Sample records for science uniquely enabled

  1. NASA SMD STEM Activation: Enabling NASA Science Experts and Content into the Learning Environment

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Erickson, Kristen

    2018-01-01

    The NASA Science Mission Directorate (SMD) restructured its efforts to enhance learning in science, technology, engineering, and mathematics (STEM) content areas through a cooperative agreement notice issued in 2015. This effort resulted in the competitive selection of 27 organizations to implement a strategic approach that leverages SMD’s unique assets. Three of these are exclusively directed towards Astrophysics. These unique assets include SMD’s science and engineering content and Science Discipline Subject Matter Experts. Awardees began their work during 2016 and span all areas of Earth and space science and the audiences NASA SMD intends to reach. The goal of the restructured STEM Activation program is to further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages. The objectives are to enable STEM education, improve US scientific literacy, advance national educational goals, and leverage efforts through partnerships. This presentation will provide an overview of the NASA SMD STEM Activation landscape and its commitment to meeting user needs.

  2. Heliophysics Science and the Moon: Potential Solar and Space Physics Science for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This report addresses both these features new science enabled by NASAs exploration initiative and enabling science that is critical to ensuring a safe return to the Moon and onward to Mars. The areas of interest are structured into four main themes: Theme 1: Heliophysics Science of the Moon Studies of the Moons unique magnetodynamic plasma environment. Theme 2: Space Weather, Safeguarding the Journey Studies aimed at developing a predictive capability for space weather hazards. Theme 3: The Moon as a Historical Record Studies of the variation of the lunar regolith to uncover the history of the Sun, solar system, local interstellar medium, galaxy, and universe. Theme 4: The Moon as a Heliophysics Science Platform Using the unique environment of the lunar surface as a platform to provide observations beneficial to advancing heliophysics science.

  3. Enabling Global Lunar Sample Return and Life-Detection Studies Using a Deep-Space Gateway

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.; Eigenbrode, J. A.; Young, K. E.; Bleacher, J. E.; Trainer, M. E.

    2018-02-01

    The Deep Space Gateway could uniquely enable a lunar robotic sampling campaign that would provide incredible science return as well as feed forward to Mars and Europa by testing instrument sterility and ability to distinguish biogenic signals.

  4. Science 25. Curriculum Guide. Revised.

    ERIC Educational Resources Information Center

    Northwest Territories Dept. of Education, Yellowknife.

    This science curriculum is an activity-oriented program in which an attempt has been made to provide sufficient information for non-science specialists to enable them to offer an effective course at the grades 10 and 11 levels. This curriculum offers a solution to the unique needs of life in the Canadian Northwest Territories. The role of…

  5. Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-01-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.

  7. Volga Delta

    Atmospheric Science Data Center

    2013-04-17

    ... oceans has enabled the preservation of several unique animal and plant species. The Volga provides most of the Caspian's fresh water ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  8. General Astrophysics with the HabEx Workhorse Camera

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Krause, Oliver; Martin, Stefan; Scowen, Paul; Somerville, Rachel; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) concept has been designed to enable an extensive suite of science, broadly put under the rubric of General Astrophysics, in addition to its exoplanet direct imaging science. General astrophysics directly addresses multiple NASA programmatic branches, and HabEx will enable investigations ranging from cosmology, to galaxy evolution, to stellar population studies, to exoplanet transit spectroscopy, to Solar System studies. This poster briefly describes one of the two primary HabEx General Astrophysics instruments, the HabEx Workhorse Camera (HWC). HWC will be a dual-detector UV-to-near-IR imager and multi-object grism spectrometer with a microshutter array and a moderate (3' x 3') field-of-view. We detail some of the key science we expect HWC to undertake, emphasizing unique capabilities enabled by a large-aperture, highly stable space-borne platform at these wavelengths.

  9. NASA-Ames Life Sciences Flight Experiments program - 1980 status report

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.; Macleod, G.; Williams, B. A.

    1980-01-01

    The paper deals with the ESA's Spacelab LSFE (Life Sciences Flight Experiments) program which, once operational, will provide new and unique opportunities to conduct research into the effects of spaceflight and weightlessness on living organisms under conditions approximating ground-based laboratories. Spacelab missions, launched at 18-month intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and similar life sciences.

  10. Applications of LANCE Data at SPoRT

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew

    2014-01-01

    Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society

  11. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  12. Science in a Box: An Educator Guide with NASA Glovebox Activities in Science, Math, and Technology.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Education Dept.

    The Space Shuttle and International Space Station provide a unique microgravity environment for research that is a critical part of the National Aeronautics and Space Administration's (NASA) mission to improve the quality of life on Earth and enable the health and safety of space explorers for long duration missions beyond our solar system. This…

  13. Practical relevance of pattern uniqueness in forensic science.

    PubMed

    Jayaprakash, Paul T

    2013-09-10

    Uniqueness being unprovable, it has recently been argued that individualization in forensic science is irrelevant and, probability, as applied for DNA profiles, should be applied for all identifications. Critiques against uniqueness have omitted physical matching, a realistic and tangible individualization that supports uniqueness. Describing case examples illustrating pattern matches including physical matching, it is indicated that individualizations are practically relevant for forensic science as they establish facts on a definitive basis providing firm leads benefitting criminal investigation. As a tenet of forensic identification, uniqueness forms a fundamental paradigm relevant for individualization. Evidence on the indeterministic and stochastic causal pathways of characteristics in patterns available in the related fields of science sufficiently supports the proposition of uniqueness. Characteristics involved in physical matching and matching achieved in patterned evidence existing in the state of nature are not events amenable for counting; instead these are ensemble of visible units occupying the entire pattern area stretching the probability of re-occurrence of a verisimilitude pattern into infinity offering epistemic support to uniqueness. Observational methods are as respectable as instrumental or statistical methods since they are capable of generating results that are tangible and obviously valid as in physical matching. Applying the probabilistic interpretation used for DNA profiles to the other patterns would be unbefitting since these two are disparate, the causal pathways of the events, the loci, in the manipulated DNA profiles being determinable. While uniqueness enables individualizations, it does not vouch for eliminating errors. Instead of dismissing uniqueness and individualization, accepting errors as human or system failures and seeking remedial measures would benefit forensic science practice and criminal investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Telepresence-enabled research and developing work practices

    NASA Astrophysics Data System (ADS)

    Mirmalek, Z.

    2016-02-01

    In the fall of 2014, a group of scientists and students conducted two weeks of telepresence-enabled research from the University of Rhode Island Inner Space Center and Woods Hole Oceanographic Institution with the Exploration Vessel Nautilus, which was at sea studying the Kick'em Jenny submarine volcano and Barbados Mud Volcanoes. The way that they conducted their work was not so different from other telepresence-enabled ocean science exploration. As a group, they spanned geographic distance, science expertise, exploration experience, and telepresence-enabled research experience. They were connected through technologies and work culture (e.g., shared habits, values, and practices particular to a community). Uniquely, their project included an NSF-sponsored cultural study on the workgroups' own use of technologies and social processes. The objective of the cultural study was, in part, to identify social and technical features of the work environment that present opportunities to better support science exploration via telepresence. Drawing from this case, and related research, I present some analysis on the developing work culture of telepresence-enabled research and highlight potential adjustments.

  15. An evolving Mars telecommunications network to enable exploration and increase science data return

    NASA Technical Reports Server (NTRS)

    Edwards, Chad; Komarek, Tomas A.; Noreen, Gary K.; Wilson, Gregory R.

    2003-01-01

    The coming decade of Mars exploration involves a variety of unique telecommunications challenges. Increasing spatial and spectral resolution of in situ science instruments drive the need for increased bandwidth. At the same time, many innovative and low-cost in situ mission concepts are enabled by energy-efficient relay communications. In response to these needs, the Mars Exploration Program has established a plan for an evolving orbital infrastructure that can provide enhancing and enabling telecommunications services to future Mars missions. We will present the evolving capabilities of this network over the coming decade in terms of specific quantitative metrics such as data volume per sol and required lander energy per Gb of returned data for representative classes of Mars exploration spacecraft.

  16. A LOW-COST RARE EARTH ELEMENTS RECOVERY TECHNOLOGY - PHASE I

    EPA Science Inventory

    Physical Sciences, Inc., and the University of Kentucky Center for Applied Energy Research propose to develop a unique enabling technology to significantly reduce U.S. dependency for Rare Earth Elements (REE) on foreign suppliers and our global competitors. Our innovation...

  17. The iPlant collaborative: cyberinfrastructure for plant biology

    USDA-ARS?s Scientific Manuscript database

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF)funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enabl...

  18. Cubesats: Cost-effective science and technology platforms for emerging and developing nations

    NASA Astrophysics Data System (ADS)

    Woellert, Kirk; Ehrenfreund, Pascale; Ricco, Antonio J.; Hertzfeld, Henry

    2011-02-01

    The development, operation, and analysis of data from cubesats can promote science education and spur technology utilization in emerging and developing nations. This platform offers uniquely low construction and launch costs together with a comparative ubiquity of launch providers; factors that have led more than 80 universities and several emerging nations to develop programs in this field. Their small size and weight enables cubesats to “piggyback” on rocket launches and accompany orbiters travelling to Moon and Mars. It is envisaged that constellations of cubesats will be used for larger science missions. We present a brief history, technology overview, and summary of applications in science and industry for these small satellites. Cubesat technical success stories are offered along with a summary of pitfalls and challenges encountered in both developed and emerging nations. A discussion of economic and public policy issues aims to facilitate the decision-making process for those considering utilization of this unique technology.

  19. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  20. 7 CFR 3405.4 - Purpose of the program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... strengthen college and university teaching programs in the food and agricultural sciences. One national... highest quality available anywhere in the world and which reflects the unique needs of the Nation. It is designed to stimulate and enable colleges and universities to provide the quality of education necessary to...

  1. 7 CFR 3405.4 - Purpose of the program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... strengthen college and university teaching programs in the food and agricultural sciences. One national... highest quality available anywhere in the world and which reflects the unique needs of the Nation. It is designed to stimulate and enable colleges and universities to provide the quality of education necessary to...

  2. 7 CFR 3405.4 - Purpose of the program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... strengthen college and university teaching programs in the food and agricultural sciences. One national... highest quality available anywhere in the world and which reflects the unique needs of the Nation. It is designed to stimulate and enable colleges and universities to provide the quality of education necessary to...

  3. Citrate-Based Biomaterials and Their Applications in Regenerative Engineering

    PubMed Central

    Tran, Richard T.; Yang, Jian; Ameer, Guillermo A.

    2015-01-01

    Advances in biomaterials science and engineering are crucial to translating regenerative engineering, an emerging field that aims to recreate complex tissues, into clinical practice. In this regard, citrate-based biomaterials have become an important tool owing to their versatile material and biological characteristics including unique antioxidant, antimicrobial, adhesive, and fluorescent properties. This review discusses fundamental design considerations, strategies to incorporate unique functionality, and examples of how citrate-based biomaterials can be an enabling technology for regenerative engineering. PMID:27004046

  4. Applications of nanopipettes in the analytical sciences.

    PubMed

    Morris, Celeste A; Friedman, Alicia K; Baker, Lane A

    2010-09-01

    In this review, we describe measurements and applications of interest to the analytical community that makes use of simple nanopipettes. Fabricated by applying heat during the separation of a glass capillary, nanopipettes provide a route for nanoscale studies of ion transport and for development of chemical and biochemical sensors. When mounted on a translation stage, nanopipettes also enable unique modes of imaging and material deposition. These facets of nanopipette research, as well as some of the unique properties of nanopipettes, will be discussed.

  5. Wallops: The Management of Rapid Change

    NASA Technical Reports Server (NTRS)

    Kremer, Steven E.

    2016-01-01

    A unique national resource, Wallops Flight Facility's Research Range enables flexible, low-cost space access, in-flight science, and technology research for all of NASA and the nation. It is the only launch range that NASA owns. This is for Keynote Address and charts are primarily an overview of activities performed at Wallops Flight Facility.

  6. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  7. Earth Studies Using L-band Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    1999-01-01

    L-band SAR has played an important role in studies of the Earth by revealing the nature of the larger-scale (decimeter) surface features. JERS-1, by supplying multi-seasonal coverage of the much of the earth, has demonstrated the importance of L-band SARs. Future L-band SARs such as ALOS and LightSAR will pave the way for science missions that use SAR instruments. As technology develops to enable lower cost SAR instruments, missions will evolve to each have a unique science focus. International coordination of multi-parameter constellations and campaigns will maximize science return.

  8. NASA SSERVI Contributions to Lunar Science and Exploration

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.

    2015-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration that will enable deeper understanding of the Moon and other airless bodies as we move further out of low-Earth orbit. The new Solar System Exploration Research Virtual Institute (SSERVI) will focus on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. The Institute focuses on interdisciplinary, exploration-related science centered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. We will provide a detailed look at research being conducted by each of the 9 domestic US teams as well as our 7 international partners. The research profile of the Institute integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies.

  9. Amplion, Inc.

    PubMed

    Taylor, Seth; Carroll, Adam; Lord, Jessi

    2016-07-01

    Amplion, Inc. (OR, USA) is focused on progressing the primary drivers of precision medicine. Focused on enabling the front end of the healthcare value chain, pharmaceutical developers and diagnostic test developers, Amplion zeros in on the research and market components that will make precision medicine a reality. With BiomarkerBase™, Amplion's flagship product, Amplion provides evidence-based biomarker information that support the key strategic decisions pharmaceutical and diagnostic developers need to make to be successful in the emerging world of precision medicine. A passion for saving lives and improving patient outcomes using precision medicine inspires Amplion's product BiomarkerBase™. A unique combination of hard science and data science positions Amplion to surface the relationships of biomarkers and clinical evidence that gives pharmaceutical and diagnostic companies unique insight into the technical realities and market opportunities provided by biomarkers.

  10. A Unique Power System For The ISS Fluids And Combustion Facility

    NASA Technical Reports Server (NTRS)

    Fox, David A.; Poljak, Mark D.

    2001-01-01

    Unique power control technology has been incorporated into an electrical power control unit (EPCU) for the Fluids and Combustion Facility (FCF). The objective is to maximize science throughput by providing a flexible power system that is easily reconfigured by the science payload. Electrical power is at a premium on the International Space Station (ISS). The EPCU utilizes advanced power management techniques to maximize the power available to the FCF experiments. The EPCU architecture enables dynamic allocation of power from two ISS power channels for experiments. Because of the unique flexible remote power controller (FRPC) design, power channels can be paralleled while maintaining balanced load sharing between the channels. With an integrated and redundant architecture, the EPCU can tolerate multiple faults and still maintain FCF operation. It is important to take full advantage of the EPCU functionality. The EPCU acts as a buffer between the experimenter and the ISS power system with all its complex requirements. However, FCF science payload developers will still need to follow guidelines when designing the FCF payload power system. This is necessary to ensure power system stability, fault coordination, electromagnetic compatibility, and maximum use of available power for gathering scientific data.

  11. Soft Biological and Composite Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, Millicent

    2016-04-01

    The goal of the Center for Integrated Nanotechnologies (CINT) is to plays a leadership role in integration of nanostructured materials to enable novel capabilities and applications through its function as a Department of Energy/Office of Science Nanoscale Science Research Center (NSRC) national user facility. By coupling open access to unique and world-class capabilities and scientific expertise to an active user community, CINT supports high-impact research that no other single institution could achieve – the whole of CINT including its user community is greater than the sum of its parts.

  12. Nanophotonics and Optical Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doorn, Stephen

    The goal of the Center for Integrated Nanotechnologies (CINT) is to plays a leadership role in integration of nanostructured materials to enable novel capabilities and applications through its function as a Department of Energy/Office of Science Nanoscale Science Research Center (NSRC) national user facility. By coupling open access to unique and world-class capabilities and scientific expertise to an active user community, CINT supports high-impact research that no other single institution could achieve – the whole of CINT including its user community is greater than the sum of its parts.

