Sample records for science sample curriculum

  1. The Study of Literacy Reinforcement of Science Teachers in Implementing 2013 Curriculum

    NASA Astrophysics Data System (ADS)

    Dewi, W. S.; Festiyed, F.; Hamdi, H.; Sari, S. Y.

    2018-04-01

    This research aims to study and collect data comprehensively, new and actual about science literacy to improve the ability of educators in implementing the 2013 Curriculum at Junior High School Padang Pariaman District. The specific benefit of this research is to give description and to know the problem of science literacy problem in interaction among teacher, curriculum, facilities and infrastructure, evaluation, learning technology and students. This study uses explorative in deep study approach, studying and collecting data comprehensively from the interaction of education process components (curriculum, educator, learner, facilities and infrastructure, learning media technology, and evaluation) that influence the science literacy. This research was conducted in the districts of Padang Pariaman consisting of 17 subdistricts and 84 junior high schools managed by the government and private. The sample of this research is science teachers of Padang Pariaman District with sampling technique is stratified random sampling. The instrument used in this study is a questionnaire to the respondents. Research questionnaire data are processed by percentage techniques (quantitative). The results of this study explain that the understanding of science teachers in Padang Pariaman District towards the implementation of 2013 Curriculum is still lacking. The science teachers of Padang Pariaman District have not understood the scientific approach and the effectiveness of 2013 Curriculum in shaping the character of the students. To improve the understanding of the implementation of Curriculum 2013, it is necessary to strengthen the literacy toward science teachers at the Junior High School level in Padang Pariaman District.

  2. Carroll County hands-on elementary science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlocker, H.G.; Dunkleberger, G.L.

    1994-12-31

    Carroll County Hands-on Elementary Science is a nationally recognized Elementary Science Curriculum which has been disseminated in forty states, Puerto Rico, The Virgin Islands, Saipan, and Samoa. The curriculum is a non-textbook, process-based, constructivist approach to teaching science. Unique features of this curriculum include its teacher-written daily lesson plan format, its complete kit of science supplies, and its complete set of Spanish materials. In order to be included by the National Diffusion Network, Hands-on Elementary Science collected data to support the following claims: the program enhances teacher and student attitudes toward science; the program changes both the amount and themore » type of science instruction; the program is adaptable and transportable; the teacher training component is effective. The poster display will feature sample activities, data which demonstrates the effectiveness of the staff development plan, and samples which show the degree to which the program supports selected state curriculum frameworks.« less

  3. Science: Curriculum Guide for Teaching Gifted Children Science in Grades One Through Three: A Sample Ecology Unit.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Office of Curriculum Services.

    The natural science curriculum guide for gifted primary students includes a sample teaching-learning plan for an ecology unit and eight sample lesson plans. Chapter One provides an overview of the unit, a review of behavioral objectives, and a list of concepts and generalizations. The second chapter cites a teaching-learning plan dealing with such…

  4. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  5. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    ERIC Educational Resources Information Center

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  6. An Investigation of Measurement Invariance of the Key Stage 2 National Curriculum Science Sampling Test in England

    ERIC Educational Resources Information Center

    He, Qingping; Anwyll, Steve; Glanville, Matthew; Opposs, Dennis

    2014-01-01

    Since 2010, the whole national cohort Key Stage 2 (KS2) National Curriculum test in science in England has been replaced with a sampling test taken by pupils at the age of 11 from a nationally representative sample of schools annually. The study reported in this paper compares the performance of different subgroups of the samples (classified by…

  7. Electrical Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the fifth in a set of six, contains teacher and student materials for a unit on electrical energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades…

  8. Foundational Approaches in Science Teaching (FAST)--A Structured "Inquiry" Oriented Junior Science Curriculum

    ERIC Educational Resources Information Center

    Dekkers, John; Rouse, Fae

    1977-01-01

    Provides a detailed description of the three-year Foundational Approaches in Science Education curriculum developed at the University of Hawaii. The program utilizes a spiral approach with topics in ecology, physical science and relational study. Sample units and implementation suggestions are provided. (CP)

  9. Solar Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the third in a set of six, contains teacher and student materials for a unit on solar energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades 8-10…

  10. Parallel Curriculum Units for Science, Grades 6-12

    ERIC Educational Resources Information Center

    Leppien, Jann H.; Purcell, Jeanne H.

    2011-01-01

    Based on the best-selling book "The Parallel Curriculum", this professional development resource gives multifaceted examples of rigorous learning opportunities for science students in Grades 6-12. The four sample units revolve around genetics, the convergence of science and society, the integration of language arts and biology, and the periodic…

  11. Into the Curriculum. Art: A Path to Monet--Following in Linnea's Footsteps [and] Reading/Language Arts: Legends about Humanity's Acquisition of Fire [and] Reading/Language Arts: Analytical Book Reviews [and] Science/Art: Build a Beautiful Butterfly [and] Science: Life Processes of Plants [and] Social Studies: Community Helpers: Fire Fighters.

    ERIC Educational Resources Information Center

    Schultis, Cathy; Troisi, Andrea; Vidor, Constance; Rostek, Andrea; Linsky, Melissa Carruthers

    1998-01-01

    Presents six curriculum guides for art, language arts, reading, science, and social studies. Each activity identifies library media skills objectives, curriculum objectives, grade levels, resources, librarian and teacher instructional roles, activity and procedures for completion, activity samples, guidelines for evaluating finished activities,…

  12. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    ERIC Educational Resources Information Center

    Zaleta, Kristy L.

    2014-01-01

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth…

  13. Making Curriculum Decisions in K-8 Science: The Relationship between Teacher Dispositions and Curriculum Content

    ERIC Educational Resources Information Center

    Eidietis, L.; Jewkes, A. M.

    2011-01-01

    This study examined teachers' dispositions toward and choices to teach ocean science using a survey design. A sample of 89 in-service K-8 teachers in the United States reported their (1) feelings of preparedness to teach about ocean literacy and (2) attitudes toward ocean science on three measures. Results of multiple linear regression showed that…

  14. Incorporating Writing into the Science Curriculum: A Sample Activity.

    ERIC Educational Resources Information Center

    Totten, Samuel; Tinnin, Claire

    1988-01-01

    Presents a lesson on introducing writing into the science curriculum by using an experiment to illustrate the detrimental effect of tobacco smoke on human lungs. Outlines the materials, procedures, a summary of the project, extension activities, and additional information about the writing process. Two handout sheets are included. (RT)

  15. Into the Curriculum. Reading/Language Arts: I Need a Hero/Heroine [and] Reading/Language Arts: Is It Real? Or Did I Make It Up? Comparing and Contrasting Nonfictional and Fantasy Creatures [and] Science/Language Arts: "Jumanji" in the Solar System [and] Science: A Change of Seasons [and] Social Studies: Women Who Changed America: 1800s [and] Social Studies: Discovering the "Titanic."

    ERIC Educational Resources Information Center

    Hall, Jill; And Others

    1997-01-01

    Presents six curriculum guides for reading, language arts, science, and social studies. Each activity identifies library media skills objectives, curriculum objectives, grade levels, resources, librarian and teacher instructional roles, activity and procedures for completion, activity samples, guidelines for evaluating finished activities, and…

  16. Predominant Teaching Strategies in Schools: Implications for Curriculum Implementation in Mathematics, Science and Technology

    ERIC Educational Resources Information Center

    Achuonye, Keziah Akuoma

    2015-01-01

    This descriptive survey is hinged on predominant teaching strategies in schools, implications for curriculum implementation in Mathematics, Science and Technology. Target population consisted of teachers in primary, secondary and tertiary schools. However, purposive sample of 900 respondents was drawn from the six BRACED states namely Bayelsa,…

  17. Exploring the Associations among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum

    ERIC Educational Resources Information Center

    Stage, Virginia C.; Kolasa, Kathryn M.; Díaz, Sebastián R.; Duffrin, Melani W.

    2018-01-01

    Background: Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Methods: Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across…

  18. Combining Geography, Math, and Science to Teach Climate Change and Sea Level Rise

    ERIC Educational Resources Information Center

    Oldakowski, Ray; Johnson, Ashley

    2018-01-01

    This study examines the effectiveness of integrating geography into existing math and science curriculum to teach climate change and sea level rise. The desired outcome is to improve student performance in all three subjects. A sample of 120 fifth graders from three schools were taught the integrated curriculum over a period of two to three weeks.…

  19. A Semantic Differential Evaluation of Attitudinal Outcomes of Introductory Physical Science.

    ERIC Educational Resources Information Center

    Hecht, Alfred Roland

    This study was designed to assess the attitudinal outcomes of Introductory Physical Science (IPS) curriculum materials used in schools. Random samples of 240 students receiving IPS instruction and 240 non-science students were assigned to separate Solomon four-group designs with non-equivalent control groups. Random samples of 60 traditional…

  20. Food-based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    PubMed Central

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students’ understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. Previous studies have shown that students experiencing the FoodMASTER curriculum were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations. The purpose of this study was to: 1) assess 4th graders food-related multidisciplinary science knowledge, and 2) compare gains in food-related science knowledge after implementation of an integrated, food-based curriculum. During the 2009–2010 school year, FoodMASTER researchers implemented a hands-on, food-based intermediate curriculum in eighteen 4th grade classrooms in Ohio (n=9) and North Carolina (n=9). Sixteen classrooms in Ohio (n=8) and North Carolina (n=8), following their standard science curricula, served as comparison classrooms. Students completed a researcher-developed science knowledge exam, consisting of 13 multiple-choice questions administered pre- and post-test. Only subjects with pre- and post-test scores were entered into the sample (Intervention n=343; Control n=237). No significant differences were observed between groups at pre-test. At post-test, the intervention group scored (9.95±2.00) significantly higher (p=.000) than the control group (8.84±2.37) on a 13-point scale. These findings suggest the FoodMASTER intermediate curriculum is more effective than a standard science curriculum in increasing students’ multidisciplinary science knowledge related to food. PMID:25152539

  1. Human sexuality education in the middle grades classroom: A review of curricula in a sample of Florida school districts

    NASA Astrophysics Data System (ADS)

    Myrick, Melinda D.

    2007-12-01

    This study examined the extent to which human sexuality topics are covered in Florida middle school science classrooms and the process by which curricular decisions are made regarding human sexuality education on a county-wide basis. Primary data included interviews with county-level administrators who oversee curricular decisions related to the middle-grades science curriculum or health curriculum in twelve school districts within the state. These districts represented four geographic locations and districts of various sizes. Administrators from four of the twelve studies in the sample chose to provide information regarding their human sexuality education curriculum. In two cases, teacher leads were identified and were interviewed to understand the implementation of the curriculum within the classroom. Additional data were collected from the district curriculum guides for human sexuality education and the adopted middle-grades science textbook for each county. The interview and documentary data were analyzed by comparison to established criteria for a comprehensive human sexuality education curriculum. The analysis revealed that the scope of human sexuality education varied considerably within the sample and that much of the curricula in place failed to include topics and activities that have been identified as important in a successful human sexuality education program. These findings are limited because few counties chose to fully participate. Additional research is clearly needed to examine the effectiveness of existing human sexuality education curricula in Florida. In addition, research is needed to understand the characteristics, values, and beliefs of successful human sexuality education instructors across the state.

  2. School Teachers' Experiences of Science Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Ryder, Jim; Banner, Indira

    2013-02-01

    We examine teachers' experiences of a major reform of the school science curriculum for 14-16-year olds in England. This statutory reform enhances the range of available science courses and emphasises the teaching of socio-scientific issues and the nature of science, alongside the teaching of canonical science knowledge. This paper examines teachers' experiences of the reform and the factors that condition these experiences. A designed sample of 22 teachers discussed their experiences of the reform within a semi-structured interview. Our analysis considers how the external and internal structures within which teachers work interact with the personal characteristics of teachers to condition their experiences of the curriculum reform. In many cases, personal/internal/external contexts of teachers' work align, resulting in an overall working context that is supportive of teacher change. However, in other cases, tensions within these contexts result in barriers to change. We also explore cases in which external curriculum reform has stimulated the development of new contexts for teachers' work. We argue that curriculum reformers need to recognise the inevitability of multiple teaching goals within a highly differentiated department and school workplace. We also show how experiences of curriculum reform can extend beyond the learning of new knowledge and associated pedagogies to involve challenges to teachers' professional identities. We argue for the extended use of teacher role models within local communities of practice to support such 'identity work'.

  3. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    NASA Astrophysics Data System (ADS)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between the two groups over time. However, all subjects (experimental and control groups) made significant improvement in graphing abilities over one school year. In this study, students participating in an investigation-based curriculum integrating algebra 1 and physical science performed as well on the instruments as the students in the traditional curriculum. Therefore, an argument can be made that instruction using an integrated curriculum (algebra l/physical science) is a viable alternative to instruction using a more traditional algebra 1 curriculum. Finally, the integrated curriculum adheres to the constructivist theoretical perspective (Krupnik-Gotlieb, 1995) and is more consistent with recommendations in the NCTM Standards (1992) than the traditional curriculum.

  4. The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.

    ERIC Educational Resources Information Center

    Janke, Delmar Lester

    This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…

  5. The effects of integrated mathematics/science curriculum and instruction on mathematics achievement and student attitudes in grade six

    NASA Astrophysics Data System (ADS)

    Hill, Mary Denise

    The purpose of this study was to determine whether integrating mathematics and science curriculum and teaching practices significantly improves achievement in mathematics and attitudes towards mathematics among sixth grade students in South Texas. The study was conducted during the 2001--2002 school year. A causal-comparative ex post facto research design was used to explore the effects of integrated mathematics and science classrooms compared to classrooms of traditional, isolated mathematics and science teaching practices on student achievement and student attitudes. Achievement was based on the Spring 2002 Mathematics portion of the standardized Texas Assessment of Academic Skills (TAAS) Texas Learning Index (TLI) scores and individual student's mathematics Grade Point Average (GPA). Measurement of student attitudes was based on the results of the Integrated Mathematics Attitudinal Survey (IMAS), created by the researcher for this study. The sample population included 349 Grade 6 mathematics students attending one middle school involved in a pilot program utilizing integrated mathematics/science curriculum and teaching practices in a South Texas urban school district. The research involved 337 of the 349 sixth grade students to study the effects of mathematics/science curriculum and teaching practices on achievement and 207 of the 349 sixth grade students to study the effects of mathematics/science curriculum on attitudes concerning mathematics. The data were analyzed using chi square analyses, independent samples t-tests, and the analysis of variance (ANOVA). Statistical significance was determined at the .05 level of significance. Significant relationships were found when analyzing the proficiency of mathematics skills and individual growth of mathematics achievement. Chi square analyses indicated that the students in the integrated mathematics/science classrooms were more likely to exhibit individual growth and proficiency of mathematics skills based on the results of TAAS. Independent samples t-tests indicated that students in the integrated mathematics/science program scored significantly higher than the students in the traditional program in mean achievement scores and in mean growth of scores based on the results of TAAS. No significant differences were found when comparing mathematics anxiety scores between students in the integrated mathematics/science program and the traditional program. However, additional significant differences were identified when students in the integrated mathematics/science program scored higher than the students in the traditional program when analyzing the overall mean student attitude scores concerning mathematics and the mean scores of attitudinal values of mathematics in society.

  6. Student achievement in science and mathematics on campuses that have implemented the CSCOPE curriculum model

    NASA Astrophysics Data System (ADS)

    Wilson, Emily R.

    The purpose of this study was to determine whether differences in student achievement exist between school campuses which followed a specific standards-based curriculum model (CSCOPE) and school campuses which followed a non-CSCOPE or traditional curriculum model. One-hundred and sixty CSCOPE curriculum campuses and 160 non-CSCOPE curriculum campuses were used in the study. Achievement data were collected on students in the fifth, eighth, and eleventh grades using the campuses percentage passing on the Texas Assessment of Knowledge and Skills (TAKS) for both science and mathematics. The TAKS is the state-mandated assessment system used to comply with federal testing guidelines. Data for the 2007-2008 school year were used for the elementary level while data from 2006-2007 and 2007-2008 were used for junior high (middle school) and high school levels. Data were analyzed by overall class as well as aggregated by ethnic classifications. Descriptive statistics were used to summarize achievement results and t-tests were utilized to analyze achievement differences between the two curriculum models. Overall fifth grade students in CSCOPE schools outperformed (p < .05) non-CSCOPE counterparts in science and mathematics. Also, fifth grade Hispanic students using CSCOPE curriculum scored higher (p < .05) than those in traditional curricula. Eighth grade students in CSCOPE schools performed better (p < .05) in science than students in non-CSCOPE schools. Finally, eighth grade Hispanic and White subgroups using CSCOPE curriculum outperformed ( p < .05) their ethnic counterparts using traditional curriculum models. The only statistically significant finding at the eleventh grade level was the African-American subgroup in science, but this subgroup had too small of a sample to infer the findings to the population. Thus, the results would tend to support use of the standardized curriculum model (CSCOPE) at lower levels whereas achievement in high school may not be differentially affected by the standardized model.

  7. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of NOSI. According to the results of a Wilcoxon Signed Rank test, there was a significant shift in the distributions of both samples toward a more informed understanding of DvE after the intervention curriculum was administered, while there was no significant change in either direction for understanding of MMS. The results of the instructor interview analysis suggested that the intervention curriculum provided multiple opportunities for students to evaluate and determine the relevance of data in the context of producing evidence-based conclusions directly related to specific research questions, thereby supporting the development of more informed views of DvE. These results also suggested that students might not have realized that they were exclusively engaged in non-experimental type inquiries, as various research methods were not explicitly addressed. The intervention curriculum used a consistently phased stepwise format, which may also have led the students to accommodate their astronomy inquiry experiences within persistent misconceptions of "The Scientific Method" as the only valid means of constructing scientific knowledge, thereby leading to no change in understanding of MMS. The results of the study suggest that a scaffolded, inquiry-based, introductory astronomy laboratory curriculum purposefully designed and scaffolded to enhance students' understandings could be effective in enhancing undergraduate non-science majoring students' views of certain aspects of NOSI. Through scaffolding inquiry experiences that deliver multiple opportunities to engage in authentic scientific inquiries, the novel curriculum provides a valuable resource for the astronomy education community to engage students in learning experiences that reflect the contemporary views of constructivist inquiry-based learning, which focuses on the interpretation of data to create evidence in light of specific questions, as well as opportunities to engage in authentic scientific discourse. As such it can enable astronomy educators in the undergraduate teaching community to support student learning beyond astronomy content knowledge toward a more informed understanding of the process of scientific knowledge construction to the end of supporting proficiency in science and science literacy.

  8. An analysis of the New York State Earth Science Curriculum with respect to standards, classroom practices, and the Regents Examination

    NASA Astrophysics Data System (ADS)

    Contino, Julie Anna

    In a standards-based system, it is important for all components of the system to align in order to achieve the intended goals. In New York State, standards are provided to the teachers who then create individual curricula that will lead to student success on the state assessment. This mixed methods study presents an analysis of the alignment between the National Science Education Standards (NSES), New York State Physical Setting/Earth Science Core Curriculum (Core Curriculum), and New York State Earth Science Regents Examination (Regents)---the sources teachers use for creating Earth Science curricula in New York State. The NSES were found to have a 49% overlap with the Core Curriculum and a 27% overlap with the Regents. The Core Curriculum and Regents, represented by matrices consisting of performance indicators and cognitive demands, were compared using the Porter alignment index. The alignment was 0.35, categorized as slightly aligned, due to the different emphases on cognitive levels (the Core Curriculum focused on Understand and Apply while the Regents focused on Apply followed by Understand and Remember). Additionally, a purposeful sample of experienced and innovative teachers were surveyed and interviewed to gain insight on how NYS Earth Science teachers organize their scope and sequences, align their lessons with the Core Curriculum, establish internal lesson coherence, and prepare their students for the Regents Exam. Teachers' scope and sequences were well-aligned with the Core Curriculum and Regents but misalignment was found between their lessons and the Core Curriculum as well as between the stated objectives for their students and evaluation of those objectives. Based on the findings, it is suggested that the NSES be revised and the Core Curriculum updated to include quantifiable emphasis on the major understandings such as percentage of time, as well as an emphasis on alignment principles. Teacher professional development focused on alignment issues relative to the state standards and enhancing internal lesson coherence should also be provided. The insights gained from this analysis of the NYS system may be helpful to other states as they move toward standards-based systems.

  9. Science Technology and Engineering Teachers' Emotional Intelligence vis-à-vis Classroom Management

    ERIC Educational Resources Information Center

    Llego, Jordan Hiso

    2017-01-01

    This study aimed to determine the relationship of emotional intelligence of science STE teachers' with their classroom management. This study used descriptive-correlational using survey questionnaire with total population sampling who are offering Science, Technology and Engineering curriculum in Region 1, Philippines with 113 respondents.…

  10. Sciences Teacher Education Curriculum Re-Alignment: "Science Education Lecturers' Perspectives of Knowledge Integration at South African Universities"

    ERIC Educational Resources Information Center

    Booi, Kwanele; Khuzwayo, Mamsie Ethel

    2018-01-01

    A qualitative case study was conducted at six purposively sampled universities; out of a population of approximately 23 universities. This sampling strategy was based on selecting some universities that became Universities of Technology during the process of merging Higher Education Institutions (HEIs) while other universities kept their identity;…

  11. Forensic Science Curriculum for High School Students

    NASA Astrophysics Data System (ADS)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  12. Science, Technology, Engineering, and Mathematics (STEM) Curriculum and Seventh Grade Mathematics and Science Achievement

    ERIC Educational Resources Information Center

    James, Jamie Smith

    2014-01-01

    The purpose of this quantitative research study was to evaluate to what degree Science, Technology, Engineering and Mathematics (STEM) education influenced mathematics and science achievement of seventh grade students in one Middle Tennessee school district. This research used an independent samples t test at the a = 0.05 level to evaluate…

  13. Investigating the Transition Process when Moving from a Spiral Curriculum Alignment into a Field-Focus Science Curriculum Alignment in Middle School

    ERIC Educational Resources Information Center

    Alwardt, Randi Kay

    2011-01-01

    This investigation examined the transition from a spiral science curriculum to a field-focus science curriculum in middle school. A spiral science curriculum focuses on a small part of each field of science during each middle school year, more of a general science concept. In contrast to that, the base of a field-focus curriculum is that each…

  14. Islamic values in the Kuwaiti curriculum

    NASA Astrophysics Data System (ADS)

    Alshahen, Ghanim A.

    This study investigated the influence of Islamic values on the curriculum, in particular the Islamic studies and science curricula. Three questionnaires were developed, validated, and used to investigate teachers' and pupils' attitudes toward Islamic values in the curriculum. Four main sections deal with Islamic values in the Islamic studies and science curricula, namely: Islamic values in the textbook, teaching Islamic values, the relationship between Islamic values and the science curriculum, and the Islamic values model. Two instruments were used in this study: questionnaires and interviews. Both qualitative and quantitative data were generated from the sample, which consisted of Islamic studies and science teachers and supervisors in intermediate schools, and pupils studying in the eighth grade in intermediate schools. In the last case, the data were gathered by questionnaire only. The interviews and questionnaires provided explanatory data. The research was carried out in three phases, considering respectively 55 Islamic studies teachers, 55 science teachers who teach the eighth grade in intermediate schools, and 786 pupils who study in the eighth grade in 20 schools. In each school, the researcher selected two classes. This thesis consists of eight chapters. Chapter One provides a general introduction and highlights the general framework of this study. Chapter Two is concerned with the development of the education system in Kuwait and the objectives of the Islamic studies and science curricula in the intermediate stage. Chapter Three presents the conceptions of values, the Islamic values model, and Islamic values in the curriculum. Chapter Four describes the objectives of the study, and its research design methods and procedures used to develop the instruments. The sampling procedure, the data collection procedures, and the statistical methods used to analyse the data are also described. Chapter Five presents and interprets the findings of this study. Data analysis in this chapter deals with the Islamic studies and science teachers' questionnaires and both the teachers' and supervisors' interviews. The interview findings are dealt with according to the key themes. Chapter Seven discusses the main findings related to Islamic values in both curricula. Chapter Eight reflects on the main themes of the investigation as a whole. It gives a brief description of the aims and methods of the study and sets out the major findings, their importance, and limitations. Finally, the study concludes with several recommendations and suggestions for developing Islamic values in the curriculum.

  15. Exploring the Moon: A Teacher's Guide with Activities for Earth and Space Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    These materials have been designed for use with the upper elementary through high school levels especially, but not exclusively, with the Lunar Sample Disk. This book contains: information on the Lunar Sample Disk, a curriculum content matrix, a teacher's guide, Moon ABCs fact sheet, rock ABCs fact sheet, Progress in Lunar Science chart, 17…

  16. Chemical Literacy Levels of Science and Mathematics Teacher Candidates

    ERIC Educational Resources Information Center

    Celik, Suat

    2014-01-01

    The goal of this study was to investigate Turkish science and mathematics teacher candidates' levels of attainment in chemical literacy. These candidates had all studied the new Turkish chemistry curriculum in high school. The sample of the study consisted of 112 students, who were first-year students in the Department of Secondary Science and…

  17. Achievement of Serbian Eighth Grade Students in Science

    ERIC Educational Resources Information Center

    Antonijevic, Radovan

    2006-01-01

    The paper considers the main results and some educational implications of the TIMSS 2003 assessment conducted in Serbia in the fields of the science achievement of Serbian eighth grade students and the science curriculum context of their achievement. There were 4264 students in the sample. It was confirmed that Serbian eighth graders had made…

  18. Are Teachers Ready to Integrate Science Concepts into Secondary Agriculture Programs?

    ERIC Educational Resources Information Center

    Scales, Jason; Terry, Robert, Jr.; Torres, Robert M.

    2009-01-01

    For the past two decades, the idea of integrating more science concepts into the secondary agriculture curriculum has gained support. The purpose of this study was to assess the confidence and competence of agriculture instructors to teach concepts related to science. The sample was derived from the population of agriculture instructors teaching…

  19. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    PubMed

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p < .001; Adjusted R = .51). All independent variables were significant predictors with positive association. Science and mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  20. Beyond Homework: Science and Mathematics Backpacks.

    ERIC Educational Resources Information Center

    Kokoski, Teresa M.; Patton, Mary Martin

    1997-01-01

    Describes classroom-developed science and mathematics backpacks, self-contained educational packets developed around a theme or concept and designed to be completed at home. Presents generalized contents, a sample backpack on colors, and the backpack's advantages, including promotion of active learning, family involvement, curriculum integration,…

  1. Student Competence in Understanding the Matter Concept and Its Implications for Science Curriculum Standards

    ERIC Educational Resources Information Center

    Liu, Xiufeng

    2006-01-01

    Using the US national sample from the 1995 Third International Mathematics and Science Study (TIMSS), this study examined students' competence levels in understanding the matter concept at grades 3, 4, 7, 8 and high school graduation, and compared them to the expectations in the US national science education standards. It was found that…

  2. An Analysis of the Model and Enacted Curricula for a History of Science Course in a Nationwide Teacher Education Program

    ERIC Educational Resources Information Center

    Nouri, Noushin

    2017-01-01

    The UTeach program, a national model for undergraduate teacher preparation, includes "Perspectives on Science and Mathematics," a class designed to share content about the History of Science (HOS) with preservice teachers. UTeach provides a model curriculum as a sample for instructors teaching "Perspectives." The purpose of…

  3. Impact on Scientific Inquiry of a Backwards-Faded Scaffolding Approach to Inquiry-based Space Science for Non-Science Majoring Undergraduates

    NASA Astrophysics Data System (ADS)

    Lyons, D. J.; Slater, S. J.; Slater, T. F.

    2011-12-01

    Exploring the impact of a novel inquiry-based earth and space science laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI), this study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of NOSI. According to the results of a Wilcoxon Signed Rank test, there was a significant shift in the distributions of both samples toward a more informed understanding of DvE after the intervention curriculum was administered, while there was no significant change in either direction for understanding of MMS. The results of the instructor interview analysis suggested that the intervention curriculum provided multiple opportunities for students to evaluate and determine the relevance of data in the context of producing evidence-based conclusions directly related to specific research questions, thereby supporting the development of more informed views of DvE.

  4. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    NASA Astrophysics Data System (ADS)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to outcomes of science curriculum change improvements with the consideration but not the dictation of the larger school community and state agendas. Thus, the study's results work to fuse previously separated research on general PLCs and curriculum change efforts into a cohesive understanding of the unexplored potential of a science PLC and school-based science curriculum change.

  5. Integration of Cognitive Skills as a Cross-Cutting Theme Into the Undergraduate Medical Curriculum at Tehran University of Medical Sciences.

    PubMed

    Soltani, Akbar; Allaa, Maryam; Moosapour, Hamideh; Aletaha, Azadeh; Shahrtash, Farzaneh; Monajemi, Alireza; Arastoo, Tohid; Ahmadinejad, Maryam; Mirzazadeh, Azim; Khabaz Mafinejad, Mahboobeh

    2017-01-01

    Nowadays, improvement of thinking skills of students is one of the universally supported aims in the majority of medical schools. This study aims to design longitudinal theme of reasoning, problem-solving and decision-making into the undergraduate medical curriculum at Tehran University of Medical Sciences (TUMS). A participatory approach was applied to design the curriculum during 2009-2011. The project was conducted by the contribution of representatives of both basic and clinical faculty members, students and graduates at Tehran University of Medical Sciences. The first step toward integrating cognitive skills into the curriculum was to assemble a taskforce of different faculty and students, including a wide variety of fields with multidisciplinary expertise using nonprobability sampling and the snowball method. Several meetings with the contribution of experts and some medical students were held to generate the draft of expected outcomes. Subsequently, the taskforce also determined what content would fit best into each phase of the program and what teaching and assessment methods would be more appropriate for each outcome. After a pilot curriculum with a small group of second-year medical students, we implemented this program for all first-year students since 2011 at TUMS. Based on findings, the teaching of four areas, including scientific and critical thinking skills (Basic sciences), problem-solving and reasoning (Pathophysiology), evidence-based medicine (Clerkship), and clinical decision-making (Internship) were considered in the form of a longitudinal theme. The results of this study could be utilized as a useful pattern for integration of psycho-social subjects into the medical curriculum.

  6. Science Teachers in Deaf Education: A National Survey of K-8 Teachers

    ERIC Educational Resources Information Center

    Shaw, Cynthia

    2009-01-01

    A survey was conducted with 67 science teachers who taught deaf children at the elementary school level. Teacher background variables, information about teacher preparation and certification, preferred teaching methods, communication methodologies, curriculum, and the use of technology were gathered. A purposeful, convenience sampling technique…

  7. Free Teaching Materials: Classroom and Curriculum Aids for Elementary School Science.

    ERIC Educational Resources Information Center

    Raimist, Roger J.; Mester, Rose A.

    Free teaching materials suitable for elementary school science available from 168 agencies and companies are listed. Materials include booklets, teacher's source books and guides, charts and posters, and concrete materials such as mineral samples. Suggestions and materials for student activities range from experiments to song sheets. Topics…

  8. The effect of an integrated high school science curriculum on student achievement, knowledge retention, and science attitudes

    NASA Astrophysics Data System (ADS)

    Smith, Kimberly A.

    The research study investigates the effectiveness of an integrated high school science curriculum on student achievement, knowledge retention and science attitudes using quantitative and qualitative research. Data was collected from tenth grade students, in a small urban high school in Kansas City, Missouri, who were enrolled in a traditional Biology course or an integrated Environmental Science course. Quantitative data was collected in Phase 1 of the study. Data collected for academic achievement included pretest and posttest scores on the CTBS MATN exam. Data collected for knowledge retention included post-posttest scores on the CTBS MATN exam. Data collected for science attitudes were scores on a pretest and posttest using the TOSRA. SPSS was used to analyze the data using independent samples t-tests, one-way ANCOVA's and paired samples statistics. Qualitative data was collected in Phase 2 of the study. Data included responses to open-ended interview questions using three focus groups. Data was analyzed for common themes. Data analysis revealed the integrated Environmental Science course had a statistically significant impact on academic achievement, knowledge retention and positive science attitudes. Gender and socioeconomic status did not influence results. The study also determined that the CTBS MATN exam was not an accurate predictor of scores on state testing as was previously thought.

  9. Surviving the Implementation of a New Science Curriculum

    NASA Astrophysics Data System (ADS)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  10. From Flavr Savr Tomatoes to Stem Cell Therapy: Young People's Understandings of Gene Technology, 15 Years on

    NASA Astrophysics Data System (ADS)

    Lewis, Jenny

    2014-02-01

    This paper explores knowledge and understanding of basic genetics and gene technologies in school students who have been taught to a `science for all' National Curriculum and compares 482 students in 1995 (gene technology was a new and rapidly developing area of science with potential to impact on everyday life; the first cohort of students had been taught to the National Curriculum for Science) with 154 students in 2011 (genomics had replaced gene technology as a rapidly developing area of science with potential to impact on everyday life; science as a core subject within the National Curriculum was well established). These studies used the same questions, with the same age group (14-16) across the same (full) ability range; in addition the 2011 sample were asked about stem cells, stem cell technology and epigenetics. Students in 2011 showed: better knowledge of basic genetics but continuing difficulty in developing coherent explanatory frameworks; a good understanding of the nature of stem cells but no understanding of the process by which such cells become specialised; better understanding of different genetic technologies but also a wider range of misunderstandings and confusions (both between different genetic technologies and with other biological processes); continuing difficulty in evaluating potential veracity of short `news' items but greater awareness of ethical issues and the range of factors (including knowledge of genetics) which could be drawn on when justifying a view or coming to a decision. Implications for a `science for all' curriculum are considered.

  11. Evaluating the Effects of Medical Explorers a Case Study Curriculum on Critical Thinking, Attitude Toward Life Science, and Motivational Learning Strategies in Rural High School Students

    NASA Astrophysics Data System (ADS)

    Brand, Lance G.

