five years, informal science institutions (ISIs), science communication, advocacy and citizen action groups, funding organizations, and policy-makers in the UK and the USA have become increasingly involved in efforts to promote increased public engagement with science and technology (PEST). Such engagement is described as taking place…

  19. Investigation of Pre-Service Science Teachers' Attitudes towards Sustainable Environmental Education

    ERIC Educational Resources Information Center

    Keles, Özgül

    2017-01-01

    The purpose of the current study is to investigate pre-service science teachers' sustainable environmental education attitudes and the factors affecting them in terms of some variables (gender and grade level). The study group of the current research is comprised of 154 pre-service teachers attending the Department of Science Education in the…

  20. Approaches and Activities for Engaging Children with Key Ideas in Science

    ERIC Educational Resources Information Center

    Patterson, Pauline

    2015-01-01

    The Cams Hill Science Consortium (CHSC) is a group of teachers based in Hampshire who have been meeting regularly over a number of years to share outcomes from their classroom-based research into engaging children more productively in science. Led by Matthew Newberry, formerly of Cams Hill School in Fareham, the consortium has developed and…

  1. The Effect of Modeling Based Science Education on Critical Thinking

    ERIC Educational Resources Information Center

    Bati, Kaan; Kaptan, Fitnat

    2015-01-01

    In this study to what degree the modeling based science education can influence the development of the critical thinking skills of the students was investigated. The research was based on pre-test-post-test quasi-experimental design with control group. The Modeling Based Science Education Program which was prepared with the purpose of exploring…

  2. A Case Study Exploring Science Competence and Science Confidence of Middle School Girls from Marginalized Backgrounds

    ERIC Educational Resources Information Center

    Garcia, Yeni Violeta

    2013-01-01

    The inclusion of learners from underrepresented background in biology field research experiences has not been widely explored in the literature. Increased access and equity to experiences for groups historically underrepresented in science, technology, engineering, and mathematics (STEM) has been identified as a priority for many, yet little is…

  3. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  4. Mapping of the Academic Production at Science and Mathematics Education Postgraduate about the Theory of Social Representations

    NASA Astrophysics Data System (ADS)

    Barbosa, José Isnaldo de Lima; Curi, Edda; Voelzke, Marcos Rincon

    2016-12-01

    The theory of social representations, appeared in 1961, arrived in Brazil in 1982, and since then has advanced significantly, been used in various areas of knowledge, assumed a significant role also in education. Thus, the aim of this article is to make a mapping of theses and dissertations in post-graduation programs, whose basic area is the Teaching of Science and Mathematics, and used as the theoretical foundation the theory of social representations, highlighted the social groups that are subject of this research. This is a documentary research, and lifting to the "state of knowledge" of two theses and 36 dissertations, defended in ten of the 37 existing programs in the basic area of Science and Mathematics Teaching, with the delimitation of academic masters and doctorates. The data collection was executed on December 2014 and was placed in the virtual libraries of these masters and doctoral programs, these elements were analysed according to some categories established after reading the summaries of the work, and the results showed that the theory of social representations has been used as a theoretical framework in various research groups, established in postgraduate programs in this area, for almost the entire Brazil. As for the subjects involved in this research, three groups were detected, which are: Middle school and high school students, teachers who are in full swing, spread from the early years to higher education, and undergraduates in Science and Mathematics.

  5. Julie Lundquist | NREL

    Science.gov Websites

    professor in the Department of Atmospheric and Oceanic Sciences at the University of Colorado at Boulder . Her research group uses observational and computational approaches to understand atmospheric M.S., Astrophysical, Planetary, and Atmospheric Science, University of Colorado at Boulder

  6. CELSS science needs

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.

    1986-01-01

    Questions and areas of study that need to be persued in order to develope a Controlled Ecological Life Support System are posed. Research topics needing attention are grouped under various leadings: ecology, genetics, plant pathology, cybernetics, chemistry, computer science, fluid dynamics, optics, and solid-state physics.

  7. The effect of explicit, inquiry instruction on freshman college science majors' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Kenyon, Lisa Orvik

    Reform efforts have placed strong emphasis on teaching practices that should help students learn about the nature of science. Researchers have examined two general instructional approaches, explicit and implicit, believed to be useful in teaching science. Of these two approaches, researchers emphasize explicit instruction as the more effective approach when enhancing students' views of the scientific endeavor (Abd-El-Khalick & Lederman, 2000; Bell, 2001; Billeh & Hasan, 1975; Carey & Stauss, 1968; Schwartz et al., 2000). Furthermore, recent studies (Schwartz et al ., 2000, 2001) indicate that teaching science inquiry through investigative activities and reflective discussions have demonstrated to be most effective for understanding science. The purpose of this study was to describe the effect of explicit, inquiry instruction on the understanding of freshman college science majors regarding the nature of science. Participants included 74 freshman college science majors, 50 students in the experimental group and 24 students in the control group. The experimental group was exposed to the treatment of the study, which took place in a Succeeding in Science course. The course content included explicit instruction on the nature of science, emphasizing scientific inquiry and the processes that scientists carry out in their work. The course reflected three aspects of inquiry-based science that are discussed in the Inquiry and the National Science Education Standards (2000) which are (1) to learn the principles and concepts of science; (2) to participate in scientific investigations; and (3) to reflect on the epistemology of science. The research design of this study used a pretest-posttest instrument, The Views of Nature of Science Questionnaire Form C (VNOS-C) (Lederman et al., 2001) and an essay paper at the end of the course to assess students' understanding about the nature of science. The results from the VNOS-C were analyzed using analysis of covariance in which the dependent variable was student understanding of science as measured by the posttest, and the covariate was student understanding of nature of science as measured by the pretest. The results indicated that the understanding of the nature of science of freshman college science majors who have participated in explicit, inquiry instruction is statistically greater than the understanding of the nature of science of freshman college science majors who have participated in traditional instruction. The essays provided insight into the apparent increase in student understanding of the nature of science. The results from pretesting and posttesting indicated that a one-semester credit hour course, which focuses directly on teaching about the nature of science can improve freshman science majors' understanding of the nature of science.

  8. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    NASA Astrophysics Data System (ADS)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  9. New Measures Assessing Predictors of Academic Persistence for Historically Underrepresented Racial/Ethnic Undergraduates in Science

    PubMed Central

    Byars-Winston, Angela; Rogers, Jenna; Branchaw, Janet; Pribbenow, Christine; Hanke, Ryan; Pfund, Christine

    2016-01-01

    An important step in broadening participation of historically underrepresented (HU) racial/ethnic groups in the sciences is the creation of measures validated with these groups that will allow for greater confidence in the results of investigations into factors that predict their persistence. This study introduces new measures of theoretically derived factors emanating from social cognitive and social identity theories associated with persistence for HU racial/ethnic groups in science disciplines. The purpose of this study was to investigate: 1) the internal reliability and factor analyses for measures of research-related self-efficacy beliefs, sources of self-efficacy, outcome expectations, and science identity; and 2) potential group differences in responses to the measures, examining the main and interaction effects of gender and race/ethnicity. Survey data came from a national sample of 688 undergraduate students in science majors who were primarily black/African American and Hispanic/Latino/a with a 2:1 ratio of females to males. Analyses yielded acceptable validity statistics and race × gender group differences were observed in mean responses to several measures. Implications for broadening participation of HU groups in the sciences are discussed regarding future tests of predictive models of student persistence and training programs to consider cultural diversity factors in their design. PMID:27521235

  10. Rational Emotive Behavior Based on Academic Procrastination Prevention: Training Programme of Effectiveness

    ERIC Educational Resources Information Center

    Düsmez, Ihsan; Barut, Yasar

    2016-01-01

    The research is an experimental study which has experimental and control groups, and based on pre-test, post-test, monitoring test model. Research group consists of second and third grade students of Primary School Education and Psychological Counseling undergraduate programmes in Giresun University Faculty of Educational Sciences. The research…

  11. Setting and Within-Class Ability Grouping: A Survey of Practices in Physical Education

    ERIC Educational Resources Information Center

    Wilkinson, Shaun; Penney, Dawn; Allin, Linda

    2016-01-01

    Within the United Kingdom and internationally, the practice of separating pupils by ability endures as a characteristic feature of mathematics and science classrooms. Although there is extensive international research literature on ability grouping within classroom-based subjects, limited research exists in the context of physical education (PE).…

  12. Transforming attitudes and lives: Liberating African-American elementary and middle school students in out-of-school time STEM education

    NASA Astrophysics Data System (ADS)

    Smith, Charisse F.

    Statistically, African-Americans, women, and the disabled are underrepresented in the fields of Science, Technology, Engineering, and Math (STEM). Historically, these underrepresented students, are described as being unrecognized and underdeveloped in the American STEM circuit. Many experience deficient and inadequate educational resources, are not encouraged to pursue STEM education and careers, and are confronted with copious obstructions. In this quantitative study, the researcher collected pretest and posttest survey data from a group of 4th, 5th, and 6th-grade African-American students in Title I funded schools. The reseacher used quantitative analysis to determine any significant differences in the science related attitudes between and within groups who participated in Out of School-Time Science, Technology, Engineering, and Mathematics programs and those who did not. Results revealed no significant differences in the science related attitudes between the groups of the students who participated in the Out of School Time-Science, Technology, Engineering, and Mathematics programs and those who did not. Results also revealed no significant differences in the science related attitudes within the groups of students who participated in the Out of School Time-Science, Technology, Engineering, and Mathematics programs and those who did not.

  13. Unawareness to Production, Dropout to Innovator--Primary Teachers' Understanding and Use of a Science, Technology and Society Approach to Science Teaching

    ERIC Educational Resources Information Center

    Rollnick, Marissa; Dlamini, Betty T.; Bradley, John

    2015-01-01

    This paper investigates the process of teacher change in a group of 8 primary school teachers during their exposure to a science, technology and society (STS) approach to teaching Science in Swaziland. The research aimed to establish the effect of support given to teachers in using the approach through a series of workshops, followed by a 5-week…

  14. Does STES-Oriented Science Education Promote 10th-Grade Students' Decision-Making Capability?

    NASA Astrophysics Data System (ADS)

    Levy Nahum, Tami; Ben-Chaim, David; Azaiza, Ibtesam; Herskovitz, Orit; Zoller, Uri

    2010-07-01

    Today's society is continuously coping with sustainability-related complex issues in the Science-Technology-Environment-Society (STES) interfaces. In those contexts, the need and relevance of the development of students' higher-order cognitive skills (HOCS) such as question-asking, critical-thinking, problem-solving and decision-making capabilities within science teaching have been argued by several science educators for decades. Three main objectives guided this study: (1) to establish "base lines" for HOCS capabilities of 10th grade students (n = 264) in the Israeli educational system; (2) to delineate within this population, two different groups with respect to their decision-making capability, science-oriented (n = 142) and non-science (n = 122) students, Groups A and B, respectively; and (3) to assess the pre-post development/change of students' decision-making capabilities via STES-oriented HOCS-promoting curricular modules entitled Science, Technology and Environment in Modern Society (STEMS). A specially developed and validated decision-making questionnaire was used for obtaining a research-based response to the guiding research questions. Our findings suggest that a long-term persistent application of purposed decision-making, promoting teaching strategies, is needed in order to succeed in affecting, positively, high-school students' decision-making ability. The need for science teachers' involvement in the development of their students' HOCS capabilities is thus apparent.

  15. Translational Researchers' Perceptions of Data Management Practices and Data Curation Needs: Findings from a Focus Group in an Academic Health Sciences Library

    ERIC Educational Resources Information Center

    Bardyn, Tania P.; Resnick, Taryn; Camina, Susan K.