  13. Using CoRes to Develop the Pedagogical Content Knowledge (PCK) of Early Career Science and Technology Teachers

    ERIC Educational Resources Information Center

    Williams, John; Lockley, John

    2012-01-01

    Research has shown that one of the factors that enable effective teachers is their rich "Pedagogical Content Knowledge" (PCK), a special blend of content knowledge and pedagogical knowledge that is built up over time and experience. This form of professional knowledge, first theorized by Shulman (1987), is topic-specific, unique to each…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dincă, Mircea; Léonard, François

    Metal–organic frameworks (MOFs), with their crystalline nanoporous three-dimensional structures, have emerged as unique multifunctional materials that combine high porosity with catalytic, photophysical, or other properties to reveal new fundamental science and applications. Because MOFs are composed of organic molecules linking metal centers in ways that are not usually conducive to the formation of free-charge carriers or low-energy charge-transport pathways, they are typically insulators. Accordingly, applications so far have harnessed the unique structural properties and porosity of MOFs, which depend only to a small extent on the ability to manipulate their electronic structure. An exciting new area has emerged due tomore » the recent demonstration of MOFs with controlled electronic and optical properties, which is enabling new fundamental science and opens up the possibility of applications in electronics and photonics. This article presents an overview of the fundamental science issues related to controlling electronic and optical properties of MOFs, and how research groups worldwide have been exploring such properties for electronics, thermoelectrics, photophysics, and charge storage.« less

  15. The Science and Prospects of Astrophysical Observations with New Horizons

    NASA Astrophysics Data System (ADS)

    Nguyen, Chi; Zemcov, Michael; Cooray, Asantha; Lisse, Carey; Poppe, Andrew

    2018-01-01

    Astrophysical observation from the outer solar system provides a unique and quiet vantage point from which to understand our cosmos. If properly designed, such observations enable several niche science cases that are difficult or impossible to perform near Earth. NASA's New Horizons mission includes several instruments with ~10cm telescopes that provide imaging capability from UV to near-IR wavelengths with moderate spectral resolution. A carefully designed survey can optimize the expendable propellant and limited data telemetry bandwidth to allow several unique measurements, including a detailed understanding of the cosmic extragalactic background light in the optical and near-IR, studies of the local and extragalactic UV background, measurements of the properties of dust and ice in the outer solar system, searches for moons and other faint structures around exoplanets, and determinations of the mass of planets far from their parent stars using gravitational microlensing. New Horizons is currently in an extended mission, that will conclude in 2021, designed to survey distant objects in the Kuiper Belt at high phase angles and perform a close flyby of KBO 2014 MU69. Afterwards, the astrophysics community will have a unique, generational opportunity to use this mission for astronomical observations at heliocentric distances beyond 50 AU. In this poster, we present the science case for an extended 2021 - 2026 astrophysics mission, and discuss some of the practical considerations that must be addressed to maximize the potential science return.

  16. Expansion of Biology Teachers' Pedagogical Content Knowledge (PCK) During a Long-Term Professional Development Program

    NASA Astrophysics Data System (ADS)

    Rozenszajn, Ronit; Yarden, Anat

    2014-02-01

    Experienced teachers possess a unique teaching knowledge comprised of an inter-related set of knowledge and beliefs that gives direction and justification to a teacher's actions. This study examined the expansion of two components of pedagogical content knowledge (PCK) of three in-service teachers in the course of a professional development program aimed at designing new teaching and learning materials suggested by the teachers themselves. The research presents an enlargement of previous PCK representations by focusing on a detailed representation of two main PCK domains: teaching and learning, including ten PCK components that emerged in the course of data analysis. This representation enabled revealing the unique PCK held by each teacher and to characterize the expansion of the two components of the participating teachers' PCK during the long-term professional development program. Retention of major parts of the expanded PCK a year after termination of the program implies that designing and implementing new teaching and learning materials based on the teachers' experiences, needs, and knowledge in a workshop format accompanied by biology and science education courses might provide a powerful means for PCK expansion. We recommend that designers of professional development programs be aware of the unique PCK held by each teacher in order to promote meaningful professional development of each teacher. Moreover, the PCK representations that were identified in the course of this study enabled clarifying the "orientation toward teaching science" category of PCK which appears to be unclear in current literature.

  17. Opening the archive: how free data has enabled the science and monitoring promise of Landsat

    Treesearch

    Michael A. Wulder; Jeffrey G. Masek; Warren B. Cohen; Thomas R. Loveland; Curtis E. Woodcock

    2012-01-01

    Landsat occupies a unique position in the constellation of civilian earth observation satellites, with a long and rich scientific and applications heritage. With nearly 40 years of continuous observation—since launch of the first satellite in 1972—the Landsat program has benefited from insightful technical specification, robust engineering, and the necessary...

  18. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  19. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  20. Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  1. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  2. NASA’s Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma; Meinke, Bonnie K.; Smith, Denise A.; Ryer, Holly; Slivinski, Carolyn; Kenney, Jessica; Arcand, Kimberly K.; Cominsky, Lynn R.; Girls STEAM Ahead with NASA Team

    2017-10-01

    NASA Science Mission Directorate’s Universe of Learning (UoL) program enables scientists and engineers to more effectively engage with learners of all ages. The Girls STEAM Ahead with NASA education program within UoL, expands upon the former program, NASA Science4Girls and Their Families, in celebration of National Women’s History Month. The initiative partners the NASA’s Universe of Learning science education program resources with public libraries to provide NASA-themed activities for girls and their families, including hands-on activities for engaging girls, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA’s UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. This presentation will provide an overview of the program progress related to engaging girls and their families in NASA-based science programming.

  3. NASA Johnson Space Center Biomedical Research Resources

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1999-01-01

    Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.

  4. New SPDF Directions and Evolving Services Supporting Heliophysics Research

    NASA Technical Reports Server (NTRS)

    McGuire, Robert E.; Candey, Robert M.; Bilitza, D.; Chimiak, Reine A.; Cooper, John F.; Fung, Shing F.; Han, David B.; Harris, Bernie; Johnson R.; Klipsch, C.; hide

    2006-01-01

    The next advances in Heliophysics science and its paradigm of a Great Observatory require an increasingly integrated and transparent data environment, where data can be easily accessed and used across the boundaries of both missions and traditional disciplines. The Space Physics Data Facility (SPDF) project includes uniquely important multi-mission data services with current data from most operating space physics missions. This paper reviews the capabilities of key services now available and the directions in which they are expected to evolve to enable future multi-mission correlative research. The Coordinated Data Analysis Web (CDAWeb) and Satellite Situation Center Web (SSCWeb), critically supported by the Common Data Format (CDF) effort and supplemented by more focused science services such as OMNIWeb and technical services such as data format translations are important operational capabilities serving the international community today (and cited last year by 20% of the papers published in JGR Space Physics). These services continue to add data from most current missions as SPDF works with new missions such as THEMIS to help enable their unique science goals and the meaningful sharing of their data in a multi-mission correlative context. Recent enhancements to CDF, our 3D Java interactive orbit viewer (TIPSOD), the CDAWeb Plus system, increasing automation of data service population, the new folding of the VSPO effort into SPDF and our continuing thrust towards fully-functional web services APIs to allow ready invocation from distributed external middleware and clients will be shown.

  5. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  6. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam

    PubMed Central

    Terada, K.; Ninomiya, K.; Osawa, T.; Tachibana, S.; Miyake, Y.; Kubo, M. K.; Kawamura, N.; Higemoto, W.; Tsuchiyama, A.; Ebihara, M.; Uesugi, M.

    2014-01-01

    The recent development of the intense pulsed muon source at J-PARC MUSE, Japan Proton Accelerator Research Complex/MUon Science Establishment (106 s−1 for a momentum of 60 MeV/c), enabled us to pioneer a new frontier in analytical sciences. Here, we report a non-destructive elemental analysis using µ− capture. Controlling muon momentum from 32.5 to 57.5 MeV/c, we successfully demonstrate a depth-profile analysis of light elements (B, C, N, and O) from several mm-thick layered materials and non-destructive bulk analyses of meteorites containing organic materials. Muon beam analysis, enabling a bulk analysis of light to heavy elements without severe radioactivation, is a unique analytical method complementary to other non-destructive analyses. Furthermore, this technology can be used as a powerful tool to identify the content and distribution of organic components in future asteroidal return samples. PMID:24861282

  7. The science enabled by the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Martin, N. F.; Babusiaux, C.

    2017-12-01

    With its unique wide-field, multi-object, and dedicated spectroscopic capabilities, the Maunakea Spectroscopic Explorer (MSE) is a powerful facility to shed light on the faint Universe. Built around an upgrade of the Canada-France Hawaii Telescope (CFHT) to a 11.25-meter telescope with a dedicated ˜1.5 deg^2, 4,000-fiber wide-field spectrograph that covers the optical and near-infrared wavelengths at resolutions between 2,500 and 40,000, the MSE is the essential follow-up complement to the current and next generations of multi-wavelength imaging surveys, such as the LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for the extremely large telescopes that are currently being built (E-ELT, GMT, and TMT). The science enabled by the MSE is vast and would have an impact on almost all aspects of astronomy research.

  8. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam.

    PubMed

    Terada, K; Ninomiya, K; Osawa, T; Tachibana, S; Miyake, Y; Kubo, M K; Kawamura, N; Higemoto, W; Tsuchiyama, A; Ebihara, M; Uesugi, M

    2014-05-27

    The recent development of the intense pulsed muon source at J-PARC MUSE, Japan Proton Accelerator Research Complex/MUon Science Establishment (10(6) s(-1) for a momentum of 60 MeV/c), enabled us to pioneer a new frontier in analytical sciences. Here, we report a non-destructive elemental analysis using µ(-) capture. Controlling muon momentum from 32.5 to 57.5 MeV/c, we successfully demonstrate a depth-profile analysis of light elements (B, C, N, and O) from several mm-thick layered materials and non-destructive bulk analyses of meteorites containing organic materials. Muon beam analysis, enabling a bulk analysis of light to heavy elements without severe radioactivation, is a unique analytical method complementary to other non-destructive analyses. Furthermore, this technology can be used as a powerful tool to identify the content and distribution of organic components in future asteroidal return samples.

  9. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2008-07-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project will operate a 2.5-meter infrared airborne telescope in a Boeing 747SP. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations in the infrared and submillimeter region with an average transmission of 80%. SOFIA has a wide instrument complement including broadband imaging cameras, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas and will conclude in winter of 2008-09. SOFIA will be staged out of Dryden's aircraft operations facility at Palmdale, Site 9, CA for science operations. The SOFIA Science Center will be at NASA Ames Research Center, Moffet Field, CA. First science flights will begin in 2009, the next instrument call and first General Observer science call will be in 2010, and a full operations schedule of ~120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities, and examples of first light and early mission science are discussed.

  10. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  11. Defining Contemplative Science: The Metacognitive Self-Regulatory Capacity of the Mind, Context of Meditation Practice and Modes of Existential Awareness

    PubMed Central

    Dorjee, Dusana

    2016-01-01

    The term ‘contemplative’ is now frequently used in the fast growing field of meditation research. Yet, there is no consensus regarding the definition of contemplative science. Meditation studies commonly imply that contemplative practices such as mindfulness or compassion are the subject of contemplative science. Such approach, arguably, contributes to terminological confusions in the field, is not conducive to the development of an overarching theory in contemplative science, and overshadows its unique methodological features. This paper outlines an alternative approach to defining contemplative science which aims to focus the research on the core capacities, processes and states of the mind modified by contemplative practices. It is proposed that contemplative science is an interdisciplinary study of the metacognitive self-regulatory capacity (MSRC) of the mind and associated modes of existential awareness (MEA) modulated by motivational/intentional and contextual factors of contemplative practices. The MSRC is a natural propensity of the mind which enables introspective awareness of mental processes and behavior, and is a necessary pre-requisite for effective self-regulation supporting well-being. Depending on the motivational/intentional and contextual factors of meditation practice, changes in the metacognitive self-regulatory processes enable shifts in MEA which determine our sense of self and reality. It is hypothesized that changes in conceptual processing are essential mediators between the MSRC, motivational/intentional factors, context of meditation practice, and the modulations in MEA. Meditation training fosters and fine-tunes the MSRC of the mind and supports development of motivational/intentional factors with the ultimate aim of facilitating increasingly advanced MEA. Implications of the proposed framework for definitions of mindfulness and for future systematic research across contemplative traditions and practices are discussed. It is suggested that the proposed definition of contemplative science may reduce terminological challenges in the field and make it more inclusive of varied contemplative practices. Importantly, this approach may encourage development of a more comprehensive contemplative science theory recognizing the essential importance of first- and second-person methods to its inquiry, thus uniquely contributing to our understanding of the mind. PMID:27909417

  12. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-02-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  13. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-12-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  14. Stratospheric Observatory for Infrared Astronomy (SOFIA): Infrared Sensor Development and Science Capabilities

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Ruzek, M.

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a unique airborne observatory designed to operate in the lower stratosphere to altitudes as high as 45,000 feet and above 99.8 percent of Earths obscuring atmospheric water vapor. SOFIA's capabilities enable science and observations that will complement and extend past, present and future infrared (IR) telescopes in wavelength range, angular and spectral resolution, and observing flexibility. The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is nearing readiness for for open door flights and demonstration of early science results. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region. The SOFIA instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at high resolution. First science flights will begin in early 2010. A great strength of SOFIA is the enormous breadth of its capabilities and the flexibility with which those capabilities can be modified and improved to take advantage of advances in infrared technology. This paper and presentation will highlight the following points: A 2.5-meter effective-diameter optical-quality telescope for diffraction-limited imaging beyond 25 micrometers, giving the sharpest view of the sky provided by any current or developmental IR telescope operating in the 30-60 micrometers region; Wavelength coverage from 0.3 micrometers to 1.6 mm and high resolution spectroscopy (R to 105) at wavelengths between 5 and 150 micrometers; An 8 arcmin FOV allowing use of very large detector arrays; Ready observer access to science instruments which can be serviced in flight and changed between flights; A low-risk ability to incorporate new science-enabling instrument technologies and to create a whole "new" observatory several times during the lifetime of the facility; Opportunity for continuous training of instrumentalists to develop and test the next generation of instrumentation for both suborbital and space applications; Mobility, which allows access to the entire sky and a vastly increased number of stellar occultation events; Unique opportunities for educators and journalists to participate first-hand in exciting astronomical observations. The mid- and far-IR wavelength regions are key to studying the dusty universe. SOFIA science emphasizes four major themes: Star and planet formation; the interstellar medium of the Milky Way; Galaxies and the galactic center; and Planetary science. These capabilities will enable a wide range of science investigations over SOFIA's 20-year operational lifetime. This paper will address SOFIA's nine first-light science instruments, capabilities, and development.

  15. Two years of LCOGT operations: the challenges of a global observatory

    NASA Astrophysics Data System (ADS)

    Volgenau, Nikolaus; Boroson, Todd

    2016-07-01

    With 18 telescopes distributed over 6 sites, and more telescopes being added in 2016, Las Cumbres Observatory Global Telescope Network is a unique resource for timedomain astronomy. The Network's continuous coverage of the night sky, and the optimization of the observing schedule over all sites simultaneously, have enabled LCOGTusers to produce significant science results. However, practical challenges to maximizing the Network's science output remain. The Network began providing observations for members of its Science Collaboration and other partners in May 2014. In the two years since then, LCOGT has made a number of improvements to increase the Network's science yield. We also now have two years' experience monitoring observatory performance; effective monitoring of an observatory that spans the globe is a complex enterprise. Here, we describe some of LCOGT's efforts to monitor the Network, assess the quality of science data, and improve communication with our users.