    2011-12-01

    The purpose of this study was three-fold: to measure the ability of the Medical Explorers case-based curriculum to improve higher order thinking skills; to evaluate the impact of the Medical Explorers case-based curriculum to help students be self directed learners; and to investigate the impact of the Medical Explorers case-based curriculum to improve student attitudes of the life sciences. The target population for this study was secondary students enrolled in advanced life science programs. The resulting sample (n = 71) consisted of 36 students in the case-based experimental group and 35 students in the control group. Furthermore, this study employed an experimental, pretest-posttest control group research design. The treatment consisted of two instructional strategies: case-based learning and teacher-guided learning. Analysis of covariance indicated no treatment effect on critical thinking ability or Motivation and Self-regulation of Learning. However, the Medical Explorers case-based curriculum did show a treatment effect on student attitudes toward the life sciences. These results seem to indicate that case-based curriculum has a positive impact on students' perspectives and attitudes about the study of life science as well as their interest in life science based careers. Such outcomes are also a good indicator that students enjoy and perceive the value to use of case studies in science, and because they see value in the work that they do they open up their minds to true learning and integration. Of additional interest was the observationthat on average eleventh graders showed consistently stronger gains in critical thinking, motivation and self-regulation of learning strategies, and attitudes toward the life sciences as compared to twelfth grade students. In fact, twelfth grade students showed a pre to post loss on the Watson-Glaser and the MSLQ scores while eleventh grade students showed positive gains on each of these instruments. This decline in twelfth grade performance is an endemic indicator of underlying problems that exists in this transitional year of education and supports the need to strengthen the transitional connections between high schools and institutions of higher learning.

  12. Toward a Unified Science Curriculum.

    ERIC Educational Resources Information Center

    Showalter, Victor M.

    The two major models of science curriculum change, textbook revision and national curriculum projects, are derived from, and reinforce, the present curriculum structure. This is undesirable in a time of increasing fluidity and change, because adaptation to new situations is difficult. Unified science, based on the premise that science is a unity,…

  13. The relationship between affect and constructivism as viewed by middle school science teachers

    NASA Astrophysics Data System (ADS)

    Black, Denise L.

    The purpose of this research was to examine middle school science teachers' perceptions of their students' affective behaviors at each level of the affective domain (receiving, responding, valuing, organization, characterization of value system), perceptions of the usefulness of constructivism as a curricular theory, and constructivist teaching strategies. This study investigated the relationship between affect and constructivism to determine if constructivist strategies can predict levels of affective behavior. Affect is a broad generalization that includes elements (i.e., interests, attitudes, values, emotions, and feelings). The importance of this research relates to enhancing learning, increasing achievement, participatory democracy, and facilitating understanding of science, as well as promoting the development of higher order thinking skills. A nonexperimental, descriptive research design was used to determine the relationship between affect and constructivism. A total of 111 middle school teachers participated in this study. Three instruments were used in this study: Taxonomy of Affective Behavior (TAB), Survey of Science Instruction (SSI), and a short demographic survey. Statistical significance obtained from one-sample t-tests provided evidence that teachers were aware that the affective domain was a viable construct. Statistical evidence of one-sample t-tests provided evidence that teachers perceived constructivism was useful to teach science to middle school students. Pearson product moment correlations results indicated statistically significant relationships between perceptions of constructivism and associated constructivist teaching strategies. Stepwise multiple linear regression analysis revealed a relationship between affect and constructivism. Teacher responses indicated they felt constrained from implementing constructivism due to an emphasis on testing. Colleges of education, curriculum specialists, science teachers, and school districts may benefit from this research. Colleges of education could offer a course on developing objectives in the affective domain. Science curriculum specialists could use constructivist approaches as a rationale for curriculum development, as well as use the TAB to write and evaluate affective objectives. This strategy could assist curriculum leaders in writing goals and objectives that would meet the criteria of No Child Left Behind. Teachers could be shown how to implement affect and constructivism on in-service days. Finally, school districts could use the TAB to provide a value-added component to science instruction.

  14. The Extra Strand of the Maori Science Curriculum

    ERIC Educational Resources Information Center

    Stewart, Georgina

    2011-01-01

    This paper comments on the process of re-development of the Maori-medium Science (Putaiao) curriculum, as part of overall curriculum development in Aotearoa New Zealand. A significant difference from the English Science curriculum was the addition of an "extra strand" covering the history and philosophy of science. It is recommended that…

  15. Science Curriculum Resource Handbook: A Practical Guide for K-12 Science Curriculum.

    ERIC Educational Resources Information Center

    Cheek, Dennis W., Ed.; And Others

    This handbook is one of a series of practical references for curriculum developers, education faculty, veteran teachers, and student teachers. The handbook is designed to provide basic information on the background of the science curriculum, and current information on publications, standards, and special materials for K-12 science. Part 1 contains…

  16. Bridging Professional Teacher Knowledge for Science and Literary Integration via Design-Based Research

    ERIC Educational Resources Information Center

    Fazio, Xavier; Gallagher, Tiffany L.

    2018-01-01

    We offer insights for using design-based research (DBR) as a model for constructing professional development that supports curriculum and instructional knowledge regarding science and literacy integration. We spotlight experiences in the DBR process from data collected from a sample of four elementary teachers. Findings from interviews, focus…

  17. Approaches To Teaching Science in the Jordanian Primary School.

    ERIC Educational Resources Information Center

    Qualter, Anne; Abu-Hola, I. R. A.

    2000-01-01

    Reports on a study of the influence of different approaches to teaching units from the Jordanian science curriculum on over 600 students from grades 6, 9, and 10. Trains a small sample of male and female teachers in the use of cooperative learning and lecture-demonstration approaches to teaching. (Contains 17 references.) (Author/YDS)

  18. Uniformity and Diversity in an Evolving University Federation

    ERIC Educational Resources Information Center

    Pratt, John

    2013-01-01

    In 2008, three universities of applied sciences in the Helsinki metropolitan area of Finland signed a partnership agreement to form the Federation of Universities of Applied Sciences (FUAS). In 2011 FUAS invited a small team of international experts to undertake a curriculum review of a sample of its programmes. This article reports some of the…

  19. Systemic Reform of Astronomy Curriculum in the Montgomery County Public Schools

    NASA Astrophysics Data System (ADS)

    Szesze, M.; Kahl, S.; Janney, D.

    2002-09-01

    In the Montgomery County Public Schools (MCPS), the science curriculum is undergoing a comprehensive systemic review in an effort to revise the system's curriculum and the entire instructional program. As a part of this overall effort, MCPS has developed a framework for the astronomy curriculum that includes a rationale, essential indicators, and blueprints. The school system is partnering with the NASA Goddard Space Flight Center to involve professional astronomers/space scientists as content advisors to ensure science content accuracy and currency. Through this partnership, many NASA developed educational materials have been made available to the school system to assist with the instructional sequences. This new policy has resulted in the development of a clear and coherent astronomy curriculum for grades K-8. The blueprint is written in the form of a set of indicators which identify the exact skills and knowledge that need to be taught at each grade level so that students will meet and exceed state, national, and international standards. Each blueprint also includes the enduring understandings and essential questions that students should focus on for that specific unit of study, a proposed instructional sequence, and assessment and differentiation ideas. Using these blueprints, teachers will create curriculum guides that include model lessons, model assignments, concept maps, resources, assessment samples, and strategies for differentiating the curriculum to meet the needs of a wide range of learners. In addition, a 45 hour certification training course is being developed to train in service teachers in a wide range of space science disciplines from seasons to cosmology. The course is being developed and will be taught by a team composed of space scientists and master educational trainers. Pilot testing of the curriculum and the training course will begin in Fall 2002.

  20. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  1. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  2. Curriculum Profiles: A Resource of the EDC K-12 Science Curriculum Dissemination Center

    ERIC Educational Resources Information Center

    Education Development Center, Inc, 2005

    2005-01-01

    The purpose of this document is to provide useful information for teachers and school systems engaged in the process of examining and choosing science curriculum materials appropriate for their settings. The curriculum profiles include summaries of selected programs available for K?12 science curriculum programs. Each profile describes a number of…

  3. Curriculum Process in Science Education

    NASA Astrophysics Data System (ADS)

    Adamčíková, Veronika; Tarábek, Paul

    2010-07-01

    Physics/science education in the communicative conception is defined as the continuous transfer of the knowledge and methods of physics into the minds of individuals who have not participated in creating them. This process, called the educational communication of physics/science, is performed by various educational agents—teachers, curriculum makers, textbook designers, university teachers and does not mean only a simple transfer of information, but it also involves teaching and instruction at all levels of the school system, the study, learning, and cognition of pupils, students and all other learners, the assessment and evaluation of learning outcomes, curriculum composition and design, the production of textbooks and other means of educational communication and, in addition, university education and the further training of teachers. The educational communication is carried out by the curriculum process of physics/science, which is a sequence of variant forms of curriculum mutually interconnected by curriculum transformations. The variant forms of curriculum are as follows: conceptual curriculum, intended curriculum, project (written) curriculum, operational curriculum, implemented curriculum, and attained curriculum.

  4. On track for success: an innovative behavioral science curriculum model.

    PubMed

    Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M

    2013-01-01

    This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach.

  5. Curriculum Implementation and Reform: Teachers' Views about Kuwait's New Science Curriculum

    ERIC Educational Resources Information Center

    Alshammari, Ahmad

    2013-01-01

    The MoE (Ministry of Education) in the state of Kuwait is starting to reform the science curriculum in all school academic stages: primary (1-5) grades, intermediate (6-9) grades, and secondary (10-12) grades. The purpose of this study was to explore the opinions of science teachers about Kuwait's new sixth and seventh grade science curriculum,…

  6. Development and Evaluation of an Experimental Curriculum for the New Quincy (Mass.) Vocational-Technical School. The Science Curriculum.

    ERIC Educational Resources Information Center

    Champagne, Audrey; Albert, Anne

    Activities concerning the development of the science curriculum of Project ABLE are summarized. The science curriculum attempts to relate science content to vocational areas where applicable, but emphasizes generalizations which the student will apply in his specific vocational field. Intended for 10th, 11th, and 12th grade students, the…

  7. Neo-Liberal Individualism and a New Essentialism: A Comparison of Two Australian Curriculum Documents

    ERIC Educational Resources Information Center

    Smith, Dorothy V.

    2011-01-01

    This article explores a significant shift in the science curriculum in Victoria, Australia, in the mid-1990s by using the idea of essentialism to compare two science curriculum documents that span the shift. The accounts given in these documents of desirable approaches to teaching science, science itself and the proper scope of curriculum, are…

  8. Obstacles of Implementing the Science Curricula of the Basic Stage as Perceived by the Teachers in a Jordanian Town

    ERIC Educational Resources Information Center

    Ayasra, Ahmad

    2015-01-01

    This study aimed to investigate obstacles that prevent implementation of science curriculum which was developed within the Education Reform for the Knowledge Economy project (ErfKE). To achieve this, a purposeful sample consisted of four teachers of science for the basic stage in the town located in the north of Jordan in the first semester of the…

  9. The Effect of Using Problem-Based Learning in Middle School Gifted Science Classes on Student Achievement and Students' Perceptions of Classroom Quality

    ERIC Educational Resources Information Center

    Horak, Anne Karen

    2013-01-01

    The purpose of this study was to explore the impact of the Problem Based Learning (PBL) units developed by a large suburban school district in the mid-Atlantic for the middle school gifted science curriculum on: a) students' performance on standardized tests in middle school Science, as measured by a sample of relevant test questions from a…

  10. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  11. Career Orientation: Grade 7 and 8: A Unified Approach: Science Careers. Activity Manual.

    ERIC Educational Resources Information Center

    Cincinnati Public Schools, OH.

    Career orientation in the science curriculum introduces students to science-related careers and opportunities and enables them to prepare an educational program if they choose a science career. The curriculum guide is designed to aid junior high school science teachers in relating the seventh and eighth grade science curriculum to careers in…

  12. What do primary students know about science, scientists and how they do their work?

    NASA Astrophysics Data System (ADS)

    Bartels, Selina L.

    The teaching of scientific literacy is the primary goal of elementary science education. Scientific literacy is composed of the overall understanding of what science is and how scientific knowledge is developed. The purpose of this study was to see if elementary students' understandings of science, scientists and how scientists do their work changes from grade one to grade five of elementary school. Furthermore, the study attempts to determine whether there is a difference in scientific literacy between students taught using a textbook curriculum versus a kit-based curriculum. The study draws on a sample of 338 students from 18 different classrooms situated in six different schools in both urban and suburban areas of a large Midwestern city. Students' understandings of science, scientists and how they do their work was measured through a valid and reliable oral protocol entitled Young Children's Views of Science (YCVS) (Lederman, J., Bartels, Lederman, & Ganankkan, 2014). The YCVS assesses students' understandings of the aspects of scientific inquiry (SI) and the nature of science (NOS) that young elementary students are able to understand. These aspects are; science, scientists, multiple methods, observation/inference, begins with a question, empirical, subjectivity, tentativeness and creativity. The YCVS was administered orally for grade one students, and a paper-and-pencil version was given to grades three and five. Results indicated that there are very few gains in NOS and SI understandings between grades one and five in the schools included in this study. None of the schools in this study made significant gains for all of the nine aspects measured in this study. Examining curriculum's affect on NOS and SI understandings, understanding of only one aspect was significantly impacted by curriculum differences. Subjectivity understanding was impacted by kit-based instruction. Overall, students' understandings of science, scientists and how they do their work did not significantly change from grade one to grade five regardless of what type of curriculum they followed. This study shows that students' scientific literacy is not being developed throughout elementary school. Therefore, the teaching of scientific literacy in an explicit and reflective manner should be the focus of preservice elementary school education.

  13. Data on Enacted Curriculum Study: Summary of Findings Experimental Design Study of Effectiveness of DEC Professional Development Model in Urban Middle Schools

    ERIC Educational Resources Information Center

    Blank, Rolf K.

    2004-01-01

    The purpose of the three-year CCSSO study was to design, implement, and test the effectiveness of the Data on Enacted Curriculum (DEC) model for improving math and science instruction. The model was tested by measuring its effects with a randomly selected sample of ?treatment? schools at the middle grades level as compared to a control group of…

  14. A Phenomenological Examination of Perceived Skills and Concepts Necessary for Teaching Scientific Thinking

    NASA Astrophysics Data System (ADS)

    Kapetanis, Ana Cristina

    The use of high stakes testing to improve educational outcomes falls short in many settings. Proposals for improvement include providing more opportunities for students to extend their thinking, gaining experience in the social nature of science, and learning how to interpret, explain, and justify results. This phenomenological qualitative project study took place in a small independent school in the southeastern United States that lacked a cohesive elementary science program and was looking to create a vertically aligned science curriculum based on constructivism. The research question asked what skills and concepts teachers believed should be included in an elementary science program in order for students to learn scientific inquiry to be better prepared for middle and upper school science subjects. Using focus groups, observations, and interviews of a small sample of 4 teachers, data were collected, transcribed, and categorized through open coding. Inductive analysis was employed to look for patterns and emerging themes that painted a picture of how teachers viewed the current science program and what attributes they felt were important in the creation of a new curriculum. The findings revealed that teachers felt there was lack of a vertically aligned science curriculum, availability of resources throughout the school, and consistent support to provide an effective science program. The recommendations called for developing an elementary science program that includes all strands proposed by the National Science Education Standards and would provide students with opportunities to engage in scientific inquiry, conduct detailed observations, and learn to support conclusions using data. The implications for positive social change include development of programs that result in integrated science learning.

  15. Inquiry-Based Science Education: A Scenario on Zambia's High School Science Curriculum

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2012-01-01

    This paper is aimed at elucidating the current state of inquiry-based science education (IBSE) in Zambia's high school science curriculum. Therefore, we investigated Zambian teachers' conceptions of inquiry; determined inquiry levels in the national high school science curriculum materials, which include syllabi, textbooks and practical exams; and…

  16. The progress test as a diagnostic tool for a new PBL curriculum.

    PubMed

    Al Alwan, I; Al-Moamary, M; Al-Attas, N; Al Kushi, A; AlBanyan, E; Zamakhshary, M; Al Kadri, H M F; Tamim, H; Magzoub, M; Hajeer, A; Schmidt, H

    2011-12-01

    The College of Medicine at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) is running a PBL-based curriculum. A progress test was used to evaluate components of the basic medical and clinical sciences curriculum. To evaluate the performance of students at different levels of the college of medicine curriculum through USMLE-based test that focused on basic medical and clinical sciences topics. The USMLE-based basic medical and clinical sciences progress test has been conducted since 2007. It covers nine topics, including: anatomy; physiology; histology; epidemiology; biochemistry; behavioral sciences, pathology, pharmacology and immunology/microbiology. Here we analyzed results of three consecutive years of all students in years 1-4. There was a good correlation between progress test results and students' GPA. Progress test results in the clinical topics were better than basic medical sciences. In basic medical sciences, results of pharmacology, biochemistry, behavioral sciences and histology gave lower results than the other disciplines. Results of our progress test proved to be a useful indicator for both basic medical sciences and clinical sciences curriculum. Results are being utilized to help in modifying our curriculum.

  17. Leading Change in the Primary Science Curriculum

    ERIC Educational Resources Information Center

    Waller, Nicky; Baker, Chris

    2014-01-01

    Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…

  18. Fostering pre-service teachers' views about nature of science: evaluation of a new STEM curriculum

    NASA Astrophysics Data System (ADS)

    Krell, Moritz; Koska, Johannes; Penning, Fenna; Krüger, Dirk

    2015-09-01

    Background: An elaborated understanding of Nature of Science (NOS) is seen as an important part of scientific literacy. In order to enable teachers to adequately discuss NOS in their lessons, various approaches have recently been employed to improve teachers' understanding of NOS. Purpose: This study investigated the effect of participating in a newly developed Science, Technology, Engineering and Mathematics (STEM) curriculum at the Freie Universität Berlin (Germany) on pre-service teachers' NOS views. Program description: In the new STEM curriculum, two versions of explicitly teaching NOS, which are discussed in the literature, have been adopted: the pre-service teachers explicitly reflect upon nature and history of science (version one) as well as conduct own scientific investigations (version two). Sample: N = 76 pre-service teachers from different semester levels (cross-sectional study) who participated in the new STEM curriculum took part in this study (intervention group). As control groups, students who did not partake in the new curriculum participated (pre-service primary (N = 134), science (N = 198), and no-science (N = 161) teachers). Design and methods: In order to allow an economic assessment, a testing instrument with closed-item formats was developed to assess the respondents' views about six NOS aspects. Results: The intervention group shows significantly more elaborated NOS views than a relevant control group (p < .01, g = .48). Additionally, a one-way ANOVA reveals a positive effect of semester level on NOS views for the intervention group (p < .01; η² = .16) but not for the control groups. Conclusion: The findings support evidence suggesting that explicit approaches are effective when fostering an informed understanding of NOS. More specifically, a sequence of both versions of explicitly teaching NOS discussed in the literature seems to be a way to successfully promote pre-service teachers' NOS understanding.

  19. From Prescribed Curriculum to Classroom Practice: An Examination of the Implementation of the New York State Earth Science Standards

    ERIC Educational Resources Information Center

    Contino, Julie; Anderson, O. Roger

    2013-01-01

    In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…

  20. A Comparison of Biologic Content in Three Elementary-School Science Curriculum Projects: ESS, S-APA, SCIS

    ERIC Educational Resources Information Center

    Simpson, Ronald D.

    1974-01-01

    Three elementary school science curriculum projects, Elementary Science Study (ESS), Science - A Process Approach (S-APA), and Science Curriculum Improvement Study (SCIS), are compared concerning the biologic content each project contains. The reviewer found a lack of activities designed to represent functions at the cellular level. Two projects…

  1. Health Libraries and Information Services in Tanzania: A Strategic Assessment

    PubMed Central

    Haruna, Hussein; Mtoroki, Majaliwa; Gerendasy, Dan D.; Detlefsen, Ellen G.

    2016-01-01

    Objective To identify the current status and local impact of health sciences libraries and the perception of these libraries by their users, as a pre-requisite to the development of a competence-based curriculum for health information science training in Tanzania. Methodology A needs assessment was carried out using a convenience sample of local respondents, including librarians, trainers, academicians, students, health care providers and patients and families, drawn from national, referral, regional, district hospitals, health training institutions, and Universities from both government and non-government entities in Tanzania. A focus group approach was used to gather data from respondents. Results Results from this assessment revealed that health science libraries in Tanzania are faced with the challenges of insufficient infrastructure, old technology, limited facilities and furniture, inadequate and incompetent library staff, lack of health sciences librarians, outdated and insufficient resources, as well as low knowledge and use of information technologies by library clients. Most respondents would prefer to have both physical and electronic libraries, as well as librarians with specialized health information science skills, to cope with changing nature of the medical field. Conclusion The findings obtained from this assessment are strong enough to guide the development of a curriculum and training strategy and an operational plan and training packages for health information professionals. The development of a training curriculum for health information science professionals will mean better health information service delivery for Tanzania. PMID:28283146

  2. Fort Benton Science Curriculum Outline.

    ERIC Educational Resources Information Center

    Fort Benton Public Schools, MT.

    The science curriculum for the Fort Benton school system was developed with funds under Title III of the Elementary and Secondary Education Act to give students the background of a modern and forward-looking program in science taught in an imaginative, investigative, and inquiry-oriented fashion. The science curriculum guide outlines a planned…

  3. Uncovering Portuguese Teachers' Difficulties in Implementing Sciences Curriculum

    ERIC Educational Resources Information Center

    Vasconcelos, Clara; Torres, Joana; Moutinho, Sara; Martins, Idalina; Costa, Nilza

    2015-01-01

    Many countries recognize the positive and effective results of improving science education through the introduction of reforms in the sciences curriculum. However, some important issues are generally neglected like, for example, the involvement of the teachers in the reform process. Taking the sciences curriculum reform under analysis and…

  4. Water Pollution, Environmental Science Curriculum Guide Supplement.

    ERIC Educational Resources Information Center

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  5. Complementary Social Sciences Courses in the Alberta High School Curriculum: A Conceptual Review

    ERIC Educational Resources Information Center

    Staszenski, Donna; Smits, Hans

    2008-01-01

    In keeping with Alberta Education's goals and responsibilities to develop and evaluate curriculum and to set standards and assess outcomes, the Ministry is reviewing the status and purpose of social sciences courses as part of the high school curriculum. The present social sciences curriculum was revised in 1985. As part of the social sciences…

  6. Expressions of Agency within Complex Policy Structures: Science Teachers' Experiences of Education Policy Reforms in Sweden

    ERIC Educational Resources Information Center

    Ryder, Jim; Lidar, Malena; Lundqvist, Eva; Östman, Leif

    2018-01-01

    We explore the experiences of school science teachers as they enact three linked national curriculum and assessment policy reforms in Sweden. Our goal is to understand teachers' differing responses to these reforms. A sample of 13 teachers engaged in 2 interviews over a 6-9-month period. Interviews included exploration of professional background…

  7. Teachers' sense-making of curriculum structures and its impact on the implementation of an innovative reform-based science curriculum

    NASA Astrophysics Data System (ADS)

    Beckford-Smart, Meredith

    This study discusses the social interactions involved in teachers' enactment and use of new science curricula. The teachers studied participated in the LiFE program, a university-school partnership, which is an inquiry based science and nutrition education program. In this program fifth and sixth grade students learned science through the study of food. The program used the study of food and food systems to teach life sciences and nutrition through inquiry based studies. Through the partnership teachers received professional development which aimed to deepen their conceptual understandings of life science and develop skills in implementing inquiry-base teaching. Using qualitative research methods of ethnography and narrative inquiry to study teachers' sense-making of messages from curriculum structures, the intention was to explore how teachers' sense-making of these structures guided their classroom practices. Two research questions were addressed: (a) How do teachers make sense of curriculum given their perceptions, their school context and their curricular context; (b) What influence do their identities as science teachers/learners have on their enactment of an innovative science curriculum. I used comparative analysis to examine teacher's beliefs and identities as teachers/learners. In the process of studying these teachers an understanding of how teachers' stories and identities shape their use and enactment of science curriculum came to light. The initial analysis revealed four distinct teacher identities: (a) social responsibility teacher/learner; (b) experiential teacher/learner; (c) supportive institution teacher/learner; and (d) turning point teacher. Besides these distinct teacher identities three cross cutting themes emerged: (a) creating environments conducive to their teaching visions; (b) empowering student through science teaching; and (c) dealing with the uncertainty of teaching. The information gathered from this study will illuminate how these different teacher stories shaped their teaching practices and enactment of science curriculum. Curriculum developers and policy makers struggle to understand how their messages can be communicated clearly to their readers and users. Many argue that curriculum materials are not used the way they are intended. Others argue the messages read from policy and curriculum materials and artifacts are ambiguous and unclear. This study did not argue that teachers do not use the curriculum materials correctly. This study focused on teachers' sense-making of curriculum materials so we can get a better understanding of the role curriculum resources can play in reform.

  8. Curriculum coherence: A comparative analysis of elementary science content standards in People's Republic of China and the USA

    NASA Astrophysics Data System (ADS)

    Huang, Fang

    This study examines elementary science content standards curriculum coherence between the People's Republic of China and the United States of America. Three aspects of curriculum coherence are examined in this study: topic inclusion, topic duration, and curriculum structure. Specifically this study centers on the following research questions: (1) What science knowledge is intended for elementary students in each country? (2) How long each topic stays in the curriculum? (3) How these topics sequence and connect with each other? (4) And finally, what is the implication for elementary science curriculum development? Four intended science curriculum frameworks were selected respectively for each country. A technique of General Topic Trace Mapping (GTTM) was applied to generate the composite science content standards out of the selected curriculum for each country. In comparison, the composite USA and Chinese elementary science content standards form a stark contrast: a bunch of broad topics vs. a focus on a set of key topics at each grade; an average of 3.4 year topic duration vs. an average of 1.68 year topic duration; a stress on connections among related ideas vs. a discrete disposition of related ideas; laundry list topic organization vs. hierarchical organization of science topics. In analyzing the interrelationships among these characteristics, this study reached implications for developing coherent science content standards: First, for the overall curriculum, the topic inclusion should reflect the logical and sequential nature of knowledge in science. Second, for each grade level, less, rather than more science topics should be focused. Third, however, it should be clarified that a balance should be made between curriculum breadth and depth by considering student needs, subject matter, and child development. Fourth, the topic duration should not be too long. The lengthy topic duration tends to undermine links among ideas as well as lead to superficial treatment of topics.

  9. Bringing Data Science, Xinformatics and Semantic eScience into the Graduate Curriculum

    NASA Astrophysics Data System (ADS)

    Fox, P.

    2012-04-01

    Recent advances in acquisition techniques quickly provide massive amount of complex data characterized by source heterogeneity, multiple modalities, high volume, high dimensionality, and multiple scales (temporal, spatial, and function). In turn, science and engineering disciplines are rapidly becoming more and more data driven with goals of higher sample throughput, better understanding/modeling of complex systems and their dynamics, and ultimately engineering products for practical applications. However, analyzing libraries of complex data requires managing its complexity and integrating the information and knowledge across multiple scales over different disciplines. Attention to Data Science is now ubiquitous - The Fourth Paradigm publication, Nature and Science special issues on Data, and explicit emphasis on Data in national and international agency programs, foundations (Keck, Moore) and corporations (IBM, GE, Microsoft, etc.). Surrounding this attention is a proliferation of studies, reports, conferences and workshops on Data, Data Science and workforce. Examples include: "Train a new generation of data scientists, and broaden public understanding" from an EU Expert Group, "…the nation faces a critical need for a competent and creative workforce in science, technology, engineering and mathematics (STEM)...", "We note two possible approaches to addressing the challenge of this transformation: revolutionary (paradigmatic shifts and systemic structural reform) and evolutionary (such as adding data mining courses to computational science education or simply transferring textbook organized content into digital textbooks).", and "The training programs that NSF establishes around such a data infrastructure initiative will create a new generation of data scientists, data curators, and data archivists that is equipped to meet the challenges and jobs of the future." Further, interim report of the International Council for Science's (ICSU) Strategic Coordinating Committee on Information and Data (SCCID), features this excerpt from section 4.2.4 Data scientists and professionals: "An unfortunate state in the recognition of data science, is that there is a lack of appreciation of the need for a set of professional knowledge in skill in key areas, many of which have not been emphasized to date, e.g. professional approaches to the management of data over its lifecycle. As such, the effort required to be a data scientists is not valued sufficiently by the remainder of the scientific community." SCCID Recommendation 6 reads: "We recommend the development of education at university level in the new and vital field of data science. The curriculum included in appendix D can be used as a starting point for curriculum development. Appendix D. is entitled "Example curriculum for data science" and explicitly uses the "Curriculum for Data Science taught at Rensselaer Polytechnic Institute, USA" . This contribution will present relevant curriculum offerings at the Rensselaer Polytechnic Institute. http://tw.rpi.edu/web/Courses

  10. A Science for Citizenship Model: Assessing the Effects of Benefits, Risks, and Trust for Predicting Students' Interest in and Understanding of Science-Related Content

    NASA Astrophysics Data System (ADS)

    Jack, Brady Michael; Lee, Ling; Yang, Kuay-Keng; Lin, Huann-shyang

    2017-10-01

    This study showcases the Science for Citizenship Model (SCM) as a new instructional methodology for presenting, to secondary students, science-related technology content related to the use of science in society not taught in the science curriculum, and a new approach for assessing the intercorrelations among three independent variables (benefits, risks, and trust) to predict the dependent variable of triggered interest in learning science. Utilizing a 50-minute instructional presentation on nanotechnology for citizenship, data were collected from 301 Taiwanese high school students. Structural equation modeling (SEM) and paired-samples t-tests were used to analyze the fitness of data to SCM and the extent to which a 50-minute class presentation of nanotechnology for citizenship affected students' awareness of benefits, risks, trust, and triggered interest in learning science. Results of SCM on pre-tests and post-tests revealed acceptable model fit to data and demonstrated that the strongest predictor of students' triggered interest in nanotechnology was their trust in science. Paired-samples t-test results on students' understanding of nanotechnology and their self-evaluated awareness of the benefits and risks of nanotechology, trust in scientists, and interest in learning science revealed low significant differences between pre-test and post-test. These results provide evidence that a short 50-minute presentation on an emerging science not normally addressed within traditional science curriculum had a significant yet limited impact on students' learning of nanotechnology in the classroom. Finally, we suggest why the results of this study may be important to science education instruction and research for understanding how the integration into classroom science education of short presentations of cutting-edge science and emerging technologies in support of the science for citizenship enterprise might be accomplished through future investigations.

  11. Experiencing the Implementation of New Inquiry Science Curricula

    NASA Astrophysics Data System (ADS)

    Ower, Peter S.

    Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the prior traditional curriculum, and their experience teaching the new inquiry-based curriculum. The findings are presented as a narrative of each teachers' experience with the new curriculum implementation. Analyzing the data revealed four key themes. 1) The teachers felt trapped by the old curriculum as it did not align with their positive views of teaching science through inquiry. 2) The teachers found a way to fit their beliefs and values into the old and new curriculum. This required changes to the curriculum. 3) The teachers attempted to make the science curriculum as meaningful as possible for their students. 4) The teachers experienced a balancing act between their beliefs and values and the various aspects of the curriculum. The revealed essence of the curriculum transition is one of freedom and reconciliation of their beliefs. The teachers experienced the implementation of the new curriculum as a way to ensure their values and beliefs of science education were embedded therein. They treated the new curriculum as a malleable structure to impart their grander ideas of science education (e.g. providing important skills for future careers, creating a sense of wonder, future problem solving) to the students. Their changes were aligned with the philosophy of the curriculum kits they were implementing. Thus, the fidelity of the curriculum's philosophy was not at risk even though the curriculum kits were not taught as written. This study showed that phenomenological methods are able to reveal the relationship between a teacher's prior experiences, values and beliefs and their current instructional philosophy in science education. An analytical diagram was developed based on this relationship and the teachers' experiences moving from a traditional to a new inquiry curricula. The diagram suggests a transition from feeling trapped in an existing curriculum that is inconsistent with teacher values to finding a fit and balance in a new curriculum that provides a better though not perfect fit. This diagram can serve as a guide for how to design future, ongoing professional development to ensure the success of an inquiry curriculum designed to replace a more traditional one and may be applicable to other teachers.

  12. Environment in the science curriculum: the politics of change in the Pan-Canadian science curriculum development process

    NASA Astrophysics Data System (ADS)

    Hart, Paul

    2002-11-01

    This paper draws on the experience of the Pan-Canadian science curriculum development process as an instance of the more general problem of integrating science and environmental education. It problematizes the issue of incorporation of social and environmental dimensions within the science curriculum in terms of both policy and practice. The agenda of environmental education, as eco-philosophical and eco-political, provides a radically different base from which to explore the impact of change on science teachers and schools. Thus, the very idea of environmental education as an educational policy goal must be examined in light of conflicting agendas of science and environmental education. This paper argues that transforming structures and processes of school science to enable different teacher and student roles involves closing the gap between curriculum (policy) development and professional development as well as reconceptualizing science education, but from more overtly open moral value and political perspectives than have been considered in the literature of science education.

  13. Course and Curriculum Improvement Materials: Mathematics, Science, Social Sciences - Elementary, Intermediate, Secondary.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This is a list of curriculum improvement materials produced by major course and curriculum projects supported by the National Science Foundation's Division of Pre-College Education in Science. The materials are grouped by educational level (elementary, intermediate, and secondary) and within each level by broad discipline groupings (mathematics,…

  14. Some Trends in the Evolution of Science Curriculum Centres in Asia. Occasional Papers No. 12.

    ERIC Educational Resources Information Center

    Maddock, M. N.

    Recent trends in science education associated with the evolution of science curriculum development centers in the Asian region are reviewed. These trends, and factors influencing them, are discussed under the following headings: science education and curriculum development centers; adaptation phase; shifts toward indigenous programs; science…

  15. Primary Science Curriculum Guide, A. Beginning Science.

    ERIC Educational Resources Information Center

    Victoria Education Dept. (Australia).

    Suggestions for providing science experiences for children in kindergarten and grades one and two are given in this first part of the Victorian Education Department (Australia) guide to the elementary school science curriculum. (See SE 012 720 and SE 012 721 for additional guides to this curriculum.) The suggestions are illustrated by brief case…

  16. Impact of the Knowledge and Beliefs of Egyptian Science Teachers in Integrating a STS based Curriculum: A Sociocultural Perspective

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2010-08-01

    The failure of much curriculum innovation has been attributed to the neglect by innovators of teachers’ perceptions. The purpose of this study was to investigate inservice science teachers views of integrating Science, Technology and Society (STS) issues into the science curriculum and identify the factors that influence their decisions concerning integrating STS issues (or not). The study used mixed methods (questionnaire and interviews) with Egyptian science teachers who teach science courses for 12- to 14-year-old students. The findings indicate that unless curriculum developers take account of teachers’ beliefs and knowledge and the sociocultural factors that shape or influence those beliefs in designing and planning new STS curriculum materials, these materials are unlikely to be implemented according to their intended plan.