    2012-01-01

    How translational researchers use data is becoming an important support function for libraries to understand. Libraries' roles in this increasingly complex area of Web librarianship are often unclearly defined. The authors conducted two focus groups with physicians and researchers at an academic medical center, the UCLA David Geffen School of…

  16. Researching College- and Career Ready Standards to Improve Student Outcomes: Technical Working Group Meeting. Meeting Summary (Washington, DC, August 19-20, 2013)

    ERIC Educational Resources Information Center

    Institute of Education Sciences, 2013

    2013-01-01

    In August, IES worked with the National Science Foundation and the Eunice Kennedy Shriver National Institute of Child Health and Human Development to convene a technical working group to discuss research objectives related to college- and career-ready standards in English language arts and mathematics. Forty people (including researchers,…

  17. How Can Prescription Drug Misuse Be Prevented?

    MedlinePlus

    ... Need to Know Marijuana: Facts for Teens ​Research Reports This series of reports simplifies the science of research findings for the ... public, legislators, educational groups, and practitioners. The series reports on research findings of national interest. View all ​ ...

  18. Honors

    NASA Astrophysics Data System (ADS)

    2011-10-01

    More than a dozen AGU members are among 94 researchers announced by U.S. president Barack Obama on 26 September as recipients of the Presidential Early Career Award for Scientists and Engineers. The award, which is coordinated by the Office of Science and Technology Policy within the Executive Office of the President, is considered the highest honor bestowed by the U.S. government on science and engineering professionals in the early stages of their independent research careers. This year's recipients include Jeffrey Book, Naval Research Laboratory; Jonathan Cirtain, NASA Marshall Space Flight Center; Fotini Katopodes Chow, University of California, Berkeley; Elizabeth Cochran, U.S. Geological Survey (USGS); Ian Howat, Ohio State University; Christiane Jablonowski, University of Michigan; Justin Kasper, Smithsonian Astrophysical Observatory; Elena Litchman, Michigan State University; James A. Morris Jr., National Oceanic and Atmospheric Administration (NOAA); Erin M. Oleson, NOAA; Victoria Orphan, California Institute of Technology; Sasha Reed, USGS; David Shelly, USGS; and Feng Wang, University of California, Berkeley. Five AGU members are among 10 U.S. representatives recently selected for International Arctic Science Committee working groups. The AGU members, chosen as representatives through the U.S. National Academies review process, are Atmosphere Working Group member James Overland, Pacific Marine Environmental Laboratory, NOAA; Cryosphere Working Group members Walter Meier, University of Colorado at Boulder, and Elizabeth Hunke, Los Alamos National Laboratory; Marine Working Group member Mary-Louise Timmermans, Yale University; and Terrestrial Working Group member Vanessa Lougheed, University of Texas at El Paso.

  19. Langley's DEVELOP Team Applies NASA's Earth Observations to Address Environmental Issues Across the Country and Around the Globe

    NASA Technical Reports Server (NTRS)

    Childs, Lauren M.; Miller, Joseph E.

    2011-01-01

    The DEVELOP National Program was established over a decade ago to provide students with experience in the practical application of NASA Earth science research results. As part of NASA's Applied Sciences Program, DEVELOP focuses on bridging the gap between NASA technology and the public through projects that innovatively use NASA Earth science resources to address environmental issues. Cultivating a diverse and dynamic group of students and young professionals, the program conducts applied science research projects during three terms each year (spring, summer, and fall) that focus on topics ranging from water resource management to natural disasters.

  20. Smart phone, smart science: how the use of smartphones can revolutionize research in cognitive science.

    PubMed

    Dufau, Stephane; Duñabeitia, Jon Andoni; Moret-Tatay, Carmen; McGonigal, Aileen; Peeters, David; Alario, F-Xavier; Balota, David A; Brysbaert, Marc; Carreiras, Manuel; Ferrand, Ludovic; Ktori, Maria; Perea, Manuel; Rastle, Kathy; Sasburg, Olivier; Yap, Melvin J; Ziegler, Johannes C; Grainger, Jonathan

    2011-01-01

    Investigating human cognitive faculties such as language, attention, and memory most often relies on testing small and homogeneous groups of volunteers coming to research facilities where they are asked to participate in behavioral experiments. We show that this limitation and sampling bias can be overcome by using smartphone technology to collect data in cognitive science experiments from thousands of subjects from all over the world. This mass coordinated use of smartphones creates a novel and powerful scientific "instrument" that yields the data necessary to test universal theories of cognition. This increase in power represents a potential revolution in cognitive science.

  1. Lamont-Doherty's Secondary School Field Research Program: Using Goal-Oriented Applied Research as a Means of Building Comprehensive and Integrated Scientific Understanding

    NASA Astrophysics Data System (ADS)

    Bostick, B. C.; Newton, R.; Vincent, S.; Peteet, D. M.; Sambrotto, R.; Schlosser, P.; Corbett, E.

    2015-12-01

    Conventional instruction in science often proceeds from the general to the specific and from text to action. Fundamental terminologies, concepts, and ideas that are often abstract are taught first and only after such introductory processes can a student engage in research. Many students struggle to find relevance when presented information without context specific to their own experiences. This challenge is exacerbated for students whose social circles do not include adults who can validate scientific learning from their own experiences. Lamont-Doherty's Secondary School Field Research Program inverts the standard paradigm and places small groups of students in research projects where they begin by performing manageable tasks on complex applied research projects. These tasks are supplemented with informal mentoring and relevant articles (~1 per week). Quantitative metrics suggest the approach is highly successful—most participants report a dramatic increase in their enthusiasm for science, 100% attend college, and approximately 50% declare majors in science or technology. We use one project, the construction of a microbial battery, to illustrate this novel model of science learning and argue that it should be considered a best practice for project-based science education. The goal of this project was to build a rechargeable battery for a mobile phone based on a geochemical cycle, to generate and store electricity. The students, mostly from ethnic groups under-represented in the STEM fields, combined concepts and laboratory methods from biology, chemistry and physics to isolate photosynthetic bacteria from a natural salt marsh, and made an in situ device capable of powering a light bulb. The younger participants had been exposed to neither high school chemistry nor physics at the start of the project, yet they were able to use the project as a platform to deepen their science knowledge and their desire for increased participation in formal science education.

  2. Science Skills Boot Camp Gets Interns Ready for Research | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Summer interns learned how to read a scientific paper, present a poster, maintain a laboratory notebook, and much more, at the Science Skills Boot Camp in June. “It was a great experience, and it was a great opportunity to meet some of the other interns also working on the campus,” said Alyssa Klein, a Werner H. Kirsten student intern in the Cellular Immunology Group, Laboratory of Molecular Immunoregulation. “The boot camp covered many topics essential to being a good scientist and science researcher.”

  3. The imagework method in health and social science research.

    PubMed

    Edgar, I R

    1999-03-01

    Existing alongside the traditional forms of qualitative social science research, there is a set of potential research methods that derive from experiential groupwork and the humanistic human potential movement and are only slightly used by researchers. Social science research has barely begun to use these powerful strategies that were developed originally for personal and group change but that are potentially applicable to the research domain. This article will locate these methods within the qualitative research domain and propose a novel view of their value. The study of the actual and potential use of one of these methods, imagework, will be the particular focus of this article. References to the use of artwork, sculpting, psychodrama, gestalt, and dreamwork will also be made. The hypothesis underpinning the author's approach is that experiential research methods such as imagework can elicit implicit knowledge and self-identifies of respondents in a way that other methods cannot.

  4. Gaps and strategies in developing health research capacity: experience from the Nigeria Implementation Science Alliance.

    PubMed

    Ezeanolue, Echezona E; Menson, William Nii Ayitey; Patel, Dina; Aarons, Gregory; Olutola, Ayodotun; Obiefune, Michael; Dakum, Patrick; Okonkwo, Prosper; Gobir, Bola; Akinmurele, Timothy; Nwandu, Anthea; Khamofu, Hadiza; Oyeledun, Bolanle; Aina, Muyiwa; Eyo, Andy; Oleribe, Obinna; Ibanga, Ikoedem; Oko, John; Anyaike, Chukwuma; Idoko, John; Aliyu, Muktar H; Sturke, Rachel

    2018-02-12

    Despite being disproportionately burdened by preventable diseases than more advanced countries, low- and middle-income countries (LMICs) continue to trail behind other parts of the world in the number, quality and impact of scholarly activities by their health researchers. Our strategy at the Nigerian Implementation Science Alliance (NISA) is to utilise innovative platforms that catalyse collaboration, enhance communication between different stakeholders, and promote the uptake of evidence-based interventions in improving healthcare delivery. This article reports on findings from a structured group exercise conducted at the 2016 NISA Conference to identify (1) gaps in developing research capacity and (2) potential strategies to address these gaps. A 1-hour structured group exercise was conducted with 15 groups of 2-9 individuals (n = 94) to brainstorm gaps for implementation, strategies to address gaps and to rank their top 3 in each category. Qualitative thematic analysis was used. First, duplicate responses were merged and analyses identified emerging themes. Each of the gaps and strategies identified were categorised as falling into the purview of policy-makers, researchers, implementing partners or multiple groups. Participating stakeholders identified 98 gaps and 91 strategies related to increasing research capacity in Nigeria. A total of 45 gaps and an equal number of strategies were ranked; 39 gaps and 43 strategies were then analysed, from which 8 recurring themes emerged for gaps (lack of sufficient funding, poor research focus in education, inadequate mentorship and training, inadequate research infrastructure, lack of collaboration between researchers, research-policy dissonance, lack of motivation for research, lack of leadership buy-in for research) and 7 themes emerged for strategies (increased funding for research, improved research education, improved mentorship and training, improved infrastructure for research, increased collaboration between academic/research institutions, greater engagement between researchers and policy-makers, greater leadership buy-in for research). The gaps and strategies identified in this study represent pathways judged to be important in increasing research and implementation science capacity in Nigeria. The inclusion of perspectives and involvement of stakeholders who play different roles in policy, research and implementation activities makes these findings comprehensive, relevant and actionable, not only in Nigeria but in other similar LMICs.

  5. Social and natural sciences differ in their research strategies, adapted to work for different knowledge landscapes.

    PubMed

    Jaffe, Klaus

    2014-01-01

    Do different fields of knowledge require different research strategies? A numerical model exploring different virtual knowledge landscapes, revealed two diverging optimal search strategies. Trend following is maximized when the popularity of new discoveries determine the number of individuals researching it. This strategy works best when many researchers explore few large areas of knowledge. In contrast, individuals or small groups of researchers are better in discovering small bits of information in dispersed knowledge landscapes. Bibliometric data of scientific publications showed a continuous bipolar distribution of these strategies, ranging from natural sciences, with highly cited publications in journals containing a large number of articles, to the social sciences, with rarely cited publications in many journals containing a small number of articles. The natural sciences seem to adapt their research strategies to landscapes with large concentrated knowledge clusters, whereas social sciences seem to have adapted to search in landscapes with many small isolated knowledge clusters. Similar bipolar distributions were obtained when comparing levels of insularity estimated by indicators of international collaboration and levels of country-self citations: researchers in academic areas with many journals such as social sciences, arts and humanities, were the most isolated, and that was true in different regions of the world. The work shows that quantitative measures estimating differences between academic disciplines improve our understanding of different research strategies, eventually helping interdisciplinary research and may be also help improve science policies worldwide.

  6. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  7. Evaluating distance learning in health informatics education.

