Tribology. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Havas, George D., Comp.
Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…
NASA Astrophysics Data System (ADS)
Kövér, László
2014-10-01
This Special Issue of the journal Applied Surface Science contains full papers from a selection of contributions presented in the Applied Surface Science sessions of the 19th International Vacuum Congress (IVC-19) held in the Palais des Congrès, Paris, between September 9 and 13, 2013. The triennial IVC conferences represent major meetings in the field of the vacuum related sciences and are the largest scientific events of the International Union for Vacuum Science, Technique and Applications (IUVSTA). The IVC-19 and partner conferences had altogether 2555 participants. Supported by the Applied Surface Science Division of IUVSTA, the Applied Surface Science part was one of the most attended among the sub-conferences of the IVC-19. This Special Issue - without trying to achieve completeness - intends to provide a cross section of the topics of the Applied Surface Science and joint sessions of the IVC-19, covering important fields such as Surface Analysis, Surface Modifications, Surface Chemistry and Catalysis, Quantitative Surface and Interface Analysis, Coatings, Tribology, Adhesion, Characterization of Nanomaterials, Energy and Sustainable Development, Self Assembly, Nano-instrumentation, SPM and Novel Probe Techniques, New Approaches and Novel Applications of Surface/Interface Analytical Methods.
NASA Technical Reports Server (NTRS)
Eppler, Dean B.
2013-01-01
The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team.
Surface chemistry at Swiss Universities of Applied Sciences.
Brodard, Pierre; Pfeifer, Marc E; Adlhart, Christian D; Pieles, Uwe; Shahgaldian, Patrick
2014-01-01
In the Swiss Universities of Applied Sciences, a number of research groups are involved in surface science, with different methodological approaches and a broad range of sophisticated characterization techniques. A snapshot of the current research going on in different groups from the University of Applied Sciences and Arts Western Switzerland (HES-SO), the Zurich University of Applied Sciences (ZHAW) and the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) is given.
Quantitative biological surface science: challenges and recent advances.
Höök, Fredrik; Kasemo, Bengt; Grunze, Michael; Zauscher, Stefan
2008-12-23
Biological surface science is a broad, interdisciplinary subfield of surface science, where properties and processes at biological and synthetic surfaces and interfaces are investigated, and where biofunctional surfaces are fabricated. The need to study and to understand biological surfaces and interfaces in liquid environments provides sizable challenges as well as fascinating opportunities. Here, we report on recent progress in biological surface science that was described within the program assembled by the Biomaterial Interface Division of the Science and Technology of Materials, Interfaces and Processes (www.avs.org) during their 55th International Symposium and Exhibition held in Boston, October 19-24, 2008. The selected examples show that the rapid progress in nanoscience and nanotechnology, hand-in-hand with theory and simulation, provides increasingly sophisticated methods and tools to unravel the mechanisms and details of complex processes at biological surfaces and in-depth understanding of biomolecular surface interactions.
Human Mars Surface Science Operations
NASA Technical Reports Server (NTRS)
Bobskill, Marianne R.; Lupisella, Mark L.
2014-01-01
Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address.
Special Issue: European Conference on Surface Science 2014
NASA Astrophysics Data System (ADS)
Opila, Robert L.; Ertas, Gulay
2015-11-01
The present Special Issue of Applied Surface Science is intended to provide a collection of peer-reviewed contributions presented at the Symposium "European Conference on Surface Science" held in Antalya (Turkey), August 31-September 5, 2014. This conference is organized annually through the joint efforts of the Surface Science Division of IUVSTA and the Surface and Interface Section of the European Physical Society (EPS). The ECOSS conference series started in 1978 in Amsterdam, Netherlands, and has been held in various cities throughout Europe during the past years. This is the first time that an ECOSS conference was held in Turkey, with the chairmanship of Prof. Sefik Suzer of Bilkent University, Ankara.
Workshop on Surface Science and Technology Held in Ann Arbor, Michigan on 7-9 November 1990
1992-03-01
assess the state of the art of surface science and technology as well as to identify new research opportunities essential for the understanding and control...The objective of this workshop was to review and assess the state of the art of surface science and technology as well as to identify new research...AD-A253 566 ’ # 4 - m~~i n~nl lInIir ~~ na Ri1 ?epoi’rt: EN 1Workshop on Surface Science and Technology DTIC ft , L-CTE I OUG0 3192 Ann Arbor
Geologic Traverse Planning for Apollo Missions
NASA Technical Reports Server (NTRS)
Lofgren, Gary
2012-01-01
The science on Apollo missions was overseen by the Science Working Panel (SWP), but done by multiple PIs. There were two types of science, packages like the Apollo Lunar Surface Experiment Package (ALSEP) and traverse science. Traverses were designed on Earth for the astronauts to execute. These were under direction of the Lunar Surface PI, but the agreed traverse was a cooperation between the PI and SWP. The landing sites were selected by a different designated committee, not the SWP, and were based on science and safety.
Titan Lifting Entry & Atmospheric Flight (T-LEAF) Science Mission
NASA Astrophysics Data System (ADS)
Lee, G.; Sen, B.; Ross, F.; Sokol, D.
2016-12-01
Northrop Grumman has been developing the Titan Lifting Entry & Atmospheric Flight (T-LEAF) sky rover to roam the lower atmosphere and observe at close quarters the lakes and plains of Saturn's ocean moon, Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in-situ instruments to the surface of Titan. T-LEAF is a highly maneuverable sky rover and its aerodynamic shape (i.e., a flying wing) does not restrict it to following prevailing wind patterns on Titan, but allows mission operators to chart its course. This freedom of mobility allows T-LEAF to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations. We will present a straw man concept of T-LEAF, including size, mass, power, on-board science payloads and measurement, and surface science dropsonde deployment CONOPS. We will discuss the various science instruments and their vehicle level impacts, such as meteorological and electric field sensors, acoustic sensors for measuring shallow depths, multi-spectral imagers, high definition cameras and surface science dropsondes. The stability of T-LEAF and its long residence time on Titan will provide for time to perform a large aerial survey of select prime surface targets deployment of dropsondes at selected locations surface measurements that are coordinated with on-board remote measurements communication relay capabilities to orbiter (or Earth). In this context, we will specifically focus upon key factors impacting the design and performance of T-LEAF science: science payload accommodation, constraints and opportunities characteristics of flight, payload deployment and measurement CONOPS in the Titan atmosphere. This presentation will show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of Titan's surface.
Lunar Science Enabled by the Deep Space Gateway and PHASR Rover
NASA Astrophysics Data System (ADS)
Bakambu, J. N.; Shaw, A.; Fulford, P.; Osinski, G.; Bourassa, M.; Rehmatullah, F.; Zanetti, M.; Rembala, R.
2018-02-01
The Deep Space Gateway will be a tremendous boon to lunar surface science. It will enable the PHASR Rover, a concept for a Canadian rover system, with international contributions and the goal of sample acquisition and lunar surface science.
Developing Science Operations Concepts for the Future of Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley, P. L.; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.
2017-02-01
Human exploration of other planetary bodies is crucial in answering critical science questions about our solar system. As we seek to put humans on other surfaces by 2050, we must understand the science operations concepts needed for planetary EVA.
Science Syllabus for Middle and Junior High Schools. Block D, The Earth's Changing Surface.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of General Education Curriculum Development.
This syllabus begins with a list of program objectives and performance criteria for the study of three general topic areas in earth science and a list of 22 science processes. Following this information is a listing of concepts and understandings for subtopics within the general topic areas: (1) the earth's surface--surface features, rock…
A Surface Science Perspective on TiO2 Photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.
2011-06-15
The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.
The 2010 Desert Rats Science Operations Test: Outcomes and Lessons Learned
NASA Technical Reports Server (NTRS)
Eppler, D. B.
2011-01-01
The Desert RATS 2010 Team tested a variety of science operations management techniques, applying experience gained during the manned Apollo missions and the robotic Mars missions. This test assessed integrated science operations management of human planetary exploration using real-time, tactical science operations to oversee daily crew science activities, and a night shift strategic science operations team to conduct strategic level assessment of science data and daily traverse results. In addition, an attempt was made to collect numerical metric data on the outcome of the science operations to assist test evaluation. The two most important outcomes were 1) the production of significant (almost overwhelming) volume of data produced during daily traverse operations with two rovers, advanced imaging systems and well trained, scientifically proficient crew-members, and 2) the degree to which the tactical team s interaction with the surface crew enhanced science return. This interaction depended on continuous real-time voice and data communications, and the quality of science return from any human planetary exploration mission will be based strongly on the aggregate interaction between a well trained surface crew and a dedicated science operations support team using voice and imaging data from a planet s surface. In addition, the scientific insight developed by both the science operations team and the crews could not be measurable by simple numerical quantities, and its value will be missed by a purely metric-based evaluation of test outcome. In particular, failure to recognize the critical importance of this qualitative type interaction may result in mission architecture choices that will reduce science return.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Schaaf, Peter
2018-07-01
This special issue of the high impact international peer reviewed journal Applied Surface Science represents the proceedings of the 2nd International Conference on Applied Surface Science ICASS held 12-16 June 2017 in Dalian China. The conference provided a forum for researchers in all areas of applied surface science to present their work. The main topics of the conference are in line with the most popular areas of research reported in Applied Surface Science. Thus, this issue includes current research on the role and use of surfaces in chemical and physical processes, related to catalysis, electrochemistry, surface engineering and functionalization, biointerfaces, semiconductors, 2D-layered materials, surface nanotechnology, energy, new/functional materials and nanotechnology. Also the various techniques and characterization methods will be discussed. Hence, scientific research on the atomic and molecular level of material properties investigated with specific surface analytical techniques and/or computational methods is essential for any further progress in these fields.
A Preliminary Examination of Science Backroom Roles and Activities for Robotic Lunar Surface Science
NASA Astrophysics Data System (ADS)
Fong, T.; Deans, M.; Smith, T.; Lee, P.; Heldmann, J.; Pacis, E.; Schreckenghost, D.; Landis, R.; Osborn, J.; Kring, D.; Heggy, E.; Mishkin, A.; Snook, K.; Stoker, C.
2008-07-01
To understand the utility of a science backroom for the current lunar architecture, we are developing a new ground control structure for human and robot surface activity. In June 2008, we began examining this structure through a series of analog field tests.
NASA Astrophysics Data System (ADS)
Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar
2018-01-01
The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science, approaches to learning science, and self-efficacy. The exploratory factor analysis and confirmatory factor analysis were adopted to validate three instruments. The path analysis was employed to understand the relationships between conceptions of learning science, approaches to learning science, and self-efficacy. The findings indicated that students' lower level conceptions of learning science positively influenced their surface approaches in learning science. Higher level conceptions of learning science had a positive influence on deep approaches and a negative influence on surface approaches to learning science. Furthermore, self-efficacy was also a hierarchical construct and can be divided into the lower level and higher level. Only students' deep approaches to learning science had a positive influence on their lower and higher level of self-efficacy in learning science. The results were discussed in the context of the implications for teachers and future studies.
The birth and evolution of surface science: child of the union of science and technology.
Duke, C B
2003-04-01
This article is an account of the birth and evolution of surface science as an interdisciplinary research area. Surface science emanated from the confluence of concepts and tools in physics and chemistry with technological innovations that made it possible to determine the structure and properties of surfaces and interfaces and the dynamics of chemical reactions at surfaces. The combination in the 1960s and 1970s of ultra-high-vacuum (i.e., P < 10(-7) Pascal or 10(-9) Torr) technology with the recognition that electrons in the energy range from 50 to 500 eV exhibited inelastic collision mean free paths of the order of a few angstroms fostered an explosion of activity. The results were a reformulation of the theory of electron solid scattering, the nearly universal use of electron spectroscopies for surface characterization, the rise of surface science as an independent interdisciplinary research area, and the emergence of the American Vacuum Society (AVS) as a major international scientific society. The rise of microelectronics in the 1970s and 1980s resulted in huge increases in computational power. These increases enabled more complex experiments and the utilization of density functional theory for the quantitative prediction of surface structure and dynamics. Development of scanning-probe microscopies in the 1990s led to atomic-resolution images of macroscopic surfaces and interfaces as well as videos of atoms moving about on surfaces during growth and diffusion. Scanning probes have since brought solid-liquid interfaces into the realm of atomic-level surface science, expanding its scope to more complex systems, including fragile biological materials and processes.
Surface-Water Quality-Assurance Plan for the USGS Wisconsin Water Science Center
Garn, H.S.
2007-01-01
This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin Water Science Center of the U.S. Geological Survey, Water Resources Discipline, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of Water Science Center personnel in following these policies and procedures including those related to safety and training are presented.
A microelectronics approach for the ROSETTA surface science package
NASA Technical Reports Server (NTRS)
Sandau, Rainer (Editor); Alkalaj, Leon
1996-01-01
In relation to the Rosetta surface science package, the benefits of the application of advanced microelectronics packaging technologies and other output from the Mars environmental survey (MESUR) integrated microelectronics study are reported on. The surface science package will be designed to operate for tens of hours. Its limited mass and power consumption make necessary a highly integrated design with all the instruments and subunits operated from a centralized control and information management subsystem.
Europa Science Platforms and Kinetic Energy Probes
NASA Technical Reports Server (NTRS)
Hays, C. C.; Klein, G. A.
2003-01-01
This presentation will outline a proposed mission for the Jupiter Icy Moons Orbiter (JIMO). The mission outlined will concentrate on an examination of Europa. Some of the primary science goals for the JIMO mission are: 1) to answer broad science questions, 2) improved knowledge of Jovian system; specifically, lunar geological and geophysical properties, 3) chemical composition of Jovian lunar surfaces and subterranean matter, and 4) the search for life. In order to address these issues, the experiment proposed here will deploy orbiting, surface, and subterranean science platforms.
ERIC Educational Resources Information Center
Taylor, Amy; Jones, Gail
2009-01-01
The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…
Topical, Yes, but It Dives beneath the Surface
ERIC Educational Resources Information Center
Tyler, Paul
2017-01-01
Topical science is about developing an awareness of science issues in the news and the importance of science stories that affect pupils' lives and the world around them. It is about making science relevant for pupils and engaging them in the subject. The author explores how children can be engaged and inspired through topical science. The idea of…
The birth and evolution of surface science: Child of the union of science and technology
Duke, C. B.
2003-01-01
This article is an account of the birth and evolution of surface science as an interdisciplinary research area. Surface science emanated from the confluence of concepts and tools in physics and chemistry with technological innovations that made it possible to determine the structure and properties of surfaces and interfaces and the dynamics of chemical reactions at surfaces. The combination in the 1960s and 1970s of ultra-high-vacuum (i.e., P < 10−7 Pascal or 10−9 Torr) technology with the recognition that electrons in the energy range from 50 to 500 eV exhibited inelastic collision mean free paths of the order of a few angstroms fostered an explosion of activity. The results were a reformulation of the theory of electron solid scattering, the nearly universal use of electron spectroscopies for surface characterization, the rise of surface science as an independent interdisciplinary research area, and the emergence of the American Vacuum Society (AVS) as a major international scientific society. The rise of microelectronics in the 1970s and 1980s resulted in huge increases in computational power. These increases enabled more complex experiments and the utilization of density functional theory for the quantitative prediction of surface structure and dynamics. Development of scanning-probe microscopies in the 1990s led to atomic-resolution images of macroscopic surfaces and interfaces as well as videos of atoms moving about on surfaces during growth and diffusion. Scanning probes have since brought solid–liquid interfaces into the realm of atomic-level surface science, expanding its scope to more complex systems, including fragile biological materials and processes. PMID:12651946
A Surface Science Paradigm for a Post-Huygens Titan Mission
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne F.; Lunine, Jonathan; Lorenz, Ralph
2005-01-01
With the Cassini-Huygens atmospheric probe drop-off mission fast approaching, it is essential that scientists and engineers start scoping potential follow-on surface science missions. This paper provides a summary of the first year of a two year design study which examines in detail the desired surface science measurements and resolution, potential instrument suite, and complete payload delivery system. Also provided are design concepts for both an aerial inflatable mobility platform and deployable instrument sonde. The tethered deployable sonde provides the capability to sample near surface atmosphere, sub-surface liquid (if it exists), and surface solid material. Actual laboratory tests of the amphibious sonde prototype are also presented.
A Course in Colloid and Surface Science.
ERIC Educational Resources Information Center
Scamehorn, John F.
1984-01-01
Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)
2011 Mars Science Laboratory Mission Design Overview
NASA Technical Reports Server (NTRS)
Abilleira, Fernando
2010-01-01
Scheduled to launch in the fall of 2011 with arrival at Mars occurring in the summer of 2012, NASA's Mars Science Laboratory will explore and assess whether Mars ever had conditions capable of supporting microbial life. In order to achieve its science objectives, the Mars Science Laboratory will be equipped with the most advanced suite of instruments ever sent to the surface of the Red Planet. Delivering the next mobile science laboratory safely to the surface of Mars has various key challenges derived from a strict set of requirements which include launch vehicle performance, spacecraft mass, communications coverage during Entry, Descent, and Landing, atmosphere-relative entry speeds, latitude accessibility, and dust storm season avoidance among others. The Mars Science Laboratory launch/arrival strategy selected after careful review satisfies all these mission requirements.
Enhancing Return from Lunar Surface Missions via the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Chavers, D. G.; Whitley, R. J.; Percy, T. K.; Needham, D. H.; Polsgrove, T. T.
2018-02-01
The Deep Space Gateway (DSG) will facilitate access to and communication with lunar surface assets. With a science airlock, docking port, and refueling capability in an accessible orbit, the DSG will enable high priority science across the lunar surface.
Analysis of Low Frequency Ground Motions Induced by Near-Surface and Atmospheric Explosions.
1982-08-01
Library S-CUBED ATTN: J. Murphy Institute for Defense Analyses ATTN: Classified Library Science Applications, Inc ATTN: Technical Library Kaman...AviDyne ATTN: Library Science Applications, Inc ATTN: N. Hobbs ATTN: D. Maxwell ATTN: D. Bernstein Kaman Sciences Corp ATTN: Library Science Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Weidian
This project, “Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan” was carried out in two phases: (1) the 2009 – 2012 renovation of space in the new EMU Science Complex, which included the Surface Science Laboratory (SSL), a very vigorous research lab at EMU that carries on a variety of research projects to serve the auto and other industries in Michigan; and (2) the 2013 purchase of several pieces of equipment to further enhance the research capability of the SSL. The funding granted by the DoE was proposed to “renovate the space in the Science Complexmore » to include SSL and purchase equipment for tribological and electrochemical impedance measurements in the lab, thus SSL will serve the auto and other industries in Michigan better.” We believe we have fully accomplished the mission.« less
A Surface Science Paradigm for a Post-Huygens Titan Mission
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Lunine, Jonathan; Lorenz, Ralph
2004-01-01
With the Cassini-Huygens atmospheric probe drop-off mission fast approaching, it is essential that scientists and engineers start scoping potential follow-on surface science missions. This paper provides a summary of the first year of a two year design study which examines in detail the desired surface science measurements and resolution, potential instrument suite, and complete payload delivery system. Also provided are design concepts for both an aerial inflatable mobility platform and deployable instrument sonde. The tethered deployable sonde provides the capability to sample nearsurface atmosphere, sub-surface liquid (if it exists), and surface solid material. Actual laboratory tests of the amphibious sonde prototype are also presented.
Mars Science and Telecommunications Orbiter: Report of the Science Analysis Group, March 2006
NASA Technical Reports Server (NTRS)
Farmer, Crofton Barney; Calvin, Wendy M.; Campbell, Bruce; Fox, Jane; Haberle, Bob; Kasting, Jim; Luhmann, Janet; Nagy, Andy; Allen, Mark; Winterhalter, Daniel
2006-01-01
This document reports the findings of the Mars Science and Telecommunications Orbiter (MSTO) Science Advocacy Group (SAG), which was convened by the Mars Exploration Program Analysis Group (MEPAG) and the Mars Exploration Office at JPL to identify and prioritize areas of Mars atmospheric and surface science objectives for Mars that can be accomplished from orbit on a MSTO like mission.
NASA Astrophysics Data System (ADS)
Chi, P. J.
2017-10-01
We discuss the science to be enabled by new magnetometer measurements on the lunar surface, based on results from Apollo and other lunar missions. Also discussed are approaches to deploying magnetometers on the lunar surface with today's technology.
Philae Descent and Science of the Surface
2014-11-07
This artist concept of the Rosetta mission Philae lander on the surface of comet 67P/Churyumov-Gerasimenko, is from an animation showing the upcoming deployment of Philae and its subsequent science operations on the surface of the comet. http://photojournal.jpl.nasa.gov/catalog/PIA18891
Collaboration in teacher workshops and citizen science
NASA Astrophysics Data System (ADS)
Gibbs, M. G.; Buxner, S.; Gay, P.; Crown, D. A.; Bracey, G.; Gugliucci, N.; Costello, K.; Reilly, E.
2013-12-01
The Moon and Earth system is an important topic for elementary and middle school science classrooms. Elementary and middle school teachers are challenged to keep current in science. The Planetary Science Institute created a program titled Workshops in Science Education and Resources (WISER): Planetary Perspectives to assist in-service K-12 teachers with their knowledge in earth and space science, using up-to-date science and inquiry activities to assist them in engaging their students. To augment the science and add a new aspect for teacher professional development, PSI is working in a new partnership collaborating with the Cosmoquest project in engaging teachers in authentic inquiry of the Moon. Teachers now learn about the Moon from PSI scientists and education staff and then engage in inquiry of the Moon using CosmoQuest's online citizen science project MoonMappers and its accompanying classroom curriculum TerraLuna. Through MoonMappers, teachers and students explore the lunar surface by viewing high-resolution pictures from the Lunar Reconnaissance Orbiter and marking craters and other interesting features. In addition, TerraLuna provides a unit of inquiry-based activities that bring MoonMappers and its science content into the classroom. This program addresses standards teachers need to teach and helps them not only teach about the Moon but also engage their students in authentic inquiry of the lunar surface.
Teaching climate science within the transdisciplinary framework of Critical Zone science
NASA Astrophysics Data System (ADS)
White, T. S.; Wymore, A.; Dere, A. L. D.; Washburne, J. C.; Hoffman, A.; Conklin, M. H.
2017-12-01
During the past decade a new realm of Earth surface and environmental science has evolved, Critical Zone (CZ) science. The CZ is the outermost layer of the continents spanning from the top of the vegetation canopy down to the bottom of the fresh groundwater zone. CZ science integrates across many disciplines and cross cutting concepts, including climate science, and much progress has been made by the CZ community to develop educational curricula - descriptions of the climate science aspects of two of those follows. An interdisciplinary team of CZ scientists developed an undergraduate course entitled "Introduction to CZ science". The semester-long course is modular, has been tested in multiple university settings, and the content is available online. A primary tenet of the course is that to achieve environmental sustainability, society must understand the CZ system, the natural processes and services of the CZ that are of value to society, and how those processes operate with and without the presence of humanity. A fundamental concept in the course is that the fluxes of water, C, energy, reactive gases, particulates and nutrients throughout the CZ are directly and indirectly related to climatic phenomenon and processes. Units on land-atmosphere interactions, weathering, and water budgets highlight the connection between CZ science and climate science, and are augmented by learning activities that consider climate links to soil development and landscape evolution. An online open-source course entitled "Earth 530: Earth Surface Processes in the Critical Zone'" is offered as part of The Pennsylvania State University's Masters of Education in Earth Sciences program. The course is designed to educate teachers interested in incorporating CZ science into their classrooms, though it is usable by anyone with a basic understanding of Earth surface and environmental science. Earth 530 introduces students to knowledge needed to understand the CZ through integration of transdisciplinary science. The course structure is organized into seven units; those covering the atmosphere and climate, water, and landforms, are of particular interest to this session. Earth 530 is unique from the introductory course discussed previously in that students also consider paleoclimate and future climate predictions as part of this curriculum.
A Framework for Lunar Surface Science Exploration
NASA Astrophysics Data System (ADS)
Eppler, D.; Bleacher, J.; Bell, E.; Cohen, B.; Deans, M.; Evans, C.; Graff, T.; Head, J.; Helper, M.; Hodges, K.; Hurtado, J.; Klaus, K.; Kring, D.; Schmitt, H.; Skinner, J.; Spudis, P.; Tewksbury, B.; Young, K.; Yingst, A.
2017-05-01
Successful lunar science will be dependent on mission concept, mobility, robotic/human assets, crew training, field tools, and IT assets. To achieve good science return, element integration must be considered at the start of any exploration program.
Asymptotic Parachute Performance Sensitivity
NASA Technical Reports Server (NTRS)
Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.
2006-01-01
In 2010, the Mars Science Laboratory mission will pioneer the next generation of robotic Entry, Descent, and Landing systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than any other mission to Mars, Mars Science Laboratory will also provide scientists with unprecedented access to regions of Mars that have been previously unreachable. By providing an Entry, Descent, and Landing system capable of landing at altitudes as high as 2 km above the reference gravitational equipotential surface, or areoid, as defined by the Mars Orbiting Laser Altimeter program, Mars Science Laboratory will demonstrate sufficient performance to land on 83% of the planet s surface. By contrast, the highest altitude landing to date on Mars has been the Mars Exploration Rover at 1.3 km below the areoid. The coupling of this improved altitude performance with latitude limits as large as 60 degrees off of the equator and a precise delivery to within 10 km of a surface target, will allow the science community to select the Mars Science Laboratory landing site from thousands of scientifically interesting possibilities. In meeting these requirements, Mars Science Laboratory is extending the limits of the Entry, Descent, and Landing technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Specifically, the drag deceleration provided by a Viking-heritage 16.15 m supersonic Disk-Gap-Band parachute in the thin atmosphere of Mars is insufficient, at the altitudes and ballistic coefficients under consideration by the Mars Science Laboratory project, to maintain necessary altitude performance and timeline margin. This paper defines and discusses the asymptotic parachute performance observed in Monte Carlo simulation and performance analysis and its effect on the Mars Science Laboratory Entry, Descent, and Landing architecture.
MSTD 2007 Publications and Patents
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W E
2008-04-01
The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less
NASA Astrophysics Data System (ADS)
Thangavelautham, J.; Asphaug, E.; Schwartz, S.
2017-02-01
Our work has identified the use of on-orbit centrifuge science laboratories as a key enabler towards low-cost, fast-track physical simulation of off-world environments for future planetary science missions.
Chemistry and Materials Science progress report, FY 1994. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-01
Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.
Venus Aerobot Surface Science Imaging System (VASSIS)
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
The VASSIS task was to design and develop an imaging system and container for operation above the surface of Venus in preparation for a Discovery-class mission involving a Venus aerobot balloon. The technical goals of the effort were to: a) evaluate the possible nadir-viewed surface image quality as a function of wavelength and altitude in the Venus lower atmosphere, b) design a pressure vessel to contain the imager and supporting electronics that will meet the environmental requirements of the VASSIS mission, c) design and build a prototype imaging system including an Active-Pixel Sensor camera head and VASSIS-like optics that will meet the science requirements. The VASSIS science team developed a set of science requirements for the imaging system upon which the development work of this task was based.
The ExoMars Rover Science Archive: Status and Plans
NASA Astrophysics Data System (ADS)
Heather, D.; Lim, T.; Metcalfe, L.
2017-09-01
The ExoMars program is a co-operation between ESA and Roscosmos comprising two missions: the first, launched on 14 March 2016, included the Trace Gas Orbiter and Schiaparelli lander; the second, due for launch in 2020, will be a Rover and Surface Platform (RSP). The ExoMars Rover and Surface Platform deliveries will be among the first data in the PSA to be formatted according to the new PDS4 Standards, and will be the first rover data to be hosted within the archive at all. The archiving and management of the science data to be returned from ExoMars will require a significant development effort for the new Planetary Science Archive (PSA). This presentation will outline the current plans for archiving of the ExoMars Rover and Surface Platform science data.
Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability
NASA Astrophysics Data System (ADS)
Pappalardo, Robert; Senske, David; Prockter, Louise; Paczkowski, Brian; Vance, Steve; Goldstein, Barry; Magner, Thomas; Cooke, Brian
2015-04-01
Europa is recognized by the Planetary Science De-cadal Survey as a prime candidate to search for a pre-sent-day habitable environment in our solar system. As such, NASA has pursued a series of studies, facilitated by a Europa Science Definition Team (SDT), to define a strategy to best advance our scientific understanding of this icy world with the science goal: Explore Europa to investigate its habitability. (In June of 2014, the SDT completed its task of identifying the overarching science objectives and investigations.) Working in concert with a technical team, a set of mission archi-tectures were evaluated to determine the best way to achieve the SDT defined science objectives. The fa-vored architecture would consist of a spacecraft in Ju-piter orbit making many close flybys of Europa, con-centrating on remote sensing to explore the moon. In-novative mission design would use gravitational per-turbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's sur-face, with nominally 45 close flybys, typically at alti-tudes from 25 to 100 km. This concept has become known as the Europa Clipper. The Europa SDT recommended three science ob-jectives for the Europa Clipper: Ice Shell and Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition: Understand the habitability of Europa's ocean through composition and chemistry; and Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa SDT also considered implications of the Hubble Space Telescope detection of possible plumes at Europa. To feed forward to potential subsequent future ex-ploration that could be enabled by a lander, it was deemed that the Europa Clipper mission concept should provide the capability to perform reconnais-sance for a future lander. In consultation with NASA Headquarters, the SDT developed a reconnaissance goal: Characterize Scientifically Compelling Sites, and Hazards, for a Potential Future Landed Mission to Europa. This leads to two reconnaissance objectives: Site Safety: Assess the distribution of surface hazards, the load-bearing capacity of the surface, the structure of the subsurface, and the regolith thickness; and Sci-ence Value: Assess the composition of surface materi-als, the geologic context of the surface, the potential for geological activity, the proximity of near surface water, and the potential for active upwelling of ocean material. The Europa Clipper mission concept provides an efficient means to explore Europa and investigate its habitability through understanding the satellite's ice shell and ocean, composition, and geology. It also provides for surface reconnaissance for potential future landed exploration of Europa. Development of the Eu-ropa Clipper mission concept is ongoing, with current studies focusing on spacecraft design trades and re-finements, launch vehicle options (EELV and SLS), and power source (MMRTG and solar), to name a few. We will provide an update on status of the science and reconnaissance effort, as well as the results of trade studies as relevant to the science and reconnaissance potential of the mission concept.
Land and cryosphere products from Suomi NPP VIIRS: Overview and status
Justice, Christopher O; Román, Miguel O; Csiszar, Ivan; Vermote, Eric F; Wolfe, Robert E; Hook, Simon J; Friedl, Mark; Wang, Zhuosen; Schaaf, Crystal B; Miura, Tomoaki; Tschudi, Mark; Riggs, George; Hall, Dorothy K; Lyapustin, Alexei I; Devadiga, Sadashiva; Davidson, Carol; Masuoka, Edward J
2013-01-01
[1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA’s Earth Observing System’s Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA’s focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team’s evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS. PMID:25821661
Land and cryosphere products from Suomi NPP VIIRS: Overview and status.
Justice, Christopher O; Román, Miguel O; Csiszar, Ivan; Vermote, Eric F; Wolfe, Robert E; Hook, Simon J; Friedl, Mark; Wang, Zhuosen; Schaaf, Crystal B; Miura, Tomoaki; Tschudi, Mark; Riggs, George; Hall, Dorothy K; Lyapustin, Alexei I; Devadiga, Sadashiva; Davidson, Carol; Masuoka, Edward J
2013-09-16
[1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS.
Science Operations for the 2008 NASA Lunar Analog Field Test at Black Point Lava Flow, Arizona
NASA Technical Reports Server (NTRS)
Garry W. D.; Horz, F.; Lofgren, G. E.; Kring, D. A.; Chapman, M. G.; Eppler, D. B.; Rice, J. W., Jr.; Nelson, J.; Gernhardt, M. L.; Walheim, R. J.
2009-01-01
Surface science operations on the Moon will require merging lessons from Apollo with new operation concepts that exploit the Constellation Lunar Architecture. Prototypes of lunar vehicles and robots are already under development and will change the way we conduct science operations compared to Apollo. To prepare for future surface operations on the Moon, NASA, along with several supporting agencies and institutions, conducted a high-fidelity lunar mission simulation with prototypes of the small pressurized rover (SPR) and unpressurized rover (UPR) (Fig. 1) at Black Point lava flow (Fig. 2), 40 km north of Flagstaff, Arizona from Oct. 19-31, 2008. This field test was primarily intended to evaluate and compare the surface mobility afforded by unpressurized and pressurized rovers, the latter critically depending on the innovative suit-port concept for efficient egress and ingress. The UPR vehicle transports two astronauts who remain in their EVA suits at all times, whereas the SPR concept enables astronauts to remain in a pressurized shirt-sleeve environment during long translations and while making contextual observations and enables rapid (less than or equal to 10 minutes) transfer to and from the surface via suit-ports. A team of field geologists provided realistic science scenarios for the simulations and served as crew members, field observers, and operators of a science backroom. Here, we present a description of the science team s operations and lessons learned.
The Ganymede Interior Structure, and Magnetosphere Observer (GISMO) Mission Concept
NASA Technical Reports Server (NTRS)
Lynch, K. L.; Smith, I. B.; Singer, K. N.; Vogt, M. F.; Blackburn, D. G.; Chaffin, M.; Choukroun, M.; Ehsan, N.; DiBraccio, G. A.; Gibbons, L. J.;
2011-01-01
The NASA Planetary Science Summer School (PSSS) at JPL offers graduate students and young professionals a unique opportunity to learn about the mission design process. Program participants select and design a mission based on a recent NASA Science Mission Directorate Announcement of Opportunity (AO). Starting with the AO, in this case the 2009 New Frontiers AO, participants generate a set of science goals and develop a early mission concept to accomplish those goals within the constraints provided. As part of the 2010 NASA PSSS, the Ganymede Interior, Surface, and Magnetosphere Observer (GISMO) team developed a preliminary satellite design for a science mission to Jupiter's moon Ganymede. The science goals for this design focused on studying the icy moon's magnetosphere, internal structure, surface composition, geological processes, and atmosphere. By the completion of the summer school an instrument payload was selected and the necessary mission requirements were developed to deliver a spacecraft to Ganymede that would accomplish the defined science goals. This poster will discuss those science goals, the proposed spacecraft and the proposed mission design of this New Frontiers class Ganymede observer.
NASA Astrophysics Data System (ADS)
Aeschlimann, Martin; Berndt, Richard
2013-02-01
While surface science has traditionally focused on catalytic processes at surfaces, more recent developments have seen it evolve into a broad research area encompassing issues as diverse as single-molecule experiments, preparation and analysis of nanostructures, studies of novel and exotic materials, and elementary excitations in solids to name but a few. The aim of this small, but very select, focus issue of New Journal of Physics is to present a snapshot of just some of the latest cutting-edge research now being carried out on these topics. As editors, we hope that you find the contributions of interest to you and your future research.
Lessons Learned in Science Operations for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Young, K. E.; Graff, T. G.; Reagan, M.; Coan, D.; Evans, C. A.; Bleacher, J. E.; Glotch, T. D.
2017-01-01
The six Apollo lunar surface missions represent the only occasions where we have conducted scientific operations on another planetary surface. While these six missions were successful in bringing back valuable geologic samples, technology advances in the subsequent forty years have enabled much higher resolution scientific activity in situ. Regardless of where astronauts next visit (whether it be back to the Moon or to Mars or a Near Earth Object), the science operations procedures completed during this mission will need to be refined and updated to reflect these advances. We have undertaken a series of operational tests in relevant field environments to understand how best to develop the new generation of science operations procedures for planetary surface exploration.
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
2000-01-01
The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.
NASA Astrophysics Data System (ADS)
Remedios, John J.; Llewellyn-Jones, David
2014-05-01
The Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel-3 is the latest satellite instrument in a series of dual-angle optical and thermal sensors, the Along-Track Scanning Radiometers (ATSRs). Operating on Sentinel-3, the SLSTR has a number of significant improvements compared to the original ATSRs including wider swaths for nadir and dual angles, emphasis on all surface temperature domains, dedicated fire channels and additional cloud channels. The SLSTR therefore provides some excellent opportunities to extend science undertaken with the ATSRs whilst also providing long-term data sets to investigate climate change. The European Space Agency, together with the Department of Energy and Climate Change, sponsored the production of an Exploitation Plan for the ATSRs. In the last year, this been extended to cover the SLSTR also. The plan enables UK and European member states to plan activities related to SLSTR in a long-term context. Covering climate change, oceanography, land surface, atmosphere and cryosphere science, particular attention is paid to the exploitation of long-term data sets. In the case of SLSTR, relevant products include sea, land, lake and ice surface temperatures; aerosols and clouds; fires and gas flares; land surface reflectances. In this presentation, the SLSTR and ATSR science Exploitation Plan will be outlined with emphasis on SLSTR science opportunities, on appropriate co-ordinating mechanisms and on example implementation plans. Particular attention will be paid to the challenges of linking ATSR records with SLSTR to provide consistent long-term data sets, and on the international context of such data sets. The exploitation plan approach to science may prove relevant and useful for other Sentinel instruments.
NASA Technical Reports Server (NTRS)
Entekhabi, Dara; Bras, Rafael L.; McLaughlin, Dennis B.; Asrar, Ghassem R.; Wei, Ying; Betts, Alan K.; Beven, Keith J.; Duffy, Christopher J.; Dunne, Thomas; Koster, Randall D.;
1998-01-01
An agenda for land-surface hydrology research is proposed to open the debate for more comprehensive prioritization of science and application activities in the hydrologic sciences. A set of science questions are posed and the observational requirements to achieve substantial progress are identified. In this context, the proposal to initiate the 2nd International Hydrologic Decade (IHD) is put forth. The benefits of this initiative for enhanced scientific understanding and improved capability in meeting societal needs are also identified.
NASA Technical Reports Server (NTRS)
1976-01-01
Various phases of planetary operations related to the Viking mission to Mars are described. Topics discussed include: approach phase, Mars orbit insertion, prelanding orbital activities, separation, descent and landing, surface operations, surface sampling and operations starting, orbiter science and radio science, Viking 2, Deep Space Network and data handling.
Studying Two-Dimensional Zeolites with the Tools of Surface Science: MFI Nanosheets on Au(111)
J. D. Kestell; Zhong, J. Q.; Shete, M.; ...
2016-07-26
While surface science has provided fundamental insights into a variety a materials, the most used catalysts in the industry, namely zeolites, still remain a challenge. The recent preparation of two-dimensional versions of MFI zeolite frameworks and the possibility of their deposition on electrically conductive supports provides for the first time a viable strategy to perform detailed studies on industrially relevant zeolites using the vast toolkit of surface science. In this work we demonstrate the use of infrared reflection absorption spectroscopy (IRRAS) and synchrotron-based x-ray photoelectron spectroscopy (XPS) to study these materials. Furthermore, polarization modulation IRRAS is used to study themore » adsorption of methanol and its effect in phonon vibrations of the zeolite framework. The possibility of using surface science methods, in particular under ambient pressure conditions, for the study of well-defined zeolites and other microporous structures opens new avenues to understand structural and mechanistic aspects of these materials as catalysts, adsorbents and molecular sieves.« less
Studying Two-Dimensional Zeolites with the Tools of Surface Science: MFI Nanosheets on Au(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. D. Kestell; Zhong, J. Q.; Shete, M.
While surface science has provided fundamental insights into a variety a materials, the most used catalysts in the industry, namely zeolites, still remain a challenge. The recent preparation of two-dimensional versions of MFI zeolite frameworks and the possibility of their deposition on electrically conductive supports provides for the first time a viable strategy to perform detailed studies on industrially relevant zeolites using the vast toolkit of surface science. In this work we demonstrate the use of infrared reflection absorption spectroscopy (IRRAS) and synchrotron-based x-ray photoelectron spectroscopy (XPS) to study these materials. Furthermore, polarization modulation IRRAS is used to study themore » adsorption of methanol and its effect in phonon vibrations of the zeolite framework. The possibility of using surface science methods, in particular under ambient pressure conditions, for the study of well-defined zeolites and other microporous structures opens new avenues to understand structural and mechanistic aspects of these materials as catalysts, adsorbents and molecular sieves.« less
Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.; Shen, Mingmin
The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
The spectroscopy and chemical dynamics of microparticles explored using an ultrasonic trap.
Mason, N J; Drage, E A; Webb, S M; Dawes, A; McPheat, R; Hayes, G
2008-01-01
Microsized particles play an important role in many diverse areas of science and technology, for example, surface reactions of micron-sized particles play a key role in astrochemistry, plasma reactors and atmospheric chemistry. To date much of our knowledge of such surface chemistry is derived from 'traditional' surface science-based research. However, the large surface area and morphology of surface material commonly used in such surface science techniques may not necessarily mimic that on the surface of micron/nano scale particles. Hence, a new generation of experiments in which the spectroscopy (e.g., albedo) and chemical reactivity of micron-sized particles can be studied directly must be developed. One, as yet underexploited, non-invasive technique is the use of ultrasonic levitation. In this article, we describe the operation of an 'ultrasonic trap' to store and study the physical and chemical properties of microparticles.
2012-04-01
Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic...building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic surfaces • Via...non-wetting polymeric surfaces 5 mm Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007
Science Hybrid Orbiter and Lunar Relay (SCHOLR) Architecture and Design
NASA Technical Reports Server (NTRS)
Trase, Kathryn K.; Barch, Rachel A.; Chaney, Ryan E.; Coulter, Rachel A.; Gao, Hui; Huynh, David P.; Iaconis, Nicholas A.; MacMillan, Todd S.; Pitner, Gregory M.; Schwab, Devin T.
2011-01-01
Considered both a stepping-stone to deep space and a key to unlocking the mysteries of planetary formation, the Moon offers a unique opportunity for scientific study. Robotic precursor missions are being developed to improve technology and enable new approaches to exploration. Robots, lunar landers, and satellites play significant roles in advancing science and technologies, offering close range and in-situ observations. Science and exploration data gathered from these nodes and a lunar science satellite is intended to support future human expeditions and facilitate future utilization of lunar resources. To attain a global view of lunar science, the nodes will be distributed over the lunar surface, including locations on the far side of the Moon. Given that nodes on the lunar far side do not have direct line-of-sight for Earth communications, the planned presence of such nodes creates the need for a lunar communications relay satellite. Since the communications relay capability would only be required for a small portion of the satellite s orbit, it may be possible to include communication relay components on a science spacecraft. Furthermore, an integrated satellite has the potential to reduce lunar surface mission costs. A SCience Hybrid Orbiter and Lunar Relay (SCHOLR) is proposed to accomplish scientific goals while also supporting the communications needs of landers on the far side of the Moon. User needs and design drivers for the system were derived from the anticipated needs of future robotic and lander missions. Based on these drivers and user requirements, accommodations for communications payload aboard a science spacecraft were developed. A team of interns identified and compared possible SCHOLR architectures. The final SCHOLR architecture was analyzed in terms of orbiter lifetime, lunar surface coverage, size, mass, power, and communications data rates. This paper presents the driving requirements, operational concept, and architecture views for SCHOLR within a lunar surface nodal network. Orbital and bidirectional link analysis, between lunar nodes, orbiter, and Earth, as well as a conceptual design for the spacecraft are also presented
Science Measurement Requirements for Imaging Spectrometers from Airborne to Spaceborne
NASA Technical Reports Server (NTRS)
Green, Robert O.; Asner, Gregory P.; Boardman, Joseph; Ungar, Stephen; Mouroulis, Pantazis
2006-01-01
This slide presentation reviews the objectives of the work to create imaging spectrometers. The science objectives are to remotely determine the properties of the surface and atmosphere (physics, chemistry and biology) revealed by the interaction of electromagnetic energy with matter via spectroscopy. It presents a review the understanding of spectral, radiometric and spatial science measurement requirements for imaging spectrometers based upon science research results from past and current airborne and spaceborne instruments. It also examines the future requirements that will enable the next level of imaging spectroscopy science.