  17. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    NASA Astrophysics Data System (ADS)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups: sophisticated beliefs group students focused on their insecurity of not knowing how to complete the activities correctly, and naive beliefs group students focused on the amount of work and how long it took them to complete it. The description of the improvement in learning was at a basic level for the naive beliefs group and at a more complex level for the sophisticated beliefs group. Implications for researchers and educators are discussed.

  18. The Science Curriculum. The Report of the National Forum for School Science (Crystal City, Virginia, November 14-15, 1986). This Year in School Science 1986.

    ERIC Educational Resources Information Center

    Champagne, Audrey B., Ed.; Hornig, Leslie E., Ed.

    The outgrowth of a conference on how science education can best meet the needs and expectations of society, this volume is designed to provide a source of information and ideas about the future of the school science curriculum. It contains 15 papers, including: "Critical Questions and Tentative Answers for the School Science Curriculum" (Audrey B.…

  19. Testing the effect of a science-enhanced curriculum on the science achievement and agricultural competency of secondary agricultural education students

    NASA Astrophysics Data System (ADS)

    Haynes, James Christopher

    Scope and Method of Study. The purpose of this study was to determine if a science-enhanced curriculum produced by the Center for Agricultural and Environmental Research and Training (CAERT) taught in a secondary level animal science or horticulture course would improve students' understanding of selected scientific principles significantly, when compared to students who were instructed using a traditional curriculum. A secondary purpose was to determine the effect that the science-enhanced CAERT curriculum would have on students' agricultural knowledge when compared to students who were instructed using a traditional curriculum. The design of the study was ex post facto, causal comparative because no random assignment of the treatment group occurred. Findings and Conclusions. No statistically significant difference was found between the treatment and comparison groups regarding science achievement. However, the mean score of the treatment group was slightly larger than the comparison group indicating a slightly higher achievement level; a "Small" effect size (d = .16) for this difference was calculated. It was determined that a statistically significant difference (p < .05) existed in agriculture competency scores in animal science (p = .001) and horticulture (p = .000) as a result of the treatment. Moreover, this was considered to be a "very large" effect (d = 1.18) in animal science and a "large" effect (d = .92) in horticulture. When considering student achievement in science, this study found that the use of the science-enhanced CAERT curriculum did not result in a statistically significant increase (p < .05) in student performance as determined by the TerraNova3 science proficiency examination. However, students who were instructed using the CAERT curriculum scored better overall than those who were instructed using a "traditional" curriculum.

  20. Teaching Chemistry in a Spiral Progression Approach: Lessons from Science Teachers in the Philippines

    ERIC Educational Resources Information Center

    Orbe, Joymie R.; Espinosa, Allen A.; Datukan, Janir T.

    2018-01-01

    As the Philippines moves towards implementing the K-12 curriculum, there has been a mismatch in teacher preparation in science. The present teacher education curriculum prepares science teachers to specialise in a specific field (e.g. integrated science, biology, chemistry, and physics). However, in the K-12 curriculum, they are required to teach…

  1. The Digestive System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    ERIC Educational Resources Information Center

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum presents a framework for alcohol education…

  2. Science as the Center of a Coherent, Integrated Early Childhood Curriculum

    ERIC Educational Resources Information Center

    French, Lucia

    2004-01-01

    This article describes the ScienceStart! Curriculum, an early childhood curriculum that takes coherently organized science content as the hub of an integrated approach. ScienceStart! maps onto the typical preschool day and may be adapted for use in full-day or half-day preschool programs. It is designed to support the important developmental…

  3. A colorful approach to teaching optics

    NASA Astrophysics Data System (ADS)

    Magnani, Nancy J.; Donnelly, Judith

    2014-09-01

    In a traditional Connecticut elementary school setting, the classroom teacher will teach language arts, social studies and science curriculum. For 5th grade, the science curriculum includes learning about the senses and moon phases, in addition to the fundamentals of light. For art, music and physical education, students are sent to teachers who have certifications in teaching these subjects. In support of the science curriculum, we have traditionally provided workshops to enhance and supplement existing science curriculum. This method of instruction has become a routine. What if we invigorate the curriculum by using visual art to teach science? Will the students achieve a greater understanding of the principals of light? In this paper, we will explore the use of art to enhance the understanding of color and light phenomena.

  4. Curriculum Reviews.

    ERIC Educational Resources Information Center

    Science and Children, 1981

    1981-01-01

    Reviews four science curriculum materials. "Human Issues in Science" presents social consequences of science and technological developments. "Experiences in Science" contains duplicating masters to supplement basic science programs. "Outdoor Areas as Learning Laboratories" includes activities for local environments. "The Science Cookbook" uses…

  5. An Undergraduate Computer Science Curriculum for the Hearing Impaired.

    ERIC Educational Resources Information Center

    Perkins, A. Louise

    1995-01-01

    Presents an example section from a computer-science-integrated curriculum that was originally based on the Association of Computing Machinery (ACM) 1978 curriculum. The curriculum was designed to allow both instructors and students to move away from teaching and learning facts. (DDR)

  6. Exploring the Moon: A teacher's guide with activities for Earth and space sciences

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey; Martel, Linda M. V.; Bays, Brooks G., Jr.

    1994-01-01

    This guide contains educational materials designed for use in upper elementary through high schools with the Lunar Sample Disk. A set of thirty-six 35-mm slides complements the activities in this guidebook. The book contains: (1) information on the Lunar Sample Disk; (2) a curriculum content matrix; (3) a teacher's guide; (4) moon ABC's fact sheet; (5) rock ABC's fact sheet; (6) progress in Lunar Science chart; (7) seventeen activities; (8) a resource section for each unit; (9) a glossary; and (10) a list of NASA educational resources.

  7. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: an Exploratory Study

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-08-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.

  8. Impact of the Knowledge and Beliefs of Egyptian Science Teachers in Integrating a STS Based Curriculum: A Sociocultural Perspective

    ERIC Educational Resources Information Center

    Mansour, Nasser

    2010-01-01

    The failure of much curriculum innovation has been attributed to the neglect by innovators of teachers' perceptions. The purpose of this study was to investigate inservice science teachers views of integrating Science, Technology and Society (STS) issues into the science curriculum and identify the factors that influence their decisions concerning…

  9. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  10. Toward a Lived Science Curriculum in Intersecting Figured Worlds: An Exploration of Individual Meanings in Science Education

    ERIC Educational Resources Information Center

    Price, Jeremy F.; McNeill, Katherine L.

    2013-01-01

    As knowledge of and familiarity with science becomes an increasingly important aspect of contemporary life and citizenship, efforts have been made to make the science curriculum a “lived” curriculum (Hurd, 2000), one that reaches out to the lives, communities, and experiences of students. In this research around a high school urban ecology…

  11. The Central Nervous System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    ERIC Educational Resources Information Center

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum aims to present a framework for alcohol…

  12. Infusing Quantitative Approaches throughout the Biological Sciences Curriculum

    ERIC Educational Resources Information Center

    Thompson, Katerina V.; Cooke, Todd J.; Fagan, William F.; Gulick, Denny; Levy, Doron; Nelson, Kären C.; Redish, Edward F.; Smith, Robert F.; Presson, Joelle

    2013-01-01

    A major curriculum redesign effort at the University of Maryland is infusing all levels of our undergraduate biological sciences curriculum with increased emphasis on interdisciplinary connections and quantitative approaches. The curriculum development efforts have largely been guided by recommendations in the National Research Council's "Bio…

  13. Curriculum and Course Materials for a Forensic DNA Biology Course

    ERIC Educational Resources Information Center

    Elkins, Kelly M.

    2014-01-01

    The Forensic Science Education Programs Accreditation Commission (FEPAC) requires accredited programs offer a "coherent curriculum" to ensure each student gains a "thorough grounding of the natural…sciences." Part of this curriculum includes completion of a minimum of 15 semester-hours forensic science coursework, nine of which…

  14. Life Science Curriculum Guide. Bulletin 1614.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in a life science course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals of…

  15. Teacher Self-Efficacy during the Implementation of a Problem-Based Science Curriculum

    ERIC Educational Resources Information Center

    Hodges, Charles B.; Gale, Jessica; Meng, Alicia

    2016-01-01

    This study was conducted to investigate eighth-grade science teachers' self-efficacy during the implementation of a new, problem-based science curriculum. The curriculum included applications of LEGO® robotics, a new technology for these teachers. Teachers' responded to structured journaling activities designed to collect information about their…

  16. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    NASA Astrophysics Data System (ADS)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging themes and sub-themes that attempts to explain how teachers begin with an intended curriculum but digress to the actual curriculum. The results of this study were consistent with previous research on teachers' beliefs and pedagogy but also revealed a new model to explain the interaction of the three constructs. Each instructor held individual beliefs about science, science teaching and pedagogy. However, there was some commonality with teachers' beliefs, pedagogy and perceptions that impacted the implementation of the curriculum. It is the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of the curriculum that determines what is taught and instructional strategies used to teach a concept.

  17. Earth and Life Science: Eighth Grade. Curriculum Guide.

    ERIC Educational Resources Information Center

    Harlandale Independent School District, San Antonio, TX. Career Education Center.

    The guide is arranged in vertical columns relating curriculum concepts in earth science to curriculum performance objectives, career concepts and career performance objectives, suggested teaching methods, and resource materials. The course for eighth graders attempts to place the curriculum concepts in order of increasing difficulty. Occupational…

  18. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education.

    PubMed

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.

  19. Science Curriculum Guide, Level 3.

    ERIC Educational Resources Information Center

    Newark School District, DE.

    The third of four levels in a K-12 science curriculum is outlined. In Level 3 (grades 6-8), science areas include life science, earth science, and physical science (physics and chemistry). Conveniently listed are page locations for educational and instructional objectives, cross-referenced to science area (i.e., life science, animals, genetics)…

  20. THE SELECTION OF A NATIONAL RANDOM SAMPLE OF TEACHERS FOR EXPERIMENTAL CURRICULUM EVALUATION.

    ERIC Educational Resources Information Center

    WELCH, WAYNE W.; AND OTHERS

    MEMBERS OF THE EVALUATION SECTION OF HARVARD PROJECT PHYSICS, DESCRIBING WHAT IS SAID TO BE THE FIRST ATTEMPT TO SELECT A NATIONAL RANDOM SAMPLE OF (HIGH SCHOOL PHYSICS) TEACHERS, LIST THE STEPS AS (1) PURCHASE OF A LIST OF PHYSICS TEACHERS FROM THE NATIONAL SCIENCE TEACHERS ASSOCIATION (MOST COMPLETE AVAILABLE), (2) SELECTION OF 136 NAMES BY A…

  1. A Perspective on the Intended Science Curriculum in Iceland and its `Transformation' over a Period of 50 Years

    NASA Astrophysics Data System (ADS)

    Thorolfsson, Meyvant; Finnbogason, Gunnar E.; Macdonald, Allyson

    2012-11-01

    In recent decades, a consensus has emerged among educators and scientists that all compulsory school students need good science education. The debate about its purpose and nature as a school subject in an emerging information society has not been as conclusive. To further understand this, it helps to examine how the science curriculum has transformed and what forces have shaped it as a core curricular area over time. This article sheds light on the transformation of the science curriculum for compulsory schools in Iceland in force from 1960 to 2010. Using criteria based on curriculum ideologies regarding the function of learners, instructors and subject matter in the learning process and the orientation of content and product versus process and development, it offers findings from content analysis of the intended science curriculum. The official curriculum was studied and conceptualised as it has evolved over time. The curriculum developers appear to have been striving for a compromise between conflicting views, resulting in what the authors of this article conceive as a 'kaleidoscopic quilt' of ideas over the period studied.

  2. An Efficacy Trial of Research-Based Curriculum Materials with Curriculum-Based Professional Development

    ERIC Educational Resources Information Center

    Taylor, Joseph A.; Getty, Stephen R.; Kowalski, Susan M.; Wilson, Christopher D.; Carlson, Janet; Van Scotter, Pamela

    2015-01-01

    This study examined the efficacy of a curriculum-based intervention for high school science students. Specifically, the intervention was two years of research-based, multidisciplinary curriculum materials for science supported by comprehensive professional development for teachers that focused on those materials. A modest positive effect was…

  3. An overview of conceptual understanding in science education curriculum in Indonesia

    NASA Astrophysics Data System (ADS)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  4. History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources

    NASA Astrophysics Data System (ADS)

    Seker, Hayati; Guney, Burcu G.

    2012-05-01

    Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in the light of the facilitator model on the use of history of science in science teaching, and to expose possible difficulties in preparing historical materials. For this purpose, qualitative content analysis method was employed. Codes and themes were defined beforehand, with respect to levels and their sublevels of the model. The analysis revealed several problems with the alignment of historical sources for the physics curriculum: limited information about scientists' personal lives, the difficulty of linking with content knowledge, the lack of emphasis on scientific process in the physics curriculum, differences between chronology and sequence of topics, the lack of information about scientists' reasoning. Based on the findings of the analysis, it would be difficult to use original historical sources; educators were needed to simplify historical knowledge within a pedagogical perspective. There is a need for historical sources, like Harvard Case Histories in Experimental Science, since appropriate historical information to the curriculum objectives can only be obtained by simplifying complex information at the origin. The curriculum should leave opportunities for educators interested in history of science, even historical sources provides legitimate amount of information for every concepts in the curriculum.

  5. Chemical Science and Technology I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…

  6. Interest-Based Curriculum for House Care Services: Science.

    ERIC Educational Resources Information Center

    Natchitoches Parish School Board, LA.

    The interest-based curriculum materials are designed to correlate the subjects of English, math, science, and home economics and infuse academic skills into the world of work. The House Care Science curriculum guide is divided into five units: (1) measurement, (2) household chemistry, (3) household electricity, (4) household machines, and (5)…

  7. Science 25. Curriculum Guide. Revised.

    ERIC Educational Resources Information Center

    Northwest Territories Dept. of Education, Yellowknife.

    This science curriculum is an activity-oriented program in which an attempt has been made to provide sufficient information for non-science specialists to enable them to offer an effective course at the grades 10 and 11 levels. This curriculum offers a solution to the unique needs of life in the Canadian Northwest Territories. The role of…

  8. MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT. (TITLE SUPPLIED).

    ERIC Educational Resources Information Center

    VAN DEVENTER, W.C.

    REPORTED ARE THE RESULTS OF A CURRICULUM RESEARCH PROJECT OF THE MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT FOR USE IN TEACHING JUNIOR HIGH SCHOOL UNIFIED SCIENCE. THE COMMITTEE USED PREVIOUS RESEARCH DATA, PARTICULARLY IN THE AREA OF INSTRUCTION AND INQUIRY TRAINING, TO DEVELOP 13 UNITS INCLUDING 55 OPEN-ENDED LABORATORY…

  9. Improving Student Attitudes about Learning Science and Student Scientific Reasoning Skills

    ERIC Educational Resources Information Center

    Duncan, Douglas K.; Arthurs, Leilani

    2012-01-01

    Student attitudes about learning science and student ideas about the nature of science were compared at the end of two astronomy courses taught in Fall 2007, a course with a traditional astronomy curriculum and a transformed course, whose traditional astronomy curriculum was supplemented by an embedded curriculum that explicitly addressed the…

  10. Did We Have Science before 1988?

    ERIC Educational Resources Information Center

    Peacock, Alan; Dunne, Mick

    2014-01-01

    In this "Primary Science" interview, science educators Alan Peacock and Mick Dunne reflect on their own experiences of what science was like in England before a National Curriculum was introduced. Among the topics covered are: earliest memories of science in school, teaching science before 1988 (pre-science curriculum for primary…

  11. A Computer Security Course in the Undergraduate Computer Science Curriculum.

    ERIC Educational Resources Information Center

    Spillman, Richard

    1992-01-01

    Discusses the importance of computer security and considers criminal, national security, and personal privacy threats posed by security breakdown. Several examples are given, including incidents involving computer viruses. Objectives, content, instructional strategies, resources, and a sample examination for an experimental undergraduate computer…

  12. A Longitudinal Assessment of Gifted Students' Learning Using the Integrated Curriculum Model (Icm): Impacts and Perceptions of the William and Mary Language Arts and Science Curriculum

    ERIC Educational Resources Information Center

    Feng, Annie Xuemei; Van Tassel-Baska, Joyce; Quek, Chwee; Bai, Wenyu; O'Neill, Barbara

    2005-01-01

    This study examines the effects over time of implementing the William and Mary language arts and science curriculum for gifted learners designed around the Integrated Curriculum Model (ICM) in one suburban school district. It also analyzes stakeholders' perceptions of the effectiveness of the curriculum. Findings suggest that gifted student…

  13. The impact of a professional development model for a mobilized science curriculum: a case study of teacher changes

    NASA Astrophysics Data System (ADS)

    Looi, Chee-Kit; Sun, Daner; Kim, Mi Song; Wen, Yun

    2018-01-01

    Background and purpose: To date, there has been little research on the Teacher Professional Development (TPD) for delivering a mobile technology-supported science curriculum. To address this, a TPD model for a science curriculum supported by mobile technology was developed and evaluated in this paper. The study reported focuses on the establishment of the TPD model and exploration of its impact on teacher behaviors in the curriculum implementation.

  14. The Study of the Atmosphere in the Science Curriculum.

    ERIC Educational Resources Information Center

    Fisher, Brian

    1998-01-01

    Seeks to justify the inclusion of meteorology within the science curriculum. Reflects upon the nature of science and some current issues in science education, and examines the reality of including meteorology within worldwide science curricula. Contains 37 references. (Author/DDR)

  15. Georgia science curriculum alignment and accountability: A blueprint for student success

    NASA Astrophysics Data System (ADS)

    Reining-Gray, Kimberly M.

    Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.

  16. The Growing Classroom: A Garden-Based Science and Nutrition Curriculum for 2nd through 6th Grades. Book 2: Science.

    ERIC Educational Resources Information Center

    Appel, Gary; And Others

    This guide for teaching science is Book Two in Project Life Lab's (Santa Cruz, California) three-part curriculum for a garden-based science and nutrition program for grades 2-6. The curriculum is designed for use as an integrated program, but the books can be used independently. It is suggested that the use of student journals can greatly enhance…

  17. Materials and Fabrication Methods I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; And Others

    This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…

  18. What Are Critical Features of Science Curriculum Materials That Impact Student and Teacher Outcomes?

    ERIC Educational Resources Information Center

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined curriculum features associated with student and…

  19. Using Symbolic Interactionism to Analyze a Specialized STEM High School Teacher's Experience in Curriculum Reform

    ERIC Educational Resources Information Center

    Teo, Tang Wee; Osborne, Margery

    2012-01-01

    In this paper, we present a microanalysis of a specialized STEM (science, technology, engineering, and mathematics) high school teacher's experience of self-initiated science inquiry curriculum reform. We examine the meanings of these two constructs: "inquiry curriculum" and "curriculum change" through the process lens of interactions, actions,…

  20. Integrating Technology, Curriculum, and Online Resources: A Multilevel Model Study of Impacts on Science Teachers and Students

    ERIC Educational Resources Information Center

    Ye, Lei

    2013-01-01

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students…

  1. The Basic Science Curriculum in the 21st Century: What Needs to Be Changed?

    ERIC Educational Resources Information Center

    Garant, Philias R.

    1986-01-01

    The basic science curriculum in dental education could be improved by adopting a curriculum containing only two integrated required science courses about (1) the structure and function of the human body and (2) disease and reaction to disease in the human body. Elective graduate-level predoctoral courses would allow specialization. (MSE)

  2. Science and Engineering Graphics I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Craig, Jerry; Stapleton, Jerry

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum was developed for the purpose of training technicians in the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology,…

  3. Impact of the Science and Technology for Children Curriculum in the Oshkosh Area School District.

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph; Lemberger, John; Herzog, Barbara

    2002-01-01

    Examines the instructional impact of National Science Resources Center's Science and Technology for Children curriculum in the Oshkosh Area School District. Results suggest that the adoption of this curriculum among experienced teachers in the district will provide little or no immediate gains on student achievement and potentially a slight…

  4. Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research

    ERIC Educational Resources Information Center

    Passey, Don

    2017-01-01

    The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…

  5. History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources

    ERIC Educational Resources Information Center

    Seker, Hayati; Guney, Burcu G.

    2012-01-01

    Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in…

  6. Revising and Updating the Animal Science Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Mannebach, Alfred J.; And Others

    This guide is intended for use in teaching Connecticut's revised animal science curriculum at regional vocational agriculture centers. Like its predecessor, this curriculum includes exploratory (intended for grades 9 and 10) and specialized (intended for grades 11 and 12) animal science units and is based on the following major areas of…

  7. Investigating Purposeful Science Curriculum Adaptation as a Strategy to Improve Teaching and Learning

    ERIC Educational Resources Information Center

    Debarger, Angela Haydel; Penuel, William R.; Moorthy, Savitha; Beauvineau, Yves; Kennedy, Cathleen A.; Boscardin, Christy Kim

    2017-01-01

    In this paper, we investigate the potential and conditions for using curriculum adaptation to support reform of science teaching and learning. With each wave of reform in science education, curriculum has played a central role and the contemporary wave focused on implementation of the principles and vision of the "Framework for K-12 Science…

  8. Go Ask Alice: Uncovering the Role of a University Partner in an Informal Science Curriculum Support Network

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira J.

    2013-01-01

    This article describes a study from the Linking Instructors Networks of Knowledge in Science Education project, which aims to examine the informal science curriculum support networks of teachers in a school-university curriculum reform partnership. We used social network analysis and qualitative methods to reveal characteristics of the informal…

  9. Keeping the Inquiry in Curriculum Designed To Help Students' Conceptual Understanding of Cellular Respiration.

    ERIC Educational Resources Information Center

    Gibson, Helen L.; Rea-Ramirez, Mary Anne

    Most middle school science curriculum has been created to provide superficial treatment of the different subject areas (earth, life, and physical science), and in-depth coverage of very little. The Third International Mathematics and Science Study (TIMSS) criticism of the typical American school curriculum is that it is a "mile wide and an…

  10. Curriculum-Based Measurement in Science Learning: Vocabulary-Matching as an Indicator of Performance and Progress

    ERIC Educational Resources Information Center

    Espin, Christine A.; Busch, Todd W.; Lembke, Erica S.; Hampton, David D.; Seo, Kyounghee; Zukowski, Beth A.

    2013-01-01

    The technical adequacy of curriculum-based measures in the form of short and simple vocabulary-matching probes to predict students' performance and progress in science at the secondary level was investigated. Participants were 198 seventh-grade students from 10 science classrooms. Curriculum-based measurements (CBM) were 5-min vocabulary-matching…

  11. The Pursuit of Humanity: Curriculum Change in English School Science

    ERIC Educational Resources Information Center

    Donnelly, Jim; Ryder, Jim

    2011-01-01

    This paper is concerned with the recent history of science curriculum reform in England, though it traces these developments back to the mid-nineteenth century. It first reviews approaches to science in the curriculum until the mid-1960s, identifying the curricular settlement of the postwar years and the beginning of the so-called "swing from…

  12. Linking Science and Statistics: Curriculum Expectations in Three Countries

    ERIC Educational Resources Information Center

    Watson, Jane M.

    2017-01-01

    This paper focuses on the curriculum links between statistics and science that teachers need to understand and apply in order to be effective teachers of the two fields of study. Meaningful statistics does not exist without context and science is the context for this paper. Although curriculum documents differ from country to country, this paper…

  13. Trash Conflicts: A Science and Social Studies Curriculum on the Ethics of Disposal. An Interdisciplinary Curriculum.

    ERIC Educational Resources Information Center

    Ballin, Amy; And Others

    Designed for middle school science and social studies classes, this document is a curriculum on waste disposal. Mathematics and language skills also are incorporated into many of the activities. In the study of trash disposal, science students benefit from understanding the social issues related to the problem. Social studies students need…

  14. The Implementation of the New Lower Secondary Science Curriculum in Three Schools in Rwanda

    ERIC Educational Resources Information Center

    Nsengimana, Théophile; Ozawa, Hiroaki; Chikamori, Kensuke

    2014-01-01

    In 2006, Rwanda began implementing an Outcomes Based Education (OBE) lower secondary science curriculum that emphasises a student-centred approach. The new curriculum was designed to transform Rwandan society from an agricultural to a knowledge-based economy, with special attention to science and technology education. Up until this point in time…

  15. 46 CFR 310.59 - Courses of instruction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Academy. Three major curriculums are offered: Nautical Science, for the preparation of deck officers... science courses prescribed by the Department of the Navy. All curriculums include general education... incorporating material from the major segments of the Academy curriculums. ...

  16. Integrated Medical Curriculum: Advantages and Disadvantages

    PubMed Central

    Quintero, Gustavo A.; Vergel, John; Arredondo, Martha; Ariza, María-Cristina; Gómez, Paula; Pinzon-Barrios, Ana-Maria

    2016-01-01

    Most curricula for medical education have been integrated horizontally and vertically–-vertically between basic and clinical sciences. The Flexnerian curriculum has disappeared to permit integration between basic sciences and clinical sciences, which are taught throughout the curriculum. We have proposed a different form of integration where the horizontal axis represents the defined learning outcomes and the vertical axis represents the teaching of the sciences throughout the courses. We believe that a mere integration of basic and clinical sciences is not enough because it is necessary to emphasize the importance of humanism as well as health population sciences in medicine. It is necessary to integrate basic and clinical sciences, humanism, and health population in the vertical axis, not only in the early years but also throughout the curriculum, presupposing the use of active teaching methods based on problems or cases in small groups. PMID:29349303

  17. Into the Curriculum. Interdisciplinary: Celebrating Our Animal Friends: An Across-the-Curriculum Unit for Middle Level Students [and] Music: Program Notes [and] Reading-Language Arts: Letters: Written, Licked, and Stamped [and] Science: Plants in Families [and] Science: Physics and Holiday Toys (Gravity) [and] Social Studies: Learning about Geography through Children's Literature.

    ERIC Educational Resources Information Center

    Gillen, Rose; And Others

    1995-01-01

    Presents six curriculum guides for elementary and secondary education. Subjects include interdisciplinary instruction, music, reading/language arts, science, and social studies. Each guide provides library media skills objectives, curriculum objectives, grade levels, resources, instructional roles, activity and procedures for completion, a…

  18. The CHROME Honors Program

    NASA Technical Reports Server (NTRS)

    Wilson, Eleanor

    2002-01-01

    The CHROME Honors Program was designed as a two-week residential program for 9th and 1Oth grade students participating in CHROME clubs. The curriculum focused on the health sciences with instruction from: (1) the science and health curriculum of the Dozoretz National Program for Minorities in Applied Sciences (DNIMAS) Program of Norfolk State University (NSU); (2) the humanities curriculum of the NSU Honors Program; (3) NASA-related curriculum in human physiology. An Advisory Committee was formed to work with the Project Coordinator in the design of the summer program.

  19. Changing Curriculum: A Critical Inquiry into the Revision of the British Columbia Science Curriculum For Grades K-9

    NASA Astrophysics Data System (ADS)

    Searchfield, Mary A.

    In 2010 British Columbia's Ministry of Education started the process of redesigning the provincial school curriculum, Kindergarten to Grade 12. Mandatory implementation of the new curriculum was set for the 2016/17 school year for Grades K-9, and 2017/18 for Grades 10-12. With a concerted emphasis on personalized learning and through the frame of a Know-Do-Understand curriculum model, the new curriculum aims to meet the needs of today's learners, described as living in a technology-rich, fast-paced and ever-changing world, through a concept-based and competency-driven emphasis. This thesis is a critical analysis of the BC K-9 Science curriculum as written and published, looking specifically at how science is treated as a form of knowledge, its claimed presentation as a story, and on whether the intentions claimed by the designers are matched in the curriculum's final form.

  20. Fidelity of Implementation of Research Experience for Teachers in the Classroom

    NASA Astrophysics Data System (ADS)

    Sen, Tapati

    In this study, the Arizona State University Mathematics and Science Teaching Fellows 2010 program was analyzed qualitatively from start to finish to determine the impact of the research experience on teachers in the classroom. The sample for the study was the 2010 cohort of eight high school science teachers. Erickson’s (1986) interpretive, participant observational fieldwork method was used to report data by means of detailed descriptions of the research experience and classroom implementation. Data was collected from teacher documents, interviews, and observations. The findings revealed various factors that were responsible for an ineffective implementation of the research experience in the classroom such as research experience, curriculum support, availability of resources, and school curriculum. Implications and recommendations for future programs are discussed in the study.

  1. Student and high-school characteristics related to completing a science, technology, engineering or mathematics (STEM) major in college

    NASA Astrophysics Data System (ADS)

    LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.

    2012-04-01

    Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics curriculum. Purpose: This study examines the relationship between various student and high-school characteristics and completion of a STEM major in college. Of specific interest is the influence of a student's high-school mathematics curriculum on the completion of a STEM major in college. Sample: The sample consisted of approximately 3500 students from 229 high schools. Students were predominantly Caucasian (80%), with slightly more males than females (52% vs 48%). Design and method: A quasi-experimental design with archival data was used for students who enrolled in, and graduated from, a post-secondary institution in the upper Midwest. To be included in the sample, students needed to have completed at least three years of high-school mathematics. A generalized linear mixed model was used with students nested within high schools. The data were cross-sectional. Results: High-school predictors were not found to have a significant impact on the completion of a STEM major. Significant student-level predictors included ACT mathematics score, gender and high-school mathematics GPA. Conclusions: The results provide evidence that on average students are equally prepared for the rigorous mathematics coursework regardless of the high-school mathematics curriculum they completed.

  2. Effects of a novel science curriculum versus traditional science curriculum on problem solving skills and attitudes for 10th grade students

    NASA Astrophysics Data System (ADS)

    Gauchat, Carrie

    This study utilized both quantitative and qualitative methods in investigating how a novel science curriculum, geared towards the 21 st century student, affected skills and attitudes towards science for tenth grade students. The quantitative portion of the study was a quasi-experimental design since random groups were not possible. This portion of the study used a pretest/posttest design to measure any improvement in science skills, and a Likert scale survey to measure any improvements in students' attitudes. Statistical tests revealed no significant differences between students who received the novel curriculum versus those students who received a traditional curriculum. Both groups showed significant improvements in all skill areas. Qualitatively, the researcher used informal teacher interviews and student surveys to identify the most relevant and effective curriculum components for the 21st century student. The findings suggest that the task of creating a meaningful and relevant curriculum based on the necessary skills of this century is not an easy task. There is much more work to be done in this area, but according to the qualitative findings integrated design and student technology are promising.

  3. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  4. Physics of Mechanical, Gaseous, and Fluid Systems. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Dixon, Peggy; And Others

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…

  5. Pairing New Science Curriculum with Professional Learning Increases Student Achievement. Lessons from Research

    ERIC Educational Resources Information Center

    Killion, Joellen

    2016-01-01

    A randomized trial study, conducted over two school years in 18 high schools in Washington, finds that "An Inquiry Approach," a three-year, educative curriculum for high school science, has a positive impact on student achievement, teacher practice, and fidelity of implementation of the curriculum when the curriculum is paired with…

  6. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  7. Designing Science Learning in the First Years of Schooling. An intervention study with sequenced learning material on the topic of `floating and sinking'

    NASA Astrophysics Data System (ADS)

    Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca

    2014-07-01

    Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus developed and implemented a science learning environment for children in the first years of schooling which contains structured learning materials with the goal of supporting conceptual change concerning the understanding of the floating and sinking of objects and fostering students' scientific reasoning skills. In the present implementation study, we aim to provide a best-practice example of early science learning. The study was conducted with a sample of 15 classes of the first years of schooling and a total of 244 children. Tests were constructed to measure children's conceptual understanding before and after the implementation. Our results reveal a decrease in children's misconceptions from pretest to posttest. After the curriculum, the children were able to produce significantly more correct predictions about the sinking or floating of objects than before the curriculum and also relative to a control group. Moreover, due to the intervention, the explanations given for their predictions implied a more elaborated concept of material kinds. All in all, a well-structured curriculum promoting comparison and scientific reasoning by means of inquiry learning was shown to support children's conceptual change.

  8. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    NASA Astrophysics Data System (ADS)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  9. Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study

    ERIC Educational Resources Information Center

    Green, Lisa Anne

    2012-01-01

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called…

  10. The Impact of a Professional Development Model for a Mobilized Science Curriculum: A Case Study of Teacher Changes

    ERIC Educational Resources Information Center

    Looi, Chee-Kit; Sun, Daner; Kim, Mi Song; Wen, Yun

    2018-01-01

    Background and purpose: To date, there has been little research on the Teacher Professional Development (TPD) for delivering a mobile technology-supported science curriculum. To address this, a TPD model for a science curriculum supported by mobile technology was developed and evaluated in this paper. The study reported focuses on the…

  11. Boundary Interaction: Towards Developing a Mobile Technology-Enabled Science Curriculum to Integrate Learning in the Informal Spaces

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2018-01-01

    This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…

  12. Elementary School Teachers as "Targets and Agents of Change": Teachers' Learning in Interaction with Reform Science Curriculum

    ERIC Educational Resources Information Center

    Metz, Kathleen E.

    2009-01-01

    This article examines teachers' perspectives on the challenges of using a science reform curriculum, as well as their learning in interaction with the curriculum and parallel professional development program. As case studies, I selected 4 veteran teachers of 2nd or 3rd grade, with varying science backgrounds (including 2 with essentially none).…

  13. Into the Curriculum. Art: Whistler's Mother; Reading/Language Arts: Finding My Voice; Science: Where on My Tongue? Taste; Social Studies/Science: Volcanoes; Social Studies: Pompeii.