    PubMed

    Russell, Barbara L; Barefield, Amanda C; Turnbull, Diane; Leibach, Elizabeth; Pretlow, Lester

    2008-04-24

    The purpose of this study was to compare academic performance between distance-learning and on-campus health informatics students. A quantitative causal-comparative research design was utilized, and academic performance was measured by final GPA scores and Registered Health Information Administrator certification exam scores. Differences in previous academic performance between the two groups were also determined by comparing overall admission GPA and math/science admission GPA. The researchers found no difference in academic performance between the two groups when final GPA scores and total certification scores were compared. However, there were statistically significant differences between the two groups in 4 of the 17 sub-domains of the certification examination, with the on-campus students scoring slightly higher than the distance students. Correlation studies were also performed, and the researchers found significant correlations between overall admission GPA, math/science admission GPA, final GPA, and certification scores.

  8. A profile of sports science research (1983-2003).

    PubMed

    Williams, Stephen John; Kendall, Lawrence R

    2007-08-01

    A majority of sports science research is undertaken in universities and dedicated research centres, such as institutes of sport. Reviews of literature analysing and categorising research have been carried out, but categories identified have been limited to research design and data gathering techniques. Hence there is a need to include categories such as discipline, subjects and targeted sport. A study was conducted using document analysis method to gather data that described and categorised performance-based sports science research projects in Australian universities and institutes of sport. An instrument was designed that could be used by researchers to analyse and profile research in the area of sports science. The instrument contained six categories: targeted sport, primary study area, participant type, research setting, methodology and data gathering techniques. Research documents analysed consisted of 725 original unpublished research reports/theses. Results showed that over two-thirds of research projects were targeted to specific sports and, of this group, nearly half involved four sports: cycling, rowing, athletics and swimming. Overall, physiology was the most researched scientific discipline. The most frequently used research method was experimental design, and the most frequently used data gathering technique was physiological (performance) measures. Two-thirds of research was conducted in laboratory settings, and nearly half of the research was conducted with elite or sub-elite athletes as participants/subjects. The findings of this study provide an overall synopsis of performance-based sports science research conducted in Australia over the last 20 years, and should be of considerable importance in the ongoing development of sports science research policy in Australia.

  9. "Cocoa and Chocolate: Science and  Gastronomy"-The Second Annual Workshop of the  Research Institute on Nutrition and Food Security  (INSA): 9 November 2016.

    PubMed

    Massot-Cladera, Malen; Pérez-Cano, Francisco; Llorach, Rafael; Urpi-Sarda, Mireia

    2017-02-17

    The Research Institute on Nutrition and Food Security at the University of Barcelona (INSA-UB) was founded in 2005 by twenty-two research groups from the Faculties of Pharmacy and Food Science; Biology; Chemistry; and Geography and History, as well as other UB-affiliated centers and hospitals [...].

  10. An overview on the Space Weather in Latin America: from Space Research to Space Weather and its Forecast

    NASA Astrophysics Data System (ADS)

    De Nardin, C. M.; Gonzalez-Esparza, A.; Dasso, S.

    2015-12-01

    We present an overview on the Space Weather in Latin America, highlighting the main findings from our review the recent advances in the space science investigations in Latin America focusing in the solar-terrestrial interactions, modernly named space weather, which leaded to the creation of forecast centers. Despite recognizing advances in the space research over the whole Latin America, this review is restricted to the evolution observed in three countries (Argentina, Brazil and Mexico) only, due to the fact that these countries have recently developed operational center for monitoring the space weather. The work starts with briefly mentioning the first groups that started the space science in Latin America. The current status and research interest of such groups are then described together with the most referenced works and the challenges for the next decade to solve space weather puzzles. A small inventory of the networks and collaborations being built is also described. Finally, the decision process for spinning off the space weather prediction centers from the space science groups is reported with an interpretation of the reason/opportunities that lead to it. Lastly, the constraints for the progress in the space weather monitoring, research, and forecast are listed with recommendations to overcome them.

  11. The CAS-NAS forum for new leaders in space science

    NASA Astrophysics Data System (ADS)

    Smith, David H.

    The space science community is thoroughly international, with numerous nations now capable of launching scientific payloads into space either independently or in concert with others. As such, it is important for national space-science advisory groups to engage with like-minded groups in other spacefaring nations. The Space Studies Board of the US National Academy of Sciences' (NAS') National Research Council has provided scientific and technical advice to NASA for more than 50 years. Over this period, the Board has developed important multilateral and bilateral partnerships with space scientists around the world. The primary multilateral partner is COSPAR, for which the Board serves as the US national committee. The Board's primary bilateral relationship is with the European Science Foundation’s European Space Science Committee. Burgeoning Chinese space activities have resulted in several attempts in the past decade to open a dialogue between the Board and space scientists in China. On each occasion, the external political environment was not conducive to success. The most recent efforts to engage the Chinese space researchers began in 2011 and have proved particularly successful. Although NASA is currently prohibited from engaging in bilateral activities with China, the Board has established a fruitful dialogue with its counterpart in the Chinese Academy of Sciences (CAS). A joint NAS-CAS activity, the Forum for New Leaders in Space Science, has been established to provide opportunities for a highly select group of young space scientists from China and the United States to discuss their research activities in an intimate and collegial environment at meetings to be held in both nations. The presentation will describe the current state of US-China space relations, discuss the goals of the joint NAS-CAS undertaking and report on the activities at the May, 2014, Forum in Beijing and the planning for the November, 2014, Forum in Irvine, California.

  12. Globus Nexus: A Platform-as-a-Service Provider of Research Identity, Profile, and Group Management.

    PubMed

    Chard, Kyle; Lidman, Mattias; McCollam, Brendan; Bryan, Josh; Ananthakrishnan, Rachana; Tuecke, Steven; Foster, Ian

    2016-03-01

    Globus Nexus is a professionally hosted Platform-as-a-Service that provides identity, profile and group management functionality for the research community. Many collaborative e-Science applications need to manage large numbers of user identities, profiles, and groups. However, developing and maintaining such capabilities is often challenging given the complexity of modern security protocols and requirements for scalable, robust, and highly available implementations. By outsourcing this functionality to Globus Nexus, developers can leverage best-practice implementations without incurring development and operations overhead. Users benefit from enhanced capabilities such as identity federation, flexible profile management, and user-oriented group management. In this paper we present Globus Nexus, describe its capabilities and architecture, summarize how several e-Science applications leverage these capabilities, and present results that characterize its scalability, reliability, and availability.

  13. Globus Nexus: A Platform-as-a-Service provider of research identity, profile, and group management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chard, Kyle; Lidman, Mattias; McCollam, Brendan

    Globus Nexus is a professionally hosted Platform-as-a-Service that provides identity, profile and group management functionality for the research community. Many collaborative e-Science applications need to manage large numbers of user identities, profiles, and groups. However, developing and maintaining such capabilities is often challenging given the complexity of modern security protocols and requirements for scalable, robust, and highly available implementations. By outsourcing this functionality to Globus Nexus, developers can leverage best-practice implementations without incurring development and operations overhead. Users benefit from enhanced capabilities such as identity federation, flexible profile management, and user-oriented group management. In this paper we present Globus Nexus,more » describe its capabilities and architecture, summarize how several e-Science applications leverage these capabilities, and present results that characterize its scalability, reliability, and availability.« less

  14. Globus Nexus: A Platform-as-a-Service Provider of Research Identity, Profile, and Group Management

    PubMed Central

    Lidman, Mattias; McCollam, Brendan; Bryan, Josh; Ananthakrishnan, Rachana; Tuecke, Steven; Foster, Ian

    2015-01-01

    Globus Nexus is a professionally hosted Platform-as-a-Service that provides identity, profile and group management functionality for the research community. Many collaborative e-Science applications need to manage large numbers of user identities, profiles, and groups. However, developing and maintaining such capabilities is often challenging given the complexity of modern security protocols and requirements for scalable, robust, and highly available implementations. By outsourcing this functionality to Globus Nexus, developers can leverage best-practice implementations without incurring development and operations overhead. Users benefit from enhanced capabilities such as identity federation, flexible profile management, and user-oriented group management. In this paper we present Globus Nexus, describe its capabilities and architecture, summarize how several e-Science applications leverage these capabilities, and present results that characterize its scalability, reliability, and availability. PMID:26688598

  15. [Undergraduate and postgraduate studies in the biological sciences in Chile (1985)].

    PubMed

    Niemeyer, H

    1986-01-01

    A study group of scientists was convened by the Sociedad de Biología de Chile (Biological Society of Chile) and the Regional Program for Graduate Training in Biological Sciences, PNUD-Unesco, RLA 78/024, to assess undergraduate and graduate studies in life sciences in Chile. The group presented this report at the 28th Annual Meeting of the Society. Discussion centered on the features that should characterize the studies leading to the academic degrees of Licenciado (Licenciate), Magíster (Master) and Doctor (Ph. D) in Sciences, and also on the qualifications that the universities should satisfy in order to grant them. After analyzing the present situation of undergraduate and graduate studies in Biological Sciences in Chilean universities, the group made the following main suggestions: 1. It is recommended that Chilean universities agree on a 4-year plan for the Licenciado degree, without the requirement of a thesis. The importance of providing the students with good laboratory exercises and field experience and with the opportunity to perform short research projects is stressed. In addition, a sound theoretical training on mathematics, physics and chemistry in the education of a modern Biologist is important. Licenciate studies ought to be the basis for professional careers and the universities should offer to the Licenciados free access to their professional schools. 2. It is considered appropriate for Chile and its universities to develop graduate programs in those disciplines that have reached a level of excellence. To accomplish this aim, adequate finance of the universities is necessary to permit them to provide the essential facilities for doing research, and to create a wide system of fellowships for graduate students. Direct government support for research and graduate student fellowships is requested. 3. Research experience of the kind needed for the preparation of a doctoral thesis is recommended as the academic level appropriate for those engaged in teaching undergraduate students in sciences. Teachers in graduate programs should be qualified active researchers. 4. The creation is proposed of a Consejo Nacional de Universidades (National Council of Universities), to be autonomous and composed primarily of outstanding scientists. One of the main functions of this Council would be to licence universities to grant undergraduate and graduate academic degrees in science. 5. The Sociedad de Biología de Chile must maintain an interest in the evaluation of undergraduate and graduate studies in life sciences.

  16. Using qualitative research methods in biomedical innovation: the case of cultured red blood cells for transfusion.

    PubMed

    Lyall, Catherine; King, Emma

    2016-05-11

    Qualitative research has a key role to play in biomedical innovation projects. This article focuses on the appropriate use of robust social science methodologies (primarily focus group studies) for identifying the public's willingness and preference for emerging medical technologies. Our study was part of the BloodPharma project (now known as the Novosang project) to deliver industrially generated red blood cells for transfusion. Previous work on blood substitutes shows that the public prefers donated human blood. However, no research has been conducted concerning attitudes to stem cell derived red blood cells. Qualitative research methods including interviews and focus groups provide the methodological context for this paper. Focus groups were used to elicit views from sub-sections of the UK population about the potential use of such cultured red blood cells. We reflect on the appropriateness of that methodology in the context of the BloodPharma project. Findings are in the form of lessons transferable to other interdisciplinary, science-led teams about what a social science dimension can bring; why qualitative research should be included; and how it can be used effectively. Qualitative data collection offers the strength of exploring ambivalence and investigating the reasons for views, but not necessarily their prevalence in wider society. The inherent value of a qualitative method, such as focus groups, therefore lies in its ability to uncover new information. This contrasts with a quantitative approach to simply 'measuring' public opinion on a topic about which participants may have little prior knowledge. We discuss a number of challenges including: appropriate roles for embedded social scientists and the intricacies of doing upstream engagement as well as some of the design issues and limitations associated with the focus group method.

  17. Interdisciplinary Priorities for Dissemination, Implementation, and Improvement Science: Frameworks, Mechanics, and Measures.