  16. Inhibitory control and counterintuitive science and maths reasoning in adolescence.

    PubMed

    Brookman-Byrne, Annie; Mareschal, Denis; Tolmie, Andrew K; Dumontheil, Iroise

    2018-01-01

    Existing concepts can be a major barrier to learning new counterintuitive concepts that contradict pre-existing experience-based beliefs or misleading perceptual cues. When reasoning about counterintuitive concepts, inhibitory control is thought to enable the suppression of incorrect concepts. This study investigated the association between inhibitory control and counterintuitive science and maths reasoning in adolescents (N = 90, 11-15 years). Both response and semantic inhibition were associated with counterintuitive science and maths reasoning, when controlling for age, general cognitive ability, and performance in control science and maths trials. Better response inhibition was associated with longer reaction times in counterintuitive trials, while better semantic inhibition was associated with higher accuracy in counterintuitive trials. This novel finding suggests that different aspects of inhibitory control may offer unique contributions to counterintuitive reasoning during adolescence and provides further support for the hypothesis that inhibitory control plays a role in science and maths reasoning.

  17. Bacteria on display-can we, and should we? Artistically exploring the ethics of public engagement with science in microbiology.

    PubMed

    Fawcett, Nicola J; Dumitriu, Anna

    2018-06-01

    The field of microbiology presents unique opportunities, and accompanying challenges, for artistic collaborations. On one hand, artistic works enable exploration of the aesthetics and of issues in biomedical science and new technologies, and draw in new, non-scientific audiences. On the other hand, creating art with microbes requires rigorous consideration of health and safety. Artists working in this field, known as Bio Art, tend to want to push the boundaries of what is possible or 'known', and work with new biomedical tools as they become available. However, when an artist's proposed work is raising novel questions where the risks are not fully understood, who should decide if the benefits outweigh the consequences? The reflections of an art-collaborating scientist are related. Also, considered is how close working relationships between disciplines can enable new ethical frameworks that consider these decisions, respecting artists' endeavours as a beneficial form of research in its own right, and even learning from the rich perspectives of artists to broaden reflections on the practice of science.

  18. The FuturICT education accelerator

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Buckingham Shum, S.; Willis, A.; Bishop, S.; Zamenopoulos, T.; Swithenby, S.; MacKay, R.; Merali, Y.; Lorincz, A.; Costea, C.; Bourgine, P.; Louçã, J.; Kapenieks, A.; Kelley, P.; Caird, S.; Bromley, J.; Deakin Crick, R.; Goldspink, C.; Collet, P.; Carbone, A.; Helbing, D.

    2012-11-01

    Education is a major force for economic and social wellbeing. Despite high aspirations, education at all levels can be expensive and ineffective. Three Grand Challenges are identified: (1) enable people to learn orders of magnitude more effectively, (2) enable people to learn at orders of magnitude less cost, and (3) demonstrate success by exemplary interdisciplinary education in complex systems science. A ten year `man-on-the-moon' project is proposed in which FuturICT's unique combination of Complexity, Social and Computing Sciences could provide an urgently needed transdisciplinary language for making sense of educational systems. In close dialogue with educational theory and practice, and grounded in the emerging data science and learning analytics paradigms, this will translate into practical tools (both analytical and computational) for researchers, practitioners and leaders; generative principles for resilient educational ecosystems; and innovation for radically scalable, yet personalised, learner engagement and assessment. The proposed Education Accelerator will serve as a `wind tunnel' for testing these ideas in the context of real educational programmes, with an international virtual campus delivering complex systems education exploiting the new understanding of complex, social, computationally enhanced organisational structure developed within FuturICT.

  19. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Gehrz, R. D.; Callis, H. H. S.

    2007-09-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region with an average transmission of >= 80%. The SOFIA instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  20. NASA Centers and Universities Collaborate Through Smallsat Technology Partnerships

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2018-01-01

    The Small Spacecraft Technology (SST) Program within the NASA Space Technology Mission Directorate is chartered develop and demonstrate the capabilities that enable small spacecraft to achieve science and exploration missions in "unique" and "more affordable" ways. Specifically, the SST program seeks to enable new mission architectures through the use of small spacecraft, to expand the reach of small spacecraft to new destinations, and to make possible the augmentation existing assets and future missions with supporting small spacecraft. The SST program sponsors smallsat technology development partnerships between universities and NASA Centers in order to engage the unique talents and fresh perspectives of the university community and to share NASA experience and expertise in relevant university projects to develop new technologies and capabilities for small spacecraft. These partnerships also engage NASA personnel in the rapid, agile and cost-conscious small spacecraft approaches that have evolved in the university community, as well as increase support to university efforts and foster a new generation of innovators for NASA and the nation.

  1. Procedural apprenticeship in school science: Constructivist enabling of connoisseurship

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence

    2000-11-01

    In many parts of the world, school science, especially at the secondary school level, is a sort of selection and training camp for future scientists and engineers. For most students, their general lack of cultural capital (Apple, 1990) minimizes their opportunities to survive the rapid coverage of large volumes of abstract, decontextualized laws, theories, and inventions so typical of school science. Most graduates and drop-outs become relatively scientifically and technologically illiterate. They either have forgotten or have confused conceptions of scientific and technological knowledge; often view science and technology as relatively certain, unbiased, and benign with respect to effects on society and the environment; and lack resources necessary to effectively judge products and processes of science and technology or, crucially, to create their own explanations for and changes to phenomena. Citizens with illiteracy to this extent may have little control over their own thoughts and actions and be prey to whims of those who control knowledge, its production and dissemination. Curriculum frameworks are required that enable all students to achieve their maximum potential literacy and, as well, to create their own knowledge, to develop in directions unique to their needs, interests, abilities, and perspectives; that is, to become self-actualized. This latter goal can, in part, be achieved through apprenticeship education in schools, such that students acquire a measure of scientific and technological connoisseurship - expertise enabling them to conduct open-ended scientific investigations and invention projects of their design. In collaboration with five teachers of secondary school science, such a framework was, indeed, developed, and field-tested. Through a spiraling, cyclical process involving synchronous reconstruction of conceptual and procedural understandings, evidence suggests students were able to carry out experiments, studies, and tests of their inventions with minimal teacher involvement. Furthermore, they appeared to accommodate more realistic conceptions of scientific and technological work. Moreover, many seemed to have made progress toward intellectual independence; able to judge knowledge claims independent of authorities. It is hoped that with more schools, systems, and teachers enabling development of such connoisseurship, all students will be better served by school science and, as well, the larger society will be more diverse, adaptable, and free.

  2. Flying the Infrared Skies: An Authentic SOFIA Educator Experience

    NASA Astrophysics Data System (ADS)

    Manning, J. G.

    2015-11-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) flagship education effort is its Airborne Astronomy Ambassadors (AAA) program. The program flies teams of teachers on SOFIA research flights as part of an educator professional development effort enabling these teachers to experience first-hand the workings of the airborne observatory, to interact with scientists and technologists, to observe research in progress and how scientists use technology—all in support of national STEM goals. The presenter will share his own experience as an EPO escort on a recent SOFIA flight including two educator teams, providing a first-hand account of how an “authentic” science experience can exploit unique NASA assets to improve science teaching, inspire students, inform local communities, and contribute to the elevation of public science literacy.

  3. GATECloud.net: a platform for large-scale, open-source text processing on the cloud.

    PubMed

    Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina

    2013-01-28

    Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation.

  4. FOCU:S--future operator control unit: soldier

    NASA Astrophysics Data System (ADS)

    O'Brien, Barry J.; Karan, Cem; Young, Stuart H.

    2009-05-01

    The U.S. Army Research Laboratory's (ARL) Computational and Information Sciences Directorate (CISD) has long been involved in autonomous asset control, specifically as it relates to small robots. Over the past year, CISD has been making strides in the implementation of three areas of small robot autonomy, namely platform autonomy, Soldier-robot interface, and tactical behaviors. It is CISD's belief that these three areas must be considered as a whole in order to provide Soldiers with useful capabilities. In addressing the Soldier-robot interface aspect, CISD has begun development on a unique dismounted controller called the Future Operator Control Unit: Soldier (FOCU:S) that is based on an Apple iPod Touch. The iPod Touch's small form factor, unique touch-screen input device, and the presence of general purpose computing applications such as a web browser combine to give this device the potential to be a disruptive technology. Setting CISD's implementation apart from other similar iPod or iPhone-based devices is the ARL software that allows multiple robotic platforms to be controlled from a single OCU. The FOCU:S uses the same Agile Computing Infrastructure (ACI) that all other assets in the ARL robotic control system use, enabling automated asset discovery on any type of network. Further, a custom ad hoc routing implementation allows the FOCU:S to communicate with the ARL ad hoc communications system and enables it to extend the range of the network. This paper will briefly describe the current robotic control architecture employed by ARL and provide short descriptions of existing capabilities. Further, the paper will discuss FOCU:S specific software developed for the iPod Touch, including unique capabilities enabled by the device's unique hardware.

  5. Developing Smartphone Apps for Education, Outreach, Science, and Engineering

    NASA Astrophysics Data System (ADS)

    Weatherwax, A. T.; Fitzsimmons, Z.; Czajkowski, J.; Breimer, E.; Hellman, S. B.; Hunter, S.; Dematteo, J.; Savery, T.; Melsert, K.; Sneeringer, J.

    2010-12-01

    The increased popularity of mobile phone apps provide scientists with a new avenue for sharing and distributing data and knowledge with colleagues, while also providing meaningful education and outreach products for consumption by the general public. Our initial development of iPhone and Android apps centered on the distribution of exciting auroral images taken at the South Pole for education and outreach purposes. These portable platforms, with limited resources when compared to computers, presented a unique set of design and implementation challenges that we will discuss in this presentation. For example, the design must account for limited memory; screen size; processing power; battery life; and potentially high data transport costs. Some of these unique requirements created an environment that enabled undergraduate and high-school students to participate in the creation of these apps. Additionally, during development it became apparent that these apps could also serve as data analysis and engineering tools. Our presentation will further discuss our plans to use apps not only for Education and Public Outreach, but for teaching, science and engineering.

  6. Can Any Good Thing Come out of Nazareth? (John 1:46) 1999 George C. Pimentel Award, sponsored by Union Carbide Corporation

    NASA Astrophysics Data System (ADS)

    Orna, Mary Virginia

    1999-09-01

    We are in the era of Big Science, which also means big institutions where the Big Science is done. However, higher education in the United States is unique in that parallel to the array of big institutions is a system of small liberal arts and sciences colleges where students receive the personal attention and faculty contact that is often not possible at larger institutions. While these smaller institutions are limited in resources and finances, studies have shown that they contribute a disproportionately higher number of leaders across a spectrum of disciplines, including chemistry. This address summarizes my personal odyssey and the reasons for the award. In it, I emphasize the advantages enjoyed by liberal arts and sciences students and faculty that enable them to overcome the view that great things can only be done in large, cosmopolitan settings.

  7. Spectroscopic observations with the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.

    The joint US and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high-resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light spectroscopic science are discussed.

  8. Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of ≳ 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  9. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Gehrz, R. D.

    2009-08-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA's first generation instrument complement includes high-speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2010, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  10. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations throughout the infrared and submillimeter region with an average transmission of greater than 80 percent. SOFIA has a wide instrument complement including broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas. The test flight series continues at NASA Dryden Flight Research Center, California. SOFIA will be staged out of Dryden's new aircraft operations facility at Palmdale, CA starting in December, 2007. First science flights will begin in 2009, the next instrument call and the first General Observer science call will be in 2010, and a full operations schedule of about 120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  11. High contrast observations of bright stars with a starshade

    NASA Astrophysics Data System (ADS)

    Harness, Anthony; Cash, Webster; Warwick, Steve

    2017-11-01

    Starshades are a leading technology to enable the direct detection and spectroscopic characterization of Earth-like exoplanets. In an effort to advance starshade technology through system level demonstrations, the McMath-Pierce Solar Telescope was adapted to enable the suppression of astronomical sources with a starshade. The long baselines achievable with the heliostat provide measurements of starshade performance at a flight-like Fresnel number and resolution, aspects critical to the validation of optical models. The heliostat has provided the opportunity to perform the first astronomical observations with a starshade and has made science accessible in a unique parameter space, high contrast at moderate inner working angles. On-sky images are valuable for developing the experience and tools needed to extract science results from future starshade observations. We report on high contrast observations of nearby stars provided by a starshade. We achieve 5.6 × 10- 7 contrast at 30 arcseconds inner working angle on the star Vega and provide new photometric constraints on background stars near Vega.

  12. SmallSat Innovations for Planetary Science

    NASA Astrophysics Data System (ADS)

    Weinberg, Jonathan; Petroy, Shelley; Roark, Shane; Schindhelm, Eric

    2017-10-01

    As NASA continues to look for ways to fly smaller planetary missions such as SIMPLEX, MoO, and Venus Bridge, it is important that spacecraft and instrument capabilities keep pace to allow these missions to move forward. As spacecraft become smaller, it is necessary to balance size with capability, reliability and payload capacity. Ball Aerospace offers extensive SmallSat capabilities matured over the past decade, utilizing our broad experience developing mission architecture, assembling spacecraft and instruments, and testing advanced enabling technologies. Ball SmallSats inherit their software capabilities from the flight proven Ball Configurable Platform (BCP) line of spacecraft, and may be tailored to meet the unique requirements of Planetary Science missions. We present here recent efforts in pioneering both instrument miniaturization and SmallSat/sensorcraft development through mission design and implementation. Ball has flown several missions with small, but capable spacecraft. We also have demonstrated a variety of enhanced spacecraft/instrument capabilities in the laboratory and in flight to advance autonomy in spaceflight hardware that can enable some small planetary missions.

  13. Microgravity Materials Research and Code U ISRU

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Sibille, Laurent

    2004-01-01

    The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.

  14. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the "proving ground" of lunar-vicinity space to enabling high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). Preparations are also underway to evolve the vehicle into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. Even the initial configuration of SLS will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options, including the Global Exploration Roadmap. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As SLS draws closer to its first launch, the Program is maturing concepts for future capability upgrades, which could begin being available within a decade. These upgrades, from multiple unique payload accommodations to an upper stage providing more power for inspace propulsion, have ramifications for a variety of missions, from human exploration to robotic science.

  15. Dawn Orbit Determination Team : Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matt; Ardito, Alessandro; Han, Don; Haw, Robert; Kennedy, Brian; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The NASA Dawn spacecraft was launched on September 27, 2007 on a mission to study the asteroid belt's two largest objects, Vesta and Ceres. It is the first deep space orbiting mission to demonstrate solar-electric ion propulsion, providing the necessary delta-V to enable capture and escape from two extraterrestrial bodies. At this time, Dawn has completed its science campaign at Vesta and is currently on its journey to Ceres, where it will arrive in mid-2015. The spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012, capturing science data during four dedicated orbit phases. In order to maintain the reference orbits necessary for science and enable the transfers between those orbits, precise and timely orbit determination was required. The constraints associated with low-thrust ion propulsion coupled with the relatively unknown a priori gravity and rotation models for Vesta presented unique challenges for the Dawn orbit determination team. While [1] discusses the prediction performance of the orbit determination products, this paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  16. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  17. Earth Day 2017

    NASA Image and Video Library

    2017-12-08

    Happy Earth Day! Explore the diverse colors, unique shapes and striking patterns of our very favorite planet, Earth - as only NASA can see it. Credit: NASA/Goddard #nasagoddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Applications of Optical Fiber Assemblies in Harsh Environments, the Journey Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; LaRocca, Frank; Thomas, William Joe; Switzer, Robert; Chuska, Richard; Macmurphy, Shawn

    2008-01-01

    Over the past ten years, NASA has studied the effects of harsh environments on optical fiber assemblies for communication systems, lidar systems, and science missions. The culmination of this has resulted in recent technologies that are unique and tailored to meeting difficult requirements under challenging performance constraints. This presentation will focus on the past mission applications of optical fiber assemblies including; qualification information, lessons learned and new technological advances that will enable the road ahead.