    ERIC Educational Resources Information Center

    Reed-Mundell, Charlie

    2001-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in art, reading, language arts, science, and social studies. Describes library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up for each activity. (LRW)

  14. Which Values Regarding Nature and Other Species Are We Promoting in the Australian Science Curriculum?

    ERIC Educational Resources Information Center

    Castano Rodriguez, Carolina

    2016-01-01

    Through a critical textual analysis of the content and structure of the new Australian science curriculum, in this paper I identify the values it encourages and those that are absent. I investigate whether the Australian science curriculum is likely to promote the attitudes needed to educate generations of children who act more responsibly with…

  15. Science in the 21st Century: More than Just the Facts

    ERIC Educational Resources Information Center

    Price, Jeremy F.; Pimentel, Diane Silva; McNeill, Katherine L.; Barnett, Michael; Strauss, Eric

    2011-01-01

    The authors have worked to meet the demands of the 21st century by using the Urban EcoLab, an urban ecology curriculum based on the National Science Education Standards. This curriculum emphasizes the local and community-based nature of science and is freely available for teachers to view, download, and use. As part of the curriculum the authors…

  16. An Analysis of Teaching Competence in Science Teachers Involved in the Design of Context-Based Curriculum Materials

    ERIC Educational Resources Information Center

    De Putter-Smits, Lesley G. A.; Taconis, Ruurd; Jochems, Wim; Van Driel, Jan

    2012-01-01

    The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation study, teachers with (n = 5 and 840 students)…

  17. Science K-12, Living Things in Continuous Change. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, general science, physical science, earth science) and grade level. In grades K-6, objectives for topics of science study include conditions for plants and animals to live, adaptation, conservation,…

  18. Implementing an Imaginative Unit: Wonders of the Water Cycle

    ERIC Educational Resources Information Center

    Hrennikoff, Margo

    2006-01-01

    The grade three curriculum set out by the British Columbia Ministry of Education has four categories for science: Processes of Science, Life Science, Physical Science, and Earth and Space Science. Within each of these categories there are numerous topics to teach. For example, the physical science curriculum requires students to learn about…

  19. Evolution, Chaos, or Perpetual Motion? A Retrospective Trend Analysis of Secondary Science Curriculum Advocacy, 1955-94.

    ERIC Educational Resources Information Center

    Ponder, Gerald; Kelly, Janet

    1997-01-01

    Analyzed 1,595 articles pertaining to secondary science-education curriculum and instruction published in "The Science Teacher" and "Science Education" between 1955 and 1994. For over four decades, science education has been in continual crisis. Instruction methods have changed little. Calls for reforming secondary science education, improving…

  20. An implementation study: An analysis of elementary students' and teachers' attitudes toward science in process-approach vs. traditional science classes

    NASA Astrophysics Data System (ADS)

    Kyle, William C., Jr.; Bonnstetter, Ronald J.; Gadsden, Thomas, Jr.

    In 1983, the Richardson Independent School District conducted an internal audit to assess the status of science education. The audit was in anticipation of Texas Administrative Code Chapter 75 which requires an inquiry-oriented, process-approach to the teaching of science. In response to the data, and to national reports advocating a broadening of the science education curriculum to address the needs of all students, the district established a committee to implement and evaluate their new K-6 SCIENCE THROUGH DISCOVERY curriculum. The Science Curriculum Improvement Study (SCIIS) was adopted as the focal component of the overall curriculum with subsequent, planned innovations to occur in accordance with the Concerns-Based Adoption Model.The purpose of this study was to assess the attitudes toward science of students who had completed one year of SCIIS compared to students in non-SCIIS classes. In addition, the attitudes of teachers who received inservice education and who had instructed SCIIS were compared to non-SCIIS teachers. While SCIIS and non-SCIIS teachers possess similar perceptions of science, drastic attitudinal differences were observed between SCIIS and non-SCIIS students. The results indicate that the nature of the curriculum, in conjunction with the necessary implementation support including inservice education, greatly enhances students perceptions of science.

  1. Comparing Political Experiences (CPE).

    ERIC Educational Resources Information Center

    Gillespie, Judith A.; Patrick, John J.

    The rationale, goals, curriculum components, instructional strategies, and curriculum development process of a two-semester, secondary-level political science course, "Comparing Political Experiences," are described in this paper. Developed as part of the High School Political Science Curriculum Project at Indiana University, the major…

  2. Massachusetts Science and Technology Engineering Curriculum Framework

    ERIC Educational Resources Information Center

    Massachusetts Department of Education, 2006

    2006-01-01

    This 2006 "Massachusetts Science and Technology/Engineering Curriculum Framework" provides a guide for teachers and curriculum coordinators regarding specific content to be taught from PreK through high school. Following this "Organization" chapter, the "Framework" contains the following sections: (1) Philosophy and…

  3. Science Curriculum Components Favored by Taiwanese Biology Teachers

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  4. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    NASA Astrophysics Data System (ADS)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  5. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  6. Science CAP: Curriculum Assistance Program. [Multimedia.

    ERIC Educational Resources Information Center

    DEMCO, Inc., Madison, WI.

    Science Curriculum Assistance Program (Science CAP(TM)) is a multimedia package developed to create a model for preserving classroom science activities that can be shared and customized by teachers. This program is designed to assist teachers in preparing classroom science activities for grades five through eight, and to foster an environment of…

  7. Science Curriculum Design: Views from a Psychological Framework.

    ERIC Educational Resources Information Center

    Linn, Marcia C.

    It is now almost universally acknowledged that science education must be rejuvenated to serve the needs of American society. An emerging science of science education based on recent advances in psychological research could make this rejuvenation dramatic. Four aspects of psychological research relevant to science curriculum design are discussed:…

  8. The Changing Science Curriculum

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2014-01-01

    Science, as a curriculum area, has gone through many changes recently with the oncoming of the Common Core State Standards (CCSS), Science, Technology, Engineering, and Mathematics (STEM), as well as the Next Generation Science Standards (NGSS). Science is a part of everyday life which individuals experience. Even the drying up of a puddle of…

  9. Improving Middle School Students' Science Literacy through Reading Infusion

    ERIC Educational Resources Information Center

    Fang, Zhihui; Wei, Youhua

    2010-01-01

    Despite recent calls for border crossing between reading and science, few studies have examined the impact of reading infusion in the science curriculum on students' science literacy. In this quasi-experimental study, the authors investigated the effects of an inquiry-based science curriculum that integrated explicit reading strategy instruction…

  10. Science, Math, and Technology. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Science, Math and Technology is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) science (with activities on observation, comparisons, and the scientific method); (2) technology (examining simple machines, electricity, magnetism, waves and forces); (3) mathematics (addressing skill…

  11. Annotated Bibliography for 6th Grade Science and Social Studies.

    ERIC Educational Resources Information Center

    Randolph, Margo

    Designed to support curriculum and to facilitate instruction and learning at the sixth grade level, this annotated bibliography contains materials found in the library at the Brawley Middle School in Scotland Neck, North Carolina. To foster cooperative planning between teacher and librarian, the bibliography provides sample activities and lessons…

  12. Horizontal integration of the basic sciences in the chiropractic curriculum.

    PubMed

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  13. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    PubMed Central

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  14. Reinventing the Science Curriculum

    ERIC Educational Resources Information Center

    Bybee, Rodger W.; Van Scotter, Pamela

    2007-01-01

    For many, the dominant model of curriculum development in science includes generating a topic, clarifying science content, identifying activities associated with the topic, and figuring out an assessment. Unfortunately, this approach tends to overemphasize activities and underemphasize mastery of science concepts and the process of scientific…

  15. Health Libraries and Information Services in Tanzania: A Strategic Assessment.

    PubMed

    Haruna, Hussein; Mtoroki, Majaliwa; Gerendasy, Dan D; Detlefsen, Ellen G

    The intention of the Government of Tanzania is to establish more health information resource canters in all health facilities. With this regard, health information science personnel are needed to provide adequate and accurate health information services. However, availability of these personnel remains to be a challenge because of their non-existence. To identify the current status and local impact of health sciences libraries and user perception of these libraries, as a prerequisite to the development of a competence-based curriculum for health information science training in Tanzania. A needs assessment was carried out using a convenience sample of local respondents, including librarians, trainers, academicians, students, health care providers, and patients and families, drawn from national, referral, regional, district hospitals, health training institutions, and universities from both government and nongovernment entities in Tanzania. A focus group approach was used to gather data from respondents. Results from this assessment revealed that health science libraries in Tanzania are faced with the challenges of insufficient infrastructure, old technology, limited facilities and furniture, inadequate and incompetent library staff, lack of health sciences librarians, outdated and insufficient resources, and low knowledge and use of information technologies by library clients. Most respondents would prefer to have both physical and electronic libraries, as well as librarians with specialized health information science skills, to cope with changing nature of the medical field. The findings obtained from this assessment are strong enough to guide the development of a curriculum and training strategy and an operational plan and training packages for health information professionals. The development of a training curriculum for health information science professionals will mean better health information service delivery for Tanzania. Copyright © 2016 Icahn School of Medicine at Mount Sinai. All rights reserved.

  16. Education for Survival; A Social Studies and Science Curriculum Guide for Grades 1, 2, 3.

    ERIC Educational Resources Information Center

    Grubman, Ruth W.; And Others

    This book is one of a series on Education For Survival and integrates a conservation curriculum into a social studies and science program for grades 1, 2, and 3. It was developed to help lead young people to an awareness of environmental problems which confront our society. The first chapter presents a resume of all social science curriculum units…

  17. Multiple Aims in the Development of a Major Reform of the National Curriculum for Science in England

    ERIC Educational Resources Information Center

    Ryder, Jim; Banner, Indira

    2011-01-01

    In the context of a major reform of the school science curriculum for 14-16-year-olds in England, we examine the aims ascribed to the reform, the stakeholders involved, and the roles of differing values and authority in its development. This reform includes an emphasis on socioscientific issues and the nature of science; curriculum trends of…

  18. Science Textbooks in the Context of Political Reform in South Africa: Implications for Access to Science

    ERIC Educational Resources Information Center

    Green, Whitfield; Naidoo, Devika

    2008-01-01

    The post-apartheid National Physical Science Curriculum was implemented for the first time in South Africa in grade 10 during 2006. A variety of new textbooks for grade 10 have been published. This study was a comparative analysis of three popular textbooks, one prepared to support the previous curriculum, and two prepared for the new curriculum.…

  19. Into the Curriculum. Dramatics/Reading/Language Arts: Jellyfish Jiggle and More; Reading/Language Arts: Birthstone Folklore; Science: Jellyfish FAQ; Science: Minerals in Caves; Social Studies: Mapping the Oceans.

    ERIC Educational Resources Information Center

    School Library Media Activities Monthly, 2003

    2003-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in dramatics, reading, language arts, science, and social studies. Library media skills, curriculum objectives, grade levels, resources, instructional roles, activities and procedures, evaluation, and follow-up are describes for each…

  20. Special series on "The meaning of behavioral medicine in the psychosomatic field" establishment of a core curriculum for behavioral science in Japan: The importance of such a curriculum from the perspective of psychology.

    PubMed

    Shimazu, Akihito; Nakao, Mutsuhiro

    2016-01-01

    This article discusses the core curriculum for behavioral science, from the perspective of psychology, recommended by the Japanese Society of Behavioral Medicine and seeks to explain how the curriculum can be effectively implemented in medical and health-related departments. First, the content of the core curriculum is reviewed from the perspective of psychology. We show that the curriculum features both basic and applied components and that the basic components are closely related to various aspects of psychology. Next, we emphasize two points to aid the effective delivery of the curriculum: 1) It is necessary to explain the purpose and significance of basic components of behavioral science to improve student motivation; and 2) it is important to encourage student self-efficacy to facilitate application of the acquired knowledge and skills in clinical practice.

  1. An Analysis of the Learning Activities Covered in the 5th Grade Science Textbooks Based on 2005 and 2013 Turkish Science Curricula

    ERIC Educational Resources Information Center

    Aydogdu, Cemil; Idin, Sahin

    2015-01-01

    The aim of this study is to analyze the learning activities covered in 5th grade elementary science textbooks which depend on 2005 and 2013 elementary science curricula. Two elementary science textbooks depends on 2005 science curriculum and two elementary science textbooks depend on 2013 science curriculum were researched. The study is a…

  2. An Analysis of the Learning Activities Covered in the 5th Grade Science Textbooks Based on 2005 and 2013 Turkish Science Curricula

    ERIC Educational Resources Information Center

    Aydogdu, Cemil; Idin, Sahin

    2015-01-01

    The aim of this study is to analyze the learning activities covered in 5th grade elementary science textbooks which depend on 2005 and 2013 elementary science curricula. Two elementary science textbooks [which] depend on 2005 science curriculum and two elementary science textbooks [which] depend on 2013 science curriculum were researched. The…

  3. Integration of the primary health care approach into a community nursing science curriculum.

    PubMed

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  4. Comparing Two Inquiry Professional Development Interventions in Science on Primary Students' Questioning and Other Inquiry Behaviours

    NASA Astrophysics Data System (ADS)

    Nichols, Kim; Burgh, Gilbert; Kennedy, Callie

    2017-02-01

    Developing students' skills to pose and respond to questions and actively engage in inquiry behaviours enables students to problem solve and critically engage with learning and society. The aim of this study was to analyse the impact of providing teachers with an intervention in inquiry pedagogy alongside inquiry science curriculum in comparison to an intervention in non-inquiry pedagogy alongside inquiry science curriculum on student questioning and other inquiry behaviours. Teacher participants in the comparison condition received training in four inquiry-based science units and in collaborative strategic reading. The experimental group, the community of inquiry (COI) condition, received training in facilitating a COI in addition to training in the same four inquiry-based science units. This study involved 227 students and 18 teachers in 9 primary schools across Brisbane, Australia. The teachers were randomly allocated by school to one of the two conditions. The study followed the students across years 6 and 7 and students' discourse during small group activities was recorded, transcribed and coded for verbal inquiry behaviours. In the second year of the study, students in the COI condition demonstrated a significantly higher frequency of procedural and substantive higher-order thinking questions and other inquiry behaviours than those in the comparison condition. Implementing a COI within an inquiry science curriculum develops students' questioning and science inquiry behaviours and allows teachers to foster inquiry skills predicated by the Australian Science Curriculum. Provision of inquiry science curriculum resources alone is not sufficient to promote the questioning and other verbal inquiry behaviours predicated by the Australian Science Curriculum.

  5. Science Guide for Secondary Schools.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Office of Instructional Services.

    This six-chapter guide is designed to help Georgia teachers adopt or adapt various options into the local school's science curriculum. Major areas addressed in the chapters are: (1) secondary school curriculum development (focusing on performance objectives, sequencing the curriculum, evaluation, and scientific literacy); (2) teaching methods…

  6. Multiple Aims in the Development of a Major Reform of the National Curriculum for Science in England

    NASA Astrophysics Data System (ADS)

    Ryder, Jim; Banner, Indira

    2011-03-01

    In the context of a major reform of the school science curriculum for 14-16-year-olds in England, we examine the aims ascribed to the reform, the stakeholders involved, and the roles of differing values and authority in its development. This reform includes an emphasis on socioscientific issues and the nature of science; curriculum trends of international relevance. Our analysis identifies largely 'instrumental' aims, with little emphasis on 'intrinsic' aims and associated values. We identify five broad categories of stakeholders focusing on different aims with, for example, a social, individual, political, or economic emphasis. We suggest that curriculum development projects reflecting largely social and individual aims were appropriated by other stakeholders to serve political and economic aims. We argue that a curriculum reform body representing all stakeholder interests is needed to ensure that multiple aims are considered throughout the curriculum reform process. Within such a body, the differentiated character of the science teaching community would need to be represented.

  7. Retention of knowledge and perceived relevance of basic sciences in an integrated case-based learning (CBL) curriculum

    PubMed Central

    2013-01-01

    Background Knowledge and understanding of basic biomedical sciences remain essential to medical practice, particularly when faced with the continual advancement of diagnostic and therapeutic modalities. Evidence suggests, however, that retention tends to atrophy across the span of an average medical course and into the early postgraduate years, as preoccupation with clinical medicine predominates. We postulated that perceived relevance demonstrated through applicability to clinical situations may assist in retention of basic science knowledge. Methods To test this hypothesis in our own medical student cohort, we administered a paper-based 50 MCQ assessment to a sample of students from Years 2 through 5. Covariates pertaining to demographics, prior educational experience, and the perceived clinical relevance of each question were also collected. Results A total of 232 students (Years 2–5, response rate 50%) undertook the assessment task. This sample had comparable demographic and performance characteristics to the whole medical school cohort. In general, discipline-specific and overall scores were better for students in the latter years of the course compared to those in Year 2; male students and domestic students tended to perform better than their respective counterparts in certain disciplines. In the clinical years, perceived clinical relevance was significantly and positively correlated with item performance. Conclusions This study suggests that perceived clinical relevance is a contributing factor to the retention of basic science knowledge and behoves curriculum planners to make clinical relevance a more explicit component of applied science teaching throughout the medical course. PMID:24099045

  8. Why Astronomy Should BE Part of the School Curriculum

    NASA Astrophysics Data System (ADS)

    Percy, John

    Why is astronomy useful? Why should it be supported by taxpayers? Why should it be part of the school curriculum? In this paper I will list 20 reasons. They include: cultural historical and philosophical reasons; practical technological and scientific reasons; environmental aesthetic and emotional reasons; and pedagogical reasons. Astronomy can attract young people to science and technology. It can promote public awareness understanding and appreciation of science. It can be done as an inexpensive hobby; ""the stars belong to everyone"". Finally: I will connect the 20 reasons to the expectations of the modern school curriculum: knowledge skills applications and attitudes. In the context of the science curriculum this includes science technology society and environment.

  9. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  10. Life Science Standards and Curriculum Development for 9-12.

    ERIC Educational Resources Information Center

    Speece, Susan P.; Andersen, Hans O.

    1996-01-01

    Proposes a design for a life science curriculum following the National Research Council National Science Education Standards. The overarching theme is that science as inquiry should be recognized as a basic and controlling principle in the ultimate organization and experiences in students' science education. Six-week units include Matter, Energy,…

  11. Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.

    ERIC Educational Resources Information Center

    Hovey, Larry Michael

    Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…

  12. The Science behind Curriculum Development and Evaluation: Taking a Design Science Approach in the Production of a Tier 2 Mathematics Curriculum

    ERIC Educational Resources Information Center

    Doabler, Christian T.; Clarke, Ben; Fien, Hank; Baker, Scott K.; Kosty, Derek B.; Cary, Mari Strand

    2015-01-01

    The production of an effective mathematics curriculum begins with a scientific development, evaluation, and revision framework. The purpose of this study was to conduct an initial investigation of a recently developed Tier 2 mathematics curriculum designed to improve the outcomes of first grade students at risk for mathematics difficulties (MD).…

  13. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    NASA Astrophysics Data System (ADS)

    Kaya, Ebru; Erduran, Sibel

    2016-12-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to problems of their own disciplines. For example, Irzik and Nola adapted Wittgenstein's generic definition of the family resemblance idea to NOS, while Erduran and Dagher reconceptualized Irzik and Nola's FRA-to-NOS by synthesizing educational applications by drawing on perspectives from science education research. In this article, we use the terminology of "Reconceptualized FRA-to-NOS (RFN)" to refer to Erduran and Dagher's FRA version which offers an educational account inclusive of knowledge about pedagogical, instructional, curricular and assessment issues in science education. Our motivation for making this distinction is rooted in the need to clarify the various accounts of the family resemblance idea.The key components of the RFN include the aims and values of science, methods and methodological rules, scientific practices, scientific knowledge as well as the social-institutional dimensions of science including the social ethos, certification, and power relations. We investigate the potential of RFN in facilitating curriculum analysis and in determining the gaps related to NOS in the curriculum. We analyze two Turkish science curricula published 7 years apart and illustrate how RFN can contribute not only to the analysis of science curriculum itself but also to trends in science curriculum development. Furthermore, we present an analysis of documents from USA and Ireland and contrast them to the Turkish curricula thereby illustrating some trends in the coverage of RFN categories. The results indicate that while both Turkish curricula contain statements that identify science as a cognitive-epistemic system, they underemphasize science as a social-institutional system. The comparison analysis shows results such as the "scientific ethos" category being mentioned by the Irish curriculum while "social organizations and interactions" category being mentioned by the Turkish curriculum. In all documents, there was no overall coherence to NOS as a holistic narrative that would be inclusive of the various RFN categories simultaneously. The article contributes to the framing of NOS from a family resemblance perspective and highlights how RFN categories can be used as analytical tools.

  14. The 2012 CASPER Physics Circus

    NASA Astrophysics Data System (ADS)

    Carmona Reyes, Jorge; Land-Zandstra, Anne; Cheng, Joyce; Douglass, Angela; Harris, Brandon; Zhang, Zhuanhao; Chen, Mudi; Matthews, Lorin; Hyde, Truell

    2012-10-01

    The CASPER Physics Circus is one component of a CASPER ongoing educational outreach initiative known as the CASPER Seamless Pathway. The Physics Circus is funded by the United States Department of Education and is designed to increase interest in, engagement with, and understanding of science, technology, engineering and mathematics (STEM) within students in grades 6 through 12. The program's material and curriculum is aligned with both TEKS (Texas Essentials Knowledge and Skills) and National Science and Mathematics Standards, with its components (theatre, hands-on exhibitions, game show, professional development and curriculum) reinforcing these goals in a creative and entertaining format. Pre- and post-assessments measuring both content understanding and attitude towards science were conducted for a representative sample of the cohort and the analyzed data will be presented. The role the Circus plays within CASPER's Seamless Pathway will also be discussed along with other current CASPER programs including its High School Scholars program, CASPER's Interns program and CASPER NSF funded REU/RET programs for college undergraduates and K-12 teachers.

  15. Guidelines for Science Curriculum in Washington Schools.

    ERIC Educational Resources Information Center

    Duxbury, Alyn, Ed.

    This document contains guidelines for science curriculum in Washington State schools. Statements of philosophy and program goals are presented and explained. Four major program goals (which address societal demands) operationally describe science education toward the learning of: (1) factual and theoretical knowledge; (2) applied science skills;…

  16. Learning about Teaching the Extracurricular Topic of Nanotechnology as a Vehicle for Achieving a Sustainable Change in Science Education

    ERIC Educational Resources Information Center

    Blonder, Ron; Mamlok-Naaman, Rachel

    2016-01-01

    This study focused on teachers' transfer of a variety of teaching methods from a teaching module on nanotechnology, which is an example of a topic outside the science curriculum, to teaching topics that are part of the chemistry curriculum. Nanotechnology is outside the science curriculum, but it was used in this study as a means to carry out a…

  17. Enhancing nature of science understanding, reflective judgment, and argumentation through socioscientific issues

    NASA Astrophysics Data System (ADS)

    Callahan, Brendan E.

    There is a distinct divide between theory and practice in American science education. Research indicates that a constructivist philosophy, in which students construct their own knowledge, is conductive to learning, while in many cases teachers continue to present science in a more traditional manner. This study sought to explore possible relationships between a socioscientific issues based curriculum and three outcome variables: nature of science understanding, reflective judgment, and argumentation skill. Both quantitative and qualitative methods were used to examine both whole class differences as well as individual differences between the beginning and end of a semester of high school Biology I. Results indicated that the socioscientific issues based curriculum did not produce statistically significant changes over the course of one semester. However, the treatment group scored better on all three instruments than the comparison group. The small sample size may have contributed to the inability to find statistical significance in this study. The qualitative interviews did indicate that some students provided more sophisticated views on nature of science and reflective judgment, and were able to provide slightly more complex argumentation structures. Theoretical implications regarding the use of explicit use of socioscientific issues in the classroom are presented.

  18. Integrating the history of science into a middle school science curriculum

    NASA Astrophysics Data System (ADS)

    Huybrechts, Jeanne Marie

    This study examined the effect of incorporating the history of science into a middle school physical science curriculum on student attitudes toward science and the work of scientists. While there is wide support for including some science history in middle school science lessons within both the science and science-education communities, there is little curriculum designed to meet that objective. A series of five lessons was written specifically for the study. Each lesson included a brief biography of a scientist whose work was of historical significance, and a set of directions for duplicating one or more of the experiments done by that scientist. A thirty-question, Likert scale survey of the attitudes of middle school students toward science and the work of scientists was also written for this study. The survey was administered to two groups of students in a single middle school: One group---the experimental group---subsequently used the science history curriculum; the second (control) group did not. The same attitude survey was readministered to both groups of students after study of the science-history curriculum was completed. The results of the study indicate that there was no statistically significant difference between the pretest and posttest scores of either the experimental or control group students. Further analysis was done to determine whether there were differences between the pretest and posttest scores of boys and girls, or between "regular" or "honors" students. In both cases no statistically significant difference was found.

  19. Speaking of Science: Invite Speakers from Your Community to Bring the Science Curriculum to Life

    ERIC Educational Resources Information Center

    Stephens, Karol

    2012-01-01

    Establishing relevant applications for the science curriculum can be a challenge. However, the key that opens science for students is within a teacher's grasp: It is as simple as bringing science connections into his or her classroom through community resources and taking the students to the science that is available. The author encourages…

  20. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    ERIC Educational Resources Information Center

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  1. Integrating Engineering into Delaware's K-5 Classrooms: A Study of Pedagogical and Curricular Resources

    NASA Astrophysics Data System (ADS)

    Grusenmeyer, Linda Huey

    This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials. Delaware was at the forefront of K-12 STEM movement, first to adopt statewide elementary curriculum materials to complement existing science units, and one of the first to adopt the new science standards--Next Generation Science Standards. What supports were available to teachers as they adapted and adopted this new curriculum? To investigate this question, I examined (1) teachers' beliefs about engineering and the engineering curriculum, and (2) the pedagogical supports available to teachers in selected science and engineering curriculum. Teachers' knowledge, goals, and beliefs regarding Delaware's adoption of new elementary engineering curriculum were surveyed using an adapted version of the Design, Engineering, and Technology Survey (Hong, Purser, & Gardella, 2011; Yaser, Baker, Carpius, Krauss, & Roberts, 2006). Also, three open ended questions sought to reveal deeper understanding of teacher knowledge and understanding of engineering; their concerns about personal and systemic resources related to the new curriculum, its logistics, and feasibility; and their beliefs about the potential positive impact presented by the engineering education initiative. Teacher concerns were analyzed using the Concerns-Based Adoption Model (Hall & Hord, 2010). Lay understandings of engineering were analyzed by contrasting naive representations of engineering with three key characteristics of engineering adapted from an earlier study (Capobianco Diefes-Dux, Mena, & Weller, 2011). Survey findings for teachers who had attended training and those who have not yet attended professional development in the new curriculum were compared with few notable differences. Almost all elementary teacher respondents were familiar with engineering and able to define it using one or more key characteristics. They valued the inclusion of engineering in the elementary curriculum; however trained and untrained teachers reported they were not confident about teaching it and were unaware of the new standards related to engineering. Teachers saw potential advantages or benefits of the new curriculum as helping improve science and math understanding, an opportunity to increase vocational awareness, and engaging students and motivating them to learn. Most teachers saw similar barriers to implementation- lack of teacher knowledge, lack of time to learn about engineering and how to teach engineering, and lack of administrative support. Almost all were open to additional in-service training to learn more about this new curriculum. Three fifth grade science units were examined for evidence of teacher pedagogical support in teaching two Science and Engineering Practices (SEP) advocated by the Next Generation Science Standards. An analytic framework was developed based upon two NGSS SEPs: Asking questions, defining problems and Engaging in argument from evidence. Findings revealed that the kits varied greatly in their pedagogical approaches to the two SEPs and differences might be explained by each kit's underlying orientations to the teaching-learning process. Findings from these investigations have implications for the design of professional development and for engineering curricula. They highlight the importance of considering teacher beliefs about curriculum implementation and subject matter, as well as the importance of creating curriculum materials that focus teacher attention toward student thinking and the language rich science and engineering practices. Recommendations also include ongoing professional development to allow teachers time to try out and revise pedagogical routines that support the SEPs studied here.

  2. Science Curriculum. Kindergarten through Grade Twelve.

    ERIC Educational Resources Information Center

    Fitchburg State Coll., MA. Dept. of Special Education.

    This science curriculum guide provides a framework for science teachers of grades K-12 in the Leominster Public School System, Massachusetts. It represents the efforts of teachers and higher education faculty. An introductory section provides a philosophical statement on the nature of science and perspectives in the learning and teaching of…

  3. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    ERIC Educational Resources Information Center

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  4. Children's Literature and the Science Curriculum

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2010-01-01

    A quality children's literature program needs to be correlated with ongoing science lessons and units of study. It can enhance and enrich the science curriculum. Pupils tend to enjoy reading library books and the the literature may assist pupils to explore topics in greater depth. In addition to science experiments, demonstrations, and…

  5. Science for Handicapped Children.

    ERIC Educational Resources Information Center

    Jones, Alan V.

    This book consists of science activities for 11- to 16-year-old children who have physical disabilities. Part 1 presents information for teachers, parents, curriculum planners, and others who are interested in incorporating some science into the curriculum of the handicapped child. It outlines reasons for doing science, gives a suggested concept…

  6. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  7. Health Is Life in Balance: Students and Communities Explore Healthy Lifestyles in a Culturally Based Curriculum1

    PubMed Central

    Aho, Lynn; Ackerman, Joni; Bointy, Shelley; Cuch, Marilyn; Hindelang, Mary; Pinnow, Stephanie; Turnbull, Suzanne

    2012-01-01

    From exploring knowledge from wise members of the community to investigating the science of homeostasis, students learn healthy ways of living through a new hands-on curriculum, Diabetes Education in Tribal Schools: Health Is Life in Balance. The curriculum integrates science and Native American traditions to educate students about science, diabetes and its risk factors, and the importance of nutrition and physical activity in maintaining health and balance in life. Applying an inquiry-based approach to learning, the curriculum builds skills in observation, measurement, prediction, experimentation, and communication, and provides healthy lifestyle messages and innovative science activities for all students. The curriculum is now available to teachers and health educators at no cost through a federal grant. Health Is life in Balance incorporates interdisciplinary standards as well as storytelling to help children understand important messages. Implementation evaluation of the curriculum indicated improved knowledge and attitudes about science and health, positive teacher and student comments, and culturally relevant content. The lessons highlighted in this article give a glimpse into this hands-on curriculum which integrates science and Native American traditions, looking to our past and listening to the wisdom of our Elders, to gain powerful information for healthy, holistic living. The circle of balance is a theme in many indigenous belief systems and is woven into the lessons, providing enduring understandings of health behaviours that can prevent type 2 diabetes in the context of Native American cultural themes. PMID:22279450

  8. Teaching an Integrated Science Curriculum: Linking Teacher Knowledge and Teaching Assignments

    ERIC Educational Resources Information Center

    Harrell, Pamela Esprivalo

    2010-01-01

    A number of factors affect successful implementation of an integrated science curriculum, including various outputs and inputs related to teacher quality such as professional development experiences, adequate planning periods, and adequate content preparation of teachers with regard to content knowledge associated with the curriculum taught. This…

  9. A System-Science Approach towards Model Construction for Curriculum Development.

    ERIC Educational Resources Information Center

    Chang, Ren-Jung; Yang, Hui-Chin

    A new morphological model based on modern system science and engineering is constructed and proposed for curriculum research and development. A curriculum system is recognized as an engineering system that constitutes three components: clients, resources, and knowledge. Unlike the objective models that are purely rational and neatly sequential in…

  10. Champions or Helpers: Leadership in Curriculum Reform in Science

    ERIC Educational Resources Information Center

    Johnson, Elizabeth D.; Bird, Fiona L.; Fyffe, Jeanette; Yench, Emma

    2012-01-01

    This study describes the perceptions of embedded teaching and learning leadership teams working on curriculum reform in science teaching departments. The teams combined a formally recognised leader, School Director of Learning and Teaching, with a project-based, more junior academic, Curriculum Fellow, to better leverage support for curriculum…

  11. Improving the Science Curriculum with Bioethics.

    ERIC Educational Resources Information Center

    Lundmark, Cathy

    2002-01-01

    Explains the importance of integrating bioethics into the science curriculum for student learning. Introduces a workshop designed for middle and high school science teachers teaching bioethics, its application to case studies, and how teachers can fit bioethics into their classroom. (YDS)

  12. Analyzing Science Activities in Force and Motion Concepts: A Design of an Immersion Unit

    ERIC Educational Resources Information Center

    Ayar, Mehmet C.; Aydeniz, Mehmet; Yalvac, Bugrahan

    2015-01-01

    In this paper, we analyze the science activities offered at 7th grade in the Turkish science and technology curriculum along with addressing the curriculum's original intent. We refer to several science education researchers' ideas, including Chinn & Malhotra's (Science Education, 86:175--218, 2002) theoretical framework and Edelson's (1998)…

  13. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    ERIC Educational Resources Information Center

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  14. Factors Impacting on Teachers' Job Satisfaction Related to Science Teaching: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Song, S.; Mustafa, M.

    2015-01-01

    Science teachers' job satisfaction is identified as a major factor that affects the quality of a science program. This research investigated to what extent a science program supports science teachers in terms of curriculum materials or extracurricular activities. It also examined the relationships among schools' curriculum support, the number of…

  15. Family and Consumer Sciences Technology-Life-Careers Core Curriculum. A Curriculum Guide. A Family and Consumer Sciences Education Course of Study for Grades 6-7.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    This curriculum, part of a coordinated exploratory vocational core program, is an activity-oriented instructional course that enables students in grades 6-7 to explore careers and skills related to consumer and occupational roles. The curriculum consists of five units: (1) independent living skills; (2) families; (3) child care; (4) textiles…

  16. Teaching controversial issues in the secondary school science classroom

    NASA Astrophysics Data System (ADS)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  17. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    ERIC Educational Resources Information Center

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  18. Into the Curriculum. Music/Art/Reading/Language Arts: Can You Guess the Animal? [and] Science: The Ocean [and] Science: Biome and Animal Unit [and] Social Studies: How Many Forms of Transportation Can You Find?

    ERIC Educational Resources Information Center

    Ritz-Salminen, Dianne; Ely, Patricia; Asire, Marty

    2000-01-01

    Presents four fully developed library media activities that are designed for use with specific curriculum units in music and art, reading and language arts, science, and social studies. Each activity identifies library media skills objectives, curriculum objectives, grade levels, resources, librarian and teacher instructional roles, procedures,…

  19. News

    NASA Astrophysics Data System (ADS)

    2002-09-01

    11-14 Curriculum: Supporting Physics Teaching (11-14) Europe: Sci-tech couldn't be without it! Art-Science: Makrolab in Mountain Year Digital Curriculum: Should the BBC learn from the past? Scotland: Teachers get Rocket Science Malaysia: Controversy over the language medium for science teaching UK Science: Next stage of Science Year announced Special Educational Needs: Science for special needs students Folk Physics: Good vibrations Environment: IoM3 - a move towards sustainability? UK Primary Science: The threat of afternoon science

  20. Changes in Elementary Student Perceptions of Science, Scientists and Science Careers after Participating in a Curricular Module on Health and Veterinary Science

    PubMed Central

    Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; SanMiguel, Sandra

    2015-01-01

    This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students’ aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of science. The curriculum was developed by a research-based university program and has been put into practice in two early elementary classrooms in an urban school in the Midwest. An attitudinal rating survey and the Draw-A-Scientist Test (DAST) were used to assess pre to post changes in student attitudes toward science, perceptions of scientists, perceived relevance of science, and aspiration for science careers. Findings indicated that the implementation of this curriculum contributed positively to student attitudes toward science, decreased students’ stereotypical images of scientists, and increased student aspirations to become a scientist. PMID:26726271

  1. Biology Education in the People's Republic of China.

    ERIC Educational Resources Information Center

    Hurd, Paul DeHart

    1981-01-01

    Describes aspects of biology education in China, discussing school organization, science curriculum at primary and secondary levels, biology curriculum, environmental education, biology instruction, Chinese students, school factories, informal science education, popularization of science, college entrance requirements, and preservice and inservice…

  2. Air traffic control specialists in the Airway Science Curriculum Demonstration Project 1984-1990 : third summative report.