    PubMed

    Brunner, Julian W; Sankaré, Ibrahima C; Kahn, Katherine L

    2015-12-01

    Much of dissemination, implementation, and improvement (DII) science is conducted by social scientists, healthcare practitioners, and biomedical researchers. While each of these groups has its own venues for sharing methods and findings, forums that bring together the diverse DII science workforce provide important opportunities for cross-disciplinary collaboration and learning. In particular, such forums are uniquely positioned to foster the sharing of three important components of research. First: they allow the sharing of conceptual frameworks for DII science that focus on the use and spread of innovations. Second: they provide an opportunity to share strategies for initiating and governing DII research, including approaches for eliciting and incorporating the research priorities of patients, study participants, and healthcare practitioners, and decision-makers. Third: they allow the sharing of outcome measures well-suited to the goals of DII science, thereby helping to validate these outcomes in diverse contexts, improving the comparability of findings across settings, and elevating the study of the implementation process itself. © 2015 Wiley Periodicals, Inc.

  18. Interdisciplinary Priorities for Dissemination, Implementation, and Improvement Science: Frameworks, Mechanics, and Measures

    PubMed Central

    Brunner, Julian W.; Sankaré, Ibrahima C.

    2015-01-01

    Abstract Much of dissemination, implementation, and improvement (DII) science is conducted by social scientists, healthcare practitioners, and biomedical researchers. While each of these groups has its own venues for sharing methods and findings, forums that bring together the diverse DII science workforce provide important opportunities for cross‐disciplinary collaboration and learning. In particular, such forums are uniquely positioned to foster the sharing of three important components of research. First: they allow the sharing of conceptual frameworks for DII science that focus on the use and spread of innovations. Second: they provide an opportunity to share strategies for initiating and governing DII research, including approaches for eliciting and incorporating the research priorities of patients, study participants, and healthcare practitioners, and decision‐makers. Third: they allow the sharing of outcome measures well‐suited to the goals of DII science, thereby helping to validate these outcomes in diverse contexts, improving the comparability of findings across settings, and elevating the study of the implementation process itself. PMID:26349456

  19. Understandings of the nature of science and decision making on science and technology-based issues

    NASA Astrophysics Data System (ADS)

    Bell, Randy Lee

    Current reforms emphasize the development of scientific literacy as the principal goal of science education. The nature of science is considered a critical component of scientific literacy and is assumed to be an important factor in decision making on science and technology based issues. However, little research exists that delineates the role of the nature of science in decision making. The purpose of this investigation was to explicate the role of the nature of science in decision making on science and technology based issues and to delineate the reasoning and factors associated with these types of decisions. The 15-item, open-ended "Decision Making Questionnaire" (DMQ) based on four different scenarios concerning science and technology issues was developed to assess decision making. Twenty-one volunteer participants purposively selected from the faculty of geographically diverse universities completed the questionnaire and follow-up interviews. Participants were subsequently grouped according to their understandings of the nature of science, based on responses to a second open-ended questionnaire and follow-up interview. Profiles of each group's decision making were constructed, based on their previous responses to the DMQ and follow-up interviews. Finally, the two groups' decisions, decision making factors, and decision making strategies were compared. No differences were found between the decisions of the two groups, despite their disparate views of the nature of science. While their reasoning did not follow formal lines of argumentation, several influencing factors and general reasoning patterns were identified. Participants in both groups based their decisions primarily on personal values, morals/ethics, and social concerns. While all participants said they considered scientific evidence in their decision making, most did not require absolute "proof," even though Group B participants held more absolute conceptions of the nature of science. Overall, the nature of science did not figure prominently in either group's decisions. These findings contrast with the assumptions of the science education community and current reform efforts and call for a reexamination of the goals of nature of science instruction. Developing better decision making skills---even on science and technology based issues---may involve other factors, including more values-based instruction and attention to intellectual/moral development.

  20. Research collaboration in groups and networks: differences across academic fields.

    PubMed

    Kyvik, Svein; Reymert, Ingvild

    2017-01-01

    The purpose of this paper is to give a macro-picture of collaboration in research groups and networks across all academic fields in Norwegian research universities, and to examine the relative importance of membership in groups and networks for individual publication output. To our knowledge, this is a new approach, which may provide valuable information on collaborative patterns in a particular national system, but of clear relevance to other national university systems. At the system level, conducting research in groups and networks are equally important, but there are large differences between academic fields. The research group is clearly most important in the field of medicine and health, while undertaking research in an international network is most important in the natural sciences. Membership in a research group and active participation in international networks are likely to enhance publication productivity and the quality of research.

  1. Group Work

    ERIC Educational Resources Information Center

    Wilson, Kristy J.; Brickman, Peggy; Brame, Cynthia J.

    2018-01-01

    Science, technology, engineering, and mathematics faculty are increasingly incorporating both formal and informal group work in their courses. Implementing group work can be improved by an understanding of the extensive body of educational research studies on this topic. This essay describes an online, evidence-based teaching guide published by…

  2. Little Scientists: Identity, Self-Efficacy, and Attitude Toward Science in a Girls' Science Camp

    NASA Astrophysics Data System (ADS)

    Todd, Brandy

    Underrepresentation of women and minorities in the science, technology, and engineering (STEM) fields is a perennial concern for researchers and policy-makers. Many causes of this problem have been identified. Less is known about what constitutes effective methods for increasing women's participation in STEM. This study examines the role that identity formation plays in encouraging girls to pursue STEM education and careers utilizing data from a cohort-based, informal science enrichment program that targets middle-school-aged girls. A Mixed-methods design was employed to examine girls' science interests, efficacy, attitudes, and identity---referred to as affinities. Quantitative data were collected before and after program participation using science affinity scales. Qualitative data included observations, focus groups, and individual interviews. This study builds on past research conducted on the same program. The study is presented in three components: fidelity of implementation, participant affinities, and science identity theory building. Quantitative and qualitative measures reveal that the program was implemented with high fidelity. Participants had high initial affinities for science as compared to a contrast group. Analysis of qualitative data of science affinities revealed several themes in girls' attitudes, experiences, and intentions toward science. Emergent themes discussed include girls' preferences and interests in science, gender and science efficacy, attitudes toward science, and elements of science identities. Archetypes of emergent science identities developed in this study (expert, experimenter, and inventor) inform different ways in which girls engage with and envision science study and careers. Implications for best practice in fostering science engagement and identities in middle-school-aged girls include the importance of hands-on science activities, the need for enthusiastic relatable role models, and an emphasis on deep understanding of scientific principles.

  3. Investigation of guided school tours, student learning, and science reform recommendations at a museum of natural history

    NASA Astrophysics Data System (ADS)

    Cox-Petersen, Anne M.; Marsh, David D.; Kisiel, James; Melber, Leah M.

    2003-02-01

    A study of docent-led guided school tours at a museum of natural history was investigated. Researchers engaged in naturalistic inquiry to describe how natural history content was conveyed to students and what students gained from this model of touring. They also investigated how the content and pedagogy within the guided tour complemented recommendations from formal science standards documents and informal learning literature. About 30 visiting school groups in Grades 2-8 were observed. Teachers (n = 30) and select students (n = 85) were interviewed. Researchers found that tours were organized in a didactic way that conflicted with science education reform documents and research related to learning within informal contexts. Students' responses to interview questions indicated high satisfaction with the tours but low levels of science learning.

  4. Partnerships for the Design, Conduct, and Analysis of Effectiveness, and Implementation Research: Experiences of the Prevention Science and Methodology Group

    PubMed Central

    Brown, C. Hendricks; Kellam, Sheppard G.; Kaupert, Sheila; Muthén, Bengt O.; Wang, Wei; Muthén, Linda K.; Chamberlain, Patricia; PoVey, Craig L.; Cady, Rick; Valente, Thomas W.; Ogihara, Mitsunori; Prado, Guillermo J.; Pantin, Hilda M.; Gallo, Carlos G.; Szapocznik, José; Czaja, Sara J.; McManus, John W.

    2012-01-01

    What progress prevention research has made comes through strategic partnerships with communities and institutions that host this research, as well as professional and practice networks that facilitate the diffusion of knowledge about prevention. We discuss partnership issues related to the design, analysis, and implementation of prevention research and especially how rigorous designs, including random assignment, get resolved through a partnership between community stakeholders, institutions, and researchers. These partnerships shape not only study design, but they determine the data that can be collected and how results and new methods are disseminated. We also examine a second type of partnership to improve the implementation of effective prevention programs into practice. We draw on social networks to studying partnership formation and function. The experience of the Prevention Science and Methodology Group, which itself is a networked partnership between scientists and methodologists, is highlighted. PMID:22160786

  5. Partnerships for the design, conduct, and analysis of effectiveness, and implementation research: experiences of the prevention science and methodology group.

    PubMed

    Brown, C Hendricks; Kellam, Sheppard G; Kaupert, Sheila; Muthén, Bengt O; Wang, Wei; Muthén, Linda K; Chamberlain, Patricia; PoVey, Craig L; Cady, Rick; Valente, Thomas W; Ogihara, Mitsunori; Prado, Guillermo J; Pantin, Hilda M; Gallo, Carlos G; Szapocznik, José; Czaja, Sara J; McManus, John W

    2012-07-01

    What progress prevention research has made comes through strategic partnerships with communities and institutions that host this research, as well as professional and practice networks that facilitate the diffusion of knowledge about prevention. We discuss partnership issues related to the design, analysis, and implementation of prevention research and especially how rigorous designs, including random assignment, get resolved through a partnership between community stakeholders, institutions, and researchers. These partnerships shape not only study design, but they determine the data that can be collected and how results and new methods are disseminated. We also examine a second type of partnership to improve the implementation of effective prevention programs into practice. We draw on social networks to studying partnership formation and function. The experience of the Prevention Science and Methodology Group, which itself is a networked partnership between scientists and methodologists, is highlighted.

  6. The role of models/and analogies in science education: implications from research

    NASA Astrophysics Data System (ADS)

    Coll, Richard K.; France, Bev; Taylor, Ian

    2005-02-01

    Models and modelling are key tools for scientists, science teachers and science learners. In this paper we argue that classroom-based research evidence demonstrates that the use of models and analogies within the pedagogy of science education may provide a route for students to gain some understanding of the nature of science. A common theme to emerge from the literature reviewed here is that in order to successfully develop conceptual understandings in science, learners need to be able to reflect on and discuss their understandings of scientific concepts as they are developing them. Pedagogies that involve various types of modelling are most effective when students are able to construct and critique their own and scientists' models. Research also suggests that group work and peer discussion are important ways of enhancing students' cognitive and metacognitive thinking skills. Further we argue that an understanding of science models and the modelling process enables students to develop a metacognitive awareness of knowledge development within the science community, as well as providing the tools to reflect on their own scientific understanding.

  7. Research groups: How big should they be?

    PubMed

    Cook, Isabelle; Grange, Sam; Eyre-Walker, Adam

    2015-01-01

    Understanding the relationship between scientific productivity and research group size is important for deciding how science should be funded. We have investigated the relationship between these variables in the life sciences in the United Kingdom using data from 398 principle investigators (PIs). We show that three measures of productivity, the number of publications, the impact factor of the journals in which papers are published and the number of citations, are all positively correlated to group size, although they all show a pattern of diminishing returns-doubling group size leads to less than a doubling in productivity. The relationships for the impact factor and the number of citations are extremely weak. Our analyses suggest that an increase in productivity will be achieved by funding more PIs with small research groups, unless the cost of employing post-docs and PhD students is less than 20% the cost of a PI. We also provide evidence that post-docs are more productive than PhD students both in terms of the number of papers they produce and where those papers are published.

  8. Putting Carbon in its Place: What You Can Do (LBNL Science at the Theater)

    ScienceCinema

    Walker, Iain; Regnier, Cindy [LBNL, Environmental Energy Technologies Division; Miller, Jeff; Masanet, Eric

    2018-06-28

    Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineering design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.