Science potential from a Europa lander.
Pappalardo, R T; Vance, S; Bagenal, F; Bills, B G; Blaney, D L; Blankenship, D D; Brinckerhoff, W B; Connerney, J E P; Hand, K P; Hoehler, T M; Leisner, J S; Kurth, W S; McGrath, M A; Mellon, M T; Moore, J M; Patterson, G W; Prockter, L M; Senske, D A; Schmidt, B E; Shock, E L; Smith, D E; Soderlund, K M
2013-08-01
The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.
Interfacial and Surface Science | Materials Science | NREL
-flight SIMS (TOF-SIMS) provides surface spectroscopy of both inorganic and organic materials, and is Chamber This tool enables deposition of inorganic chalcogenides and for basic material and device studies lead halide perovskites and semiconductor quantum dots. Contact: Craig Perkins | Email | 303-384-6659
Surface texture measurement for dental wear applications
NASA Astrophysics Data System (ADS)
Austin, R. S.; Mullen, F.; Bartlett, D. W.
2015-06-01
The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.
NASA Astrophysics Data System (ADS)
Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; Garry, Brent; Graff, Trevor; Gruener, John; Heldmann, Jennifer; Hodges, Kip; Hörz, Friedrich; Hurtado, Jose; Hynek, Brian; Isaacson, Peter; Juranek, Catherine; Klaus, Kurt; Kring, David; Lanza, Nina; Lederer, Susan; Lofgren, Gary; Marinova, Margarita; May, Lisa; Meyer, Jonathan; Ming, Doug; Monteleone, Brian; Morisset, Caroline; Noble, Sarah; Rampe, Elizabeth; Rice, James; Schutt, John; Skinner, James; Tewksbury-Christle, Carolyn M.; Tewksbury, Barbara J.; Vaughan, Alicia; Yingst, Aileen; Young, Kelsey
2013-10-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space. The results from the RATS tests allow selection of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if communications are good and down-linking of science data is ensured, high quality science returns is possible regardless of communications. What is absent from reduced communications is the scientific interaction between the crew on the planet and the scientists on the ground. These scientific interactions were a critical part of the science process and significantly improved mission science return over reduced communications conditions. The test also showed that the quality of science return is not measurable by simple numerical quantities but is, in fact, based on strongly non-quantifiable factors, such as the interactions between the crew and the Science Operations Teams. Although the metric evaluation data suggested some trends, there was not sufficient granularity in the data or specificity in the metrics to allow those trends to be understood on numerical data alone.
NASA Technical Reports Server (NTRS)
Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey;
2012-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if communications are good and down-linking of science data is ensured, high quality science returns is possible regardless of communications. What is absent from reduced communications is the scientific interaction between the crew on the planet and the scientists on the ground. These scientific interactions were a critical part of the science process and significantly improved mission science return over reduced communications conditions. The test also showed that the quality of science return is not measurable by simple numerical quantities but is, in fact, based on strongly non-quantifiable factors, such as the interactions between the crew and the Science Operations Teams. Although the metric evaluation data suggested some trends, there was not sufficient granularity in the data or specificity in the metrics to allow those trends to be understood on numerical data alone.
Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter
NASA Astrophysics Data System (ADS)
Ashman, Mike; Cardesin Moinelo, Alejandro; Frew, David; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Muñoz, Michela; Nespoli, Federico
2018-05-01
The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occultation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning infrastructure, processes and automation in order to support science planning of this scale throughout the TGO mission. We also detail how the re-use and further development of ESA's multi-mission planning software tool is being implemented in order to provide the necessary additional functionality for the SOC's planning team to exploit, and to therefore ensure the optimum scientific return of the TGO mission. Finally, we provide an overview and status of the real science planning activities taking place in the first weeks of the nominal science phase in the first half of 2018.
NASA Technical Reports Server (NTRS)
Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.;
2016-01-01
The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.
Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Jingyun; Liu, Changjun; Mei, Donghai
2013-06-03
Methanol synthesis from CO2 hydrogenation on the defective In2O3(110) surface with surface oxygen vacancies has been investigated using periodic density functional theory calculations. The relative stabilities of six possible surface oxygen vacancies numbered from Ov1 to Ov6 on the perfect In2O3(110) surface were examined. The calculated oxygen vacancy formation energies show that the D1 surface with the Ov1 defective site is the most thermodynamically favorable while the D4 surface with the Ov4 defective site is the least stable. Two different methanol synthesis routes from CO2 hydrogenation over both D1 and D4 surfaces were studied and the D4 surface was foundmore » to be more favorable for CO2 activation and hydrogenation. On the D4 surface, one of the O atoms of the CO2 molecule fills in the Ov4 site upon adsorption. Hydrogenation of CO2 to HCOO on the D4 surface is both thermodynamically and kinetically favorable. Further hydrogenation of HCOO involves both forming the C-H bond and breaking the C-O bond, resulting in H2CO and hydroxyl. The HCOO hydrogenation is slightly endothermic with an activation barrier of 0.57 eV. A high barrier of 1.14 eV for the hydrogenation of H2CO to H3CO indicates that this step is the rate-limiting step in the methanol synthesis on the defective In2O3(110) surface. We gratefully acknowledge the supports from the National Natural Science Foundation of China (#20990223) and from US Department of Energy, Basic Energy Science program (DE-FG02-05ER46231). D. Mei was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory in Richland, Washington. PNNL is a multiprogram national laboratory operated for DOE by Battelle.« less
ERIC Educational Resources Information Center
School Science Review, 1981
1981-01-01
Describes activities, demonstrations, and materials suitable for middle school science, including investigations on solar energy, surface tension, exploding cottages, worms and light, airplanes, depolarizing simple cells, and the thermal expansion of metals. (JN)
Surface Phonons and Polaritons.
1976-01-01
by M. Balkaneki ( Flammarion Sciences , Paris , 1978) , p. 298 . —-——.——~~~~~~~~‘-,--—-—— - r r ~~~~~~~~~~~~~~ ~~-~r - wwr~~~~~~~~~~~ wr...inivasan, in Lattice Dynamics Edited by K. -~ Balkanski ( Flammarion Sciences , Paris , 1978), p. 305. 46. I. K. Lifshitz and L. U. Rosenzweig , Zh. Ekap...Lattice Dynamics,” Ed. M. Balkanski ( Flammarion Sciences, Paris, 1978), p. 280. 7. L. Dobrzynski and J . Friedel, Surface Sc 12, 469 (1968). 8. L
Unmanned surface traverses of Mars and Moon: Science objectives, payloads, operations
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Choate, R.
1973-01-01
Science objectives and properties to be measured are outlined for long surface traverse missions on Mars and the Moon, with remotely-controlled roving vehicles. A series of candidate rover payloads is proposed for each planet, varying in weight, cost, purpose, and development needed. The smallest weighs 35 kg; the largest almost 300 kg. A high degree of internal control will be needed on the Mars rover, including the ability to carry out complex science sequences. Decision-making by humans in the Mars mission includes supervisory control of rover operations and selection of features and samples of geological and biological interest. For the lunar mission, less control on the rover and more on earth is appropriate. Science portions of the rover mission profile are outlined, with timelines and mileage breakdowns. Operational problem areas for Mars include control, communications, data storage, night operations, and the mission operations system. For the moon, science data storage on the rover would be unnecessary and control much simpler.
The OSIRIS-REx Radio Science Experiment at Bennu
NASA Astrophysics Data System (ADS)
McMahon, J. W.; Scheeres, D. J.; Hesar, S. G.; Farnocchia, D.; Chesley, S.; Lauretta, D.
2018-02-01
The OSIRIS-REx mission will conduct a Radio Science investigation of the asteroid Bennu with a primary goal of estimating the mass and gravity field of the asteroid. The spacecraft will conduct proximity operations around Bennu for over 1 year, during which time radiometric tracking data, optical landmark tracking images, and altimetry data will be obtained that can be used to make these estimates. Most significantly, the main Radio Science experiment will be a 9-day arc of quiescent operations in a 1-km nominally circular terminator orbit. The pristine data from this arc will allow the Radio Science team to determine the significant components of the gravity field up to the fourth spherical harmonic degree. The Radio Science team will also be responsible for estimating the surface accelerations, surface slopes, constraints on the internal density distribution of Bennu, the rotational state of Bennu to confirm YORP estimates, and the ephemeris of Bennu that incorporates a detailed model of the Yarkovsky effect.
NASA Astrophysics Data System (ADS)
Wang, Yue; Zhang, Li-Ying; Mei, Jin-Shuo; Zhang, Wen-Chao; Tong, Yi-Jing
2015-12-01
We propose an improved design and numerical study of an optimized tunable plasmonics artificial material resonator in the terahertz regime. We demonstrate that tunability can be realized with a transmission intensity as much as ˜61% in the lower frequency resonance, which is implemented through the effect of photoconductive switching under photoexcitation. In the higher frequency resonance, we show that spoof surface plasmons along the interface of metal/dielectric provide new types of electromagnetic resonances. Our approach opens up possibilities for the interface of metamaterial and plasmonics to be applied to optically tunable THz switching. Project supported by the National Natural Science Foundation of China (Grant No. 61201075), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F2015039), the Young Scholar Project of Heilongjiang Provincial Education Bureau, China (Grant No. 1254G021), the China Postdoctoral Science Foundation (Grant No. 2012M511507), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201302).
Digital terrain modelling and industrial surface metrology - Converging crafts
Pike, R.J.
2001-01-01
Quantitative characterisation of surface form, increasingly from digital 3-D height data, is cross-disciplinary and can be applied at any scale. Thus, separation of industrial-surface metrology from its Earth-science counterpart, (digital) terrain modelling, is artificial. Their growing convergence presents an opportunity to develop in surface morphometry a unified approach to surface representation. This paper introduces terrain modelling and compares it with metrology, noting their differences and similarities. Examples of potential redundancy among parameters illustrate one of the many issues common to both disciplines. ?? 2001 Elsevier Science Ltd. All rights reserved.
Smart Cameras for Remote Science Survey
NASA Technical Reports Server (NTRS)
Thompson, David R.; Abbey, William; Allwood, Abigail; Bekker, Dmitriy; Bornstein, Benjamin; Cabrol, Nathalie A.; Castano, Rebecca; Estlin, Tara; Fuchs, Thomas; Wagstaff, Kiri L.
2012-01-01
Communication with remote exploration spacecraft is often intermittent and bandwidth is highly constrained. Future missions could use onboard science data understanding to prioritize downlink of critical features [1], draft summary maps of visited terrain [2], or identify targets of opportunity for followup measurements [3]. We describe a generic approach to classify geologic surfaces for autonomous science operations, suitable for parallelized implementations in FPGA hardware. We map these surfaces with texture channels - distinctive numerical signatures that differentiate properties such as roughness, pavement coatings, regolith characteristics, sedimentary fabrics and differential outcrop weathering. This work describes our basic image analysis approach and reports an initial performance evaluation using surface images from the Mars Exploration Rovers. Future work will incorporate these methods into camera hardware for real-time processing.
2014-01-02
of the formation of a hydrogen-bonded hydroxyl. Characteristic modes of the sarin molecule itself are also ob- served. These experimental results show...chemical warfare agent, surface science, uptake, decontamination, filtration , UHV, XPS, FTIR, TPD REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science
Heliophysics Science and the Moon: Potential Solar and Space Physics Science for Lunar Exploration
NASA Technical Reports Server (NTRS)
2007-01-01
This report addresses both these features new science enabled by NASAs exploration initiative and enabling science that is critical to ensuring a safe return to the Moon and onward to Mars. The areas of interest are structured into four main themes: Theme 1: Heliophysics Science of the Moon Studies of the Moons unique magnetodynamic plasma environment. Theme 2: Space Weather, Safeguarding the Journey Studies aimed at developing a predictive capability for space weather hazards. Theme 3: The Moon as a Historical Record Studies of the variation of the lunar regolith to uncover the history of the Sun, solar system, local interstellar medium, galaxy, and universe. Theme 4: The Moon as a Heliophysics Science Platform Using the unique environment of the lunar surface as a platform to provide observations beneficial to advancing heliophysics science.
Nanoplasmonic sensors for biointerfacial science.
Jackman, Joshua A; Rahim Ferhan, Abdul; Cho, Nam-Joon
2017-06-19
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images
NASA Astrophysics Data System (ADS)
Sidiropoulos, Panagiotis; Muller, Jan-Peter
2017-04-01
Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of <100m resolution). The overall area mapped from orbital imagery is approximately 6 times the overall surface of Mars [1]. The multi-temporal coverage of Martian surface allows a visual inspection of the surface to identify dynamic phenomena, i.e. surface features that change over time, such as slope streaks [2], recurring slope lineae [3], new impact craters [4], etc. However, visual inspection for change detection is a limited approach, since it requires extensive use of human resources, which is very difficult to achieve when dealing with a rapidly increasing volume of data. Although citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planetary and Space Science, 126: 93-138.
Surface science and model catalysis with ionic liquid-modified materials.
Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M
2011-06-17
Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space Weathering Impact on Solar System Surfaces and Planetary Mission Science
NASA Technical Reports Server (NTRS)
Cooper, John F.
2011-01-01
We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.
Chemistry and materials science progress report, FY 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.
ERIC Educational Resources Information Center
Sesn, Burcin Acar
2013-01-01
The purpose of this study was to investigate pre-service science teachers' understanding of surface tension, cohesion and adhesion forces by using computer-mediated predict-observe-explain tasks. 22 third-year pre-service science teachers participated in this study. Three computer-mediated predict-observe-explain tasks were developed and applied…
Europa Small Lander Design Concepts
NASA Astrophysics Data System (ADS)
Zimmerman, W. F.
2005-12-01
Title: Europa Small Lander Design Concepts Authors: Wayne F. Zimmerman, James Shirley, Robert Carlson, Tom Rivellini, Mike Evans One of the primary goals of NASA's Outer Planets Program is to revisit the Jovian system. A new Europa Geophysical Explorer (EGE) Mission has been proposed and is under evaluation. There is in addition strong community interest in a surface science mission to Europa. A Europa Lander might be delivered to the Jovian system with the EGE orbiter. A Europa Astrobiology Lander (EAL) Mission has also been proposed; this would launch sometime after 2020. The primary science objectives for either of these would most likely include: Surface imaging (both microscopic and near-field), characterization of surface mechanical properties (temperature, hardness), assessment of surface and near-surface organic and inorganic chemistry (volatiles, mineralogy, and compounds), characterization of the radiation environment (total dose and particles), characterization of the planetary seismicity, and the measurement of Europa's magnetic field. The biggest challenges associated with getting to the surface and surviving to perform science investigations revolve around the difficulty of landing on an airless body, the ubiquitous extreme topography, the harsh radiation environment, and the extreme cold. This presentation reviews some the recent design work on drop-off probes, also called "hard landers". Hard lander designs have been developed for a range of science payload delivery systems spanning small impactors to multiple science pods tethered to a central hub. In addition to developing designs for these various payload delivery systems, significant work has been done in weighing the relative merits of standard power systems (i.e., batteries) against radioisotope power systems. A summary of the power option accommodation benefits and issues will be presented. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract from NASA,
Agile Science Operations: A New Approach for Primitive Exploration Bodies
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Thompson, David R.; Castillo-Rogez, Julie C.; Doyle, Richard; Estlin, Tara; Mclaren, David
2012-01-01
Primitive body exploration missions such as potential Comet Surface Sample Return or Trojan Tour and Rendezvous would challenge traditional operations practices. Earth-based observations would provide only basic understanding before arrival and many science goals would be defined during the initial rendezvous. It could be necessary to revise trajectories and observation plans to quickly characterize the target for safe, effective observations. Detection of outgassing activity and monitoring of comet surface activity are even more time constrained, with events occurring faster than round-trip light time. "Agile science operations" address these challenges with contingency plans that recognize the intrinsic uncertainty in the operating environment and science objectives. Planning for multiple alternatives can significantly improve the time required to repair and validate spacecraft command sequences. When appropriate, time-critical decisions can be automated and shifted to the spacecraft for immediate access to instrument data. Mirrored planning systems on both sides of the light-time gap permit transfer of authority back and forth as needed. We survey relevant science objectives, identifying time bottlenecks and the techniques that could be used to speed missions' reaction to new science data. Finally, we discuss the results of a trade study simulating agile observations during flyby and comet rendezvous scenarios. These experiments quantify instrument coverage of key surface features as a function of planning turnaround time. Careful application of agile operations techniques can play a significant role in realizing the Decadal Survey plan for primitive body exploration
The Cryospheres of Mars and Ceres - What thermal observations tell us about near surface ice.
NASA Astrophysics Data System (ADS)
Titus, T. N.; Li, J. Y.; Moullet, A.
2017-12-01
Mars and Ceres both have near surface water ice that forms a cryosphere at polar latitudes. Gamma ray and neutron observations have provided important constraints on the location and depths of the cryosphere for both planetary bodies, but these observations have very low spatial resolution [e.g. 1, 2]. Thermal observations, which are also sensitive to the presence of a near-surface cryosphere as demonstrated by several studies of Mars [e.g. 3, 4], provide additional constraints. Thermal observations can identify depth to the cryosphere (as long as it is within a few thermal skin depths) and water-ice stability. This presentation will compare both the similarities and the differences of these two planetary cryospheres, as well as the thermal observations from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) [5], the Atacama Large Millimeter/submillimeter Array (ALMA) [6], and publically available Dawn Visible Infrared spectrometer (VIR) [7]. The KRC thermal model [8] will use these observed surface temperatures to constrain depths to near surface ice (i.e. the cyropshere). References: [1] Feldman et al., 2002, Science, 297(5578), 75-78. [2] Prettyman et al., 2017, Science, 355(6320), 55-59. [3] Titus et al., 2003, Science, 299(5609), 1048-1051 [4] Mellon et al., 2008, JGR, 113(E12), CiteID E00A25. [5] Christensen et al., 1998, Science, 279(5357), 1692. [6] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [7] de Santis et al., 2011, Space Science Reviews, 163(1-4), 329-369. [8] Kieffer, 2013, JGR, 118, Issue 3, pp. 451-470.
Land, Cryosphere, and Nighttime Environmental Products from Suomi NPP VIIRS: Overview and Status
NASA Technical Reports Server (NTRS)
Roman, Miguel O.; Justice, Chris; Csiszar, Ivan
2014-01-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-orbiting Partnership (S-NPP: http://npp.gsfc.nasa.gov/). VIIRS was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer (AVHRR) and provide observation continuity with NASA's Earth Observing System's (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA and NOAA funded scientists have been working to evaluate the instrument performance and derived products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the former National Polar-orbiting Environmental Satellite System (NPOESS). The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs and providing MODIS data product continuity. This paper will present to-date findings of the NASA Science Team's evaluation of the VIIRS Land and Cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization (http://viirsland.gsfc.nasa.gov/index.html). The paper will also discuss new capabilities being developed at NASA's Land Product Evaluation and Test Element (http://landweb.nascom.nasa.gov/NPP_QA/); including downstream data and products derived from the VIIRS Day/Night Band (DNB).
The Philae lander mission and science overview.
Boehnhardt, Hermann; Bibring, Jean-Pierre; Apathy, Istvan; Auster, Hans Ulrich; Ercoli Finzi, Amalia; Goesmann, Fred; Klingelhöfer, Göstar; Knapmeyer, Martin; Kofman, Wlodek; Krüger, Harald; Mottola, Stefano; Schmidt, Walter; Seidensticker, Klaus; Spohn, Tilman; Wright, Ian
2017-07-13
The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
NASA Mars Science Laboratory Rover
NASA Technical Reports Server (NTRS)
Olson, Tim
2017-01-01
Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.
Robotic Lunar Landers for Science and Exploration
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.
2010-01-01
The Moon provides an important window into the early history of the Earth, containing information about planetary composition, magmatic evolution, surface bombardment, and exposure to the space environment. Robotic lunar landers to achieve science goals and to provide precursor technology development and site characterization are an important part of program balance within NASA s Science Mission Directorate (SMD) and Exploration Systems Mission Directorate (ESMD). A Robotic Lunar Lan-der mission complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the Moon.
1996-01-31
The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.
NASA Astrophysics Data System (ADS)
Kminek, Gerhard; Vago, Jorge; Gianfiglio, Giacinto; Haldemann, Albert; Elfving, Anders; Pinel, Jacques; McCoy, Don
The ExoMars mission will deploy two science elements on the Martian surface: a rover and a small, fixed package. The fixed Humboldt science package, will measure planetary geophysics parameters important for understanding Mars's evolution and habitability, identify possible surface hazards to future human missions, and study the environment. The Rover Pasteur science package will search for signs of past and present life on Mars, and characterise the water and geochemical environment with depth by collecting and analysing subsurface samples down to 2 meters. The very powerful combination of surface mobility and subsurface access to locations where organic molecules may be well-preserved is unique to this mission. ExoMars is currently in Phase B prior to PDR. This presentation will provide an update on the project status, including instrument and technology developments.
Atmospheric Science Data Center
2014-07-22
... SSE is supported through the Prediction of Worldwide Energy Resource (POWER) project under the NASA Applied Sciences Program within ... Science Data Center Surface meteorological and Solar Energy (SSE) web portal supported by the NASA LaRC POWER Project." Continued ...
Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters
NASA Technical Reports Server (NTRS)
1989-01-01
Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.
USDA-ARS?s Scientific Manuscript database
Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...
ERIC Educational Resources Information Center
School Science Review, 1990
1990-01-01
Presented are 25 science activities on colorations of prey, evolution, blood, physiology, nutrition, enzyme kinetics, leaf pigments, analytical chemistry, milk, proteins, fermentation, surface effects of liquids, magnetism, drug synthesis, solvents, wintergreen synthesis, chemical reactions, multicore cables, diffraction, air resistance,…
Deceleration of Mars Science Laboratory in Martian Atmosphere, Artist Concept
2011-10-03
This artist concept depicts the interaction of NASA Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing of the Curiosity rover onto the Martian surface.
Polar Resources: The Key To Development of Cis-Lunar Space
NASA Technical Reports Server (NTRS)
Larson, William E.
2017-01-01
There are plenty of unanswered science questions regarding the Moon that justify surface missions: (1) However the rate of science missions launched remains painfully slow: (a) Google X-Prize Landers may offer more opportunities, but the jury is still out: (2) Science alone will not be enough to sustain long term interest in the Moon by the Congress (or the Public) nor will it generate a frequent mission rate. We need something that drives a frequent and continual reason to go to the Moon: (1) Lunar tourism not practical in the near term; (2) Lunar Resources can be the economic driver that enables regular access to the lunar surface.
Applications of HCMM satellite data to the study of urban heating patterns
NASA Technical Reports Server (NTRS)
Carlson, T. N. (Principal Investigator)
1980-01-01
A research summary is presented and is divided into two major areas, one developmental and the other basic science. In the first three sub-categories are discussed: image processing techniques, especially the method whereby surface temperature image are converted to images of surface energy budget, moisture availability and thermal inertia; model development; and model verification. Basic science includes the use of a method to further the understanding of the urban heat island and anthropogenic modification of the surface heating, evaporation over vegetated surfaces, and the effect of surface heat flux on plume spread.
The development of surface science in China: retrospect and prospects
NASA Astrophysics Data System (ADS)
Xide, Xie
1994-01-01
It is generally agreed that the year of 1977 marked the birth of surface science in China, therefore the length of its history of development is only half of that shown in the title of this volume. Since 1977 laboratories with modern facilities for surface studies have been established in various universities and research institutes. Three open laboratories better equipped than others have been set up in Beijing, Xiamen and Shanghai for surface physics, surface chemistry and applied surface physics, respectively. Five National Conferences on Physics of Surfaces and Interfaces were held in 1982, 1984, 1985, 1988 and 1991. In 1993 China is going to host the Fourth International Conference on the Structure of Surfaces in Shanghai August 16-19 which will serve as a milestone in the history of development of surface science in China. With the access to many overseas laboratories, quite a number of Chinese scientists and students have had opportunities to work and study abroad and have brought back with them experiences acquired. During the Conferences just mentioned, one could witness a number of steady progresses made over the years. In the present review, a brief description about the establishment of some major research facilities and progresses of some of the research is given with emphasis on work related to semiconductor surfaces, interfaces, superlattices, heterojunctions and quantum wells. Although the review nominally covers the development of research in surface science in China, due to the limitation of the capabilities of the author, mostly work done at Fudan University is included. For this the author would like to express her deep apology to many Chinese colleagues whose works have not been properly mentioned.
NASA Astrophysics Data System (ADS)
Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.
2004-12-01
With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome that swirls around this remarkable arthropod, students are exposed to interactions between the hydrosphere, atmosphere, and geosphere and they examine ways in which climate change can affect this ecosystem.
NASA Astrophysics Data System (ADS)
Scheffler, Matthias; Schneider, Wolf-Dieter
2008-12-01
Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K Iori, K Sakamoto, H Narita, A Kimura, M Taniguchi, S Qiao, K Hasegawa, K Shimada, H Namatame and S Blügel Activated associative desorption of C + O → CO from Ru(001) induced by femtosecond laser pulses S Wagner, H Öström, A Kaebe, M Krenz, M Wolf, A C Luntz and C Frischkorn Surface structure of Sn-doped In2O3 (111) thin films by STM Erie H Morales, Yunbin He, Mykola Vinnichenko, Bernard Delley and Ulrike Diebold Coulomb oscillations in three-layer graphene nanostructures J Güttinger, C Stampfer, F Molitor, D Graf, T Ihn and K Ensslin Adsorption processes of hydrogen molecules on SiC(001), Si(001) and C(001) surfaces Xiangyang Peng, Peter Krüger and Johannes Pollmann Fermi surface nesting in several transition metal dichalcogenides D S Inosov, V B Zabolotnyy, D V Evtushinsky, A A Kordyuk, B Büchner, R Follath, H Berger and S V Borisenko Probing molecule-surface interactions through ultra-fast adsorbate dynamics: propane/Pt(111) A P Jardine, H Hedgeland, D Ward, Y Xiaoqing, W Allison, J Ellis and G Alexandrowicz A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy R Temirov, S Soubatch, O Neucheva, A C Lassise and F S Tautz
ERIC Educational Resources Information Center
School Science Review, 1986
1986-01-01
Describes 26 different activities, experiments, demonstrations, and computer simulations in various topics in science. Includes instructional activities dealing with mural ecology, surface area/volume ratios, energy transfer in ecosystems, electrochemical simulations, alternating and direct current, terminal velocity, measuring the size of the…
Terrain Safety Assessment in Support of the Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Kipp, Devin
2012-01-01
In August 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. The process to select the MSL landing site took over five years and began with over 50 initial candidate sites from which four finalist sites were chosen. The four finalist sites were examined in detail to assess overall science merit, EDL safety, and rover traversability on the surface. Ultimately, the engineering assessments demonstrated a high level of safety and robustness at all four finalist sites and differences in the assessment across those sites were small enough that neither EDL safety nor rover traversability considerations could significantly discriminate among the final four sites. Thus the MSL landing site at Gale Crater was selected from among the four finalists primarily on the basis of science considerations.
Surface Chemistry of CWAs for Decon Enabling Sciences
2014-11-04
representing the formation of a hydrogen-bonded mode. Characteristic modes of the sarin molecule itself are also observed. These experimental results show...Triangle Park, NC 27709-2211 surface science, CWA, uptake, decomposition, decontamination, filtration , XPS, FTIR, TPD, MS, UHV REPORT DOCUMENTATION PAGE 11...Karwacki, Team Leader CBR Filtration Research and Technology Directorate at ECBC. Through this collaboration, we have established a facility for the study
JPRS Report, Science & Technology, USSR: Life Sciences.
1988-02-12
polypeptide chain frag- ments inside protein membranes or on their surfaces using bacteriorhodopsin as the test object. Purple membranes, partially...outside the membrane or close to its surface . A model was developed from these data which involved folding of certain regions of bacteriorhodopsin...into hepatic endothelial and Kupffer cells. These findings point to the putative usefulness of the PLP approach in gene therapy. Figures h
Applications of surface analytical techniques in Earth Sciences
NASA Astrophysics Data System (ADS)
Qian, Gujie; Li, Yubiao; Gerson, Andrea R.
2015-03-01
This review covers a wide range of surface analytical techniques: X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), photoemission electron microscopy (PEEM), dynamic and static secondary ion mass spectroscopy (SIMS), electron backscatter diffraction (EBSD), atomic force microscopy (AFM). Others that are relatively less widely used but are also important to the Earth Sciences are also included: Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). All these techniques probe only the very top sample surface layers (sub-nm to several tens of nm). In addition, we also present several other techniques i.e. Raman microspectroscopy, reflection infrared (IR) microspectroscopy and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) that penetrate deeper into the sample, up to several μm, as all of them are fundamental analytical tools for the Earth Sciences. Grazing incidence synchrotron techniques, sensitive to surface measurements, are also briefly introduced at the end of this review. (Scanning) transmission electron microscopy (TEM/STEM) is a special case that can be applied to characterisation of mineralogical and geological sample surfaces. Since TEM/STEM is such an important technique for Earth Scientists, we have also included it to draw attention to the capability of TEM/STEM applied as a surface-equivalent tool. While this review presents most of the important techniques for the Earth Sciences, it is not an all-inclusive bibliography of those analytical techniques. Instead, for each technique that is discussed, we first give a very brief introduction about its principle and background, followed by a short section on approaches to sample preparation that are important for researchers to appreciate prior to the actual sample analysis. We then use examples from publications (and also some of our known unpublished results) within the Earth Sciences to show how each technique is applied and used to obtain specific information and to resolve real problems, which forms the central theme of this review. Although this review focuses on applications of these techniques to study mineralogical and geological samples, we also anticipate that researchers from other research areas such as Material and Environmental Sciences may benefit from this review.
Overview of Mars Science Laboratory (MSL) Environmental Program
NASA Technical Reports Server (NTRS)
Forgave, John C.; Man, Kin F.; Hoffman, Alan R.
2006-01-01
This viewgraph presentation is an overview of the Mars Science Laboratory (MSL) program. The engineering objectives of the program are to create a Mobile Science Laboratory capable of one Mars Year surface operational lifetime (670 Martian sols = 687 Earth days). It will be able to land and operation over wide range of latitudes, altitudes and seasons It must have controlled propulsive landing and demonstrate improved landing precision via guided entry The general science objectives are to perform science that will focus on Mars habitability, perform next generation analytical laboratory science investigations, perform remote sensing/contact investigations and carry a suite of environmental monitoring instruments. Specific scientific objectives of the MSL are: (1) Characterization of geological features, contributing to deciphering geological history and the processes that have modified rocks and regolith, including the role of water. (2) Determination of the mineralogy and chemical composition (including an inventory of elements such as C, H, N, O, P, S, etc. known to be building blocks for life) of surface and near-surface materials. (3) Determination of energy sources that could be used to sustain biological processes. (4) Characterization of organic compounds and potential biomarkers in representative regolith, rocks, and ices. (5) Determination the stable isotopic and noble gas composition of the present-day bulk atmosphere. (6) Identification potential bio-signatures (chemical, textural, isotopic) in rocks and regolith. (7) Characterization of the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons. (8) Characterization of the local environment, including basic meteorology, the state and cycling of water and C02, and the near-surface distribution of hydrogen. Several views of the planned MSL and the rover are shown. The MSL environmental program is to: (1) Ensure the flight hardware design is capable of surviving all the environments throughout its mission life time, including ground, transportation, launch, cruise, entry decent and landing (EDL) and surface operation environments. (2) Verify environmental testing and analysis have adequately validated the flight hardware's ability to withstand all natural, self-induced, and mission-activity-induced environments. The planned tests to ascertain the capability of the MSL to perform as desired are reviewed.
NASA Astrophysics Data System (ADS)
Li, Qi; Yu, Bing-qiang; Li, Zhao-feng; Wang, Xiao-feng; Zhang, Zi-chen; Pan, Ling-feng
2017-08-01
Not Available Project supported by the One Hundred Talents Program of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 61376083 and 61307077), the China Postdoctoral Science Foundation (Grant Nos. 2013M530613 and 2015T80080), and the Guangxi Key Laboratory of Precision Navigation Technology and Application (Grant Nos. DH201505, DH201510, and DH201511).
2014-01-01
1,2 1 Center for Nanophysics & Advanced Materials , University of Maryland, College Park, Maryland 20742, USA 2 Department of physics, University of...Maryland, College Park, Maryland 20742, USA 3 Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 4...Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA 5 Department of Materials Science & Engineering
Abstracts and research accomplishments of university coal research projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-06-01
The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.
Initial Subdivision of Genesis Early Science Polished Aluminum Collector
NASA Technical Reports Server (NTRS)
Allton, J. H.; Stansbery, E. K.; McNamara, K. M.; Meshik, A.; See, T. H.; Bastien, R.
2005-01-01
A large surface, about 245 square centimeters, of highly polished aluminum 6061 T6 alloy was attached to the science canister thermal panel for the purpose of collecting solar wind noble gases. The analysis of this collector will be part of the Genesis Early Science results. The pre-launch configuration of the collector is shown. The collector sustained some damage during the recovery impact in Utah, September 8, 2004.
Titan Submarine: Exploring The Depths of Kraken Mare
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.
2015-01-01
The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase I for 2014. The effort investigated what science a submarine for Titan's liquid hydrocarbon approximately 93 Kelvin (-180 degrees Centigrade) seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (approximately100 kilograms) it was found that a submersible platform can accomplish extensive and exciting science both above and below the surface of the Kraken Mare The submerged science includes mapping using side looking sonar, imaging and spectroscopy of the sea at all depths, as well as sampling of the sea's bottom and shallow shoreline. While surfaced the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 kilometers inland. This imaging requirement pushed the landing date to Titan's next summer period (approximately 2047) to allow for continuous lighted conditions, as well as direct-to-Earth (DTE) communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid/sediment/chemical interactions. An estimated 25 megabits of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system. This paper discusses the results of Phase I as well as the plans for Phase II.
Revolution in Field Science: Apollo Approach to Inaccessible Surface Exploration
NASA Astrophysics Data System (ADS)
Clark, P. E.
2010-07-01
The extraordinary challenge mission designers, scientists, and engineers, faced in planning the first human expeditions to the surface of another solar system body led to the development of a distinctive and even revolutionary approach to field work. Not only were those involved required to deal effectively with the extreme limitation in resources available for and access to a target as remote as the lunar surface; they were required to developed a rigorous approach to science activities ranging from geological field work to deploying field instruments. Principal aspects and keys to the success of the field work are discussed here, including the highly integrated, intensive, and lengthy science planning, simulation, and astronaut training; the development of a systematic scheme for description and documentation of geological sites and samples; and a flexible yet disciplined methodology for site documentation and sample collection. The capability for constant communication with a ‘backroom’ of geological experts who make requests and weigh in on surface operations was innovative and very useful in encouraging rapid dissemination of information to the greater community in general. An extensive archive of the Apollo era science activity related documents provides evidence of the principal aspects and keys to the success of the field work. The Apollo Surface Journal allows analysis of the astronaut’s performance in terms of capability for traveling on foot, documentation and sampling of field stations, and manual operation of tools and instruments, all as a function of time. The application of these analysis as ‘lessons learned’ for planning the next generation of human or robotic field science activities on the Moon and elsewhere are considered here as well.
The Europa Clipper Mission Concept
NASA Astrophysics Data System (ADS)
Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate
2014-05-01
A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander, with the Reconnaissance goal: Characterize safe and scientifically compelling sites for a future lander mission to Europa. To accomplish these reconnaissance objectives and the investigations that flow from them, principally to address issues of landing site safety, two additional instruments would be included in the notional payload: a Reconnaissance Camera (for high-resolution imaging) and a Thermal Imager (to characterize the surface through its thermal properties). These instruments, in tandem with the notional payload for science, could assess the science value of potential landing sites. This notional payload serves as a proof-of-concept for the Europa Clipper during its formulation stage. The actual payload would be chosen through a NASA Announcement of Opportunity. If NASA were to proceed with the mission, it could be possible to launch early in the coming decade, on an Atlas V or the Space Launch System (SLS).
Earth science: Making a mountain out of a plateau
NASA Astrophysics Data System (ADS)
Sinclair, Hugh
2017-02-01
A theory proposed in 2015 suggested that relatively flat surfaces in mountain ranges were formed by the reorganization of river networks. A fresh analysis rebuts this idea, reigniting discussion of a long-standing problem in Earth science.
The surface science of nanocrystals
NASA Astrophysics Data System (ADS)
Boles, Michael A.; Ling, Daishun; Hyeon, Taeghwan; Talapin, Dmitri V.
2016-02-01
All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands -- molecules that bind to the surface -- are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.
Design of the ARES Mars Airplane and Mission Architecture
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.
2006-01-01
Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.
CosmoQuest Year 2: Citizen Science Progress, Motivations, and Education
NASA Astrophysics Data System (ADS)
Gugliucci, Nicole E.; Gay, P. L.; Antonenko, I.; Bracey, G.; Costello, K.; Lehan, C.; Moore, J.; Reilly, E.; Robbins, S. J.; Schmidt, B. E.; CosmoQuest Collaboration
2014-01-01
The CosmoQuest citizen science virtual research facility has wrapped up its second year of operations. With projects mapping the surfaces of the Moon, Mercury, and asteroid Vesta, citizen scientists have marked over 2 million craters as well as other surface features. Analysis of the mapping results show that citizen scientists map high resolution features as well as expert crater markers within a small margin of error. We’ve undertaken a study of citizen science motivations with our users, and find that an interest in astronomy and a desire to contribute new knowledge as primary motivating factors. Ten percent of users surveyed list learning or teaching science as the primary motivating factor. A full analysis of this survey will be presented. Along those lines, the CosmoQuest education team has developed a second middle school educational unit to align with its citizen science projects. In-Vesta-Gate explores asteroid science and is in the trial stage, while we report on several teacher professional development opportunities with Terraluna, a Moon-focused educational unit developed last year. We’ve also taken the CosmoQuest citizen science on the road and outside the website, having a booth and activities at several public events. We present visitor survey results from a recent exhibition at Dragon*Con, a sci-fi/fantasy convention with over 50,000 attendees. We discuss future plans for the project, including the release of several mobile apps to be previewed here.
Science Writer's Guide to Landsat 7
NASA Technical Reports Server (NTRS)
1999-01-01
The Earth Observing System (EOS), the centerpiece of NASA's Earth science program, is a suite of spacecraft and interdisciplinary science investigations dedicated to advancing our understanding of global change. The flagship EOS satellite, Terra (formerly EOS AM-1), scheduled for launch in July 1999, will provide key measurements of the physical and radiative properties of clouds; air-land and air-sea exchanges of energy, carbon, and water; trace gases; and volcanoes. Flying in formation with Terra, Landsat 7 will make global high spatial resolution measurements of land surface and surrounding coastal regions. Other upcoming EOS missions and instruments include QuikSCAT, to collect sea surface wind data; the Stratospheric Gas and Aerosol Experiment (SAGE III), to create global profiles of key atmospheric gases; and the Active Cavity Radiometer Irradiance Monitors (ACRIM) to measure the energy output of the Sun. The second of the major, multi-instrument EOS platforms, PM-1, is scheduled for launch in 2000. Interdisciplinary research projects sponsored by EOS use specific Earth science data sets for a broader investigation into the function of Earth systems. Current EOS research spans a wide range of sciences, including atmospheric chemistry, hydrology, land use, and marine ecosystems. The EOS program has been managed since 1990 by the Goddard Space Flight Center in Greenbelt, Md., for NASA's Office of Earth Science in Washington, D. C. Additional information on the program can be found on the EOS Project Science Office Web site (http://eospso.gsfc.nasa.gov).
European Science Notes Information Bulletin. Report on Current European and Middle Eastern Science
1992-10-01
oceanographers. This has occurred at a time of current radar systems . The independent develop- rapidly increasing government interest in and fund...over each area in which surface current is ment of the waves (some motions caused by wave determined (for HF systems , averaging time spans action and...Ocean Observing System ; high-resolution model capabilities; ocean- atmosphere interface; Surface Density Depression Pool; forecasting INTRODUCTION tion
“Groundwater hydrology” is redundant
NASA Astrophysics Data System (ADS)
While in the Netherlands a few months ago, I mentioned “groundwater hydrology” to a very well-educated, very literary, and non-hydrologic old friend. She shuddered and told me in no uncertain words that this was a horrible term, completely redundant like a round circle, or as the linguists call it, a pleonasm. This is, of course, because hydrology already means water science (from the Greek words udor, or hydor for water, and logos for science), so that groundwater hydrology really stands for groundwater water science, and surface water hydrology for surface water science.These are pleonasms of the first kind and insults to any language purist, which all of us should strive to be! So I propose that henceforth groundwater hydrology be called subterranean hydrology. Other possibilities would be subsurface hydrology, but this sounds too shallow, or underground hydrology, which, however, could give the impression of some clandestine activity. Besides, subterranean hydrology would be in keeping with the words for groundwater in Latin-based languages (eau souterrain in French, acqua sotierranea in Italian, and aguas subterraneas in Spanish). Also, subterranean hydrology includes the vadose zone, which, of course, groundwater hydrology as such does not. Surface water hydrology would simply be called surface hydrology, and anything above that atmospheric hydrology.
Mars Science Laboratory's Descent Stage
NASA Technical Reports Server (NTRS)
2008-01-01
This portion of NASA's Mars Science Laboratory, called the descent stage, does its main work during the final few minutes before touchdown on Mars. The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011. This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.Nano-metrology and terrain modelling - convergent practice in surface characterisation
Pike, R.J.
2000-01-01
The quantification of magnetic-tape and disk topography has a macro-scale counterpart in the Earth sciences - terrain modelling, the numerical representation of relief and pattern of the ground surface. The two practices arose independently and continue to function separately. This methodological paper introduces terrain modelling, discusses its similarities to and differences from industrial surface metrology, and raises the possibility of a unified discipline of quantitative surface characterisation. A brief discussion of an Earth-science problem, subdividing a heterogeneous terrain surface from a set of sample measurements, exemplifies a multivariate statistical procedure that may transfer to tribological applications of 3-D metrological height data.
Scientific Investigations Associated with the Human Exploration of Mars in the Next 35 Years
NASA Technical Reports Server (NTRS)
Niles, P. B.; Beaty, David; Hays, Lindsay; Bass, Deborah; Bell, Mary Sue; Bleacher, Jake; Cabrol, Nathalie A.; Conrad, Pan; Eppler, Dean; Hamilton, Vicky;
2017-01-01
A human mission to Mars would present an unprecedented opportunity to investigate the earliest history of the solar system. This history that has largely been overwritten on Earth by active geological processing throughout its history, but on Mars, large swaths of the ancient crust remain exposed at the surface, allowing us to investigate martian processes at the earliest time periods when life first appeared on the Earth. Mars' surface has been largely frozen in place for 4 billion years, and after losing its atmosphere and magnetic field what re-mains is an ancient landscape of former hydrothermal systems, river beds, volcanic eruptions, and impact craters. This allows us to investigate scientific questions ranging from the nature of the impact history of the solar system to the origins of life. We present here a summary of the findings of the Human Science Objectives Science Analysis Group, or HSO-SAG chartered by MEPAG in 2015 to address science objectives and landing site criteria for future human missions to Mars (Niles, Beaty et al. 2015). Currently, NASA's plan to land astronauts on Mars in the mid 2030's would allow for robust human exploration of the surface in the next 35 years. We expect that crews would be able to traverse to sites up to 100 km away from the original landing site using robust rovers. A habitat outfitted with state of the art laboratory facilities that could enable the astronauts to perform cutting edge science on the surface of Mars. Robotic/human partnership during exploration would further enhance the science return of the mission.