    DOT National Transportation Integrated Search

    1991-12-01

    The objective of this summative evaluation of the Airway Science Curriculum Demonstration Project (ASCDP) was to compare the performance, job attitudes, retention rates, and perceived supervisory potential of graduates from recognized Airway Science ...

  3. Mi-STAR: Designing Integrated Science Curriculum to Address the Next Generation Science Standards and Their Foundations

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Huntoon, J. E.

    2015-12-01

    Mi-STAR (Michigan Science Teaching and Assessment Reform, http://mi-star.mtu.edu/) was funded by the Herbert H. and Grace A. Dow Foundation to reform K-12 science education to present science as an integrated body of knowledge that is applied to address societal issues. To achieve this goal, Mi-STAR is developing an integrated science curriculum for the middle grades that will be aligned with the Next Generation Science Standards (NGSS). Similar to the geosciences, the curriculum requires the integration of science, engineering and math content to explore 21st-century issues and demonstrates how these concepts can be used in service of society. The curriculum is based on the Mi-STAR Unit Specification Chart which pairs interdisciplinary themes with bundled NGSS Performance Expectations. Each unit is developed by a collaborative team of K-12 teachers, university STEM content experts and science education experts. Prior to developing a unit, each member on the team attends the on-line Mi-STAR Academy, completing 18+ hours of professional development (PD). This on-line PD program familiarizes teachers and experts with necessary pedagogical and content background knowledge, including NGSS and three-dimensional learning. With this background, teams use a staged, backwards design process to craft a multi-week unit based on a series of performance based tasks, or 'challenges' that engage students in actively doing science and engineering. Each unit includes Disciplinary Core Ideas from multiple disciplines, which focus on local and familiar examples that demonstrate the relevance of science in student's lives. Performance-based assessments are interwoven throughout the unit. Mi-STAR units will go through extensive pilot testing in several school districts across the state of Michigan. Additionally, the Mi-STAR program will develop teacher professional development programs to support implementation of the curriculum and design a pre-service teacher program in integrated science. We will share preliminary results on the collaborative Mi-STAR process of designing integrated science curriculum to address NGSS.

  4. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the support of the literature and the readiness of the IAD administration and teachers, a recommendation to implement virtual labs into the curriculum can be made.

  5. Charles Darwin and Evolution: Illustrating Human Aspects of Science

    ERIC Educational Resources Information Center

    Kampourakis, Kostas; McComas, William F.

    2010-01-01

    Recently, the nature of science (NOS) has become recognized as an important element within the K-12 science curriculum. Despite differences in the ultimate lists of recommended aspects, a consensus is emerging on what specific NOS elements should be the focus of science instruction and inform textbook writers and curriculum developers. In this…

  6. Science Curriculum Guide, Level 4.

    ERIC Educational Resources Information Center

    Newark School District, DE.

    The fourth of four levels in a K-12 science curriculum is outlined. In Level 4 (grades 9-12), science areas include earth science, biology, chemistry, and physics. Six major themes provide the basis for study in all levels (K-12). These are: Change, Continuity, Diversity, Interaction, Limitation, and Organization. In Level 4, all six themes are…

  7. The National Curriculum: A Study to Compare Levels of Attainment with Data from APU Science Surveys (1980-4).

    ERIC Educational Resources Information Center

    Taylor, R. M.

    1990-01-01

    Compared are the levels of attainment for the Science in the National Curriculum assessment in Great Britain in 1989 and the performance of students on the application of science concepts part of the Assessment of Performance Unit-Science carried out in 1980-84. (KR)

  8. The Comparison of the Inquiry Behavior of ISCS and Non-ISCS Science Students as Measured by the Tab Science Test

    ERIC Educational Resources Information Center

    Stallings, Everett S.; Snyder, William R.

    1977-01-01

    Studies of a group of seventh-grade students who were tested for inquiry skills using the TAB Science Test showed no significant differences between those students who had studied the Intermediate Science Curriculum Study (ISCS) and those who studied another curriculum. (MLH)

  9. Examining Differences in Middle School Student Achievement on a Criterion-Referenced Competency Test (CRCT) in Science

    ERIC Educational Resources Information Center

    Rich, Jamie; Duncan, Dennis W.; Navarro, Maria; Ricketts, John C.

    2009-01-01

    Many authors have posited that agricultural education curriculum in middle schools may enhance student performance in science. To determine the effect that agricultural education curriculum has upon Georgia middle schools' student performance in science, this descriptive study compared science knowledge among middle school students in Georgia who…

  10. Refocusing Assessment in Science

    ERIC Educational Resources Information Center

    Bull, Ally

    2010-01-01

    In New Zealand, as in many other countries, recent curriculum revisions have seen a change in focus in science education. There is an increased emphasis on students knowing about how the discipline of science works, with the aim of equipping them to become more critical users of science. In the New Zealand Curriculum document (Ministry of…

  11. Symposium: The Role of Biological Sciences in the Optometric Curriculum.

    ERIC Educational Resources Information Center

    And Others; Rapp, Jerry

    1980-01-01

    Papers from a symposium probing some of the curricular elements of the program in biological sciences at a school or college of optometry are provided. The overall program sequence in the biological sciences, microbiology, pharmacology, and the curriculum in the biological sciences from a clinical perspective are discussed. (Author/MLW)

  12. How Does a Community of Principals Develop Leadership for Technology-Enhanced Science?

    ERIC Educational Resources Information Center

    Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.

    2010-01-01

    Active principal leadership can help sustain and scale science curriculum reform. This study illustrates how principal leadership developed in a professional learning community to support a technology-enhanced science curriculum reform funded by the National Science Foundation. Seven middle school and high school principals in one urban-fringe…

  13. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    ERIC Educational Resources Information Center

    Kulo, Violet; Bodzin, Alec

    2013-01-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade…

  14. Using Mathematics in Science: Working with Your Mathematics Department

    ERIC Educational Resources Information Center

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  15. Supporting Kindergartners' Science Talk in the Context of an Integrated Science and Disciplinary Literacy Curriculum

    ERIC Educational Resources Information Center

    Wright, Tanya S.; Gotwals, Amelia Wenk

    2017-01-01

    Given the growing evidence of limited attention to science, disciplinary literacy, and oral language in elementary classrooms serving low-income children, this study focused on designing and testing an integrated science and disciplinary language and literacy curriculum aligned with NGSS and CCSS ELA standards for kindergarten. We used…

  16. Pre-College Science Curriculum Activities of the National Science Foundation. Report of Science Curriculum Review Team, Volume II-Appendix.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    Presented is a detailed study of National Science Foundation (NSF) programs in pre-college science education. The development of policies and operational procedures are traced over the past quarter century and their impact on management practice analyzed. The report is presented in two parts: Volume 1, the findings and recommendations, and Volume…

  17. Science Teacher Decision-Making in a Climate of Heightened Accountability: A Rhizomatic Case Study Analysis of Two Science Departments in New York City

    ERIC Educational Resources Information Center

    Purohit, Kiran Dilip

    2017-01-01

    Secondary science teachers make many daily decisions in the enactment of curriculum. Although curriculum materials are widely available to address science content, practices, and skills, the consideration that goes into deciding how and whether to use such materials is complicated by teachers' beliefs about science, their understandings of…

  18. Developing the Learning Physical Science Curriculum: Adapting a Small Enrollment, Laboratory and Discussion Based Physical Science Course for Large Enrollments

    ERIC Educational Resources Information Center

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-01-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, "Physical Science and Everyday Thinking" (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new "Learning Physical Science" (LEPS) curriculum was designed around specific principles based on research on learning to meet the…

  19. Science K-12, Living Things Are Products of Their Heredity and Their Environment. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, health, general science, physical science) and grade level. Concepts regarding characteristics of living things are stressed in objectives for the primary grades (K-5), and reproductive biology is covered…

  20. Undergraduate Course and Curriculum Development Program and Calculus and the Bridge to Calculus Program: 1993 Awards.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Undergraduate Education.

    The Undergraduate Course and Curriculum Development Program of the National Science Foundation supports the development of courses in all disciplines to improve the quality of undergraduate courses and curricula in science, mathematics, engineering, and technology. The purpose of the program in Curriculum Development in Mathematics: Calculus and…

  1. Materials and Fabrication Methods II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; Bay, Robert

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic instruments and their…

  2. Secretarial Science. Curriculum Guides for Two-Year Postsecondary Programs. Volume II.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    The second of three volumes in a postsecondary secretarial science curriculum, this manual contains course syllabi and abstracts of twenty-three courses included in the curriculum. Business and related courses abstracted include Introduction to Business, Business Mathematics, Business Law 1, Economics 1, and Survey of Data Processing Systems.…

  3. Taiwanese Science and Life Technology Curriculum Standards and Earth Systems Education

    ERIC Educational Resources Information Center

    Chang, Chun-Yen

    2005-01-01

    In the past several years, curriculum reform has received increasing attention from educators in many countries around the world. Recently, Taiwan has developed new Science and Life Technology Curriculum Standards (SaLTS) for grades 1-9. SaLTS features a systematic way for developing students' understanding and appreciation of…

  4. In the Curriculum. Health: Mental Agility and Memory; Reading/Language Arts: The Writer/Reader Connection; Science: Stars.

    ERIC Educational Resources Information Center

    Robinson, Alice A.

    2003-01-01

    Provides six library media activities that are designed for use with specific curriculum units in health, science, language arts, and social studies. Each activity identifies library media skills and curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation guidelines, and follow-up activities. (AEF)

  5. Curriculum Assessment in Social Sciences at Universiti Pendidikan Sultan Idris

    ERIC Educational Resources Information Center

    Saleh, Hanifah Mahat Yazid; Hashim, Mohmadisa; Yaacob, Norazlan Hadi; Kasim, Adnan Jusoh Ahmad Yunus

    2015-01-01

    The purpose of this paper is to discuss the effectiveness of the curriculum implementation for undergraduate programme in the Faculty of Human Sciences, UPSI producing quality and competitive educators. Curriculum implementation has to go through an assessment process that aims to determine the problem, select relevant information and collect and…

  6. Surviving the Implementation of a New Science Curriculum

    ERIC Educational Resources Information Center

    Lowe, Beverly; Appleton, Ken

    2015-01-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new…

  7. An Exploration of the Potential Impact of the Integrated Experiential Learning Curriculum in Beijing, China

    ERIC Educational Resources Information Center

    Zhang, Danhui; Campbell, Todd

    2012-01-01

    This study examines the effectiveness of the Integrated Experiential Learning Curriculum (IELC) in China. This curriculum was developed to engage Chinese elementary students in science to cultivate a scientifically literate society by focusing science instruction on practical applications of scientific knowledge. Cornerstones of the approach…

  8. Should Intelligent Design Be Included in Today's Public School Curriculums?

    ERIC Educational Resources Information Center

    Costley, Kevin C.; Killins, Pam

    2010-01-01

    The controversial concept of evolution makes up only a small part of the science curriculum stated in Arkansas. During the past few years, the curriculum topic of "Intelligent Design" has caught the attention of many science teachers in the public schools. The Intelligent Design Movement has been successful in attracting the attention of…

  9. Analog and Digital Electronics. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Cavanaugh, Vince; Greer, Marlin

    This study guide is part of an interdisciplinary curriculum entitled the Science and Engineering Technician (SET) Curriculum devised to provide basic information to train technicians in the use of electronic instruments and their application. The program of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  10. Implementing Curriculum Evaluation: Case Study of a Generic Undergraduate Degree in Health Sciences

    ERIC Educational Resources Information Center

    Harris, Lynne; Driscoll, Peter; Lewis, Melinda; Matthews, Lynda; Russell, Cherry; Cumming, Steven

    2010-01-01

    This case study presents a longitudinal, evidence-based approach to health science curriculum reform and evaluation. Curriculum in higher education must meet the needs of diverse stakeholders and must respond to dynamic local, national and international contexts, and this creates challenges for evaluation. The long lead time prior to the…

  11. Mentoring BUGS: An Integrated Science and Technology Curriculum

    ERIC Educational Resources Information Center

    Harrell, Pamela Esprivalo; Walker, Michelle; Hildreth, Bertina; Tyler-Wood, Tandra

    2004-01-01

    The current study describes an authentic learning experience designed to develop technology and science process skills through a carefully scaffolded curriculum using mealworms as a content focus. An individual mentor assigned to each 4th and 5th grade girl participating in the program delivered the curriculum. Results indicate mastery of science…

  12. Engaging Young Children in Collective Curriculum Design

    ERIC Educational Resources Information Center

    Goulart, Maria Ines Mafra; Roth, Wolff-Michael

    2010-01-01

    In this study we investigate how 5-year-old children in Brazil and their teachers collectively design science curriculum. More specifically, we develop an agency|structure dialectic as a framework to describe this collective praxis in which science curriculum may emerge as the result of children-teacher transactions rather than as a result of…

  13. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    PubMed

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  14. Theme: The Role of Science in the Agricultural Education Curriculum.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  15. "Children's Science"

    ERIC Educational Resources Information Center

    Milne, Ian

    2007-01-01

    The revamped New Zealand curriculum emphasises "scientific literacy for all students" and provides teachers with an opportunity to promote science as an integral element of the primary school curriculum. Exploring and explaining the natural world in primary science can provide authentic contexts for the development of knowledge, skills,…

  16. Curriculum optimization of College of Optical Science and Engineering

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  17. Achieving a coherent curriculum in second grade: Science as the organizer

    NASA Astrophysics Data System (ADS)

    Park Rogers, Meredith A.

    The purpose of this study was to examine how a team of four second grade teachers used their approach to teaching science as a means for designing and implementing a coherent curriculum. Within this study, curriculum coherency refers to making logical instructional connections that are both visible and explicit for students. A teacher using a common teaching strategy or critical thinking skills in such a way that the commonalities between subject areas are clearly demonstrated to students is one example of curriculum coherency. The research framework guiding this study was phenomenology; I used a case study method for data analysis. The primary data source was field notes gathered during 10 weeks of classroom observations. Secondary data sources included observations of team meetings, two sets of interviews with each of the four teachers, an interview with the school principal, and artifacts used and developed by the teachers. An analysis of the data led me to interpret the following findings: (1) the teachers viewed science as a tool to motivate their students to learn and believed in teaching science through an inquiry-based approach; (2) they described science inquiry as a process of thinking organized around questions, and saw their teaching role as shifting between guided and open classroom inquiry; (3) they taught all subjects using an inquiry-based approach, emphasized the process skills associated with doing scientific inquiry, and consistently used the language of the process skills throughout their instruction of all disciplines; (4) their team's collaborative approach played a significant role in achieving their vision of a coherent curriculum; the successfulness of their collaboration relied on the unique contributions of each member and her commitment to professional development. This study demonstrates how an inquiry-based science curriculum can provide educators with an effective model for designing and implementing a coherent curriculum. Furthermore, the findings have implications for elementary preservice and inservice programs with respect to using science teaching as a foundation for developing curriculum coherency.

  18. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    PubMed

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  19. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    NASA Astrophysics Data System (ADS)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  20. Teacher talk about science: An examination of the constructed understanding of science held by four elementary school teachers

    NASA Astrophysics Data System (ADS)

    Price, Robert John

    The elementary school teacher's personal understanding of science has not been a primary focus of consideration in educational reform discussions. This study examines how four elementary school teachers have constructed their personal understanding of science. The purpose of this study is to explore core understandings about science held by these teachers, and to examine the origins of these ideas. This study assumes that a teacher's understanding of science is unique and constructed on personal experiences affected by influences. This study further explores the relationship of the teachers understanding to the school's stated curriculum. The theoretical framework of this research recognizes three guiding assumptions: science exists as a set of ideas that have developed over time through competing discourses; the teacher plays an important role in the implementation of the science curriculum; and the guiding influences of a teacher's understanding of science are associated with power that emerges from discourse. The methodology in this qualitative study is closely associated with narrative inquiry. Data collection methods include a questionnaire, focus group sessions, and individual interviews. Teachers' stories were collected through collaborative interview opportunities between the researcher and the participants. The findings are presented through the narratives of the four teachers, and are organized through the guiding influences, and talk related to the stated science curriculum. The teachers' talk can be categorized by three broad guiding influences: family, education, and an image of science. The talk related to the stated curriculum illustrates both conflicts, and a relationship between the teachers' understanding of science and the curriculum. The finding of this study provides evidence that each teacher's understanding of science is unique and developed over time. Additionally, this understanding plays a role in how the stated curriculum is discussed and understood. This investigation recommends that teachers' personal understanding of science, as revealed through narrative inquiry, becomes a focus in developing new educational opportunities for elementary school teachers. This study further recommends challenging a hegemony related to positivism that exists in science curricula, and the addition of the valued voice of elementary teachers to the discourse of science education.

  1. Integrating Mathematics into the Introductory Biology Laboratory Course

    ERIC Educational Resources Information Center

    White, James D.; Carpenter, Jenna P.

    2008-01-01

    Louisiana Tech University has an integrated science curriculum for its mathematics, chemistry, physics, computer science, biology-research track and secondary mathematics and science education majors. The curriculum focuses on the calculus sequence and introductory labs in biology, physics, and chemistry. In the introductory biology laboratory…

  2. Exploring Agribusiness and Natural Resources. Competency Based Education Curriculum. Student Material.

    ERIC Educational Resources Information Center

    Lawrence, Layle D.

    This competency-based prevocational exploration curriculum in agribusiness and natural resources is divided into the following eight areas: agricultural business (sales); animal science (health and grooming); horticulture (grafting and budding); agricultural products (grading eggs); plant science (germination); soil science (soil acidity and…

  3. Science education and worldview

    NASA Astrophysics Data System (ADS)

    Keane, Moyra

    2008-09-01

    Is there a place for Indigenous Knowledge in the science curriculum for a Zulu community in rural Kwa-Zulu Natal, South Africa? This article argues "yes," based on a participative research and development project that discovered relevant science learning in a Zulu community. Among community concerns for relevant factual and performative knowledge, we found that culture and worldview are critical to community identity, to visioning educational outcomes, and to learning in school science. Cultural practices may contribute to pedagogy and curriculum; curriculum, in turn, may affirm cultural practices. Further, worldview needs to be understood as an aspect of knowledge creation. By understanding key aspects of an African worldview, science educators can contribute to both meaningful science education and community well-being. By fostering culture and worldview, a rural community can make a unique contribution to science education.

  4. School and University Partnerships: The Role of Teacher Education Institutions and Primary Schools in the Development of Preservice Teachers' Science Teaching Efficacy

    ERIC Educational Resources Information Center

    Petersen, Jacinta E.; Treagust, David F.

    2014-01-01

    Science in the Australian primary school context is in a state of renewal with the recent implementation of the Australian Curriculum: Science. Despite this curriculum renewal, the results of primary students in science have remained static. Science in Australia has been identified as one of the least taught subjects in the primary school…

  5. The Delphi Technique in Identifying Learning Objectives for the Development of Science, Technology and Society Modules for Palestinian Ninth Grade Science Curriculum

    ERIC Educational Resources Information Center

    Abualrob, Marwan M. A.; Daniel, Esther Gnanamalar Sarojini

    2013-01-01

    This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second,…

  6. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    ERIC Educational Resources Information Center

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  7. Contextualized science? An Indian experience

    NASA Astrophysics Data System (ADS)

    Koul, Ravinder

    1997-11-01

    This study asserts that science is contextualized and should therefore be taught as contextualized. Works of major philosophers in 20th century history, philosophy and sociology of science and recent developments in cognition are discussed in developing a foundation and outlining three themes for contextualized science: (a) science curriculum should emphasize scientific methodology through the generation and testing of knowledge in a specific context, (b) it should validate and evaluate everyday contextual experiences, and (c) develop a context for action by engaging in science, technology and society issues. School science is a major instrument for diffusion and utilization of scientific knowledge. In India, textbooks are often the only classroom source of information for students other than the teacher. The most widely used standard curriculum materials in Indian schools are the National Council of Educational Research and Training (NCERT) textbooks. For schools in the Hoshingabad district of Madhya Pradesh, the state prescribes NCERT materials and materials developed for the Hoshingabad Science Teaching Program (HSTP), a grassroots science education initiative. In this study, the investigation of these curriculum materials and interviews with educators (curriculum developers/textbook authors/teachers at New Delhi and Hoshingabad) are used to establish criteria for both the need and the feasibility of contextualized science. Results of the investigation indicate that the centralized NCERT system of curriculum development has undermined context specific treatment of subject matter in their textbooks. While HSTP attempted to contextualize science in rural schools, the present status of the program may be interpreted as either development and legitimization of another standardized curriculum, or, as the culmination of a gradual erosion and dissipation of conceptually valid and concrete educational practices. There are major situational and institutional constraints that impede the use of contextualized instructional materials. Furthermore, teachers' reflections on science in two curricula reveal limited conceptions on the nature of science and a preference for the abstract science of NCERT. The findings indicate that teacher understanding of methodological and epistemological point of view is essential but insufficient to provide a context for action. Teacher training must also incorporate ontological considerations in reform efforts to contextualize school science.

  8. Science Curriculum Guide, Levels 1 and 2.

    ERIC Educational Resources Information Center

    Newark School District, DE.

    The first two of four levels in a K-12 science curriculum are outlined. In Level 1 (grades K-2) and Level 2 (grades 3-5), science areas include the study of living things, matter and energy, and solar system and universe. Conveniently listed are page locations for educational and instructional objectives, cross-referenced to science area and coded…

  9. An Interpretation of the "Science--A Process Approach" Objectives in Terms of Existing Psychological Theory and Experimentation.

    ERIC Educational Resources Information Center

    Cole, Henry P.

    This paper examines the sequence and hierarchy of objectives in the American Association for the Advancement of Science (AAAS) "Science--A Process Approach" curriculum. The work of Piaget, Bruner forms a framework from which the learning objectives and tasks in the AAAS science curriculum are examined. The points of correspondence…

  10. Science/Technology/Society: A Framework for Curriculum Reform in Secondary School Science and Social Studies.

    ERIC Educational Resources Information Center

    Hickman, Faith M.; And Others

    The Science/Technology/Society (STS) theme describes a contemporary trend in education which focuses on the teaching of issues such as air quality, nuclear power, land use, and water resources but justification for including STS in the high school core curriculum has a precedence based on historical connections among science, technology, and…

  11. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    ERIC Educational Resources Information Center

    Chue, Shien; Lee, Yew-Jin

    2013-01-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be…

  12. Windmills by Design: Purposeful Curriculum Design to Meet Next Generation Science Standards in a 9-12 Physics Classroom

    ERIC Educational Resources Information Center

    Concannon, James; Brown, Patrick L.

    2017-01-01

    The "Next Generation Science Standards" (NGSS) challenges science teachers to think beyond specific content standards when considering how to design and implement curriculum. This lesson, "Windmills by Design," is an insightful lesson in how science teachers can create and implement a cross-cutting lesson to teach the concepts…

  13. Middle School Science and Items of High School Entrance Examination: Examining the Gap in Turkey

    ERIC Educational Resources Information Center

    Cepni, Salih; Kara, Yilmaz; Cil, Emine

    2012-01-01

    This study presents findings from an analysis of the Turkish Science and Technology Curriculum Guidelines and their alignment to the university entrance examination. The analysis of the Science and Technology Curriculum focused on various related aspects: content areas and learning outcomes in terms of scientific process skills, science technology…

  14. The Impact of Authentic Learning on Students' Engagement with Physics

    ERIC Educational Resources Information Center

    Murphy, Patricia; Lunn, Stephen; Jones, Helen

    2006-01-01

    The changes in the statutory science curriculum specification for all students aged 14-15 in England and Wales in 2006 herald a shift in how curriculum content is organized, and the purposes for science learning. In a curriculum for scientific literacy the selection of social situations and scientific controversies determines the knowledge that is…

  15. Policy Networks and Boundary Objects: Enacting Curriculum Reform in the Absence of Consensus

    ERIC Educational Resources Information Center

    Banner, Indira; Donnelly, Jim; Ryder, Jim

    2012-01-01

    This article uses the concept of "boundary object", first developed within science studies by Star and Griesemer, to analyse curriculum policy implementation. It employs as a vehicle a significant but contested reform of the science curriculum in schools in England from 2006 onwards, drawing empirically on an extended study of the…

  16. A Curriculum for a Master of Science in Information Quality

    ERIC Educational Resources Information Center

    Lee, Yang W.; Pierce, Elizabeth; Talburt, John; Wang, Richard Y.; Zhu, Hongwei

    2007-01-01

    The first Master of Science in Information Quality (IQ) degree is designed and being offered to prepare students for careers in industry and government as well as advanced graduate studies. The curriculum is guided by the Model Curriculum and Guidelines for Graduate Degree Programs in Information Systems, which are endorsed by the Association for…

  17. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  18. Turkana Children's Sociocultural Practices of Pastoralist Lifestyles and Science Curriculum and Instruction in Kenyan Early Childhood Education

    ERIC Educational Resources Information Center

    Ng'asike, John Teria

    2010-01-01

    This dissertation discusses the findings of an ethnographic exploratory study of Turkana nomadic pastoralist children's sociocultural practices of their everyday lifestyles and science curriculum and instruction in Kenyan early childhood curriculum. The study uses the findings from Turkana elders to challenge the dominant society in Kenya that…

  19. Design and Evaluation of a One-Semester General Chemistry Course for Undergraduate Life Science Majors

    ERIC Educational Resources Information Center

    Schnoebelen, Carly; Towns, Marcy H.; Chmielewski, Jean; Hrycyna, Christine A.

    2018-01-01

    The chemistry curriculum for undergraduate life science majors at Purdue University has been transformed to better meet the needs of this student population and prepare them for future success. The curriculum, called the 1-2-1 curriculum, includes four consecutive and integrated semesters of instruction in general chemistry, organic chemistry, and…

  20. Science and Health Education Perspectives on the Handicapped. A Curriculum to Foster Understanding of People with Disabilities.

    ERIC Educational Resources Information Center

    City Univ. of New York, NY. Hunter Coll.

    Intended to extend the existing science and health education curriculum at junior and senior high school levels, the curriculum presents four mini-units on specific disabilities. The first section provides lesson plans about hearing impairments, and includes four lesson plans listing themes, objectives, and discussion guidelines for such topics as…

  1. Elementary Teachers' Curriculum Design and Pedagogical Reasoning for Supporting Students' Comparison and Evaluation of Evidence-Based Explanations

    ERIC Educational Resources Information Center

    Biggers, Mandy; Forbes, Cory T.; Zangori, Laura

    2013-01-01

    Previous research suggests that elementary teachers vary in their enactment of science curriculum materials and may not always engage students in substantive sense making. This mixed-methods study investigates elementary teachers' use of science curriculum materials to engage students in the scientific practice of comparing and evaluating…

  2. An Exploratory Analysis of a Middle School Science Curriculum: Implications for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Taylor, Gregory S.; Hord, Casey

    2016-01-01

    An exploratory study of a middle school curriculum directly aligned with the Next Generation Science Standards was conducted with a focus on how the curriculum addresses the instructional needs of students with learning disabilities. A descriptive analysis of a lesson on speed and velocity was conducted and implications discussed for students with…

  3. Into the Curriculum. Reading/Language Arts: Three Little Kittens and the Lost Mittens; Reading/Language Arts: A Caldecott Archaeological Dig; Science: Discovering the Periodic Table of Elements; Science: The Red-Eyed Tree Frog Jumps into Nonfiction; Social Studies: Our Nation's Beginnings-Jamestown and Plymouth Settlements.

    ERIC Educational Resources Information Center

    Cherry, Carolyn; Louk, Cathy; Barwick, Martha; Kidd, Gentry E.

    2001-01-01

    Provides five fully developed school library media activities that are designed for use with specific curriculum units in reading/language arts, science, and social studies. Library media skills objectives, curriculum (subject area) objectives, grade levels, resources, instructional roles, activity and procedures for completion, evaluation, and…

  4. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.

  5. Seeking the Trace of Argumentation in Turkish Science Curriculum

    ERIC Educational Resources Information Center

    Cetin, Pinar Seda; Metin, Duygu; Capkinoglu, Esra; Leblebicioglu, Gulsen

    2016-01-01

    Providing students with inquiry-oriented learning environments is a major concern in science education. Argumentation discourse can enhance the effectiveness of inquiry-oriented learning environments. This study seeks the trace of argumentation in Turkish Elementary and Secondary Science Curriculum developed by the Turkish Ministry of Education…

  6. Debating science policy in the physics classroom.

    NASA Astrophysics Data System (ADS)

    Mayer, Shannon

    2010-03-01

    It is critically important that national and international science policy be scientifically grounded. To this end, the next generation of scientists and engineers will need to be technically competent, effective communicators of science, and engaged advisors in the debate and formulation of science policy. We describe three science policy debates developed for the physics classroom aimed at encouraging students to draw connections between their developing technical expertise and important science policy issues. The first debate considers the proposal for a 450-megawatt wind farm on public lands in Nantucket Sound and fits naturally into the curriculum related to alternative forms of energy production. The second debate considers national fuel-economy standards for sport-utility vehicles and can be incorporated into the curriculum related to heat engines. The third debate, suitable for the curriculum in optics, considers solid state lighting and implications of recent United States legislation that places stringent new energy-efficiency and reliability requirements on conventional lighting. The technical foundation for each of these debates fits naturally into the undergraduate physics curriculum and the material is suitable for a wide range of physics courses, including general science courses for non-majors.

  7. Field Guide to Beaches. Early Science Curriculum Project Pamphlet Series PS-7.

    ERIC Educational Resources Information Center

    Hoyt, John H.

    The study of beaches and their capacity as an interface between land, air, and water is presented. Students investigate shore phenomena to better understand the beach's history and possible future. Also discussed is the interaction between man and the beach, from weather effects to pollution. Laboratory investigations of samples collected from the…

  8. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, L

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed basedmore » on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.« less

  9. Snow snakes and science agency: Empowering American Indian students through a culturally-based science, technology, engineering, and mathematics (STEM) curriculum

    NASA Astrophysics Data System (ADS)

    Miller, Brant Gregory

    Mainstream curricula have struggled to provide American Indian students with meaningful learning experiences. This research project studied a novel approach to engaging students with science, technology, engineering, and mathematics (STEM) content through a culturally-based context. The traditional American Indian game of Snow Snakes (shushumeg in Ojibwe) presented a highly engaging context for delivering STEM content. Through the engaging context of snow snakes, the designed STEM curriculum explicitly applied mathematics (scaling and data), and science (force and motion) to an engineering prototype iteration that used available materials and tools (technology) for success. It was hypothesized that by engaging students through the carefully integrated STEM curriculum, driven by the culturally based context of snow snakes, students would exhibit an increase in science agency and achievement. The overarching research question explored for this study was: How does a culturally-based and integrated STEM curriculum impact student's science agency? Associated sub-questions were: (1) What does science agency look like for 6th grade students? (2) What key experiences are involved in the development of science agency through a culturally-based STEM curriculum context? And (3) What are the impacts on the community associated with the implementation of a culturally-based STEM curriculum? A case study research design was implemented for this research. Yin (2003) defines a case study as investigating a phenomenon (e.g. science agency) which occurs within authentic contexts (e.g. snow snakes, Adventure Learning, and Eagle Soaring School) especially when the boundaries between phenomenon and context are unclear. For this case study Eagle Soaring School acted as the bounded case with students from the 6th grade class representing the embedded units. Science agency was the theoretical framework for data analysis. Major findings were categorized as science and STEM learning, agency, and community impact. Concerning agency, students displayed science agency through: connecting snow snake experiences to outside contexts; students emerging as leaders; and students commanding a facility with science. This research lays the foundation for future inquiry into the development of science agency in students using culturally-based contexts.

  10. Exploring the value and role of integrated supportive science courses in the reformed medical curriculum iMED: a mixed methods study.

    PubMed

    Eisenbarth, Sophie; Tilling, Thomas; Lueerss, Eva; Meyer, Jelka; Sehner, Susanne; Guse, Andreas H; Guse Nee Kurré, Jennifer

    2016-04-29

    Heterogeneous basic science knowledge of medical students is an important challenge for medical education. In this study, the authors aimed at exploring the value and role of integrated supportive science (ISS) courses as a novel approach to address this challenge and to promote learning basic science concepts in medical education. ISS courses were embedded in a reformed medical curriculum. The authors used a mixed methods approach including four focus groups involving ISS course lecturers and students (two each), and five surveys of one student cohort covering the results of regular student evaluations including the ISS courses across one study year. They conducted their study at the University Medical Center Hamburg-Eppendorf between December 2013 and July 2014. Fourteen first-year medical students and thirteen ISS course lecturers participated in the focus groups. The authors identified several themes focused on the temporal integration of ISS courses into the medical curriculum, the integration of ISS course contents into core curriculum contents, the value and role of ISS courses, and the courses' setting and atmosphere. The integrated course concept was positively accepted by both groups, with participants suggesting that it promotes retention of basic science knowledge. Values and roles identified by focus group participants included promotion of basic understanding of science concepts, integration of foundational and applied learning, and maximization of students' engagement and motivation. Building close links between ISS course contents and the core curriculum appeared to be crucial. Survey results confirmed qualitative findings regarding students' satisfaction, with some courses still requiring optimization. Integration of supportive basic science courses, traditionally rather part of premedical education, into the medical curriculum appears to be a feasible strategy to improve medical students' understanding of basic science concepts and to increase their motivation and engagement.

  11. Integrating writing into an introductory environmental science curriculum: Perspectives from biology and physics

    NASA Astrophysics Data System (ADS)

    Selkin, P. A.; Cline, E. T.; Beaufort, A.

    2008-12-01

    In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.