  9. The effects of an intervention to increase liberal arts mathematics and science majors' knowledge of and attitudinal favorability toward the teaching profession

    NASA Astrophysics Data System (ADS)

    Klemballa, Carolyn

    In light of the persistent shortage of qualified mathematics and science teachers and the new teacher qualification provisions of the recently passed No Child Left Behind Act, This study tested the impact of an educational intervention designed to enhance interest in public school teaching careers among undergraduate students who were declared/intended majors in mathematics and/or natural science. Besides salary, research reveals content fear as the biggest roadblock to attracting mathematics and science teachers. Because of this, liberal arts majors in mathematics and science are a target pool of individuals to recruit into teaching. The researcher hypothesized that knowledge and attitudinal favorability would both increase after an intervention about teaching careers and that an increase in one variable would be associated with the other. Also, knowledge and attitudinal favorability would have a greater increase after a more intensive intervention than a less intensive intervention or no intervention. The researcher also hypothesized that if undergraduates were less decided in their career, lower classmen, and female, their attitudes toward the teaching profession would increase the most. One hundred eighty-nine college students, 73 males and 116 females, including 85 freshmen, 67 sophomores, 18 juniors and 19 seniors, at University A and University B were randomly assigned to a workshop, reading, or control group. The workshop group attended a workshop about the teaching profession. The reading group read articles with the same information presented in the workshop. The control group read unrelated articles. The findings from this study indicate that an intervention about teaching does significantly increase both knowledge and attitudinal favorability toward teaching (p < .01). A low significant correlation was found between knowledge and attitudinal favorability (p < .05). Findings also suggested that a more intensive intervention yields a higher increase in both knowledge and attitudinal favorability than a less intensive intervention (p < .01). Lastly, the level of career indecision, undergraduate class, and gender did not have a significant relationship with attitudinal favorability towards teaching. Based on these findings, the researcher made recommendations for future research and policy, in particular urging more communication between schools of education and liberal arts.

  10. The development of a scale to identify college and university science professors' science-faith paradigms

    NASA Astrophysics Data System (ADS)

    Bundrick, David Ray

    The relationship between science and religion in American higher education changed significantly over the past two centuries as empiricism and naturalism became the philosophical underpinnings of the university. This philosophical shift contributed significantly to the secularization of the academy, the context in which philosophers of science during the last half-century have theorized a variety of theoretical patterns for relating science and religion. Evidence suggests that science professors operationalize various science-faith paradigms, but no instrument prior to this research had ever been created to measure the constructs. The purpose of this research was to develop a scale, with at least adequate psychometric properties (good validity and initial reliability), able to identify and discriminate among these various science-faith paradigms (in the Western Christian tradition) in practice among college and university science professors in the United States. The researcher conducted a Web-based electronic survey of a stratified random sample of science professors representing a variety of higher education institution types, science disciplines, and religious affiliation. Principal Components Analysis of the survey data produced five factors predicted by the researcher. These factors correspond to five science-faith paradigms: Conflict---Science over Religion; Conflict---Religion over Science; Compartmentalism; Complementarism; and Concordism. Analysis of items loading on each factor produced a 50-item Science-Faith Paradigm Scale (SFPS) that consists of five sub-scales, each having characteristics of good content validity, construct validity, and initial reliability (Cronbach's alpha ranging from .87 to .95). Preliminary exploratory analysis of differences in SFPS sub-scale scores based on demographic variables indicates that the SFPS is capable of discriminating among groups. This research validates the existence of five science-faith paradigms in practice in the Western Christian tradition, enriches the information base on science-faith paradigms in the academy, and makes possible further research in this subject area. The Science-Faith Paradigm Scale is subject to confirmatory analysis through further research and may be employed voluntarily by science faculty for self-understanding that could lead to more effective communication among science professors and greater appreciation for the diversity of scientific-religious perspectives in American higher education.

  11. Research Experiences in Teacher Preparation: Effectiveness of the Green Bank preservice teacher enhancement program

    NASA Astrophysics Data System (ADS)

    Hemler, Debra A.

    1997-11-01

    The purpose of this study was to examine the effectiveness of the preservice teacher component of the Research Experiences in Teacher Preparation (RETP) project aimed at enhancing teacher perceptions of the nature of science, science research, and science teaching. Data was collected for three preservice teacher groups during the three phases of the program: (I) a one week institute held at the National Radio Astronomy Observatory in Green Bank, West Virginia where teachers performed astronomy research using a 40 foot diameter radio telescope; (II) a secondary science methods course; and (III) student teaching placements. Four Likert-type instruments were developed and administered pre and post-institute to assess changes in perceptions of science, attitudes toward research, concerns about implementing research in the classroom, and evaluation of the institute. Instruments were re-administered following the methods course and student teaching. Observations of classroom students conducting research were completed for seven preservice teacher participants in their student teaching placements. Analysis, using t-tests, showed a significant increase in preservice teachers perceptions of their ability to do research. Preservice teachers were not concerned about implementing research in their placements. No significant change was measured in their understanding of the nature of science and science teaching. Concept maps demonstrated a significant increase in radio astronomy content knowledge. Participants responded that the value of institute components, quality of the research elements, and preparation for implementing research in the classroom were "good" to "excellent". Following the methods course (Phase II) no significant change in their understanding of the nature of science or concerns about implementing projects in the classroom were measured. Of the 7 preservice teachers who were observed implementing research projects, 5 projects were consistent with the Green Bank model. Student teachers who had initiated research in their classrooms had fewer concerns about doing them than those that had not. No significant change was measured in their perceptions of science and science teaching. The RETP project serves as a viable constructivist model for exposing preservice teachers to science research and transferring that experience to the classroom.

  12. Researching Classroom Communications and Relations in the Light of Social Justice

    ERIC Educational Resources Information Center

    Montesano Montessori, Nicolina; Ponte, Petra

    2012-01-01

    This article discusses participative action research performed by a network consisting of researchers and student-teachers of a University of Applied Sciences and teachers and pupils of four primary schools in the Netherlands. The research took place in the context of the research group "Behaviour and Research in the Educational Praxis".…

  13. Experimental stations as a tool to teach soil science at the University of Valencia

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi

    2010-05-01

    This paper shows the strategies used at the University of Valencia (Department of Geography. Soil Erosion and Degradation Research Group) to teach soil science at the Geography and Enviromental Science Degrees. The use of the Montesa and El Teularet research stations contribute with a better knowledge on soil science for the students as they can see the measurements carried out in the field. Students visit the stations and contribute to measurements and sampling every season. The use of meteorological stations, erosion plots, soil moisture and soil temperatures probes, and sampling give the students the chances to understand the theoretical approach they use to have. This presentation will show how the students evolve, and how their knowledge in soil science is improved.

  14. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    NASA Astrophysics Data System (ADS)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  15. Are Graphic Novels Always "Cool"? Parent and Student Perspectives on Elementary Mathematics and Science Graphic Novels: The Need for Action Research by School Leaders

    ERIC Educational Resources Information Center

    Nesmith, Suzanne; Cooper, Sandi; Schwarz, Gretchen; Walker, Amanda

    2016-01-01

    Often the stakeholders most affected by curriculum change are uninvolved in the change process, leading to curriculum reforms that fail. Thus, a group of university researchers conducted a small-scale study to explore the thoughts and opinions of parents and elementary students on the use of mathematics and science graphic novels to support the…

  16. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    ERIC Educational Resources Information Center

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  17. KENNEDY SPACE CENTER, FLA. - Officials of the NASA-Kennedy Space Center and the state of Florida pose for a group portrait at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab at the new lab. From left are Capt. Winston Scott, executive director of the Florida Space Authority; Dr. Robert J. Ferl, director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida; Charlie Quincy, chief of the Biological Sciences Office, Kennedy Space Center; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; Jim Kennedy, director of the Kennedy Space Center; The Honorable Toni Jennings, lieutenant governor of the state of Florida; Frank T. Brogan, president of the Florida Atlantic University; and Dr. Samuel Durrance, executive director of the Florida Space Research Institute. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Officials of the NASA-Kennedy Space Center and the state of Florida pose for a group portrait at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab at the new lab. From left are Capt. Winston Scott, executive director of the Florida Space Authority; Dr. Robert J. Ferl, director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida; Charlie Quincy, chief of the Biological Sciences Office, Kennedy Space Center; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; Jim Kennedy, director of the Kennedy Space Center; The Honorable Toni Jennings, lieutenant governor of the state of Florida; Frank T. Brogan, president of the Florida Atlantic University; and Dr. Samuel Durrance, executive director of the Florida Space Research Institute. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  18. Impact of Jigsaw on the Achievement and Attitudes of Saudi Arabian Male High School Science Students

    NASA Astrophysics Data System (ADS)

    Alghamdi, Abdulmonem

    The aim of the study is to investigate the impact of cooperative learning instruction, specifically by using the Jigsaw instructional strategy on science achievement and attitudes towards science among 11th grade students. Based upon previous research literature, it was hypothesized that significant differences existed on gains between general science achievement of experimental group and control group. The quasi-experimental design was chosen for this study. The study sample consisted of 50 students of 11th grade class who were equally distributed among experimental group and control group, matched on the basic of their annual examination at general science scores. The students' achievement was measured through the implementation of 30-item achievement test used as a pretest, as well as a posttest and deferred (follow-up) test. The experiment group was taught through cooperative learning while control group was taught through the instructions of "traditional teaching". The material was used such as lesson plans, worksheets and quizzes, designed to implement Jigsaw as a cooperative learning methodology. For the attitude scale towards science, a published 30-item Likert scale called Test of Science Related Attitudes (TOSRA) has been translated to Arabic in order to determine the students' attitudes ranging between strongly agree to strongly disagree. The data were analyzed through repeated measure analysis and multivariate analysis of variance with a .05 selected level of significance. The results of this study showed that using Jigsaw as a cooperative learning strategy has improved the students' achievement for the benefit of the experimental group. However, there was no significant change on the students' attitudes towards science for both groups, where the scores of all the attitude subscales were at or near the neutral level.

  19. The Origins of Molecular Biology: A Pedagogical Tool for the Professional Development of Pre-College Science Teachers

    ERIC Educational Resources Information Center

    Silverman, Philip M.

    2003-01-01

    We examine the science and pedagogy behind a historical approach to the professional development of pre-college science (primarily biology) teachers. Our intention is to reach professional scientists, who, as a group, are uniquely qualified to provide experience and insights essential to this approach. The underlying research for this article has…

  20. Intercultural Adaptation and Validity Study: Universal Science Literacy Scale (USLS)

    ERIC Educational Resources Information Center

    Çelik, Cüneyd; Can, Sendil

    2017-01-01

    The purpose of the current study is to adapt "The Universal Science Literacy Scale" developed by Mun, Shin, Lee, Kim, Choi, Choi and Krajcik into Turkish. The study group of the current research is comprised of a total of 645 pre-service science teachers from 6 different universities of Turkey. In the first stage of the adaptation study,…

  1. Review on space weather in Latin America. 1. The beginning from space science research

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the first of a three-part review on space weather in Latin America. It comprises the evolution of several Latin American institutions investing in space science since the 1960s, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this review is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues.

  2. Gulf Coast Ecosystem Restoration Task Force---Gulf of Mexico Ecosystem Science Assessment and Needs

    USGS Publications Warehouse

    Walker, Shelby; Dausman, Alyssa M.; Lavoie, Dawn L.