The Multispectral Imaging Science Working Group. Volume 2: Working group reports
NASA Technical Reports Server (NTRS)
Cox, S. C. (Editor)
1982-01-01
Summaries of the various multispectral imaging science working groups are presented. Current knowledge of the spectral and spatial characteristics of the Earth's surface is outlined and the present and future capabilities of multispectral imaging systems are discussed.
A Drainage Model: A One-Week Project.
ERIC Educational Resources Information Center
Lennert, James W.
1981-01-01
Describes a one-week unit in Earth science for the elementary science classroom. The concepts included are land formation, erosion, the water cycle, and human impact on the Earth's surface through planning and building a massive outdoor drainage model. (Author/DS)
Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview
NASA Astrophysics Data System (ADS)
Cabrol, N. A.; Thomas, G.; Witzke, B.
2001-04-01
Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.
NASA Astrophysics Data System (ADS)
Young, K. E.; Bleacher, J. E.; Rogers, D.; Garry, W. B.; McAdam, A.; Scheidt, S. P.; Carter, L. M.; Glotch, T. D.
2015-12-01
The Remote, In Situ, and Synchrotron Studies for Science (RIS4E) team represents one node of the Solar System Exploration Research Virtual Institute (SSERVI) program. While the RIS4E team consists of four themes, each dedicated to a different aspect of airless body exploration, this submission details the RIS4E work underway to maximize an astronaut's effectiveness while conducting surface science. The next generation of surface science operations will look quite different than the EVAs (extravehicular activities) conducted during Apollo. Astronauts will possess data of much higher resolution than the Apollo reconnaissance data, and the EVAs will thus be designed to answer targeted science questions. Additionally, technological advancements over the last several decades have made it possible to conduct in situ analyses of a caliber much greater than was achievable during Apollo. For example, lab techniques such as x-ray fluorescence, x-ray diffraction, and multi-spectral imaging are now available in field portable formats, meaning that astronauts can gain real-time geochemical awareness during sample collection. The integration of these instruments into EVA operations, however, has not been widely tested. While these instruments will provide the astronaut with a high-resolution look at regional geochemistry and structure, their implementation could prove costly to the already constrained astronaut EVA timeline. The RIS4E team, through fieldwork at the December 1974 lava flow at Kilauea Volcano, HI, investigates the incorporation of portable technologies into planetary surface exploration and explores the relationship between science value added from these instruments and the cost associated with integrating them into an EVA timeline. We also consider what an appropriate instrumentation suite would be for the exploration of a volcanic terrain using this ideal terrestrial analog (see Rogers et al., Young et al., Bleacher et al., and Yant et al., this meeting).
Rheem, Sungsue; Rheem, Insoo; Oh, Sejong
2017-01-01
Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park et al. (2014) published in the Korean Journal for Food Science of Animal Resources .
The Europa Clipper mission concept
NASA Astrophysics Data System (ADS)
Pappalardo, Robert; Lopes, Rosaly
Jupiter's moon Europa may be a habitable world. Galileo spacecraft data suggest that an ocean most likely exists beneath Europa’s icy surface and that the “ingredients” necessary for life (liquid water, chemistry, and energy) could be present within this ocean today. Because of the potential for revolutionizing our understanding of life in the solar system, future exploration of Europa has been deemed an extremely high priority for planetary science. A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon’s surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite’s ice and ocean, composition, and geology. The set of investigations derived from these science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite’s induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander, with the Reconnaissance goal: Characterize safe and scientifically compelling sites for a future lander mission to Europa. To accomplish these reconnaissance objectives and the investigations that flow from them, principally to address issues of landing site safety, two additional instruments would be included in the notional payload: a Reconnaissance Camera (for high-resolution imaging) and a Thermal Imager (to characterize the surface through its thermal properties). These instruments, in tandem with the notional payload for science, could assess the science value of potential landing sites. This notional payload serves as a proof-of-concept for the Europa Clipper during its formulation stage. The actual payload would be chosen through a NASA Announcement of Opportunity. If NASA were to proceed with the mission, it could be possible to launch early in the coming decade, on an Atlas V or the Space Launch System (SLS).
Science Support Room Operations During Desert RATS 2009
NASA Technical Reports Server (NTRS)
Lofgren, G. E.; Horz, F.; Bell, M. S.; Cohen, B. A.; Eppler,D. B.; Evans, C. a.; Hodges, K. V.; Hynek, B. M.; Gruener, J. E.; Kring, D. A.;
2010-01-01
NASA's Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.
Planetary science: A 5-micron-bright spot on Titan: Evidence for surface diversity
Barnes, J.W.; Brown, R.H.; Turtle, E.P.; McEwen, A.S.; Lorenz, R.D.; Janssen, M.; Schaller, E.L.; Brown, M.E.; Buratti, B.J.; Sotin, Christophe; Griffith, C.; Clark, R.; Perry, J.; Fussner, S.; Barbara, J.; West, R.; Elachi, C.; Bouchez, A.H.; Roe, H.G.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nicholson, P.D.; Sicardy, B.
2005-01-01
Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80??W and 20??S. This area is bright in reflected tight at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.
Sample Return in Preparation for Human Mission on the Surface of Mars
NASA Astrophysics Data System (ADS)
Yun, P.
2018-04-01
Returned samples of martian regolith will help the science community make an informed decision in choosing the final human landing site and develop a better human mission plan to meet science criteria and IRSU and civil engineering criteria.
Astrobiology Science and Technology: A Path to Future Discovery
NASA Technical Reports Server (NTRS)
Meyer, M. A.; Lavaery, D. B.
2001-01-01
The Astrobiology Program is described. However, science-driven robotic exploration of extreme environments is needed for a new era of planetary exploration requiring biologically relevant instrumentation and extensive, autonomous operations on planetary surfaces. Additional information is contained in the original extended abstract.
Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs
NASA Astrophysics Data System (ADS)
Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.
2005-05-01
Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA programs available via either the Internet or CD (e.g., those distributed by P. Reiff, Rice University) that provide inquiry-based activities for students. There is great potential to share the connections of Earth and space science by using NASA developed education materials. The materials can be adapted for the classroom, after school programs, family outreach events, and summer science enrichment programs.
Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability
NASA Astrophysics Data System (ADS)
Senske, D.; Pappalardo, R. T.; Prockter, L. M.; Paczkowski, B.; Vance, S.; Goldstein, B.; Magner, T. J.; Cooke, B.
2014-12-01
Europa is a prime candidate to search for a present-day habitable environment in our solar system. As such, NASA has engaged a Science Definition Team (SDT) to define a strategy to advance our scientific understanding of this icy world with the goal: Explore Europa to investigate its habitability. A mission architecture is defined where a spacecraft in Jupiter orbit would make many close flybys of Europa, concentrating on remote sensing to explore the moon. The spacecraft trajectory would permit ~45 flybys at a variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's surface. This concept is known as the Europa Clipper. The SDT recommended three science objectives for the Europa Clipper: Ice Shell and Ocean--Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition--Understand the habitability of Europa's ocean through composition and chemistry; Geology--Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The SDT also considered implications of the recent HST detection of plumes at Europa. To feed forward to potential future exploration that could be enabled by a lander, it was deemed that the Clipper should provide the capability to perform reconnaissance. In consultation with NASA Headquarters, the SDT developed a reconnaissance goal: Characterize Scientifically Compelling Sites, and Hazards, for a Potential Future Landed Mission to Europa. This leads to two objectives: Site Safety--Assess the distribution of surface hazards, the load-bearing capacity of the surface, the structure of the subsurface, and the regolith thickness; Science Value--Assess the composition of surface materials, the geologic context of the surface, the potential for geological activity, the proximity of near surface water, and the potential for active upwelling of ocean material. The Clipper concept provides an efficient means to explore Europa and investigate its habitability. Development of the mission concept is ongoing with current studies focusing on spacecraft design trades and refinements, launch vehicle options (EELV and SLS), and power source (MMRTG and solar), to name a few.
CosmoQuest: Building community around Citizen Science Collaboration
NASA Astrophysics Data System (ADS)
Gay, P.
2015-12-01
CosmoQuest was envisioned in 2011 with a singular goal: to create a place where people of all backgrounds can learn and do science in a virtual research community. Like a brick-and-mortar center, CosmoQuest includes facilities for doing science and for educating its members through classes, seminars, and other forms of professional development. CosmoQuest is unique with its combination of public engagement in doing science—known as "citizen science"— and its diversity of learning opportunities that enable STEM education. Our suite of activities is able maximize people's ability to learn and do science, while improving scientific literacy. Since its launch on January 1, 2012, CosmoQuest has grown to become the most trafficked astronomy citizen science site on the English-language internet. It has hosted five citizen science portals supporting NASA SMD science and is the only citizen science site to have produced peer-reviewed surface science results [Robbins, et al. 2014]. CosmoQuest, however, is more than just citizen science. It is a virtual research center for the public, and for the educators who teach in classrooms and science centers. Like with with any research center, CosmoQuest's success hinges on its ability to build a committed research community, and the challenge has been creating this community without the benefit of real-world interactions. In this talk, we overview how CosmoQuest has built a virtual community through screen-to-screen interactions using a suite of technologies that must constantly evolve as the internet evolves.
Special Issue: 14th International Symposium on Novel and Nano Materials
NASA Astrophysics Data System (ADS)
Kim, Woo-Byoung; Choa, Yong-Ho; Ahn, Hyo-Jin; Park, Il-Kyu
2017-09-01
This Special Issue of Applied Surface Science is intended to provide a collection of peer-reviewed contributions presented at the 14th International Symposium on Novel Nano Materials (ISNNM) held in Budapest, Hungary as one of the most beautiful cities in Europe from July 3 to July 8, 2016. All selected papers underwent the regular peer review process as set by the journal of Applied Surface Science and its publisher (Elsevier).
European Science Notes Information Bulletin. Reports on Current European and Middle Eastern Science
1992-01-01
ACTIVITIES IN THE ICE AND "l’lcsc conditions occur because of the relatively high CLIMATE DIVISION amount of radiation cooling from the ice surface...variant of dependent but space-inidepcndcnt noise seems to the Brusselator with diffusion. induce spatial correlations in a simple one -dimen- sional...that are designed to detect This report provides a background as to how objects on or near the sea surface.
Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission
NASA Technical Reports Server (NTRS)
Vondrak, Richard R.; Keller, J. W.; Chin, G.; Garvin, J.; Petro, N.
2012-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18,2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.
The first lunar outpost: The design reference mission and a new era in lunar science
NASA Technical Reports Server (NTRS)
Lofgren, Gary E.
1993-01-01
The content of the First Lunar Outpost (FLO) Design Reference Mission has been formulated and a 'strawman' science program has been established. The mission consists of two independent launches using heavy lift vehicles that land directly on the lunar surface. A habitat module and support systems are flown to the Moon first. After confirmation of a successful deployment of the habitat systems, the crewed lunar lander is launched and piloted to within easy walking distance (2 km) of the habitat. By eliminating the Apollo style lunar orbit rendezvous, landing sites at very high latitudes can be considered. A surface rover and the science experiments will accompany the crew. The planned stay time is 45 days, two lunar days and one night. A payload of 3.3 metric tons will support a series of geophysics, geology, astronomy, space physics, resource utilization, and life science experiments. Sample return is 150 to 200 kg. The rover is unpressurized and can carry four astronauts or two astronauts and 500 kg of payload. The rover can also operate in robotic mode with the addition of a robotics package. The science and engineering experiment strategy is built around a representative set of place holder experiments.
Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration
NASA Technical Reports Server (NTRS)
Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.
2004-01-01
Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.
Molecular Contamination on Anodized Aluminum Components of the Genesis Science Canister
NASA Technical Reports Server (NTRS)
Burnett, D. S.; McNamara, K. M.; Jurewicz, A.; Woolum, D.
2005-01-01
Inspection of the interior of the Genesis science canister after recovery in Utah, and subsequently at JSC, revealed a darkening on the aluminum canister shield and other canister components. There has been no such observation of film contamination on the collector surfaces, and preliminary spectroscopic ellipsometry measurements support the theory that the films observed on the anodized aluminum components do not appear on the collectors to any significant extent. The Genesis Science Team has made an effort to characterize the thickness and composition of the brown stain and to determine if it is associated with molecular outgassing.Detailed examination of the surfaces within the Genesis science canister reveals that the brown contamination is observed to varying degrees, but only on surfaces exposed in space to the Sun and solar wind hydrogen. In addition, the materials affected are primarily composed of anodized aluminum. A sharp line separating the sun and shaded portion of the thermal closeout panel is shown. This piece was removed from a location near the gold foil collector within the canister. Future plans include a reassembly of the canister components to look for large-scale patterns of contamination within the canister to aid in revealing the root cause.
NASA Astrophysics Data System (ADS)
Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.
2006-12-01
The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.
An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
NASA Astrophysics Data System (ADS)
Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.
2017-08-01
We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (<100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes ( 1 km), during the probe's fast ( km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.
NASA Astrophysics Data System (ADS)
Reed, S. E.; Kreylos, O.; Hsi, S.; Kellogg, L. H.; Schladow, G.; Yikilmaz, M. B.; Segale, H.; Silverman, J.; Yalowitz, S.; Sato, E.
2014-12-01
One of the challenges involved in learning earth science is the visualization of processes which occur over large spatial and temporal scales. Shaping Watersheds is an interactive 3D exhibit developed with support from the National Science Foundation by a team of scientists, science educators, exhibit designers, and evaluation professionals, in an effort to improve public understanding and stewardship of freshwater ecosystems. The hands-on augmented reality sandbox allows users to create topographic models by shaping real "kinetic" sand. The exhibit is augmented in real time by the projection of a color elevation map and contour lines which exactly match the sand topography, using a closed loop of a Microsoft Kinect 3D camera, simulation and visualization software, and a data projector. When an object (such as a hand) is sensed at a particular height above the sand surface, virtual rain appears as a blue visualization on the surface and a flow simulation (based on a depth-integrated version of the Navier-Stokes equations) moves the water across the landscape. The blueprints and software to build the sandbox are freely available online (http://3dh2o.org/71/) under the GNU General Public License, together with a facilitator's guide and a public forum (with how-to documents and FAQs). Using these resources, many institutions (20 and counting) have built their own exhibits to teach a wide variety of topics (ranging from watershed stewardship, hydrology, geology, topographic map reading, and planetary science) in a variety of venues (such as traveling science exhibits, K-12 schools, university earth science departments, and museums). Additional exhibit extensions and learning modules are planned such as tsunami modeling and prediction. Moreover, a study is underway at the Lawrence Hall of Science to assess how various aspects of the sandbox (such as visualization color scheme and level of interactivity) affect understanding of earth science concepts.
Apollo experience report: Apollo lunar surface experiments package data processing system
NASA Technical Reports Server (NTRS)
Eason, R. L.
1974-01-01
Apollo Program experience in the processing of scientific data from the Apollo lunar surface experiments package, in which computers and associated hardware and software were used, is summarized. The facility developed for the preprocessing of the lunar science data is described, as are several computer facilities and programs used by the Principal Investigators. The handling, processing, and analyzing of lunar science data and the interface with the Principal Investigators are discussed. Pertinent problems that arose in the development of the data processing schemes are discussed so that future programs may benefit from the solutions to the problems. The evolution of the data processing techniques for lunar science data related to recommendations for future programs of this type.
NASA Astrophysics Data System (ADS)
Bitter, C.; Buxner, S. R.
2009-03-01
The Phoenix Mars Mission faced robust communication challenges requiring real-time solutions. Managing the message from Mars and ensuring the highest quality of science data and news releases were our top priorities during mission surface operations.
ERIC Educational Resources Information Center
Winokur, Jeff; And Others
1992-01-01
The article helps elementary teachers develop science programs geared to their students, emphasizing the appropriateness of hands-on activities and developmental learning. It presents three Earth Day water projects on rain and puddles, water drops and surface tension, and water purification that can be tailored for specific classes. (SM)
NASA Technical Reports Server (NTRS)
Cameron, W. S. (Editor); Vostreys, R. W. (Editor)
1982-01-01
Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.
June 2017 Atmospheric Science Forum Newsletter
Atmospheric Science Data Center
2017-07-05
June 2017 Atmospheric Science Forum Newsletter Friday, June 30, 2017 ... DISCOVER-AQ campaign available on Toolsets for Airborne Data (TAD), release of the CERES EBAF TOA and SURFACE Edition 4.0 data products, and the MOPITT V7 product upgrade. Access the full article at: ...
NASA Technical Reports Server (NTRS)
Masuoka, Edward J.; Tilmes, Curt A.; Ye, Gang; Devine, Neal; Smith, David E. (Technical Monitor)
2000-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) was launched on NASA's EOS-Terra spacecraft December 1999. With 36 spectral bands covering the visible, near wave and short wave infrared. MODIS produces over 40 global science data products, including sea surface temperature, ocean color, cloud properties, vegetation indices land surface temperature and land cover change. The MODIS Data Processing System (MODAPS) produces 400 GB/day of global MODIS science products from calibrated radiances generated in the Earth Observing System Data and Information System (EOSDIS). The science products are shipped to the EOSDIS for archiving and distribution to the public. An additional 200 GB of products are shipped each day to MODIS team members for quality assurance and validation of their products. In the sections that follow, we will describe the architecture of the MODAPS, identify processing bottlenecks encountered in scaling MODAPS from 50 GB/day backup system to a 400 GB/day production system and discuss how these were handled.
NASA Astrophysics Data System (ADS)
Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.
2007-12-01
University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an additional content course within a science discipline that is concurrently taught with a science methods course. Emphasizing inquiry-based activities, these bridge courses also focus on developing integrated understandings of the sciences. The continuum extends beyond the student teaching experience by tracking cohorts of science teachers during their in-service years. With funding from the National Science Foundation's Teacher Professional Continuum program, we are conducting research on this inquiry-based professional development approach for K-8 teachers across this continuum.
PREFACE: 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6)
NASA Astrophysics Data System (ADS)
Ahsan Bhatti, Javaid; Hussain, Talib; Khan, Wakil
2013-06-01
The Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA) conference series has been organized to create a new forum in Asia and Australia to discuss vacuum, surface and related sciences, techniques and applications. The conference series is officially endorsed by the International Union for Vacuum Science, Technique and Application (IUVSTA). The International Steering Committee of VASSCAA is comprised of Vacuum Societies in seven countries: Australia, China, India, Iran, Japan, South Korea and Pakistan. VASSCAA-1 was organized by the Vacuum Society of Japan in 1999 in Tokyo, Japan. VASSCAA-2 was held in 2002 in Hong Kong, VASSCAA-3 in Singapore in 2005. VASSCAA-4 was held in Matsue, Japan in 2008 and VASSCAA-5 in 2010 in Beijing, China. The 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6) was held from 9-13 October 2012 in the beautiful city of Islamabad, Pakistan. The venue of the conference was the Pak-China Friendship Centre, Islamabad. More than six hundred local delgates and around seventy delegates from different countries participated in this mega event. These delegates included scientists, researchers, engineers, professors, plant operators, designers, vendors, industrialists, businessmen and students from various research organizations, technical institutions, universities, industries and companies from Pakistan and abroad. The focal point of the event was to enhance cooperation between Pakistan and the international community in the fields of vacuum, surface science and other applied technologies. At VASSCAA-6 85 oral presentations were delivered by local and foreign speakers. These were divided into different sessions according to their fields. A poster session was organized at which over 70 researchers and students displayed their posters. The best three posters won prizes. In parallel to the main conference sessions four technical short courses were held. The participants showed keen interest in all these courses. The most significant part of this event was an international exhibition of science, technology, energy and industry. In this international exhibition over 60 prominent international as well as local industrialists and vendors displayed their products. For the recreation of conference participants a cultural program and dinner was arranged. This entertaining program was fully enjoyed by all the participants especially the foreign guests. Recreational trips were also arranged for the foreign delegates. This mega event provided a unique opportunity to our scientific community to benefit from the rich international experience. The conference was a major forum for the exchange of knowledge and provided numerous scientific, technical and social opportunities for meeting leading experts. Editors Dr Javaid Ahsan Bhatti, Dr Talib Hussain, Dr Suleman Qaiser and Dr Wakil Khan National Institute of Vacuum Science and Technology (NINVAST) NCP Complex, Quaid-e-Azam University, Islamabad, Pakistan The PDF also contains a list of delegates.
The Planned Europa Clipper Mission: Exploring Europa to Investigate its Habitability
NASA Astrophysics Data System (ADS)
Pappalardo, Robert T.; Senske, David A.; Korth, Haje; Blaney, Diana L.; Blankenship, Donald D.; Christensen, Philip R.; Kempf, Sascha; Raymond, Carol Anne; Retherford, Kurt D.; Turtle, Elizabeth P.; Waite, J. Hunter; Westlake, Joseph H.; Collins, Geoffrey; Gudipati, Murthy; Lunine, Jonathan I.; Paty, Carol; Rathbun, Julie A.; Roberts, James; E Schmidt, Britney; Soderblom, Jason M.; Europa Clipper Science Team
2017-10-01
A key driver of planetary exploration is to understand the processes that lead to habitability across the solar system. In this context, the science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three Mission Objectives: 1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; 2) Understand the habitability of Europa's ocean through composition and chemistry; and 3) Understand the formation of surface features, including sites of recent or current activity, and characterize localities of high science interest. Folded into these three objectives is the desire to search for and characterize any current activity.To address the Europa science objectives, a highly capable and synergistic suite of nine instruments comprise the mission's scientific payload. This payload includes five remote-sensing instruments that observe the wavelength range from ultraviolet through radar, specifically: Europa UltraViolet Spectrograph (Europa-UVS), Europa Imaging System (EIS), Mapping Imaging Spectrometer for Europa (MISE), Europa THErMal Imaging System (E-THEMIS), and Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). In addition, four in-situ instruments measure fields and particles: Interior Characterization of Europa using MAGnetometry (ICEMAG), Plasma Instrument for Magnetic Sounding (PIMS), MAss Spectrometer for Planetary EXploration (MASPEX), and SUrface Dust Analyzer (SUDA). Moreover, gravity science can be addressed via the spacecraft's telecommunication system, and scientifically valuable engineering data from the radiation monitoring system would augment the plasma dataset. Working together, the planned Europa mission’s science payload would allow testing of hypotheses relevant to the composition, interior, and geology of Europa, to address the potential habitability of this intriguing moon.
Soil science and geology: Connects, disconnects and new opportunities in geoscience education
Landa, E.R.
2004-01-01
Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.
On the Attitude of Secondary 1 Students towards Science
NASA Astrophysics Data System (ADS)
Kuppan, L.; Munirah, S. K.; Foong, S. K.; Yeung, A. S.
2010-07-01
The understanding of students' attitude towards science will give a sense of direction when designing pedagogical approaches and lesson packages so that reasons for not liking science is arrested and eventually the nation's need for science oriented workforce is addressed in the future. This study is part of a 3-year research project entitled PbI1@School: A large scale study on the effect of "Physics by Inquiry" pedagogy on Secondary One students' attitude and aptitude in science, involving school, National Institute of Education (NIE) Singapore, University of Washington at Seattle and the Ministry of Education (MOE) of Singapore. The results from a survey conducted on a sample size of 215 secondary 1 students indicate that fun in studying science is a major reason for their interest towards the subject. Those who do not like science dislike the idea of surface learning such as memorizing facts and information. Besides, all these students in our sample appear to be inquisitive. We believe that the teaching and learning system needs to be modified to increase or at least sustain the students' interest in science and capitalize on students' inquisitiveness. Although the results obtained are interesting and give an insight on secondary 1 students' attitude towards science, we intend to carry out a more rigorous study to identify correlations between students' responses for different attitude questions to understand deeply their attitude towards science.
USDA-ARS?s Scientific Manuscript database
Micrometeorological methods and ecosystem-scale energy and mass flux density measurements have become increasingly important in soil, agricultural, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Eddy cov...
NASA Astrophysics Data System (ADS)
Miao, Yuan-Hao; Hu, Hui-Yong; Song, Jian-Jun; Xuan, Rong-Xi; Zhang, He-Ming
2017-12-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61474085 and 61704130), the Science Research Plan in Shaanxi Province, China (Grant No. 2016GY-085), the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (Grant No. 90109162905), and the Fundamental Research Funds for the Central Universities, China (Grant No. 61704130).
Focus: knowing the ocean: a role for the history of science.
Rozwadowski, Helen M
2014-06-01
While most historians have treated the sea as a surface or a void, the history of science is well positioned to draw the ocean itself into history. The contributors to this Focus section build on the modest existing tradition of history of oceanography and extend that tradition to demonstrate both the insights to be gained by studying oceans historically and the critical role that the history of science should play in future environmental history of the ocean.
ERIC Educational Resources Information Center
Rice, Diana C.; And Others
In order to take into account in a more productive, effective manner children's prior science knowledge in the development of science curricula and in the teaching of science, it is important "to know how to explore it, to know about its nature, and to consider the various ways it may, or may not be modified" (Gilbert, Osborne, and Fensham, 1982).…
2010 Atmospheric System Research (ASR) Science Team Meeting Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, DL
This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.
Attitudes toward science of gifted and nongifted fifth graders
NASA Astrophysics Data System (ADS)
Harty, Harold; Beall, Dwight
The purpose of this investigation has been to explore whether differences existed between gifted and nongifted fifth graders and between genders and related subgroups with respect to attitudes toward science. Both groups (N = 25) were matched on the demographic characteristics of school-site, race, sex, and socio-economic background. Gifted students were found to have more positive attitudes toward science than nongifted students; however, no significant differences were found. In all cases, boys (all boys, gifted boys, and nongifted boys) exhibited more positive attitudes toward science; again, no significant differences were uncovered between the boys and their counterpart group or subgroups. The item which consistently reflected the most positive rating (gifted students, all boys and gifted boys, and all girls and nongifted girls) was usefulness of things done in science class. Items where discrepancies surfaced included usefulness of science when playing at home where nongifted students and gifted girls were significantly more positive than their counterparts, and spending more time doing science experiments where all boys and gifted boys were significantly more positive than their counterparts.
Understanding our Changing Planet: NASA's Earth Science Enterprise
NASA Technical Reports Server (NTRS)
Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)
1999-01-01
NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.
A storied-identity analysis approach to teacher candidates learning to teach in an urban setting
NASA Astrophysics Data System (ADS)
Ibourk, Amal
While many studies have investigated the relationship between teachers' identity work and their developing practices, few of these identity focused studies have honed in on teacher candidates' learning to teach in an urban setting. Drawing upon narrative inquiry methodology and a "storied identity" analytic framework, I examined how the storied identities of science learning and becoming a science teacher shape teacher candidates' developing practice. In particular, I examined the stories of three interns, Becky, David, and Ashley, and I tell about their own experiences as science learners, their transitions to science teachers, and the implications this has for the identity work they did as they navigated the challenges of learning to teach in high-needs schools. Initially, each of the interns highlighted a feeling of being an outsider, and having a difficult time becoming a fully valued member of their classroom community in their storied identities of becoming a science teacher in the beginning of their internship year. While the interns named specific challenges, such as limited lab materials and different math abilities, I present how they adapted their lesson plans to address these challenges while drawing from their storied identities of science learning. My study reveals that the storied identities of becoming a science teacher informed how they framed their initial experiences teaching in an urban context. In addition, my findings reveal that the more their storied identities of science learning and becoming a science teacher overlapped, the more they leveraged their storied identity of science learning in order to implement teaching strategies that helped them make sense of the challenges that surfaced in their classroom contexts. Both Becky and Ashley leveraged their storied identities of science learning more than David did in their lesson planning and learning to teach. David's initial storied identity of becoming a science teacher revealed how he highlighted his struggle with navigating talkativeness in the class, but also his struggle being an authority figure in his classroom. At present, only Becky and Ashley pursued teaching in a high needs setting. A storied identity analysis provided as well an insight into their storied strategies, or the teaching strategies shaped by the stories the interns told about how they made sense of the challenges they faced in their teaching practice. There were five teaching strategies the interns named that were important in supporting their learning to teach were (1) building relationships with their students, (2) being resourceful and creative when faced with limited lab materials, (3) making science relevant to their students, (4) scaffolding their students in their learning, and (5) having a network of people as resources in helping them be better teachers and helping their students learn. Out of these five teaching strategies, I called those they named and highlighted as helping them teach in ways they valued and that connected back to their storied identity of science learning their storied strategies. Implications for further pushing storied identities as a tool for teacher educators to help pinpoint priorities that surface in teacher candidates' practice are discussed. An insight into the priorities that teacher candidates highlight in their practice as well as the storied strategies they name and use to deal with challenges that surface in their practice has potential in better helping teacher candidates navigate their developing practice.
Ambition: A Risky Adventure in Science Communication
NASA Astrophysics Data System (ADS)
McCaughrean, M.
2016-03-01
This article explores how the European Space Agency made a short science fiction film about the Rosetta mission to engage audiences in the core scientific and philosophical questions of the mission, and to manage expectations regarding the risky landing of Philae on the surface of Comet 67P/Churyumov-Gerasimenko.
The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O
NASA Technical Reports Server (NTRS)
1994-01-01
Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology.
State of science of phosphorus modeling in tile drained agricultural systems using APEX
USDA-ARS?s Scientific Manuscript database
Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...
Materials Science Research | Materials Science | NREL
Structure Theory We use high-performance computing to design and discover materials for energy, and to study structure of surfaces and critical interfaces. Images of red and yellow particles Materials Discovery Our by traditional targeted experiments. Photo of a stainless steel piece of equipment with multiple
The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z
NASA Technical Reports Server (NTRS)
1994-01-01
Various papers on lunar and planetary science are presented, covering such topics as: impact craters, tektites, lunar geology, lava flow, geodynamics, chondrites, planetary geology, planetary surfaces, volcanology, tectonics, topography, regolith, metamorphic rock, geomorphology, lunar soil, geochemistry, petrology, cometary collisions, geochronology, weathering, and meteoritic composition.
CosmoQuest: A Cyber-Infrastructure for Crowdsourcing Planetary Surface Mapping and More
NASA Astrophysics Data System (ADS)
Gay, P.; Lehan, C.; Moore, J.; Bracey, G.; Gugliucci, N.
2014-04-01
The design and implementation of programs to crowdsource science presents a unique set of challenges to system architects, programmers, and designers. The CosmoQuest Citizen Science Builder (CSB) is an open source platform designed to take advantage of crowd computing and open source platforms to solve crowdsourcing problems in Planetary Science. CSB combines a clean user interface with a powerful back end to allow the quick design and deployment of citizen science sites that meet the needs of both the random Joe Public, and the detail driven Albert Professional. In this talk, the software will be overviewed, and the results of usability testing and accuracy testing with both citizen and professional scientists will be discussed.
NASA Technical Reports Server (NTRS)
Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.
2012-01-01
Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes
Planning for rover opportunistic science
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara; Forest, Fisher; Chouinard, Caroline; Castano, Rebecca; Anderson, Robert C.
2004-01-01
The Mars Exploration Rover Spirit recently set a record for the furthest distance traveled in a single sol on Mars. Future planetary exploration missions are expected to use even longer drives to position rovers in areas of high scientific interest. This increase provides the potential for a large rise in the number of new science collection opportunities as the rover traverses the Martian surface. In this paper, we describe the OASIS system, which provides autonomous capabilities for dynamically identifying and pursuing these science opportunities during longrange traverses. OASIS uses machine learning and planning and scheduling techniques to address this goal. Machine learning techniques are applied to analyze data as it is collected and quickly determine new science gods and priorities on these goals. Planning and scheduling techniques are used to alter the behavior of the rover so that new science measurements can be performed while still obeying resource and other mission constraints. We will introduce OASIS and describe how planning and scheduling algorithms support opportunistic science.
The First United States Microgravity Laboratory
NASA Technical Reports Server (NTRS)
Powers, C. Blake (Editor); Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Mikatarian, Jeff
1991-01-01
The United States Microgravity Laboratory (USML-1) is one part of a science and technology program that will open NASA's next great era of discovery and establish the United States' leadership in space. A key component in the preparation for this new age of exploration, the USML-1 will fly in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. The major components of the USML-1 are the Crystal Growth Furnace, the Surface Tension Driven Convection Experiment (STDCE) Apparatus, and the Drop Physics Module. Other components of USML-1 include Astroculture, Generic Bioprocessing Apparatus, Extended Duration Orbiter Medical Project, Protein Crystal Growth, Space Acceleration Measurement System, Solid Surface Combustion Experiment, Zeolite Crystal Growth and Spacelab Glovebox provided by the European Space Agency.
The ISIS Mission Concept: An Impactor for Surface and Interior Science
NASA Technical Reports Server (NTRS)
Chesley, Steven R.; Elliot, John O.; Abell, Paul A.; Asphaug, Erik; Bhaskaran, Shyam; Lam, Try; Lauretta, Dante S.
2013-01-01
The Impactor for Surface and Interior Science (ISIS) mission concept is a kinetic asteroid impactor mission to the target of NASA's OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) asteroid sample return mission. The ISIS mission concept calls for the ISIS spacecraft, an independent and autonomous smart impactor, to guide itself to a hyper-velocity impact with 1999 RQ36 while the OSIRIS-REx spacecraft observes the collision. Later the OSIRIS-REx spacecraft descends to reconnoiter the impact site and measure the momentum imparted to the asteroid through the impact before departing on its journey back to Earth. In this paper we discuss the planetary science, human exploration and impact mitigation drivers for mission, and we describe the current mission concept and flight system design.
ASTP science demonstration data analysis
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Bourgeois, S. V.
1977-01-01
Analyses of the Apollo-Soyuz science demonstrations on chemical foams and liquid spreading are presented. The chemical foams demonstation showed that aqueous foams and gas/liquid dispersions are more stable in low-g than on the ground. Unique chemical reactions in low-g foams and gas/liquid dispersions are therefore possible. Further ground tests on the formaldehyde clock reaction led to the rather surprising conclusions that surfaces can exert a nucleation effect and that long-range surface influences on chemical reaction rates are apparently operative.
NASA Astrophysics Data System (ADS)
Gao, Da; Ray, Asok
2007-03-01
The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of both bulk and the (0001) surface of dhcp Am with the 5f electrons primarily localized. Our results show that magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Quantum size effects are found to be more pronounced in work functions than in surface energies. *This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy and the Welch Foundation, Houston, Texas.
NASA Technical Reports Server (NTRS)
Eppler, D. B.
2012-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona in the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where multi-day tests are achievable. Desert RATS 2011 Science Operations Test simulated the management of crewed science operations at targets that were beyond the light delay time experienced during Low-Earth Orbit (LEO) and lunar surface missions, such as a mission to a Near-Earth Object (NEO) or the martian surface. Operations at targets at these distances are likely to be the norm as humans move out of the Earth-Moon system. Operating at these distances places significant challenges on mission operations, as the imposed light-delay time makes normal, two-way conversations extremely inefficient. Consequently, the operations approach for space missions that has been exercised during the first half-century of human space operations is no longer viable, and new approaches must be devised.
Remote Sensing for Agriculture, Ecosystems and Hydrology III
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1999-01-01
The science need for remotely sensed soil moisture has been well established in the hydrologic, climate change and weather forecasting communities. In spite of this well documented science need there are currently no satellite missions flying or funded to make this very important geophysical measurement. There have been a number of experimental aircraft programs that have demonstrated the feasibility of using long wave microwave sensors for estimating soil moisture. Unfortunately, this science driver, soil moisture, imposes very difficult technical requirements for a satellite sensor system. Global soil moisture is driven by a spatial resolution on the order of 20 to 30 km and measurements need to be taken every two to three days to be useful to the science community. The principal sensor to accomplish the soil moisture measurements is an L- band passive microwave radiometer and achieving the spatial and temporal requirements requires a very large antenna. This paper describes the several alternatives to solve the very large antenna challenge and still meet the radiometer sensitivity requirement. The paper also discusses the alternatives considered to obtain the necessary ancillary data for characterizing the surface roughness, the surface temperature and the attenuation affects of vegetation needed to derive the geophysical parameter. Finally, the paper discusses proposed missions and how well they will meet the science requirements.
NASA Technical Reports Server (NTRS)
Niemann, Hasso B.
2007-01-01
Probing the atmospheres and surfaces of the planets and their moons with fast moving entry probes has been a very useful and essential technique to obtain in situ or quasi in situ scientific data (ground truth) which could not otherwise be obtained from fly by or orbiter only missions and where balloon, aircraft or lander missions are too complex and costly. Planetary entry probe missions have been conducted successfully on Venus, Mars, Jupiter and Titan after having been first demonstrated in the Earth's atmosphere. Future missions will hopefully also include more entry probe missions back to Venus and to the outer planets. 1 he success of and science returns from past missions, the need for more and better data, and a continuously advancing technology generate confidence that future missions will be even more successful with respect to science return and technical performance. I'he pioneering and tireless work of Al Seiff and his collaborators at the NASA Ames Research Center had provided convincing evidence of the value of entry probe science and how to practically implement flight missions. Even in the most recent missions involving entry probes i.e. Galileo and Cassini/Huygens A1 contributed uniquely to the science results on atmospheric structure, turbulence and temperature on Jupiter and Titan.
Wauchope, R Don; Ahuja, Lajpat R; Arnold, Jeffrey G; Bingner, Ron; Lowrance, Richard; van Genuchten, Martinus T; Adams, Larry D
2003-01-01
We present an overview of USDA Agricultural Research Service (ARS) computer models and databases related to pest-management science, emphasizing current developments in environmental risk assessment and management simulation models. The ARS has a unique national interdisciplinary team of researchers in surface and sub-surface hydrology, soil and plant science, systems analysis and pesticide science, who have networked to develop empirical and mechanistic computer models describing the behavior of pests, pest responses to controls and the environmental impact of pest-control methods. Historically, much of this work has been in support of production agriculture and in support of the conservation programs of our 'action agency' sister, the Natural Resources Conservation Service (formerly the Soil Conservation Service). Because we are a public agency, our software/database products are generally offered without cost, unless they are developed in cooperation with a private-sector cooperator. Because ARS is a basic and applied research organization, with development of new science as our highest priority, these products tend to be offered on an 'as-is' basis with limited user support except for cooperating R&D relationship with other scientists. However, rapid changes in the technology for information analysis and communication continually challenge our way of doing business.
Surface-water quality-assurance plan for the U.S. Geological Survey Washington Water Science Center
Mastin, Mark C.
2016-02-19
This Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the U.S. Geological Survey Washington Water Science Center (WAWSC) for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all WAWSC personnel involved in surface-water data activities, and changes as the needs and requirements of the WAWSC change. Regular updates to this plan represent an integral part of the quality-assurance process. In the WAWSC, direct oversight and responsibility by the hydrographer(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure highquality data, analyses, reviews, and reports for cooperating agencies and the public.
NASA Astrophysics Data System (ADS)
Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.
2005-05-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.
NASA Astrophysics Data System (ADS)
Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng
2016-05-01
A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).
NASA Astrophysics Data System (ADS)
Häberle, Patricio; Fuenzalida, Victor
2004-07-01
The 2003 Congreso Latinoamericano de Ciencia de Superficies y sus Aplicaciones (Latin American Congress of Surface Science and Its Applications) was held in Pucón, Chile, 7-12 December 2003. XI CLACSA is the continuation of a series of events that started in 1980. Until 1992, this series was called Simposio Latinoamericano de Física de Superficies (SLAFS). In recognition of the interdisciplinary nature of the field, starting in 1994 the meeting became CLACSA. The conference was organized by the Sociedad Latinoamericana de Ciencia de Superficies (SLACS) with the purpose of becoming a forum for the exchange of information associated with scientific research carried out in Latin America in the field of surface physics, systems of low dimensionality and areas related to condensed matter physics and science of materials. This scientific event has enjoyed a large participation from Latin American scientists, and has helped to stimulate the collaboration between researchers from Europe, Latin America and the United States.
NASA Astrophysics Data System (ADS)
Fuchs, Thomas J.; Thompson, David R.; Bue, Brian D.; Castillo-Rogez, Julie; Chien, Steve A.; Gharibian, Dero; Wagstaff, Kiri L.
2015-10-01
Spacecraft autonomy is crucial to increase the science return of optical remote sensing observations at distant primitive bodies. To date, most small bodies exploration has involved short timescale flybys that execute prescripted data collection sequences. Light time delay means that the spacecraft must operate completely autonomously without direct control from the ground, but in most cases the physical properties and morphologies of prospective targets are unknown before the flyby. Surface features of interest are highly localized, and successful observations must account for geometry and illumination constraints. Under these circumstances onboard computer vision can improve science yield by responding immediately to collected imagery. It can reacquire bad data or identify features of opportunity for additional targeted measurements. We present a comprehensive framework for onboard computer vision for flyby missions at small bodies. We introduce novel algorithms for target tracking, target segmentation, surface feature detection, and anomaly detection. The performance and generalization power are evaluated in detail using expert annotations on data sets from previous encounters with primitive bodies.
Attosecond time-resolved streaked photoemission from Mg-covered W(110) surfaces
NASA Astrophysics Data System (ADS)
Liao, Qing; Thumm, Uwe
2015-05-01
We formulate a quantum-mechanical model for infrared-streaked photoelectron emission by an ultrashort extreme ultraviolet pulse from adsorbate-covered metal surfaces. Applying this numerical model to ultrathin Mg adsorbates on W(110) substrates, we analyze streaked photoelectron spectra and attosecond streaking time delays for photoemission from the Mg/W(110) conduction band and Mg(2p) and W(4f) core levels. Based on this analysis, we propose the use of attosecond streaking spectroscopy on adsorbate-covered surfaces with variable adsorbate thickness as a method for investigating (a) electron transport in condensed-matter systems and (b) metal-adsorbate-interface properties at subatomic length and time scales. Our calculated streaked photoemission spectra and time delays agree with recently obtained experimental data. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Grant No. DE-FG02-86ER13491 and NSF Grant PHY-1068752.
Characterization of contaminant removal by an optical strip material
NASA Astrophysics Data System (ADS)
Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.
2001-03-01
Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.
SweepSAR Sensor Technology for Dense Spatial and Temporal Coverage of Earth Change
NASA Astrophysics Data System (ADS)
Rosen, P. A.
2016-12-01
Since the 2007 National Academy of Science "Decadal Survey" report, NASA has been studying concepts for a Synthetic Aperture Radar (SAR) mission to determine Earth change in three disciplines - ecosystems, solid earth, and cryospheric sciences. NASA has joined forces with the Indian Space Research Organisation (ISRO) to fulfill these objectives. The NASA-ISRO SAR (NISAR) mission is now in development for a launch in 2021. The mission's primary science objectives are codified in a set of science requirements to study Earth land and ice deformation, and ecosystems, globally with 12-day sampling over all land and ice-covered surfaces throughout the mission life. The US and Indian science teams share global science objectives; in addition, India has developed a set of local objectives in agricultural biomass estimation, Himalayan glacier characterization, and coastal ocean measurements in and around India. Both the US and India have identified agricultural and infrastructure monitoring, and disaster response as high priority applications for the mission. With this range of science and applications objectives, NISAR has demanding coverage, sampling, and accuracy requirements. The system requires a swath of over 240 km at 3-10 m SAR imaging resolution, using full polarimetry where needed. Given the broad range of phenomena and wide range of sensitivities needed, NISAR carries two radars, one operating at L-band (24 cm wavelength) and the other at S-band (10 cm wavelength). The system uses a new "scan-on-receive" ("SweepSAR") technology at both L-band and S-band, that enables full swath coverage without loss of resolution or polarimetric diversity. Both radars can operate simultaneously. The L-band system is being designed to operate up to 50 minutes per orbit, and the S-band system up to 10 minutes per orbit. The orbit will be controlled to within 300 m for repeat-pass interferometry measurements. This unprecedented coverage in space, time, polarimetry, and frequency, will add a new and rich data set to the international constellation of sensors studying Earth surface change. In this talk, we will describe the mission's expected contributions to geodetic imaging in support of time-series analysis of dynamic changes of Earth's surface.