  12. An instructional package integrating science and social studies instruction at the fifth-grade level

    NASA Astrophysics Data System (ADS)

    Hulley, Kathy Louise Sullivan

    Integrative education is being implemented by classroom teachers who want to immerse students in an environment rich in problem-solving skills, critical analysis skills, ethics, valuing of knowledge, and communication of learning. Several subject areas in the curriculum have been integrated, such as literature with social studies and mathematics with science. The focus of this dissertation is on the integration of science and social studies at the fifth grade level using the Mississippi State Department of Education Curriculum Guidelines and Objectives (MSDE, 1995) and the National Science Education Standards (National Research Council (NRC), 1996). An instructional package of lesson plans that teachers can use as ideas to create their own plans for an integrated curriculum of science and social studies was devised. The Mississippi State Department of Education Curriculum Guidelines and Objectives for Social Studies (MSDE, 1995) at the fifth grade level contain fifteen competencies. Three standards from the National Science Education Standards (NRC, 1996) were chosen. They include (a) science and technology, (b) science in personal and social perspectives, and (c) the history and nature of science. Each competency for social studies has three lesson plans written that integrate the three chosen standards from the National Science Education Standards. A total of forty-five lesson plans were written integrating science and social studies. Each lesson plan includes an objective, materials, procedures, and evaluation for teachers. Teachers are encouraged to use the lesson plans as a guide in creating their own lesson plans that would correspond to their school's particular curriculum guidelines. Consideration should be given to the learning levels and styles of their classroom. This qualitative study was done to create lesson plans that integrate science and social studies with the hope that teachers will expand upon them and implement them into their curricula.

  13. Evaluation of an Environmental Science Laboratory Curriculum.

    ERIC Educational Resources Information Center

    Berger, Toby Esther

    The curriculum evaluated in this study is a series of innovative exercises offered as part of an introductory science course at Barnard College. It was hypothesized that students receiving the experimental treatment in the laboratory would show significant changes in cognitive achievement in environmental science and in their attitudes towards…

  14. Global Climates--Past, Present, and Future. Activities for Integrated Science Education.

    ERIC Educational Resources Information Center

    Henderson, Sandra, Ed.; And Others

    Designed for integration into existing science curriculum for grades 8-10, this curriculum uses a current environmental issue, climate change, as a vehicle for teaching science education. Instructional goals include: (1) familiarize students with scientific methods; (2) help students understand the role of uncertainty; (3) encourage students to…

  15. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  16. Igniting the Sparkle: An Indigenous Science Education Model.

    ERIC Educational Resources Information Center

    Cajete, Gregory A.

    This book describes a culturally responsive science curriculum that the author has been teaching for 25 years. The curriculum integrates Native American traditional values, teaching principles, and concepts of nature with those of modern Western science. Every Indigenous culture has an orientation to learning that is metaphorically represented in…

  17. Mathematics and Science across the Curriculum.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    2002-01-01

    This issue, intended for classroom teachers, provides a collection of essays organized around the theme of mathematics and science across the curriculum as well as a guide to instructional materials related to the theme. Topics addressed in the essays include experiencing mathematics through nature; connecting science, fiction, and real life;…

  18. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    ERIC Educational Resources Information Center

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  19. How to Use Historical Approach to Teach Nature of Science in Chemistry Education?

    ERIC Educational Resources Information Center

    Tolvanen, Simo; Jansson, Jan; Vesterinen, Veli-Matti; Aksela, Maija

    2014-01-01

    Successful implementation of historical approach to teach nature of science (NOS) requires suitable curriculum material. Several research and development projects have produced lesson plans for science teachers. 25 lesson plans from four different projects involved in creating curriculum material utilizing historical approach in chemistry…

  20. Teaching the "Nature of Science": Modest Adaptations or Radical Reconceptions?

    ERIC Educational Resources Information Center

    Hipkins, Rosemary; Barker, Miles; Bolstad, Rachel

    2005-01-01

    This article explores the nature of a continuing mismatch between curriculum reform rhetoric in science education and actual classroom practice. Lack of philosophical consensus about the nature of science (NOS); lack of appropriate curriculum guidance, classroom materials and pedagogical content knowledge for NOS teaching; teachers' personal…

  1. Curriculum for Excellence Science: Vision or Confusion?

    ERIC Educational Resources Information Center

    Day, Stephen; Bryce, Tom

    2013-01-01

    Policy studies in science education do not have a particularly high profile. For science teachers, policy lurks in the background, somewhat disconnected from their normal classroom practice; for many, it is simply taken-for-granted. This paper analyses policy documents which have emerged from Curriculum for Excellence ("CfE") that impact…

  2. A Global Approach to STEM Education: ASTA Science Teachers Exchange--Japan 2015

    ERIC Educational Resources Information Center

    Teaching Science, 2015

    2015-01-01

    The new Australian Curriculum includes among its three cross-curriculum priorities a focus on Asia and Australia's engagement with Asia. The Australian Science Teachers Association (ASTA)'s Science Teachers Exchange--JAPAN program provides teachers with direct, personal insight into one of Australia's key Asian neighbours.

  3. The Astonishing Curriculum: Integrating Science and Humanities through Language.

    ERIC Educational Resources Information Center

    Tchudi, Stephen, Ed.

    This book probes the possibilities of interdisciplinary learning and integrated curriculum through the structuring and expressive powers of language. The 15 essays in the book explore the issues of bridging the gap between the two cultures of science and humanities, demystifying science for learners, teaching students to construct and explain…

  4. An Academic/Vocational Curriculum Partnership: Home Economics and Science.

    ERIC Educational Resources Information Center

    Smith, Frances M.; Hausafus, Cheryl O.

    1993-01-01

    Proposes middle-school curriculum integrating two diverse disciplines (home economics and science), incorporates social issues, and deals with fundamental concerns of young adolescents. Three major areas are included in framework: food additives for appeal, science of textile fibers, and chemistry of household cleaning. All should be taught by…

  5. Noise Pollution--An Overlooked Issue in the Science Curriculum.

    ERIC Educational Resources Information Center

    Treagust, David F.; Kam, Goh Ah

    1985-01-01

    Discusses the need for including noise pollution in the science curriculum and describes 10 activities for improving students' awareness and understanding of and concern for noise and its effects. (Author/JN)

  6. A model marine-science curriculum for fourth-grade pupils in Florida

    NASA Astrophysics Data System (ADS)

    Schulte, Philip James

    This dissertation focused on the development of a model marine-science curriculum for fourth-grade pupils in the State of Florida. The curriculum was developed using grounded theory research method, including a component of data collected from an on-line survey administered to 106 professional educators and marine biologists. The results of the data collection and analysis showed a definitive necessity for teacher preparedness, multidisciplinary content, and inquiry-based science instruction. Further, three important factors emerged: (a) collaborative grouping increases achievement; (b) field excursions significantly impact student motivation; (c) standardized testing influences curriculum development. The curriculum is organized as an 11-day unit, with detailed lesson plans presented in standard curricular format and with all components correlated to the Florida State Educational Standards. The curriculum incorporates teacher preparation, multimedia presentations, computer-assisted instruction, scientific art appreciation, and replication as well as assessment factors. The curriculum addresses topics of ichthyology, marine animal identification, environmental conservation and protection, marine animal anatomy, water safety, environmental stewardship, and responsible angling techniques. The components of the curriculum were discussed with reference to the literature on which it was based and recommendations for future research were addressed.

  7. Science K-12, Interdependency of Living Things and Living Things With Their Environment. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, physical science), and grade level. Choices of environmental topics such as weather, conservation of natural resources, and the interdependence of organisms and environment dominate objectives written for grades…

  8. Designing a Science Curriculum Fit for Purpose

    ERIC Educational Resources Information Center

    Millar, Robin

    2014-01-01

    The science curriculum to age 16 should be judged on how well it meets the needs of students who progress to A-level science courses and those (a larger number) who do not. To address the diversity of students' interests and aspirations, we need a clear view of the purposes of science education rooted in a view of the purposes of education itself.…

  9. Data Analysis Questions for Science Subjects: A Resource Booklet. Series of Caribbean Volunteer Publications, No. 2.

    ERIC Educational Resources Information Center

    Voluntary Services Overseas, Castries (St. Lucia).

    This resource booklet is designed to supplement standard textbooks used in a science curriculum. The material serves as a syllabus for Year One and Year Two in the secondary science curriculum. Some of the topics presented in this general science syllabus include being a scientist, looking at living things, solvents and solutions, energy,…

  10. Innovative science within and against a culture of achievement

    NASA Astrophysics Data System (ADS)

    Carlone, Heidi B.

    2003-05-01

    As science educators struggle to reform science education, we need a better understanding of the conundrums associated with the ways educators enact innovative science within and against the academic, rigorous, and elite sociohistorical constructions of science. I ethnographically investigated the meanings of an innovative, reform-based curriculum (Active Physics) in various micro (classroom) and macro (school and community) contexts. I conducted the study in a high school serving primarily upper middle class students, the majority of whom (97%) planned to attend college. I explored how meanings of the curriculum transformed as the curriculum traveled across space and time. While certain aspects of the context enabled innovative science (e.g., support from the administration, pressure to serve a wider range of students), other aspects of the context constrained the potential of the curriculum (e.g., the need to establish for students, parents, and administrators the legitimacy of Active Physics as real and rigorous physics). Using practice theory to understand the influence of context and agency in shaping school science practice, this study demonstrates the potential for viewing meanings of science in local settings as partially fluid entities, sometimes reproducing and sometimes contesting sociohistorical legacies.

  11. The critical thinking curriculum model

    NASA Astrophysics Data System (ADS)

    Robertson, William Haviland

    The Critical Thinking Curriculum Model (CTCM) utilizes a multidisciplinary approach that integrates effective learning and teaching practices with computer technology. The model is designed to be flexible within a curriculum, an example for teachers to follow, where they can plug in their own critical issue. This process engages students in collaborative research that can be shared in the classroom, across the country or around the globe. The CTCM features open-ended and collaborative activities that deal with current, real world issues which leaders are attempting to solve. As implemented in the Critical Issues Forum (CIF), an educational program administered by Los Alamos National Laboratory (LANL), the CTCM encompasses the political, social/cultural, economic, and scientific realms in the context of a current global issue. In this way, students realize the importance of their schooling by applying their efforts to an endeavor that ultimately will affect their future. This study measures student attitudes toward science and technology and the changes that result from immersion in the CTCM. It also assesses the differences in student learning in science content and problem solving for students involved in the CTCM. A sample of 24 students participated in classrooms at two separate high schools in New Mexico. The evaluation results were analyzed using SPSS in a MANOVA format in order to determine the significance of the between and within-subjects effects. A comparison ANOVA was done for each two-way MANOVA to see if the comparison groups were equal. Significant findings were validated using the Scheffe test in a Post Hoc analysis. Demographic information for the sample population was recorded and tracked, including self-assessments of computer use and availability. Overall, the results indicated that the CTCM did help to increase science content understanding and problem-solving skills for students, thereby positively effecting critical thinking. No matter if the students liked science or not, enjoyed computers or not, the CTCM approach helped to increase science content understanding and problem-solving skills. The CTCM clearly provides an educational framework that can aid all students in the development of critical thinking skills.

  12. Linking the Components of a University Program to the Qualification Profile of Graduates: The Case of a Sustainability-Oriented Environmental Science Curriculum

    ERIC Educational Resources Information Center

    Hansmann, Ralf

    2009-01-01

    A university Environmental Sciences curriculum is described against the background of requirements for environmental problem solving for sustainability and then analyzed using data from regular surveys of graduates (N = 373). Three types of multiple regression models examine links between qualifications and curriculum components in order to derive…

  13. Revision of Primary I-III Science Curriculum in Somalia. African Studies in Curriculum Development & Evaluation No. 83.

    ERIC Educational Resources Information Center

    Abdi, Ahmed Ali

    This study was designed to evaluate: (1) the content of the primary I-III science curriculum in Somalia; (2) the instructional materials that back up the content and methodologies; and (3) the professional competence of the teachers in charge of teaching this subject. Data were collected by means of a questionnaire, observations, and unstructured…

  14. Accomplishing the Visions for Teacher Education Programs Advocated in the National Science Education Standards

    NASA Astrophysics Data System (ADS)

    Akcay, Hakan; Yager, Robert

    2010-10-01

    The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.

  15. Transformations in Kenyan Science Teachers' Locus of Control: The Influence of Contextualized Science and Emancipated Student Learning

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Nashon, S.; Namazzi, E.; Okemwa, P.; Ombogo, P.; Ooko, S.; Beru, F.

    2015-11-01

    This study investigated Kenyan science teachers' pedagogical transformations, which manifested as they enacted and experienced a reformed contextualized science curriculum in which students' learning experiences were critical catalysts of teacher change. Twelve high school teachers voluntarily participated in the study and were interviewed about their pedagogical transformations following their enactment of a reformed contextualized science curriculum. The outcomes demonstrated that students' emancipated behaviours, learning and performance, qualitatively influenced teacher change and pedagogical reform. Specifically, changes in students, as a result of the ways the science curriculum was implemented, resulted in epiphanies and dilemmas for teachers who subsequently resolved to surrender their tightly held pedagogical control (locus of control) for the betterment of the learning environment and their sense of professional satisfaction.

  16. Which values regarding nature and other species are we promoting in the Australian science curriculum?

    NASA Astrophysics Data System (ADS)

    Castano Rodriguez, Carolina

    2016-12-01

    Through a critical textual analysis of the content and structure of the new Australian science curriculum, in this paper I identify the values it encourages and those that are absent. I investigate whether the Australian science curriculum is likely to promote the attitudes needed to educate generations of children who act more responsibly with other species and the environment. Over the past decades, there has been an increasing awareness of the human impact on the environment and other species. Consistently, there is a growing awareness of the role of education in encouraging children to act in a more ethical, responsible, and caring way. However, it is still unclear as to whether national curricula can (or will aspire to) accomplish this. In Australia, a national science curriculum has been implemented. In this paper I argue that the Australian science curriculum is likely to miss the opportunity to cultivate values of care for nature and other species. Instead, it is likely to reinforce anthropocentric attitudes toward our natural environment. The importance of explicitly promoting values that encourage care and respect for all species and challenges anthropocentric views of other animals and nature are discussed.

  17. Into the Curriculum. Reading/Language Arts: Hans Christian Andersen [and] Science: Bat Research [and] Science: The Library Media Center Rocks! An Introduction to Rocks, Minerals, and Gemstones [and] Social Studies: Ticket to the Olympics: Exploring Sydney and the 2000 Summer Games [and] Social Studies/Music: Sounds of the Election: Presidential Campaign Songs.

    ERIC Educational Resources Information Center

    Germain, Claudia; Mayo, Jeanne B.; Hart, Lisa

    2000-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in reading and language arts, science, social studies, and music. Library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up are described for each activity. (LRW)

  18. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    ERIC Educational Resources Information Center

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  19. The Origin and Evolution of Life in Pakistani High School Biology

    ERIC Educational Resources Information Center

    Asghar, Anila; Wiles, Jason R.; Alters, Brian

    2010-01-01

    This study seeks to inform science education practitioners and researchers in the West about apparent attempts to reconcile science and religion in Pakistan's public school curriculum. We analysed the national high school science curriculum and biology textbooks (English) used in the Government schools in Pakistan, where Islamic faith is the…

  20. Science Curriculum Guide. Grade 8. Bulletin 1989, No. 78.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has two major components, the table of contents and the activities. The table of contents…

  1. Special Project Examination in Integrated Science - Ordinary Level.

    ERIC Educational Resources Information Center

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  2. Science Curriculum Guide. Kindergarten. Bulletin 1989, No. 70.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has two major components, the table of contents and the activities. The table of contents…

  3. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    ERIC Educational Resources Information Center

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  4. Conditions and Decisions of Urban Elementary Teachers Regarding Instruction of STEM Curriculum

    ERIC Educational Resources Information Center

    Smith, Erica L.; Parker, Carolyn A.; McKinney, David; Grigg, Jeffrey

    2018-01-01

    The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision-making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their…

  5. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    ERIC Educational Resources Information Center

    Romine, William L.; Banerjee, Tanvi

    2012-01-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce…

  6. Science Curriculum Guide. Grade 5. Bulletin 1989, No. 75.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has two major components, the table of contents and the activities. The table of contents…

  7. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    ERIC Educational Resources Information Center

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  8. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    ERIC Educational Resources Information Center

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  9. Arguing for Computer Science in the School Curriculum

    ERIC Educational Resources Information Center

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  10. What Middle Grade Students Say about Learning Science with Multimedia

    ERIC Educational Resources Information Center

    Goldenberg, Lauren B.; Heinze, Juliette; Ba, Harouna

    2004-01-01

    The JASON Multimedia Science Curriculum (JMSC) was developed in 1989 by the JASON Foundation for Education (www.jason.org), and is a multimedia, interdisciplinary, inquiry-based science curriculum that responds to the dual demands of teachers having to teach state standards while engaging students in scientific inquiry. The JMSC encourages…

  11. The Influence of Undergraduate Science Curriculum Reform on Students' Perceptions of Their Quantitative Skills

    ERIC Educational Resources Information Center

    Matthews, Kelly E.; Adams, Peter; Goos, Merrilyn

    2015-01-01

    In this study, the Science Student Skills Inventory was used to gain understanding of student perceptions about their quantitative skills and compare perceptions of cohorts graduating before and after the implementation of a new science curriculum intent on developing quantitative skills. The study involved 600 responses from final-year…

  12. Alcohol and Drug Prevention Curriculum Resource Guide Grades 10-12: Science--Biology.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Alcohol and Drug Defense Program.

    This curriculum resource guide on alcohol and drug prevention provides suggested activities for teachers of grades 10 through 12. Three integrated learning activities for science/biology and healthful living are presented. The science/biology goal is understanding the biology of humans. Healthful living goals include analyzing drug and alcohol use…

  13. "Intelligent Design" Wants God Across All the Curriculum

    ERIC Educational Resources Information Center

    Terry, Mark

    2005-01-01

    Science and religion are two contradicting aspects when it comes to tracing evolution and creationism. Considering that these are two important things, revising statewide science or eliminating evolution and changing it to Intelligent Design (ID) may be the best thing to be done to create a curriculum that has a better science teaching. In this…

  14. Exploring Science Educators' Cosmological Worldviews through the Binoculars of an Argumentation Framework

    ERIC Educational Resources Information Center

    Ogunniyi, M. B.

    2011-01-01

    The mandate of the new South African curriculum for educators to enact a science-indigenous knowledge curriculum in their classrooms is not only challenging to their cosmological beliefs, it is equally challenging to their instructional practices. This is because science educators (teachers) in South Africa have been schooled largely in western…

  15. A Practical Guide for Teaching Science to Students with Special Needs in Inclusive Settings.

    ERIC Educational Resources Information Center

    Mastropieri, Margo A.; Scruggs, Thomas E.

    This manual is intended as a resource for teachers who have special education students in their mainstream science classes, for curriculum adoption committees, and for publishers and consumers of science curriculum materials. Part 1 describes general characteristics of students with disabilities and provides general mainstreaming strategies and…

  16. Linguistics, Cognitive Science and the Undergraduate Curriculum. Linguistics in the Undergraduate Curriculum, Appendix 4-I.

    ERIC Educational Resources Information Center

    Feinstein, Mark; Stillings, Neil

    Cognitive science has recently emerged as a new interdisciplinary field incorporating parts of psychology, computer science, philosophy, neuroscience, and linguistics. Its goal is to bring the theoretical and methodological resources of the contributing disciplines to bear on an integrated investigation of thought, meaning, language, perception,…

  17. Science and Engineering Technician Curriculum Development Project. Final Report.

    ERIC Educational Resources Information Center

    Mowery, Donald R.; Wolf, Lawrence J.

    Project SET (Science and Engineering for Technicians) developed a series of study guides designed to teach generic science and engineering skills to students interested in becoming technicians. An entire 2-year curriculum is encompassed by these guides, geared for 2-year college students. Described in this final report are the project's rationale,…

  18. Material Objects. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    Presented is a teacher's guide for an elementary science unit designed for use with first grade students in the Trust Territory of Micronesia. Although there is a degree of similarity to the curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation or edition of the SCIS…

  19. Environments. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    Presented is a teacher's guide to an elementary science unit designed for use with fourth grade, or higher, students in the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaption or edition of…

  20. Systems and Variables. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This teacher's guide is for an elementary school science unit designed for use with third grade (or older) children in the schools of the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation…

  1. Science Curriculum Guide. Grade 2. Bulletin 1989, No. 72.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has to major components, the table of contents and the activities. The table of contents…

  2. Science Curriculum Guide. Grade 1. Bulletin 1989, No. 71.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has to major components, the table of contents and the activities. The table of contents…

  3. Supplement for Curriculum Guide for Science: Vietnamese-Speaking Students, Kindergarten-Upper Two. Field Test.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL.

    This supplement to the Chicago public schools' science curriculum guide is for use with Vietnamese-speaking students and is designed to help students make the transition to science learning in English. English-Vietnamese vocabulary lists, independent learning activities (in Vietnamese), and teaching aids (cultural activities such as songs,…

  4. Teachers' Use of Educative Curriculum Materials to Engage Students in Science Practices

    ERIC Educational Resources Information Center

    Arias, Anna Maria; Davis, Elizabeth A.; Marino, John-Carlos; Kademian, Sylvie M.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of integrating science practices into the learning of science. This integration requires sophisticated teaching that does not often happen. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited as a way to support teachers to achieve…

  5. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…

  6. Science Curriculum Guide. Grade 3. Bulletin 1989, No. 73.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has two major components, the table of contents and the activities. The table of contents…

  7. Populations. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This teacher's guide is for an elementary school science unit designed for use with third grade (or older) children in the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation or edition of…

  8. Impact of Science-Technology Learning Environment Characteristics on Learning Outcomes: Pupils' Perceptions and Gender Differences

    ERIC Educational Resources Information Center

    Doppelt, Yaron

    2004-01-01

    Science and technology are connected to each other and are mutually inspiring. The science-technology curriculum for junior-high school in Israel suggests that teachers integrate these subjects. In addition, this curriculum calls for infusing thinking competencies into the learning subjects and for implementing alternatives in assessment methods…

  9. The Future Curriculum for School Science: What Can Be Learnt from the Past?

    ERIC Educational Resources Information Center

    Fensham, Peter J.

    2016-01-01

    In the 1960s, major reforms of the curriculum for school science education occurred that set a future for school science education that has been astonishingly robust at seeing off alternatives. This is not to say that there are not a number of good reasons for such alternative futures. The sciences, their relation to the socio-scientific context,…

  10. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    ERIC Educational Resources Information Center

    Kaya, Ebru; Erduran, Sibel

    2016-01-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to…

  11. ELEMENTARY SCIENCE OUTLINE, A GUIDE TO SUGGESTED CURRICULUM PRACTICES IN ELEMENTARY SCHOOL SCIENCE.

    ERIC Educational Resources Information Center

    KARTSOTIS, A. THOMAS; MESSERSCHMIDT, RALPH M.

    THE COMMITTEE ON ELEMENTARY SCHOOL SCIENCE OF THE LEHIGH VALLEY SCHOOL STUDY COUNCIL REPORTS THEIR WORK ON SUGGESTED CURRICULUM FOR GRADES 1-6. THE BELIEF IS THAT SCIENCE IS A MAJOR STUDY AREA IN ELEMENTARY SCHOOL, AND SHOULD BE TAUGHT TO ALL PUPILS IN A PLANNED LEARNING SEQUENCE, WITH DUE CONSIDERATION BEING GIVEN TO THE MATURITY OF THE CHILD.…

  12. Middle School Students' Conceptual Learning from the Implementation of a New NSF Supported Curriculum: Interactions in Physical Science[TM

    ERIC Educational Resources Information Center

    Eick, Charles J.; Dias, Michael; Smith, Nancy R. Cook

    2009-01-01

    A new National Science Foundation supported curriculum, Interactions in Physical Science[TM], was evaluated on students' conceptual change in the twelve concept areas of the national physical science content standard (B) for grades 5-8. Eighth grade students (N = 66) were evaluated pre and post on a 31-item multiple-choice test of conceptual…

  13. Comparative Study on Romanian School Science Curricula and the Curriculum of TIMSS 2007 Testing

    ERIC Educational Resources Information Center

    Ciascai, Liliana

    2009-01-01

    The results of Romanian school students in Science PISA and TIMSS testings have been and continue to be systematically slack. In the present paper we intend to do a comparative analysis of Science curriculum TIMSS 2007 and Romanian Science school curricula of 4th and 8th grades. This analysis, based on Bloom's taxonomy of cognitive domain,…

  14. Media Literacy Ignored: A Qualitative Call for the Introduction of Media Studies Across the High School Social Science Curriculum.

    ERIC Educational Resources Information Center

    Sneed, Don; And Others

    Noting that America is behind several countries in media studies and that efforts to introduce systematic study and use of media in the curriculum has been sporadic, this paper calls for the introduction of media studies in the social science curriculum of American high schools. Two projects are examined as possible means of helping spread media…

  15. Regaining Focus in Irish Junior Cycle Science: Potential New Directions for Curriculum and Assessment on Nature of Science

    ERIC Educational Resources Information Center

    Erduran, Sibel; Dagher, Zoubeida R.

    2014-01-01

    The Irish national discourse on curriculum and assessment reform at the Junior Cycle level has been fraught with controversy in the past two years. The introduction of the new curriculum and assessment framework in 2012 by the then Minister of Education, Ruairi Quinn has led to significant media coverage and teacher union response. In this paper,…

  16. Misrecognition and science education reform

    NASA Astrophysics Data System (ADS)

    Brandt, Carol B.

    2012-09-01

    In this forum, I expand upon Teo and Osborne's discussion of teacher agency and curriculum reform. I take up and build upon their analysis to further examine one teacher's frustration in enacting an inquiry-based curriculum and his resulting accommodation of an AP curriculum. In this way I introduce the concept of misrecognition (Bourdieu and Passeron 1977) to open up new ways of thinking about science inquiry and school reform.

  17. Fruit and Vegetable Production Unit for Plant Science Core Curriculum. Instructor's Guide. Volume 16, Number 3.

    ERIC Educational Resources Information Center

    Stewart, Bob R.; Mullinix, Mark K.

    This curriculum guide, part of a plant science core curriculum, consists of materials for use in teaching a unit on fruit and vegetable production. Provided in the first part of the guide are a list of objectives, a bibliography, and a competency profile. The remainder of the guide consists of 11 lessons dealing with the following topics: planning…

  18. Developing and Evaluating an Eighth Grade Curriculum Unit That Links Foundational Chemistry to Biological Growth: Using Student Measures to Evaluate the Promise of the Intervention

    ERIC Educational Resources Information Center

    Herrmann-Abell, Cari F.; Flanagan, Jean C.; Roseman, Jo Ellen

    2013-01-01

    Students often have trouble understanding key biology ideas, in part because they lack an understanding of foundational chemistry ideas. AAAS [American Association for the Advancement of Science] is collaborating with BSCS [Biological Sciences Curriculum Study] in the development of a curriculum unit that connects core chemistry and biology ideas…

  19. A Strategy for Incorporating Learning Analytics into the Design and Evaluation of a K-12 Science Curriculum

    ERIC Educational Resources Information Center

    Monroy, Carlos; Rangel, Virginia Snodgrass; Whitaker, Reid

    2014-01-01

    In this paper, we discuss a scalable approach for integrating learning analytics into an online K-12 science curriculum. A description of the curriculum and the underlying pedagogical framework is followed by a discussion of the challenges to be tackled as part of this integration. We include examples of data visualization based on teacher usage…

  20. Effect of an environmental science curriculum on students' leisure time activities

    NASA Astrophysics Data System (ADS)

    Blum, Abraham

    Cooley and Reed's active interest measurement approach was combined with Guttman's Facet Design to construct a systematic instrument for the assessment of the impact of an environmental science course on students' behavior outside school. A quasimatched design of teacher allocation to the experimental and control groups according to their preferred teaching style was used. A kind of dummy control curriculum was devised to enable valid comparative evaluation of a new course which differs from the traditional one in both content and goal. This made it possible to control most of the differing factors inherent in the old and new curriculum. The research instrument was given to 1000 students who were taught by 28 teachers. Students who learned according to the experimental curriculum increased their leisure time activities related to the environmental science curriculum significantly. There were no significant differences between boys and girls and between students with different achievement levels.

  1. Supporting Science Teachers in Alignment with State Curriculum Standards through Professional Development: Teachers' Preparedness, Expectations and Their Fulfillment

    NASA Astrophysics Data System (ADS)

    Paik, Sunhee; Zhang, Meilan; Lundeberg, Mary A.; Eberhardt, Jan; Shin, Tae Seob; Zhang, Tianyi

    2011-08-01

    Since A Nation at Risk was released in the 1980s, standards-based reform has been the most dominant trend in American educational policy, and the No Child Left Behind Act pushed the trend further by requiring states to develop rigorous curriculum standards. Though much has been said about these new standards, less has been said about whether or how well professional development helps teachers link their instruction to these standards. This study examined the impact of a professional development program for K-12 science teachers in helping teachers meet state curriculum standards. Seventy-five science teachers in Michigan participated in a 2-week summer workshop that used Problem-Based Learning for improving teachers' content knowledge and pedagogical content knowledge. Researchers surveyed participating teachers about the change of teachers' preparedness for standards-based teaching, their expectations to meet state curriculum standards, and whether their expectations were met. In addition, the usefulness of workshop activities was examined. Data analysis showed that to align teaching with state curriculum standards, participating teachers expected to learn instructional strategies and enhance science content knowledge through professional development, and by and large their expectations were well met. Collaboration with colleagues and facilitators helped teachers achieve their goals in terms of teaching within state curriculum standards. These findings have important implications for designing professional development to help teachers align instruction with curriculum standards.

  2. Use of Tactual Materials on the Achievement of Content Specific Vocabulary and Terminology Acquisition within an Intermediate Level Science Curriculum

    ERIC Educational Resources Information Center

    Terry, Brian H.

    2012-01-01

    In this quasi-experimental study, the researcher investigated the effectiveness of three tactual strategies and one non-tactual strategy of content specific vocabulary acquisition. Flash cards, task cards, and learning wheels served as the tactual strategies, and vocabulary review sheets served as a non-tactual strategy. The sample (n = 85)…

  3. Implementation at the School Building Level: The Development and Analysis of Nine Mini-Case Studies.

    ERIC Educational Resources Information Center

    Hall, Gene; And Others

    As part of a district-wide longitudinal study of the implementation of a science curriculum innovation, researchers developed case studies of a sample of nine elementary schools in the Jefferson County School District, a large suburban system in Colorado. The study applied the Concerns-Based Adoption Model, which assumes that change is carried out…

  4. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    NASA Astrophysics Data System (ADS)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  5. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    NASA Astrophysics Data System (ADS)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the study showed that the teachers responded positively to the one-week science integrated curriculum supplement interventions. The researcher recommends eliminating the distinction between the intervention and the outcome via research methods that lead to desired outcomes, moving towards greater integration of subject domains through the pedagogical approach of dialogic reading and kinesthetic intelligence and the production of children's picture books written with purposeful academic intent.

  6. Teaching Sustainability and Resource Management Using NOAA's Voices Of The Bay Community Fisheries Education Curriculum

    NASA Astrophysics Data System (ADS)

    Hams, J. E.; Uttal, L.; Hunter-Thomson, K.; Nachbar, S.

    2010-12-01

    This presentation highlights the implementation of the NOAA VOICES OF THE BAY education curriculum at a two-year college. The VOICES OF THE BAY curriculum provides students with an understanding of the marine ecology, economy, and culture of fisheries through three interdisciplinary modules that use hands-on activities while meeting a wide range of science, math, social science, and communications standards. In the BALANCE IN THE BAY module, students use critical-thinking skills and apply principles of ecosystem-based management to analyze data, debate and discuss their findings, and make decisions that recognize the complex dynamics associated with maintaining a balance in fisheries. Through role-playing, teamwork, and a little fate, the FROM OCEAN TO TABLE module provides students with an opportunity to get an insider’s view of what it takes to be an active stakeholder in a commercial fishery. In the CAPTURING THE VOICES OF THE BAY module, students research, plan, and conduct personal interviews with citizens of the local fishing community and explore the multiple dimensions of fisheries and how they inter-connect through the lives of those who live and work in the region. The VOICES OF THE BAY modules were introduced into the curriculum at Los Angeles Valley College during the Fall 2009 semester and are currently being used in the introductory Oceanography lecture, introductory Oceanography laboratory, and Environmental Science laboratory courses. Examples of curriculum materials being used (power point presentations, module worksheets and simulated fishing activities) will be presented. In addition, samples of completed student worksheets for the three interdisciplinary modules are provided. Students commented that their overall awareness and knowledge of the issues involved in sustainable fishing and managing fishery resources increased following completion of the VOICES OF THE BAY education curriculum. Students enrolled in the laboratory sections commented that the lab was more enjoyable than the typical lab exercises and the hands-on nature of the activity made the concept of sustainable fishing more real to them. The Office of National Marine Sanctuaries and the Monterey Bay National Marine Sanctuary sponsor professional development workshops to selected faculty to introduce the VOICES OF THE BAY fisheries education curriculum and assist with implementation in the classroom. Classroom materials are also available on the website http://sanctuaries.noaa.gov/education/voicesofthebay.html or by contacting voicesofthebay@noaa.gov.

  7. Student science achievement and the integration of Indigenous knowledge on standardized tests

    NASA Astrophysics Data System (ADS)

    Dupuis, Juliann; Abrams, Eleanor

    2017-09-01

    In this article, we examine how American Indian students in Montana performed on standardized state science assessments when a small number of test items based upon traditional science knowledge from a cultural curriculum, "Indian Education for All", were included. Montana is the first state in the US to mandate the use of a culturally relevant curriculum in all schools and to incorporate this curriculum into a portion of the standardized assessment items. This study compares White and American Indian student test scores on these particular test items to determine how White and American Indian students perform on culturally relevant test items compared to traditional standard science test items. The connections between student achievement on adapted culturally relevant science test items versus traditional items brings valuable insights to the fields of science education, research on student assessments, and Indigenous studies.