  19. CILogon: An Integrated Identity and Access Management Platform for Science

    NASA Astrophysics Data System (ADS)

    Basney, J.

    2016-12-01

    When scientists work together, they use web sites and other software to share their ideas and data. To ensure the integrity of their work, these systems require the scientists to log in and verify that they are part of the team working on a particular science problem. Too often, the identity and access verification process is a stumbling block for the scientists. Scientific research projects are forced to invest time and effort into developing and supporting Identity and Access Management (IAM) services, distracting them from the core goals of their research collaboration. CILogon provides an IAM platform that enables scientists to work together to meet their IAM needs more effectively so they can allocate more time and effort to their core mission of scientific research. The CILogon platform enables federated identity management and collaborative organization management. Federated identity management enables researchers to use their home organization identities to access cyberinfrastructure, rather than requiring yet another username and password to log on. Collaborative organization management enables research projects to define user groups for authorization to collaboration platforms (e.g., wikis, mailing lists, and domain applications). CILogon's IAM platform serves the unique needs of research collaborations, namely the need to dynamically form collaboration groups across organizations and countries, sharing access to data, instruments, compute clusters, and other resources to enable scientific discovery. CILogon provides a software-as-a-service platform to ease integration with cyberinfrastructure, while making all software components publicly available under open source licenses to enable re-use. Figure 1 illustrates the components and interfaces of this platform. CILogon has been operational since 2010 and has been used by over 7,000 researchers from more than 170 identity providers to access cyberinfrastructure including Globus, LIGO, Open Science Grid, SeedMe, and XSEDE. The "CILogon 2.0" platform, launched in 2016, adds support for virtual organization (VO) membership management, identity linking, international collaborations, and standard integration protocols, through integration with the Internet2 COmanage collaboration software.

  20. Life Sciences Accomplishments 1994

    NASA Technical Reports Server (NTRS)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.

  1. Recent Advancements in Atmospheric Measurements Made from NASA Airborne Science Platforms

    NASA Astrophysics Data System (ADS)

    Schill, S.; Bennett, J.; Edmond, K.; Finch, P.; Rainer, S.; Schaller, E. L.; Stith, E.; Van Gilst, D.; Webster, A.; Yang, M. Y.

    2017-12-01

    Techniques for making atmospheric measurements are as wide-ranging as the atmosphere is complex. From in situ measurements made by land, sea, or air, to remote sensing data collected by satellites orbiting the Earth, atmospheric measurements have been paramount in advancing the combined understanding of our planet. To date, many of these advancements have been enabled by NASA Airborne Science platforms, which provide unique opportunities to make these measurements in remote regions, and to compare them with an ever-increasing archive of remote satellite data. Here, we discuss recent advances and current capabilities of the National Suborbital Research Center (NSRC) which provides comprehensive instrumentation and data system support on a variety of NASA airborne research platforms. Application of these methods to a number of diverse science missions, as well as upcoming project opportunities, will also be discussed.

  2. The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source

    NASA Astrophysics Data System (ADS)

    Yokoyama, K.; Lord, J. S.; Murahari, P.; Wang, K.; Dunstan, D. J.; Waller, S. P.; McPhail, D. J.; Hillier, A. D.; Henson, J.; Harper, M. R.; Heathcote, P.; Drew, A. J.

    2016-12-01

    A high power pulsed laser system has been installed on the high magnetic field muon spectrometer (HiFi) at the International Science Information Service pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high magnetic field, which opens new applications of muon spin spectroscopy. In this report we give an overview of the principle of the HiFi laser system and describe the newly developed techniques and devices that enable precisely controlled photoexcitation of samples in the muon instrument. A demonstration experiment illustrates the potential of this unique combination of the photoexcited system and avoided level crossing technique.

  3. The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source.

    PubMed

    Yokoyama, K; Lord, J S; Murahari, P; Wang, K; Dunstan, D J; Waller, S P; McPhail, D J; Hillier, A D; Henson, J; Harper, M R; Heathcote, P; Drew, A J

    2016-12-01

    A high power pulsed laser system has been installed on the high magnetic field muon spectrometer (HiFi) at the International Science Information Service pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high magnetic field, which opens new applications of muon spin spectroscopy. In this report we give an overview of the principle of the HiFi laser system and describe the newly developed techniques and devices that enable precisely controlled photoexcitation of samples in the muon instrument. A demonstration experiment illustrates the potential of this unique combination of the photoexcited system and avoided level crossing technique.

  4. Through Microgravity and Towards the Stars: Microgravity and Strategic Research at Marshall's Biological and Physical Space Research Laboratory

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2003-01-01

    The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.

  5. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and community development efforts, and SSERVI can further serve as a model for joint international scientific efforts through its creation of bridges across disciplines and between countries. Since the inception of the NASA Lunar Science Institute (SSERVIs predecessor), it has and will continue to contribute in many ways toward the advancement of lunar science and the eventual human exploration of the Moon.

  6. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical Research Enterprise is performing vital research and technology development to extend the reach of human space flight.

  7. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences

    ERIC Educational Resources Information Center

    Barnett, Philip; Lascar, Claudia

    2012-01-01

    The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…

  8. Skirting Saturn's Rings and Skimming Its Cloud Tops: Planning Cassini's End of Mission

    NASA Technical Reports Server (NTRS)

    Manor-Chapman, Emily; Magee, Kari; Brooks, Shawn; Edgington, Scott; Heventhal, William; Sturm, Erick

    2014-01-01

    In October 2010, the Cassini spacecraft embarked on the seven-year Solstice Mission. The mission will culminate with a spectacular series of orbits that bring Cassini between Saturn's innermost ring, the D ring, and the cloud tops of the planet. The spacecraft will make its closest passages ever to the planet allowing for unprecedented science to be collected on Saturn and its rings. These final orbits will expose the spacecraft to new environments, which presents a number of challenges to planning the final mission phase. While these challenges will require adaptations to planning processes and operations, they are not insurmountable. This paper describes the challenges identified and the steps taken to mitigate them to enable collection of unique Saturn system science.

  9. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses the needs of Underrepresented Audiences through NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, Denise A.; Bleacher, Lora; Hauck, Karin; Soeffing, Cassie; NASA SMD E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring the NASA science education resources and expertise to libraries nationwide. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO (which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. The NASA Science4Girls and Their Families initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging this particular underserved and underrepresented audience in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  11. Development of space simulation / net-laboratory system

    NASA Astrophysics Data System (ADS)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  12. Eclipse Megamovie Citizen Science: The Diamond Ring

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.; Mcintosh, S. W.; Martinez Oliveros, J. C.; Pasachoff, J. M.; Peticolas, L. M.; Bender, M.

    2016-12-01

    The 2017 North American total eclipse has begun to encourage many outreach and citizen-science activiites. We describe here a part of the Eclipse Megamovie program, in which we deploy a smartphone app to enable anybody with a GPS-equipped smartphone to record correct images of Baily's Beads (the "Diamond Ring" effect) for subsequent analysis. The multiply oversampled recordings of 2nd and 3rd contacts, across and along the track, will provide material for unique movie representations of the astronomical phenomenon. After the fact, this highly oversampled dataset can be used to confirm and/or extend detailed satellite topography of the Moon from Kaguya and LRO. In addition the high angular resolution inherent in the "knife-edge" motion will provide a unique view of the structure of the solar limb itself. The low angular resolution of the smartphone cameras is a handicap, but excellent time resolution and massive oversampling are great advantages. We anticipate public participation in image selection to get the best sequences of last few-millisecond imagery for the science product here, which can follow the known motions of the solar limb due to p-modes and granulation. No comparable database exists, and so the final product of this crowdsourcing will be a public archive of the data and metadata for future studies.

  13. The Saturn Educator Guide

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Throop, H. B.

    1998-09-01

    NASA's Cassini Mission to Saturn is the most ambitious deep space mission ever. Its 4-year scientific tour of Saturn, its majestic rings, and its 18 presently known moons will reveal new beauty, richness and insights on behalf of all humankind. This presentation introduces the inquiry-based lessons from the innovative Saturn Educator Guide, appropriate for grades 5-8. The Guide is the product of a collaborative venture among teachers, scientists, engineers, and education researchers. The Guide offers opportunities to explore Saturn as a system, and the Cassini robotic spacecraft as an extension of human senses. There are also unique lessons on the history of science, science as a human endeavor, and science in social and personal perspectives. The Guide highlights the interconnections between Saturn and other areas of human endeavor (art, language, history and mythology). This distinctive blend will enable a grander diversity of learners to share and benefit from the excitement of Cassini mission discoveries.

  14. Genome research elucidating environmental adaptation: Dark-fly project as a case study.

    PubMed

    Fuse, Naoyuki

    2017-08-01

    Organisms have the capacity to adapt to diverse environments, and environmental adaptation is a substantial driving force of evolution. Recent progress of genome science has addressed the genetic mechanisms underlying environmental adaptation. Whole genome sequencing has identified adaptive genes selected under particular environments. Genome editing technology enables us to directly test the role(s) of a gene in environmental adaptation. Genome science has also shed light on a unique organism, Dark-fly, which has been reared long-term in the dark. We determined the whole genome sequence of Dark-fly and reenacted environmental selections of the Dark-fly genome to identify the genes related to dark-adaptation. Here I will give an overview of current progress in genome science and summarize our study using Dark-fly, as a case study for environmental adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Climate Change: From Science to Practice.

    PubMed

    Wheeler, Nicola; Watts, Nick

    2018-03-01

    Climate change poses a significant threat to human health. Understanding how climate science can be translated into public health practice is an essential first step in enabling robust adaptation and improving resiliency to climate change. Recent research highlights the importance of iterative approaches to public health adaptation to climate change, enabling uncertainties of health impacts and barriers to adaptation to be accounted for. There are still significant barriers to adaptation, which are context-specific and thus present unique challenges to public health practice. The implementation of flexible adaptation approaches, using frameworks targeted for public health, is key to ensuring robust adaptation to climate change in public health practice. The BRACE framework provides an excellent approach for health adaptation to climate change. Combining this with the insights provided and by the adaptation pathways approach allows for more deliberate accounting of long-term uncertainties. The mainstreaming of climate change adaptation into public health practice and planning is important in facilitating this approach and overcoming the significant barriers to effective adaptation. Yet, the immediate and future limits to adaptation provide clear justification for urgent and accelerated efforts to mitigate climate change.

  16. The National Science Foundation CAREER Award: A Unique Solution to the Challenges of the Tenure Process

    NASA Astrophysics Data System (ADS)

    Fouch, M. J.

    2011-12-01

    There is a dichotomy inherent in the tenure process at most research-strong universities. Most institutions require strong performance in research production and grant acquisition, while at the same time very good to excellent teaching performance. However, in the first several years of the tenure process, many new faculty spend most of their time preparing lectures for new classes and writing grant proposals, leaving little time to forge new directions and define their individual paths in their research, which, somewhat ironically, is the primary factor by which tenure is either granted or denied. The CAREER grant is a unique solution to this problem, as it enables beginning faculty members to directly thread their research into their teaching, and vice versa. My CAREER award, the first granted by the (at the time) fledgling EarthScope Science program at NSF, enabled me to bring EarthScope data and science directly into the classroom. One cadre of efforts was a focus on software development, which is a critical roadblock in geophysics for students who do not have extensive experience with Unix-based coding. For example, Kevin Eagar developed the MATLAB-based FuncLab software system that enables one to quickly and efficiently analyze receiver functions, allowing one to image layers within Earth's interior, such as the crust-mantle boundary. This system is now publically available at http://geophysics.asu.edu/funclab. At Arizona State University, 5 undergraduate students and 2 graduate students have already used this software package to produce publishable scientific results over the past 2 years, enabling them to experience research firsthand and learn a range of key research skills for their future endeavors. The CAREER award also provided ample opportunities for my research group and me to forge into new research directions given the broad scope of the proposed work. Ultimately, this freedom has led to a number of new and exciting results regarding the nature of deformation in Earth's crust, Earth's response to moderate sized earthquakes occurring hundreds of kilometers away, and further new software development to handle these new, massive, datasets provided by the EarthScope program. The culmination of these efforts allowed me a much smoother path toward tenure, given that the CAREER grant enabled new directions and production through integration of my teaching and research (as well as my national service to the EarthScope program). The challenges to this integration were quite modest given that I was able to fold my group's research directly into some of my teaching. Finally, while the program is very good at present, I will present a few ideas for program improvement. For example, it is essential that NSF continue to fully inform and educate peer reviewers of the special nature of CAREER awards, since it is a major challenge for most reviewers to fully and adequately judge both research and teaching. Further, because of the unique nature of the CAREER proposal, NSF might consider extending the length of the proposal by 2-3 pages to provide additional room for extended project timelines, etc.

  17. Scientist-Educator Partnerships: the Cornerstone of Astrophysics E/PO

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, Denise A.; Lawton, Brandon; Eisenhamer, Bonnie; Jirdeh, Hussein

    2015-11-01

    For nearly two decades, NASA has partnered scientists and educators by embedding Education and Public Outreach (E/PO) programs and funding in its science missions and research activities. This enables scientist and educators to work side-by-side in translating cutting-edge NASA science and technology for classrooms, museums, and public venues.The Office of Public Outreach at the Space Telescope Science Institute (STScI) is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As home to both Hubble Space Telescope and the future James Webb Space Telescope, STScI leverages the expertise of its scientists to create partnerships with its collocated Education Team to translate cutting-edge NASA science into new and effective learning tools. In addition, STScI is home of the NASA Science Mission Directorate (SMD) Astrophysics Science E/PO Forum, which facilitates connections both within the SMD E/PO community and beyond to scientists and educators across all NASA Astrophysics missions. These collaborations strengthen partnerships, build best practices, and enhance coherence for NASA SMD-funded E/PO missions and programs.We will present examples of astronomers’ engagement in our E/PO efforts, such as NASA Science4Girls.

  18. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  19. NEON Citizen Science: Planning and Prototyping (Invited)

    NASA Astrophysics Data System (ADS)

    Gram, W.

    2010-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of “human sensors.” As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include “citizens” or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was chosen as the focus of this citizen science campaign because it is a visible and comprehensible way of demonstrating the effects of climate change. In addition, plants are readily accessible in nearly every neighborhood and park, and wild areas across the continent, so people can make observations whether they live near an inner city park or in the rural countryside. Recently, NEON built 3 web tools that enable users to visualize PBB data. The tools include a mapping function that displays selected PBB distributional data on a map, an animated map that shows “green up” through time and space, and a graphing tool that compares number of species flowering or leafing out with day length. This prototyping will help NEON better understand how to engage citizen science participants in “doing science” beyond data collection.

  20. Ni-Ti Alloys for Aerospace Bearing Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2017-01-01

    Nickel-rich Ni-Ti alloys are emerging candidate materials for aerospace bearing applications. These alloys exhibit a unique combination of physical, chemical, and tribological properties that are highly relevant to challenging aerospace bearings and other mechanical components. Despite being made solely from metals, Ni-Ti alloys are classified as intermetallics with properties akin to both metals and ceramics. For instance, like metals, they are electrically conductive but they tend to be brittle like ceramics. When properly processed, they have high hardness, low elastic modulus and an extensive elastic deformation range that imparts extraordinarily high resilience and resistance to denting. New alloy compositions enable simpler thermal processing and machining and intensive microstructural analyses have helped elucidate the materials science mechanisms governing hardness. In this paper, the application of state-of-art in NiTi alloys for aerospace bearings and mechanical components is explored. In addition to reviewing future trends and remaining challenges, the unique approaches and methods of tailoring bearing design to accommodate NiTis unique properties is discussed.