Lunar Surface Architecture Utilization and Logistics Support Assessment
NASA Astrophysics Data System (ADS)
Bienhoff, Dallas; Findiesen, William; Bayer, Martin; Born, Andrew; McCormick, David
2008-01-01
Crew and equipment utilization and logistics support needs for the point of departure lunar outpost as presented by the NASA Lunar Architecture Team (LAT) and alternative surface architectures were assessed for the first ten years of operation. The lunar surface architectures were evaluated and manifests created for each mission. Distances between Lunar Surface Access Module (LSAM) landing sites and emplacement locations were estimated. Physical characteristics were assigned to each surface element and operational characteristics were assigned to each surface mobility element. Stochastic analysis was conducted to assess probable times to deploy surface elements, conduct exploration excursions, and perform defined crew activities. Crew time is divided into Outpost-related, exploration and science, overhead, and personal activities. Outpost-related time includes element deployment, EVA maintenance, IVA maintenance, and logistics resupply. Exploration and science activities include mapping, geological surveys, science experiment deployment, sample analysis and categorizing, and physiological and biological tests in the lunar environment. Personal activities include sleeping, eating, hygiene, exercising, and time off. Overhead activities include precursor or close-out tasks that must be accomplished but don't fit into the other three categories such as: suit donning and doffing, airlock cycle time, suit cleaning, suit maintenance, post-landing safing actions, and pre-departure preparations. Equipment usage time, spares, maintenance actions, and Outpost consumables are also estimated to provide input into logistics support planning. Results are normalized relative to the NASA LAT point of departure lunar surface architecture.
FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samara, G.A.
1997-05-01
The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfacesmore » for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.« less
Center for Adaptive Optics | News
* Methane Clouds Observed Near Titan's Equator May Explain Presence of Riverbeds on the Surface * 'Dark Center for Adaptive Optics A University of California Science and Technology Center home AO of Cosmic Time * Celebration of Science and Technology Centers Class of 2000 AO Headlines 2009
Observing the Solar Spectrum at the House of Science
ERIC Educational Resources Information Center
Johansson, K. E.; Kozma, C.; Nilsson, Ch.
2007-01-01
CCD spectrometers available at Stockholm House of Science allow students to measure the radiation from the Sun. Students are fascinated by the information that can be gathered from the spectrum, including the temperature of the solar surface and the presence of certain elements in both the Sun's atmosphere and the Earth's.
Visualizing Three-Dimensional Calculus Concepts: The Study of a Manipulative's Effectiveness
ERIC Educational Resources Information Center
McGee, Daniel, Jr.; Moore-Russo, Deborah; Ebersole, Dennis; Lomen, David O.; Quintero, Maider Marin
2012-01-01
With the help of the National Science Foundation, the Department of Mathematics at the University of Puerto Rico in Mayaguez has developed a set of manipulatives to help students of science and engineering visualize concepts relating to points, surfaces, curves, contours, and vectors in three dimensions. This article will present the manipulatives…
Scaffolded Inquiry-Based Instruction with Technology: A Signature Pedagogy for STEM Education
ERIC Educational Resources Information Center
Crippen, Kent J.; Archambault, Leanna
2012-01-01
Inquiry-based instruction has become a hallmark of science education and increasingly of integrated content areas, including science, technology, engineering, and mathematics (STEM) education. Because inquiry-based instruction very clearly contains surface, deep, and implicit structures as well as engages students to think and act like scientists,…
JSC director's discretionary fund program
NASA Technical Reports Server (NTRS)
1991-01-01
The Johnson Space Center Director's Discretionary Fund Program Annual Report provides a brief review of the status of projects undertaken during the 1990 fiscal year. Three space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, and lunar surface habitat. A viable program of life sciences, space sciences, and engineering research has been maintained.
Computational techniques in tribology and material science at the atomic level
NASA Technical Reports Server (NTRS)
Ferrante, J.; Bozzolo, G. H.
1992-01-01
Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.
Research Staff | Materials Science | NREL
Nancy.Haegel@nrel.gov | 303-384-6548 | Photo of Mowafak Al-Jassim Mowafak Al-Jassim Group Research Manager III and Surface Science Group Manager Glenn.Teeter@nrel.gov | 303-384-6664 Photo of Philip Parilla. Philip Parilla Group Manager/Senior Scientist Philip.Parilla@nrel.gov | 303-384-6506 Name Position Email Phone
NASA Astrophysics Data System (ADS)
Zou, Xiu-Juan; Zheng, Gai-Ge; Chen, Yun-Yun
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61203211 and 41675154), the Six Major Talent Peak Expert of Jiangsu Province, China (Grant No. 2015-XXRJ-014), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20141483).
Surface acoustic wave devices for sensor applications
NASA Astrophysics Data System (ADS)
Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren
2016-02-01
Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).
NASA's Earth Venture-1 (EV-1) Airborne Science Investigations
NASA Technical Reports Server (NTRS)
Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal
2011-01-01
In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)
NASA Astrophysics Data System (ADS)
Whitehurst, A.; Murphy, K. J.
2017-12-01
The objectives of the NASA Citizen Science for Earth Systems Program (CSESP) include both the evaluation of using citizen science data in NASA Earth science related research and engaging the public in Earth systems science. Announced in 2016, 16 projects were funded for a one year prototype phase, with the possibility of renewal for 3 years pending a competitive evaluation. The current projects fall into the categories of atmospheric composition (5), biodiversity and conservation (5), and surface hydrology/water and energy cycle (6). Out of the 16, 8 of the projects include the development and/or implementation of low cost sensors to facilitate data collection. This presentation provides an overview of the NASA CSESP program to both highlight the diversity of innovative projects being funded and to share information with future program applicants.
Baglioni, Piero; Chelazzi, David; Giorgi, Rodorico; Poggi, Giovanna
2013-04-30
Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted.
NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)
2011-11-23
When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument
2014-11-20
President Barack Obama delivers remarks at the National Medals of Science and National Medals of Technology and Innovation Awards Ceremony, Thursday, Nov. 20, 2014 in the East Room of the White House in Washington. MESSENGER Principal Investigator, director of Columbia University's Lamont-Doherty Earth Observatory, Sean Solomon, was awarded the National Medal of Science, the nation's top scientific honor, at the ceremony. MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. Photo Credit: (NASA/Bill Ingalls)
Radio Science Concepts and Approaches for Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Anderson, J. D.; Asmar, S. W.; Castillo, J. C.; Folkner, W. M.; Konopliv, A. S.; Marouf, E. A.; Rappaport, N. J.; Schubert, G.; Spilker, T. R.; Tyler, G. L.
2003-01-01
Radio Science experiments have been conducted on most deep space missions leading to numerous scientific discoveries. A set of concepts and approaches are proposed for the Jupiter Icy Moons Orbiter (JIMO) to apply Radio Science tools to investigate the interior structures of the Galilean Satellites and address key questions on their thermal and dynamical evolution. Measurements are identified that utilize the spacecraft's telecommunication system. Additional instruments can augment these measurements in order to leverage observational synergies. Experiments are also offered for the purpose of investigating the atmospheres and surfaces of the satellites.
NASA Astrophysics Data System (ADS)
Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.
2017-12-01
Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)
Coordinating Multiple Spacecraft Assets for Joint Science Campaigns
NASA Technical Reports Server (NTRS)
Estlin, Tara; Chien, Steve; Castano, Rebecca; Gaines, Daniel; de Granville, Charles; Doubleday, Josh; Anderson, Robert C.; Knight, Russell; Bornstein, Benjamin; Rabideau, Gregg;
2010-01-01
This paper describes technology to support a new paradigm of space science campaigns. These campaigns enable opportunistic science observations to be autonomously coordinated between multiple spacecraft. Coordinated spacecraft can consist of multiple orbiters, landers, rovers, or other in-situ vehicles (such as an aerobot). In this paradigm, opportunistic science detections can be cued by any of these assets where additional spacecraft are requested to take further observations characterizing the identified event or surface feature. Such coordination will enable a number of science campaigns not possible with present spacecraft technology. Examples from Mars include enabling rapid data collection from multiple craft on dynamic events such as new Mars dark slope streaks, dust-devils or trace gases. Technology to support the identification of opportunistic science events and/or the re-tasking of a spacecraft to take new measurements of the event is already in place on several individual missions such as the Mars Exploration Rover (MER) Mission and the Earth Observing One (EO1) Mission. This technology includes onboard data analysis techniques as well as capabilities for planning and scheduling. This paper describes how these techniques can be cue and coordinate multiple spacecraft in observing the same science event from their different vantage points.
Riesch, Hauke
2014-12-01
Sociology and philosophy of science have an uneasy relationship, while the marriage of history and philosophy of science has--on the surface at least--been more successful I will take a sociological look at the history of the relationships between philosophy and history as well as philosophy and sociology of science. Interdisciplinary relations between these disciplines will be analysed through social identity complexity theory in oider to draw out some conclusions on how the disciplines interact and how they might develop. I will use the relationships between the disciplines as a pointer for a more general social theory of interdisciplinarity which will then be used to sound a caution on how interdisciplinary relations between the three disciplines might be managed.
Curiosity: How to Boldly Go...
NASA Technical Reports Server (NTRS)
Pyrzak, Guy
2013-01-01
Operating a one-ton rover on the surface of Mars requires more than just a joystick and an experiment. With 10 science instruments, 17 cameras, a radioisotope thermoelectric generator and lasers, Curiosity is the largest and most complex rover NASA has sent to Mars. Combined with a 1 way light time of 4 to 20 minutes and a distributed international science and engineering team, it takes a lot of work to operate this mega-rover. The Mars Science Lab's operations team has developed an organization and process that maximizes science return and safety of the spacecraft. These are the voyages of the rover Curiosity, its 2 year mission, to determine the habitability of Gale Crater, to understand the role of water, to study the climate and geology of Mars.
Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center
Francy, Donna S.; Shaffer, Kimberly H.
2008-01-01
In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.
NASA Technical Reports Server (NTRS)
Chin, G.; Mitrofanov, I. G.; Boynton, W. V.; Golovin, D. V.; Evans, L. G.; Harshman, K.; Kozyrev, A. S.; Litvak, M. L.; McClanahan, T.; Milikh, G. M.;
2011-01-01
Orbital detection of neutrons has become the dominant remote sensing technique for detecting and inferring H concentrations and its spatial distribution beneath planetary surfaces [Lawrence et al, (2010) Icarus, 205, pp. 195-209, Mitrofanov et al (2007) Science 297(5578), 78-81]. Indications for the presence of localized and relatively high water content was provided by LRO and LCROSS. LEND identified Cabeus, as the most promising LCROSS impact site [Mitrofanov I. et al. (2010) Science, 330, 483], and instruments onboard LRO and LCROSS have measured signatures of water, H2 and other volatiles in the impact plume [Colaprete A. et al. (2010) Science, 339,463, Gladstone R. et al. (2010) Science, 330, 472].
Science at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2012-01-01
The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.
The dynamical properties of a Rydberg hydrogen atom between two parallel metal surfaces
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Hong-Yun; Yang, Shan-Ying; Lin, Sheng-Lu
2011-03-01
This paper presents the dynamical properties of a Rydberg hydrogen atom between two metal surfaces using phase space analysis methods. The dynamical behaviour of the excited hydrogen atom depends sensitively on the atom—surface distance d. There exists a critical atom—surface distance dc = 1586 a.u. When the atom—surface distance d is larger than the critical distance dc, the image charge potential is less important than the Coulomb potential, the system is near-integrable and the electron motion is regular. As the distance d decreases, the system will tend to be non-integrable and unstable, and the electron might be captured by the metal surfaces. Project supported by the National Natural Science Foundation of China (Grant No. 10774093) and the Natural Science Foundation of Shandong Province (Grant No. ZR2009FZ006).
A Venus Flagship Mission: Exploring a World of Contrasts
NASA Astrophysics Data System (ADS)
Senske, D.; Bullock, M.; Balint, T.; Benz, A.; Campbell, B.; Chassefiere, E.; Colaprete, A.; Cutts, J.; Glaze, L.; Gorevan, S.; Grinspoon, D.; Hall, J.; Hasimoto, G.; Head, J.; Hunter, G.; Johnson, N.; Kiefer, W.; Kolawa, E.; Kremic, T.; Kwok, J.; Limaye, S.; Mackwell, S.; Marov, M.; Peterson, C.; Schubert, G.; Spilker, T.; Stofan, E.; Svedhem, H.; Titov, D.; Treiman, A.
2008-12-01
Results from past missions and the current Venus Express Mission show that Venus is a world of contrasts, providing clear science drivers for renewed exploration of this planet. In early 2008, NASA's Science Mission Directorate formed a Science and Technology Definition Team (STDT) to formulate science goals and objectives, mission architecture and a technology roadmap for a flagship class mission to Venus. This 3- to 4 billon mission, to launch in the post 2020 timeframe, should revolutionize our understanding of how climate works on terrestrial planets, including the close relationship between volcanism, tectonism, the interior, and the atmosphere. It would also more clearly elucidate the geologic history of Venus, including the existence and persistence of an ancient ocean. Achieving these objectives will provide a basis to understand the habitability of extra solar terrestrial planets. To address a broad range of science questions this mission will be composed of flight elements that include an orbiter that is highlighted by an interferometric SAR to provide surface topographic and image information at scales one to two orders of magnitude greater than that achieved by any previous spacecraft to Venus. Two balloons with a projected lifetime of weeks will probe the structure and dynamics of the atmosphere at an altitude of 50 to 70-km. In addition, two descent probes will collect data synergistic to that from the balloon and analyze the geochemistry of surface rocks over a period of hours. The technology road map focuses on key areas of science instruments and enabling engineering to provide greater in situ longevity in the hostile Venus environment.
Science in the Wild: Adventure Citizen Science in the Arctic and Himalaya
NASA Astrophysics Data System (ADS)
Horodyskyj, U. N.; Rufat-Latre, J.; Reimuller, J. D.; Rowe, P.; Pothier, B.; Thapa, A.
2016-12-01
Science in the Wild provides educational hands-on adventure science expeditions for the everyday person, blending athletics and academics in remote regions of the planet. Participants receive training on field data collection techniques in order to be able to help scientists in the field while on expedition with them. At SITW, we also involve our participants in analyzing and interpreting the data, thus teaching them about data quality and sources of error and uncertainty. SITW teaches citizens the art of science storytelling, aims to make science more open and transparent, and utilizes open source software and hardware in projects. Open science serves both the research community and the greater public. For the former, it makes science reproducible, transparent and more impactful by mobilizing multidisciplinary and international collaborative research efforts. For the latter, it minimizes mistrust in the sciences by allowing the public a `behind-the-scenes' look into how scientific research is conducted, raw and unfiltered. We present results from a citizen-science expedition to Baffin Island (Canadian Arctic), which successfully skied and sampled snow for dust and black carbon concentration from the Penny Ice Cap, down the 25-mile length of Coronation Glacier, and back to the small Arctic town of Qikitarjuaq. From a May/June 2016 citizen-science expedition to Nepal (Himalaya), we present results comparing 2014/16 depth and lake floor compositional data from supraglacial lakes on Ngozumpa glacier while using open-source surface and underwater robotics. The Sherpa-Scientist Initiative, a program aimed at empowering locals in data collection and interpretation, successfully trained half a dozen Sherpas during this expedition and demonstrates the value of local engagement. In future expeditions to the region, efforts will be made to scale up the number of trainees and expand our spatial reach in the Himalaya.
Mariner 9 mapping science sequence design.
NASA Technical Reports Server (NTRS)
Goldman, A. M., Jr.
1973-01-01
The primary mission of Mariner 9 was to map the Martian surface. This paper discusses in detail the design of the mapping science sequences which were executed by the spacecraft in sixty days and during which over eighty percent of the surface was photographed. The sequence design was influenced by many factors: experimenter scientific objectives, instrument capabilities, spacecraft capabilities, orbit characteristics, and data return rates, which are illustrated graphically. Typical orbits are depicted for each of the three different mapping phases lasting twenty days. Examples of typical orbital sequence plans prepared daily during mission operations are given.
Science Operations Development for Field Analogs: Lessons Learned from the 2010 Desert RATS Test
NASA Technical Reports Server (NTRS)
Eppler, D. B.; Ming, D. W.
2011-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities.
NASA Technical Reports Server (NTRS)
Garrett, David
1972-01-01
This is the Press Kit that was given to the various media outlets that were interested in covering the Apollo 17 mission. It includes information about the moon, lunar science, concentrating on the planned mission. The kit includes information about the flight, and the trajectory, planned orbit insertion maneuvers, the extravehicular mission events, a comparison with the Apollo 16, a map of the lunar surface, and the surface activity, information about the Taurus-Littrow landing site, the planned science experiments, the power source for the experiment package and diagrams of some of the instrumentation that was used to perform the experiments.
Materials sciences programs: Fiscal year 1994
NASA Astrophysics Data System (ADS)
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.
Science exploration opportunities for manned missions to the Moon, Mars, Phobos, and an asteroid
NASA Technical Reports Server (NTRS)
Nash, Douglas B.; Plescia, Jeffrey; Cintala, Mark; Levine, Joel; Lowman, Paul; Mancinelli, Rocco; Mendell, Wendell; Stoker, Carol; Suess, Steven
1989-01-01
Scientific exploration opportunities for human missions to the Moon, Phobos, Mars, and an asteroid are addressed. These planetary objects are of prime interest to scientists because they are the accessible, terresterial-like bodies most likely to be the next destinations for human missions beyond Earth orbit. Three categories of science opportunities are defined and discussed: target science, platform science, and cruise science. Target science is the study of the planetary object and its surroundings (including geological, biological, atmospheric, and fields and particle sciences) to determine the object's natural physical characteristics, planetological history, mode of origin, relation to possible extant or extinct like forms, surface environmental properties, resource potential, and suitability for human bases or outposts. Platform science takes advantage of the target body using it as a site for establishing laboratory facilities and observatories; and cruise science consists of studies conducted by the crew during the voyage to and from a target body. Generic and specific science opportunities for each target are summarized along with listings of strawman payloads, desired or required precursor information, priorities for initial scientific objectives, and candidate landing sites. An appendix details the potential use of the Moon for astronomical observatories and specialized observatories, and a bibliography compiles recent work on topics relating to human scientific exploration of the Moon, Phobos, Mars, and asteroids. It is concluded that there are a wide variety of scientific exploration opportunities that can be pursued during human missions to planetary targets but that more detailed studies and precursor unmanned missions should be carried out first.
Materials sciences programs, fiscal year 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less
Landa, E.R.; ,
2006-01-01
Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late-twentieth century. The shift in recent decades within both disciplines, towards greater emphasis on environmental-quality issues and a systems approach, has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere and lithosphere, introductory and advanced soil-science classes are now taught in a number of Earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface to groundwater 'critical zone' requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable Earth-science specialty area for graduate study. ?? The Geological Society of London 2006.
Proof of Concept for a Simple Smartphone Sky Monitor
NASA Astrophysics Data System (ADS)
Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.
2013-01-01
We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.
Research | Photovoltaic Research | NREL
-V cells Hybrid tandems Polycrystalline Thin-Film PV CdTe solar cells CIGS solar cells Perovskites and Organic PV Perovskite solar cells Organic PV solar cells Advanced Materials, Devices, and Science Interfacial and Surface Science Reliability and Engineering Real-Time PV and Solar Resource
ERIC Educational Resources Information Center
Rice, Amber H.; Kitchel, Tracy
2017-01-01
This grounded theory study explored the pedagogical content knowledge (PCK) of experienced agriculture teachers in the plant sciences. The most emergent phenomenon to surface from the data was the influence of beliefs on participants' PCK. This central phenomenon became the cornerstone for the model of what was shaping experienced agriculture…
Lunar and Planetary Science XXXI
NASA Technical Reports Server (NTRS)
2000-01-01
This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.
ERIC Educational Resources Information Center
Verkade, Heather; Lim, Saw Hoon
2016-01-01
In this study, a cohort of final-year undergraduate science students were surveyed to examine whether they fully read journal articles, including whether they seek to understand how the results support the conclusions. Their writing was also examined to see if they use deep or surface approaches to scientific writing.
Ultra-short wavelength x-ray system
Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD
2008-01-22
A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.
Berkeley Lab's Cool Your School Program
Brady, Susan; Gilbert, Haley; McCarthy, Robert
2018-02-02
Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Bishop, J.; Gazis, P.; Alena, R.; Sierhuis, M.
2002-01-01
We are developing science analyses algorithms to interface with a Geologist's Field Assistant device to allow robotic or human remote explorers to better sense their surroundings during limited surface excursions. Our algorithms will interpret spectral and imaging data obtained by various sensors. Additional information is contained in the original extended abstract.
Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Chaonan; Han, Jinyu; Zhu, Xinli
Tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react with the hydroxyl, formingmore » a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous C-O bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the monolayer maybe formed by the reduction of the monolayer, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. However, the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of -0.20 V (RHE), lower than that for the latter (-0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby, providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product. The work was supported in part by National Natural Sciences Foundation of China (Grant #21373148 and #21206117). The High Performance Computing Center of Tianjin University is acknowledged for providing services to the computing cluster. CC acknowledges the support of 24 China Scholarship Council (CSC). QG acknowledges the support of NSF-CBET program (Award no. CBET-1438440). DM was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington.« less
Experiential learning in soil science: Use of an augmented reality sandbox
NASA Astrophysics Data System (ADS)
Vaughan, Karen; Vaughan, Robert; Seeley, Janel; Brevik, Eric
2017-04-01
It is known widely that greater learning occurs when students are active participants. Novel technologies allow instructors the opportunity to create interactive activities for undergraduate students to gain comprehension of complex landscape processes. We incorporated the use of an Augmented Reality (AR) Sandbox in the Introductory Soil Science course at the University of Wyoming to facilitate an experiential learning experience in pedology. The AR Sandbox was developed by researchers at the University of California, Davis as part of a project on informal science education in freshwater lakes and watershed science. It is a hands-on display that allows users to create topography models by shaping sand that is augmented in real-time by a colored elevation maps, topographic contour lines, and simulated water. It uses a 3-dimensional motion sensing camera that detects changes to the distance between the sand surface and the camera sensor. A short-throw projector then displays the elevation model and contour lines in real-time. Undergraduate students enrolled in the Introductory Soil Science course were tasked with creating a virtual landscape and then predicting where particular soils would form on the various landforms. All participants reported a greater comprehension of surface water flow, erosion, and soil formation as a result of this exercise. They provided suggestions for future activities using the AR Sandbox including its incorporation into lessons of watershed hydrology, land management, soil water, and soil genesis.
Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules
NASA Astrophysics Data System (ADS)
Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus
2016-06-01
Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.
Marquardt, Christian; Paulheim, Alexander; Rohbohm, Nils; Merkel, Rudolf; Sokolowski, Moritz
2017-08-01
We modified an epi-illumination light microscope and mounted it on an ultra high vacuum chamber for investigating samples used in a surface science experiment. For easy access and bake out, all optical components are placed outside the vacuum and the sample is imaged through a glass window. The microscope can be operated in reflection brightfield or epifluorescence mode to image the sample surface or fluorescent dye molecules adsorbed on it. The homemade sample mounting was made compatible for the use under the microscope; sample temperatures as low as 6 K can be achieved. The performance of the microscope is demonstrated on two model samples: Brightfield-images of a well-prepared Ag(100) surface show a macroscopic corrugation of the surface, although low energy electron diffraction data indicate a highly ordered crystalline surface. The surface shows macroscopic protrusions with flat regions, about 20-200 μm in diameter, in between. Fluorescence images of diluted 3,4,9,10-perylene tetracarboxylicacid dianhydride (PTCDA) molecules adsorbed on an ultrathin epitaxial KCl film on the Ag(100) surface show a shading effect at surface protrusions due to an inclined angle of incidence of the PTCDA beam during deposition. For some preparations, the distribution of the fluorescence intensity is inhomogeneous and shows a dense network of bright patches about 5 μm in diameter related to the macroscopic corrugation of the surface. We propose that such a light microscope can aid many surface science experiments, especially those dealing with epitaxial growth or fluorescent materials.
Interactive 3D Mars Visualization
NASA Technical Reports Server (NTRS)
Powell, Mark W.
2012-01-01
The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.
Launch of the SELENE(Kaguya) Mission and their Science Goals
NASA Astrophysics Data System (ADS)
Kato, M.; Takizawa, Y.; Sasaki, S.
2007-12-01
Implementation of Lunar orbiting satellite SELENE(Kaguya) has completed after final integration tests of thermal- vacuum and electromagnetic compatibility in the end of February 2007. Through pre-shipping reviews the satellite was carried to JAXA Tanegashima Space Center. The SELENE(Kaguya) is just being launched in September 2007. The mission has started in 1999 FY as a joint project of ISAS and NASDA, which have been merged into a space agency JAXA in October 2003. The SELENE certainly identified as a JAXA's science mission is operated from the newly installed SOAC (SELENE Operation and data Analysis Center) of Sagamihara/JAXA. The SELENE will be inserted into lunar orbit three weeks after launch using phasing orbit turning around Earth-Moon system. The main satellite will settle into a circular polar orbit with 100km altitude after releasing two sub-satellites in about 40 days after launch. After deploying magnetometer mast and a pair of sounder antenna, initial checks of scientific instruments will be carried for two months. Key questions on lunar science are "gWhat's origin of the Moon?"h, "gHow does the Moon have evolved?"h, and "gWhat history does the lunar environment have passed?"h Science topics to be studied by using fourteen science instruments are surface composition of chemistry and mineralogy, evolution tectonics of surface including subsurface to 5 km depth, gravity field of whole moon and magnetic field distribution for the study on origin and evolution of the Moon. Lunar environment are investigated in observing charged and neutral particles impinged on the surface. High definition TV cameras are also onboard the SELENE for public outreach.
Planning Bepicolombo MPO Science Operations to study Mercury Interior
NASA Astrophysics Data System (ADS)
De La Fuente, Sara; Carasa, Angela; Ortiz, Iñaki; Rodriguez, Pedro; Casale, Mauro; Benkhoff, Johannes; Zender, Joe
2017-04-01
BepiColombo is an Interdisciplinary Cornerstone ESA-JAXA Mission to Mercury, with two orbiters, the ESA Mercury Planetary Orbiter (MPO) and the JAXA Mercury Magnetospheric Orbiter (MMO) dedicated to study of the planet and its magnetosphere. The MPO, is a three-axis-stabilized, nadir-pointing spacecraft which will be placed in a polar orbit, providing excellent spatial resolution over the entire planet surface. The MPO's scientific payload comprises 11 instrument packages, including laser altimeter, cameras and the radio science experiment that will be dedicated to the study of Mercury's interior: structure, composition, formation and evolution. The planning of the science operations to be carried out by the Mercury's interior scientific instruments will be done by the SGS located at the European Space Astronomy Centre (ESAC), in conjunction with the scientific instrument teams. The process will always consider the complete nominal mission duration, such that the contribution of the scheduled science operations to the science objectives, the total data volume generated, and the seasonal interdependency, can be tracked. The heart of the science operations planning process is the Observations Catalogue (OC), a web-accessed database to collect and analyse all science operations requests. From the OC, the SGS will first determine all science opportunity windows compatible with the spacecraft operational constraints. Secondly, only those compatible with the resources (power and data volume) and pointing constraints will be chosen, including slew feasibility.
Rosetta science operations in support of the Philae mission
NASA Astrophysics Data System (ADS)
Ashman, Mike; Barthélémy, Maud; O`Rourke, Laurence; Almeida, Miguel; Altobelli, Nicolas; Costa Sitjà, Marc; García Beteta, Juan José; Geiger, Bernhard; Grieger, Björn; Heather, David; Hoofs, Raymond; Küppers, Michael; Martin, Patrick; Moissl, Richard; Múñoz Crego, Claudio; Pérez-Ayúcar, Miguel; Sanchez Suarez, Eduardo; Taylor, Matt; Vallat, Claire
2016-08-01
The international Rosetta mission was launched on 2nd March 2004 and after its ten year journey, arrived at its target destination of comet 67P/Churyumov-Gerasimenko, during 2014. Following the January 2014 exit from a two and half year hibernation period, Rosetta approached and arrived at the comet in August 2014. In November 2014, the Philae lander was deployed from Rosetta onto the comet's surface after which the orbiter continued its approximately one and a half year comet escort phase. The Rosetta Science Ground Segment's primary roles within the project are to support the Project Scientist and the Science Working Team, in order to ensure the coordination, development, validation and delivery of the desired science operations plans and their associated operational products throughout the mission., whilst also providing support to the Principle Investigator teams (including the Philae lander team) in order to ensure the provision of adequate data to the Planetary Science Archive. The lead up to, and execution of, the November 2014 Philae landing, and the subsequent Philae activities through 2015, have presented numerous unique challenges to the project teams. This paper discusses these challenges, and more specifically, their impact on the overall mission science planning activities. It details how the Rosetta Science Ground Segment has addressed these issues in collaboration with the other project teams in order to accommodate Philae operations within the continually evolving Rosetta science planning process.
NASA Astrophysics Data System (ADS)
Lenhardt, W. C.
2015-12-01
Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.
Migration of Carbon Adatoms on the Surface of Charged SWCNT
NASA Astrophysics Data System (ADS)
Han, Longtao; Krstic, Predrag; Kaganovich, Igor
2016-10-01
In volume plasma, the growth of SWCNT from a transition metal catalyst could be enhanced by incoming carbon flux on SWCNT surface, which is generated by the adsorption and migration of carbon adatoms on SWCNT surface. In addition, the nanotube can be charged by the irradiation of plasma particles. How this charging effect will influence the adsorption and migration behavior of carbon atom has not been revealed. Using Density Functional Theory, Nudged Elastic Band and Kinetic Monte Carlo method, we found equilibrium sites, vibrational frequency, adsorption energy, most probable pathways for migration of adatoms, and the barrier sizes along these pathways. The metallic (5,5) SWCNT can support a fast migration of the carbon adatom along a straight path with low barriers, which is further enhanced by the presence of negative charge on SWCNT. The enhancement is contributed by the higher adsorption energy and thence longer lifetime of adatom on the charged SWCNT surface. The lifetime and migration distance of adatom increase by three and two orders of magnitude, respectively, as shown by Kinetic Monte Carlo simulation. These results support the surface migration mechanism of SWCNT growth in plasma environment. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Material Sciences and Engineering Division.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2011-01-01
In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology Assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assessed the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. This needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper summarizes the SIOSS findings and recommendations.
Earth Studies Using L-band Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rosen, Paul A.
1999-01-01
L-band SAR has played an important role in studies of the Earth by revealing the nature of the larger-scale (decimeter) surface features. JERS-1, by supplying multi-seasonal coverage of the much of the earth, has demonstrated the importance of L-band SARs. Future L-band SARs such as ALOS and LightSAR will pave the way for science missions that use SAR instruments. As technology develops to enable lower cost SAR instruments, missions will evolve to each have a unique science focus. International coordination of multi-parameter constellations and campaigns will maximize science return.
Curiosity Rover's First Anniversary
2013-08-06
Jim Green, director, Planetary Division, NASA's Science Mission Directorate, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rover's First Anniversary
2013-08-06
Jim Green, director, Planetary Division, NASA's Science Mission Directorate, answers a question at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Joint IKI/ROSCOSMOS - NASA Science Definition Team and concept mission to Venus based on Venera-D
NASA Astrophysics Data System (ADS)
Zasova, L.; Senske, D.; Economou, T.; Eismont, N.; Esposito, L.; Gerasimov, M.; Gorinov, D.; Ignatiev, N.; Ivanov, M.; Jessup, K. Lea; Khatuntsev, I.; Korablev, O.; Kremic, T.; Limaye, S.; Lomakin, I.; Martynov, A.; Ocampo, A.; Vaisberg, O.; Burdanov, A.
2017-09-01
NASA and IKI/Roscosmos established in 2015 a Joint Science Definition Team (JSDT), a key task of which was to codify the synergy between the goals of Venera-D with those of NASA. In addition, the JSDT studied potential NASA provided mission augmentations (experiments /elements) that could to fill identified science gaps. The first report to NASA - IKI/Roscosmos was provided in January 2017. The baseline Venera-D concept includes two elements, and orbiter and a lander, with potential contributions consisting of an aerial platform/balloon, small long-lived surface stations or a sub-satellite.
USA Science and Engineering Festival 2014
2014-04-25
An attendee of the USA Science and Engineering Festival is measured by a laser at the NASA Stage. A NASA Staff member describes the Ice, Cloud, and land Elevation Satellite (ICESat) mission, which operated from 2003-2009, and pioneered the use of laser altimeters in space to study the elevation of the Earth's surface and its changes. ICESat-2 is a follow-on mission to continue the ICESat observations and is scheduled to launch in 2017. The USA Science and Engineering Festival took place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
BASALT Project Helps Develop Mars Science Protocols
2016-11-18
Researchers from NASA Ames and the University of Hawaii - Hilo spent 18 days simulating science activities on the surface of Mars. Although no spacesuits were used, scientist hiked around Hawaii Volcanoes National Park on the Island of Hawaii and collected rock samples like they would on the Red Planet. One goal of the Biologic Analog Science Associated with Lava Terrains project is to develop rules and protocols that could be used on an actual Mars mission to identify and protect geologic samples that could contain life. Communications with a mission control room were delayed, to simulate actual transmission times between Earth and Mars.
Birth of an intense pulsed muon source, J-PARC MUSE
NASA Astrophysics Data System (ADS)
Miyake, Yasuhiro; Shimomura, Koichiro; Kawamura, Naritoshi; Strasser, Patrick; Makimura, Shunsuke; Koda, Akihiro; Fujimori, Hiroshi; Nakahara, Kazutaka; Kadono, Ryosuke; Kato, Mineo; Takeshita, Soshi; Nishiyama, Kusuo; Higemoto, Wataru; Ishida, Katsuhiko; Matsuzaki, Teiichiro; Matsuda, Yasuyuki; Nagamine, Kanetada
2009-04-01
The muon science facility (MUSE), along with neutron, hadron, and neutrino facilities, is one of the experimental areas of the J-PARC (Japan Proton Accelerator Research Complex) project, which was approved for construction between 2001 and 2008. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started at the beginning of 2004, and was recently completed at the end of the 2006 fiscal year. We have been working on the installation of the beamline components, expecting the first muon beam in the autumn of 2008. For Phase 1, we are planning to install one superconducting decay/surface channel with a modest-acceptance (about 40 mSr) pion injector, with an estimated surface muon (μ+) rate of 3×107/s and a beam size of 25 mm diameter, and a corresponding decay muon (μ+/μ-) rate of 106/s for 60 MeV/ c (up to 107/s for 120 MeV/ c) with a beam size of 50 mm diameter. These intensities correspond to more than 10-times what is available at the RIKEN/RAL muon facility, which currently possess the most intense pulsed muon beams in the world. In addition to Phase 1, we are planning to install, a surface muon channel with a modest-acceptance (about 50 mSr), mainly for experiments related to material sciences, and a super-omega muon channel with a large acceptance of 400 mSr. In the case of the super-omega muon channel, the goal is to extract 4×108 surface muons/s for the generation of ultra-slow muons and 1×107 negative cloud muons/s with a momentum of 30-60 MeV/ c. One of the important goals for this beamline is to generate intense ultra-slow muons at MUSE, utilizing an intense pulsed VUV laser system. 104-106 ultra-slow muons/s are expected, which will allow for an extension of μSR into the area of thin film and surface science. At this symposium, the current status of J-PARC MUSE will be reported.
Advances in covalent organic frameworks in separation science.
Qian, Hai-Long; Yang, Cheng-Xiong; Wang, Wen-Long; Yang, Cheng; Yan, Xiu-Ping
2018-03-23
Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. Copyright © 2018 Elsevier B.V. All rights reserved.
Descent Stage of Mars Science Laboratory During Assembly
NASA Technical Reports Server (NTRS)
2008-01-01
This image from early October 2008 shows personnel working on the descent stage of NASA's Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground. The larger three of the orange spheres in the descent stage are fuel tanks. The smaller two are tanks for pressurant gas used for pushing the fuel to the rocket engines. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE's Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE's Office of Energy Efficiency and Renewable Energy.« less
Scientific misconduct: a perspective from India.
Sabir, Husain; Kumbhare, Subhash; Parate, Amit; Kumar, Rajesh; Das, Suroopa
2015-05-01
Misconduct in medical science research is an unfortunate reality. Science, for the most part, operates on the basis of trust. Researchers are expected to carry out their work and report their findings honestly. But, sadly, that is not how science always gets done. Reports keep surfacing from various countries about work being plagiarised, results which were doctored and data fabricated. Scientific misconduct is scourge afflicting the field of science, unfortunately with little impact in developing countries like India especially in health care services. A recent survey and a meta-analysis suggest that the few cases that do float up represents only tip of a large iceberg. This paper therefore highlights reasons for misconduct with steps that can be taken to reduce misconduct. Also the paper throws light on Indian scenario in relation to misconduct.
Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions
NASA Technical Reports Server (NTRS)
Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich
2013-01-01
Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.
LADEE Science Results and Implications for Exploration
NASA Technical Reports Server (NTRS)
Elphic, R. C.; M. Horanyi; Colaprete, A.; Benna; Mahaffy, P.; Delory, G. T.; Noble, S. K.; Halekas, J. S.; Hurley, D. M.; Stubbs, T. J.;
2015-01-01
NASA's Lunar Atmosphere and Dust Environment Explorer, LADEE, concluded a fully successful investigation of the Moon's tenuous gas and dust atmosphere on April 18, 2014. LADEE hosted three science instruments to address atmospheric and dust objectives, and a technology demonstration of deep-space optical communication. The three science instruments were an ultraviolet-visible spectrometer (UVS), a neutral mass spectrometer (NMS), and a lunar dust experiment (LDEX). All data acquired by these instruments have been submitted to the Planetary Data System. A mission overview and science instrument descriptions are readily available. LADEE inserted into a low-altitude, retrograde lunar orbit optimized for observations at the sunrise terminator, where surface temperatures rise abruptly. LADEE also carried out observations over a wide range of local times and altitudes. Here we describe some of the initial results.
Building on the Cornerstone: Destinations for Nearside Sample Return
NASA Technical Reports Server (NTRS)
Lawrence, S. J.; Jolliff, B. L.; Draper, D.; Stopar, J. D.; Petro, N. E.; Cohen, B. A.; Speyerer, E. J.; Gruener, J. E.
2016-01-01
Discoveries from LRO (Lunar Reconnaissance Orbiter) have transformed our knowledge of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. Compelling science questions and critical resources make the Moon a key destination for future human and robotic exploration. Lunar surface exploration, including rovers and other landed missions, must be part of a balanced planetary science and exploration portfolio. Among the highest planetary exploration priorities is the collection of new samples and their return to Earth for more comprehensive analysis than can be done in-situ. The Moon is the closest and most accessible location to address key science questions through targeted sample return. The Moon is the only other planet from which we have contextualized samples, yet critical issues need to be addressed: we lack important details of the Moon's early and recent geologic history, the full compositional and age ranges of its crust, and its bulk composition.
Russian contribution to the ExoMars project
NASA Astrophysics Data System (ADS)
Zelenyi, L.; Korablev, O.; Rodionov, D.; Khartov, V.; Martynov, M.; Lukyanchikov, A.
2014-04-01
The ExoMars ESA-led mission is dedicated to study of Mars and in particular its habitability. It consists of two launches, one planned in 2016 to deliver to Mars a telecommunication and science orbiter Trace Gas Orbiter (TGO) and a demonstrator of entry into the atmosphere and landing on the Mars surface, Entry, Descent and Landing Demonstrator Module (EDM). In 2018 a rover with drilling capability will be delivered to the surface of Mars. Since 2012 this mission, previously planned in cooperation with NASA is being developed in cooperation with Roscosmos. Both launches are planned with Proton-Breeze. In 2016 Russia contributes a significant part of the TGO science payload. In 2018 the landing will be provided by a joint effort capitalizing on the EDM technology. Russia contributes few science instruments for the rover, and leads the development of a long-living geophysical platform on the surface of Mars. Russian science instruments for TGO, the Atmospheric Chemistry Suite (ACS) and the Fine Resolution Epithermal Neutrons Detector (FREND) constituent a half of its scientific payload, European instrument being NOMAD for mapping and detection of trace species, and CASSIS camera for high-resolution mapping of target areas. The ACS package consists of three spectrometers covering spectral range from 0.7 to 17 μm with spectral resolving power reaching 50000. It is dedicated to studies of the composition of the Martian atmosphere and the Martian climate. FREND is a neutron detector with a collimation module, which significantly narrows the field of view of the instrument, allowing to create higher resolution maps of hydrogen-abundant regions on Mars. The spatial resolution of FREND will be ~40 km from the 400- km TGO orbit that is ~10 times better than HEND on Mars-Odyssey. Additionally, FREND includes a dosimeter module for monitoring radiation levels in orbit around Mars. In the 2018 mission, Russia takes the major responsibility of the descent module. The primary goal of the descent module consists of the delivery of the 300-kg rover on the surface. The full mass of the module should not exceed 2000 kg. An aerodynamic shield and a parachute system assure the entry phase. A descent scenario with integrated retro-propulsion engines and landing on feet is being developed. Subsystems of the descend module are supplied by both Roscosmos and ESA. On the rover, Russia contributes two science instruments. ADRON-RM is a passive neutron detector to assess water contents in the Mars surface along the rover track. ISEM is a pencil-beam infrared spectrometer mounted at the mast of the rover and is primarily dedicated for the assessment of mineralogical composition, operating in coordination with high-resolution channel of PANCAM. Both instruments will assist with planning rover traverse, rover targeting operations, and sample selection. A major effort of the Russian science is concentrated on the 2018 landing platform. This is the part of the descent module remaining immobile after the rover egress. The platform, or the longliving geophysical station shall have guaranteed lifetime of one Martian year, and will be able to accommodate up to 50 kg of science payload. The final list of science investigations, which is yet to be finalized, includes the meteorological station, instruments to analyse atmospheric composition, geophysical instruments. Other investigations will provide analyses of the surface/shallow subsurface material complimentary to these on the rover, and other experiments, if resources permit. Current status of the project and the developments will be presented
2017-12-08
Lake Mackay is the largest of hundreds of ephemeral lakes scattered throughout Western Australia and the Northern Territory, and is the second largest lake in Australia. The darker areas indicate some form of desert vegetation or algae, moisture within the soils, and lowest elevations where water pools. The image was acquired on September 19, 2010 and covers an area of 27 x 41 km. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team
Attempt of Serendipitous Science During the Mojave Volatile Prospector Field Expedition
NASA Technical Reports Server (NTRS)
Roush, T. L.; Colaprete, A.; Heldmann, J.; Lim, D. S. S.; Cook, A.; Elphic, R.; Deans, M.; Fluckiger, L.; Fritzler, E.; Hunt, David
2015-01-01
On 23 October a partial solar eclipse occurred across parts of the southwest United States between approximately 21:09 and 23:40 (UT), with maximum obscuration, 36%, occurring at 22:29 (UT). During 21-26 October 2014 the Mojave Volatile Prospector (MVP) field expedition deployed and operated the NASA Ames Krex2 rover in the Mojave desert west of Baker, California (Fig. 1, bottom). The MVP field expedition primary goal was to characterize the surface and sub-surface soil moisture properties within desert alluvial fans, and as a secondary goal to provide mission operations simulations of the Resource Prospector (RP) mission to a Lunar pole. The partial solar eclipse provided an opportunity during MVP operations to address serendipitous science. Science instruments on Krex2 included a neutron spectrometer, a near-infrared spectrometer with associated imaging camera, and an independent camera coupled with software to characterize the surface textures of the areas encountered. All of these devices are focused upon the surface and as a result are downward looking. In addition to these science instruments, two hazard cameras are mounted on Krex2. The chief device used to monitor the partial solar eclipse was the engineering development unit of the Near-Infrared Volatile Spectrometer System (NIRVSS) near-infrared spectrometer. This device uses two separate fiber optic fed Hadamard transform spectrometers. The short-wave and long-wave spectrometers measure the 1600-2400 and 2300-3400 nm wavelength regions with resolutions of 10 and 13 nm, respectively. Data are obtained approximately every 8 seconds. The NIRVSS stares in the opposite direction as the front Krex2.