    2012-01-01

    The Gulf Coast Ecosystem Restoration Task Force (GCERTF) was established by Executive Order 13554 as a result of recommendations from “America’s Gulf Coast: A Long-term Recovery Plan after the Deepwater Horizon Oil Spill” by Secretary of the Navy Ray Mabus (Mabus Report). The GCERTF consists of members from 11 Federal agencies and representatives from each State bordering the Gulf of Mexico. The GCERTF was charged to develop a holistic, long-term, science-based Regional Ecosystem Restoration Strategy for the Gulf of Mexico. Federal and State agencies staffed the GCERTF with experts in fields such as policy, budgeting, and science to help develop the Strategy. The Strategy was built on existing authorities and resources and represents enhanced collaboration and a recognition of the shared responsibility among Federal and State governments to restore the Gulf Coast ecosystem. In this time of severe fiscal constraints, Task Force member agencies and States are committed to establishing shared priorities and working together to achieve them.As part of this effort, three staffers, one National Oceanic and Atmospheric Administration (NOAA) scientist and two U.S. Geological Survey (USGS) scientists, created and led a Science Coordination Team (SCT) to guide scientific input into the development of the Gulf of Mexico Regional Ecosystem Restoration Strategy. The SCT leads from the GCERTF coordinated more than 70 scientists from the Federal and State Task Force member agencies to participate in development of a restoration-oriented science document focused on the entire Gulf of Mexico, from inland watersheds to the deep blue waters. The SCT leads and scientists were organized into six different working groups based on expanded goals from the Mabus Report: Coastal habitats are healthy and resilient.Living coastal and marine resources are healthy, diverse, and sustainable.Coastal communities are adaptive and resilient.Storm buffers are sustainable.Inland habitats and watersheds are managed to help support healthy and sustainable Gulf of Mexico ecosystems.Offshore environments are healthy and well managedEach working group was charged with defining their specific goal, describing the current conditions related to that goal (for example, the status of coastal habitats in the Gulf of Mexico), providing highlevel activities needed to further define and achieve the goal, with associated outcome-based performance indicators, and identifying the scientific gaps in understanding to accomplish the goal and implement the recommended activities. The overall scientific assessment reveals that the Gulf of Mexico ecosystem continues to suffer from extensive degradation, and action is necessary to develop a healthy, resilient, and sustainable Gulf of Mexico ecosystem. The six groups also were tasked with outlining the necessary monitoring, modeling, and research needs to aid in achieving the goals. Recognizing that (1) the scientific needs (monitoring, modeling, and research) overlap among many of the goals, and (2) an overarching scientific framework could be developed to implement the necessary science in support of the Strategy, a seventh group was created with several members from each of the original six working groups. This seventh group compiled all of the cross-cutting monitoring, modeling, and research needs previously identified by the individual groups. These scientific requirements are found in Chapter 5 of this document. The seventh group also has developed a Science Plan, outlined in Chapter 6. The Science Plan provides the basic science infrastructure to support the overall Gulf restoration program and Strategy. The Science Plan allows for the development of an iterative and flexible approach to adaptive management and decision-making related to restoration projects based on sound science that includes monitoring, modeling, and research. Taken in its entirety, this document helps to articulate the current state of the system and the critical science needs to support effective restoration of the Gulf of Mexico resources that have been trending towards decline for decades.

  3. Experimental magnetism research in Dhaka, Hanoi and Uppsala

    NASA Astrophysics Data System (ADS)

    Nordblad, Per

    2015-04-01

    Promoting basic science in developing countries is the aim of the International Science Program at Uppsala University, Sweden. This program, that some years ago celebrated its 50th anniversary, has been the main supporting agency of my more than 30 years of collaboration with research groups in Dhaka at Bangladesh University of Engineering and Technology and the Atomic Energy Commission, and research groups in Hanoi at the Vietnamese Academy of Science. Our common research on magnetism and magnetic materials has been built upon: (i) Longer visits (about half of their total PhD studies) by PhD students from Hanoi and Dhaka at Uppsala University that ends by PhD exams from their home Universities; (ii) short time visits (up to 2 months) by senior scientists to Uppsala for discussions and measurements; (iii) short visits by me and colleagues from Uppsala in Hanoi and Dhaka for discussions, workshops and conferences; (iv) mutual visits of scientists from Bangladesh and Vietnam to each other and neighboring countries (mostly India) for specific experiments and learning new methods and (v) some support for purchase of research equipment. The work with Dhaka and Hanoi and other countries has resulted in: development of internationally competitive research groups in Hanoi and Dhaka that independently publish in international journals, several PhDs that continue their work at the home institutes, numerous common publications in international scientific journals and not the least lasting professional and personal connections between scientists in Bangladesh, Vietnam, Thailand, Eritrea, India and Sweden.

  4. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    NASA Astrophysics Data System (ADS)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  5. Post-genomic science: cross-disciplinary and large-scale collaborative research and its organizational and technological challenges for the scientific research process.

    PubMed

    Welsh, Elaine; Jirotka, Marina; Gavaghan, David

    2006-06-15

    We examine recent developments in cross-disciplinary science and contend that a 'Big Science' approach is increasingly evident in the life sciences-facilitated by a breakdown of the traditional barriers between academic disciplines and the application of technologies across these disciplines. The first fruits of 'Big Biology' are beginning to be seen in, for example, genomics, (bio)-nanotechnology and systems biology. We suggest that this has profound implications for the research process and presents challenges both in technological design, in the provision of infrastructure and training, in the organization of research groups, and in providing suitable research funding mechanisms and reward systems. These challenges need to be addressed if the promise of this approach is to be fully realized. In this paper, we will draw on the work of social scientists to understand how these developments in science and technology relate to organizational culture, organizational change and the context of scientific work. We seek to learn from previous technological developments that seemed to offer similar potential for organizational and social change.

  6. Practice-based research networks (PBRNs) are promising laboratories for conducting dissemination and implementation research.

    PubMed

    Heintzman, John; Gold, Rachel; Krist, Alexander; Crosson, Jay; Likumahuwa, Sonja; DeVoe, Jennifer E

    2014-01-01

    Dissemination and implementation science addresses the application of research findings in varied health care settings. Despite the potential benefit of dissemination and implementation work to primary care, ideal laboratories for this science have been elusive. Practice-based research networks (PBRNs) have a long history of conducting research in community clinical settings, demonstrating an approach that could be used to execute multiple research projects over time in broad and varied settings. PBRNs also are uniquely structured and increasingly involved in pragmatic trials, a research design central to dissemination and implementation science. We argue that PBRNs and dissemination and implementation scientists are ideally suited to work together and that the collaboration of these 2 groups will yield great value for the future of primary care and the delivery of evidence-based health care. © Copyright 2014 by the American Board of Family Medicine.

  7. Peer Mentoring to Facilitate Original Scientific Research by Students With Special Needs

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2007-12-01

    Developed to allow high school students with special needs to participate in original scientific research, the Peer Mentoring Program was a supplement to existing science instruction for students in a self-contained classroom. Peer mentors were high school seniors at the end of a three-year advanced science research course who used their experience to create and develop inquiry-based research activities appropriate for students in the self- contained classroom. Peer mentors then assisted cooperative learning groups of special education students to facilitate the implementation of the research activities. Students with special needs successfully carried out an original research project and developed critical thinking and laboratory skills. Prior to embarking on their undergraduate course of study in the sciences, peer mentors developed an appreciation for the need to bring original scientific research to students of all levels. The program will be expanded and continued during the 2007-2008 school year.

  8. Harnessing Implementation Science to Increase the Impact of Health Equity Research.

    PubMed

    Chinman, Matthew; Woodward, Eva N; Curran, Geoffrey M; Hausmann, Leslie R M

    2017-09-01

    Health disparities are differences in health or health care between groups based on social, economic, and/or environmental disadvantage. Disparity research often follows 3 steps: detecting (phase 1), understanding (phase 2), and reducing (phase 3), disparities. Although disparities have narrowed over time, many remain. We argue that implementation science could enhance disparities research by broadening the scope of phase 2 studies and offering rigorous methods to test disparity-reducing implementation strategies in phase 3 studies. We briefly review the focus of phase 2 and phase 3 disparities research. We then provide a decision tree and case examples to illustrate how implementation science frameworks and research designs could further enhance disparity research. Most health disparities research emphasizes patient and provider factors as predominant mechanisms underlying disparities. Applying implementation science frameworks like the Consolidated Framework for Implementation Research could help disparities research widen its scope in phase 2 studies and, in turn, develop broader disparities-reducing implementation strategies in phase 3 studies. Many phase 3 studies of disparity-reducing implementation strategies are similar to case studies, whose designs are not able to fully test causality. Implementation science research designs offer rigorous methods that could accelerate the pace at which equity is achieved in real-world practice. Disparities can be considered a "special case" of implementation challenges-when evidence-based clinical interventions are delivered to, and received by, vulnerable populations at lower rates. Bringing together health disparities research and implementation science could advance equity more than either could achieve on their own.

  9. A Comparison of Internal Dispositions and Career Trajectories after Collaborative versus Apprenticed Research Experiences for Undergraduates

    PubMed Central

    Frantz, Kyle J.; Demetrikopoulos, Melissa K.; Britner, Shari L.; Carruth, Laura L.; Williams, Brian A.; Pecore, John L.; DeHaan, Robert L.; Goode, Christopher T.

    2017-01-01

    Undergraduate research experiences confer benefits on students bound for science, technology, engineering, and mathematics (STEM) careers, but the low number of research professionals available to serve as mentors often limits access to research. Within the context of our summer research program (BRAIN), we tested the hypothesis that a team-based collaborative learning model (CLM) produces student outcomes at least as positive as a traditional apprenticeship model (AM). Through stratified, random assignment to conditions, CLM students were designated to work together in a teaching laboratory to conduct research according to a defined curriculum led by several instructors, whereas AM students were paired with mentors in active research groups. We used pre-, mid-, and postprogram surveys to measure internal dispositions reported to predict progress toward STEM careers, such as scientific research self-efficacy, science identity, science anxiety, and commitment to a science career. We are also tracking long-term retention in science-related career paths. For both short- and longer-term outcomes, the two program formats produced similar benefits, supporting our hypothesis that the CLM provides positive outcomes while conserving resources, such as faculty mentors. We discuss this method in comparison with course-based undergraduate research and recommend its expansion to institutional settings in which mentor resources are scarce. PMID:28130268

  10. Utilizing Social Media and Blogging to Teach Science Communication

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.

    2012-12-01

    The National Science Foundation presented the Science: Becoming the Messenger Workshop at my university in Fall 2011. Following the workshop, I started a blog (http://plasma.physics.wvu.edu/), Facebook page (WVU Plasma Physics), and Twitter feed (@WVUPlasma) to promote the West Virginia University Plasma Physics Research Groups. Faculty, postdocs, and graduate students in plasma physics are assigned the task of writing a blog post on a rotating basis as one of three elements for our monthly Journal Club. Our Facebook page and Twitter feed are used to announce new blog posts and accomplishments by group members. We have found this process to be a good way for students to learn to describe their research to people outside of their field of expertise. Details on establishing and maintaining these resources and specific examples will be presented. Follow me @plasmaphysmom.

  11. Sciences literacy on nutrition program for improving public wellness

    NASA Astrophysics Data System (ADS)

    Rochman, C.; Nasrudin, D.; Helsy, I.; Rokayah; Kusbudiah, Y.

    2018-05-01

    Increased wellness for a person becomes a necessity now and for the future. Various ways people do to get fit include following and understanding nutrition. This review will inventory the concepts of science involved to understand the nutritional program and its impact on fitness levels. The method used is a quantitative and qualitative descriptive mixed method based on treatment to a number of nutrition group participants in a nutrition group in Bandung. The concepts of science that are the subject of study are the concepts of physics, chemistry, and biology. The results showed that the ability of science literacy and respondent's wellness level varies and there is a relationship between science literacy with one's wellness level. The implications of this research are the need for science literacy and wellness studies for community based on educational level and more specific scientific concepts.