  1. Tutorial on X-Ray Free-Electron Lasers

    DOE PAGES

    Carlsten, Bruce E.

    2018-05-02

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  2. Tutorial on X-Ray Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsten, Bruce E.

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  3. Community Coordinated Modeling Center: Paving the Way for Progress in Space Science Research to Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Mullinix, R.; MacNeice, P. J.; Pulkkinen, A. A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.; Wiegand, C.

    2013-12-01

    Community Coordinated Modeling Center (CCMC) was established at the dawn of the millennium as an essential element on the National Space Weather Program. One of the CCMC goals was to pave the way for progress in space science research to operational space weather forecasting. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment, in developing and maintaining powerful web-based tools and systems ready to be used by space weather service providers and decision makers as well as in space weather prediction capabilities assessments. The presentation will showcase latest innovative solutions for space weather research, analysis, forecasting and validation and review on-going community-wide initiatives enabled by CCMC applications.

  4. Leaders who create change and those who manage it. How leaders limit success.

    PubMed

    Bruhn, John G

    2004-01-01

    There is no formula for either leading or managing change. Every organization and leader is unique. Leading change, however, is more art than science. Managing change is more science than art. Leading change is not simply a matter of a leader's style or personality; it is a leader's philosophy of how to generate and mobilize the total resources of an organization to enable it to be its best. Managing change, on the other hand, is focused on maintaining stability in an organization and containing the effects of unwanted and unexpected change. Leaders set the limits of success in their organizations by how they manage change. The different approaches of 2 leaders who have created change to correct problems in our health care delivery system are discussed.

  5. Polarization Science with the ngVLA: magnetic fields and dust properties in cores, disks and on larger scales

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda; Hull, Chat

    2018-01-01

    Polarization capabilities of the ngVLA will enable exploration of a wide range of phenomena including: (1) magnetic fields in protostellar cores and protoplanetary disks via polarized emission from magnetically aligned dust grains and spectral lines, including in regions optically thick at ALMA wavelengths; (2) polarization from dust scattering in disks, (3) spectral-line polarization from the Zeeman and Goldreich-Kylafis effects, and (4) magnetic fields in protostellar jets and OB-star-forming cores via synchrotron emission.We will discuss each of these science drivers in turn, with a particular emphasis on why the ngVLA provides a unique means of probing dust properties in the midplane of protoplanetary disks and hence the building blocks of planets in the innermost regions of disks.

  6. How do we interest students in science?

    NASA Astrophysics Data System (ADS)

    Murray, L.

    2016-02-01

    In today's world science literacy is now, more than ever, critical to society. However, today's technically savvy student tends to be bored by "cook-book" laboratory exercises and dated lecture style, which typifies the way that most science courses are taught. To enhance student interest in and understanding of the sciences, we developed two unique programs, in which teachers were provided with the tools and hands-on experience that enabled them to implement research- and inquiry-based projects with their students. The approach was based a framework that is student driven and enables active participation and innovation in the study of the environment. The framework involved selection of a theme and an activity that captured the interest of the participants, participant development of research or investigative questions based on the theme, experimentation to address the research questions, formulation of conclusions, and communication of these results. The projects consisted of two parts: a professional development institute for teachers and the classroom implementation of student research projects, both of which incorporated the framework process. The institutes focused on modeling the framework process, with teachers actively developing questions, researching the question, formulating results and conclusions. This method empowered teachers to be confident in the implementation of the process with their students. With support from project staff, teachers followed up by incorporating the method of teaching with their students. Evaluation results from the programs concluded that projects such as these can increase student interest in and understanding of the scientific process.

  7. Launching Science: Science Opportunities Provided by NASA's Constellation System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA began implementation of the first phases of a new space exploration policy. This implementation effort included the development of a new human-carrying spacecraft, known as Orion; the Altair lunar lander; and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System (described in Chapter 5 of this report). The Altair lunar lander, which is in the very preliminary concept stage, is not discussed in detail in the report. In 2007 NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System. To do so, the NRC established the Committee on Science Opportunities Enabled by NASA's Constellation System. In general, the committee interpreted "Constellation-enabled" broadly, to include not only mission concepts that required Constellation, but also those that could be significantly enhanced by Constellation. The committee intends this report to be a general overview of the topic of science missions that might be enabled by Constellation, a sort of textbook introduction to the subject. The mission concepts that are reviewed in this report should serve as general examples of kinds of missions, and the committee s evaluation should not be construed as an endorsement of the specific teams that developed the mission concepts or of their proposals. Additionally, NASA has a well-developed process for establishing scientific priorities by asking the NRC to conduct a "decadal survey" for a particular discipline. Any scientific mission that eventually uses the Constellation System will have to be properly evaluated by means of this decadal survey process. The committee was impressed with the scientific potential of many of the proposals that it evaluated. However, the committee notes that the Constellation System has been justified by NASA and selected in order to enable human exploration beyond low Earth orbit.not to enable science missions. Virtually all of the science mission concepts that could take advantage of Constellation s unique capabilities are likely to be prohibitively expensive. Several times in the past NASA has begun ambitious space science missions that ultimately proved too expensive for the agency to pursue. Examples include the Voyager-Mars mission and the Prometheus program and its Jupiter Icy Moons Orbiter spacecraft (both examples are discussed in Chapter 1). Finding: The scientific missions reviewed by the committee as appropriate for launch on an Ares V vehicle fall, with few exceptions, into the "flagship" class of missions. The preliminary cost estimates, based on mission concepts that at this time are not very detailed, indicate that the costs of many of the missions analyzed will be above $5 billion (in current dollars). The Ares V costs are not included in these estimates. All of the costs discussed in this report are presented in current-year (2008) dollars, not accounting for potential inflation that could occur between now and the decade in which these missions might be pursued. In general, preliminary cost estimates for proposed missions are, for many reasons, significantly lower than the final costs. Given the large cost estimates for many of the missions assessed in this report, the potentially large impacts on NASA's budget by many of these missions are readily apparent.

  8. EVA: Evryscopes for the Arctic and Antarctic

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Law, N.; Tasuya, O.; Fors, O.; Dennihy, E.; Carlberg, R.; Tuthill, P.; Ashley, M.; Soonthornthum, B.

    2017-06-01

    We are planning to build Evryscopes for the Arctic and Antarctic (EVA), which will enable the first ultra-wide-field, high-cadence sky survey to be conducted from both Poles. The system is based on the successful Evryscope concept, already installed and operating since 2015 at Cerro Tololo in Chile with the following characteristics: robotic operation, 8,000 square degrees simultaneous sky coverage, 2-minute cadence, milli-mag level photometric accuracy, pipelined data processing for real-time analysis and full data storage for off-line analysis. The initial location proposed for EVA is the PEARL station on Ellesmere island; later also an antarctic location shall be selected. The science goals enabled by this unique combination of almost full-sky coverage and high temporal cadence are numerous, and include among others ground-breaking forays in the fields of exoplanets, stellar variability, asteroseismology, supernovae and other transient events. The EVA polar locations will enable uninterrupted observations lasting in principle over weeks and months. EVA will be fully robotic. We discuss the EVA science drivers and expected results, and present the logistics and the outline of the project which is expected to have first light in the winter of 2018. The cost envelope can be kept very competitive thanks to R&D already employed for the CTIO Evryscope, to our experience with both Arctic and Antarctic locations, and to the use of off-the-shelf components.

  9. Connecting Arctic Research Across Boundaries through the Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.

    2017-12-01

    The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science, expanding awareness of Arctic research in Washington, DC and in Alaska, and working to expand the base of support for Arctic research during this time of challenged U.S. federal research funding. The presentation will highlight our latest work to promote synthesis and systems thinking and make valuable connections.

  10. The Pursuit of a Scalable Nanofabrication Platform for Use in Material and Life Science Applications

    PubMed Central

    GRATTON, STEPHANIE E. A.; WILLIAMS, STUART S.; NAPIER, MARY E.; POHLHAUS, PATRICK D.; ZHOU, ZHILIAN; WILES, KENTON B.; MAYNOR, BENJAMIN W.; SHEN, CLIFTON; OLAFSEN, TOVE; SAMULSKI, EDWARD T.; DESIMONE, JOSEPH M.

    2008-01-01

    CONSPECTUS In this Account, we describe the use of perfluoropolyether (PFPE)-based materials that are able to accurately mold and replicate micro- and nanosized features using traditional techniques such as embossing as well as new techniques that we developed to exploit the exceptional surface characteristics of fluorinated substrates. Because of the unique partial wetting and nonwetting characteristics of PFPEs, we were able to go beyond the usual molding and imprint lithography approaches and have created a technique called PRINT (Particle [or Pattern] Replication In Nonwetting Templates). PRINT is a distinctive “top-down” fabrication technique capable of generating isolated particles, arrays of particles, and arrays of patterned features for a plethora of applications in both nanomedicine and materials science. A particular strength of the PRINT technology is the high-resolution molding of well-defined particles with precise control over size, shape, deformability, and surface chemistry. The level of replication obtained showcases some of the unique characteristics of PFPE molding materials. In particular, these materials arise from very low surface energy precursors with positive spreading coefficients, can be photocured at ambient temperature, and are minimally adhesive, nonswelling, and conformable. These distinctive features enable the molding of materials with unique attributes and nanometer resolution that have unprecedented scientific and technological value. For example, in nanomedicine, the use of PFPE materials with the PRINT technique allows us to design particles in which we can tailor key therapeutic parameters such as bioavailability, biodistribution, target-specific cell penetration, and controlled cargo release. Similarly, in materials science, we can fabricate optical films and lens arrays, replicate complex, naturally occurring objects such as adenovirus particles, and create 2D patterned arrays of inorganic oxides. PMID:18720952

  11. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP mission of Accelerator Stewardship.« less

  12. Scientific Uses and Directions of SPDF Data Services

    NASA Technical Reports Server (NTRS)

    Fung, Shing

    2007-01-01

    From a science user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project perform as a working and highly functional heliophysics virtual observatory. CDAWeb enables plots, listings and file downloads for current data across the boundaries of missions and instrument types (and now including data from THEMIS and STEREO), VSPO access to a wide range of distributed data sources. SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently-important to heliophysics science. OMNIWeb with its new extension to 1- and 5- minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. To enable easier integrated use of our capabilities by developers and by the emerging heliophysics VxOs, our data and services are available through webservices-based APls as well as through our direct user interfaces. SPDF has also now developed draft descriptions of its holdings in SPASE-compliant XML In addition to showcasing recent enhancements to SPDF capabilities, we will use these systems and our experience in developing them: to demonstrate a few typical science use cases; to discuss key scope and design issues among users, service providers and end data providers; and to identify key areas where existing capabilities and effective interface design are still inadequate to meet community needs.

  13. The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

    PubMed

    Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  14. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    PubMed Central

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  15. Prospects for Interdisciplinary Science Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011, and is now embarking on its first year of the coming decade of use as a laboratory. Two key types of physical science research are enabled by ISS: studies of processes that are normally masked by gravity, and instruments that take advantage of its position as a powerful platform in orbit. The absence of buoyancy-driven convection enables experiments in diverse areas such as fluids near the critical point, Marangoni convection, combustion, and coarsening of metal alloys. The positioning of such a powerful platform in orbit with robotic transfer and instrument support also provides a unique alternative platform for astronomy and physics instruments. Some of the operating or planned instruments related to fundamental physics on the International Space Station include MAXI (Monitoring all-sky X-ray Instrument for ISS), the Alpha Magnetic Spectrometer, CALET (Calorimetric Electron Telescope), and ACES (Atomic Clock Experiment in Space). The presentation will conclude with an overview of pathways for funding different types of experiments from NASA funding to the ISS National Laboratory, and highlights of the streamlining of services to help scientists implement their experiments on ISS.

  16. Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.

    2013-01-01

    On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.

  17. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials

    PubMed Central

    Visser, Claas Willem; Kamperman, Tom; Karbaat, Lisanne P.; Lohse, Detlef; Karperien, Marcel

    2018-01-01

    Microfluidic chips provide unparalleled control over droplets and jets, which have advanced all natural sciences. However, microfluidic applications could be vastly expanded by increasing the per-channel throughput and directly exploiting the output of chips for rapid additive manufacturing. We unlock these features with in-air microfluidics, a new chip-free platform to manipulate microscale liquid streams in the air. By controlling the composition and in-air impact of liquid microjets by surface tension–driven encapsulation, we fabricate monodisperse emulsions, particles, and fibers with diameters of 20 to 300 μm at rates that are 10 to 100 times higher than chip-based droplet microfluidics. Furthermore, in-air microfluidics uniquely enables module-based production of three-dimensional (3D) multiscale (bio)materials in one step because droplets are partially solidified in-flight and can immediately be printed onto a substrate. In-air microfluidics is cytocompatible, as demonstrated by additive manufacturing of 3D modular constructs with tailored microenvironments for multiple cell types. Its in-line control, high throughput and resolution, and cytocompatibility make in-air microfluidics a versatile platform technology for science, industry, and health care. PMID:29399628

  18. NASA Astrophysics EPO Community: Increasing and Sustaining Youth and Public Engagement in STEM

    NASA Astrophysics Data System (ADS)

    Lawton, B.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Schultz, G.; Manning, J.; NASA Astrophysics EPO Community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enable youth to engage directly in doing Science, Technology, Engineering, and Mathematics (STEM) inside and outside of school. The NASA SMD Astrophysics EPO community has proven expertise in providing student opportunities that reinforce research skills; exhibits, multimedia shows, and visualizations that inspire and engage; professional development for informal educators; and partnerships that provide local, regional, and national reach. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum support youth and public engagement in STEM in these ways, including associated metrics and evaluation findings.

  19. Investment into the future of microbial resources: culture collection funding models and BRC business plans for biological resource centres.

    PubMed

    Smith, David; McCluskey, Kevin; Stackebrandt, Erko

    2014-01-01

    Through their long history of public service, diverse microbial Biological Resource Centres (mBRCs) have made myriad contributions to society and science. They have enabled the maintenance of specimens isolated before antibiotics, made available strains showing the development and change of pathogenicity toward animals, humans and plants, and have maintained and provided reference strains to ensure quality and reproducibility of science. However, this has not been achieved without considerable financial commitment. Different collections have unique histories and their support is often tied to their origins. However many collections have grown to serve large constituencies and need to develop novel funding mechanisms. Moreover, several international initiatives have described mBRCs as a factor in economic development and have led to the increased professionalism among mBRCs.

  20. A compilation of cold cases using scanning electron microscopy at the University of Rhode Island

    NASA Astrophysics Data System (ADS)

    Platek, Michael J.; Gregory, Otto J.

    2015-10-01

    Scanning electron microscopy combined with microchemical analysis has evolved into one of the most widely used instruments in forensic science today. In particular, the environmental scanning electron microscope (SEM) in conjunction with energy dispersive spectroscopy (EDS), has created unique opportunities in forensic science in regard to the examination of trace evidence; i.e. the examination of evidence without altering the evidence with conductive coatings, thereby enabling criminalists to solve cases that were previously considered unsolvable. Two cold cases were solved at URI using a JEOL 5900 LV SEM in conjunction with EDS. A cold case murder and a cold missing person case will be presented from the viewpoint of the microscopist and will include sample preparation, as well as image and chemical analysis of the trace evidence using electron microscopy and optical microscopy.

  1. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  2. [Neurophenomenology: Project for a Science of Past Experiences].