NASA Astrophysics Data System (ADS)
Masek, J.; Rao, A.; Gao, F.; Davis, P.; Jackson, G.; Huang, C.; Weinstein, B.
2008-12-01
The Land Cover Change Community-based Processing and Analysis System (LC-ComPS) combines grid technology, existing science modules, and dynamic workflows to enable users to complete advanced land data processing on data available from local and distributed archives. Changes in land cover represent a direct link between human activities and the global environment, and in turn affect Earth's climate. Thus characterizing land cover change has become a major goal for Earth observation science. Many science algorithms exist to generate new products (e.g., surface reflectance, change detection) used to study land cover change. The overall objective of the LC-ComPS is to release a set of tools and services to the land science community that can be implemented as a flexible LC-ComPS to produce surface reflectance and land-cover change information with ground resolution on the order of Landsat-class instruments. This package includes software modules for pre-processing Landsat-type satellite imagery (calibration, atmospheric correction, orthorectification, precision registration, BRDF correction) for performing land-cover change analysis and includes pre-built workflow chains to automatically generate surface reflectance and land-cover change products based on user input. In order to meet the project objectives, the team created the infrastructure (i.e., client-server system with graphical and machine interfaces) to expand the use of these existing science algorithm capabilities in a community with distributed, large data archives and processing centers. Because of the distributed nature of the user community, grid technology was chosen to unite the dispersed community resources. At that time, grid computing was not used consistently and operationally within the Earth science research community. Therefore, there was a learning curve to configure and implement the underlying public key infrastructure (PKI) interfaces, required for the user authentication, secure file transfer and remote job execution on the grid network of machines. In addition, science support was needed to vet that the grid technology did not have any adverse affects of the science module outputs. Other open source, unproven technologies, such as a workflow package to manage jobs submitted by the user, were infused into the overall system with successful results. This presentation will discuss the basic capabilities of LC-ComPS, explain how the technology was infused, and provide lessons learned for using and integrating the various technologies while developing and operating the system, and finally outline plans moving forward (maintenance and operations decisions) based on the experience to date.
Science Objectives and Mission Concepts for Europa Exploration
NASA Astrophysics Data System (ADS)
Tamppari, L. K.; Senske, D. A.; Johnson, T. V.; Oberto, R.; Zimmerman, W.; JPL's Team-X Team
2000-10-01
Since the arrival of the Galileo spacecraft to the Jovian system in 1995, evidence indicating a liquid water ocean beneath the icy Europan crust has become much stronger. This evidence combined with the fact that Europa is greater than 90 wt% water [1] makes it a candidate body to harbor extant or extinct life. The outstanding Europa science questions [2] are to determine whether or not there is or has been a liquid water layer under the ice and whether or not liquid water currently exists on the surface or has in the geologically recent past, what geological processes create the ice rafts and other ice-tectonic processes that affect the surface, the composition of the deep interior , geochemical sources of energy, the nature of the neutral atmosphere and ionosphere, and the nature of the radiation environment, especially with regard to its implications for organic and biotic chemistry. In addition, in situ studies of the surface of Europa would offer the opportunity to characterize the chemistry of the ice including organics, pH, salinity, and redox potential. In order to address these scientific objectives, a Europa program, involving multiple spacecraft, is envisioned. The JPL Outer Planets program has been helping to lay the groundwork for such a program. This effort is being conducted with particular emphasis on compiling and identifying science objectives which will flow down to a Europa mission architecture. This poster will show the tracability of observational methods from the science objectives. Also in support of developing a Europa mission architecture, JPL's Team-X has conducted a variety of Europa mission studies . A comparison of the studies done to date will be presented, highlighting science objectives accomplished, technological challenges, and cost. A more detailed presentation will be given on a Europa Lander concept study. First, the science objectives and instrumentation will be shown, including instrument mass, power usage, volume, and data rate. Second, the mission design will be discussed, including candidate launch and arrival dates and landing ellipse issues. Third, the technology developments required and other issues will be presented. This poster presentation will provide an opportunity for the science community to influence future work on developing a Europa architecture, including refinements to a Europa Lander , other mission concepts, and further science objective identification and prioritization. This work was carried out at Caltech's Jet Propulsion Laboratory under a contract from NASA. [1] Morrison, D., Introduction to the Satellites of Jupiter in Satellites of Jupiter, Morrison ed., 1982. [2] Space Studies Board, A Strategy for the Exploration of Europa, National Academy Press, Washington D. C., 1999.
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters
NASA Technical Reports Server (NTRS)
Eppler, Dean B.
2010-01-01
The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.
Multifarious applications of atomic force microscopy in forensic science investigations.
Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y
2017-04-01
Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.
EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Gordon E.; Chaka, Anne; Shuh, David K.
2011-08-01
This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussionsmore » successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells.« less
Mars Science with Small Aircraft
NASA Technical Reports Server (NTRS)
Calvin, W. M.; Miralles, C.; Clark, B. C.; Wilson, G. R.
2000-01-01
The Mars program has articulated a strategy to answer the question "Could Life have arisen on Mars?" by pursuing an in depth understanding of the location, persistence and expression of water in the surface and sub-surface environments. In addition to the need to understand the role of water in climate and climate history, detailed understanding of the surface and interior of the planet is required as well. Return of samples from the Martian surface is expected to provide key answers and site selection to maximize the science gleaned from samples becomes critical. Current and past orbital platforms have revealed a surface and planetary history of surprising complexity. While these remote views significantly advance our understanding of the planet it is clear that detailed regional surveys can both answer specific open questions as well as provide initial reconnaissance for subsequent landed operations.
Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Rosen, Paul; Ranson, Jon; Zebker, Howard
2008-01-01
The National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommends that DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice), an integrated L-band InSAR and multibeam Lidar mission, launch in the 2010- 2013 timeframe. The mission will measure surface deformation for solid Earth and cryosphere objectives and vegetation structure for understanding the carbon cycle. InSAR has been used to study surface deformation of the solid Earth and cryosphere and more recently vegetation structure for estimates of biomass and ecosystem function. Lidar directly measures topography and vegetation structure and is used to estimate biomass and detect changes in surface elevation. The goal of DESDynI is to take advantage of the spatial continuity of InSAR and the precision and directness of Lidar. There are several issues related to the design of the DESDynI mission, including combining the two instruments into a single platform, optimizing the coverage and orbit for the two techniques, and carrying out the science modeling to define and maximize the scientific output of the mission.
NASA Technical Reports Server (NTRS)
Duda, James L.; Barth, Suzanna C
2005-01-01
The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.
In-Situ Propellant Supplied Lunar Lander Concept
NASA Astrophysics Data System (ADS)
Donahue, Benjamin; Maulsby, Curtis
2008-01-01
Future NASA and commercial Lunar missions will require innovative spacecraft configurations incorporating reliable, sustainable propulsion, propellant storage, power and crew life support technologies that can evolve into long duration, partially autonomous systems that can be used to emplace and sustain the massive supplies required for a permanently occupied lunar base. Ambitious surface science missions will require efficient Lunar transfer systems to provide the consumables, science equipment, energy generation systems, habitation systems and crew provisions necessary for lengthy tours on the surface. Lunar lander descent and ascent stages become significantly more efficient when they can be refueled on the Lunar surface and operated numerous times. Landers enabled by Lunar In-Situ Propellant Production (ISPP) facilities will greatly ease constraints on spacecraft mass and payload delivery capability, and may operate much more affordably (in the long term) then landers that are dependant on Earth supplied propellants. In this paper, a Lander concept that leverages ISPP is described and its performance is quantified. Landers, operating as sortie vehicles from Low Lunar Orbit, with efficiencies facilitated by ISPP will enable economical utilization and enhancements that will provide increasingly valuable science yields from Lunar Bases.
NASA Technical Reports Server (NTRS)
Aaron, Kim
1991-01-01
The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.
Post Secondary Project-Based Learning in Science, Technology, Engineering and Mathematics
ERIC Educational Resources Information Center
Ralph, Rachel A.
2015-01-01
Project-based learning (PjBL--to distinguish from problem-based learning--PBL) has become a recurrent practice in K-12 classroom environments. As PjBL has become prominent in K-12 classrooms, it has also surfaced in post-secondary institutions. The purpose of this paper is to examine the research that has studied a variety of science, technology,…
ERIC Educational Resources Information Center
Urban, Michael J.
2013-01-01
Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…
Mars Science Laboratory Entry, Descent and Landing System Overview
NASA Technical Reports Server (NTRS)
Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tomasso P.; Chen, Allen
2013-01-01
The Mars Science Laboratory project recently places the Curiosity rove on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent and landing capabilities has been extended over the previous state of the art. This paper will present an overview to the MSL entry, descent and landing system design and preliminary flight performance results.
Hydrodynamic Sensing Based on Surface-Modified Flexible Nanocomposite Film
NASA Astrophysics Data System (ADS)
Shu, Yi; Tian, He; Wang, Zhe; Zhao, Hai-Ming; Mi, Wen-Tian; Li, Yu-Xing; Cao, Hui-Wen; Ren, Tian-Ling
2015-11-01
Not Available Supported by the National Natural Science Foundation under Grant No 61434001 and 61574083, the National Basic Research Program of China under Grant No 2015CB352100, the National Key Project of Science and Technology under Grant No 2011ZX02403-002, and the Special Fund for Agroscientic Research in the Public Interest of China under Grant No 201303107.
Proceedings of the 5th Symposium on applied surface analysis
NASA Astrophysics Data System (ADS)
Grant, J. T.
1984-04-01
The 5th Symposium on Applied Surface Analysis was held at the University of Dayton, 8-10 June 1983. This Symposium was held to meet a need, namely to show the transition between basic surface science research and applications of this research to areas of Department of Defense interest. Areas receiving special attention at this Symposium were chemical bonding and reactions at metal-semiconductors interfaces, surface analysis and the tribological processes of ion implanted materials, microbeam analysis and laser ionization of sputtered neutrals. Other topics discussed included adsorption, adhesion, corrosion, wear and thin films. Approximately 110 scientists active in the field of surface analysis participated in the Symposium. Four scientists presented invited papers at the Symposium. There were 29 contributed presentations. The proceedings of the Symposium are being published in a special issue of the journal, Applications of Surface Science, by North-Holland Publishing Company.
Traverse Planning Experiments for Future Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.
2012-01-01
The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).
Options for a lunar base surface architecture
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1992-01-01
The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.
A Perfect View of Vesta: Creating Pointing Observations for the Dawn Spacecraft on Asteroid 4 Vesta
NASA Technical Reports Server (NTRS)
Hay, Katrina M.
2005-01-01
The Dawn spacecraft has a timely and clever assignment in store. It will take a close look at two intact survivors from the dawn of the solar system (asteroids 4 Vesta and 1 Ceres) to understand more about solar system origin and evolution. To optimize science return, Dawn must make carefully designed observations on approach and in survey orbit, high altitude mapping orbit, and low altitude mapping orbit at each body. In this report, observations outlined in the science plan are modeled using the science opportunity analyzer program for the Vesta encounter. Specifically, I encoded Dawn's flight rules into the program, modeled pointing profiles of the optical instruments (framing camera, visible infrared spectrometer) and mapped their fields of view onto Vesta's surface. Visualization of coverage will provide the science team with information necessary to assess feasibility of alternative observation plans. Dawn launches in summer 2006 and ends its journey in 2016. Instrument observations on Vesta in 2011 will supply detailed information about Vesta's surface and internal structure. These data will be used to analyze the formation and history of the protoplanet and, therefore, complete an important step in understanding the development of our solar system.
First-Principles Study of Superconductivity in Ultra- thin Pb Films
NASA Astrophysics Data System (ADS)
Noffsinger, Jesse; Cohen, Marvin L.
2010-03-01
Recently, superconductivity in ultrathin layered Pb has been confirmed in samples with as few as two atomic layers [S. Qin, J. Kim, Q. Niu, and C.-K. Shih, Science 2009]. Interestingly, the prototypical strong-coupling superconductor exhibits different Tc's for differing surface reconstructions in samples with only two monolayers. Additionally, Tc is seen to oscillate as the number of atomic layers is increased. Using first principles techniques based on Wannier functions, we analyze the electronic structure, lattice dynamics and electron-phonon coupling for varying thicknesses and surface reconstructions of layered Pb. We discuss results as they relate to superconductivity in the bulk, for which accurate calculations of superconducting properties can be compared to experiment [W. L. McMillan and J.M. Rowell, PRL 1965]. This work was supported by National Science Foundation Grant No. DMR07-05941, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory (Supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231)
Science fiction/science fact: medical genetics in news stories.
Petersen, Alan; Anderson, Alison; Allan, Stuart
2005-12-01
News media coverage of biotechnology issues offers a rich source of fictional portrayals, with stories drawing strongly on popular imagery and metaphors in descriptions of the powers and dangers of biotechnology. This article examines how science fiction metaphors, imagery and motifs surface in British newspaper (broadsheet and tabloid) coverage of medical genetic issues, focusing on press reporting of two recent highly publicised news media events; namely, the Hashmi and Whitaker families' plights to use stem cells from a 'perfectly matched sibling' for the treatment of their diseased children. It is concerned in particular with the extent to which journalists' use of certain literary devices encourages preferred formulations of medical genetics, and thereby potentially shapes public deliberation about scientific developments and their consequences for society. Understanding how science fiction sustains science fact, and vice versa, and how the former is portrayed in news media, it is argued, would thus seem to be crucial in the effort to understand why people respond so strongly to biotechnologies, and what they imagine their consequences to be.
The Big Splat, or How Our Moon Came to Be
NASA Astrophysics Data System (ADS)
MacKenzie, Dana
2003-03-01
The first popular book to explain the dramatic theory behind the Moon's genesis This lively science history relates one of the great recent breakthroughs in planetary astronomy-a successful theory of the birth of the Moon. Science journalist Dana Mackenzie traces the evolution of this theory, one little known outside the scientific community: a Mars-sized object collided with Earth some four billion years ago, and the remains of this colossal explosion-the Big Splat-came together to form the Moon. Beginning with notions of the Moon in ancient cosmologies, Mackenzie relates the fascinating history of lunar speculation, moving from Galileo and Kepler to George Darwin (son of Charles) and the Apollo astronauts, whose trips to the lunar surface helped solve one of the most enigmatic mysteries of the night sky: who hung the Moon? Dana Mackenzie (Santa Cruz, CA) is a freelance science journalist. His articles have appeared in such magazines as Science, Discover, American Scientist, The Sciences, and New Scientist.
Phase 1 Final Report: Titan Submarine
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.
2015-01-01
The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of liquid methane into the currently predicted predominantly ethane Kraken Mare. During an extended ninety-day mission, it would transit the throat of Kraken (now Seldon Fretum) and perform similar explorations in other areas of Kraken Mare. Once this half year of exploration is completed the submarine could be tasked to revisit points of interest and perhaps do a complete sonar mapping of the seas. All in all, the submarine could explore over 3,000 km (1,864 mi) in its primary mission at an average speed of 0.3 meters per second.
The Science of Asteroid Sample Return Mission Hayabusa2
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Yoshikawa, M.; Watanabe, S.
2015-12-01
Hayabusa2, which is the follow-on mission of Hayabusa, was launched on Dec. 3, 2014. The target asteroid is (162173) 1999 JU3, a C-type, small Near Earth Asteroid. The principal purpose of Hayabusa2 is to study the origin and evolution of the solar system, especially the origin of organic matters and waters on the earth. Hayabusa2 will arrive at 1999 JU3 in June or July 2018, stay there for about one and half years, leave there at the end of 2019, and come back to the earth at the end of 2020. The main mission is the sample return, taking the surface materials of 1999 JU3 and bringing them back to the earth. We will try to get the samples not only from the surface but also from the subsurface by creating a small crater on the surface of the asteroid (see the figure). Hayabusa2 has remote sensing instruments as follows: Optical Navigation Cameras (ONC-T/W1/W2), Near Infrared Spectrometer (NIRS3), Thermal Infrared Imager (TIR), and Laser Altimeter (LIDAR). It has also three small rovers (MINERVA-II-1A/1B/2), and one small lander (MASCOT), which was provided by DLR and CNES. Small Carry-on Impactor (SCI) is used to create a small crater and the impact event is observed by a deployable camera (DCAM3). Thus we can use a wide variety of data to study this C-type asteroid. And of course, we will analyze the samples in detail after the capsule of Hayabusa2 comes back to the earth. For the science researches, we have Hayabusa2 science team in Japan. As for the international science discussions we organized Hayabusa2 Joint Science Team (HJST). HJST is presently consists of Japanese science members and European members who are mostly related MASCOT. We had four general meetings up to now. In this year (2015), NASA announced Hayabusa2 Participating Scientist Program. If US scientists are selected, they will be the members of HJST. In addition to this, we have started discussions with OSIRIS-REx team for the science collaboration. We hope that Hayabusa2 will produce much more scientific results by the international collaborations.
NASA Astrophysics Data System (ADS)
Wang, J. S.; Glaser, S. D.; Moore, J. R.; Hart, K.; King, G.; Regan, T.; Bang, S. S.; Sani, R. K.; Roggenthen, W. M.
2007-12-01
On July 10, 2007, the former Homestake Mine, Lead, South Dakota, was selected as the development site for the Deep Underground Science and Engineering Laboratory, to become the Sanford Underground Science and Engineering Laboratory at Homestake. Work on refurbishment and certification of the Ross Shaft began in August 2007 to effect pumping of water that had reached the 5000 level in late July. Completion of this work will allow a physics and geosciences laboratory to be constructed on the 4,850 ft level (1,478 m from the surface). Concurrent with reentry operations, several earth science research activities have been initiated. These early activities are as follows: (1) Seismic monitoring system: Accelerometers will be installed in surface boreholes and underground drifts as they become available as a result of the reentry work. (2) Evaluation of the 300 level (91 m), which has multiple locations for horizontal access, is ongoing. This near- surface level, with varying overburden thicknesses, offers excellent opportunities to investigate the "critical zone" in terms of hydrology, ecology, and geochemistry, yielding measurements of both moisture and carbon fluxes to evaluate fluid exchanges with the atmosphere. (3) Water and soil samples were collected in the Ross Shaft as part of the first reentry work. Molecular survey of microbial diversity showed the presence of mesophilic and thermophilic cellulose-degrading microorganisms. (4) Supercritical carbon dioxide injection experiments are being planned that will take advantage of three pairs of existing, nearly vertical, open 8-inch (0.2 m) boreholes that are easily accessible from the Ross Shaft. The candidate holes are located between the 1550 and the 2900 levels and are between 90 to 180 m in length (5) Monitoring of the response of the water during the dewatering operations will be facilitated by the use of existing boreholes. Ultimately, the dewatering operation provide access to the 8000 level (depth of 2,438 m), the deepest level. These five examples of ongoing research activities should provide a basis for many other earth science and engineering investigations at this multilevel facility, which already has extensive underground workings. These examples address different aspects of three main themes identified as important by deep underground research communities: restless earth for geo-science, ground truth for geo-engineering, and dark life for geo-microbiology.
NASA Astrophysics Data System (ADS)
Li, Zengcheng; Feng, Bo; Deng, Biao; Liu, Legong; Huang, Yingnan; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Sun, Qian; Wang, Huaibing; Yang, Xiaoli; Yang, Hui
2018-04-01
This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates. The as-fabricated via-TF-LEDs were featured with a roughened n-GaN surface and the p-GaN surface bonded to a wafer carrier with a silver-based reflective electrode, together with an array of embedded n-type via pillar metal contact from the p-GaN surface etched through the multiple-quantum-wells (MQWs) into the n-GaN layer. When operated at 350 mA, the via-TF-LED gave an enhanced blue LOP by 7.8% and over 3.5 times as compared to the vertical thin-film LED (TF-LED) and the conventional lateral structure LED (LS-LED). After covering with yellow phosphor that converts some blue photons into yellow light, the via-TF-LED emitted an enhanced white luminous flux by 13.5% and over 5 times, as compared with the white TF-LED and the white LS-LED, respectively. The significant LOP improvement of the via-TF-LED was attributed to the elimination of light absorption by the Si (111) epitaxial substrate and the finger-like n-electrodes on the roughened emitting surface. Project supported by the National Key R&D Program (Nos. 2016YFB0400100, 2016YFB0400104), the National Natural Science Foundation of China (Nos. 61534007, 61404156, 61522407, 61604168, 61775230), the Key Frontier Scientific Research Program of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC014), the Science and Technology Service Network Initiative of the Chinese Academy of Sciences, the Key R&D Program of Jiangsu Province (No. BE2017079), the Natural Science Foundation of Jiangsu Province (No. BK20160401), and the China Postdoctoral Science Foundation (No. 2016M591944). This work was also supported by the Open Fund of the State Key Laboratory of Luminescence and Applications (No. SKLA-2016-01), the Open Fund of the State Key Laboratory on Integrated Optoelectronics (Nos. IOSKL2016KF04, IOSKL2016KF07), and the Seed Fund from SINANO, CAS (No. Y5AAQ51001).
Global Precipitation Measurement (GPM) Ground Validation (GV) Science Implementation Plan
NASA Technical Reports Server (NTRS)
Petersen, Walter A.; Hou, Arthur Y.
2008-01-01
For pre-launch algorithm development and post-launch product evaluation Global Precipitation Measurement (GPM) Ground Validation (GV) goes beyond direct comparisons of surface rain rates between ground and satellite measurements to provide the means for improving retrieval algorithms and model applications.Three approaches to GPM GV include direct statistical validation (at the surface), precipitation physics validation (in a vertical columns), and integrated science validation (4-dimensional). These three approaches support five themes: core satellite error characterization; constellation satellites validation; development of physical models of snow, cloud water, and mixed phase; development of cloud-resolving model (CRM) and land-surface models to bridge observations and algorithms; and, development of coupled CRM-land surface modeling for basin-scale water budget studies and natural hazard prediction. This presentation describes the implementation of these approaches.
Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.
Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P
2014-01-24
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.
Fundamental insights into interfacial catalysis.
Gong, Jinlong; Bao, Xinhe
2017-04-03
Surface and interfacial catalysis plays a vital role in chemical industries, electrochemistry and photochemical reactions. The challenges of modern chemistry are to optimize the chemical reaction processes and understand the detailed mechanism of chemical reactions. Since the early 1960s, the foundation of surface science systems has allowed the study of surface and interfacial phenomena on atomic/molecular level, and thus brought a number of significant developments to fundamental and technological processes, such as catalysis, material science and biochemistry, just to name a few. This themed issue describes the recent advances and developments in the fundamental understanding of surface and interfacial catalysis, encompassing areas of knowledge from metal to metal oxide, carbide, graphene, hexagonal boron nitride, and transition metal dichalcogenides under ultrahigh vacuum conditions, as well as under realistic reaction conditions.
NASA Astrophysics Data System (ADS)
Tretyakov, V.; Mitrofanov, I.; Litvak, M.; Malakhov, A.; Mokrousov, M.
2012-04-01
Scientific goals for Landers of Luna-Resource and Luna-Glob missions will be presented. Both project aimed on search for volatiles and water ice in upper layer of regolith, study structure and content of regolith and investigate of moon's surface exosphere in lunar polar regions. Science devices for payload, which were selected in accordance to the main goals of these missions, will be described. Criteria for potential landing sites selection will be considered: from engineering suitability (flatness and roughness of surface, radio visibility, solar irradiation and so on) and from scientific applicability for these missions. The detailed plan of surface operations during fist moon day will be presented and preliminary plans for sunset and for second and others days will be discussed.
Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.
2014-12-01
There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time. We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.
Exploration of the Moon to Enable Lunar and Planetary Science
NASA Astrophysics Data System (ADS)
Neal, C. R.
2014-12-01
The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also address important science questions by determining the form of lunar surface volatiles. Science missions to examine the lunar interior and space weathering will also inform exploration systems with regard to the locations of large moonquakes and the radiation environment. Such examples highlight the Moon as an enabling Solar System science and exploration asset.
NASA Astrophysics Data System (ADS)
Nasyrov, R. K.; Poleshchuk, A. G.
2017-09-01
This paper describes the development and manufacture of diffraction corrector and imitator for the interferometric control of the surface shape of the 6-m main mirror of the Big Azimuthal Telescope of the Russian Academy of Sciences. The effect of errors in manufacture and adjustment on the quality of the measurement wavefront is studied. The corrector is controlled with the use of an off-axis diffraction imitator operating in a reflection mode. The measured error is smaller than 0.0138λ (RMS).
2001 Mars Odyssey Project report
NASA Technical Reports Server (NTRS)
Spencer, D. A.; Gibbs, R. G.; Mase, R. A.; Plaut, J. J.; Saunders, R. S.
2002-01-01
The Mars Odyssey orbiter was launched on April 7, 2001, and arrived at Mars on October 24, 2001. The orbiter carries scientific instruments that will determine surface elemental composition, mineralogy and morphology, and measure the Mars radiation environment from orbit. In addition, the orbiter will serve as a data relay for future surface missions. This paper will present an overview of the Odyssey project, including the key elements of the spacecraft design, mission design and navigation, mission operations, and the science approach. The project's risk management process will be described. Initial findings of the science team will be summarized.
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1985-01-01
An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.
MAHLI on Mars: lessons learned operating a geoscience camera on a landed payload robotic arm
NASA Astrophysics Data System (ADS)
Aileen Yingst, R.; Edgett, Kenneth S.; Kennedy, Megan R.; Krezoski, Gillian M.; McBride, Marie J.; Minitti, Michelle E.; Ravine, Michael A.; Williams, Rebecca M. E.
2016-06-01
The Mars Hand Lens Imager (MAHLI) is a 2-megapixel, color camera with resolution as high as 13.9 µm pixel-1. MAHLI has operated successfully on the Martian surface for over 1150 Martian days (sols) aboard the Mars Science Laboratory (MSL) rover, Curiosity. During that time MAHLI acquired images to support science and science-enabling activities, including rock and outcrop textural analysis; sand characterization to further the understanding of global sand properties and processes; support of other instrument observations; sample extraction site documentation; range-finding for arm and instrument placement; rover hardware and instrument monitoring and safety; terrain assessment; landscape geomorphology; and support of rover robotic arm commissioning. Operation of the instrument has demonstrated that imaging fully illuminated, dust-free targets yields the best results, with complementary information obtained from shadowed images. The light-emitting diodes (LEDs) allow satisfactory night imaging but do not improve daytime shadowed imaging. MAHLI's combination of fine-scale, science-driven resolution, RGB color, the ability to focus over a large range of distances, and relatively large field of view (FOV), have maximized the return of science and science-enabling observations given the MSL mission architecture and constraints.
SOLAS Science and the Environmental Impacts of Geoengineering
NASA Astrophysics Data System (ADS)
Boyd, P.; Law, C. S.
2016-02-01
SOLAS (Surface Ocean Lower Atmosphere Study) has played a major role in establishing the elemental and ecosystem responses in the in situ mesoscale iron addition experiments. The outcomes of these experiments have included a Summary for Policymakers and an amendment on ocean fertilisation in the London Convention on marine dumping, which have informed both the debate and international regulation on this potential geoengineering approach. As part of Future Earth the next ten years of SOLAS Science will develop understanding and fundamental science in 5 major themes, including Greenhouse Gases and the Ocean, Interconnections between Aerosol, Clouds and Ecosystems, and Ocean Biogeochemical Controls on Atmospheric Chemistry. This poster will review the SOLAS science areas that provide fundamental knowledge on processes and ecosystem impacts, which is required for the robust assessment of potential Solar Radiation Management and Carbon Dioxide Removal techniques.
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Altstatt, Richard L.; Skipworth, William C.
2007-01-01
The Genesis spacecraft launched on 8 August 2001 sampled solar wind environments at L1 from 2001 to 2004. After the Science Capsule door was opened, numerous foils and samples were exposed to the various solar wind environments during periods including slow solar wind from the streamer belts, fast solar wind flows from coronal holes, and coronal mass ejections. The Survey and Examination of Eroded Returned Surfaces (SEERS) program led by NASA's Space Environments and Effects program had initiated access for the space materials community to the remaining Science Capsule hardware after the science samples had been removed for evaluation of materials exposure to the space environment. This presentation will describe the process used to generate a reference radiation Genesis Radiation Environment developed for the SEERS program for use by the materials science community in their analyses of the Genesis hardware.
Creating Nanotechnicians for the 21st Century Workplace
NASA Astrophysics Data System (ADS)
Burke, Michael; Jean, Kristi; Brown, Cheryl; Barrett, Rick; Leopold, Carrie
The North Dakota State College of Science (NDSCS) Nanoscience Technology Training Program was designed and implemented to meet the growing demand for technicians skilled in nanofabrication, surface analysis and production of various micro and nano-scale products. The program emphasizes hands-on training and utilizes a state-of-the-art Applied Science and Advanced Manufacturing Training Laboratory to develop the KSA’s (knowledge, skills, attitudes) needed by industry. Two-year Associate in Applied Science degree, diploma and certificate tracks are offered in four industry focus areas; nanotechnology, microelectronics technology, bio-fuels technology and biotechnology. Students learn to work in multidisciplinary teams on design, prototyping, analysis and manufacturing processes of products. The program also hosts an extensive hands-on outreach program which interacted with over 8000 secondary school science students and 500 teachers in the first 12 months of operation.
Integrating Earth System Science Data Into Tribal College and University Curricula
NASA Astrophysics Data System (ADS)
Tilgner, P. J.; Perkey, D. J.
2007-12-01
Universities Space Research Association and Sinte Gleska University (SGU) have teamed with eight Tribal Colleges and Universities (TCUs) to participate in a NASA Earth Science funded project, TRibal Earth Science and Technology Education (TRESTE) project which focuses on TCU faculty teaching undergraduate Earth science courses to non-science and science students, with particular attention to TCU faculty teaching K-12 pre- and in- service teachers. The eight partner TCUs are: Blackfeet Community College (BCC), Browning, MT, Fond du Lac Tribal and Community College, Cloquet, MN, Fort Berthold Community College, New Town, ND, Little Priest Tribal College, Winnebago, NE, Oglala Lakota College, Pine Ridge, SD, Sitting Bull College, Fort Yates, ND, Turtle Mountain Community College, Belcourt, ND, United Tribes Technical College (UTTC), Bismarck, ND. The goal of this 3-year project is to promote the use of NASA Earth science data and products in the classroom thereby enabling faculty to inspire undergraduate students to careers in Earth system science, the physical sciences, and related fields of science and engineering. To accomplish this goal we are targeting three areas: (1) course content - enhance the utilization of Earth system science and physical science concepts, (2) teaching methodology - develop problem-based learning (PBL) methods, and (3) tools and technology - increase the utilization of GIS and remote sensing in the classroom. We also have enlisted ESRI, NativeView and the USGS as collaborators. To date we have held an introductory "needs" workshop at the USGS EROS Data Center and two annual workshops, one at UTTC and the second at BCC. During these annual workshops we have divided our time among the three areas. We have modeled the workshops using the PBL or Case Study approach by starting with a story or current event. Topics for the annual workshops have been Drought and Forest and Grassland Fires. These topics led us into the solar radiation budget, surface energy budgets, climate and climate change, impacts, etc. GIS and remote sensing training has focused on importing, converting and displaying data sets related to drought and fires. The Integrated Science courses at SGU, designed primarily for pre-service elementary teachers, have incorporated physical science concepts and teaching approaches presented at the TRESTE annual workshops. The content of the courses follows the PBL teaching approach and is organized around a relevant, local problem such as prairie dog control and prairie management. Concepts from Earth, life and physical sciences are included in the course design. The fall course is introduced using recent news articles on legislation to control prairie dogs. After expressing their ideas based solely on experience and emotion, students determine what knowledge they will need to write an informed opinion on the issue. One of the instructional units for the course includes instruction and practice in interpreting satellite images of the local reservation to determine impact of prairie dog towns on vegetation. Students also conduct soil studies in the disturbed areas and nearby undisturbed areas. Data is gathered on soil chemistry, soil temperatures, and surface temperatures, measured with an infrared sensor provided by the TRESTE grant. Additional topics covered in the course that contain information from the annual workshops, include prairie fires, climate and climate change, and effects of the drought on local bodies of water.
NASA's Desert RATS Science Backroom: Remotely Supporting Planetary Exploration
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.; Eppler, Dean; Gruener, John; Horz, Fred; Ming, Doug; Yingst, R. Aileen
2012-01-01
NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. In recent years, a D-RATS science backroom has conducted science operations and tested specific operational approaches. Approaches from the Apollo, Mars Exploration Rovers and Phoenix missions were merged to become the baseline for these tests. In 2010, six days of lunar-analog traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. In 2011, a variety of exploration science scenarios that tested operations for a near-earth asteroid using several small exploration vehicles and a single habitat. Communications between the ground and the crew in the field used a 50-second one-way delay, while communications between crewmembers in the exploration vehicles and the habitat were instantaneous. Within these frameworks, the team evaluated integrated science operations management using real-time science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results. Exploration scenarios for Mars may include architectural similarities such as crew in a habitat communicating with crew in a vehicle, but significantly more autonomy will have to be given to the crew rather than step-by-step interaction with a science backroom on Earth.
The Geospace Mission Definition Team report
NASA Astrophysics Data System (ADS)
Kintner, P.; Spann, J.
The Geospace Mission Definition Team (GMDT) is the portion of the Living With a Star (LWS) Program that has been charged by NASA to examine how the Geospace environment responds to solar variability. The goal is to provide science recommendations that guide NASA in the formulation of Geospace missions. The GMDT's first meeting with September 10, 2001 and has met on four subsequent dates. The top level space weather effects were initially defined by the LWS Science Architecture Team (SAT). From these effects the GMDT has distilled general objectives and specific objectives. These objectives have been prioritized and compelling science questions have been identified that are required to address the objectives. A set of candidate missions has been defined with minimum, baseline, and augmentation measurements identified. The priority science questions focus on two broad areas: (1) ionospheric variability, especially at mid-latitudes, that affects navigation and communications and (2) the source, acceleration mechanisms, and sinks of the radiation belts that degrade satellite lifetimes, produce surface charging, and threaten manned space flight. In addition the measurements required for understanding ionospheric variability will also address science issues associated with thermospheric satellite drag and orbital prediction. Candidate missions to address these science focii have been developed and studied. The team concludes that it is possible to address the compelling science questions with a cost effective program that yields major advances in our understanding of space weather science, that inspires and validates better ionospheric and magnetospheric models, and that will enable operational advances mitigating the societal impacts of space weather.
The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum
NASA Astrophysics Data System (ADS)
Chue, Shien; Lee, Yew-Jin
2013-12-01
When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.
ERIC Educational Resources Information Center
Varunki, Maaret; Katajavuori, Nina; Postareff, Liisa
2017-01-01
Research shows that a surface approach to learning is more common among students in the natural sciences, while students representing the "soft" sciences are more likely to apply a deep approach. However, findings conflict concerning the stability of approaches to learning in general. This study explores the variation in students'…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.
Cassini Imaging Results at Titan
NASA Technical Reports Server (NTRS)
McEwen, A.; Turtle, E.; Perry J.; Fussner, S.; Porco, C.; West, R.; Johnson, T.; Collins, G.; DelGenio, T.; Barbara, J.
2005-01-01
The Cassini Imaging Science Subsystem (ISS) images show striking albedo markings on the surface of Titan. In equatorial regions the albedo patterns have high contrast and exhibit prominent lineaments and linear/angular boundaries suggestive of tectonic influences or fracturing of brittle surficial materials. There are intriguing dark curving lines near the south pole. Here we present several working hypotheses to explain these patterns. We also briefly summarize atmospheric science results.
USSR Report, Life Sciences, Biomedical and Behavioral Sciences
1987-01-20
Varnek, P. D. Brezhestovskiy; DOKLADY AKADEMII NAUK SSSR, No 6, Aug 86) 13 Effects of Selenomethionine on Proton Magnetic Relaxation in Hepatic ...Virus Expressing Surface Antigen of B Hepatitis Virus and Thymidinekinase of Herpes Simplex Virus (A. D. Altshteyn, 0. G. Andzhaparidze, et al...Influence of Dimetpramide and Metoclopramide on Catecholamine Turnover Rates in Rat Brain Subcortical-Brainstem Structures (V. I. Legeza, M. F. Kamynina
SWOT Hydrology in the classroom
NASA Astrophysics Data System (ADS)
Srinivasan, M. M.; Destaerke, D.; Butler, D. M.; Pavelsky, T.
2014-12-01
The Surface Water and Ocean Topography (SWOT) Mission Education Program will participate in the multinational, multiagency program, Global Learning and Observations to Benefit the Environment (GLOBE). GLOBE is a worldwide hands-on, primary and secondary school-based science and education community of over 24,000 schools in more than 100 countries. Over 1.5 million students have contributed more than 23 million measurements to the GLOBE database for use in inquiry-based science projects. The objectives of the program are to promote the teaching and learning of science; enhance environmental awareness, literacy and stewardship; and contribute to science research and environmental monitoring.SWOT will measure sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. This new SWOT-GLOBE partnership will focus on the limnology aspects of SWOT. These measurements will be useful in monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment.GLOBE's cadre of teachers are trained in five core areas of Earth system science, including hydrology. The SWOT Education teams at NASA and CNES are working with the GLOBE Program implementers to develop and promote a new protocol under the Hydrology topic area for students to measure attributes of surface water bodies that will support mission science objectives. This protocol will outline and describe a methodology to measure width and height of rivers and lakes.This new GLOBE protocol will be included in training to provide teachers with expertise and confidence in engaging students in this new scientific investigation. Performing this additional measurement will enhance GLOBE students experience in scientific investigation, and will provide useful measurements to SWOT researchers that can support the SWOT mission research goals.SWOT public engagement will involve communicating the value of its river and lake height measurements, lake water storage, and river discharge. This is also important to the GLOBE Program as curriculum integration of its hydrology measurements can be enhanced by strengthened ties to the concepts of watersheds and the hydrologic cycle. Understanding can also be increased of the relation of lake and river levels to drought and water supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R
2010-01-01
The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditionalmore » and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.« less
Instability of Hydrogenated TiO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep
2015-11-06
Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depthmore » (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
NASA Astrophysics Data System (ADS)
Shell, Duane F.; Soh, Leen-Kiat
2013-12-01
The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.
Advanced Remote Sensing Research
Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna
2008-01-01
'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).
Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.
2014-01-01
As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.
NASA Technical Reports Server (NTRS)
Edmunson, J.; Gaskin, J. A.; Doloboff, I. J.
2017-01-01
Development of a miniaturized scanning electron microscope that will utilize the martian atmosphere to dissipate charge during analysis continues. This instrument is expected to be used on a future rover or lander to answer fundamental Mars science questions. To identify the most important questions, a survey was taken at the 47th Lunar and Planetary Science Conference (LPSC). From the gathered information initial topics were identified for a SEM on the martian surface. These priorities are identified and discussed below. Additionally, a concept of operations is provided with the goal of maximizing the science obtained with the minimum amount of communication with the instrument.
ART AND SCIENCE OF IMAGE MAPS.
Kidwell, Richard D.; McSweeney, Joseph A.
1985-01-01
The visual image of reflected light is influenced by the complex interplay of human color discrimination, spatial relationships, surface texture, and the spectral purity of light, dyes, and pigments. Scientific theories of image processing may not always achieve acceptable results as the variety of factors, some psychological, are in part, unpredictable. Tonal relationships that affect digital image processing and the transfer functions used to transform from the continuous-tone source image to a lithographic image, may be interpreted for an insight of where art and science fuse in the production process. The application of art and science in image map production at the U. S. Geological Survey is illustrated and discussed.
Video-Growing Salt Crystals Onboard the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
2003-01-01
Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Growing salt crystals in a bottle of water is a favorite science activity for kids. In space, Dr. Pettit grew salt crystals in stretched films of water so that the salt water only fed the crystals around the edges rather than from all sides, as happens in a glass of water. This video of his demonstration shows that surface tension plays a surprisingly dominant role in the crystal formation and convection is more active that one might expect.
NASA Astrophysics Data System (ADS)
2010-08-01
Academics in the field have long thought that postgraduate degrees in astronomy, astrophysics and planetary science and particle physics are a good bet for careers. But now a survey has confirmed that they bring excellent long-term employment prospects and above-average salaries, within sciences and elsewhere, boosting the case for funding studentships in order to support science and industry. Satellite synthetic aperture radar is a valuable tool for understanding the deformation of the surface of the Earth at earthquake faults; now NASA scientists have used SAR on planes to get an altogether closer look at quake effects.
Seasat--A 25-Year Legacy of Success
NASA Technical Reports Server (NTRS)
Evans, Diane L.; Alpers, Werner; Cazenave, Anny; Elachi, Charles; Farr, Tom; Glackin, David; Holt, Benjamin; Jones, Linwood; Liu, W. Timothy; McCandless, Walt;
2005-01-01
Thousands of scientific publications and dozens of textbooks include data from instruments derived from NASA's Seasat. The Seasat mission was launched on June 26, 1978, on an Atlas-Agena rocket from Vandenberg Air Force Base. It was the first Earth-orbiting satellite to carry four complementary microwave experiments--the Radar Altimeter (ALT) to measure ocean surface topography by measuring spacecraft altitude above the ocean surface; the Seasat-A Satellite Scatterometer (SASS), to measure wind speed and direction over the ocean; the Scanning Multichannel Microwave Radiometer (SMMR) to measure surface wind speed, ocean surface temperature, atmospheric water vapor content, rain rate, and ice coverage; and the Synthetic Aperture Radar (SAR), to image the ocean surface, polar ice caps, and coastal regions. While originally designed for remote sensing of the Earth's oceans, the legacy of Seasat has had a profound impact in many other areas including solid earth science, hydrology, ecology and planetary science.
Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources
NASA Technical Reports Server (NTRS)
Spruce, Joe; Berglund, Judith; Davis, Bruce
2006-01-01
This viewgraph presentation regards one element of a larger project on the integration of NASA science models and data into the Hazards U.S. Multi-Hazard (HAZUS-MH) Hurricane module for hurricane damage and loss risk assessment. HAZUS-MH is a decision support tool being developed by the National Institute of Building Sciences for the Federal Emergency Management Agency (FEMA). It includes the Hurricane Module, which employs surface roughness maps made from National Land Cover Data (NLCD) maps to estimate coastal hurricane wind damage and loss. NLCD maps are produced and distributed by the U.S. Geological Survey. This presentation discusses an effort to improve upon current HAZUS surface roughness maps by employing ASTER multispectral classifications with QuickBird "ground reference" imagery.
Principal Components Analysis of Reflectance Spectra from the Mars Exploration Rover Opportunity
NASA Technical Reports Server (NTRS)
Mercer, C. M.; Cohen, B. A.
2010-01-01
In the summer of 2007 a global dust storm on Mars effectively disabled Opportunity's Miniature Thermal Emission Spectrometer (Mini-TES), the primary instrument used by the Athena Science Team to identify locally unique rocks on the Martian surface. The science team needs another way to distinguish interesting rocks from their surroundings on a tactical timescale. This study was designed to develop the ability to identify locally unique rocks on the Martian surface remotely using the Mars Exploration Rovers' Panoramica Camera (PanCam) instrument. Meridiani bedrock observed by Opportunity is largely characterized by sulfate-rich sandstones and hematite spherules. Additionally, loose fragments of bedrock and "cobbles" of foreign origin collet on the surface, some of which are interpreted as meteorites.