  12. Science of learning is learning of science: why we need a dialectical approach to science education research

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  13. Harnessing the Power of Digital Data for Science and Society

    DTIC Science & Technology

    2009-01-01

    development and that the research process is responsive to the real-world needs of the implementation sector. Relationship to the Scientific Collections IWG...The Scientific Collections Interagency Working Group focuses on collections of physical objects relevant to science (e.g., biological specimens

  14. Questionnaire Design in Broad-Based Evaluation Studies: Letting Someone Else Collect Comparison Group Data.

    ERIC Educational Resources Information Center

    Clark, Sheldon B.; Boser, Judith A.

    A context in which existing items may provide a convenient source of questions for questionnaires was explored through a case study making use of existing comparison groups. Two programs at Oak Ridge Associated Universities (ORAU), the Science and Engineering Research Semester (SERS) and the Laboratory Graduate Research Participation (Lab Grad)…

  15. Teacher Research Experience Programs = Increase in Student Achievement

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2010-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.

  16. Life sciences domain analysis model

    PubMed Central

    Freimuth, Robert R; Freund, Elaine T; Schick, Lisa; Sharma, Mukesh K; Stafford, Grace A; Suzek, Baris E; Hernandez, Joyce; Hipp, Jason; Kelley, Jenny M; Rokicki, Konrad; Pan, Sue; Buckler, Andrew; Stokes, Todd H; Fernandez, Anna; Fore, Ian; Buetow, Kenneth H

    2012-01-01

    Objective Meaningful exchange of information is a fundamental challenge in collaborative biomedical research. To help address this, the authors developed the Life Sciences Domain Analysis Model (LS DAM), an information model that provides a framework for communication among domain experts and technical teams developing information systems to support biomedical research. The LS DAM is harmonized with the Biomedical Research Integrated Domain Group (BRIDG) model of protocol-driven clinical research. Together, these models can facilitate data exchange for translational research. Materials and methods The content of the LS DAM was driven by analysis of life sciences and translational research scenarios and the concepts in the model are derived from existing information models, reference models and data exchange formats. The model is represented in the Unified Modeling Language and uses ISO 21090 data types. Results The LS DAM v2.2.1 is comprised of 130 classes and covers several core areas including Experiment, Molecular Biology, Molecular Databases and Specimen. Nearly half of these classes originate from the BRIDG model, emphasizing the semantic harmonization between these models. Validation of the LS DAM against independently derived information models, research scenarios and reference databases supports its general applicability to represent life sciences research. Discussion The LS DAM provides unambiguous definitions for concepts required to describe life sciences research. The processes established to achieve consensus among domain experts will be applied in future iterations and may be broadly applicable to other standardization efforts. Conclusions The LS DAM provides common semantics for life sciences research. Through harmonization with BRIDG, it promotes interoperability in translational science. PMID:22744959

  17. Impact of Mode of Curriculum on Knowledge and Attitudes of Medical Students towards Health Research

    PubMed Central

    Haseeb, Abdul; Ansari, M. Ahmed; Raheem, Ahmed; Khan, Aleena; Arshad, Mohammad Hussham; Motiani, Vanita; Akhtar, Muhammad Shahzeb

    2016-01-01

    Introduction Equipping students with skills in medical research should be an integral part of medical education systems. This study is designed to gauge the difference in knowledge and attitudes towards health research between two sets of undergraduate medical students; those enrolled in the new Problem Based Learning (PBL) education system versus those of the conventional Lecture Based Learning (LBL) curricula. Materials and Methods From the 4th and 5th years of medical university students, 90 participants were recruited from the Aga Khan University (PBL group) and Dow University of Health Sciences (LBL group) and were presented with structured and pre-validated questionnaire. Responses obtained for knowledge and attitudes of each group were recorded on a scale and graduated in percentages to be compared statistically for differences to identify the effectiveness of each curriculum. Results The score on the knowledge scale for the PBL group was found to be 44.77% against the 31.55% of the LBL students (p-value<0.001). Furthermore, the mean attitude score of AKU students was 72.22% as opposed to the 56.11% of the DUHS participants (p-value<0.001). Conclusion The PBL group achieved significantly higher scores in all aspects than the LBL group, showing healthier attitudes towards health science research along with better knowledge. Hence, the apparent positive influence of PBL curricula on attitudes towards research may be helpful in improving research output of medical students in Pakistan. PMID:27190837

  18. Effects of different forms of physiology instruction on the development of students' conceptions of and approaches to science learning.

    PubMed

    Lin, Yi-Hui; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-03-01

    The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.

  19. Conference-EC-US Task Force Joint US-EU Workshop on Metabolomics and Environmental Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PI: Lily Y. Young

    2009-06-04

    Since 1990, the EC-US Task Force on Biotechnology Research has been coordinating transatlantic efforts to guide and exploit the ongoing revolution in biotechnology and the life sciences. The Task Force was established in June 1990 by the European Commission and the White House Office of Science and Technology Policy. The Task Force has acted as an effective forum for discussion, coordination, and development of new ideas for the last 18 years. Task Force members are European Commission and US Government science and technology administrators who meet annually to enhance communication across the Atlantic, and to encourage collaborative research. Through sponsoringmore » workshops, and other activities, the Task Force also brings together scientific leaders and early career researchers from both sides of the Atlantic to forecast research challenges and opportunities and to promote better links between researchers. Over the years, by keeping a focus on the future of science, the Task Force has played a key role in establishing a diverse range of emerging scientific fields, including biodiversity research, neuroinformatics, genomics, nanobiotechnology, neonatal immunology, transkingdom molecular biology, biologically-based fuels, and environmental biotechnology. The EC-US Task Force has sponsored a number of Working Groups on topics of mutual transatlantic interest. The idea to create a Working Group on Environmental Biotechnology research was discussed in the Task Force meeting of October 1993. The EC-US Working Group on Environmental Biotechnology set as its mission 'To train the next generation of leaders in environmental biotechnology in the United States and the European Union to work collaboratively across the Atlantic.' Since 1995, the Working Group supported three kinds of activities, all of which focus one early career scientists: (1) Workshops on the use of molecular methods and genomics in environmental biotechnology; (2) Short courses with theoretical, laboratory and field elements; and (3) Short term exchange fellowships. The short term exchange fellowships were created to enable young scientists to develop collaborations with colleagues across the Atlantic and to learn a new skill or expertise in the area of environmental biotechnology.« less

  20. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  1. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  2. Centre for Research Infrastructure of Polish GNSS Data - response and possible contribution to EPOS

    NASA Astrophysics Data System (ADS)

    Araszkiewicz, Andrzej; Rohm, Witold; Bosy, Jaroslaw; Szolucha, Marcin; Kaplon, Jan; Kroszczynski, Krzysztof

    2017-04-01

    In the frame of the first call under Action 4.2: Development of modern research infrastructure of the science sector in the Smart Growth Operational Programme 2014-2020 in the late of 2016 the "EPOS-PL" project has launched. Following institutes are responsible for the implementation of this project: Institute of Geophysics, Polish Academy of Sciences - Project Leader, Academic Computer Centre Cyfronet AGH University of Science and Technology, Central Mining Institute, the Institute of Geodesy and Cartography, Wrocław University of Environmental and Life Sciences, Military University of Technology. In addition, resources constituting entrepreneur's own contribution will come from the Polish Mining Group. Research Infrastructure EPOS-PL will integrate both existing and newly built National Research Infrastructures (Theme Centre for Research Infrastructures), which, under the premise of the program EPOS, are financed exclusively by the national founds. In addition, the e-science platform will be developed. The Centre for Research Infrastructure of GNSS Data (CIBDG - Task 5) will be built based on the experience and facilities of two institutions: Military University of Technology and Wrocław University of Environmental and Life Sciences. The project includes the construction of the National GNNS Repository with data QC procedures and adaptation of two Regional GNNS Analysis Centres for rapid and long-term geodynamical monitoring.

  3. Social Science Research and School Diversity Policy

    ERIC Educational Resources Information Center

    Williams, Sheneka M.; McDermott, Kathryn A.

    2014-01-01

    For decades, policy makers, advocates, and researchers have been engaged in efforts to make educational opportunity more equal for students from different racial, ethnic, and socioeconomic groups. A great deal of research has been conducted on their efforts; however, there is some disagreement on the extent to which the research has been…

  4. Eliciting and utilizing rural students' funds of knowledge in the service of science learning: An action research study

    NASA Astrophysics Data System (ADS)

    Lloyd, Ellen M.

    Several researchers have pointed out the failures of current schooling to adequately prepare students in science and called for radical reform in science education to address the problem. One dominant critique of science education is that several groups of students are not well served by current school science practices and discourses. Rural students represent one of these underserved populations. Yet, there is little in the literature that speaks specifically to reforming the science education of rural students. Utilizing action research as a methodology, this study was designed to learn more about the unique knowledge and life experiences of rural students, and how these unique knowledge, skills and interests could suggest new ways to improve science education in rural schools. Informed by this ultimate goal, I created an after school science club where the participating high school students engaged in solving a local watershed problem, while explicitly bringing to bear their unique backgrounds, local knowledge and life experiences from living in a rural area of Upstate New York. Using Funds of Knowledge as the theoretical framework, this after-school club served as the context to investigate the following research questions: (1) What science-related funds of knowledge do rural high school students have? (2) How were these funds of knowledge capitalized on to support science learning in an after-school setting?

  5. Assessing clinical researchers' information needs to create responsive portals and tools: my Research Assistant (MyRA) at the University of Utah: a case study.

    PubMed

    Reich, Margaret; Shipman, Jean P; Narus, Scott P; Weir, Charlene; Madsen, Randy; Schultz, N Dustin; Cameron, Justin M; Adamczyk, Abby L; Mitchell, Joyce A

    2013-01-01

    How can health sciences librarians and biomedical informaticians offer relevant support to Clinical and Translational Science Award (CTSA) personnel? The Spencer S. Eccles Health Sciences Library and the associate vice president for information technology for the health sciences office at the University of Utah conducted a needs assessment. Faculty and staff from these two units, with the services of a consultant and other CTSA partners, employed a survey, focus groups, interviews, and committee discussions. An information portal was created to meet identified needs. A directive white paper was created. The process employed to plan a virtual and physical collaborative, collegial space for clinical researchers at the university and its three inter-institutional CTSA partners is described. The university's model can assist other librarians and informaticians with how to become part of a CTSA-focused infrastructure for clinical and translational research and serve researchers in general.

  6. Cystic fibrosis: Beyond the airways. Report on the meeting of the basic science working group in Loutraki, Greece.

    PubMed

    Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M

    2018-06-01

    The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  7. Getting from Here to There: The Roles of Policy Makers and Principals in Increasing Science Teacher Quality

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Gerard, Libby; Bowyer, Jane

    2010-04-01

    In this study we investigate how federal and state policy makers, and school principals are working to improve science teacher quality. Interviews, focused discussions, and policy documents serve as the primary data source. Findings suggest that both policy makers and principals prioritize increasing incentives for teachers entering the science teaching profession, providing professional development for new teachers, and using students’ data to evaluate and improve instruction. Differences between the two leadership groups emerged in terms of the grain size and practicality of their concerns. Our findings indicate that the complexity of educational challenges to improve science teacher quality call for the co-construction of policy by multiple constituent groups including school principals, federal and state policy makers, and science education researchers.

  8. Climate Voices: Bridging Scientist Citizens and Local Communities across the United States

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Ristvey, J. D., Jr.