    PubMed

    Segovia-Cuellar, Andrés

    2012-09-01

    Since the middle of 20(th) Century, cognitive science has been recognized as the genuine convergence field for all scientific advances in human mind studies with the mechanisms enabling knowledge. Since then, it has become a multidisciplinary area where several research disciplines and actors have acquired citizenship, allowing new expectations on the scientific study of human uniqueness. Critical assessment of the discussion that the discourse of theoretical biology has been assuming regarding the study of the cognitive phenomenon with special attention to the enactive project and, extensively, to the neuro-phenomenology of Francisco J. Varela. Starting with a brief and synthesized history of cognitive science, we will establish the key principles for understanding the emergence of the enactive paradigm and the "embodied" turn influenced by continental phenomenology in the cognitive science, as well as the general guidelines of Neurophenomenology. The "hard problem" of consciousness still faces several types of reductionism relegating the cognitive issue to a kind of merely rational, individual, abstract and disembodied mechanism, thus strengthening the functionalist paradigm in mind philosophy. A solution to classic dichotomies in mind sciences must start rejecting such assumptions. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  3. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  4. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  5. The SGI/CRAY T3E: Experiences and Insights

    NASA Technical Reports Server (NTRS)

    Bernard, Lisa Hamet

    1999-01-01

    The focus of the HPCC Earth and Space Sciences (ESS) Project is capability computing - pushing highly scalable computing testbeds to their performance limits. The drivers of this focus are the Grand Challenge problems in Earth and space science: those that could not be addressed in a capacity computing environment where large jobs must continually compete for resources. These Grand Challenge codes require a high degree of communication, large memory, and very large I/O (throughout the duration of the processing, not just in loading initial conditions and saving final results). This set of parameters led to the selection of an SGI/Cray T3E as the current ESS Computing Testbed. The T3E at the Goddard Space Flight Center is a unique computational resource within NASA. As such, it must be managed to effectively support the diverse research efforts across the NASA research community yet still enable the ESS Grand Challenge Investigator teams to achieve their performance milestones, for which the system was intended. To date, all Grand Challenge Investigator teams have achieved the 10 GFLOPS milestone, eight of nine have achieved the 50 GFLOPS milestone, and three have achieved the 100 GFLOPS milestone. In addition, many technical papers have been published highlighting results achieved on the NASA T3E, including some at this Workshop. The successes enabled by the NASA T3E computing environment are best illustrated by the 512 PE upgrade funded by the NASA Earth Science Enterprise earlier this year. Never before has an HPCC computing testbed been so well received by the general NASA science community that it was deemed critical to the success of a core NASA science effort. NASA looks forward to many more success stories before the conclusion of the NASA-SGI/Cray cooperative agreement in June 1999.

  6. CosmoQuest: Building community around Citizen Science Collaboration

    NASA Astrophysics Data System (ADS)

    Gay, P.

    2015-12-01

    CosmoQuest was envisioned in 2011 with a singular goal: to create a place where people of all backgrounds can learn and do science in a virtual research community. Like a brick-and-mortar center, CosmoQuest includes facilities for doing science and for educating its members through classes, seminars, and other forms of professional development. CosmoQuest is unique with its combination of public engagement in doing science—known as "citizen science"— and its diversity of learning opportunities that enable STEM education. Our suite of activities is able maximize people's ability to learn and do science, while improving scientific literacy. Since its launch on January 1, 2012, CosmoQuest has grown to become the most trafficked astronomy citizen science site on the English-language internet. It has hosted five citizen science portals supporting NASA SMD science and is the only citizen science site to have produced peer-reviewed surface science results [Robbins, et al. 2014]. CosmoQuest, however, is more than just citizen science. It is a virtual research center for the public, and for the educators who teach in classrooms and science centers. Like with with any research center, CosmoQuest's success hinges on its ability to build a committed research community, and the challenge has been creating this community without the benefit of real-world interactions. In this talk, we overview how CosmoQuest has built a virtual community through screen-to-screen interactions using a suite of technologies that must constantly evolve as the internet evolves.

  7. High pressure reaction cell and transfer mechanism for ultrahigh vacuum spectroscopic chambers

    NASA Astrophysics Data System (ADS)

    Nelson, A. E.; Schulz, K. H.

    2000-06-01

    A novel high pressure reaction cell and sample transfer mechanism for ultrahigh vacuum (UHV) spectroscopic chambers is described. The design employs a unique modification of a commercial load-lock transfer system to emulate a tractable microreactor. The reaction cell has an operating pressure range of <1×10-4 to 1000 Torr and can be evacuated to UHV conditions to enable sample transfer into the spectroscopic chamber. Additionally, a newly designed sample holder equipped with electrical and thermocouple contacts is described. The sample holder is capable of resistive specimen heating to 400 and 800 °C with current requirements of 14 A (2 V) and 25 A (3.5 V), respectively. The design enables thorough material science characterization of catalytic reactions and the surface chemistry of catalytic materials without exposing the specimen to atmospheric contaminants. The system is constructed primarily from readily available commercial equipment allowing its rapid implementation into existing laboratories.

  8. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  9. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Wercinski, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (approximately 40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low-mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term and (3) Heavy mass and human missions to Mars in the long term.

  10. Enabling global collaborations through policy engagement and CMS applications

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Sepulveda Carlo, E.; Delgado Arias, S.

    2015-12-01

    Different spatial scales prompt different discussions among carbon data stakeholders. NASA's Carbon Monitoring System (CMS) initiative has enabled collaboration opportunities with stakeholders whose data needs and requirements are unique to the spatial scope of their work: from county to the international scale. At the very local level, the Sonoma County Agricultural Preservation and Open Space District leverages CMS high-resolution biomass estimates to develop a Monitoring, Reporting, and Verification (MRV) system in support of the District's 10-year land stewardship plan and the California's Global Warming Solutions Act (AB32). On the eastern coast, at the state level, the Maryland Department of Natural Resources utilizes the same high-resolution biomass estimates on a larger scale to better strategize in achieving the goal of 40% canopy cover statewide by 2020. At a regional scale that encompasses the three states of Maryland, Delaware, and Pennsylvania, LiDAR data collection of the Chesapeake Bay watershed dominate the stakeholder discussions. By collaborating with the U.S. Geological Survey's 3-D Elevation Program (3DEP), high-resolution LiDAR data will fill critical data gaps to help implement watershed protection strategies such as increasing riparian forest buffers to reduce runoff. Outside of the U.S., the World Resources Institute seeks to harness CMS reforestation products and technical expertise in addressing land restoration priorities specific to each Latin American country. CMS applications efforts expand beyond forest carbon examples discussed above to include carbon markets, ocean acidification, national greenhouse gas inventory, and wetlands. The broad array of case studies and lessons learned through CMS Applications in scaling carbon science for policy development at different spatial scales is providing unique opportunities that leverage science through policy needs.

  11. Quasi-Optical Filter Development and Characterization for Far-IR Astronomical Applications

    NASA Astrophysics Data System (ADS)

    Stewart, Kenneth

    Mid-infrared through microwave filters, beamsplitters, and polarizers are a crucial supporting technology for NASA’s space astronomy, astrophysics, and earth science programs. Building upon our successful production of mid-infrared, far-infrared, millimeter, and microwave bandpass and lowpass filters, we propose to investigate aspects of their optical performance that are still not well understood and have yet to be addressed by other researchers. Specifically, we wish to understand and mitigate unexplained high-frequency leaks found to degrade or invalidate spectroscopic data from flight instruments such as Herschel/PACS, SHARC II, GISMO, and ACT, but not predicted by numerical simulations. A complete understanding will improve accuracy and sensitivity, and will enable the mass and volume of cryogenic baffling to be appropriately matched to the physically achievable quasioptical filter response, thereby reducing the cost of future far-infrared missions. The development and experimental validation of this modeling capability will enable optimization of system performance as well as reduce risks to the schedule and end science products for all future space and suborbital missions that use quasioptical filters. The outcome of this work will be critical in achieving the exacting background-limited bolometric detector performance specifications of future far-infrared and submillimeter space instruments. This program will allow us to apply our unique in-house numerical simulation software and develop enhanced layer alignment, filter fabrication, and testing techniques for the first time to address these issues: (1) enhance filter performance, (2) simplify the optical architecture of future instruments by improving our understanding of high-frequency leaks, and (3) produce filters which minimize or eliminate these important effects. With our state-ofthe-art modeling, fabrication, and testing facilities and expertise, established in previous projects, we are uniquely positioned to tackle this development.

  12. An overview of the NASA Langley Atmospheric Data Center: Online tools to effectively disseminate Earth science data products

    NASA Astrophysics Data System (ADS)

    Parker, L.; Dye, R. A.; Perez, J.; Rinsland, P.

    2012-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission and aircraft campaign data sets. These datasets posed unique challenges to the user community at large due to the sheer volume and variety of the data and the lack of intuitive features in the order tools available to the investigator. Some of these data sets also lack sufficient metadata to provide rudimentary data discovery. To meet the needs of emerging users, the ASDC addressed issues in data discovery and delivery through the use of standards in data and access methods, and distribution through appropriate portals. The ASDC is currently undergoing a refresh of its webpages and Ordering Tools that will leverage updated collection level metadata in an effort to enhance the user experience. The ASDC is now providing search and subset capability to key mission satellite data sets. The ASDC has collaborated with Science Teams to accommodate prospective science users in the climate and modeling communities. The ASDC is using a common framework that enables more rapid development and deployment of search and subset tools that provide enhanced access features for the user community. Features of the Search and Subset web application enables a more sophisticated approach to selecting and ordering data subsets by parameter, date, time, and geographic area. The ASDC has also applied key practices from satellite missions to the multi-campaign aircraft missions executed for Earth Venture-1 and MEaSUReS

  13. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    NASA Astrophysics Data System (ADS)

    Morrow, Cherilynn A.

    1993-11-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  14. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    NASA Technical Reports Server (NTRS)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  15. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    NASA Technical Reports Server (NTRS)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  16. Cholesteric Liquid Crystal Based Reflex Color Reflective Displays

    NASA Astrophysics Data System (ADS)

    Khan, Asad

    2012-02-01

    Bistable color cholesteric liquid crystal displays are unique LCDs that exhibit high reflectivity, good contrast, extremely low power operation, and are amenable to versatile roll-to-roll manufacturing. The display technology, now branded as Reflex has been in commercialized products since 1996. It has been the subject of extensive research and development globally by a variety of parties in both academic and industrial settings. Today, the display technology is in volume production for applications such as dedicated eWriters (Boogie Board), full color electronic skins (eSkin), and displays for smart cards. The flexibility comes from polymerization induced phase separation using unique materials unparalleled in any other display technology. The blend of monomers, polymers, cross linkers, and other components along with nematic liquid crystals and chiral dopants is created and processed in such ways so as to enable highly efficient manufactrable displays using ultra thin plastic substrates -- often as thin as 50μm. Other significant aspects include full color by stacking or spatial separation, night vision capability, ultra high resolution, as well as active matrix capabilities. Of particular note is the stacking approach of Reflex based displays to show full color. This approach for reflective color displays is unique to this technology. Owing to high transparency in wavelength bands outside the selective reflection band, three primarily color layers can be stacked on top of each other and reflect without interfering with other layers. This highly surprising architecture enables the highest reflectivity of any other reflective electronic color display technology. The optics, architecture, electro-topics, and process techniques will be discussed. This presentation will focus on the physics of the core technology and color, it's evolution from rigid glass based displays to flexible displays, development of products from the paradigm shifting concepts to consumer products and related markets. This is a development that spans a wide space of highly technical development and fundamental science to products and commercialization to enable the entry of the technology into consumer markets.

  17. Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias.

    PubMed

    Richter, Claudia; Christoph, Jan; Lehnart, Stephan E; Luther, Stefan

    2016-01-01

    The control of spatiotemporal dynamics in biological systems is a fundamental problem in nonlinear sciences and has important applications in engineering and medicine. Optogenetic tools combined with advanced optical technologies provide unique opportunities to develop and validate novel approaches to control spatiotemporal complexity in neuronal and cardiac systems. Understanding of the mechanisms and instabilities underlying the onset, perpetuation, and control of cardiac arrhythmias will enable the development and translation of novel therapeutic approaches. Here we describe in detail the preparation and optical mapping of transgenic channelrhodopsin-2 (ChR2) mouse hearts, cardiac cell cultures, and the optical setup for photostimulation using digital light processing.

  18. Explorative Analyses of Nursing Research Data.

    PubMed

    Kim, Hyeoneui; Jang, Imho; Quach, Jimmy; Richardson, Alex; Kim, Jaemin; Choi, Jeeyae

    2016-10-26

    As a first step of pursuing the vision of "big data science in nursing," we described the characteristics of nursing research data reported in 194 published nursing studies. We also explored how completely the Version 1 metadata specification of biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) represents these metadata. The metadata items of the nursing studies were all related to one or more of the bioCADDIE metadata entities. However, values of many metadata items of the nursing studies were not sufficiently represented through the bioCADDIE metadata. This was partly due to the differences in the scope of the content that the bioCADDIE metadata are designed to represent. The 194 nursing studies reported a total of 1,181 unique data items, the majority of which take non-numeric values. This indicates the importance of data standardization to enable the integrative analyses of these data to support big data science in nursing. © The Author(s) 2016.

  19. Toward benchmarking in catalysis science: Best practices, challenges, and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bligaard, Thomas; Bullock, R. Morris; Campbell, Charles T.

    Benchmarking is a community-based and (preferably) community-driven activity involving consensus-based decisions on how to make reproducible, fair, and relevant assessments. In catalysis science, important catalyst performance metrics include activity, selectivity, and the deactivation profile, which enable comparisons between new and standard catalysts. Benchmarking also requires careful documentation, archiving, and sharing of methods and measurements, to ensure that the full value of research data can be realized. Beyond these goals, benchmarking presents unique opportunities to advance and accelerate understanding of complex reaction systems by combining and comparing experimental information from multiple, in situ and operando techniques with theoretical insights derived frommore » calculations characterizing model systems. This Perspective describes the origins and uses of benchmarking and its applications in computational catalysis, heterogeneous catalysis, molecular catalysis, and electrocatalysis. As a result, it also discusses opportunities and challenges for future developments in these fields.« less

  20. Solar Polar ORbit Telescope (SPORT): A Potential Heliophysics Mission of China

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    We describe a spacecraft mission, named Solar Polar ORbit Telescope (SPORT), which is currently under a scientific and engineering background study in China. SPORT was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences. It will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. It is intended to be the first mission that carries remote-sensing instruments from a high-latitude orbit around the Sun and the first mission that could measure solar high-latitude magnetism. The first extended view of the polar region of the Sun and the ecliptic plane enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere and solar high-latitude magnetism giving rise to eruptions and the fast solar wind.

  1. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    PubMed

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  2. Toward benchmarking in catalysis science: Best practices, challenges, and opportunities

    DOE PAGES

    Bligaard, Thomas; Bullock, R. Morris; Campbell, Charles T.; ...

    2016-03-07

    Benchmarking is a community-based and (preferably) community-driven activity involving consensus-based decisions on how to make reproducible, fair, and relevant assessments. In catalysis science, important catalyst performance metrics include activity, selectivity, and the deactivation profile, which enable comparisons between new and standard catalysts. Benchmarking also requires careful documentation, archiving, and sharing of methods and measurements, to ensure that the full value of research data can be realized. Beyond these goals, benchmarking presents unique opportunities to advance and accelerate understanding of complex reaction systems by combining and comparing experimental information from multiple, in situ and operando techniques with theoretical insights derived frommore » calculations characterizing model systems. This Perspective describes the origins and uses of benchmarking and its applications in computational catalysis, heterogeneous catalysis, molecular catalysis, and electrocatalysis. As a result, it also discusses opportunities and challenges for future developments in these fields.« less

  3. Mars Mission Concepts: SAR and Solar Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (<10 m depth) subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes (in particular, the identification of accessible ice deposits and quantification of Martian regolith properties). Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power (~5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both science and future manned exploration and utilization.