  8. A self-study of designing and implementing an inquiry-based chemistry course for elementary education majors

    NASA Astrophysics Data System (ADS)

    Larson, Teresa

    2011-12-01

    This self-study examines my experiences with implementing an inquiry-based version of a chemistry course (Chemistry 299) designed for elementary education majors. The inquiry-based curriculum design and teaching strategies that I implement in Chemistry 299 is the focus of this study. Since my previous education and professional experiences were in the physical sciences, I position myself in this study as a scientist who engages in self-study as a form of professional development for the purpose of developing an inquiry-based curriculum and instructional practices. My research provides an inside perspective of the curriculum development process. This process involves implementing the inquiry-oriented ideas and knowledge I acquired in my graduate studies to design the curriculum and influence my teaching practice. My analysis of the curriculum and my instruction is guided by two questions: What are the strengths and weaknesses of the inquiry-based Chemistry 299 curriculum design? What does the process of developing my inquiry-based teaching practice entail and what makes is challenging? Schwab's (1973) The Practical 3: Translation into Curriculum serves as the theoretical framework for this study because of the emphasis Schwab places on combining theoretical and practical knowledge in the curriculum development process and because of the way he characterizes the curriculum. The findings in this study are separated into curriculum and instruction domains. First, the Chemistry 299 curriculum was designed to make the epistemological practices of scientists "accessible" to students by emphasizing epistemic development with respect to their ideas about scientific inquiry and science learning. Using student learning as a gauge for progress, I identify specific design elements that developed transferable inquiry skills as a means to support scientific literacy and pre-service teacher education. Second, the instruction-related findings built upon the insight I gained through my analysis of the curriculum. The data reveals four areas of inner conflict I dealt with throughout the study that related to underlying beliefs I held about science teaching and learning. The implications of the study position the Chemistry 299 curriculum in the field and speak to issues related to developing science courses for elementary education majors and professional development for scientists.

  9. Learner-Centered Inquiry in Undergraduate Biology: Positive Relationships with Long-Term Student Achievement

    PubMed Central

    Ebert-May, Diane

    2010-01-01

    We determined short- and long-term correlates of a revised introductory biology curriculum on understanding of biology as a process of inquiry and learning of content. In the original curriculum students completed two traditional lecture-based introductory courses. In the revised curriculum students completed two new learner-centered, inquiry-based courses. The new courses differed significantly from those of the original curriculum through emphases on critical thinking, collaborative work, and/or inquiry-based activities. Assessments were administered to compare student understanding of the process of biological science and content knowledge in the two curricula. More seniors who completed the revised curriculum had high-level profiles on the Views About Science Survey for Biology compared with seniors who completed the original curriculum. Also as seniors, students who completed the revised curriculum scored higher on the standardized Biology Field Test. Our results showed that an intense inquiry-based learner-centered learning experience early in the biology curriculum was associated with long-term improvements in learning. We propose that students learned to learn science in the new courses which, in turn, influenced their learning in subsequent courses. Studies that determine causal effects of learner-centered inquiry-based approaches, rather than correlative relationships, are needed to test our proposed explanation. PMID:21123693

  10. Restoring local spiritual and cultural values in science education: The case of Ethiopia

    NASA Astrophysics Data System (ADS)

    Faris, Solomon Belay

    It has been repeatedly observed that home and local context matter in the education of children. A smooth transition between home and classroom prepares children for enjoyable and meaningful life-long learning. Knowledge building in children is influenced by previous experience, values, beliefs and sociocultural factors associated with community. Against this theoretical background, the thesis examined the integration of local spiritual and cultural values to improve science education in Ethiopia. This autoethnographic research used in-depth interviews, supplementary observations and focus group discussion and my biography to identify the perception and practice of common and unique spiritual and cultural values. The study examined whether these values were included and/or excluded in the school curriculum and explored the possibilities for incorporating values in science education and the anticipated tensions resulting from their inclusion. Students, science teachers, parents, employers, curriculum experts, policymakers, elders, and religious leaders participated in the research, conducted in a randomly selected secondary school in Addis Ababa. The sampling followed a kind of snowball method, with a total of twenty key informants participating in interviews, fifteen classroom observations, and one focus group discussion. The data collection aimed at generating stories, which underlie the auto-ethnography methodology. Findings indicated that belief in and fear of God animated and sustained the Ethiopian way of life. Although spiritual teachings derived from sacred writings were the initial foundation for Ethiopian cultural norms, the two merged together later, creating a mosaic pervading every aspect of life in Ethiopia. Education was sustained on this merger of spiritual and cultural norms and values. It was also shown that the now century-old system of formal education did not incorporate those local spiritual and cultural values. Current science education also has little relationship to Ethiopian spiritual and cultural norms and is, therefore, in need of restoration. Findings showed that efforts to recapture local spiritual and cultural values in the curriculum may encounter obstacles and tensions. Clearly, the future of a more prosperous Ethiopia depends on the extent to which curriculum stakeholders can overcome these obstacles and put in place a relevant, contextual, and holistic education.

  11. The Maps in Medicine program: An evaluation of the development and implementation of life sciences curriculum

    NASA Astrophysics Data System (ADS)

    O'Malley, Jennifer

    There has been a downward trend in both science proficiency and interest in science in the United States, especially among minority students and students of a disadvantaged background. This has led to a downturn in the number of individuals within these groups considering a career in the sciences or a related field. Studies have identified many potential causes for this problem including the current structure of science curriculum, lack of teacher preparedness, and the lack of quality education and support for those students currently underrepresented in the sciences. Among the solutions to this problem include redesigning the science curriculum, offering high-quality professional development opportunities to teachers, and creating programs to give support to individuals currently underrepresented in the sciences, so that they may have a better chance of pursuing and obtaining a science career. The Maps in Medicine program (MiM) has been designed to incorporate all of the aforementioned solutions and apply them to the current science education problem. The Maps in Medicine (MiM) program was established at the University of Missouri -- Columbia, and is funded by the Howard Hughes Medical Institute. Newly developed MiM curricula and student activities are intended to promote positive attitude changes in those students who are currently underrepresented in Science, Technology, Engineering and Mathematics (STEM) fields, with the program also providing professional development to high school science teachers. It was important to determine if the MiM program's solution to the science education problem has been successful, and so the program evaluation piece was integral. A mixed-methods approach was used to evaluate the MiM program. Formative evaluation results indicated a positive response from teachers and students regarding curriculum and professional development, and student activities. These results have also lead to the identification of appropriate improvements for the program, and will assist with the program's overall goal of national dissemination of MiM curriculum.

  12. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    ERIC Educational Resources Information Center

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  13. Problems of Meaning in Science Curriculum. Ways of Knowing in Science Series.

    ERIC Educational Resources Information Center

    Roberts, Douglas A., Ed.; Ostman, Leif, Ed.

    As a component of the school curriculum, science has features that are both unique and representative. This book explores the idea that the socialization of students is not only a matter of their deportment, attitudes, and conduct, but is also very significantly associated with the meanings provided by their educational experiences. The chapters…

  14. Perceptions of Critical Thinking, Task Value, Autonomy and Science Lab Self-Efficacy: A Longitudinal Examination of Students' CASE Experience

    ERIC Educational Resources Information Center

    Velez, Jonathan J.; Lambert, Misty D.; Elliott, Kristopher M.

    2015-01-01

    The purpose of this study was to begin examining the impact of the Curriculum for Agricultural Science Education (CASE). Under development since 2008, the curriculum is intended to integrate core academics and Science, Technology, Engineering, and Math (STEM) into agricultural education programs. This longitudinal descriptive correlational study…

  15. Traditional Ecological Knowledge in Science Education and Its Integration in Grades 7 and 8 Canadian Science Curriculum Documents

    ERIC Educational Resources Information Center

    Kim, Eun-Ji Amy; Dionne, Liliane

    2014-01-01

    Though science education has been prominent in the Canadian educational system, researchers increasingly recognize the scientific and educational value of integrating traditional ecological knowledge (TEK) into their curriculum. Despite national strategies to integrate TEK, Canada has yet to initiate a comprehensive study of its prevalence and…

  16. Enhancing Middle School Science Lessons with Playground Activities: A Study of the Impact of Playground Physics

    ERIC Educational Resources Information Center

    Friedman, Lawrence B.; Margolin, Jonathan; Swanlund, Andrew; Dhillon, Sonica; Liu, Feng

    2017-01-01

    Playground Physics is a technology-based application and accompanying curriculum designed by New York Hall of Science (NYSCI) to support middle school students' science engagement and learning of force, energy, and motion. The program includes professional development, the Playground Physics app, and a curriculum aligned with New York State…

  17. Towards a More Authentic Science Curriculum: The Contribution of Out-of-School Learning

    ERIC Educational Resources Information Center

    Braund, Martin; Reiss, Michael

    2006-01-01

    In many developed countries of the world, pupil attitudes to school science decline progressively across the age range of secondary schooling while fewer students are choosing to study science at higher levels and as a career. Responses to these developments have included proposals to reform the curriculum, pedagogy, and the nature of pupil…

  18. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    ERIC Educational Resources Information Center

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  19. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: An Exploratory Study

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-01-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear…

  20. Indigenous Knowledge in the Science Curriculum: Avoiding Neo-Colonialism

    ERIC Educational Resources Information Center

    Ryan, Ann

    2008-01-01

    Science education in Papua New Guinea has been influenced by neo-colonial practices that have significantly contributed to the silencing of the Papua New Guinea voice. This silencing has led to the production of science curriculum documents that are irrelevant to the students for whom they are written. To avoid being caught up in neo-colonial…

  1. Environmental and Science Education in Developing Nations: A Ghanaian Approach to Renewing and Revitalizing the Local Community and Ecosystems

    ERIC Educational Resources Information Center

    Mueller, Michael P.; Bentley, Michael L.

    2009-01-01

    Curriculum reform in environmental and science education now taking place in Ghana focuses on the community and ecosystems as the context of education. In Ghana, students conduct science investigations that include games, word searches, crossword puzzles, case studies, role play, debates, projects, and ecological profiles. This curriculum reflects…

  2. Chemical Science and Technology II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  3. An Exploration of the Science Teaching Orientations of Indian Science Teachers in the Context of Curriculum Reform

    ERIC Educational Resources Information Center

    Nargund-Joshi, Vanashri

    2012-01-01

    This study explores the concepts and behaviors, otherwise referred to as "orientations", of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types (public…

  4. Elementary Science Curriculum, Grade 5.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  5. Eighth Grade Earth Science Curriculum Guide. Part 1.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This is a curriculum guide composed of lessons which can serve as models for the beginning teacher as well as for the teacher who needs activities to broaden the earth science perspective in the classroom. It was designed to supplement the New york State Earth Science Syllabus and encourages students to develop inquiry and problem solving skills.…

  6. Science through Engineering in Elementary School: Comparing Three Enactments of an Engineering-Design-Based Curriculum on the Science of Sound

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke

    2011-01-01

    This research illustrates how varying enactments of an engineering-design-based science curriculum shaped the development of students' domain-specific scientific ideas and practices. In this comparative case study rooted in the analytical perspectives of activity theory and learning environments, student and teacher participants in three…

  7. Innovations: The Social Consequences of Science and Technology. Final Evaluation Report.

    ERIC Educational Resources Information Center

    Tolman, Richard R.

    The Biological Sciences Curriculum Study designed, developed, and field-tested a series of nine curriculum resource units for a semester program called "Innovations: The Social Consequences of Science and Technology (IST)." The units were designed for use by students and teachers in the 11th and 12th grades and at the junior college…

  8. A Reexamination of Ontario's Science Curriculum: Toward a More Inclusive Multicultural Science Education?

    ERIC Educational Resources Information Center

    Mujawamariya, Donatille; Hujaleh, Filsan; Lima-Kerckhoff, Ashley

    2014-01-01

    The rapid diversification of communities in Ontario has necessitated the provincial government to reevaluate public school curriculums and policies to make schools more inclusive and reflective of its diverse population. This article critically analyzes the content of the latest revised science curricula for Grades 1 to 10 and assesses the degree…

  9. Animal Science Technology. An Experimental Developmental Program. Volume II, Curriculum Course Outlines.

    ERIC Educational Resources Information Center

    Brant, Herman G.

    This volume, the second of a two part evaluation report, is devoted exclusively to the presentation of detailed course outlines representing an Animal Science Technology curriculum. Arranged in 6 terms of study (2 academic years), outlines are included on such topics as: (1) Introductory Animal Science, (2) General Microbiology, (3) Zoonoses, (4)…

  10. Elementary Science Curriculum, Grade 6.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  11. Preparing Science Teachers to Address Contentious and Sensitive Science Topics

    ERIC Educational Resources Information Center

    Ado, Gustave

    2015-01-01

    Purpose: Despite high HIV prevalence rates in Ivory Coast, the formal K-12 curriculum was not developed to address HIV/AIDS information completely for many African students. The purpose of this study was to identify factors that influenced Ivorian teachers' teaching of the HIV/AIDS curriculum in middle school science curricula in nine middle…

  12. Impact of an Engineering Design-Based Curriculum Compared to an Inquiry-Based Curriculum on Fifth Graders' Content Learning of Simple Machines

    ERIC Educational Resources Information Center

    Marulcu, Ismail; Barnett, Michael

    2016-01-01

    Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic…

  13. Integrating STEM into the Primary School Curriculum

    ERIC Educational Resources Information Center

    Qureshi, Asima

    2015-01-01

    Science has always been a valued subject at Meadowbrook Primary School, and the head teacher has a real vision for the school to embrace engineering as part of the science curriculum to give the children the opportunity to be more creative with their projects. To get started, teachers attended an engineering workshop run by Science Oxford Schools…

  14. Promotion of Scientific Literacy: Bangladeshi Teachers' Perspectives and Practices

    ERIC Educational Resources Information Center

    Sarkar, Mahbub; Corrigan, Deborah

    2014-01-01

    Background: In Bangladesh, a common science curriculum caters for all students at the junior secondary level. Since this curriculum is for all students, its aims are both to build a strong foundation in science while still providing students with the opportunities to use science in everyday life--an aim consistent with the notion of scientific…

  15. Teacher change and professional development: A case study of teachers engaged in an innovative constructivist science curriculum

    NASA Astrophysics Data System (ADS)

    Akura, Okong'o. Gabriel

    This study examined both the changes that elementary school teachers experienced when they implemented a reform-based science curriculum and the impact of professional development on this transformation. The research involved a case study of three purposefully selected teachers implementing the Linking Food and the Environment (LIFE) program during the 2002--2003 school year. The LIFE program is a curriculum designed to enhance science literacy among learners from high poverty urban environments. While the study was grounded in the tradition of critical theory (Carspecken, 1996), the theoretical perspective of hermeneutic phenomenology (van Manen, 1990) guided data collection and analysis. Extensive observations of the teachers were made in order to capture and record the teacher change phenomenon. Data were recorded by means of field notes, audio and videotapes, semi-structured interviews, classroom observations, and video Stimulated Recall (SR) interviews. Emerging themes relating to teacher change, knowledge interests, constructivist pedagogy, and professional development illustrated how teachers grapple with various aspects of implementing a reform-based science curriculum. The teachers in this study were similar to those in earlier investigations, which found that sustained professional development programs involving mentoring and constant reflection enable elementary science teachers to change their instructional strategies from the technical-realist orientation towards the practical-hermeneutic and emancipatory-liberatory orientations. The study has implications for science curriculum developers and designers of professional development programs.

  16. The Rise and Fall of the Social Science Curriculum Project in Iceland, 1974-84: Reflections on Reason and Power in Educational Progress.

    ERIC Educational Resources Information Center

    Edelstein, Wolfgang

    This description of the content and structure of a 10-year Icelandic Social Science Curriculum Project serves as a commentary on the role of the project in the context of Icelandic curriculum reform. A discussion of the place of structural developmental curricula in the reform dynamics of educational progressivism precede the specifics of the…

  17. An Analysis of the Alignment of the Grade 12 Physical Sciences Examination and the Core Curriculum in South Africa

    ERIC Educational Resources Information Center

    Edwards, Nazeem

    2010-01-01

    I report on an analysis of the alignment between the South African Grade 12 Physical Sciences core curriculum content and the exemplar papers of 2008, and the final examination papers of 2008 and 2009. A two-dimensional table was used for both the curriculum and the examination in order to calculate the Porter alignment index, which indicates the…

  18. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices,…

  19. Developing and Evaluating an Eighth Grade Curriculum Unit That Links Foundational Chemistry to Biological Growth: Paper 5--Using Teacher Measures to Evaluate the Promise of the Intervention

    ERIC Educational Resources Information Center

    Flanagan, Jean C.; Herrmann-Abell, Cari F.; Roseman, Jo Ellen

    2013-01-01

    AAAS (American Association for the Advancement of Science) is collaborating with BSCS (Biological Sciences Curriculum Study) in the development of a curriculum unit for eighth grade students that connects fundamental chemistry and biology concepts to better prepare them for high school biology. Recognizing that teachers play an influential role in…

  20. Dissemination of an innovative mastery learning curriculum grounded in implementation science principles: a case study.

    PubMed

    McGaghie, William C; Barsuk, Jeffrey H; Cohen, Elaine R; Kristopaitis, Theresa; Wayne, Diane B

    2015-11-01

    Dissemination of a medical education innovation, such as mastery learning, from a setting where it has been used successfully to a new and different medical education environment is not easy. This article describes the uneven yet successful dissemination of a simulation-based mastery learning (SBML) curriculum on central venous catheter (CVC) insertion for internal medicine and emergency medicine residents across medical education settings. The dissemination program was grounded in implementation science principles. The article begins by describing implementation science which addresses the mechanisms of medical education and health care delivery. The authors then present a mastery learning case study in two phases: (1) the development, implementation, and evaluation of the SBML CVC curriculum at a tertiary care academic medical center; and (2) the dissemination of the SBML CVC curriculum to an academic community hospital setting. Contextual information about the drivers and barriers that affected the SBML CVC curriculum dissemination is presented. This work demonstrates that dissemination of mastery learning curricula, like all other medical education innovations, will fail without active educational leadership, personal contacts, dedication, hard work, rigorous measurement, and attention to implementation science principles. The article concludes by presenting a set of lessons learned about disseminating an SBML CVC curriculum across different medical education settings.

  1. Leading change: curriculum reform in graduate education in the biomedical sciences.

    PubMed

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences. © 2015 The International Union of Biochemistry and Molecular Biology.

  2. A case study of systemic curricular reform: A forty-year history

    NASA Astrophysics Data System (ADS)

    Laubach, Timothy Alan

    What follows is a description of the development of a particular inquiry-based elementary school science curriculum program and how its theoretical underpinnings positively influenced a school district's (K-12) science program and also impacted district- and state-wide curriculum reform initiatives. The district's science program has evolved since the inception of the inquiry-based elementary school science curriculum reform forty years ago. Therefore, a historical case study, which incorporated grounded theory methodology, was used to convey the forty-year development of a science curriculum reform effort and its systemic influences. Data for this study were collected primarily through artifacts, such as technical and non-technical documents, and supported and augmented with interviews. Fifteen people comprised the interview consortium with professional responsibilities including (a) administrative roles, such as superintendents, assistant superintendents, principals, and curriculum consultants/coordinators; (b) classroom roles, such as elementary and secondary school teachers who taught science; (c) partnership roles, such as university faculty who collaborated with those in administrative and classroom positions within the district; and (d) the co-director of SCIS who worked with the SCIS trial center director. Data were analyzed and coded using the constant comparative method. The analysis of data uncovered five categories or levels in which the curriculum reform evolved throughout its duration. These themes are Initiation, Education, Implementation, Confirmation, and Continuation. These five categories lead to several working hypotheses that supported the sustaining and continuing of a K-12 science curriculum reform effort. These components are a committed visionary; a theory base of education; forums promoting the education of the theory base components; shared-decision making; a university-school partnership; a core group of committed educators and teachers; evidences of success; national and state reform initiatives; a core group of administrators; longevity of the science program; district support (philosophical, financial, and emotional); and community support all contributed to the initiation, education, implementation, confirmation, and the continuation of the systemic curricular reform. The underlying component, or grounded theory generated by the study, that ties these experiences together is the "theory base" that concurrently evolved in the local school district and in a nearby university.

  3. Cross-Cultural Collaboration in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Stephens, S.; Gordon, L. S.; Kopplin, M. R.

    2006-12-01

    Alaskan Native elders, other local experts, scientists and educators worked collaboratively in providing professional development science workshops and follow-up support for K-12 teachers. Cognizant of the commonalities between western science and Native knowledge, the Observing Locally Connecting Globally (OLCG) program blended GLOBE Earth science measurements, traditional knowledge and best teaching practices including culturally responsive science curriculum, in engaging teachers and students in climate change research. Native observations and knowledge were used to scaffold some local environmental studies undertaken by Alaskan teachers and their students. OLCG partnered with the Project Jukebox of the University of Alaska Fairbanks Oral History Program to produce digitized interviews of Native experts and a scientist on climate change. Sample interviews for students to use in asking Native experts about their observations and knowledge on environmental changes as well as other educational materials have been posted on the program website http://www.uaf.edu/olcg. Links to the climate change interviews, the Alaska Cultural Standards for Schools, Teachers and Students, and other relevant resource materials have also been included in the website. Results of pre- and post-institute assessment showed an increase in teacher comfort level with teaching science and integrating Native knowledge in the classroom. Teacher journals indicated the program's positive influence on their math and science teaching methods and curriculum. Student attitude and achievement assessments showed a significant increase in post-test (end of school year) scores from pre-test (beginning of the school year) scores. Other lessons learned from this project will also be presented.

  4. Exploring ecology through science terms: A computer-supported vocabulary supplement to the science curriculum in a two-way immersion program

    NASA Astrophysics Data System (ADS)

    Herrera, Francisco Javier, Jr.

    This study set out to examine how a web-based tool embedded with vocabulary strategies, as part of the science curriculum in a third grade two-way immersion classroom, would aid students' academic vocabulary development. Fourteen students (seven boys, seven girls; ten of which were English learners) participated in this study. Students utilized web pages as part of their science curriculum on the topic of ecology. The study documented students' use of the web pages as a data-gathering tool on the topic of ecology during science instruction. Students were video and audio taped as they explored the web pages. Results indicated that through the use of the intervention web pages students significantly improved their knowledge of academic English target words.

  5. Ecosystems, Teacher's Guide.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Science Curriculum Improvement Study.

    The Science Curriculum Improvement Study has developed this teacher's guide to "Ecosystems," the sixth part of a six unit life science curriculum sequence. The six basic units, emphasizing organism-environment interactions, are organisms, life cycles, populations, environments, communities, and ecosystems. They make use of scientific and…

  6. Populations, Teacher's Guide.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Science Curriculum Improvement Study.

    The Science Curriculum Improvement Study has developed this teacher's guide to "Populations," the third part of a six-unit life science curriculum sequence. The six basic units, emphasizing organism-environment interactions, are organisms, life cycles, populations, environments, communities, and ecosystems; and they make use of…

  7. An Undergraduate Environmental Science Curriculum.

    ERIC Educational Resources Information Center

    Gupta, Gian C.

    1982-01-01

    Describes a curriculum in Environmental Sciences adopted by the University of Maryland Eastern Shore. Includes lists of lower-level courses for the first two years, required courses, and recommended electives. Discusses cooperative education/on-the-job training component, implementation, and evaluation. (Author/JN)

  8. Communities, Teacher's Guide.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Science Curriculum Improvement Study.

    The Science Curriculum Improvement Study has developed this teacher's guide to "Communities," the fifth part of a six unit life science curriculum sequence. The six basic units, emphasizing organism-environment interactions, are organisms, life cycles, populations, environments, communities, and ecosystems, and make use of scientific and…

  9. 46 CFR 310.59 - Courses of instruction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... science courses prescribed by the Department of the Navy. All curriculums include general education... Academy. Three major curriculums are offered: Nautical Science, for the preparation of deck officers... addition to practical shipboard assignments, midshipmen are required to complete written study assignments...

  10. Restoration Science in New York Harbor: It takes a (large, diverse and engaged) village

    NASA Astrophysics Data System (ADS)

    Newton, R.; Birney, L.; Janis, S.; Groome, M.; Palmer, M.; Bone, E.; O'Neil, J. M.; Hill, J.; Dennison, W.; Malinowski, P.; Kohne, L.; Molina, M.; Moore, G.; Woods, N.

    2015-12-01

    The Curriculum + Community Enterprise for Restoration Science (CCE-RS) facilitates partnerships between scientists and middle school educators on ecological restoration and environmental monitoring projects. The educational model is designed to wrap around the student, including classroom instruction, field science, after-school programs and engagement with the student's community. Its pillars include: a teacher training fellowship at Pace University, student curriculum, a digital platform, afterschool and summer mentoring, and community exhibits. The digital platform includes a tablet app tailored to the project's field protocols and linked to a database shared across schools and partnering institutions. Through the digital platform, data is integrated into a single citizen-science monitoring project, teachers share curriculum and best practices, and students link directly to their peers at other schools. Curriculum development has been collaborative between scientists, science education specialists, and secondary school teachers. The CCE-RS is rooted in project-based learning: the New York Harbor School has engaged high school students in environmental monitoring and oyster restoration in the Harbor for about the last decade. The science partners (U. of Maryland and Columbia) have been working with students and other citizen scientists in outdoor science over about the last decade. Local partners in outside-the-classroom education include the New York Academy of Sciences, The River Project, which will provide field education services, and Good Shepherd Services, which provides after-school programming in schools serving primarily poor families. Scientists on the project engage directly with teachers and informal educators in curriculum development and citizen-science outreach. We present the lessons learned from our first cohort of Fellows, the pedagogical model, and the digital platform, which is extensible to other ecological restoration settings.

  11. Lessons of Researcher-Teacher Co-design of an Environmental Health Afterschool Club Curriculum

    NASA Astrophysics Data System (ADS)

    Hundal, Savreen; Levin, Daniel M.; Keselman, Alla

    2014-06-01

    This paper addresses the impact of teachers' beliefs about argumentation and their community of practice framed views of teaching on co-designing an environmental health afterschool club curriculum with researchers. Our team collaborated with a group of four middle school teachers, asking them to co-design a club that would facilitate (1) students' understanding of environmental health, (2) use of electronic resources, and (3) argumentation skills. The process included researcher-led sessions emphasizing the importance of argumentation to science and teacher-led curriculum design sessions. The qualitative analysis of the meetings and teacher interview transcripts suggests that while teachers viewed argumentation as important, its practice was relegated to the background by the focus on student engagement and perceived logistical and systemic constraints. The paper concludes that in addition to stressing relevance of argumentation to science learning, researchers involved in co-design need to emphasize the potential of argumentation to engage students and to fit into science curriculum. The analysis also reveals teacher-participants' views of environmental health as an important area of middle school education, relevant to students' lives, linkable to the existing curriculum, essential for informed citizenship, and capable of inspiring interest in science. These findings underscore the importance of integrating environmental health into science education and advocating for its inclusion in informal and formal educational settings.

  12. Author-Publisher-Educator Relationships and Curriculum Reform.

    ERIC Educational Resources Information Center

    McFadden, Charles P.

    1992-01-01

    Discusses relationships among teachers, curriculum package authors, and publishers. Describes the Atlantic Science Curriculum Project's reform efforts. Recommends that curriculum development projects include: (1) lengthy informal development; (2) combined testing of design and materials; (3) the withholding of contracts until materials are in…

  13. A comparative study on student perceptions of their learning outcomes in undergraduate science degree programmes with differing curriculum models

    NASA Astrophysics Data System (ADS)

    Matthews, Kelly E.; Firn, Jennifer; Schmidt, Susanne; Whelan, Karen

    2017-04-01

    This study investigated students' perceptions of their graduate learning outcomes including content knowledge, communication, writing, teamwork, quantitative skills, and ethical thinking in two Australian universities. One university has a traditional discipline-orientated curriculum and the other, an interdisciplinary curriculum in the entry semester of first year. The Science Students Skills Inventory asked students (n = 613) in first and final years to rate their perceptions of the importance of developing graduate learning outcomes within the programme; how much they improved their graduate learning outcomes throughout their undergraduate science programme; how much they saw learning outcomes included in the programme; and how confident they were about their learning outcomes. A framework of progressive curriculum development was adopted to interpret results. Students in the discipline-oriented degree programme reported higher perceptions of scientific content knowledge and ethical thinking while students from the interdisciplinary curriculum indicated higher perceptions of oral communication and teamwork. Implications for curriculum development include ensuring progressive development from first to third years, a need for enhanced focus on scientific ethics, and career opportunities from first year onwards.

  14. Hydrogen Technology and Energy Curriculum (HyTEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, Barbara

    The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three daysmore » of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.« less

  15. Infusing Culturally Responsive Science Curriculum into Early Childhood Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Yoon, Jiyoon; Martin, Leisa A.

    2017-08-01

    Previous research studies in early childhood teacher education have indicated that teacher candidates are not adequately prepared to demonstrate the knowledge and skills needed to teach science to all children including culturally and linguistically diverse students. To address this issue, the researchers provided 31 early childhood teacher candidates with instructions through a culturally responsive science education curriculum that integrates American and Korean science curriculum corresponding to the American and Korean standards for teacher education. The results showed a statistically significant increase in their Personal Science Teaching Efficacy (PSTE). In addition, the teacher candidates were able to create a multicultural/diverse lesson in the developing and proficiency levels based on Ambrosio's lesson matrix. This study provides teacher candidates' knowledge as well as an additional resource for developing their self-efficacy and understanding the role of multicultural/diverse lesson planning for science instruction. Also, teacher candidates could be better prepared by understanding how other countries approach science education and integrating this knowledge to enrich their own science instruction.

  16. Science education ahead?

    NASA Astrophysics Data System (ADS)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a trialling of innovative approaches to science education in the medium to long term. It was felt that no significant changes should be made to the National Curriculum or its assessment unless they have been piloted in this way. Copies of the report (ISBN 1 871984 78 5) are available from Caroline Gill in the School of Education at King's College London, Cornwall House, Waterloo Road, London SE1 8WA (tel: 0171 872 3139, fax: 0171 872 3182). It can also be viewed on the King's College London website (http://www.kcl.ac.uk/education).

  17. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.

    2016-02-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere interact?; (2) How does carbon flow through the ocean, land, and atmosphere?; and (3) What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems and challenges students to use scientific evidence to make explanations about climate change.

  18. Influence of Science, Technology, and Engineering Curriculum on Rural Midwestern High School Student Career Decisions

    NASA Astrophysics Data System (ADS)

    Killingsworth, John

    Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.

  19. [An example of self-evaluation of a sense of achievement by students in 6-year pharmacy school with the model core curriculum of pharmaceutical education].

    PubMed

    Shingaki, Tomoteru; Koyanagi, Jyunichi; Nakamura, Hiroshi; Hirata, Takahiro; Ohta, Atsutane; Akimoto, Masayuki; Shirahata, Akira; Mitsumoto, Atsushi

    2013-01-01

    In March 2012, the first students, finishing the newly introduced 6-year-course of pharmaceutical education, have graduated and gone out into the world. At this point, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) is going to revise the model core curriculum of pharmaceutical education to be more suited for educating students to achieve their goal of becoming the clinical pharmacist standard defined by the revised School Education Act. Here we report the self-evaluation study based on the survey using questionnaire about a sense of achievement with Visual Analog Scales, regarding the fundamental quality as a pharmacist standard proposed by the Professional Activities Committee in the MEXT. The sample size of survey was about 600 of students studying in the Faculty of Pharmaceutical Sciences in Josai International University (JIU) and the survey was carried out during the period of March-April in 2012. The study suggested that the majority of graduates were satisfied with the new education system and marked as a well-balanced quality to be a pharmacist standard, after completing the 6-year pharmaceutical education based on "the model core-curriculum". It would be worthwhile to perform this kind of survey continuously to monitor the student's self-evaluation of a sense of achievement to verify the effectiveness of 6-year-course pharmaceutical education based on the newly establishing core curriculum in Japan.

  20. Into the Curriculum. Art: Pueblo Storyteller Figures [and] Physical Education: Games That Rely on Feet [and] Reading/Language Arts: Movie Reviews [and] Reading/Language Arts: Reader's Choice [and] Science: Float or Sink [and] Social Studies: Buildings and Designs.

    ERIC Educational Resources Information Center

    Crane, Jean; Rains, Annette

    1996-01-01

    Presents six curriculum guides for art, physical education, reading/language arts, science, and social studies. Each guide identifies library media skills objectives; curriculum objectives; grade levels; print and nonprint resources; instructional roles; the activity; and procedures for completion, evaluation, and follow-up activities. (AEF)

  1. Science of Alcohol Curriculum for American Indians (SACAI): An Interdisciplinary Approach to the Study of the Science of Alcohol for Upper Elementary and Middle Level Students.

    ERIC Educational Resources Information Center

    American Indian Science and Engineering Society, Boulder, CO.

    This curriculum provides American Indian youth with a framework for learning about the effects of alcohol on the body and the community. The curriculum stresses the development of scientific thinking skills and was designed for upper elementary and middle level students. The guide consists of four units: How Does Alcohol Circulate through the Body…

  2. Into the Curriculum. Reading/Language Arts: Arabian Nights; Reading/Language Arts: Birds in Picture Books: Characters, Plots, and Themes; Science: Birds in Their Nests; Social Studies: Written with Quills; Social Studies: Baghdad and Iraq History.

    ERIC Educational Resources Information Center

    School Library Media Activities Monthly, 2003

    2003-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in reading, language arts, science, and social studies. Library media skills, curriculum objectives, grade levels, resources, instructional roles, activities and procedures, evaluation, and follow-up are described for each activity. (LRW)

  3. A Curriculum Guide to Applications of Science to Technology for Able Learners.

    ERIC Educational Resources Information Center

    VanTassel-Baska, Joyce, Ed.; And Others

    This curriculum guide was developed with the intention of providing an enrichment option for gifted and talented learners who are interested in pursuing current issues and topics in the fields of mathematics and science. The scope of the guide is meant to encompass a year's study of a set of topics which apply mathematics to science and…

  4. Linking Science with Design and Technology in a Stimulating Approach to Teaching about Levers

    ERIC Educational Resources Information Center

    Davenport, Carol

    2015-01-01

    Changes in the National Curriculum for England in 2014 included the introduction of levers, gears, and pulleys into primary science. Although simple mechanisms had been part of the design and technology (DT) curriculum for some time, it was the first time that the science behind the mechanisms had been included at the primary school level. These…

  5. Effects of Teacher Lesson Introduction on Second Graders' Creativity in a Science/Literacy Integrated Unit on Health and Nutrition

    ERIC Educational Resources Information Center

    Webb, Angela Naomi; Rule, Audrey C.

    2014-01-01

    The focus on standardized testing in the areas of reading and mathematics in early elementary education often minimalizes science and the arts in the curriculum. The science topics of health and nutrition were integrated into the reading curriculum through read aloud books. Inclusion of creativity skills through figural transformation drawings…

  6. Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.

    ERIC Educational Resources Information Center

    Stegelin, Dolores A.