Editorial Introduction: Lunar Reconnaissance Orbiter, part II
NASA Astrophysics Data System (ADS)
Petro, Noah E.; Keller, John W.; Gaddis, Lisa R.
2017-02-01
The Lunar Reconnaissance Orbiter (LRO) mission has shifted our understanding of the history of the Moon. The seven instruments on LRO each have contributed to creating new paradigms for the evolution of the Moon by providing unprecedented measurements of the surface, subsurface, and lunar environment. In this second volume of the LRO Special Issue, we present 21 papers from a broad range of the areas of investigation from LRO, from the volatile inventory, to the shape of the Moons surface, to its rich volcanic history, and the interactions between the lunar surface and the space environment. These themes provide rich science for the instrument teams, as well as for the broader science community who continue to use the LRO data in their research.
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
1996-12-04
The Mars Pathfinder began the journey to Mars with liftoff atop a Delta II expendable launch vehicle from launch Complex 17B on Cape Canaveral Air Station. The Mars Pathfinder traveled on a direct trajectory to Mars, and arrived there in July 1997. Mars Pathfinder sent a lander and small robotic rover, Sojourner, to the surface of Mars. The primary objective of the mission was to demonstrate a low-cost way of delivering a science package to the surface of Mars using a direct entry, descent and landing with the aid of small rocket engines, a parachute, airbags and other techniques. In addition, landers and rovers of the future will share the heritage of Mars Pathfinder designs and technologies first tested in this mission. Pathfinder also collected invaluable data about the Martian surface.
Bibring, J-P; Langevin, Y; Carter, J; Eng, P; Gondet, B; Jorda, L; Le Mouélic, S; Mottola, S; Pilorget, C; Poulet, F; Vincendon, M
2015-07-31
The structure and composition of cometary constituents, down to their microscopic scale, are critical witnesses of the processes and ingredients that drove the formation and evolution of planetary bodies toward their present diversity. On board Rosetta's lander Philae, the Comet Infrared and Visible Analyser (CIVA) experiment took a series of images to characterize the surface materials surrounding the lander on comet 67P/Churyumov-Gerasimenko. Images were collected twice: just after touchdown, and after Philae finally came to rest, where it acquired a full panorama. These images reveal a fractured surface with complex structure and a variety of grain scales and albedos, possibly constituting pristine cometary material. Copyright © 2015, American Association for the Advancement of Science.
Preparation of atomically flat TiO2(001) surfaces
NASA Astrophysics Data System (ADS)
Wang, Yang; Weitering, Hanno H.; Snijders, Paul C.
2015-03-01
Transition metal oxides with the rutile structure (MO2, M = e.g. Ti, V, or Nb) have highly directional partially occupied t2g orbitals. Some of these orbitals form quasi-1D electronic bands along the rutile c-axis, and Peierls-like ordering phenomena have been observed in VO2 and NbO2. Tailoring the electronic properties of these materials via quantum confinement requires epitaxial growth on suitable substrates such as low index TiO2 surfaces. Because of the high surface energy of rutile TiO2(001), the standard approach of sputtering and annealing usually introduces faceting. Here we demonstrate a facile method to create atomically flat, non-faceted TiO2(001) surfaces. Using scanning tunneling microscopy we observe terraces with a width of approximately 150 nm. Step heights of approximately 0.3 nm are observed, consistent with the c lattice parameter of rutile TiO2. Low energy electron diffraction patterns reveal sharp diffraction spots with an in-plane lattice constant of 0.358 nm which is consistent with a (1x1) ordering of the (001) plane. These TiO2(001) single crystal surfaces can serve as an ideal substrate for further growth of rutile heterostructures. Research sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Assessment of environments for Mars Science Laboratory entry, descent, and surface operations
Vasavada, Ashwin R.; Chen, Allen; Barnes, Jeffrey R.; Burkhart, P. Daniel; Cantor, Bruce A.; Dwyer-Cianciolo, Alicia M.; Fergason, Robini L.; Hinson, David P.; Justh, Hilary L.; Kass, David M.; Lewis, Stephen R.; Mischna, Michael A.; Murphy, James R.; Rafkin, Scot C.R.; Tyler, Daniel; Withers, Paul G.
2012-01-01
The Mars Science Laboratory mission aims to land a car-sized rover on Mars' surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and "fly out" deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft's performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover's thermal state that are used to plan surface operations.
Interactions of Deuterium Plasma with Lithiated and Boronized Surfaces in NSTX-U
NASA Astrophysics Data System (ADS)
Krstic, Predrag
2015-09-01
The main research goal of the presented research has been to understand the changes in surface composition and chemistry at the nanoscopic temporal and spatial scales for long pulse Plasma Facing Components (PFCs) and link these to the overall machine performance of the National Spherical Torus Experiment Upgrade (NSTX-U). A study is presented of the lithium surface science, with atomic spatial and temporal resolutions. The dynamic surface responds and evolves in a mixed material environments (D, Li, C, B, O, Mo, W) with impingement of plasma particles in the energy range below 100 eV. The results, obtained by quantum-classical molecular dynamics, include microstructure changes, erosion, surface chemistry, deuterium implantation and permeation. Main objectives of the research are i) a comparison of Li and B deposition on carbon, ii) the role of oxygen and other impurities e.g. boron, carbon in the lithium performance, and iii) how this performance will change when lithium is applied to a high-Z refractory metal substrate (Mo, W). In addition to predicting and understanding the phenomenology of the processes, we will show plasma induced erosion of PFCs, including chemical and physical sputtering yields at various temperatures (300-700 K) as well as deuterium uptake/recycling. This work is supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Science, Award Number DE-SC0013752.
A Christmas Crater from Mercury
2017-12-08
Release Date: December 21, 2011 The crater at the center of this image is named Dickens, after Charles Dickens, the English novelist who lived from 1812 to 1870. Among Dickens' famous works is A Christmas Carol, the story of Bob Cratchit, his family, and horrible boss Mr. Scrooge. Scientists studying Mercury might consider the Mariner 10 mission to be Christmas Past, MESSENGER to be Christmas Present, and the European Bepi-Colombo mission to be Christmas Yet To Come. This image was acquired as part of MDIS's high-resolution surface morphology base map. The surface morphology base map will cover more than 90% of Mercury's surface with an average resolution of 250 meters/pixel (0.16 miles/pixel or 820 feet/pixel). Images acquired for the surface morphology base map typically have off-vertical Sun angles (i.e., high incidence angles) and visible shadows so as to reveal clearly the topographic form of geologic features. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Collecting, Managing, and Visualizing Data during Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.
2017-12-01
While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.
FREND experiment on ESA's TGO mission: science tasks, initial space data and expected results
NASA Astrophysics Data System (ADS)
Mitrofanov, Igor; Malakhov, Aleksey; Golovin, Dmitry; Litvak, Maxim; Sanin, Anton; Semkova, Jordanka
2017-04-01
The main science tasks are presented in details of the Fine Resolution Epithermal Neutron Detector (FREND) onboard the ESA's Trace Gas Orbiter (TGO). They are (I) mapping of water distribution in the shallow subsurface of Mars with the special resolution about 40 km, (II) measuring of the seasonal depositions of atmospheric carbon dioxide on the southern and northern hemispheres of Mars, and (III) monitoring of galactic cosmic rays (GCRs) and solar particle events (SPEs) on the low Mars orbit. The initial science data of FREND are described measured during the interplanetary cruise and at the initial stage of the orbital flight. These data allow to estimate the local radiation environment of TGO, which is produced by GCRs, and also the neutron albedo of the Mars surface, which is also produced by the bombardment by GCRs. Using the first FREND space data for in-space calibration, the background components are estimated for the future low-orbit mapping of neutrons from Mars. Using the first experimental data, expected science results of FREND are discussed. It is shown that joint analysis of the orbital neutron data from FREND onboard the TGO, the orbital neutron data from HEND onboard the Mars Odyssey and the surface neutron data from DAN onboard the Curiosity rover should allow to characterize the ground water/ice distribution on the surface of Mars and also to build the seasonal maps of atmospheric CO2 depositions for different intervals of Ls. Special and temporal variations of the Martian radiation environment should be measured as well. Finally, the most ambitious goal of the TGO multi-instrument studies could be testing the cross-correspondence between the water-rich spots on the surface with the local enhancements of methane in the atmosphere
Recent advances in vacuum sciences and applications
NASA Astrophysics Data System (ADS)
Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.
2014-04-01
Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.
NASA Astrophysics Data System (ADS)
Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua
2015-05-01
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).
Water security and the science agenda
NASA Astrophysics Data System (ADS)
Wheater, Howard S.; Gober, Patricia
2015-07-01
The freshwater environment is facing unprecedented global pressures. Unsustainable use of surface and groundwater is ubiquitous. Gross pollution is seen in developing economies, nutrient pollution is a global threat to aquatic ecosystems, and flood damage is increasing. Droughts have severe local consequences, but effects on food can be global. These current pressures are set in the context of rapid environmental change and socio-economic development, population growth, and weak and fragmented governance. We ask what should be the role of the water science community in addressing water security challenges. Deeper understanding of aquatic and terrestrial environments and their interactions with the climate system is needed, along with trans-disciplinary analysis of vulnerabilities to environmental and societal change. The human dimension must be fully integrated into water science research and viewed as an endogenous component of water system dynamics. Land and water management are inextricably linked, and thus more cross-sector coordination of research and policy is imperative. To solve real-world problems, the products of science must emerge from an iterative, collaborative, two-way exchange with management and policy communities. Science must produce knowledge that is deemed to be credible, legitimate, and salient by relevant stakeholders, and the social process of linking science to policy is thus vital to efforts to solve water problems. The paper shows how a large-scale catchment-based observatory can be used to practice trans-disciplinary science integration and address the Anthropocene's water problems.
SciBox, an end-to-end automated science planning and commanding system
NASA Astrophysics Data System (ADS)
Choo, Teck H.; Murchie, Scott L.; Bedini, Peter D.; Steele, R. Josh; Skura, Joseph P.; Nguyen, Lillian; Nair, Hari; Lucks, Michael; Berman, Alice F.; McGovern, James A.; Turner, F. Scott
2014-01-01
SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.
Bridging the PSI Knowledge Gap: A Multi-Scale Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian D.
2015-01-08
Plasma-surface interactions (PSI) pose an immense scientific hurdle in magnetic confinement fusion and our present understanding of PSI in confinement environments is highly inadequate; indeed, a recent Fusion Energy Sciences Advisory Committee report found that 4 out of the 5 top five fusion knowledge gaps were related to PSI. The time is appropriate to develop a concentrated and synergistic science effort that would expand, exploit and integrate the wealth of laboratory ion-beam and plasma research, as well as exciting new computational tools, towards the goal of bridging the PSI knowledge gap. This effort would broadly advance plasma and material sciences,more » while providing critical knowledge towards progress in fusion PSI. This project involves the development of a Science Center focused on a new approach to PSI science; an approach that both exploits access to state-of-the-art PSI experiments and modeling, as well as confinement devices. The organizing principle is to develop synergistic experimental and modeling tools that treat the truly coupled multi-scale aspect of the PSI issues in confinement devices. This is motivated by the simple observation that while typical lab experiments and models allow independent manipulation of controlling variables, the confinement PSI environment is essentially self-determined with few outside controls. This means that processes that may be treated independently in laboratory experiments, because they involve vastly different physical and time scales, will now affect one another in the confinement environment. Also, lab experiments cannot simultaneously match all exposure conditions found in confinement devices typically forcing a linear extrapolation of lab results. At the same time programmatic limitations prevent confinement experiments alone from answering many key PSI questions. The resolution to this problem is to usefully exploit access to PSI science in lab devices, while retooling our thinking from a linear and de-coupled extrapolation to a multi-scale, coupled approach. The PSI Plasma Center consisted of three equal co-centers; one located at the MIT Plasma Science and Fusion Center, one at UC San Diego Center for Energy Research and one at the UC Berkeley Department of Nuclear Engineering, which moved to the University of Tennessee, Knoxville (UTK) with Professor Brian Wirth in July 2010. The Center had three co-directors: Prof. Dennis Whyte led the MIT co-center, the UCSD co-center was led by Dr. Russell Doerner, and Prof. Brian Wirth led the UCB/UTK center. The directors have extensive experience in PSI and material research, and have been internationally recognized in the magnetic fusion, materials and plasma research fields. The co-centers feature keystone PSI experimental and modeling facilities dedicated to PSI science: the DIONISOS/CLASS facility at MIT, the PISCES facility at UCSD, and the state-of-the-art numerical modeling capabilities at UCB/UTK. A collaborative partner in the center is Sandia National Laboratory at Livermore (SNL/CA), which has extensive capabilities with low energy ion beams and surface diagnostics, as well as supporting plasma facilities, including the Tritium Plasma Experiment, all of which significantly augment the Center. Interpretive, continuum material models are available through SNL/CA, UCSD and MIT. The participating institutions of MIT, UCSD, UCB/UTK, SNL/CA and LLNL brought a formidable array of experimental tools and personnel abilities into the PSI Plasma Center. Our work has focused on modeling activities associated with plasma surface interactions that are involved in effects of He and H plasma bombardment on tungsten surfaces. This involved performing computational material modeling of the surface evolution during plasma bombardment using molecular dynamics modeling. The principal outcomes of the research efforts within the combined experimental – modeling PSI center are to provide a knowledgebase of the mechanisms of surface degradation, and the influence of the surface on plasma conditions.« less
MSL DAN Science Investigation: Physical Simulation of DAN
NASA Technical Reports Server (NTRS)
Jun, Insoo
2012-01-01
The main objective of the proposed investigation is to study the characteristics (i.e., hydrogen content, soil composition, layer-structure, etc.) of sub-surface and the surface radiation (neutron in particular) environment.
Mars Exploration Rover Surface Operations
NASA Astrophysics Data System (ADS)
Erickson, J. K.; Adler, M.; Crisp, J.; Mishkin, A.; Welch, R.
2002-01-01
The Mars Exploration Rover Project is an ambitious mission to land two highly capable rovers on Mars and concurrently explore the Martian surface for three months each. Launching in 2003, surface operations will commence on January 4, 2004 with the first landing, followed by the second landing on January 25. The prime mission for the second rover will end on April 27, 2004. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. This paper will provide an overview of the planned mission, and also focus on the different operations challenges inherent in operating these two very off road vehicles, and the solutions adopted to enable the best utilization of their capabilities for high science return and responsiveness to scientific discovery.
NEEMO 20: Science Training, Operations, and Tool Development
NASA Technical Reports Server (NTRS)
Graff, T.; Miller, M.; Rodriguez-Lanetty, M.; Chappell, S.; Naids, A.; Hood, A.; Coan, D.; Abell, P.; Reagan, M.; Janoiko, B.
2016-01-01
The 20th mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated evaluation of operational protocols and tools designed to enable future exploration beyond low-Earth orbit. NEEMO 20 was conducted from the Aquarius habitat off the coast of Key Largo, FL in July 2015. The habitat and its surroundings provide a convincing analog for space exploration. A crew of six (comprised of astronauts, engineers, and habitat technicians) lived and worked in and around the unique underwater laboratory over a mission duration of 14-days. Incorporated into NEEMO 20 was a diverse Science Team (ST) comprised of geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center (JSC), as well as marine scientists from the Department of Biological Sciences at Florida International University (FIU). This team trained the crew on the science to be conducted, defined sampling techniques and operational procedures, and planned and coordinated the science focused Extra Vehicular Activities (EVAs). The primary science objectives of NEEMO 20 was to study planetary sampling techniques and tools in partial gravity environments under realistic mission communication time delays and operational pressures. To facilitate these objectives two types of science sites were employed 1) geoscience sites with available rocks and regolith for testing sampling procedures and tools and, 2) marine science sites dedicated to specific research focused on assessing the photosynthetic capability of corals and their genetic connectivity between deep and shallow reefs. These marine sites and associated research objectives included deployment of handheld instrumentation, context descriptions, imaging, and sampling; thus acted as a suitable proxy for planetary surface exploration activities. This abstract briefly summarizes the scientific training, scientific operations, and tool development conducted during NEEMO 20 with an emphasis on the primary lessons learned.
Teachers' Perceptions of Infusion of Values in Science Lessons: a Qualitative Study
NASA Astrophysics Data System (ADS)
Kumarassamy, Jayanthy; Koh, Caroline
2017-06-01
Much has been written and debated on the importance of including moral, character or values education in school curricula. In line with this, teachers' views with regard to values education have often been sought. However, a search into the literature on values in science education has revealed little on this domain. In an attempt to close this gap, this study explored the views of teachers with regard to values infusion in the teaching of science. The aim was to investigate teachers' perceptions on two broad areas: (i) how values were infused or addressed in lower secondary science and (ii) how values-infused science lessons influenced their students' dispositions and actions. The participants who took part in the interviews were lower secondary science teachers teaching Grade 8 in selected Singapore and New Delhi schools. The findings showed that values inherent in the discipline of science, such as validity, fairness, honesty, rigour, predominated in the lessons conducted by the teachers in both contexts. Furthermore, in Singapore, equal numbers of teachers made references to values upheld and practised by scientists and values arising from the interplay between people and scientific processes and products. In New Delhi however, the emphasis was higher on the latter category of values than on the former. Generally, in both contexts, values infusion in science lessons was not planned but occurred spontaneously as values issues surfaced in class. Teachers in both Singapore and New Delhi used strategies such as questioning, discussion, activities and direct instructions to carry out values infusion, although they experienced challenges that included content and time constraints, lack of student readiness and of teacher competency. Nevertheless, the teachers interviewed perceived that values in science lessons brought about changes in students' personal attributes, affect and behaviour, such as greater interest and prosocial engagement.
Osiris-REx Spacecraft Current Status and Forward Plans
NASA Technical Reports Server (NTRS)
Messenger, Scott; Lauretta, Dante S.; Connolly, Harold C., Jr.
2017-01-01
The NASA New Frontiers OSIRIS-REx spacecraft executed a flawless launch on September 8, 2016 to begin its 23-month journey to near-Earth asteroid (101955). The primary objective of the OSIRIS-REx mission is to collect and return to Earth a pristine sample of regolith from the asteroid surface. The sampling event will occur after a two-year period of remote sensing that will ensure a high probability of successful sampling of a region on the asteroid surface having high science value and within well-defined geological context. The OSIRIS-REx instrument payload includes three high-resolution cameras (OCAMS), a visible and near-infrared spectrometer (OVIRS), a thermal imaging spectrometer (OTES), an X-ray imaging spectrometer (REXIS), and a laser altimeter (OLA). As the spacecraft follows its nominal outbound-cruise trajectory, the propulsion, power, communications, and science instruments have undergone basic functional tests, with no major issues. Outbound cruise science investigations include a search for Earth Trojan asteroids as the spacecraft approaches the Sun-Earth L4 Lagrangian point in February 2017. Additional instrument checkouts and calibrations will be carried out during the Earth gravity assist maneuver in September 2017. During the Earth-moon flyby, visual and spectral images will be acquired to validate instrument command sequences planned for Bennu remote sensing. The asteroid Bennu remote sensing campaign will yield high resolution maps of the temperature and thermal inertia, distributions of major minerals and concentrations of organic matter across the asteroid surface. A high resolution 3d shape model including local surface slopes and a high-resolution gravity field will also be determined. Together, these data will be used to generate four separate maps that will be used to select the sampling site(s). The Safety map will identify hazardous and safe operational regions on the asteroid surface. The Deliverability map will quantify the accuracy with which the navigation team can deliver the spacecraft to and from specific sites on the asteroid surface. The Sampleability map quantifies the regolith properties, providing an estimation of how much material would be sampled at different points on the surface. The final Science Value map synthesizes the chemical, mineralogical, and geological, observations to identify the areas of the asteroid surface with the highest science value. Here, priority is given to organic, water-rich regions that have been minimally altered by surface processes. Asteroid surface samples will be acquired with a touch-and-go sample acquisition system (TAGSAM) that uses high purity pressurized N2 gas to mobilize regolith into a stainless steel canister. Although the mission requirement is to collect at least 60 g of material, tests of the TAGSAM routinely exceeded 300 g of simulant in micro-gravity tests. After acquiring the sample, the spacecraft will depart Bennu in 2021 to begin its return journey, with the sample return capsule landing at the Utah Test and Training Range on September 23, 2023. The OSIRIS-REx science team will carry out a series of detailed chemical, mineralogical, isotopic, and spectral studies that will be used to determine the origin and history of Bennu and to relate high spatial resolution sample studies to the global geological context from remote sensing. The outline of the sample analysis plan is described in a companion abstract.
Ceres’ Evolution and Potential Habitability
NASA Astrophysics Data System (ADS)
Raymond, Carol Anne; Ammannito, Eleonora; Bland, Michael T.; Castillo-Rogez, Julie; De Sanctis, Maria Cristina; Ermakov, Anton; Fu, Roger; McCord, Thomas; Park, Ryan; Prettyman, Thomas H.; Ruesch, Ottaviano; Russell, Christopher T.; Dawn Team
2017-10-01
Dawn’s observations at Ceres confirm it is a volatile-rich body that has undergone ice-rock differentiation and global alteration [1-4], indicating that, as predicted by pre-Dawn thermochemical models, Ceres harbored an ancient subsurface ocean [5,6]. Density and shape data indicate that at present, Ceres has a crust composed of silicate, salts, clathrates and ≤ 35% water ice, overlying a denser core of hydrated silicates [7,8,9,10], whereas the original ice-dominated outer shell was likely lost to impact-induced sublimation early in Ceres’ history [11]. The interior structure constrains the maximum internal temperature to have been only a few hundred degrees [9]; however, rather than indicating a late formation for Ceres, it may indicate that circulation of fluids within Ceres modulated the temperature [12].The extent and longevity of the ocean are debatable; however, the modern surface of Ceres shows evidence of brine extrusion [e.g., 13], indicating at least pockets of subsurface liquid remain. Carbonates are found to dominate the composition of the brightest deposits on the surface, attesting to transport of crystallized brine material to the surface [14]. These multiple lines of evidence point to a warm aqueous subsurface environment with complex chemistry early in Ceres’ history and processes that exchanged material between the muddy ocean layer and the surface. Such history and the presence of organic material in localized deposits [15, 16] make Ceres an enticing target for future exploration. [1] Russell et al., Science, 2016 [2] Prettyman et al., Science, 2017 [3] De Sanctis et al., 2015 10.1038/nature18290 [4] Ammannito et al., Science, 2016 [5] McCord and Sotin, JGR, 2005 [6] Castillo-Rogez and McCord, Icarus, 2010 [7] Park et al., Nature, 2016 [8] Ermakov et al., JGR, 2017 [9] Fu et al., EPSL, 2017 [10] Bland et al., Nat. GeoSci., 2016 [11] Castillo-Rogez et al., LPSC, 2016 [12] Travis et al., Icarus, subm. [13] Ruesch et al., Science, 2106 [14] De Sanctis et al., Nature, 2016 [15] De Sanctis et al., Science, 2017 [16] Marchi et al., this meeting. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.
2017-12-08
Hamelin Pool Marine Nature Reserve is located in the Shark Bay World Heritage Site in Western Australia. It is one of the very few places in the world where living stromatolites can be found. These are the first living examples of structures built by cyanobacteria. These bacteria are direct descendants of the oldest form of photosynthetic life on earth, dating back 3,500 million years (Wikipedia). The image was acquired December 30, 2010, covers an area of 34 x 46 km, and is located at 26.4 degrees south latitude, 114.1 degrees east longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team Image Addition Date: 2013-03-15 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Evaluating the High School Lunar Research Projects Program
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.
2012-12-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science instrument is an open-ended, modified version of the Views of Nature of Science questionnaire. The science attitudes Likert-scale instrument is a modified version of the Attitudes Toward Science Inventory. The lunar science content instrument was developed by CLSE education staff. All three of these instruments are administered to students before and after their research experience to measure the program's impact on student views of the nature of science, attitudes toward science, and knowledge of lunar science. All instruments are administered online via Survey Monkey®. When asked if the program changed the way they view the Moon, 77.4% of students (n=53) replied "yes" and described their increase in knowledge of the formation of the Moon, lunar surface processes, etc. Just under half (41.5%) of the students reported that their experience in the program has contributed to their consideration of a career in science. When asked about obstacles teams had to overcome, teachers described issues with time, student motivation and technology. However, every teacher enthusiastically agreed that the authentic research experience was worthwhile to their students. Detailed evaluation results for the 2011-2012 program will be presented.
In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols
NASA Technical Reports Server (NTRS)
Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.
2013-01-01
The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.
NASA Technical Reports Server (NTRS)
Knight, Russell; Donnellan, Andrea; Green, Joseph J.
2013-01-01
A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).
Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd
2005-01-01
Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.
Mass Spectrometry on Future Mars Landers
NASA Technical Reports Server (NTRS)
Brinckerhoff, W. B.; Mahaffy, P. R.
2011-01-01
Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.
Pegasus XL CYGNSS Mission Science Briefing
2016-12-10
In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a mission science briefing for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: Sean Potter of NASA Communications; Dr. Chris Ruf, CYGNSS principal investigator, Department of Climate and Space Sciences and Engineering at the University of Michigan; Aaron Ridley, CYGNSS constellation scientist in the Climate and Space Department at the University of Michigan in Ann Arbor, Michigan; and Mary Morris, doctoral student in the Department of Climate and Space Sciences and Engineering at the University of Michigan. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Mission Science Briefing
2016-12-10
In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a mission science briefing for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: Dr. Chris Ruf, CYGNSS principal investigator, Department of Climate and Space Sciences and Engineering at the University of Michigan; Aaron Ridley, CYGNSS constellation scientist in the Climate and Space Department at the University of Michigan in Ann Arbor, Michigan; and Mary Morris, doctoral student in the Department of Climate and Space Sciences and Engineering at the University of Michigan. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Test and Validation of the Mars Science Laboratory Robotic Arm
NASA Technical Reports Server (NTRS)
Robinson, M.; Collins, C.; Leger, P.; Kim, W.; Carsten, J.; Tompkins, V.; Trebi-Ollennu, A.; Florow, B.
2013-01-01
The Mars Science Laboratory Robotic Arm (RA) is a key component for achieving the primary scientific goals of the mission. The RA supports sample acquisition by precisely positioning a scoop above loose regolith or accurately preloading a percussive drill on Martian rocks or rover-mounted organic check materials. It assists sample processing by orienting a sample processing unit called CHIMRA through a series of gravity-relative orientations and sample delivery by positioning the sample portion door above an instrument inlet or the observation tray. In addition the RA facilitates contact science by accurately positioning the dust removal tool, Alpha Particle X-Ray Spectrometer (APXS) and the Mars Hand Lens Imager (MAHLI) relative to surface targets. In order to fulfill these seemingly disparate science objectives the RA must satisfy a variety of accuracy and performance requirements. This paper describes the necessary arm requirement specification and the test campaign to demonstrate these requirements were satisfied.
Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance
NASA Astrophysics Data System (ADS)
Da-cheng, Mao; Zhi, Jin; Shao-qing, Wang; Da-yong, Zhang; Jing-yuan, Shi; Song-ang, Peng; Xuan-yun, Wang
2016-07-01
Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the deposited metal provides a new angle to achieve this goal. We exploit this idea by providing a new process method which reduces the contact resistance from 597 Ω·μm to sub 200 Ω·μm while no degradation of mobility is observed in the devices. This simple process method avoids the drawbacks of uncontrollability, ineffectiveness, and trade-off with mobility which often exist in the previously proposed methods. Project by the National Science and Technology Major Project, China (Grant No. 2011ZX02707.3), the National Natural Science Foundation of China (Grant No. 61136005), the Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the Project of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515003).
An alternative model of free fall
NASA Astrophysics Data System (ADS)
Lattery, Mark
2018-03-01
In Two World Systems (Galileo 1632/1661 Dialogues Concerning Two New Sciences (New York: Prometheus)), Galileo attempted to unify terrestrial and celestial motions using the Aristotelian principle of circularity. The result was a model of free fall that correctly predicts the linear increase of the velocity of an object released from rest near the surface of the Earth. This historical episode provides an opportunity to communicate the nature of science to students.
United States Air Force Summer Faculty Research Program for 1990. Program Management Report
1991-06-05
propagation characteristics were extensively studied using pencil lead breaks in a center notch. For the fatigue studies center crack samples of 2024 - T351 ... aluminum specimens during fatigue cycling. The experimental procedure involved excitation of Rayleigh waves on the surface of each specimen and...Research Program (SFRP) provides opportunities for research in the physical sciences, engineering, and life sciences. The program has been effective
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1991-06-01
particularly those that involve shock wave/boundary layer cell-centered, finite-volume, explicit, Runge-Kutta interactions , still prov;de considerble...aircraft configuration attributed to using an interactive vcual grid generation was provided by A. Bocci and A. Baxendale, the Aircraft system developed...the surface pressure the complex problem of wing/body/pylon/store distributions with and without the mass flow through the interaction . Reasonable
ERIC Educational Resources Information Center
McNaught, Carmel; Lau, W. M.; Lam, Paul; Hui, Mark Y. Y.; Au, Peter C. T.
2005-01-01
The paper reports a study for determining a suitable process for converting traditional surface science courses into case-based learning ones in two universities in Hong Kong. In this preparative study, a set of baseline data was collected on the current level of students' conceptual understanding and also students' perceptions about the…
1989-01-01
channelling and scanning electron microscopy (SEM) of highly oriented pyrolytic graphite ( HOPG ), comparative scratch testing results and some ideas on...electrode graphite , HOPG and carbon fibers also show enhanced wear resistance followoing irradiation (6), the extent of which depends upon the initial...literature dealing with damage effects and physical property changes following neutron irradiation of graphite (single and polycrystalline ) in nuclear
JPRS Report, Science & Technology, USSR: Science & Technology Policy..
1987-11-13
is necessary to have for comparison a gauge —"how much he should have done." How to surmount these difficulties is a theme for a separate study. Here...undergo in the shop complete machining, including the milling of complex surfaces, the boring of sockets, grooving, the drilling of holes, including deep...particularly machine building products. Thus, the sectorial ministries are implementing programs of the complete standardization and metrological
Current issues and problems in welding science
NASA Astrophysics Data System (ADS)
David, S. A.; Debroy, T.
1992-07-01
Recent advances in welding science are examined with consideration given to the progress made in understanding physical processes of welding and in understanding weldment microstructure and properties and the correlation between microstructure and properties of the welds. Particular attention is given to the methods used for intelligent control and automation of welding. Also discussed are issues and problems that were brought to the surface by technological advances and interdisciplinary research on welding.
ERIC Educational Resources Information Center
Iwu, R. U.; Azoro, A. V.
2017-01-01
A study was carried out to ascertain the barriers to effective participation of females in surface-mount technology (SMT) in Imo State. Four purposes and four research questions guided the study. The study adopted the survey research design. The population of the study consists of all the female science students and lecturers in six tertiary…
NASA Astrophysics Data System (ADS)
Zhao, Juan; Wu, Hui; Sun, Hai-Bo; Wang, Li-Fei
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11504206 and 11404049), the China Postdoctoral Science Foundation (CPSF) (Grant No. 2014M561259), and the Ph. D. Research Start-up Fund of Shandong Jiaotong University.
The Rosetta mission orbiter science overview: the comet phase
Altobelli, N.; Buratti, B. J.; Choukroun, M.
2017-01-01
The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov–Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554981
RESOLVE Mission Architecture for Lunar Resource Prospecting and Utilization
NASA Technical Reports Server (NTRS)
George, J. A.; Mattes, G. W.; Rogers, K. N.; Magruder, D. F.; Paz, A. J.; Vaccaro, H. M.; Baird, R. S.; Sanders, G. B.; Smith, J. T.; Quinn, J. W.;
2012-01-01
Design Reference Mission (DRM) evaluations were performed for The Regolith & Environment Science, and Oxygen & Lunar Volatile Extraction (RESOLVE) project to determine future flight mission feasibility and understand potential mission environment impacts on hardware requirements, science/resource assessment objectives, and mission planning. DRM version 2.2 (DRM 2.2) is presented for a notional flight of the RESOLVE payload for lunar resource ground truth and utilization (Figure 1) [1]. The rover/payload deploys on a 10 day surface mission to the Cabeus crater near the lunar south pole in May of 2016. A drill, four primary science instruments, and a high temperature chemical reactor will acquire and characterize water and other volatiles in the near sub-surface, and perform demonstrations of In-Situ Re-source Utilization (ISRU). DRM 2.2 is a reference point, and will be periodically revised to accommodate and incorporate changes to project approach or implementation, and to explore mission alternatives such as landing site or opportunity.
NASA Astrophysics Data System (ADS)
Miller, Tristan; Smallwood, Chris; Zhang, Wentao; Eisaki, Hiroshi; Lee, Dung-Hai; Lanzara, Alessandra
2015-03-01
Time- and Angle-resolved photoemission spectroscopy (tr-ARPES) has been used to directly measure the dynamics of many different properties of high-temperature superconductors, including the quasiparticle relaxation, cooper pair recombination, and many-body interactions. There have also been several intriguing results on several materials showing how laser pulses can manipulate their chemical potential on ultrafast timescales, and it's been suggested that these effects could find applications in optoelectronic devices. Studies on GaAs have also found that laser pulses may induce a surface voltage effect. Here, we extend these studies for the first time to a Bi2212 sample in the superconducting state, and disentangle the shift in chemical potential from surface voltage effects. This work was supported by Berkeley Lab's program on Quantum Materials, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.
Improving an Atlantic Fisheries DSS using Sea Surface Salinity Data from NASA's Aquarius Mission
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
This report assesses the capacity of incorporating NASA#s Aquarius SSS (sea surface salinity) data into the SMAST (School of Marine Science and Technology) DSS for Fisheries Science. This data will enhance the SMAST DSS by providing SSS over a large area. Aquarius is a focused satellite mission designed to measure global SSS. SSS mapping is limited because conventional in situ SSS sampling is too sparse to give a large-scale view of the salinity variability. Aquarius will resolve missing physical processes that link the water cycle, the climate, and the ocean. The SMAST Fisheries program provides a DSS for fisheries science. It collects fisheries and environmental data, integrates them into a suite of data assimilation ocean models, and provides hindcasts, nowcasts, and forecasts for fisheries research, fisheries management, and the fishery industry. Currently, SMAST is using SSS data from the National Oceanic and Atmospheric Administration#s National Data Buoy Center. The SMAST DSS would be enhanced with SSS data from the Aquarius mission.
Small Body Science via Swarms of Nano-Satellites
NASA Astrophysics Data System (ADS)
Ernst, Sebastian M.; Lewis, John S.
2015-04-01
Imagine you had a fleet of nano-satellites deployed around an asteroid or comet, or directly on its surface. What things could you do with it that you could not do any other way? Missions which transport a number of small spacecraft and deploy it near small bodes, moons or planets are becoming ever more feasible and realistic. While constellations of nano-satellites already carry a significant weight in terrestrial remote sensing, the potential of similar concepts for planetary science missions has not yet been extensively explored. There have been proposals for such scenarios for the past decades, though only now is there the technology to make them happen. Multiple types of sensor networks can be deployed around planetary bodies or onto their surface while they can interact with each other if required. Furthermore, individual spacecraft become expendable. We wish to call attention to all the research in this field which has been conducted so far and inspire the planetary science community to further investigate the possibies of such mission architechtures.
Observing Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Lazio, T. J.; Jones, D. L.; Bale, S. D.; Burns, J.; Kasper, J. C.; Weiler, K. W.
2011-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages, including fixes locations for the antennas and no terrestrial interference on the far side of the moon. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays designed for faint sources.
Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector
NASA Astrophysics Data System (ADS)
Wei, Ming; Xu, Chun-Xiang; Qin, Fei-Fei; Gowri Manohari, Arumugam; Lu, Jun-Feng; Zhu, Qiu-Xiang
2017-07-01
ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the Al nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration of Al NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of Al NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, Al NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors. Supported by the National Natural Science Foundation of China under Grant Nos 61475035 and 61275054, the Science and Technology Support Program of Jiangsu Province under Grant No BE2016177, and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
Arctic Cut-Off High Drives the Poleward Shift of a New Greenland Melting Record
NASA Technical Reports Server (NTRS)
Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J. F.; Datta, R.; Briggs, K.
2016-01-01
Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centered over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700+/-50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948-2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade. Subject terms: Earth sciences Atmospheric science Climate science
The spaces in between: science, ocean, empire.
Reidy, Michael S; Rozwadowski, Helen M
2014-06-01
Historians of science have richly documented the interconnections between science and empire in the nineteenth century. These studies primarily begin with Britain, Europe, or the United States at the center and have focused almost entirely on lands far off in the periphery--India or Australia, for instance. The spaces in between have received scant attention. Because use of the ocean in this period was infused with the doctrine of the freedom of the seas, the ocean was constructed as a space amenable to control by any nation that could master its surface and use its resources effectively. Oceans transformed in the mid-nineteenth century from highway to destination, becoming--among other things--the focus of sustained scientific interest for the first time in history. Use of the sea rested on reliable knowledge of the ocean. Particularly significant were the graphical representations of knowledge that could be passed from scientists to publishers to captains or other agents of empire. This process also motivated early government patronage of science and crystallized scientists' rising authority in society. The advance of science, the creation of empire, and the construction of the ocean were mutually sustaining.
NASA SSERVI Contributions to Lunar Science and Exploration
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne J.
2015-01-01
NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration that will enable deeper understanding of the Moon and other airless bodies as we move further out of low-Earth orbit. The new Solar System Exploration Research Virtual Institute (SSERVI) will focus on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. The Institute focuses on interdisciplinary, exploration-related science centered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. We will provide a detailed look at research being conducted by each of the 9 domestic US teams as well as our 7 international partners. The research profile of the Institute integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies.
Convergence Science in a Nano World
Cady, Nathaniel
2013-01-01
Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.
NASA Technical Reports Server (NTRS)
Pippin, Margaret R.; Creilson, John K.; Henderson, Bryana L.; Ladd, Irene H.; Fishman, Jack; Votapkova, Dana; Krpcova, Ilona
2008-01-01
GLOBE (Global Learning and Observations to Benefit the Environment) is a worldwide hands-on, primary and secondary school-based education and science program, developed to give students a chance to perform real science by making measurements, analyzing data, and participating in research in collaboration with scientists. As part of the GLOBE Surface Ozone Protocol and with the assistance of the TEREZA Association in the Czech Republic, schools in the Czech Republic have been making and reporting daily measurements of surface ozone and surface meteorological data since 2001. Using a hand-held ozone monitor developed for GLOBE, students at several Czech schools have generated multiyear data records of surface ozone from 2001 to 2005. Analysis of the data shows surface ozone levels were anomalously high during the summer of 2003 relative to other summers. These findings are consistent with measurements by the European Environment Agency that highlights the summer of 2003 as having exceptionally long-lasting and spatially extensive episodes of high surface ozone, especially during the first half of August. Further analysis of the summer s prevailing meteorology shows not only that it was one of the hottest on record, a finding also seen in the student data, but the conditions for production of ozone were ideal. Findings such as these increase student, teacher, and scientist confidence in the utility of the GLOBE data for engaging budding scientists in the collection, analysis, and eventual interpretation of the data for inquiry-based education.
Gillams, Richard J; Jia, Tony Z
2018-05-08
An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.
NASA Technical Reports Server (NTRS)
Jakosky, B. M.; Golombek, M. P.
2001-01-01
Selection of a landing site for the '03 and later Mars surface missions represents a balance between potential science results and landing site safety. Although safety has to be the prime consideration, it is the melding together of spacecraft hazard analysis with science analysis that provides the key to understanding the nature of the surface for determining both its safety for landing and its scientific potential. Our goal here is to discuss the geological factors that go into a determination of site safety, at scales from centimeters up to kilometers, and to understand the implications for the resulting scientific return that can be expected.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2012-01-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission
NASA Technical Reports Server (NTRS)
Susskind, Joel; Blaisdell, John; Iredell, Lena
2014-01-01
The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.
IcePod - A versatile Science Platform for the New York Air National Guard's LC-130 Aircraft
NASA Astrophysics Data System (ADS)
Frearson, N.; Bell, R. E.; Zappa, C. J.
2011-12-01
The ICEPOD program is a five-year effort to develop an ice imaging system mounted on New York Air National Guard (NYANG) LC-130 aircraft to map the surface and sub-surface topography of ice sheets, ice streams and outlet glaciers for the NSF Major Research Instrumentation program. The project is funded by the American Recovery and Reinvestment Act. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean systems. The vision is that this instrumentation will be operated both on routine flights of the NYANG in the polar regions, such as on missions between McMurdo and South Pole Station, and on targeted science missions, from mapping sea ice and outlet glaciers such as those surrounding Ross Island or Greenland to quantifying the drainage systems from large subglacial lakes in East Antarctica. It is a key aspect of the design that at the conclusion of this program, the Pod, Deployment Arm and Data Acquisition and Management system will become available for use by the science community at large to install their own instruments onto. The science requirements for the primary instruments in the Icepod program have been defined and can be viewed on-line at www.ldeo.columbia.edu/icepod. As a consequence, the instrumentation will consist of a scanning laser for precise measurements of the ice surface, stereo-photogrammetry from both visible and infrared imaging cameras to document the ice surface and temperature, a VHF coherent, pulsed radar to recover ice thickness and constrain the distribution of water at the ice sheet bed and an L-band radar to measure surface accumulation or sea-ice thickness. All instrument data sets will be time-tagged and geo-referenced by recording precision GPS satellite data integrated with inertial measurement technology integrated into the pod. There will also be two operational modes - a low altitude flight mode that will optimize the imaging systems and a high altitude flight mode that will facilitate wider use of the instrumentation suite on routine NYANG support missions. Proposals for new observations are welcome. The sensor system will become a research facility operated for the science community, and data will be maintained at and provided through a polar data center.
Color Image of Phoenix Lander on Mars Surface
2008-05-27
This is an enhanced-color image from Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment HiRISE camera. It shows the NASA Mars Phoenix lander with its solar panels deployed on the Mars surface
NASA Technical Reports Server (NTRS)
Vondrak, Richard; Keller, John W.; Chin, Gordon; Petro, Noah; Garvin, James B.; Rice, James W.
2012-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September, 2012. The LRO mission has been extended for two years under SMD. The extended mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution Of the Solar System. Here we will review the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including plans for the extended science phase out to 2014. Results from the LRO mission include but are not limited to the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the day and night time temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs, evidence for recent tectonic activity on the Moon, and high resolution maps of the illumination conditions as the poles. The objectives for the second and extended science phases of the mission under SMD include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5) measuring the Lunar atmosphere and radiation environment.
NASA Astrophysics Data System (ADS)
Ammannito, E.; De Sanctis, M. C.; Carrorro, F. G.; Ciarniello, M.; Combe, J. P.; De Angelis, S.; Ehlmann, B. L.; Frigeri, A.; Longobardo, A.; Mugnuolo, R.; Marchi, S.; Palomba, E.; Raymond, C. A.; Salatti, M.; Tosi, F.; Zambon, F.; Russell, C. T.