  4. Opportunities and challenges for the life sciences community.

    PubMed

    Kolker, Eugene; Stewart, Elizabeth; Ozdemir, Vural

    2012-03-01

    Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19-20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16-17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org ) was formed to become a Digital Commons for the life sciences community.

  5. Opportunities and Challenges for the Life Sciences Community

    PubMed Central

    Stewart, Elizabeth; Ozdemir, Vural

    2012-01-01

    Abstract Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19–20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16–17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org) was formed to become a Digital Commons for the life sciences community. PMID:22401659

  6. A Unique Marine and Environmental Science Program for High School Teachers in Hawai'i: Professional Development, Teacher Confidence, and Lessons Learned

    ERIC Educational Resources Information Center

    Rivera, Malia Ana J.; Manning, Mackenzie M.; Krupp, David A.

    2013-01-01

    Hawai'i is a unique and special place to conduct environmental science inquiry through place based learning and scientific investigation. Here, we describe and evaluate a unique professional development program for science teachers in Hawai'i that integrates the traditional approach of providing training to improve content knowledge, with the…

  7. MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, J.; Maise, G.; Paniagua, J.

    2001-01-01

    A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for many hours - a much longer period than the approximately one hour burn time for MITEE. Using this cermet fuel, and technology available from other nuclear propulsion programs, MITEE could be developed and ready for implementation in a relatively short time, i.e., approximately seven years. An overview description of the MITEE engine and its performance capabilities is provided.

  8. The Cluster Science Archive: from Time Period to Physics Based Search

    NASA Astrophysics Data System (ADS)

    Masson, A.; Escoubet, C. P.; Laakso, H. E.; Perry, C. H.

    2015-12-01

    Since 2000, the Cluster spacecraft relay the most detailed information on how the solar wind affects our geospace in three dimensions. Science output from Cluster is a leap forward in our knowledge of space plasma physics: the science behind space weather. It has been key in improving the modeling of the magnetosphere and understanding its various physical processes. Cluster data have enabled the publication of more than 2000 refereed papers and counting. This substantial scientific return is often attributed to the online availability of the Cluster data archive, now called the Cluster Science Archive (CSA). It is being developed by the ESAC Science Data Center (ESDC) team and maintained alongside other science ESA archives at ESAC (ESA Space Astronomy Center, Madrid, Spain). CSA is a public archive, which contains the entire set of Cluster high-resolution data, and other related products in a standard format and with a complete set of metadata. Since May 2015, it also contains data from the CNSA/ESA Double Star mission (2003-2008), a mission operated in conjunction with Cluster. The total amount of data format now exceeds 100 TB. Accessing CSA requires to be registered to enable user profiles and CSA accounts more than 1,500 users. CSA provides unique tools for visualizing its data including - on-demand particle distribution functions visualization - fast data browsing with more than 15TB of pre-generated plots - inventory plots It also offers command line capabilities (e.g. data access via Matlab or IDL softwares, data streaming). Despite its reliability, users can only request data for a specific time period while scientists often focus on specific regions or data signatures. For these reasons, a data-mining tool is being developed to do just that. It offers an interface to select data based not only on a time period but on various criteria including: key physical parameters, regions of space and spacecraft constellation geometry. The output of this tool is a list of time periods that fits the criteria imposed by the user. Such a list enables to download any bunch of datasets for all these time periods in one go. We propose to present the state of development of this tool and interact with the scientific community to better fit its needs.

  9. CCMC: bringing space weather awareness to the next generation

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.

    2017-12-01

    Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.

  10. Broad horizons SETI, SF and education

    NASA Astrophysics Data System (ADS)

    Griffiths, Martin

    2004-04-01

    Science fiction (SF) is often perceived as a ‘fringe’ form of entertainment that excites the socially challenged. This misperception detracts from the critical, scientific and interpretive nature of the genre which can be directed into science teaching at school and university levels as an innovative way of exploring the cultural background, politics, leitmotif and themes of society, science and their operation. One example is the ‘alien’ theme in SF; it is perceptually one of the driving factors in the search for extraterrestrial intelligence (SETI). Such a topic can become an introduction to current technology, the motives and politics of science and the sociological implications inherent in a confrontation with the ideal of man's uniqueness in the cosmos. When applied to the SETI, SF engenders a constructive convergence in studies such as biological determinism, the evolution of life, communication, interstellar travel and methods of contact, thus enriching the consideration of possible life in the cosmos. Adopting elements of SF in lifelong learning therefore enables informed, imaginative reflection and debate that educates, trains and instructs, broadening the potential of students and their future roles by invoking an analysis of vital public, scientific and humanistic fields.

  11. Mainstreaming the social sciences in conservation.

    PubMed

    Bennett, Nathan J; Roth, Robin; Klain, Sarah C; Chan, Kai M A; Clark, Douglas A; Cullman, Georgina; Epstein, Graham; Nelson, Michael Paul; Stedman, Richard; Teel, Tara L; Thomas, Rebecca E W; Wyborn, Carina; Curran, Deborah; Greenberg, Alison; Sandlos, John; Veríssimo, Diogo

    2017-02-01

    Despite broad recognition of the value of social sciences and increasingly vocal calls for better engagement with the human element of conservation, the conservation social sciences remain misunderstood and underutilized in practice. The conservation social sciences can provide unique and important contributions to society's understanding of the relationships between humans and nature and to improving conservation practice and outcomes. There are 4 barriers-ideological, institutional, knowledge, and capacity-to meaningful integration of the social sciences into conservation. We provide practical guidance on overcoming these barriers to mainstream the social sciences in conservation science, practice, and policy. Broadly, we recommend fostering knowledge on the scope and contributions of the social sciences to conservation, including social scientists from the inception of interdisciplinary research projects, incorporating social science research and insights during all stages of conservation planning and implementation, building social science capacity at all scales in conservation organizations and agencies, and promoting engagement with the social sciences in and through global conservation policy-influencing organizations. Conservation social scientists, too, need to be willing to engage with natural science knowledge and to communicate insights and recommendations clearly. We urge the conservation community to move beyond superficial engagement with the conservation social sciences. A more inclusive and integrative conservation science-one that includes the natural and social sciences-will enable more ecologically effective and socially just conservation. Better collaboration among social scientists, natural scientists, practitioners, and policy makers will facilitate a renewed and more robust conservation. Mainstreaming the conservation social sciences will facilitate the uptake of the full range of insights and contributions from these fields into conservation policy and practice. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  12. The PDS4 Information Model and its Role in Agile Science Data Curation

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; Crichton, D.

    2017-12-01

    PDS4 is an information model-driven service architecture supporting the capture, management, distribution and integration of massive planetary science data captured in distributed data archives world-wide. The PDS4 Information Model (IM), the core element of the architecture, was developed using lessons learned from 20 years of archiving Planetary Science Data and best practices for information model development. The foundational principles were adopted from the Open Archival Information System (OAIS) Reference Model (ISO 14721), the Metadata Registry Specification (ISO/IEC 11179), and W3C XML (Extensible Markup Language) specifications. These provided respectively an object oriented model for archive information systems, a comprehensive schema for data dictionaries and hierarchical governance, and rules for rules for encoding documents electronically. The PDS4 Information model is unique in that it drives the PDS4 infrastructure by providing the representation of concepts and their relationships, constraints, rules, and operations; a sharable, stable, and organized set of information requirements; and machine parsable definitions that are suitable for configuring and generating code. This presentation will provide an over of the PDS4 Information Model and how it is being leveraged to develop and evolve the PDS4 infrastructure and enable agile curation of over 30 years of science data collected by the international Planetary Science community.

  13. NEON Citizen Science: Planning and Prototyping

    NASA Astrophysics Data System (ADS)

    Newman, S. J.; Henderson, S.; Gardiner, L. S.; Ward, D.; Gram, W.

    2011-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of "human sensors." As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include "citizens" or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was chosen as the focus of this citizen science campaign because it is a visible and comprehensible way of demonstrating the effects of climate change. In addition, plants are readily accessible in nearly every neighborhood and park, and wild area across the continent, so people can make observations whether they live near an inner city park or in the rural countryside. Recently, NEON developed data visualization tools for Project BudBurst to engage citizen science participants in "doing science" beyond data collection. By prototyping NEON citizen science through Project BudBurst, NEON is developing a better understanding of how to build a citizen science program that addresses areas of awareness, mastery, and leadership of scientific information like that which NEON will produce over the next 30 years.

  14. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  15. Science to support the understanding of Ohio's water resources, 2014-15

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie P.

    2014-01-01

    The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decision makers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2014) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  16. Caring Science: Transforming the Ethic of Caring-Healing Practice, Environment, and Culture within an Integrated Care Delivery System.

    PubMed

    Foss Durant, Anne; McDermott, Shawna; Kinney, Gwendolyn; Triner, Trudy

    2015-01-01

    In early 2010, leaders within Kaiser Permanente (KP) Northern California's Patient Care Services division embarked on a journey to embrace and embed core tenets of Caring Science into the practice, environment, and culture of the organization. Caring Science is based on the philosophy of Human Caring, a theory articulated by Jean Watson, PhD, RN, AHN-BC, FAAN, as a foundational covenant to guide nursing as a discipline and a profession. Since 2010, Caring Science has enabled KP Northern California to demonstrate its commitment to being an authentic person- and family-centric organization that promotes and advocates for total health. This commitment empowers KP caregivers to balance the art and science of clinical judgment by considering the needs of the whole person, honoring the unique perception of health and healing that each member or patient holds, and engaging with them to make decisions that nurture their well-being. The intent of this article is two-fold: 1) to provide context and background on how a professional practice framework was used to transform the ethic of caring-healing practice, environment, and culture across multiple hospitals within an integrated delivery system; and 2) to provide evidence on how integration of Caring Science across administrative, operational, and clinical areas appears to contribute to meaningful patient quality and health outcomes.

  17. Caring Science: Transforming the Ethic of Caring-Healing Practice, Environment, and Culture within an Integrated Care Delivery System

    PubMed Central

    Durant, Anne Foss; McDermott, Shawna; Kinney, Gwendolyn; Triner, Trudy

    2015-01-01

    In early 2010, leaders within Kaiser Permanente (KP) Northern California’s Patient Care Services division embarked on a journey to embrace and embed core tenets of Caring Science into the practice, environment, and culture of the organization. Caring Science is based on the philosophy of Human Caring, a theory articulated by Jean Watson, PhD, RN, AHN-BC, FAAN, as a foundational covenant to guide nursing as a discipline and a profession. Since 2010, Caring Science has enabled KP Northern California to demonstrate its commitment to being an authentic person- and family-centric organization that promotes and advocates for total health. This commitment empowers KP caregivers to balance the art and science of clinical judgment by considering the needs of the whole person, honoring the unique perception of health and healing that each member or patient holds, and engaging with them to make decisions that nurture their well-being. The intent of this article is two-fold: 1) to provide context and background on how a professional practice framework was used to transform the ethic of caring-healing practice, environment, and culture across multiple hospitals within an integrated delivery system; and 2) to provide evidence on how integration of Caring Science across administrative, operational, and clinical areas appears to contribute to meaningful patient quality and health outcomes. PMID:26828076

  18. The Solar-B Mission

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Acton, Loren; Canfield, Richard; Davila, Joseph; Davis, John; Dere, Kenneth; Doschek, George; Golub, Leon; Harvey, John; Hathaway, David; hide

    1997-01-01

    Solar-B, the next ISAS mission (with major NASA participation), is designed to address the fundamental question of how magnetic fields interact with plasma to produce solar variability. The mission has a number of unique capabilities that will enable it to answer the outstanding questions of solar magnetism. First, by escaping atmospheric seeing, it will deliver continuous observations of the solar surface with unprecedented spatial resolution. Second, Solar-B will deliver the first accurate measurements of all three components of the photospheric magnetic field. Solar-B will measure both the magnetic energy driving the photosphere and simultaneously its effects in the corona. Solar-B offers unique programmatic opportunities to NASA. It will continue an effective collaboration with our most reliable international partner. It will deliver images and data that will have strong public outreach potential. Finally, the science of Solar-B is clearly related to the themes of origins and plasma astrophysics, and contributes directly to the national space weather and global change programs.

  19. The Mars imperative: Species survival and inspiring a globalized culture

    NASA Astrophysics Data System (ADS)

    Barker, Donald C.

    2015-02-01

    Humanity has crossed a unique technological threshold enabling self-guided survival, a first in the history of life on Earth. From a human perspective the Earth may be considered as a single interconnected ecosystem, and given our tenuous understanding and control over the environment as well as our own behaviors, ever-looming specters of social collapse or even extinction dictate enacting immediate off-world diversification and self-preservation efforts. Herein, Mars is touted as the most tenable and sustainable location in which to initiate such permanent diversification. Scientific curiosity alone cannot initiate nor drive such off-world settlement and concerted impetus and public support for such an endeavor is shown to be constrained by human attention span. Lastly, the initial act of settlement uniquely serves as humanities greatest globally inspiring self-initiated endeavor, a tangible benefit capable of inspiring generations, connecting cultures and motivating college enrollments and career path choices in science, technology, engineering and math (STEM) in a manner similar to the dawn of human space exploration.

  20. K2 Citizen Science Discovery of a Four-Planet System in a Chain of 3:2 Resonances

    NASA Astrophysics Data System (ADS)

    Barentsen, Geert; Christiansen, Jessie; Crossfield, Ian; Barclay, Thomas; Lintott, Chris; Cox, Brian; Zemiro, Julia; Simmons, Brooke; Miller, Grant; NASA K2, Zooniverse, BBC, ABC

    2017-06-01

    We report on the discovery of a compact system of four transiting super-Earth-sized planets around a moderately bright K-type star (V=12) using data from Campaign 12 of NASA's K2 mission. Uniquely, the periods of the planets are 3.6d, 5.4d, 8.3d, and 12.8d, forming an unbroken chain of near 3:2 resonances. It is the first discovery made by citizen scientists participating in the Exoplanet Explorers project on the Zooniverse platform, and was discovered with the help of 15,000 volunteers recruited via the "Stargazing Live" show on Australia's ABC TV channel. K2's open data policy, combined with the unique format of a BBC TV production that does not shy away from including advanced scientific content, enabled the process of a genuine scientific discovery to be executed and witnessed live on air by nearly a million viewers.

  1. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease.

    PubMed

    Ogino, Shuji; Lochhead, Paul; Chan, Andrew T; Nishihara, Reiko; Cho, Eunyoung; Wolpin, Brian M; Meyerhardt, Jeffrey A; Meissner, Alexander; Schernhammer, Eva S; Fuchs, Charles S; Giovannucci, Edward

    2013-04-01

    Epigenetics acts as an interface between environmental/exogenous factors, cellular responses, and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases (including neoplasms and malignancies such as leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver, and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. In particular, DNA methylation assays are widely applied to formalin-fixed, paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiological factors, cellular molecular characteristics, and disease evolution, the field of 'molecular pathological epidemiology (MPE)' has emerged as an interdisciplinary integration of 'molecular pathology' and 'epidemiology'. In contrast to traditional epidemiological research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle, that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macroenvironment and tissue microenvironment. MPE may represent a logical evolution of GWAS, termed 'GWAS-MPE approach'. Although epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. Having a similar conceptual framework to systems biology, the holistic MPE approach enables us to link potential etiological factors to specific molecular pathology, and gain novel pathogenic insights on causality. The widespread application of epigenome (eg, methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 (long interspersed nucleotide element-1; also called long interspersed nuclear element-1; long interspersed element-1; L1) hypomethylation, etc), and host-disease interactions. In this article, we illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention.