    2016-12-01

    Based out of the University Corporation for Atmospheric Research (UCAR), the Climate Voices Science Speakers Network (climatevoices.org) has more than 400 participants across the United States that volunteer their time as scientist citizens in their local communities. Climate Voices experts engage in nonpartisan conversations about the local impacts of climate change with groups such as Rotary clubs, collaborate with faith-based groups on climate action initiatives, and disseminate their research findings to K-12 teachers and classrooms through webinars. To support their participants, Climate Voices develops partnerships with networks of community groups, provides trainings on how to engage these communities, and actively seeks community feedback. In this presentation, we will share case studies of science-community collaborations, including meta-analyses of collaborations and lessons learned.

  9. Ethical sensitivity intervention in science teacher education: Using computer simulations and professional codes of ethics

    NASA Astrophysics Data System (ADS)

    Holmes, Shawn Yvette

    A simulation was created to emulate two Racial Ethical Sensitivity Test (REST) videos (Brabeck et al., 2000). The REST is a reliable assessment for ethical sensitivity to racial and gender intolerant behaviors in educational settings. Quantitative and qualitative analysis of the REST was performed using the Quick-REST survey and an interview protocol. The purpose of this study was to affect science educator ability to recognize instances of racial and gender intolerant behaviors by levering immersive qualities of simulations. The fictitious Hazelton High School virtual environment was created by the researcher and compared with the traditional REST. The study investigated whether computer simulations can influence the ethical sensitivity of preservice and inservice science teachers to racial and gender intolerant behaviors in school settings. The post-test only research design involved 32 third-year science education students enrolled in science education classes at several southeastern universities and 31 science teachers from the same locale, some of which were part of an NSF project. Participant samples were assigned to the video control group or the simulation experimental group. This resulted in four comparison group; preservice video, preservice simulation, inservice video and inservice simulation. Participants experienced two REST scenarios in the appropriate format then responded to Quick-REST survey questions for both scenarios. Additionally, the simulation groups answered in-simulation and post-simulation questions. Nonparametric analysis of the Quick-REST ascertained differences between comparison groups. Cronbach's alpha was calculated for internal consistency. The REST interview protocol was used to analyze recognition of intolerant behaviors in the in-simulation prompts. Post-simulation prompts were analyzed for emergent themes concerning effect of the simulation on responses. The preservice video group had a significantly higher mean rank score than other comparison groups. There were no significant differences across the remaining groups. Qualitative analyses of in-simulation prompts suggest both preservice and inservice participants are unlikely to take action in an intolerant environment. Themes emerged in the post-simulation responses indicated participants viewed the simulation as a reflective, interactive, personal, and organic environment.

  10. University of Maryland MRSEC - Research: IRG2

    Science.gov Websites

    microscopy. Senior Investigators H. Dennis Drew (leader), Physics Lourdes Salamanca-Riba, Materials Science publications list IRG 2 Group Leader H. Dennis Drew H. Dennis Drew Research Professor, Physics Contact Us

  11. The Effects of Science Models on Students' Understanding of Scientific Processes

    NASA Astrophysics Data System (ADS)

    Berglin, Riki Susan

    This action research study investigated how the use of science models affected fifth-grade students' ability to transfer their science curriculum to a deeper understanding of scientific processes. This study implemented a variety of science models into a chemistry unit throughout a 6-week study. The research question addressed was: In what ways do using models to learn and teach science help students transfer classroom knowledge to a deeper understanding of the scientific processes? Qualitative and quantitative data were collected through pre- and post-science interest inventories, observations field notes, student work samples, focus group interviews, and chemistry unit tests. These data collection tools assessed students' attitudes, engagement, and content knowledge throughout their chemistry unit. The results of the data indicate that the model-based instruction program helped with students' engagement in the lessons and understanding of chemistry content. The results also showed that students displayed positive attitudes toward using science models.

  12. Girls in computer science: A female only introduction class in high school

    NASA Astrophysics Data System (ADS)

    Drobnis, Ann W.

    This study examined the impact of an all girls' classroom environment in a high school introductory computer science class on the student's attitudes towards computer science and their thoughts on future involvement with computer science. It was determined that an all girls' introductory class could impact the declining female enrollment and female students' efficacy towards computer science. This research was conducted in a summer school program through a regional magnet school for science and technology which these students attend during the school year. Three different groupings of students were examined for the research: female students in an all girls' class, female students in mixed-gender classes and male students in mixed-gender classes. A survey, Attitudes about Computers and Computer Science (ACCS), was designed to obtain an understanding of the students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career. Students in all three groups were administered the ACCS prior to taking the class and upon completion of the class. In addition, students in the all girls' class wrote in a journal throughout the course, and some of those students were also interviewed upon completion of the course. The data was analyzed using quantitative and qualitative techniques. While there were no major differences found in the quantitative data, it was determined that girls in the all girls' class were truly excited by what they had learned and were more open to the idea of computer science being a part of their future.

  13. Ciênsação: gaining a feeling for sciences

    NASA Astrophysics Data System (ADS)

    Abreu de Oliveira, Marcos Henrique; Fischer, Robert

    2017-03-01

    Ciênsação, an open online repository for hands-on experiments, has been developed to convince teachers in Latin America that science is best experienced first hand. Permitting students to experiment autonomously in small groups can be a challenging endeavour for educators in these countries. We analyse the reasons that cause hesitation of teachers appling hands-on experiments in class, and discuss how Ciênsação was implemented to overcome these obstacles. The resulting student research activities are specifically designed to be easily integrated in formal science education at school, to foster research skills and, most importantly, to let young people get to know science as an engaging creative activity.

  14. Effects of designed learning strategies to enhance biology students' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Reeves, Carolyn T.

    This research attempted to test the effectiveness of strategies designed for teaching the nature of science to Biology I students and to examine the effects of frequency of use of the strategies. Some strategies were designed to identify misconceptions about the nature of science; others were designed to correct misconceptions or provide correct concepts about the nature of science. This research commenced during the 3rd week of the 2001--2002 school year after obtaining IRB approval and permissions from school officials. The study ended after the 15th week. All participating students were given a pretest and a posttest of the Nature of Scientific Knowledge Scale Enhanced (NSKSE) test. Part I, 48 items, consisted of the NSKS test by Rubba & Anderson (1978). Part II, 10 items, consisted of a test constructed by the researcher. Part I contained questions about 6 tenets of the nature of science. Part II contained questions about how science works. The strategies were tested in two Biology I experimental classes, n = 41, and compared with two Biology I control classes, n = 34, by means of an analysis of covariance with the pretest scores used as the covariate. The overall mean posttest scores of the experimental and the control group were not found to be significantly different on either Part I, F(1,72) = 1.059, p = .307, or Part II, F(1,72) = 3.136, p = .081, of the test instrument. The number of times a strategy was used in each experimental classroom was determined. It was found that strategies were used almost twice as often in one classroom than in the other. A second set of ANCOVA analyses compared mean scores between Experimental Class A, Experimental Class B, and the control group. There was no significant difference between the groups on Part I, F(2,71) = .921, p = .403, but the difference between groups on Part II, F(2,71) = 5.769, p = .005, was significant. A post hoc Scheffe analysis showed that the class using strategies most often differed significantly with the control group, p = .009, but the other class did not, p = .929. This study suggests that frequent use of the designed strategies was effective in helping Biology I students understand some aspects of the nature of science. It also suggests that minimal use of the strategies was not effective.

  15. Career Education: The Marine Science Occupations Cluster.

    ERIC Educational Resources Information Center

    Farning, Maxwell

    This paper discusses career opportunities in eight broad groups of marine science occupations: (1) harbor construction and maintenance, (2) ship construction, (3) merchant marine activities, (4) towboating, (5) longshoring, (6) fishing and fish farming, (7) petroleum and natural gas exploration and extraction, and (8) research activities. The…

  16. Expanding NASA Science Cooperation with New Partners

    NASA Astrophysics Data System (ADS)

    Allen, Marc; Bress, Kent

    Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.

  17. An outline of the review on space weather in Latin America: space science, research networks and space weather center

    NASA Astrophysics Data System (ADS)

    De Nardin, C. M.; Dasso, S.; Gonzalez-Esparza, A.

    2016-12-01

    The present work is an outline of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings and alerts.

  18. Synopsis of the Review on Space Weather in Latin America: Space Science, Research Networks and Space Weather Center

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, Americo

    2016-07-01

    The present work is a synopsis of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings and alerts.

  19. Examination of Knowledge and NOS in a PBL Curriculum: Comparing the Impact on Pre-service Teachers and Science Career Undergraduates

    NASA Astrophysics Data System (ADS)

    Schleigh, S.; Manda, A. K.

    2011-12-01

    "Those who don't know or can't do, teach". This is a well known statement accepted by many as an adage. It is a statement that implies that the teachers of our science content really do not understand the science. In this study, we examined whether there was some truth in this statement by comparing undergraduates heading towards science careers and undergraduates heading toward science teaching careers. Do teachers really have a different understanding for science than scientists? If so, do they learn differently from each other? Our study examines content knowledge gains and ability to apply and engage in science using the content that is being addressed. We questioned (1)if students in one track engage and develop knowledge and skills more proficiently than another; (2)if the PBL approach is more effective for a particular group of learners; (3)if the PBL environment (virtual/physical) impacts the development and understanding for NOS; and (4) how the engagement of learning through PBL transfers to classroom practice. We used the Problem Based Approach (PBL) in undergraduate courses that covered the science content related to climate change. Project-based learning (PBL) is an approach to science education that has been shown to support student understanding for science concepts by allowing them to apply knowledge to real-world, relevant applications. Recent research has focused on developing teachers' understanding for science by engaging them in learning events that are found in PBL and authentic research approaches (AR)( e.g. Abd-El-Khalick and Lederman, 2000). We used mixed methods to answer each of our questions. Our instruments included a likert scale for the nature of science as argumentation, a concept mapping activity, a written essay, a content exam and an observation protocol for the teaching practice. In this study we included a total of 40 pre-service teachers (online) 30 pre-service teachers (physical classroom) and 35 undergraduates (physical). Participants in all groups engaged in the same curriculum with the same instructors. Curriculum is taken from those developed by the Earth Systems Science Alliance (ESSEA) modules, funded by an NSF grant. Results that compare the groups (their gains and applications) will be discussed during the presentation. The results suggest that there is no significant difference between the two groups of undergraduate students in terms of their prior knowledge; however there are differences in their understanding for the nature of science. In addition, the results show that students in the SCIE3602 course have a stronger content understanding and greater gains in understanding the NOS than the GEOL1700 students. The students in the SCIE3602 groups also had more creativity and possibly spatial reasoning than those in the GEOL1700 group and they developed stronger skills in argumentation than the GEOL1700 students. Possible reasons for the differences between groups and implications for teaching with technology and using the PBL approach will be shared.

  20. Task value profiles across subjects and aspirations to physical and IT-related sciences in the United States and Finland.

    PubMed

    Chow, Angela; Eccles, Jacquelynne S; Salmela-Aro, Katariina

    2012-11-01

    Two independent studies were conducted to extend previous research by examining the associations between task value priority patterns across school subjects and aspirations toward the physical and information technology- (IT-) related sciences. Study 1 measured task values of a sample of 10th graders in the United States (N = 249) across (a) physics and chemistry, (b) math, and (c) English. Study 2 measured task values of a sample of students in the second year of high school in Finland (N = 351) across (a) math and science, (b) Finnish, and (c) the arts and physical education. In both studies, students were classified into groups according to how they ranked math and science in relation to the other subjects. Regression analyses indicated that task value group membership significantly predicted subsequent aspirations toward physical and IT-related sciences measured 1-2 years later. The task value groups who placed the highest priority on math and science were significantly more likely to aspire to physical and IT-related sciences than were the other groups. These findings provide support for the theoretical assumption regarding the predictive role of intraindividual hierarchical patterns of task values for subsequent preferences and choices suggested by the Eccles [Parsons] (1983) expectancy-value model.

Top