2017-12-01
Since January 2015, the surface of Ceres has been studied by the Dawn spacecraft through the measurements from the three instruments on board (1). The VIR imaging spectrometer, sensitive to the spectral range 0.25 -5.0 μm, provided information on the surficial composition of Ceres at resolutions ranging from few kilometers to about one hundred meters (2). Analysis of VIR reflectance data revealed that the average spectrum of Ceres is compatible with a mixture of low-albedo minerals, Mg- phyllosilicates, ammoniated clays, and Mg- carbonates, (3) confirming previous studies based on ground based spectra (4, 5). Mineralogical maps of the surface at about 1 km/px show that the components identified in the average spectrum are present all across the surface with variations in their relative abundance and chemical composition (6, 7). While the ammoniated clays have been already studied (6), the presence nature and distribution of additional ammoniated species has never been investigated in detail, although the spectral analysis of the bright faculae within Occator crater already revealed the potential presence of ammonium salts (8). Since the position and shape of the ammonium absorption in the VIS-NIR region are function of the hosting mineral specie (8), we did an inventory and characterization of the ammonium-rich regions, in order to analyze their spectral properties. In addition to the presence of ammonium, also the identification of the hosting species has implication for the evolution of Ceres. Our study, therefore, is a step forward in understanding of evolutionary pathway of Ceres. References: (1) Russell, C. T. et al., Science, 2016. (2) De Sanctis M.C. et al., Space Science Reviews, 2011. (3) De Sanctis M.C. et al., Nature, 2015. (4) King T. et al. Science, 1992. (5) Rivkin A.S. et al. Icarus, 2006. (6) Ammannito E. et al., Science, 2016. (7) Carrozzo F.G. et al., Science Advances, in revision. (8) De Sanctis et al., Nature, 2016. (9) Berg et al., Icarus, 2016.
Topological semimetals with Riemann surface states
NASA Astrophysics Data System (ADS)
Fang, Chen; Lu, Ling; Liu, Junwei; Fu, Liang
Topological semimetals have robust bulk band crossings between the conduction and the valence bands. Among them, Weyl semimetals are so far the only class having topologically protected signatures on the surface known as the ``Fermi arcs''. Here we theoretically find new classes of topological semimetals protected by nonsymmorphic glide reflection symmetries. On a symmetric surface, there are multiple Fermi arcs protected by nontrivial Z2 spectral flows between two high-symmetry lines (or two segments of one line) in the surface Brillouin zone. We observe that so far topological semimetals with protected Fermi arcs have surface dispersions that can be mapped to noncompact Riemann surfaces representing simple holomorphic functions. We propose perovskite superlattice [(SrIrO3)2m, (CaIrO3)2n] as a nonsymmorphic Dirac semimetal. C.F. and L.F. were supported by the S3TEC Solid State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No. DE-SC0001299/DE.
Surface science in hernioplasty: The role of plasma treatments
NASA Astrophysics Data System (ADS)
Nisticò, Roberto; Magnacca, Giuliana; Martorana, Selanna
2017-10-01
The aim of this review is to clarify the importance of surface modifications induced in biomaterials for hernia-repair application. Starting from the pioneering experiences involving proto-materials as ancient prosthesis, a historical excursus between the biomaterials used in hernioplasty was realized. Subsequently, after the revolutionary discovery of stereoregular polymerization followed by the PP application in the biomedical field performed by the surgeon F. Usher, a comparative study on different hernia-repair meshes available was realized in order to better understand all the outstanding problems and possible future developments. Furthermore, since many unsolved problems on prosthetic devices implantation are linked to phenomena occurring at the interface between the biomaterials surface and the body fluids, the importance of surface science in hernioplasty was highlighted and case studies of new surface-modified generations of prosthesis presented. The results discussed in the following evidence how the surface study are becoming increasingly important for a proper knowledge of issues related to the interaction between the living matter and the artificial prostheses.
NASA Astrophysics Data System (ADS)
Cardesin Moinelo, Alejandro; Vallat, Claire; Altobelli, Nicolas; Frew, David; Llorente, Rosario; Costa, Marc; Almeida, Miguel; Witasse, Olivier
2016-10-01
JUICE is the first large mission in the framework of ESA's Cosmic Vision 2015-2025 program. JUICE will survey the Jovian system with a special focus on three of the Galilean Moons: Europa, Ganymede and Callisto.The mission has recently been adopted and big efforts are being made by the Science Operations Center (SOC) at the European Space and Astronomy Centre (ESAC) in Madrid for the development of tools to provide the necessary support to the Science Working Team (SWT) for science opportunity analysis and early assessment of science operation scenarios. This contribution will outline some of the tools being developed within ESA and in collaboration with the Navigation and Ancillary Information Facility (NAIF) at JPL.The Mission Analysis and Payload Planning Support (MAPPS) is developed by ESA and has been used by most of ESA's planetary missions to generate and validate science observation timelines for the simulation of payload and spacecraft operations. MAPPS has the capability to compute and display all the necessary geometrical information such as the distances, illumination angles and projected field-of-view of an imaging instrument on the surface of the given body and a preliminary setup is already in place for the early assessment of JUICE science operations.NAIF provides valuable SPICE support to the JUICE mission and several tools are being developed to compute and visualize science opportunities. In particular the WebGeoCalc and Cosmographia systems are provided by NAIF to compute time windows and create animations of the observation geometry available via traditional SPICE data files, such as planet orbits, spacecraft trajectory, spacecraft orientation, instrument field-of-view "cones" and instrument footprints. Other software tools are being developed by ESA and other collaborating partners to support the science opportunity analysis for all missions, like the SOLab (Science Operations Laboratory) or new interfaces for observation definitions and opportunity window databases.
Purging sensitive science instruments with nitrogen in the STS environment
NASA Technical Reports Server (NTRS)
Lumsden, J. M.; Noel, M. B.
1983-01-01
Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).
Supporting Energy-Related Societal Applications Using NASA's Satellite and Modeling Data
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W., Jr.; Whitlock, C. H.; Chandler, W. S.; Hoell, J. M.; Zhang, T.; Mikovitz, J. C.; Leng, G. S.; Lilienthal, P.
2006-01-01
Improvements to NASA Surface Meteorology and Solar Energy (SSE) web site are now being made through the Prediction of Worldwide Energy Resource (POWER) project under NASA Science Mission Directorate Applied Science Energy Management Program. The purpose of this project is to tailor NASA Science Mission results for energy sector applications and decision support systems. The current status of SSE and research towards upgrading estimates of total, direct and diffuse solar irradiance from NASA satellite measurements and analysis are discussed. Part of this work involves collaborating with partners such as the National Renewable Energy Laboratory (NREL) and the Natural Resources Canada (NRCan). Energy Management and POWER plans including historic, near-term and forecast datasets are also overviewed.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra
2011-01-01
In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.
Recent Economic Perspectives on Political Economy, Part II*
Dewan, Torun; Shepsle, Kenneth A.
2013-01-01
In recent years some of the best theoretical work on the political economy of political institutions and processes has begun surfacing outside the political science mainstream in high quality economics journals. This two-part paper surveys these contributions from a recent five-year period. In Part I, the focus is on elections, voting and information aggregation, followed by treatments of parties, candidates, and coalitions. In Part II, papers on economic performance and redistribution, constitutional design, and incentives, institutions, and the quality of political elites are discussed. Part II concludes with a discussion of the methodological bases common to economics and political science, the way economists have used political science research, and some new themes and arbitrage opportunities. PMID:23606754
Solar System Visualization (SSV) Project
NASA Technical Reports Server (NTRS)
Todd, Jessida L.
2005-01-01
The Solar System Visualization (SSV) project aims at enhancing scientific and public understanding through visual representations and modeling procedures. The SSV project's objectives are to (1) create new visualization technologies, (2) organize science observations and models, and (3) visualize science results and mission Plans. The SSV project currently supports the Mars Exploration Rovers (MER) mission, the Mars Reconnaissance Orbiter (MRO), and Cassini. In support of the these missions, the SSV team has produced pan and zoom animations of large mosaics to reveal details of surface features and topography, created 3D animations of science instruments and procedures, formed 3-D anaglyphs from left and right stereo pairs, and animated registered multi-resolution mosaics to provide context for microscopic images.
Click Chemistry, a Powerful Tool for Pharmaceutical Sciences
Hein, Christopher D.; Liu, Xin-Ming; Wang, Dong
2008-01-01
Click chemistry refers to a group of reactions that are fast, simple to use, easy to purify, versatile, regiospecific, and give high product yields. While there are a number of reactions that fulfill the criteria, the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes has emerged as the frontrunner. It has found applications in a wide variety of research areas, including materials sciences, polymer chemistry, and pharmaceutical sciences. In this manuscript, important aspects of the Huisgen cycloaddition will be reviewed, along with some of its many pharmaceutical applications. Bioconjugation, nanoparticle surface modification, and pharmaceutical-related polymer chemistry will all be covered. Limitations of the reaction will also be discussed. PMID:18509602
Chapter 8: Materials for Exploration Systems
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2017-01-01
Materials science and processing research in space can be thought of as a field of study that began with the sounding rocket experiments in the 1950s. Material science studies of the lunar surface materials returned during the Apollo missions enabled the study of lunar resource utilization. The study of materials science and processing in space continued with over 30 years of microgravity materials processing research which continues today in the International Space Station. These studies are the technical foundation that could enable lower cost human exploration through the use of in-situ propellant production, the production of energy from space resources, and the eventual establishment of a substantial portion of humanity living self sufficiently off Earth.
Recent Economic Perspectives on Political Economy, Part I*
Dewan, Torun; Shepsle, Kenneth A.
2013-01-01
In recent years some of the best theoretical work on the political economy of political institutions and processes has begun surfacing outside the political science mainstream in high quality economics journals. This two-part paper surveys these contributions from a recent five-year period. In Part I, the focus is on elections, voting and information aggregation, followed by treatments of parties, candidates, and coalitions. In Part II, papers on economic performance and redistribution, constitutional design, and incentives, institutions, and the quality of political elites are discussed. Part II concludes with a discussion of the methodological bases common to economics and political science, the way economists have used political science research, and some new themes and arbitrage opportunities. PMID:23990686
Lambing, John H.
2006-01-01
In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.
NASA Technical Reports Server (NTRS)
Williams, Jessica L.; Menon, Premkumar R.; Demcak, Stuart W.
2012-01-01
The Mars Reconnaissance Orbiter (MRO) is an orbiting asset that performs remote sensing observations in order to characterize the surface, subsurface and atmosphere of Mars. To support upcoming NASA Mars Exploration Program Office objectives, MRO will be used as a relay communication link for the Mars Science Laboratory (MSL) mission during the MSL Entry, Descent and Landing sequence. To do so, MRO Navigation must synchronize the MRO Primary Science Orbit (PSO) with a set of target conditions requested by the MSL Navigation Team; this may be accomplished via propulsive maneuvers. This paper describes the MRO Navigation strategy for and operational performance of MSL EDL relay telecommunication support.
Investigation of Cloud Properties and Atmospheric Profiles with Modis
NASA Technical Reports Server (NTRS)
Menzel, Paul; Ackerman, Steve; Moeller, Chris; Gumley, Liam; Strabala, Kathy; Frey, Richard; Prins, Elaine; Laporte, Dan; Wolf, Walter
1997-01-01
A major milestone was accomplished with the delivery of all five University of Wisconsin MODIS Level 2 science production software packages to the Science Data Support Team (SDST) for integration. These deliveries were the culmination of months of design and testing, with most of the work focused on tasks peripheral to the actual science contained in the code. LTW hosted a MODIS infrared calibration workshop in September. Considerable progress has been made by MCST, with help from LTW, in refining the calibration algorithm, and in identifying and characterization outstanding problems. Work continues on characterizing the effects of non-blackbody earth surfaces on atmospheric profile retrievals and modeling radiative transfer through cirrus clouds.
Magellan Final Science Reports
NASA Technical Reports Server (NTRS)
Thompson, Thomas W.
1993-01-01
This volume is a brief summary of the scientific results of the Magellan Venus mapping mission as reported by the Magellan science investigators. Magellan has exceeded all of its mission objectives by obtaining high resolution radar images, surface elevation, and radiometry for more than 98% of the planet. The amount of stereo data gathered on Venus is more than that available for any other planet. Magellan's fourth cycle collected gravity data from an elliptical orbit to provide information on the relationships between surface features and the interior of the planet. With the successful completion of the aerobraking experiment, the spacecraft, in its lower orbit around Venus, has captured high resolution gravity near the poles from the nearly circular orbit. Every attempt has been made to provide useful documentation for the complete Magellan data set. Magellan data have been released to the public through the Planetary Data System (PDS) and the National Space Science Data Center (NSSDC) in photographs, lithos, brochures, digital form, and compact discs. With the release of Magellan data on the compact disc read-only-memory (CD-ROM) a revolutionary new way of doing science has resulted. This technology provides a way to store, distribute and access large volumes of data. The Magellan science investigators have utilized this wealth of data to provide answers to questions we have been asking for a long time. I would like to personally thank everyone on the Magellan team for the success of this important mission, a mission that has revealed information that will help us to better understand our own Planet Earth.
NASA Astrophysics Data System (ADS)
Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.
2015-12-01
Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.
NLSI Focus Group on Missing ALSEP Data Recovery: Progress and Plans
NASA Technical Reports Server (NTRS)
Lewis, L. R.; Nakamura, Y.; Nagihara, S.; Williams, D. R.; Chi, P.; Taylor, P. T.; Schmidt, G. K.; Grayzeck, E. J.
2011-01-01
On the six Apollo landed missions, the Astronauts deployed the Apollo Lunar Surface Experiments Package (ALSEP) science stations which measured active and passive seismic events, magnetic fields, charged particles, solar wind, heat flow, the diffuse atmosphere, meteorites and their ejecta, lunar dust, etc. Today's scientists are able to extract new information and make new discoveries from the old ALSEP data utilizing recent advances in computer capabilities and new analysis techniques. However, current-day investigators are encountering problems trying to use the ALSEP data. In 2007 archivists from NASA Goddard Space Flight Center (GSFC) National Space Science Data Center (NSSDC) estimated only about 50 percent of the processed ALSEP lunar surface data-of-interest to current lunar science investigators were in the NSSDC archives. The current-day lunar science investigators found most of the ALSEP data, then in the NSSDC archives. were extremely difficult to use. The data were in forms often not well described in the published reports and rerecording anomalies existed in the data which could only be resolved by tape experts. To resolve this problem, the DPS Lunar Data Node was established in 2008 at NSSDC and is in the process of successfully making the existing archived ALSEP data available to current-day investigators in easily useable forms. In July of 2010 the NASA Lunar Science Institute (NLSI) at Ames Research Center established the Recovery of Missing ALSEP Data Focus Group in recognition of the importance of the current activities to find the raw and processed ALSEP data missing from the NSSDC archives.
ROSETTA: How to archive more than 10 years of mission
NASA Astrophysics Data System (ADS)
Barthelemy, Maud; Heather, D.; Grotheer, E.; Besse, S.; Andres, R.; Vallejo, F.; Barnes, T.; Kolokolova, L.; O'Rourke, L.; Fraga, D.; A'Hearn, M. F.; Martin, P.; Taylor, M. G. G. T.
2018-01-01
The Rosetta spacecraft was launched in 2004 and, after several planetary and two asteroid fly-bys, arrived at comet 67P/Churyumov-Gerasimenko in August 2014. After escorting the comet for two years and executing its scientific observations, the mission ended on 30 September 2016 through a touch down on the comet surface. This paper describes how the Planetary Science Archive (PSA) and the Planetary Data System - Small Bodies Node (PDS-SBN) worked with the Rosetta instrument teams to prepare the science data collected over the course of the Rosetta mission for inclusion in the science archive. As Rosetta is an international mission in collaboration between ESA and NASA, all science data from the mission are fully archived within both the PSA and the PDS. The Rosetta archiving process, supporting tools, archiving systems, and their evolution throughout the mission are described, along with a discussion of a number of the challenges faced during the Rosetta implementation. The paper then presents the current status of the archive for each of the science instruments, before looking to the improvements planned both for the archive itself and for the Rosetta data content. The lessons learned from the first 13 years of archiving on Rosetta are finally discussed with an aim to help future missions plan and implement their science archives.
Changing Face of Wood Science in Modern Era: Contribution of Nanotechnology.
Mishra, Pawan Kumar; Giagli, Kyriaki; Tsalagkas, Dimitrios; Mishra, Harshita; Talegaonkar, Sushma; Gryc, Vladimír; Wimmer, Rupert
2018-02-14
Wood science and nanomaterials science interact together in two different aspects; a) fabrication of lignocellulosic nanomaterials derived from wood and plant-based sources and b) surface or bulk wood modification by nanoparticles. In this review, we attempt to visualize the impact of nanoparticles on the wood coating and preservation treatments based on a thorough registration of the patent databases. The study was carried out as an overview of the scientifically most followed trends on nanoparticles utilization in wood science and wood protection depicted by recent universal filed patents. This review is exclusively targeted on the solid (timber) wood as a subject material. Utilization of mainly metal nanoparticles as photoprotection, antibacterial, antifungal, antiabrasive and functional component on wood modification treatments was found to be widely patented. Additionally, an apparent minimization in the emission of volatile organic compounds (VOCs) has been succeeded. Bulk wood preservation and more importantly, wood coating, splay the range of strengthening wood dimensional stability and biological degradation, against moisture absorption and fungi respectively. Nanoparticle materials have addressed various issues of wood science in a more efficient and environmental way than the traditional methods. Nevertheless, abundant tests and regulations are still needed before industrializing or recycling these products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Real-time science operations to support a lunar polar volatiles rover mission
NASA Astrophysics Data System (ADS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; Stoker, Carol R.
2015-05-01
Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the ∼ 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Astrophysics Data System (ADS)
Romano, C.; Graff, P. V.; Runco, S.
2017-12-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of the specific tasks required of participants;• A dedicated user interface for the actual citizen science interaction.In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.;
2014-01-01
Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Technical Reports Server (NTRS)
Romano, Cia; Graff, Paige V.; Runco, Susan
2017-01-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online? Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image. Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project: (1) Concise explanation of the project, its context, and its purpose; (2) Including a mention of the funding agency (in this case, NASA); (3) A preview of the specific tasks required of participants; (4) A dedicated user interface for the actual citizen science interaction. In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
A Dual Launch Robotic and Human Lunar Mission Architecture
NASA Technical Reports Server (NTRS)
Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David
2010-01-01
This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.
Astrobiology and other Mars science: how can humans help (and from where)?
NASA Astrophysics Data System (ADS)
Rummel, John; Conley, Catharine
2016-07-01
There are many advocates for the human exploration of Mars who wax poetical when discussing how good it is going to be, but there are only a few who may be willing to write requirements for how much direct human surface exploration on Mars needs to be possible before attempting it is worth the investment, or to compare modes of human exploration to see which one is most cost-efficient for the initial human missions to Mars (assuming that humans working in near-Mars space is a goal in and of itself. For example, the recent MEPAG Scientific Objectives for the Human Exploration of Mars Science Analysis Group (MEPAG HSO-SAG) [1] stated that "A defensible evaluation of surface science operations options and candidate scenarios cannot be done at this time - we recommend deferring this to a future team." Alternatively [e.g., 2], there are considerations of the science that can be done from the martian moon Phobos that do not require surface operations on Mars at all, except by robots controlled through low-latency telepresence. The promise of how to deliver better Mars science for the money (and risk) will be discussed in this paper, and some estimates made on how often a human has to step outside on Mars (and step back in) to accomplish more science than a telepresent rover. We will also look at what the estimates of contamination from on-site human explorers can mean to the search for possible indigenous life on Mars. Some [3] say that Mars is already "contaminated" by Earth organisms brought to Mars from Earth through impact-generated bolide exchanges, but (as noted in [4]) that statement suggests that they do not really hold a solid concept of what contamination is, and what it may mean to both our understanding of the pre-human past on Mars, as well as to the preservation of Mars resources for future human inhabitants. Refs. 1. Beaty et al., Candidate scientific objectives for the human exploration of Mars, and implications for the identification of Martian Exploration Zones.
Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S
2016-10-01
A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.
2006-01-01
The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.
Reporting on Strategic Considerations About the Role of Science in Initial Human Missions to Mars
NASA Astrophysics Data System (ADS)
Beaty, David; Bass, Deborah; Thronson, Harley; Hays, Lindsay; Carberry, Chris; Cassady, Joe; Craig, Mark; Duggan, Matt; Drake, Bret; Stern, Jennifer; Zucker, Rick
2016-07-01
In December 2015, the "Third Community Workshop on Affording and Sustaining Human Mars Exploration" (AM III) was held, which was designed to provide community recommendations on the potential human exploration of Mars. To facilitate the workshop, we focused on two key questions: 1) From the dual and interrelated perspectives of affordability and sustainability, what are the strengths/challenges of Mars exploration scenarios?; and 2) From the perspective of prioritized scientific objectives for the martian system (the planet's surface or its moons), what are the most enabling capabilities of the different exploration architecture(s) and why? Group discussion over three days resulted in the following findings and observations: 1. NASA's incremental approach to deep-space exploration defines the so-called "Proving Ground," specifically in cis-lunar space, generally occurring in the 2020s and prior to human journeys to Mars. We concluded that there are capabilities directly related to, and on the critical path to, human exploration of Mars that could be developed in cis-lunar space. However, we also concluded that the Proving Ground should best be viewed as a campaign that occurs within a certain timeframe (including activities at Mars), rather than merely occurring at a specific location. 2. The workshop participants agreed that the most valuable purposes of sending humans to the martian system would be accomplished only by surface operations. We concluded that specific benefits, both technical and cost, of sending humans to the Mars system without landing on the martian surface should be assessed in depth. We discussed - although were unable to conclude - whether Mars orbit or Phobos/Deimos as a destination would make sufficient contributions towards humans landing on the martian surface or to answering high-priority science questions (as identified by the Decadal Survey) to justify their associated costs and possible risks. Further study on the value of an orbital mission prior to a Mars surface mission should be initiated. 3. A well-planned set of science objectives for a future human-landed mission to Mars is essential in order to sustain coordination among the science and human spaceflight communities. In particular, while it is clear how humans on the surface of Mars would significantly accelerate the pace of the search for past life, it is unclear how humans would play a role in (and not serve as a hindrance to) the search for extant life. Further study should be supported. 4. Sustained formal collaboration among Mars scientists, engineers, technologists, and teams developing scenarios for Mars exploration should be supported. The human and robotic sides of the Mars exploration community need to become further engaged with each other, particularly as we enter a potential period of dual-purpose (science + human precursor) missions. Central to this era is generating mutual support for a Mars sample return architecture as a goal that has crucial value to both the human preparatory program and planetary science.
NASA's Earth science flight program status
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Volz, Stephen M.
2010-10-01
NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019-2020 timeframe. NASA will begin refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2013 and will initiate a Gravity Recovery and Climate Experiment (GRACE) Follow-on mission for launch in 2016.
SAEVe: A Long Duration Small Sat Class Venus Lander - Seismic and Atmospheric Exploration of Venus
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Ghail, Richard; Gilmore, Martha; Hunter, Gary; Kiefer, Walter; Limaye, Sanjay; Pauken, Michael; Tolbert, Carol; Wilson, Colin
2017-01-01
NASA's science mission directorate has put increasing emphasis on innovative, smaller, and lower cost missions to achieve their science objectives. One example of this was the recent call by the Planetary Science Division for cube and small satellite concepts expected to cost $100M or less, not including launch and weighing less than 180kg. Over 100 proposals were submitted suggesting that indeed this is a size of mission worthy of being considered in future planning. Nineteen missions were selected for study, one being a long-lived Venus mission called SAEVe, for Seismic and Atmospheric Exploration of Venus. The science objectives and relevance of SAEVe include: Is Venus seismically active? What can we learn about its crust (thickness and composition) and its interior (lithosphere, mantle, and core)? What can be learned about its evolutionary history or about the planet / atmosphere interactions? SAEVe begins to address these science questions with simple, but capable, instrumented probes that can survive on the surface of Venus and take temporal measurements over months something never attempted before. The data returned will further our understanding of the solar system and Earth, and aid in meeting the NASA Science Plan goal to ascertain the content, origin, and evolution of the solar system and the chemical and physical processes in our solar system. SAEVe is delivered to Venus as a ride-along on another mission to Venus. Its two small probes are placed into the Venus atmosphere via a single Stardust-like entry capsule, are ejected at different times, free fall, and decelerate in the thickening atmosphere to touchdown under 8 m/s2 or less. The probes will begin taking measurements and transmitting important parameters at or near the surface and will focus on measurements like seismic activity, heat flux, wind speed and direction, basic chemical abundances, temperature, and pressure. At preset intervals, the probes acquire the science measurements and beam the data to the orbiting host spacecraft. SAEVe will serve as a highly capable precursor and pave the way for larger and more complex lander missions to explore Venus.
Learning approaches as predictors of academic performance in first year health and science students.
Salamonson, Yenna; Weaver, Roslyn; Chang, Sungwon; Koch, Jane; Bhathal, Ragbir; Khoo, Cheang; Wilson, Ian
2013-07-01
To compare health and science students' demographic characteristics and learning approaches across different disciplines, and to examine the relationship between learning approaches and academic performance. While there is increasing recognition of a need to foster learning approaches that improve the quality of student learning, little is known about students' learning approaches across different disciplines, and their relationships with academic performance. Prospective, correlational design. Using a survey design, a total of 919 first year health and science students studying in a university located in the western region of Sydney from the following disciplines were recruited to participate in the study - i) Nursing: n = 476, ii) Engineering: n = 75, iii) Medicine: n = 77, iv) Health Sciences: n = 204, and v) Medicinal Chemistry: n = 87. Although there was no statistically significant difference in the use of surface learning among the five discipline groups, there were wide variations in the use of deep learning approach. Furthermore, older students and those with English as an additional language were more likely to use deep learning approach. Controlling for hours spent in paid work during term-time and English language usage, both surface learning approach (β = -0.13, p = 0.001) and deep learning approach (β = 0.11, p = 0.009) emerged as independent and significant predictors of academic performance. Findings from this study provide further empirical evidence that underscore the importance for faculty to use teaching methods that foster deep instead of surface learning approaches, to improve the quality of student learning and academic performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.
2017-12-01
Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.
Mars Target Encyclopedia: Information Extraction for Planetary Science
NASA Astrophysics Data System (ADS)
Wagstaff, K. L.; Francis, R.; Gowda, T.; Lu, Y.; Riloff, E.; Singh, K.
2017-06-01
Mars surface targets / and published compositions / Seek and ye will find. We used text mining methods to extract information from LPSC abstracts about the composition of Mars surface targets. Users can search by element, mineral, or target.
Surface Analysis Cluster Tool | Materials Science | NREL
spectroscopic ellipsometry during film deposition. The cluster tool can be used to study the effect of various prior to analysis. Here we illustrate the surface cleaning effect of an aqueous ammonia treatment on a
Science Investigations Enabled by Magnetic Field Measurements on the Lunar Surface
NASA Astrophysics Data System (ADS)
Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Farrell, W. M.; Garrick-Bethell, I.; Taylor, P.
2018-02-01
We present examples of the geophysical and heliophysics investigations that can be performed with magnetic field measurements on the lunar surface enabled by the support/servicing of lunar landers from the Deep Space Gateway.
CubeRovers for Lunar Exploration
NASA Astrophysics Data System (ADS)
Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.
2017-10-01
CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.
Status of the New Surface Muon Beamline at J-PARC MUSE
NASA Astrophysics Data System (ADS)
Strasser, P.; Koda, A.; Kojima, K. M.; Ito, T. U.; Fujimori, H.; Irie, Y.; Aoki, M.; Nakatsugawa, Y.; Higemoto, W.; Hiraishi, M.; Li, H.; Okabe, H.; Takeshita, S.; Shimomura, K.; Kawamura, N.; Kadono, R.; Miyake, Y.
A new surface muon beamline (S-line) dedicated to condensed matter physics experiments is being constructed at the Muon Science Facility (MUSE) located in the Materials and Life Science Facility (MLF) building at J-PARC. This beamline designed to provide high-intensity surface muons with a momentum of 28 MeV/c will comprise four beam legs and four experimental areas that will share the double-pulsed muon beam. The key feature is a new kicker system comprising two electric kickers to deliver the muon beam to the four experimental areas ensuring an optimum and seamless sharing of the double-pulsed muon beam. At present, only one experimental area (S1) has been completed and is now open to the user program since February 2017. An overview of the different aspects of this new surface muon beamline and the present status of the beam commissioning are presented.
Quantum Hall Ferroelectrics and Nematics in Multivalley Systems
NASA Astrophysics Data System (ADS)
Sodemann, Inti; Zhu, Zheng; Fu, Liang
2017-10-01
We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1991-12-01
Symposium 89, F.-L. Krause , H. Jansen, eds., held in Berlin, NY:ASME. FRG November 1989. Hansmann, W. November. 1985. Interactiver entwurf und Nowacki, H...8217 Smoothing of Multipatch Bzier Surfaces - Curvature Approximation and Knot Removal for Wolfgang Schwarz, EDS GmbH, FRG (A). Handling Scattered Data - Bernd...Physical Oceanography research vessel. The Institute has three CTDs which have been used to obtain a very complete hydrographic series Dr. Wolfgang F
Effect of Porcelain Surface Pretreatments on Composite Resin-Porcelain Shear Bond Strength
1991-05-01
Presented to the Faculty of The University of Texas Graduate School of Biomedical Sciences at San Antonio in Partial Fulfillment of the Requirements...Breckner III The University of Texas Graduate School of Biomedical Sciences at San Antonio Supervising Professor: Barry K. Norling, Ph.D. The bond between...necessary to pretreat the porcelain prior to luting. The samples were not, however, hydrated or thermally stressed . Sheth et al. (1988) supported the
2009-09-30
Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have... Fisheries and Ocean Sciences,903 Koyukuk Drive,Fairbanks,AK,99775 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND
Manned Mars missions: A working group report
NASA Technical Reports Server (NTRS)
Duke, Michael B. (Editor); Keaton, Paul W. (Editor)
1986-01-01
The discussions of the Working Group (based in large part on working papers, which will shortly be published separately) are summarized. These papers cover a broad range of subjects which need to be addressed in the formulation of such a formidable enterprise as a manned Mars program. Science objective and operations; Mars surface infrastructure and activities; mission and system concepts and configurations; life sciences; impacts on the space infrastructure; and costs, schedules, and organizations are addressed.
Transformative Pulsed Power Science and Technology
2014-12-16
Lin, D. Singleton, J. Sanders, A. Kuthi and M.A. Gundersen, “Experimental study of pulsed corona discharge in air at high pressures”, 65th Annual...Kastner, E. Gutmark, and M. A. Gundersen. “Surface Streamer Discharge for Plasma Flow Control Using Nanosecond Pulsed Power.” Plasma Sciences, IEEE... discharge in atmospheric pressure fuel/air mixtures”, J. Phys. D: Appl. Phys. 45 495401 (2012). 28. S. J. Pendleton, S. Bowman, C. Carter, M. A. Gundersen
2013-11-05
CAPE CANAVERAL, Fla. – The Mars Atmosphere and Volatile Evolution, or MAVEN, mission is being prepared for its scheduled launch on Nov 18, 2013 from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. It will arrive at Mars in fall 2014. After a five-week transition period during which it will get into its final orbit, deploy booms, and check out the science instruments, MAVEN will carry out its one-Earth-year primary mission. MAVEN will have enough fuel to survive for another six years and will act as a data relay for spacecraft on the surface, as well as continue to take important science data. MAVEN's principal investigator is based at the University of Colorado, Boulder's Laboratory for Atmospheric and Space Physics CU/LASP. The university provided science instruments and leads science operations, as well as education and public outreach, for the mission. NASA Goddard Space Flight Center NASA GSFC, Greenbelt, Md. manages the project and provided two of the science instruments for the mission. The University of California at Berkeley's Space Sciences Laboratory UCB/SSL provided science instruments for the mission. Lockheed Martin LM built the spacecraft and is responsible for mission operations. NASA's Jet Propulsion Laboratory NASA JPL in Pasadena, Calif., provides navigation support, Deep Space Network support, and Electra telecommunications relay hardware and operations. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Image credit: NASA
Relay Support for the Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.;
2013-01-01
The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.
A Mars Micro-Meteorological Station Mission
NASA Technical Reports Server (NTRS)
Merrihew, Steven C.; Haberle, Robert; Lemke, Lawrence G.
1995-01-01
The Mars Micro-Meteorological Station (Micro-Met) Mission is designed to provide the global surface pressure measurements required to help characterize the martian general circulation and climate system. Measurements of surface pressure distributed both spatially and temporally, coupled with simultaneous measurements from orbit, will enable the determination of the general circulation, structure and driving factors of the martian atmosphere as well as the seasonal CO2 cycle. The influence of these atmospheric factors will in turn provide insight into the overall martian climate system. With the science objective defined as the long term (at least one Mars year) globally distributed measurement of surface atmospheric pressure, a straightforward, near term and low cost network mission has been designed. The Micro-Met mission utilizes a unique silicon micro-machined pressure sensor coupled with a robust and lightweight surface station to deliver to Mars 16 Micro-Met stations via a Med-Lite launch vehicle. The battery powered Micro-Met surface stations are designed to autonomously measure, record and transmit the science data via a UHF relay satellite. Entry, descent and landing is provided by an aeroshell with a new lightweight ceramic thermal protection system, a parachute and an impact absorbing structure. The robust lander is capable of surviving the landing loads imposed by the high altitude landing sites required in a global network. By trading the ability to make many measurements at a single site for the ability to make a single measurement at several sites, the Micro-Met mission design satisfies the requirement for truly global meteorological science.
NASA Astrophysics Data System (ADS)
Foster, Jacob G.
This dissertation inserts a new view into an old problem in teacher education. The study explores the theory-practice gap, the large distance between what preservice science teachers experience in schools, are able to enact, and are told they should hold themselves to in their practice. It does so by narrowing the focus of analysis to a secondary science study group and examining how the facilitator uses sociocultural constructivism to promote discussion. The analysis surfaces key communicative moves made by the facilitator and preservice teachers that yield fruitful discussion of theory-practice relationships. Additionally, the study's use of discourse analysis as a methodology and intertextuality as a conceptual framework opens new directions for applied sociolinguistic research and scholarship in science teacher education. Findings from the study focus on what was discussed and how explorations of theory-practice relationships were facilitated. Preservice teachers in the study group engaged in meaningful conversations about constructivist theory and its application to their students and teaching of science. They discussed many science education topics such as planning science lessons that actively engage students, assessment of content understanding, and management of content-based activities. Discussions of broader science education goals, including implementation of inquiry or development of collaborative communities, were not promoted. Examination of the facilitation illuminates a number of strategies found to be helpful in supporting these explorations. This study shows that facilitation can successfully support preservice teachers to construct understanding of social constructivist assumptions underlying the National Science Education Standards (NSES), as well as a few components of the Standards themselves. The focus on the underlying assumptions suggests that science teacher education should focus on these so that preservice teachers can build a strong foundation from which to later implement broader science education reform efforts. The study group serves as a bridging structure between university courses and classroom experiences to support preservice teacher navigation of theory-practice relationships in the context of their classroom teaching. The study group contributes to helping preservice teachers navigate the theory-practice gap by complementing other teacher education structures to achieve this long-standing goal.
Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?
Langdon, Chris; Ekstrom, Julia A.; Cooley, Sarah R.; Suatoni, Lisa; Beck, Michael W.; Brander, Luke M.; Burke, Lauretta; Cinner, Josh E.; Doherty, Carolyn; Edwards, Peter E. T.; Gledhill, Dwight; Jiang, Li-Qing; van Hooidonk, Ruben J.; Teh, Louise; Waldbusser, George G.; Ritter, Jessica
2016-01-01
Reefs and People at Risk Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef ecosystems, and the people who depend upon them at risk from two key global environmental stresses: 1) elevated sea surface temperature (that can cause coral bleaching and related mortality), and 2) ocean acidification. These global stressors: cannot be avoided by local management, compound local stressors, and hasten the loss of ecosystem services. Impacts to people will be most grave where a) human dependence on coral reef ecosystems is high, b) sea surface temperature reaches critical levels soonest, and c) ocean acidification levels are most severe. Where these elements align, swift action will be needed to protect people’s lives and livelihoods, but such action must be informed by data and science. An Indicator Approach Designing policies to offset potential harm to coral reef ecosystems and people requires a better understanding of where CO2-related global environmental stresses could cause the most severe impacts. Mapping indicators has been proposed as a way of combining natural and social science data to identify policy actions even when the needed science is relatively nascent. To identify where people are at risk and where more science is needed, we map indicators of biological, physical and social science factors to understand how human dependence on coral reef ecosystems will be affected by globally-driven threats to corals expected in a high-CO2 world. Western Mexico, Micronesia, Indonesia and parts of Australia have high human dependence and will likely face severe combined threats. As a region, Southeast Asia is particularly at risk. Many of the countries most dependent upon coral reef ecosystems are places for which we have the least robust data on ocean acidification. These areas require new data and interdisciplinary scientific research to help coral reef-dependent human communities better prepare for a high CO2 world. PMID:27828972
Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?
Pendleton, Linwood; Comte, Adrien; Langdon, Chris; Ekstrom, Julia A; Cooley, Sarah R; Suatoni, Lisa; Beck, Michael W; Brander, Luke M; Burke, Lauretta; Cinner, Josh E; Doherty, Carolyn; Edwards, Peter E T; Gledhill, Dwight; Jiang, Li-Qing; van Hooidonk, Ruben J; Teh, Louise; Waldbusser, George G; Ritter, Jessica
2016-01-01
Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef ecosystems, and the people who depend upon them at risk from two key global environmental stresses: 1) elevated sea surface temperature (that can cause coral bleaching and related mortality), and 2) ocean acidification. These global stressors: cannot be avoided by local management, compound local stressors, and hasten the loss of ecosystem services. Impacts to people will be most grave where a) human dependence on coral reef ecosystems is high, b) sea surface temperature reaches critical levels soonest, and c) ocean acidification levels are most severe. Where these elements align, swift action will be needed to protect people's lives and livelihoods, but such action must be informed by data and science. Designing policies to offset potential harm to coral reef ecosystems and people requires a better understanding of where CO2-related global environmental stresses could cause the most severe impacts. Mapping indicators has been proposed as a way of combining natural and social science data to identify policy actions even when the needed science is relatively nascent. To identify where people are at risk and where more science is needed, we map indicators of biological, physical and social science factors to understand how human dependence on coral reef ecosystems will be affected by globally-driven threats to corals expected in a high-CO2 world. Western Mexico, Micronesia, Indonesia and parts of Australia have high human dependence and will likely face severe combined threats. As a region, Southeast Asia is particularly at risk. Many of the countries most dependent upon coral reef ecosystems are places for which we have the least robust data on ocean acidification. These areas require new data and interdisciplinary scientific research to help coral reef-dependent human communities better prepare for a high CO2 world.
New Interfacial Nanochemistry on Sensory Bioscaffold-Membranes of Nanobelts
NASA Astrophysics Data System (ADS)
Chen, Feng
Nanostructured bioscaffolds and biosensors are evolving as popular and powerful tools in life science and biotechnology, due to the possible control of their surface and structural properties at the nm-scale. Being seldom discussed in literature and long-underexploited in materials and biomedical sciences, development of nanofiber-based sensory bioscaffolds has great promises and grand challenges in finding an ideal platform for low-cost quantifications of biological and chemical species in real-time, label-free, and ultrasensitive fashion. In this study, titanate nanobelts were first of all synthesized, from hydrothermal reactions of a NaOH (or KOH solution) with TiO2 powder, to possess underexploited structure and surface vital to the rapid and label-free electrochemical detections of protein (cytochrome c) and neurotransmitter (dopamine). This work is based on a suite of new physical and chemical properties on the titanate nanobelt in water, including high surface area, zwitterionic surface, chemical- and photochemical-durability, cation-exchange and anion- and cation-sorption capacities, protein- and cell-compatibility, thermal-stability, and charge conductivity. The Fourier transform infrared (FTIR) was used for identifying any denaturing of the cytochrome c pre-immobilized on the titanate nanobelts. On that basis, the pheochromocytoma cells (PC-12 cell) were chosen to grow on the titanate nanobelts. These experiments prove that the sensory bioscaffolds of titanate nanobelt-membrane is a multiplex platform for developing new tools for energy, environmental and life sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willow, Soohaeng Yoo; Xantheas, Sotiris S.
The effect of the Hofmeister anion series on the structure and stability of proteins is often discussed using simple systems such as a water-vapor interface with the assumption that the vapor region mimics the hydrophobic surface. Microscopic theories suggest that the Hofmeister anion series is highly correlated with the different contributions of the various ions to the surface tension of such a water-vapor interface. Proteins, however, have both hydrophobic and hydrophilic regions rather than just a pure hydrophobic one. Using a solvated parallel β -sheet layer consisting of both hydrophobic and positively charged hydrophilic surfaces as a more realistic modelmore » to represent a protein surface, we investigated the interaction of such a system with hydrophilic-like (SO42-) and hydrophobic-like (ClO4-) anions via Born-Oppenheimer Molecular Dynamics (BOMD) simulations. We found that both the SO42- and ClO4- anions prefer to reside on the hydrophilic rather than on the hydrophobic surface of the parallel β -sheet layer. In addition, our simulations suggest that the ClO4- ions not only penetrate towards the peptide groups through the hydrophilic residues, but also allow water molecules to penetrate as well to form water-peptide hydrogen bonds, while the SO42- ions stabilize the interface of the water-hydrophilic surface. Our results render a plausible explanation of why hydrophobic-like Hofmeister anions act as protein denaturants. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
NASA Astrophysics Data System (ADS)
Mandock, R. L.
2008-12-01
An interactive instructional module has been developed to study energy balance at the earth's surface. The module uses a graphical interface to model each of the major energy components involved in the partitioning of energy at this surface: net radiation, sensible and latent heat fluxes, ground heat flux, heat storage, anthropogenic heat, and advective heat transport. The graphical interface consists of an energy-balance diagram composed of sky elements, a line or box representing the air or sea surface, and arrows which indicate magnitude and direction of each of the energy fluxes. In April 2005 an energy-balance project and laboratory assignment were developed for a core-curriculum earth science course at Clark Atlanta University. The energy-balance project analyzes surface weather data from an assigned station of the Georgia Automated Environmental Monitoring Network (AEMN). The first part of the project requires the student to print two observations of the "Current Conditions" web page for the assigned station: one between the hours of midnight and 5:00 a.m., and the other between the hours of 3:00- 5:00 p.m. A satellite image of the southeastern United States must accompany each of these printouts. The second part of the project can be completed only after the student has modeled the 4 environmental scenarios taught in the energy-balance laboratory assignment. The student uses the energy-balance model to determine the energy-flux components for each of the printed weather conditions at the assigned station. On successful completion of the project, the student has become familiar with: (1) how weather observations can be used to constrain parameters in a microclimate model, (2) one common type of error in measurement made by weather sensors, (3) some of the uses and limitations of environmental models, and (4) fundamentals of the distribution of energy at the earth's surface. The project and laboratory assignment tie together many of the earth science concepts taught in the course: geology (soils), oceanography (surface mixed layer), and atmospheric science (meteorology of the lowest part of the atmosphere). Details of the project and its impact on student assessment tests and surveys will be presented.
NASA Astrophysics Data System (ADS)
Toy, V. G.; Fagereng, A.; Kirkpatrick, J. D.; Remitti, F.; Rowe, C. D.; Ujiie, K.; Wolfson-Schwehr, M.