    2003-01-01

    This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…

  7. Small Schools Science Curriculum, K-3: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Learning objectives and suggested activities, monitoring procedures and resources for the Washington K-3 Small Schools Science Curriculum are based on the rationale that "young children need the opportunity to observe, classify, predict, test ideas again and again in a variety of contexts, ask questions, explain, discuss ideas, fail, and succeed.…

  8. Utilizing an Early Childhood Science Curriculum: Factors Influencing Implementation and How Variations Affect Students' Skills and Attitudes

    ERIC Educational Resources Information Center

    Shamas-Brandt, Ellen

    2012-01-01

    Early childhood is a ripe time for students to begin learning science, but due to certain constraints, this instruction is not happening as frequently as it should. This mixed-methods, multiple case study examined how two teachers implemented an early childhood science curriculum, the "Young Scientist Series." The teacher participants…

  9. Towards the Reform of Science Teaching in Spain: The Social and Personal Relevance of Junior Secondary School Science Projects for a Socially Responsible Understanding of Science.

    ERIC Educational Resources Information Center

    Membiela, Pedro

    1999-01-01

    Discusses aspects of more than a decade of research and implementation of cross-curriculum themes as part of the curriculum for secondary school students in Spain. Comments on theoretical and practical issues encountered in developing similar projects. Contains 45 references. (Author/WRM)

  10. Environmental, Ethical and Safety Issues in Chemistry/Science Curricula in Papua New Guinea Provincial High Schools

    ERIC Educational Resources Information Center

    Palmer, W. P.

    1986-01-01

    Chemistry occupies only a small portion of the Papua New Guinea science curriculum in grades seven to ten. Science itself occupies only a small proportion of the total curriculum. Nevertheless the existing syllabus, and previous and planned future revisions of it, give considerable prominence to environmental, health and safety issues. There is a…

  11. Establishing Enabling Conditions to Develop Critical Thinking Skills: A Case of Innovative Curriculum Design in Environmental Science

    ERIC Educational Resources Information Center

    Belluigi, Dina Zoe; Cundill, Georgina

    2017-01-01

    This paper considers a curriculum design motivated by a desire to explore more valid pedagogical approaches that foster critical thinking skills among students engaged in an Environmental Science course in South Africa, focussing specifically on the topic of Citizen Science. Fifty-three under graduate students were involved in the course, which…

  12. Language Development through Holistic Learning (Mathematics, Art, Science, Technology, and Education Resources). Project MASTER, 1988-89. OREA Report.

    ERIC Educational Resources Information Center

    Berney, Tomi D.; Barrera, Marbella

    In its fourth year, Project MASTER served 477 Spanish-speaking students in 5 elementary schools in the Bronx. The teaching strategy was holistic, integrating all aspects of the curriculum with English-language learning through science projects. The project developed curriculum materials, stressing attitudes toward and knowledge of science topics,…

  13. Moral Sensitivity in the Context of Socioscientific Issues in High School Science Students

    ERIC Educational Resources Information Center

    Fowler, Samantha R.; Zeidler, Dana L.; Sadler, Troy D.

    2009-01-01

    This study is a part of a larger study that examined using socioscientific issues (SSI) as a form of effective science teaching. The purpose was to investigate how teaching a year-long curriculum using SSI affects science learning outcomes. In this report, we examine the effects of a SSI-driven curriculum on the development of students' moral…

  14. Evaluation of Factors Contributing to the Achievement of Students Participating in a Culturally Responsive Curriculum in Hawai`i Public Schools

    ERIC Educational Resources Information Center

    Bowditch, Scott A.

    2013-01-01

    This research explored the effectiveness of "Ka Hana 'Imi Na 'auao," a culturally responsive science curriculum developed for Hawaiian and other students in Hawai'i high schools. An instrument, The Culturally Responsive Science Perception (CRSP) inventory was developed to measure students' (a) perceptions of their science self-efficacy,…

  15. The Effects of Research-Based Curriculum Materials and Curriculum-Based Professional Development on High School Science Achievement: Results of a Cluster-Randomized Trial

    ERIC Educational Resources Information Center

    Taylor, Joseph; Kowalski, Susan; Getty, Stephen; Wilson, Christopher; Carlson, Janet

    2013-01-01

    Effective instructional materials can be valuable interventions to improve student interest and achievement in science (National Research Council [NRC], 2007); yet, analyses indicate that many science instructional materials and curricula are fragmented, lack coherence, and are not carefully articulated through a sequence of grade levels (AAAS,…

  16. Founders' Weekend. North Country Workshop on Science, Technology and the Undergraduate Curriculum. Proceedings (Potsdam, New York, November 9-10, 1984).

    ERIC Educational Resources Information Center

    State Univ. of New York, Potsdam. Coll. at Potsdam.

    Proceedings of the North Country Workshop on Science, Technology, and the Undergraduate Curriculum are presented. The Sloan Foundation's call for reform of the liberal arts and coverage of mathematics, science, and technology is noted in welcoming remarks by State University of New York, Potsdam, President Humphrey Tonkin. Stephen H. Cutcliffe…

  17. Integrating Science, Technology, Engineering, and Mathematics: Issues, Reflections, and Ways Forward. Teaching and Learning in Science Series

    ERIC Educational Resources Information Center

    Rennie, Leonie, Ed.; Venville, Grady, Ed.; Wallace, John, Ed.

    2012-01-01

    How can curriculum integration of school science with the related disciplines of technology, engineering and mathematics (STEM) enhance students' skills and their ability to link what they learn in school with the world outside the classroom? Featuring actual case studies of teachers' attempts to integrate their curriculum, their reasons for doing…

  18. Introducing Curriculum Innovations in Science: Identifying Teachers' Transformations and the Design of Related Teacher Education

    ERIC Educational Resources Information Center

    Pinto, Roser

    2005-01-01

    This paper introduces the four research papers in this paper set, which all derive from a European research project, STTIS (Science Teacher Training in an Information Society). The central concern of the project was to study curriculum innovations in science, and to investigate ways in which teachers transform these innovations when putting them…

  19. Probing the Natural World, Level III, Teacher's Edition: Environmental Science. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit and its activities focuses on environmental pollution and hazards. Optional excursions are suggested for students who wish to study an area in greater depth. An introduction describes the problem…

  20. The Effects of Science Models on Students' Understanding of Scientific Processes

    NASA Astrophysics Data System (ADS)

    Berglin, Riki Susan

    This action research study investigated how the use of science models affected fifth-grade students' ability to transfer their science curriculum to a deeper understanding of scientific processes. This study implemented a variety of science models into a chemistry unit throughout a 6-week study. The research question addressed was: In what ways do using models to learn and teach science help students transfer classroom knowledge to a deeper understanding of the scientific processes? Qualitative and quantitative data were collected through pre- and post-science interest inventories, observations field notes, student work samples, focus group interviews, and chemistry unit tests. These data collection tools assessed students' attitudes, engagement, and content knowledge throughout their chemistry unit. The results of the data indicate that the model-based instruction program helped with students' engagement in the lessons and understanding of chemistry content. The results also showed that students displayed positive attitudes toward using science models.

  1. Outcomes of a Self-Regulated Learning Curriculum Model

    NASA Astrophysics Data System (ADS)

    Peters-Burton, Erin E.

    2015-10-01

    The purpose of this study was to describe connections among students' views of nature of science in relation to the goals of a curriculum delivered in a unique setting, one where a researcher and two teachers collaborated to develop a course devoted to teaching students about how knowledge is built in science. Students proceeded through a cycle of self-regulated phases, forethought, performance, and self-reflection, during each segment of the curriculum: (a) independent research, (b) knowledge building in the discipline of science, and (c) a citizen science project. Student views were measured at the beginning and end of the course using epistemic network analysis. The pretest map reported student understanding of science as experimentation and indicated three clusters representing the durability of knowledge, empirical evidence, and habits of mind, which were loosely connected and represented knowledge generation as external to personal thinking. The posttest map displayed a broader understanding of scientific endeavors beyond experimentation, a shift toward personal knowledge generation, and indicated a larger number of connections among three more tightly oriented clusters: empirical evidence, habits of mind, and tentativeness. Implications include the potential to build curriculum that purposefully considers reinforcing cycles of learning of the nature of science in different contexts.

  2. Designing a primary science curriculum in a globalizing world: How do social constructivism and Vietnamese culture meet?

    NASA Astrophysics Data System (ADS)

    Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2017-09-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.

  3. Multiculturalism in the Curriculum.

    ERIC Educational Resources Information Center

    Ravitch, Diane S.

    This document contrasts the concept of multiculturalism as it appears in the proposed New York State curriculum guide, "A Curriculum of Inclusion," and as it appears in the California State history/social sciences curriculum. California uses the following approaches to reflect the multiracial, multicultural nature of American society:…

  4. Florence Bascom and the Exclusion of Women From Earth Science Curriculum Materials

    ERIC Educational Resources Information Center

    Arnold, Lois

    1975-01-01

    Numerous excerpts from present day earth science curriculum materials reveal sexual discrimination. In addition, studies of photographs included in the materials reveal a high male dominance. The significant contributions of one earth scientist, Florence Bascom, are remembered. (CP)

  5. Implementing Curriculum-Embedded Formative Assessment in Primary School Science Classrooms

    ERIC Educational Resources Information Center

    Hondrich, Annika Lena; Hertel, Silke; Adl-Amini, Katja; Klieme, Eckhard

    2016-01-01

    The implementation of formative assessment strategies is challenging for teachers. We evaluated teachers' implementation fidelity of a curriculum-embedded formative assessment programme for primary school science education, investigating both material-supported, direct application and subsequent transfer. Furthermore, the relationship between…

  6. Integrating Ethics into the Social Studies Curriculum.

    ERIC Educational Resources Information Center

    Howe, Kenneth R.

    1991-01-01

    Urges incorporation of ethics into social studies curriculum. Provides an overview of ethical theory including principle-based theories of utilitarianism and deontology and virtue-based theories. Discusses philosophies of social science including positivism, interpretivism, and critical social science. Suggests teaching methods and curriculum…

  7. 46 CFR 310.59 - Courses of instruction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Academy. Three major curriculums are offered: Nautical Science, for the preparation of deck officers... course which leads to licenses in both specialties. All midshipmen who are citizens shall take naval science courses prescribed by the Department of the Navy. All curriculums include general education...

  8. 46 CFR 310.59 - Courses of instruction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Academy. Three major curriculums are offered: Nautical Science, for the preparation of deck officers... course which leads to licenses in both specialties. All midshipmen who are citizens shall take naval science courses prescribed by the Department of the Navy. All curriculums include general education...

  9. 46 CFR 310.59 - Courses of instruction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Academy. Three major curriculums are offered: Nautical Science, for the preparation of deck officers... course which leads to licenses in both specialties. All midshipmen who are citizens shall take naval science courses prescribed by the Department of the Navy. All curriculums include general education...

  10. The CTD Science Practical Survey.

    ERIC Educational Resources Information Center

    Bathory, Zoltan

    1985-01-01

    As part of Hungary's Curriculum Theory Department (CTD-80) assessment, 1,543 14-year-olds were tested in the performance of science experiments in physics and chemistry. Skills included observing, measuring, hypothesizing, and drawing conclusions. Results are presented, and implications for curriculum are suggested. (GDC)

  11. Investigation of urban science teachers' pedagogical engagements: Are urban science teachers culturally responsive?

    NASA Astrophysics Data System (ADS)

    Udokwu, Chukwudi John

    This study utilized mixed methodology of quantitative and qualitative research approach to explore the current pedagogical engagements of twenty middle school urban science teachers in the Midwest region of the United States. It qualitatively examined twelve of these teachers' knowledge of culturally responsive pedagogy. The study investigated the following questions: What are the current pedagogical practices of urban middle school science teachers? To what extent are middle school science teachers' pedagogical practices in urban schools culturally responsive? What are urban students' perspectives of their teachers' current pedagogical engagements? The design of the study was qualitative and quantitative methods in order to investigate these teachers' pedagogical practices. Data collections were drawn from multiple sources such as lesson plans, students' sample works, district curriculum, surveys, observational and interview notes. Analysis of collected data was a mixed methodology that involved qualitative and quantitative methods using descriptive, interpretative, pattern codes, and statistical procedures respectively. Purposeful sampling was selected for this study. Thus, demographically there were twenty participants who quantitatively took part in this study. Among them were seven (35%) males and thirteen (65%) females, three (15%) African Americans and seventeen (85%) Caucasians. In determining to what extent urban science teachers' pedagogical practices were culturally responsive, eight questions were analyzed based on four cluster themes: (a) teachers' social disposition, (b) culturally responsive curriculum, (c) classroom interactions, and (d) power pedagogy. Study result revealed that only five (25%) of the participants were engaged in culturally responsive pedagogy while fifteen (75%) were engaged in what Haberman (1991) called the pedagogy of poverty. The goal was to investigate urban science teachers' pedagogical engagements and to examine urban students' perspective of their science teachers' pedagogical practices, and ensure that all students have a sense of ownership of their knowledge, a sense that is empowering and liberating. The implications of these findings were to promote urban students' achievements in science and see them employed in science and engineering. I hope this study helps in developing better professional development that will be culturally responsive and to ensure that all students have a sense of ownership of their knowledge.

  12. A study of the continuum of integration of mathematics content with science concepts at the middle school level in West Virginia

    NASA Astrophysics Data System (ADS)

    Meisel, Edna Marie

    The purpose of this study was to examine the practices and perceptions of regular education seventh grade middle school mathematics teachers in West Virginia concerning the integration of mathematics objectives with science concepts. In addition, this study also emphasized the use of integrated curriculum continuum models to study mathematics teachers' practices and perceptions for teaching mathematics objectives in connection with science concepts. It was argued that the integrated curriculum continuum model can be used to help educators begin to form a common definition of integrated curriculum. The population was described as the regular education seventh grade middle school mathematics teachers in West Virginia. The entire population (N = 173) was used as the participants in this study. Data was collected using an integrated curriculum practices and perceptions survey constructed by the researcher. This was a descriptive study that incorporated the Chi Square statistic to show trends in teacher practices and perceptions. Also, an ex post facto design, that incorporated the Mann-Whitney U statistic, was used to compare practices and perceptions between teachers grouped according to factors that influence teaching practices and perceptions. These factors included teaching certificate endorsement and teacher professional preparation. Results showed that the regular education seventh grade middle school mathematics teachers of West Virginia are teaching mathematics objectives mainly at a discipline-based level with no formal attempt for integration with science concepts. However, these teachers perceived that many of the mathematics objectives should be taught at varying levels of integration with science concepts. It was also shown that teachers who experienced professional preparation courses that emphasized integrated curriculum courses did teach many of the mathematics objectives at higher levels of integration with science than those teachers who did not experience integrated curriculum courses.

  13. Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden.

    PubMed

    Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.

  14. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    NASA Astrophysics Data System (ADS)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  15. Interdisciplinary Science through the Parallel Curriculum Model: Lessons from the Sea

    ERIC Educational Resources Information Center

    Hathcock, Stephanie J.

    2018-01-01

    The Parallel Curriculum Model (PCM) lends itself to considering curriculum development from different angles. It begins with a solid Core Curriculum and can then be extended through the Curriculum of Connections, Practice, and Identity. This article showcases a way of thinking about the creation of a PCM unit by providing examples from an…

  16. Examining Chemistry Teachers' Use of Curriculum Materials: In View of Teachers' Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Chen, Bo; Wei, Bing

    2015-01-01

    This paper aimed to explore how pedagogical content knowledge (PCK) of teachers influenced their adaptations of the curriculum materials of the new senior secondary chemistry curriculum, a standards-based science curriculum, in China. This study was based on the premise that the interaction of the teacher with the curriculum materials determines…

  17. Tracing the Policy Mediation Process in the Implementation of a Change in the Life Sciences Curriculum

    ERIC Educational Resources Information Center

    Singh-Pillay, Asheena; Alant, Busisiwe

    2015-01-01

    This paper accounts for the enacted realities of curriculum reform in South Africa, in particular the mediation of curriculum change. Curriculum implementation is viewed as a complex networked process of transforming or mediating policy into classroom practice. The fact that curriculum implementation is seen as problematic requires attention for…

  18. An Exploration of Teacher Learning from an Educative Reform-Oriented Science Curriculum: Case Studies of Teacher Curriculum Use

    ERIC Educational Resources Information Center

    Marco-Bujosa, Lisa M.; McNeill, Katherine L.; González-Howard, María; Loper, Suzanna

    2017-01-01

    Educative curriculum materials provide teachers with authentic opportunities to learn new skills and practices. Yet, research shows teachers use curriculum in different ways for different reasons, and these modifications could undermine the learning goals of the curriculum. Little research, however, has examined the variation in teacher use of…

  19. Exploring preservice elementary teachers' critique and adaptation of science curriculum materials in respect to socioscientific issues

    NASA Astrophysics Data System (ADS)

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-09-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students’ learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers’ critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate this process. Four undergraduate preservice elementary teachers were studied over the course of one semester. Results indicate that the teachers navigated multiple learning goals, as well as their own subject-matter knowledge, informal reasoning about SSI, and role identity, in their critique and adaptation of SSI-oriented science instructional materials. Implications for science teacher education and the design of curriculum materials in respect to SSI are discussed.

  20. Approaches for Improving Earth System Science Education in Middle Schools and High Schools in the United States (Invited)

    NASA Astrophysics Data System (ADS)

    Adams, P. E.

    2009-12-01

    Earth system science is an often neglected subject in the US science curriculum. The state of Kansas State Department of Education, for example, has provided teachers with a curriculum guide for incorporating earth system science as an ancillary topic within the subjects of physics, chemistry, and the biological sciences. While this does provide a means to have earth system science within the curriculum, it relegates earth system science topics to a secondary status. In practice, earth system science topics are considered optional or only taught if there is time within an already an overly crowded curriculum. Given the importance of developing an educated citizenry that is capable of understanding, coping, and deciding how to live in a world where climate change is a reality requires a deeper understanding of earth system science. The de-emphasis of earth system science in favor of other science disciplines makes it imperative to seek opportunities to provide teachers, whose primary subject is not earth system science, with professional development opportunities to develop content knowledge understanding of earth system science, and pedagogical content knowledge (i.e. effective strategies for teaching earth system science). This is a noble goal, but there is no single method. At Fort Hays State University we have developed multiple strategies from face-to-face workshops, on-line coursework, and academic year virtual and face-to-face consultations with in-service and pre-service teachers. A review of the techniques and measures of effectiveness (based on teacher and student performance), and strengths and limitations of each method will be presented as an aid to other institutions and programs seeking to improve the teaching and learning of earth system science in their region.

  1. Science and students with mental retardation: An analysis of curriculum features and learner characteristics

    NASA Astrophysics Data System (ADS)

    Scruggs, Thomas E.; Mastropieri, Margo A.

    Although much research has been conducted on the learning characteristics of individuals with mental retardation, science learning of such individuals has received far less attention. In this investigation, students with mental retardation were observed over a 2-year period, in order to determine how the characteristics of mental retardation manifested themselves in the context of inquiry-oriented, hands-on science curriculum. Analysis of all relevant data sources, including observations and field notes, videotape and audiotape recordings, student products, and interviews, suggested that several characteristics commonly attributed to students with mild mental retardation were observed to interact with the science curriculum. These characteristics included attention, semantic memory, logical reasoning, and outerdirectedness. However, teachers were skilled at adapting instruction to meet the special needs of these learners. Implications for teaching science to students with mental retardation are provided.

  2. Integrating Information Literacy and Evidence-Based Medicine Content within a New School of Medicine Curriculum: Process and Outcome.

    PubMed

    Muellenbach, Joanne M; Houk, Kathryn M; E Thimons, Dana; Rodriguez, Bredny

    2018-01-01

    This column describes a process for integrating information literacy (IL) and evidence-based medicine (EBM) content within a new school of medicine curriculum. The project was a collaborative effort among health sciences librarians, curriculum deans, directors, and faculty. The health sciences librarians became members of the curriculum committees, developed a successful proposal for IL and EBM content within the curriculum, and were invited to become course instructors for Analytics in Medicine. As course instructors, the librarians worked with the other faculty instructors to design and deliver active learning class sessions based on a flipped classroom approach using a proprietary Information Mastery curriculum. Results of this collaboration may add to the knowledge base of attitudes and skills needed to practice as full faculty partners in curricular design and instruction.

  3. Graduates from a reformed undergraduate medical curriculum based on Tomorrow's Doctors evaluate the effectiveness of their curriculum 6 years after graduation through interviews.

    PubMed

    Watmough, Simon D; O'Sullivan, Helen; Taylor, David C M

    2010-09-29

    In 1996 Liverpool reformed its medical curriculum from a traditional lecture based course to a curriculum based on the recommendations in Tomorrow's Doctors. A project has been underway since 2000 to evaluate this change. This paper focuses on the views of graduates from that reformed curriculum 6 years after they had graduated. Between 2007 and 2009 45 interviews took place with doctors from the first two cohorts to graduate from the reformed curriculum. The interviewees felt like they had been clinically well prepared to work as doctors and in particular had graduated with good clinical and communication skills and had a good knowledge of what the role of doctor entailed. They also felt they had good self directed learning and research skills. They did feel their basic science knowledge level was weaker than traditional graduates and perceived they had to work harder to pass postgraduate exams. Whilst many had enjoyed the curriculum and in particular the clinical skills resource centre and the clinical exposure of the final year including the "shadowing" and A & E attachment they would have liked more "structure" alongside the PBL when learning the basic sciences. According to the graduates themselves many of the aims of curriculum reform have been met by the reformed curriculum and they were well prepared clinically to work as doctors. However, further reforms may be needed to give confidence to science knowledge acquisition.

  4. Yes! The Business Department Teaches Data Processing

    ERIC Educational Resources Information Center

    Nord, Daryl; Seymour, Tom

    1978-01-01

    After a brief discussion of the history and current status of business data processing versus computer science, this article focuses on the characteristics of a business data processing curriculum as compared to a computer science curriculum, including distinctions between the FORTRAN and COBOL programming languages. (SH)

  5. Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational Services.

    Designed for use in the Connecticut Regional Vocational Agriculture Centers, this curriculum provides exploratory and specialization units for four major areas of agriculture. These are Agriculture Mechanics, Animal Science, Natural Resources, and Plant Science. The exploratory units are required for grades 9 and 10, while the specialization units…

  6. Embodied Cognition and Curriculum Construction

    ERIC Educational Resources Information Center

    Wang, Mei-qian; Zheng, Xu-dong

    2018-01-01

    The disembodiment of cognitive science has resulted in curricula with disembodied concepts and practice. The emergence of the embodied cognitive science provoked public reflections on the nature of the curriculum. This has elevated the body from the "peripheral" position to the "central" position, acting as the subject in…

  7. News

    NASA Astrophysics Data System (ADS)

    2001-05-01

    LINKS WITH PRIMARY SCIENCE SAD Physics; PHYSICS RESEARCH In a hurry...; PHYSICS COMMUNITY Scottish Stirling Meeting; PHYSICS AT CONGRESS Global warming forecasts rise in skin cancer; EVENTS 2001 SET week; E-MAIL DISCUSSIONS Learning in science; STUDENT ACTIVITY Paperclip Physics; CURRICULUM DEVELOPMENT Perspectives on Science; AWARDS Award for causing chaos; PHYSICS AT CONGRESS Physics and public heath: Do electrical power lines cause cancer? HIGHER EDUCATION First-year course development; INTERSCHOOL COLLABORATION Monitoring geomagnetic storms; CURRICULUM DEVELOPMENT UK course goes international; PHYSICS IN SCIENCE YEAR Website launched

  8. Using Web 2.0 Technology to Enhance the Science Curriculum in Your School

    ERIC Educational Resources Information Center

    Hainsworth, Mark

    2017-01-01

    The author shares his vision of what 21st century science education might look like in the future and discusses how to develop an e-learning capability to shape the science curriculum in your school. Good teaching and learning should always be a teacher's first priority but there is little doubt in the author's mind that the implementation of an…

  9. Impacts of a Place-Based Science Curriculum on Student Place Attachment in Hawaiian and Western Cultural Institutions at an Urban High School in Hawai'i

    ERIC Educational Resources Information Center

    Kuwahara, Jennifer L. H.

    2013-01-01

    This study investigates how students' participation in a place-based science curriculum may influence their place attachment (dependence and identity). Participants attend an urban high school in Hawai'i and are members of different cultural institutions within the school. Students are either enrolled in an environmental science class within the…

  10. Curriculum Package: Elementary Science Lessons. [A Visit to the Louisville, Kentucky Airports: Standiford and Bowman Fields.

    ERIC Educational Resources Information Center

    Squires, Frances H.

    This science curriculum was written for teachers of children in the elementary grades. It contains science activities for the following lessons: (1) Whirly Birds and the Concept of Lift; (2) Parachutes; (3) Weather Vanes; (4) Paper Airplanes; (5) Flying an Airplane; (6) Jet Engine; (7) Identifying Flying Objects; (8) It's a Bird! It's a Plane; (9)…

  11. Maximising Students' Progress and Engagement in Science through the Use of the Biological Sciences Curriculum Study (BSCS) 5E Instructional Model

    ERIC Educational Resources Information Center

    Hoskins, Peter

    2013-01-01

    The Biological Sciences Curriculum Studies (BSCS) 5E Instructional Model (often referred to as the 5Es) consists of five phases. Each phase has a specific function and contributes both to teachers' coherent instruction and to students' formulation of a better understanding of scientific knowledge, attitudes and skills. Evidence indicates that the…

  12. From Secret Garden to Crowded Marketplace: Fifty Years of ASE and the Science Curriculum

    ERIC Educational Resources Information Center

    Hollins, Martin

    2013-01-01

    This article charts some of the most notable ways in which the science curriculum has changed over the past 50 years and identifies the influence of members of the Association for Science Education (ASE) in both projects and policy developments. The world is different from that of 50 years ago but there are continuing issues about the teaching,…

  13. Investigating Consistency of Questions in Primary and Middle School Science Textbooks with Objectives in Science Curriculum

    ERIC Educational Resources Information Center

    Yaman, Süleyman

    2017-01-01

    Due to problems related their content and use; textbooks do not achieve the expected effect in learning although they are one of the most important elements of the science curriculum. Questions in textbooks are also important criteria in determining the effect of textbooks. In this study, it was aimed to compare questions in four different science…

  14. Bridging American Indian Culture and the New Science Paradigm. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    ERIC Educational Resources Information Center

    Jacobs, Cecelia; Smiley-Marquez, Carolyna

    People generally learn best when information is presented to them in a culturally and socially relevant context or framework. This issue is addressed by the Science of Alcohol Curriculum for American Indians through the use of the Medicine Circle, a model that represents the concepts of wholeness, interconnectedness, and balance in a manner…

  15. Student experience of school science

    NASA Astrophysics Data System (ADS)

    Shirazi, Shaista

    2017-09-01

    This paper presents the findings of a two-phase mixed methods research study that explores the link between experiences of school science of post-16 students and their decisions to take up science for their higher studies. In the first phase, students aged 16-17 (n = 569) reflected on the past five years of their school science experience in a quasi-longitudinal approach to determine a typology of experiences. The second phase entailed data collection through interviews of a sample of these students (n = 55) to help triangulate and extend findings from the first phase. Students taking up science post-16 reported significantly more positive experiences of school science than students who had decided not to take science further. Of school-related factors influencing experiences of school science curriculum content was the most important followed by being interested and motivated in the subject. There is evidence that interest and motivation in science depend on teacher practice and the perception of science as a difficult subject.

  16. The impact of computer-based versus "traditional" textbook science instruction on selected student learning outcomes

    NASA Astrophysics Data System (ADS)

    Rothman, Alan H.

    This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking-inquiry skills. These conclusions support the value of a non-traditional, computer-based approach to instruction, such as exemplified by The Voyage of the Mimi curriculum, and a recommendation for reform in science teaching that has recommended the use of computer technology to enhance learning outcomes from science instruction to assist in reversing the trend toward what has been perceived to be relatively poor science performance by American students, as documented by the 1996 Third International Mathematics and Science Study (TIMSS).

  17. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media, argumentation, risk analysis, and pedagogical aspects of SSI-based instruction should be incorporated into educational courses designed for the Turkish teacher education programs such as the science teaching methods course. When we find ways to improve PSTs or science teachers' SSI teaching practices in terms of these components, we can provide useful information for curriculum developers, policy-makers, and science educators in Turkey and other countries, that are facing similar problems. We believe that this study would initiate more investigative and exploratory studies toward this goal.

  18. Developing a Curriculum for Information and Communications Technology Use in Global Health Research and Training: A Qualitative Study Among Chinese Health Sciences Graduate Students

    PubMed Central

    Yang, Lan; Huang, Kaiyong; Yu, Hongping; He, Huimin; Wang, Jiaji; Cai, Le; Wang, Jie; Fu, Hua; Quintiliani, Lisa; Friedman, Robert H; Xiao, Jian

    2017-01-01

    Background Rapid development of information and communications technology (ICT) during the last decade has transformed biomedical and population-based research and has become an essential part of many types of research and educational programs. However, access to these ICT resources and the capacity to use them in global health research are often lacking in low- and middle-income country (LMIC) institutions. Objective The aim of our study was to assess the practical issues (ie, perceptions and learning needs) of ICT use among health sciences graduate students at 6 major medical universities of southern China. Methods Ten focus group discussions (FGDs) were conducted from December 2015 to March 2016, involving 74 health sciences graduate students studying at 6 major medical universities in southern China. The sampling method was opportunistic, accounting for the graduate program enrolled and the academic year. All FGDs were audio recorded and thematic content analysis was performed. Results Researchers had different views and arguments about the use of ICT which are summarized under six themes: (1) ICT use in routine research, (2) ICT-related training experiences, (3) understanding about the pros and cons of Web-based training, (4) attitudes toward the design of ICT training curriculum, (5) potential challenges to promoting ICT courses, and (6) related marketing strategies for ICT training curriculum. Many graduate students used ICT on a daily basis in their research to stay up-to-date on current development in their area of research or study or practice. The participants were very willing to participate in ICT courses that were relevant to their academic majors and would count credits. Suggestion for an ICT curriculum included (1) both organized training course or short lecture series, depending on the background and specialty of the students, (2) a mixture of lecture and Web-based activities, and (3) inclusion of topics that are career focused. Conclusions The findings of this study suggest that a need exists for a specialized curriculum related to ICT use in health research for health sciences graduate students in China. The results have important implications for the design and implementation of ICT-related educational program in China or other developing countries. PMID:28606894

  19. Language games: Christian fundamentalism and the science curriculum

    NASA Astrophysics Data System (ADS)

    Freund, Cheryl J.

    Eighty years after the Scope's Trial, the debate over evolution in the public school curriculum is alive and well. Historically, Christian fundamentalists, the chief opponents of evolution in the public schools, have used the court system to force policymakers, to adopt their ideology regarding evolution in the science curriculum. However, in recent decades their strategy has shifted from the courts to the local level, where they pressure teachers and school boards to include "alternate theories" and the alleged "flaws" and "inconsistencies" of evolution in the science curriculum. The purpose of this content analysis study was to answer the question: How do Christian fundamentalists employ rhetorical strategies to influence the science curriculum? The rhetorical content of several public legal and media documents resulting from a lawsuit filed against the Athens Public Schools by the American Center of Law and Justice were analyzed for the types of rhetorical strategies employed by the participants engaged in the scientific, legal, and public discourse communities. The study employed an analytical schema based on Ludwig Wittgenstein's theory of language games, Lawrence Prelli's theory of discourse communities, and Michael Apple's notion of constitutive and preference rules. Ultimately, this study revealed that adroit use of the constitutive and preference rules of the legal and public discourse communities allowed the school district to reframe the creation-evolution debate, thereby avoiding a public spectacle and ameliorating the power of creationist language to affect change in the science curriculum. In addition, the study reinforced the assertion that speakers enjoy the most persuasive power when they attend to the preference rules of the public discourse community.

  20. Teachers' Sensemaking about Implementation of an Innovative Science Curriculum Across the Settings of Professional Development and Classroom Enactment

    NASA Astrophysics Data System (ADS)

    de los Santos, Xeng

    Designing professional development that effectively supports teachers in learning new and often challenging practices remains a dilemma for teacher educators. Within the context of current reform efforts in science education, such as the Next Generation Science Standards, teacher educators are faced with managing the dilemma of how to support a large number of teachers in learning new practices while also considering factors such as time, cost, and effectiveness. Implementation of educative, reform-aligned curricula is one way to reach many teachers at once. However, one question is whether large-scale curriculum implementation can effectively support teachers in learning and sustaining new teaching practices. To address this dilemma, this study used a comparative, multiple case study design to investigate how secondary science teachers engaged in sensemaking about implementation of an innovative science curriculum across the settings of professional development and classroom enactment. In using the concept of sensemaking from organizational theory, I focused specifically on how teachers' roles in social organizations influenced their decisions to implement the curriculum in particular ways, with differing outcomes for their own learning and students' engagement in three-dimensional learning. My research questions explored: (1) patterns in teachers' occasions of sensemaking, including critical noticing of interactions among themselves, the curriculum, and their students; (2) how teachers' social commitments to different communities influenced their sensemaking; and, (3) how sustained sensemaking over time could facilitate teacher learning of rigorous and responsive science teaching practices. In privileging teachers' experiences in the classroom using the curriculum with their students, I used data generated primarily from teacher interviews with their case study coaches about implementation over the course of one school year. Secondary sources of data included artifacts such as teacher-modified curriculum materials, classroom observation notes, and video-recordings of classroom instruction and professional development sessions. Data analysis involved descriptive coding of the interview transcripts and searching for linguistic markers related to components of an occasions of sensemaking. Findings show that teachers engaged in sensemaking about curriculum implementation in multiple and different ways that were either productive or unproductive for their learning of rigorous and responsive science teaching practices. Teachers that had productive outcomes for teacher learning were engaged in sustained sensemaking that involved critical noticing of interactions between the curriculum, themselves, and their students, with the goal of bridging the gap between what the curriculum offered and what their students could do. In contrast, teachers that had unproductive outcomes for teacher learning were engaged in sensemaking that often involved critical noticing of only one aspect and were motivated by local obligations. Four themes emerged: sustained sensemaking over time, the influence of school communities, teacher learning of content, and the influence of teachers' beliefs. Using these findings and themes, I present a model for teacher sensemaking within the context of long-term professional development around implementation of an innovative curriculum, with a mechanism for how teacher learning could occur over time. Implications for science teacher professional development and learning and directions for future research are offered.

Top