2014-12-01
Recovered plate boundary thrust material from the site of the 2011 Tohoku-Oki earthquake rupture contains both distributed and localized fabrics. We1 infer these reflect two end members of behavior, namely steady state creep of weak, velocity/strain-hardening materials versus episodic, seismic failure of strong, velocity/strain-weakening materials. Core and downhole observations and mechanical tests demonstrate the fault rock is primarily smectite and has very low frictional strength (μk~0.08) 2,3,4,5. Additional observations of the recovered core indicate microscale fabrics affect mechanical properties. The fault zone fabric is defined mostly by anastomosing dark surfaces surrounding phacoids. Phacoid size and intensity of dark surfaces vary, probably reflecting differences in total strain. Phacoids contain foliations at angles to their long axes and bounding surfaces. Remnant bedding can be recognized in places, based on variation in phyllosilicate colour or clastic:phyllosilicate ratio (although other colour variations result from alteration1). Anastomosing shear surfaces may coincide with bedding but also commonly truncate it, indicating little primary lithological/rheological control on fabric formation. However, in late mm-thickness, through going, more intensely sheared zones, lithologic contrast more strongly defines phacoids while dark seams may be absent. A transition from distributed shear in phyllosilicates to localized shear on dark surfaces requires local change in stress or strain rate. If the orientation of clay fabrics change due to folding ('turbulent' flow), then weak basal planes of phyllosilicates rotated into unfavourable orientations may act as 'stress risers' promoting localization around phacoids containing poorly oriented fabrics. This mechanism is indicated by the presence of the most folded layering in plate boundary core adjacent to the most distinct through-going surfaces1,2. Alternatively, locally well-oriented fabrics may preferentially shear, leaving surrounding rock as lower strain phacoids. Refs: 1: Kirkpatrick, et al. submitted. Tectonics. 2: Chester et al., 2013. Science 342, 1208-1212. 3: Fulton et al., 2013. Science 342, 1214-1217. 4: Lin et al. 2013 Science 339 (6120), 687-690. 5: Ujiie et al., 2013. Science 342, 1211-1214.
NASA Astrophysics Data System (ADS)
Hand, K. P.; Murray, A. E.; Garvin, J.; Horst, S.; Brinckerhoff, W.; Edgett, K.; Hoehler, T.; Russell, M.; Rhoden, A.; Yingst, R. A.; German, C.; Schmidt, B.; Paranicas, C.; Smith, D.; Willis, P.; Hayes, A.; Ehlmann, B.; Lunine, J.; Templeton, A.; Nealson, K.; Christner, B.; Cable, M.; Craft, K.; Pappalardo, R.; Hofmann, A.; Nordheim, T.; Phillips, C.
2018-06-01
The Europa Lander mission concept would address key questions regarding ice properties and surface activity, including characterizing any plume deposits, understanding local topography, searching for evidence of interactions with liquid water.
Polymerization of Fluoroalkyl Polyhedral Oligomeric Silsesquioxane (F-POSS) Macromers
2012-12-01
mm Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic...robust superhydrophobic /oleophobic/omniphobic surfaces • Via covalently attached F-POSS to substrate (surface, nanoparticle, polymer matrix) – Effects
Geologic Exploration Enabled by Optimized Science Operations on the Lunar Surface
NASA Astrophysics Data System (ADS)
Heldmann, J. L.; Lim, D. S. S.; Colaprete, A.; Garry, W. B.; Hughes, S. S.; Kobs Nawotniak, S.; Sehlke, A.; Neish, C.; Osinski, G. R.; Hodges, K.; Abercromby, A.; Cohen, B. A.; Cook, A.; Elphic, R.; Mallonee, H.; Matiella Novak, A.; Rader, E.; Sears, D.; Sears, H.; Finesse Team; Basalt Team
2017-10-01
We present detailed geologic field studies that can best be accomplished through in situ investigations on the Moon, and the associated recommendations for human and robotic mission capabilities and concepts of operations for lunar surface missions.
Atmospheric Science Data Center
2013-04-19
... the albedo. Bright surfaces have albedo near unity, and dark surfaces have albedo near zero. The DHR refers to the amount of spectral ... Atmospheric Science Data Center's MISR Level 3 Imagery web site . The Multi-angle Imaging SpectroRadiometer observes the daylit ...
ESA `Huygens and Mars Express' science highlights - call to press
NASA Astrophysics Data System (ADS)
2005-11-01
Almost one year has passed since ESA’s Huygens probe landed on Saturn’s largest moon, Titan. Today, a set of new wide-ranging results from the probe’s two-and-a-half hour descent and landing, part of the extraordinary NASA/ESA/ASI Cassini-Huygens mission to Saturn and its moons, is ready for release. At the same time, ESA’s Mars Express mission is continuing its investigations of Mars, painting a new picture of the 'red planet'. This includes the first ever probing below the surface of Mars, new geological clues with implications for the climate, newly-discovered surface and atmospheric features and, above all, traces of the presence of water on this world. These and other exciting findings from just one year of observations and data analysis - in the context of ESA’s overall scientific achievements - will be the focus of a press conference to be held at ESA Headquarters in Paris at 16:00 on 30 November 2005. Media interested in attending are invited to complete the following registration form. Press conference programme Space Science Highlights 2005 From Huygens to Mars Express 30 November 2005, 16:00 hrs Room 137, European Space Agency Headquarters 8-10 Rue Mario-Nikis, F-75738 Paris Cedex, France 15:30 - Registration 16:00 - A Year of European Space Science Successes Prof. David Southwood, ESA Director of Science Programme 16:10 - Highlights of the Huygens Mission Results Jean-Pierre Lebreton, ESA Huygens Project Scientist 16:15 - Robin Duttaroy, Co-Investigator, Doppler Wind Experiment, University of Bonn, Germany 16:20 - Marcello Fulchignoni , Principal Investigator, Huygens Atmospheric Structure Instrument, Université de Paris 7, France 16:25 - John Zarnecki, Principal Investigator, Surface Science Package, Open University, UK 16:30 - François Raulin, Co-Investigator, Gas Chromatograph Mass Spectrometer, Université de Paris 12 - Créteil, France 16:35 - Guy Israel, Principal Investigator, Aerosol Collector and Pyrolyser, Service d'Aéronomie/CNRS, France 16:40 - Bruno Bezard, Co-Investigator, Descent Imager/Spectral Radiometer, Laboratoire d'études spatiales et d'instrumentation en astrophysique, Observatoire de Paris, France 16:45 - Jonathan Lunine, Interdisciplinary Scientist, Titan surface-atmosphere interactions, LPL/U, Arizona (USA) and INAF/IFSI, Rome (Italy) 16:55 - Questions and AnswersV 17:05 - Coffee break 17:10 - Mars Express: results in the overall context of Martian science, Agustin Chicarro, ESA Mars Express Project Scientist 17:15 - Giovanni Picardi, MARSIS Radar Principal Investigator, University of Rome La Sapienza, Italy Jeffrey Plaut, MARSIS Co-Principal Investigator, NASA/JPL, USA 17:25 - Martin Pätzold, Mars Radio Science Experiment, Principal Investigator, Universität Koln, Cologne, Germany 17:30 - Jean-Pierre Bibring, OMEGA Principal Investigator, Institut d’Astrophysique spatiale, Orsay, France 17:40 - Gerhard Neukum, HRSC Camera Principal Investigator, Freie Universität Berlin, Germany 17:45 - Questions and Answers 17:55 - Interview opportunities
2012-10-01
Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic electrospun surfaces...door for use a building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic
U.S. Geological Survey quality-assurance plan for surface-water activities in Kansas, 2015
Painter, Colin C.; Loving, Brian L.
2015-01-01
This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kansas Water Science Center (KSWSC) of the U.S. Geological Survey (USGS) for activities related to the collection, processing, storage, analysis, and publication of surface-water data.
NASA Astrophysics Data System (ADS)
Costa, Dominique; Pradier, Claire-Marie; Tielens, Frederik; Savio, Letizia
2015-12-01
Understanding the bio-physical-chemical interactions at nanostructured biointerfaces and the assembly mechanisms of so-called hybrid nano-composites is nowadays a key issue for nanoscience in view of the many possible applications foreseen. The contribution of surface science in this field is noteworthy since, using a bottom-up approach, it allows the investigation of the fundamental processes at the basis of complex interfacial phenomena and thus it helps to unravel the elementary mechanisms governing them. Nowadays it is well demonstrated that a wide variety of different molecular assemblies can form upon adsorption of small biomolecules at surfaces. The geometry of such self-organized structures can often be tuned by a careful control of the experimental conditions during the deposition process. Indeed an impressive number of studies exists (both experimental and - to a lesser extent - theoretical), which demonstrates the ability of molecular self-assembly to create different structural motifs in a more or less predictable manner, by tuning the molecular building blocks as well as the metallic substrate. In this frame, amino acids and small peptides at surfaces are key, basic, systems to be studied. The amino acids structure is simple enough to serve as a model for the chemisorption of biofunctional molecules, but their adsorption at surfaces has applications in surface functionalization, in enantiospecific catalysis, biosensing, shape control of nanoparticles or in emerging fields such as "green" corrosion inhibition. In this paper we review the most recent advances in this field. We shall start from the adsorption of amino acids at metal surfaces and we will evolve then in the direction of more complex systems, in the light of the latest improvements of surface science techniques and of computational methods. On one side, we will focus on amino acids adsorption at oxide surfaces, on the other on peptide adsorption both at metal and oxide substrates. Particular attention will be drawn to the added value provided by the combination of several experimental surface science techniques and to the precious contribution of advanced complementary computational methods to resolve the details of systems of increased complexity. Finally, some hints on experiments performed in presence of water and then characterized in UHV and on the related theoretical work will be presented. This is a further step towards a better approximation of real biological systems. However, since the methods employed are often not typical of surface science, this topic is not developed in detail.
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu
2017-04-01
Hydrologic science has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, further progress has been hampered by problems posed by the presence of heterogeneity, especially subsurface heterogeneity, at all scales. The inability to measure or map subsurface heterogeneity everywhere prevented further development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of subsurface heterogeneity everywhere is a new earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological and pedological processes, each operating at a different rate, which have helped to shape the landscapes that we see in nature, including the heterogeneity below that we do not see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it, without loss of information, with the ecosystem function they perform. Guided by this new earth system science perspective, development of hydrologic science is now guided by altogether new questions and new approaches to address them, compared to the purely physical, fluid mechanics based approaches that we inherited from the past. In the emergent Anthropocene, the co-evolutionary view is expanded further to involve interactions and feedbacks with human-social processes as well. In this lecture, I will present key milestones in the transformation of hydrologic science from Engineering Hydrology to Earth System Science, and what this means for hydrologic observations, theory development and predictions.
Oceans in the Outer Solar System: Future Exploration of Europa, Titan, and Enceladus
NASA Astrophysics Data System (ADS)
Johnson, T.; Clark, K.; Cutts, J.; Lunine, J.; Pappalardo, R.; Reh, K.
Observational and theoretical evidence points to water-rich oceans or seas within several of the icy satellites of the outer planets, notably Europa and Enceladus, and hydrocarbon reservoirs within Titan. Here we report on concepts for future studies of these fascinating targets of high astrobiological relevance. Europa Exploration: Post-Galileo exploration of Europa presents several major technical challenges. We argue that four recent investments in technology and research allow a flagship mission class Europa exploration that relies on demonstrated technologies and achieves the high level science objectives. 1. Mass and Trip Time: Utilizing indirect Earth gravity assist, trajectories allows ˜2000 - 3000 kg dry mass, permitting ˜150 - 200 kg of science payload. 2. Radiation Tolerant Electronics: A significant program of radiation hard technology development has been done by NASA. The necessary radiation-tolerant elements are now ready for flight. 3. Science Mission: The science mission would last approximately two years, with a Jupiter system science phase of ˜1.5 yr and a 90 day nominal orbital mission at Europa, with significant probability of functioning much longer. 4. Planetary Protection: The ultimate fate of an orbiter will be impact with Europa. Planetary protection requirements will be met by radiation sterilization during the primary mission for most external and unshielded internal surfaces, combined with pre-launch sterilization of shielded components. We conclude that a flagship class Europa mission can now be developed relying on existing technologies, having significant scientific capability. Titan and Enceladus Exploration: Remarkable discoveries by the Cassini/Huygens related to hydrocarbons at Titan and water vapor geysering at Enceladus demand follow-up of these astrobiologically relevant worlds by future missions. An aerial platform capable of observing the surface of Titan from beneath the obscuring cloud cover and descending repeatedly to the surface, can offer a powerful scientific capability. Taking advantage of both the density and cold temperature of the atmosphere of Titan a hot-air balloon implementation provides long duration operation at a very modest cost in terms of energy input. A Saturn orbiter making repeated encounters of Titan and Enceladus in a so-called cycler orbit can carry out new science at Enceladus while also providing high bandwidth downlink communications for the aerial platform.
Quantification of chemical transport processes from the soil to surface runoff.
Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary
2013-01-01
There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
McManus, Jesse R.; Yu, Weiting; Salciccioli, Michael; Vlachos, Dionisios G.; Chen, Jingguang G.; Vohs, John M.
2012-12-01
Molecules derived from cellulosic biomass, such as glucose, represent an important renewable feedstock for the production of hydrogen and hydrocarbon-based fuels and chemicals. Development of efficient catalysts for their reformation into useful products is needed; however, this requires a detailed understanding of their adsorption and reaction on catalytically active transition metal surfaces. In this paper we demonstrate that the standard surface science techniques routinely used to characterize the reaction of small molecules on metals are also amenable for use in studying the adsorption and reaction of complex biomass-derivatives on single crystal metal surfaces. In particular, Temperature Programmed Desorption (TPD) and High Resolution Electron Energy Loss Spectroscopy (HREELS) combined with Density Functional Theory (DFT) calculations were used to elucidate the adsorption configuration of D-glucose and glycolaldehye on Pt(111). Both molecules were found to adsorb in an η1 aldehyde configuration partially validating the use of simple, functionally-equivalent model compounds for surface studies of cellulosic oxygenates.
Surface currents on the plasma-vacuum interface in MHD equilibria
NASA Astrophysics Data System (ADS)
Hanson, James D.
2016-10-01
The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the plasma-vacuum interface. While this current may be small in MHD equilibrium, this current may be readily computed in terms of a magnetic potential in both the interior and exterior regions. Examples of the surface current for VMEC equilibria will be shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-03ER54692.
Electrostatic cloaking of surface structure for dynamic wetting
NASA Astrophysics Data System (ADS)
Shiomi, Junichiro; Nita, Satoshi; Do-Quang, Minh; Wang, Jiayu; Chen, Yu-Chung; Suzuki, Yuji; Amberg, Gustav
2017-11-01
Dynamic wetting problems are fundamental to the understanding of the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness can be important. In addition, as surfaces may often be naturally charged, or electric fields are used to manipulate fluids, electric effects are crucial components that influence wetting phenomena. Here we investigate the interplay between electric forces and surface structures in dynamic wetting. While surface microstructures can significantly hinder the spreading, we find that the electrostatics can ``cloak'' the microstructures, i.e. deactivate the hindering. We identify the physics in terms of reduction in contact-line friction, which makes the dynamic wetting inertial force dominant and insensitive to the substrate properties. This work was financially supported in part by, the Japan Society for the Promotion of Science, Swedish Governmental Agency for Innovation Systems, and the Japan Science and Technology Agency.
Nano Entry System for CubeSat-Class Payloads Project (Nano-ADEPT)
NASA Technical Reports Server (NTRS)
Smith, Brandon Patrick
2014-01-01
This project is developing a mechanically deployed system through a mission application study, deployment/ejection testing, and wind tunnel testing. Adaptable Deployable Entry and Placement Technology (ADEPT) has been under development at NASA since 2011. Nano-ADEPT is the application of this revolutionary entry technology for small spacecraft. The unique capability of ADEPT for small science payloads comes from its ability to stow within a slender volume and deploy passively to achieve a mass-efficient drag surface with a high heat rate capability. Near-term applications for this technology include return of small science payloads or CubeSat technology from Low Earth Orbit (LEO) and delivery of secondary payloads to the surface of Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stair, Peter C.
presentations on chemistry at solid and liquid surfaces of relevance to catalysis, synthesis, photochemistry, environmental science, and tribology. Topics include: Fundamental Surface Chemistry; Catalysis; Solid Liquid and Aerosol Interfaces; Surface Photochemistry; Synthesis of Surfaces; Environmental Interfaces; Hot Topics in Surface Chemical Reactions; Tribology; Gas-Surface Scattering and Reactions; Novel Materials and Environments.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Blaisdell, John; Iredell, Lena
2011-01-01
The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.
Use of radiation in biomaterials science
NASA Astrophysics Data System (ADS)
Benson, Roberto S.
2002-05-01
Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.
CAN-DOO: The Climate Action Network through Direct Observations and Outreach
NASA Astrophysics Data System (ADS)
Taubman, B.; Sherman, J. P.; Perry, L. B.; Markham, J.; Kelly, G.
2011-12-01
The urgency of climate change demands a greater understanding of our climate system, not only by the leaders of today, but by the scientists, policy makers, and citizens of tomorrow. Unfortunately, a large segment of the population currently possesses inadequate knowledge of climate science. In direct response to a need for greater scientific literacy with respect to climate science, researchers from Appalachian State University's Appalachian Atmospheric Interdisciplinary Research (AppalAIR) group, with support from NASA, have developed CAN-DOO: the Climate Action Network through Direct Observations and Outreach. CAN-DOO addresses climate science literacy by 1) Developing the infrastructure for sustaining and expanding public outreach through long-term climate measurements capable of complementing existing NASA measurements, 2) Enhancing public awareness of climate science and NASA's role in advancing our understanding of the Earth System, and 3) Introducing Science, Technology, Engineering, and Mathematics principles to homeschooled, public school, and Appalachian State University students through applied climate science activities. Project partners include the Grandfather Mountain Stewardship Foundation, Pisgah Astronomical Research Institute, and local elementary schools. In partnership with Grandfather Mountain, climate science awareness is promoted through citizen science activities, interactive public displays, and staff training. CAN-DOO engages students by involving them in the entire scientific investigative process as applied to climate science. We introduce local elementary and middle school students, homeschooled students throughout North Carolina, and undergraduate students in a new Global Climate Change course and select other courses at Appalachian State University to instrument assembly, measurement techniques, data collection, hypothesis testing, and drawing conclusions. Results are placed in the proper context via comparisons with other student data products, local research-grade measurements, and NASA measurements. Several educational modules have been developed that address specific topics in climate science. The modules are scalable and have been successfully implemented at levels ranging from 2nd grade through first-year graduate as well as with citizen science groups. They also can be applied in user-desired segments to a variety of Earth Science units. In this paper, we will introduce the project activities and present results from the first year of observations and outreach, with a special emphasis on two of the developed modules, the surface energy balance and aerosol optical depth module.
NASA Astrophysics Data System (ADS)
Munteanu, Daniel
2018-04-01
The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).
2017-04-01
Calendar year (January 1 through December 31) DO Dissolved oxygen ELWS Water surface elevation ERDC Engineer Research and Development Center ISS...Dorothy H. Tillman, and David L. Smith April 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research ...military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies
A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Davis, M. H.
1989-01-01
A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.
NASA Technical Reports Server (NTRS)
Beaty, D. W.; Miller, S. L.; Bada, J. L.; Bearman, G. H.; Black, P. B.; Bruno, R. J.; Carsey, F. D.; Conrad, P. G.; Daly, M.; Fisher, D.
2003-01-01
In early 2003, the Mars Icy Sample Team (MIST) was formed to address several questions related to the acquisition and analysis of ice-bearing samples on the surface of Mars by a robotic mission. These questions were specifically framed in the context of planning for the 2009 Mars Science Laboratory (MSL) lander, but the answers will also also have value in planning other future landed investigations.
NASA Astrophysics Data System (ADS)
Hao, Hui-Ming; Liu, Yao-Yao; Zhang, Ping; Cai, Ming-Lei; Wang, Xiao-Yan; Zhu, Ji-Liang; Ye, Wen-Jiang
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087 and 11504080), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2017202004), the Research Project of the Education Department of Hebei Province, China (Grant No. QN2014130), the Key Subject Construction Project of Hebei Provincial University, and the Undergraduate Innovation and Entrepreneurship Training Program, China (Grant No. 201610080016).
Picosecond Laser Pulse Interactions with Metallic and Semiconducting Surfaces
1990-01-31
Few Picoseconds," Nonlinear Opics and Ultrafast Phenomena, eds. R.R. Alfano and L.J. Rothberg, (Nova Publishers, NY 1990). J.K. Wang, P. Saeta, M...Etching," Materials Science and Engineering 97:325-328 (1988). Nonlinear Opics & Ultrafast Phenomena Eds. R.R. Alfano and L.J. Rothberg Publ. Nova, NY...Progress in Materials Science, ed. by J.W. Christian , P. Haasen and T.B. Massalski, Chalmers Anniversay Volume, 269, Pergamon (1981). 13. F. Spaepen
2006-10-01
Engineering) Campbell D. Carter and Jeffrey M. Donbar (Aerospace Propulsion Division, Propulsion Sciences Branch (AFRL/ PRAS )) 5f. WORK UNIT NUMBER...Sciences Branch (AFRL/ PRAS ) Propulsion Directorate Air Force Research Laboratory, Air Force Materiel Command Wright-Patterson AFB, OH 45433-7251 Uni. of...M. Donbar b a Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA b Air Force Research Laboratory AFRL/ PRAS , Wright
A Deep Space Network Portable Radio Science Receiver
NASA Technical Reports Server (NTRS)
Jongeling, Andre P.; Sigman, Elliott H.; Chandra, Kumar; Trinh, Joseph T.; Navarro, Robert; Rogstad, Stephen P.; Goodhart, Charles E.; Proctor, Robert C.; Finley, Susan G.; White, Leslie A.
2009-01-01
The Radio Science Receiver (RSR) is an open-loop receiver installed in NASA s Deep Space Network (DSN), which digitally filters and records intermediate-frequency (IF) analog signals. The RSR is an important tool for the Cassini Project, which uses it to measure perturbations of the radio-frequency wave as it travels between the spacecraft and the ground stations, allowing highly detailed study of the composition of the rings, atmosphere, and surface of Saturn and its satellites.
Virtual special issue on catalysis at the U.S. Department of Energy's National Laboratories
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; ...
2016-04-21
Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.
JSC Director's Discretionary Fund Program
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M. (Editor)
1991-01-01
The JSC Center Director's Discretionary Fund Program 1991 Annual Report provides a brief status of the projects undertaken during the 1991 fiscal year. For this year, four space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, lunar surface habitat, and in situ resource utilization. In this way, a viable program of life sciences, space sciences, and engineering research has been maintained. For additional information on any single project, the individual investigator should be contacted.
Titan Science with the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Nixon, Conor A.; Achterberg, Richard; Adamkovics, Mate; Bezard, Bruno; Bjoraker, Gordon; Cornet, Thomas; Hayes, Alexander; Lellouch, Emmanuel; Lemmon, Mark; Lopez Puertas, Manuel; Rodriguez, Sebastien; Sotin, Christophe; Teanby, Nicholas; Turtle, Elizabeth; West, Robert
2015-11-01
The James Webb Space Telescope (JWST), scheduled for launch in 2018, is an ambitious next-generation large-aperture (6.5 m) space observatory focused on pushing the boundaries of infrared astronomy (0.6-28.0 μm). This long-wavelength focus gives it very substantial potential for solar system science, since the thermal emissions from the surfaces and atmospheres of many planets, moons and small bodies peak in this part of the spectrum. Here we report the findings of a task team convened to examine the potential for Titan science using JWST. These can be divided into five broad areas: (i) the surface, especially the rotational lightcurve; (ii) clouds in the lower atmosphere from direct imaging and near-IR spectroscopy; (iii) composition of the lower atmosphere, especially methane relative humidity; (iv) composition of the middle atmosphere, including thermal and fluorescent emissions from gases; (v) hazes in the middle atmosphere, including seasonal changes in hemispheric contrast. The capability of the major JWST instruments in each area is considered, and limitations such as potential saturation is noted and mitigation strategies (such as sub-arraying) discussed. Overall we find that JWST can make significant contributions to Titan science in many areas, not least in temporal monitoring of seasonal change after the end of the Cassini mission in 2017, in partnership with other next-generation observing facilities (TMT, GMT, EELT, ALMA).
The Sensor Management for Applied Research Technologies (SMART) Project
NASA Technical Reports Server (NTRS)
Goodman, Michael; Jedlovec, Gary; Conover, Helen; Botts, Mike; Robin, Alex; Blakeslee, Richard; Hood, Robbie; Ingenthron, Susan; Li, Xiang; Maskey, Manil;
2007-01-01
NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output.
Kant and the scientific study of consciousness.
Sturm, Thomas; Wunderlich, Falk
2010-01-01
We argue that Kant's views about consciousness, the mind-body problem and the status of psychology as a science all differ drastically from the way in which these topics are conjoined in present debates about the prominent idea of a science of consciousness. Kant never used the concept of consciousness in the now dominant sense of phenomenal qualia; his discussions of the mind-body problem center not on the reducibility of mental properties but of substances; and his views about the possibility of psychology as a science did not employ the requirement of a mechanistic explanation, but of a quantification of phenomena. This shows strikingly how deeply philosophical problems and conceptions can change even if they look similar on the surface.
Perspectives of hyperpolarized noble gas MRI beyond 3He
Lilburn, David M.L.; Pavlovskaya, Galina E.; Meersmann, Thomas
2013-01-01
Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed. PMID:23290627
Strang, David; Siler, Kyle
2017-08-01
This paper analyzes the surface structure of research articles published in Administrative Science Quarterly between 1956 and 2008. The period is marked by a shift from essays that interweave theory, methods and results to experimental reports that separate them. There is dramatic growth in the size of theory, methods and discussion sections, accompanied by a shrinking results section. Bibliographic references and hypotheses expand in number and become concentrated in theory sections. Article structure varies primarily with historical time and also with research design (broadly, quantitative vs. qualitative) and the author's background. We link trends in article structure to the disciplinary development of organization studies and consider its distinctive trajectory relative to physical science.
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J. (Editor); Voels, Stephen A. (Editor)
2012-01-01
Topics covered include: Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses; Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52"); My IGY in Antarctica; Short Trips and a Traverse; Geologic Traverse Planning for Apollo Missions; Desert Research and Technology Studies (DRATS) Traverse Planning; Science Traverses in the Canadian High Arctic; NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier; A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface; and The Princess Elisabeth Station.
Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)
NASA Technical Reports Server (NTRS)
Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas
2016-01-01
The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying FT and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems. There are no L1 science requirements for the L4_C product; however self-imposed requirements have been established focusing on NEE as the primary product field for validation, and on demonstrating L4_C accuracy and success in meeting product science requirements (Jackson et al. 2012). The other L4_C product fields also have strong utility for carbon science applications; however, analysis of these other fields is considered secondary relative to primary validation activities focusing on NEE. The L4_C targeted accuracy requirements are to meet or exceed a mean unbiased accuracy (ubRMSE) for NEE of 1.6 g C/sq m/d or 30 g C/sq m/yr, emphasizing northern (45N) boreal and arctic ecosystems; this is similar to the estimated accuracy level of in situ tower eddy covariance measurement-based observations (Baldocchi 2008).
3D Visualization for Phoenix Mars Lander Science Operations
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Keely, Leslie; Lees, David; Stoker, Carol
2012-01-01
Planetary surface exploration missions present considerable operational challenges in the form of substantial communication delays, limited communication windows, and limited communication bandwidth. A 3D visualization software was developed and delivered to the 2008 Phoenix Mars Lander (PML) mission. The components of the system include an interactive 3D visualization environment called Mercator, terrain reconstruction software called the Ames Stereo Pipeline, and a server providing distributed access to terrain models. The software was successfully utilized during the mission for science analysis, site understanding, and science operations activity planning. A terrain server was implemented that provided distribution of terrain models from a central repository to clients running the Mercator software. The Ames Stereo Pipeline generates accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. These terrain models can then be visualized within the Mercator environment. The central cross-cutting goal for these tools is to provide an easy-to-use, high-quality, full-featured visualization environment that enhances the mission science team s ability to develop low-risk productive science activity plans. In addition, for the Mercator and Viz visualization environments, extensibility and adaptability to different missions and application areas are key design goals.
The Deep Underground Science and Engineering Laboratory at Homestake
NASA Astrophysics Data System (ADS)
Lesko, Kevin T.
2008-11-01
The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.
Stieglitz, T
2007-01-01
Today applications of neural prostheses that successfully help patients to increase their activities of daily living and participate in social life again are quite simple implants that yield definite tissue response and are well recognized as foreign body. Latest developments in genetic engineering, nanotechnologies and materials sciences have paved the way to new scenarios towards highly complex systems to interface the human nervous system. Combinations of neural cells with microimplants promise stable biohybrid interfaces. Nanotechnology opens the door to macromolecular landscapes on implants that mimic the biologic topology and surface interaction of biologic cells. Computer sciences dream of technical cognitive systems that act and react due to knowledge-based conclusion mechanisms to a changing or adaptive environment. Different sciences start to interact and discuss the synergies when methods and paradigms from biology, computer sciences and engineering, neurosciences, psychology will be combined. They envision the era of "converging technologies" to completely change the understanding of science and postulate a new vision of humans. In this chapter, these research lines will be discussed on some examples as well as the societal implications and ethical questions that arise from these new opportunities.
NASA Astrophysics Data System (ADS)
Davis, Kathleen S.
2002-02-01
This article reports on a study that examined the obstacles women science educators faced as they facilitated Explorers, an after-school science program for girls aged 6-12. The program aimed to provide girls with opportunities to legitimately participate in science activity. Explorers was one of several programs offered by the Foothills City Youth Club (FCYC) in a racially diverse urban center in the Southwestern United States. The youth club was meant to serve the needs of children and youth in that community. Through analysis of field notes, interviews, and documents, the social structures and forces that impeded the implementation of practices and the acquisition of capital are described. They include: (a) inadequate funding and community support, (b) conflicting beliefs between FCYC leaders and community leaders about the needs of boys and girls, and 3) inequitable decision-making structures of the community. Underlying beliefs, structures, and practices within the community weakened the FCYC in many ways, interrupted the leadership's attempts to meet their goals as they worked with the community's children, and brought to the surface issues of bias and oppression.
NASA Technical Reports Server (NTRS)
Lindsay, Francis
2017-01-01
NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.
1998-02-27
NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
1999-05-26
NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Susskind, J.
1984-01-01
At the Goddard Laboratory for Atmospheric Sciences (GLAS) a physically based satellite temperature sounding retrieval system, involving the simultaneous analysis of HIRS2 and MSU sounding data, was developed for determining atmospheric and surface conditions which are consistent with the observed radiances. In addition to determining accurate atmospheric temperature profiles even in the presence of cloud contamination, the system provides global estimates of day and night sea or land surface temperatures, snow and ice cover, and parameters related to cloud cover. Details of the system are described elsewhere. A brief overview of the system is presented, as well as recent improvements and previously unpublished results, relating to the sea-surface intercomparison workshop, the diurnal variation of ground temperatures, and forecast impact tests.
NASA Technical Reports Server (NTRS)
Yingst, R. A.; Cohen, B. A.; Ming, D. W.; Eppler, D. B.
2011-01-01
NASA's Desert Research and Technology Studies (D-RATS) field test is one of several analog tests that NASA conducts each year to combine operations development, technology advances and science under planetary surface conditions. The D-RATS focus is testing preliminary operational concepts for extravehicular activity (EVA) systems in the field using simulated surface operations and EVA hardware and procedures. For 2010 hardware included the Space Exploration Vehicles, Habitat Demonstration Units, Tri-ATHLETE, and a suite of new geology sample collection tools, including a self-contained GeoLab glove box for conducting in-field analysis of various collected rock samples. The D-RATS activities develop technical skills and experience for the mission planners, engineers, scientists, technicians, and astronauts responsible for realizing the goals of exploring planetary surfaces.
Life Sciences Implications of Lunar Surface Operations
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.
2010-01-01
The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.
Publications of the Western Earth Surface Processes Team 2006
Powell, Charles L.; Stone, Paul
2007-01-01
The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2006 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. This compilation gives the bibliographical citations for 123 new publications, most of which are available online using the hyperlinks provided.
Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors
NASA Astrophysics Data System (ADS)
Kennedy, Daniel; Jaworski, Michael
2014-10-01
Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).
(abstract) Science-Project Interaction in the Low-Cost Mission
NASA Technical Reports Server (NTRS)
Wall, Stephen D.
1994-01-01
Large, complex, and highly optimized missions have performed most of the preliminary reconnaisance of the solar system. As a result we have now mapped significant fractions of its total surface (or surface-equivalent) area. Now, however, scientific exploration of the solar system is undergoing a major change in scale, and existing missions find it necessary to limit costs while fulfilling existing goals. In the future, NASA's Discovery program will continue the reconnaisance, exploration, and diagnostic phases of planetary research using lower cost missions, which will include lower cost mission operations systems (MOS). Historically, one of the more expensive functions of MOS has been its interaction with the science community. Traditional MOS elements that this interaction have embraced include mission planning, science (and engineering) event conflict resolution, sequence optimization and integration, data production (e.g., assembly, enhancement, quality assurance, documentation, archive), and other science support services. In the past, the payoff from these efforts has been that use of mission resources has been highly optimized, constraining resources have been generally completely consumed, and data products have been accurate and well documented. But because these functions are expensive we are now challenged to reduce their cost while preserving the benefits. In this paper, we will consider ways of revising the traditional MOS approach that might save project resources while retaining a high degree of service to the Projects' customers. Pre-launch, science interaction can be made simplier by limiting numbers of instruments and by providing greater redundancy in mission plans. Post launch, possibilities include prioritizing data collection into a few categories, easing requirements on real-time of quick-look data delivery, and closer integration of scientists into the mission operation.
Neptune and Triton: A Study in Future Exploration
NASA Astrophysics Data System (ADS)
Day, M. D.; Malaska, M. J.; Hosseini, S.; Mcgranaghan, R.; Fernandes, P. A.; Fougere, N.; Clegg, R. N.; Scully, J.; Alibay, F.; Ries, P.; Craig, P. L.; Hutchins, M. L.; Leonard, J.; Uckert, K.; Patthoff, A.; Girazian, Z.
2013-12-01
Neptune provides a unique natural laboratory for studying the dynamics of ice giants. Last visited by Voyager 2 in 1989, Neptune and its moon Triton hold important clues to the evolution of the solar system. The Voyager 2 flyby revealed Neptune to be a dynamic world with large storms, unparalleled wind speeds, and an unusual magnetic field. Triton, Neptune's largest satellite, is believed to be a captured Kuiper Belt Object with a thin atmosphere and possible sub-surface ocean. Further study of the farthest planet in our solar system could offer new insights into the dynamics of ice-giant exoplanets, and help us understand their complex atmospheres. The diverse science questions associated with Neptune and Triton motivate the complex and exciting mission proposed in this study. The proposed mission follows the guidelines of the 2013-2022 Planetary Science Decadal Survey, and optimizes the number of high priority science goals achieved, while still maintaining low mission costs. High priority science goals include understanding the structure, composition, and dynamics of Neptune's atmosphere and magnetosphere, as well as analyzing the surface of Triton. With a budget of $1.5 billion, the mission hosts an atmospheric probe and suite of instruments equipped with technologies significantly more advanced than those carried by Voyager 2. Additionally, the mission offers improved spatial coverage and higher resolution measurements than any previously achieved at Neptune. The proposed spacecraft would complete an orbital tour of Neptune and execute several close flybys of Triton. Further study of Neptune and Triton will provide exciting insights into what lies on the edge of our solar system and beyond. This study was prepared in conjunction with Jet Propulsion Laboratory's 2013 Planetary Science Summer School.
A Cabled, High Bandwidth Instrument Platform for Continuous Scanning of the Upper Ocean Water Column
NASA Astrophysics Data System (ADS)
McRae, E.; Delaney, J. R.; Kelly, D.; Daly, K. L.; Luther, D. S.; Harkins, G.; Harrington, M.; McGuire, C.; Tilley, J.; Dosher, J.; Waite, P.; Cram, G.; Kawka, O. E.
2016-02-01
The Cabled Array portion of the National Science Foundation funded Ocean Observatories Initiative is a large scale, high bandwidth and high power subsea science network designed by the University of Washington Applied Physics Laboratory. Part of that system is a set of winched profilers which continuously scan the upper 200m of the ocean at their deployment sites. The custom built profilers leverage the Cabled Array's technology for interfacing collections of science instruments and add the ability to run predefined missions and to switch missions or mission parameters on the fly via command from shore. The profilers were designed to operate continuously for up to two years after deployment after which certain wearing components must be replaced. The data from the profiler's science and engineering sensors are streamed to shore via the seafloor network in real time. Data channel capacity from the profilers exceeds 40 Mbps. For profiler safety, mission execution is controlled within the platform. Inputs such as 3D gyro, pressure depth and deployed cable calculations are monitored to assure safe operation during any sea state. The profilers never surface but are designed to approach within 5m of the surface if conditions allow. Substantial engineering effort was focused on reliable cable handling under all ocean conditions. The profilers are currently operated from subsea moorings which also contain sets of fixed science and engineering sensors. The profilers and their associated mooring instrument assemblies are designed for rapid replacement using ROVs. We have operated this system for two years, including one annual maintenance turn and information relative to that experience will be included in the paper.[Image Caption] Cabled Array Shallow Profiler shown in its parking position.
2005-01-01
Surface Tasks ................................................................................................... 250 Goali : Creep and Microstructural...SURFACE TASKS Morris Driels, Professor Department of Mechanical Engineering Sponsor: U.S. Army Materiel Systems Analysis Activity GOALI : CREEP AND...Professor Department of Mechanical Engineering Sponsor: National Science Foundation SUMMARY: This GOALI (Grant Opportunities for Academic Liaison
MISR Science Data Validation Plan Summary Charts
NASA Technical Reports Server (NTRS)
Conel, J.; Ledeboer, W.; Ackerman, T.; Marchand, R.; Clothiaux, E.
2000-01-01
The purpose of the MISR experiment is to acquire systematic multi-angle imagery for global monitoring over a multi-year period of top-of-atmosphere and surface albedos and to measure the shortwave radiative properties of aerosols, clouds, and surface scenes.
The role of exogenic factors in the formation of the lunar surface
NASA Technical Reports Server (NTRS)
Florenskiy, K. P.; Bazilevskiy, A. T.; Ivanov, A. V.
1977-01-01
The formation of the surface of planetary bodies is determined by the interaction of endogenic and exogenic forces. Clarification of the mutual role of these forces is one of the most important trends in the geological sciences.
Increased Science Instrumentation Funding Strengthens Mars Program
NASA Technical Reports Server (NTRS)
Graham, Lee D.; Graff, T. G.
2012-01-01
As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.
NASA Technical Reports Server (NTRS)
Teng, William; Rui, Hualan; Strub, Richard; Vollmer, Bruce
2016-01-01
A long-standing "Digital Divide" in data representation exists between the preferred way of data access by the hydrology community and the common way of data archival by earth science data centers. Typically, in hydrology, earth surface features are expressed as discrete spatial objects (e.g., watersheds), and time-varying data are contained in associated time series. Data in earth science archives, although stored as discrete values (of satellite swath pixels or geographical grids), represent continuous spatial fields, one file per time step. This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. and NASA earth science data systems. In essence, the way data are archived is conceptually orthogonal to the desired method of access. Our recent work has shown an optimal method of bridging the Divide, by enabling operational access to long-time series (e.g., 36 years of hourly data) of selected NASA datasets. These time series, which we have termed "data rods," are pre-generated or generated on-the-fly. This optimal solution was arrived at after extensive investigations of various approaches, including one based on "data curtains." The on-the-fly generation of data rods uses "data cubes," NASA Giovanni, and parallel processing. The optimal reorganization of NASA earth science data has significantly enhanced the access to and use of the data for the hydrology user community.
The Fluid Mechanics of the Bible: Miracles Explainable by Christian Science?
NASA Astrophysics Data System (ADS)
Lang, Amy
2015-11-01
The Bible is full of accounts clearly in violation of our scientific understanding of fluid mechanics. Examples include the floating axe head, Jesus walking on the water and immediately calming a storm. ``Jesus of Nazareth was the most scientific man that ever trod the globe. He plunged beneath the material surface of things, and found the spiritual cause,'' wrote Mary Baker Eddy (1821-1910), the founder of a now well-established religion known as Christian Science, in her seminal work Science & Health with Key to the Scriptures. She asserted that Jesus' miracles were in accord with the, ``Science of God's unchangeable law.'' She also proclaimed that matter is a derivative of consciousness. Independently with the discovery of quantum mechanics, physicists such as Max Planck and Sir James Jeans began to make similar statements (``The Mental Universe'', Nature, 2005). More recently, Max Tegmark (MIT) theorized that consciousness is a state of matter (New Scientist, April 2014). Using a paradigm shift from matter to consciousness as the primary substance, one can scientifically explain how a mental activity (i.e. prayer) could influence the physical. Since this conference is next door to the original church of Christian Science (Const. 1894), this talk will discuss various fluid-mechanic miracles in the Bible and provide an explanation based on divine metaphysics while providing an overview of scientific Christianity and its unifying influence to the fields of science, theology and medicine.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Astrophysics Data System (ADS)
Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team
2011-01-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli;
2016-01-01
In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.
Integrated Instrument Simulator Suites for Earth Science
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.;
2012-01-01
The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.
NASA Astrophysics Data System (ADS)
Appel, J. K.; Köehler, J.; Guo, J.; Ehresmann, B.; Zeitlin, C.; Matthiä, D.; Lohf, H.; Wimmer-Schweingruber, R. F.; Hassler, D.; Brinza, D. E.; Böhm, E.; Böttcher, S.; Martin, C.; Burmeister, S.; Reitz, G.; Rafkin, S.; Posner, A.; Peterson, J.; Weigle, G.
2018-01-01
The Mars Science Laboratory rover Curiosity, operating on the surface of Mars, is exposed to radiation fluxes from above and below. Galactic Cosmic Rays travel through the Martian atmosphere, producing a modified spectrum consisting of both primary and secondary particles at ground level. These particles produce an upward directed secondary particle spectrum as they interact with the Martian soil. Here we develop a method to distinguish the upward and downward directed particle fluxes in the Radiation Assessment Detector (RAD) instrument, verify it using data taken during the cruise to Mars, and apply it to data taken on the Martian surface. We use a combination of Geant4 and Planetocosmics modeling to find discrimination criteria for the flux directions. After developing models of the cruise phase and surface shielding conditions, we compare model-predicted values for the ratio of upward to downward flux with those found in RAD observation data. Given the quality of available information on Mars Science Laboratory spacecraft and rover composition, we find generally reasonable agreement between our models and RAD observation data. This demonstrates the feasibility of the method developed and tested here. We additionally note that the method can also be used to extend the measurement range and capabilities of the RAD instrument to higher energies.
NASA Technical Reports Server (NTRS)
Wells, W. C.
1978-01-01
Various science disciplines were examined to determine where and when it is appropriate to include their objectives in the planning of planetary missions. The disciplines considered are solar astronomy, stellar and galactic astronomy, solar physics, cosmology and gravitational physics, the geosciences and the applied sciences. For each discipline, science objectives are identified which could provide a multiple discipline opportunity utilizing either a single spacecraft or two spacecraft delivered by a single launch vehicle. Opportunities using a common engineering system are also considered. The most promising opportunities identified include observations of solar images and relativistic effects using the Mercury orbiter; collection of samples exposed to solar radiation using the Mars surface sample return; studies of interstellar neutral H and He, magnetic fields, cosmic rays, and solar physics during Pluto or Neptune flybys; using the Mars orbiter to obtain solar images from 0.2 AU synchronous or from 90 deg orbit; and the study of the structure and composition of the atmosphere using atmospheric probes and remotely piloted vehicles.
NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow
NASA Technical Reports Server (NTRS)
Ianson, Eric E.
2016-01-01
NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, Linda
The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approachmore » that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.« less
Basic Science Considerations in Primary Total Hip Replacement Arthroplasty
Mirza, Saqeb B; Dunlop, Douglas G; Panesar, Sukhmeet S; Naqvi, Syed G; Gangoo, Shafat; Salih, Saif
2010-01-01
Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement. PMID:20582240