  2. The Structure and Assessment of a Unique and Popular Interdisciplinary Science Course for Nonmajors

    ERIC Educational Resources Information Center

    Train, Tonya Laakko; Gammon, David E.

    2012-01-01

    Science Without Borders is a unique interdisciplinary science course that uses group and active-learning strategies and is in high demand among nonscience majors at a masters-level university. Registrar data showed that nonscience majors were far more likely to choose this course compared with other, discipline-based science courses. In an…

  3. 2015 Army Science Planning and Strategy Meeting Series: Outcomes and Conclusions

    DTIC Science & Technology

    2017-12-21

    modeling and nanoscale characterization tools to enable efficient design of hybridized manufacturing ; realtime, multiscale computational capability...to enable predictive analytics for expeditionary on-demand manufacturing • Discovery of design principles to enable programming advanced genetic...goals, significant research is needed to mature the fundamental materials science, processing and manufacturing sciences, design methodologies, data

  4. Visualizing Oxidative Cellular Stress Induced by Nanoparticles in the Subcytotoxic Range Using Fluorescence Lifetime Imaging.

    PubMed

    Balke, Jens; Volz, Pierre; Neumann, Falko; Brodwolf, Robert; Wolf, Alexander; Pischon, Hannah; Radbruch, Moritz; Mundhenk, Lars; Gruber, Achim D; Ma, Nan; Alexiev, Ulrike

    2018-06-01

    Nanoparticles hold a great promise in biomedical science. However, due to their unique physical and chemical properties they can lead to overproduction of intracellular reactive oxygen species (ROS). As an important mechanism of nanotoxicity, there is a great need for sensitive and high-throughput adaptable single-cell ROS detection methods. Here, fluorescence lifetime imaging microscopy (FLIM) is employed for single-cell ROS detection (FLIM-ROX) providing increased sensitivity and enabling high-throughput analysis in fixed and live cells. FLIM-ROX owes its sensitivity to the discrimination of autofluorescence from the unique fluorescence lifetime of the ROS reporter dye. The effect of subcytotoxic amounts of cationic gold nanoparticles in J774A.1 cells and primary human macrophages on ROS generation is investigated. FLIM-ROX measures very low ROS levels upon gold nanoparticle exposure, which is undetectable by the conventional method. It is demonstrated that cellular morphology changes, elevated senescence, and DNA damage link the resulting low-level oxidative stress to cellular adverse effects and thus nanotoxicity. Multiphoton FLIM-ROX enables the quantification of spatial ROS distribution in vivo, which is shown for skin tissue as a target for nanoparticle exposure. Thus, this innovative method allows identifying of low-level ROS in vitro and in vivo and, subsequently, promotes understanding of ROS-associated nanotoxicity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Creative Writing and Promoting Understanding in Science: Alternative Ways to Interest Students in Writing about Science

    ERIC Educational Resources Information Center

    Akcay, Hakan; Hand, Brian; Norton-Meier, Lori

    2010-01-01

    Science writing opportunities are used as a resource to enable students to understand science concepts. This study represents three different writing-to-learn tasks that enable students to learn science and to demonstrate their developing understanding about the human body system. The teacher and students engaged in a variety of science enquiries…

  6. Lunar Prospecting: Searching for Volatiles at the South Pole

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Carvalho, Robert

    2016-01-01

    The Resource Prospector is an in-situ resource utilization (ISRU) technology demonstration mission, planned for a 2021 launch to search for and analyze volatiles at the Lunar South Pole. The mission poses unique operational challenges. Operating at the Lunar South Pole requires navigating a surface with lighting, shadow and regolith characteristics unlike those of previous missions. The short round trip communications time enables reactive surface operations for science and engineering. Navigation of permanently shadowed regions with a solar powered rover creates risks, including power and thermal management, and requires constant real time decision making for safe entry, path selection and egress. The mission plan requires a faster rover egress from the lander than any previous NASA rover mission.

  7. Breast cancer brain metastases: evidence for neuronal-like adaptation in a ‘breast-to-brain’ transition?

    PubMed Central

    2014-01-01

    Brain metastases remain a significant challenge in the treatment of breast cancer patients due to the unique environment posed by the central nervous system. A better understanding of the biology of breast cancer cells that have metastasized to the brain is required to develop improved therapies. A recent Proceedings of the National Academy of Sciences article demonstrates that breast cancer cells in the brain microenvironment express γ-aminobutyric acid (GABA)-related genes, enabling them to utilize GABA as an oncometabolite, thus gaining a proliferative advantage. In this viewpoint, we highlight these findings and their potential impact on the treatment of breast cancer brain metastases. PMID:25679873

  8. Coiled Coils - A Model System for the 21st Century.

    PubMed

    Lupas, Andrei N; Bassler, Jens

    2017-02-01

    α-Helical coiled coils were described more than 60 years ago as simple, repetitive structures mediating oligomerization and mechanical stability. Over the past 20 years, however, they have emerged as one of the most diverse protein folds in nature, enabling many biological functions beyond mechanical rigidity, such as membrane fusion, signal transduction, and solute transport. Despite this great diversity, their structures can be described by parametric equations, making them uniquely suited for rational protein design. Far from having been exhausted as a source of structural insight and a basis for functional engineering, coiled coils are poised to become even more important for protein science in the coming decades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less

  10. There (70° S @ 10,177 m) and Back Again, An Umbraphile's Tale

    NASA Astrophysics Data System (ADS)

    Schneider, G.

    2006-07-01

    Until 23 Nov 2003, no total solar eclipse (TSE) had ever been observed from the Antarctic. Yet, interest in securing observations of that event, visible only from the Antarctic, was extremely high and provided the impetus for breaking that paradigm of elusivity in the historical record of science and exploration. The execution of a lunar shadow intercept and the conduction of an observing program from a Boeing 747-400 ER aircraft over the Antarctic interior permitted the previously unobtainable to be accomplished. The unique computational and navigational requirements for this flight are discussed from the enabling perspective of control and data acquisition S/W specifically developed for this task.

  11. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    PubMed

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2017-05-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC is an e-learning platform that empowers the biomedical community to develop, launch and share open training materials. It deploys hands-on software training toolboxes through virtualization technologies such as Amazon EC2 and Virtualbox. The BBDTC facilitates migration of courses across other course management platforms. The framework encourages knowledge sharing and content personalization through the playlist functionality that enables unique learning experiences and accelerates information dissemination to a wider community.

  12. Scientific innovation's two Valleys of Death: how blood and tissue banks can help to bridge the gap.

    PubMed

    Thompson, Sean D A

    2014-12-01

    Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation's inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process.

  13. Scientific Innovation's Two Valleys of Death: How Blood and Tissue Banks Can Help to Bridge the Gap

    PubMed Central

    Thompson, Sean D.A.

    2014-01-01

    Abstract Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation’s inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process. PMID:25457967

  14. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy.

    PubMed

    Lin, Han; Chen, Yu; Shi, Jianlin

    2018-03-21

    Tumour chemotherapy employs highly cytotoxic chemodrugs, which kill both cancer and normal cells by cellular apoptosis or necrosis non-selectively. Catalysing/triggering the specific chemical reactions only inside tumour tissues can generate abundant and special chemicals and products locally to initiate a series of unique biological and pathologic effects, which may enable tumour-specific theranostic effects to combat cancer without bringing about significant side effects on normal tissues. Nevertheless, chemical reaction-initiated selective tumour therapy strongly depends on the advances in chemistry, materials science, nanotechnology and biomedicine. This emerging cross-disciplinary research area is substantially different from conventional cancer-theranostic modalities in clinics. In response to the fast developments in cancer theranostics based on intratumoural catalytic chemical reactions, this tutorial review summarizes the very-recent research progress in the design and synthesis of representative nanoplatforms with intriguing nanostructures, compositions, physiochemical properties and biological behaviours for versatile catalytic chemical reaction-enabled cancer treatments, mainly by either endogenous tumour microenvironment (TME) triggering or exogenous physical irradiation. These unique intratumoural chemical reactions can be used in tumour-starving therapy, chemodynamic therapy, gas therapy, alleviation of tumour hypoxia, TME-responsive diagnostic imaging and stimuli-responsive drug release, and even externally triggered versatile therapeutics. In particular, the challenges and future developments of such a novel type of cancer-theranostic modality are discussed in detail to understand the future developments and prospects in this research area as far as possible. It is highly expected that this kind of unique tumour-specific therapeutics by triggering specific in situ catalytic chemical reactions inside tumours would provide a novel but efficient methodology for benefiting personalized biomedicine in combating cancer.

  15. Terrestrial analog field investigations to enable science and exploration studies of impacts and volcanism on the Moon, NEAs, and moons of Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Colaprete, A.; Cohen, B. A.; Elphic, R. C.; Garry, W. B.; Hodges, K. V.; Hughes, S. S.; Kim, K. J.; Lim, D.; McKay, C. P.; Osinski, G. R.; Petro, N. E.; Sears, D. W.; Squyres, S. W.; Tornabene, L. L.

    2013-12-01

    Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.

  16. Terrestrial Analog Field Investigations to Enable Science and Exploration Studies of Impacts and Volcanism on the Moon, NEAs, and Moons of Mars

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer Lynne; Colaprete, Anthony; Cohen, Barbara; Elphic, Richard; Garry, William; Hodges, Kip; Hughes, Scott; Kim, Kyeon; Lim, Darlene; McKay, Chris; hide

    2013-01-01

    Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.

  17. An Agent-Based Optimization Framework for Engineered Complex Adaptive Systems with Application to Demand Response in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Haghnevis, Moeed

    The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

  18. Origins Space Telescope: Cosmology and Reionization

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin D.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  19. Origins Space Telescope: Cosmology and Reionization

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin Daniel; Origins Space Telescope

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  20. How to Lead the Way Through Complexity, Constraint, and Uncertainty in Academic Health Science Centers.

    PubMed

    Lieff, Susan J; Yammarino, Francis J

    2017-05-01

    Academic medicine is in an era of unprecedented and constant change due to fluctuating economies, globalization, emerging technologies, research, and professional and educational mandates. Consequently, academic health science centers (AHSCs) are facing new levels of complexity, constraint, and uncertainty. Currently, AHSC leaders work with competing academic and health service demands and are required to work with and are accountable to a diversity of stakeholders. Given the new challenges and emerging needs, the authors believe the leadership methods and approaches AHSCs have used in the past that led to successes will be insufficient. In this Article, the authors propose that AHSCs will require a unique combination of old and new leadership approaches specifically oriented to the unique complexity of the AHSC context. They initially describe the designer (or hierarchical) and heroic (military and transformational) approaches to leadership and how they have been applied in AHSCs. While these well-researched and traditional approaches have their strengths in certain contexts, the leadership field has recognized that they can also limit leaders' abilities to enable their organizations to be engaged, adaptable, and responsive. Consequently, some new approaches have emerged that are taking hold in academic work and professional practice. The authors highlight and explore some of these new approaches-the authentic, self, shared, and network approaches to leadership-with attention to their application in and utility for the AHSC context.

  1. Research | Computational Science | NREL

    Science.gov Websites

    Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples

  2. Rethinking the Notion of Technology in Education: Techno-Epistemology as a Feature Inherent to Human Praxis

    ERIC Educational Resources Information Center

    Van Eijck, Michiel; Claxton, Nicholas Xumthoult

    2009-01-01

    Educators repeatedly underscore the intimate relationship between science and technology. This is problematic because technology, far from being "applied science," presupposes a unique epistemology (techno-epistemology). A focus on the role of science in technology overshadows this unique way of knowing and hence limits technology…

  3. High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers.

    PubMed

    Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin

    2017-11-10

    High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.

  4. Solar Polar ORbit Telescope (SPORT): A Potential Space Weather Mission of China

    NASA Astrophysics Data System (ADS)

    Liu, Y. D.; Xiong, M.; Wu, J.; Liu, H.; Zheng, J.; Li, B.; Zhang, C.; Sun, W.

    2013-12-01

    We describe a spacecraft mission, named Solar Polar ORbit Telescope (SPORT), which is currently under a scientific and engineering background study in China. SPORT was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences. It will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. It is intended to be the first mission that carries remote-sensing instruments from a high-latitude orbit around the Sun, the first mission that could image interplanetary CMEs at radio wavelengths from space, and the first mission that could measure solar high-latitude magnetism leading to eruptions and the fast solar wind. The first extended view of the polar region of the Sun and the ecliptic plane enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere and solar high-latitude magnetism giving rise to eruptions and the fast solar wind.

  5. P3: a practice focused learning environment

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  6. Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network

    NASA Astrophysics Data System (ADS)

    An, T.; Sohn, B. W.; Imai, H.

    2018-02-01

    The very long baseline interferometry (VLBI) technique offers angular resolutions superior to any other instruments at other wavelengths, enabling unique science applications of high-resolution imaging of radio sources and high-precision astrometry. The East Asia VLBI Network (EAVN) is a collaborative effort in the East Asian region. The EAVN currently consists of 21 telescopes with diverse equipment configurations and frequency setups, allowing flexible subarrays for specific science projects. The EAVN provides the highest resolution of 0.5 mas at 22 GHz, allowing the fine imaging of jets in active galactic nuclei, high-accuracy astrometry of masers and pulsars, and precise spacecraft positioning. The soon-to-be-operational Five-hundred-meter Aperture Spherical radio Telescope (FAST) will open a new era for the EAVN. This state-of-the-art VLBI array also provides easy access to and crucial training for the burgeoning Asian astronomical community. This Perspective summarizes the status, capabilities and prospects of the EAVN.

  7. The Philae lander mission and science overview.

    PubMed

    Boehnhardt, Hermann; Bibring, Jean-Pierre; Apathy, Istvan; Auster, Hans Ulrich; Ercoli Finzi, Amalia; Goesmann, Fred; Klingelhöfer, Göstar; Knapmeyer, Martin; Kofman, Wlodek; Krüger, Harald; Mottola, Stefano; Schmidt, Walter; Seidensticker, Klaus; Spohn, Tilman; Wright, Ian

    2017-07-13

    The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  8. NASA'S Earth Science Enterprise Embraces Active Laser Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.; Paules, Granville E., III

    1999-01-01

    Several objectives of NASA's Earth Science Enterprise are accomplished, and in some cases, uniquely enabled by the advantages of earth-orbiting active lidar (laser radar) sensors. With lidar, the photons that provide the excitation illumination for the desired measurement are both controlled and well known. The controlled characteristics include when and where the illumination occurs, the wavelength, bandwidth, pulse length, and polarization. These advantages translate into high signal levels, excellent spatial resolution, and independence from time of day and the sun's position. As the lidar technology has rapidly matured, ESE scientific endeavors have begun to use lidar sensors over the last 10 years. Several more lidar sensors are approved for future flight. The applications include both altimetry (rangefinding) and profiling. Hybrid missions, such as the approved Geoscience Laser Altimeter System (GLAS) sensor to fly on the ICESat mission, will do both at the same time. Profiling applications encompass aerosol, cloud, wind, and molecular concentration measurements. Recent selection of the PICASSO Earth System Science Pathfinder mission and the complementary CLOUDSAT radar-based mission, both flying in formation with the EOS PM mission, will fully exploit the capabilities of multiple sensor systems to accomplish critical science needs requiring such profiling. To round out the briefing a review of past and planned ESE missions will be presented.

  9. Overview of NASA's Universe of Learning: An Integrated Astrophysics STEM Learning and Literacy Program

    NASA Astrophysics Data System (ADS)

    Smith, Denise; Lestition, Kathleen; Squires, Gordon; Biferno, Anya A.; Cominsky, Lynn; Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. Together we develop and disseminate data tools and participatory experiences, multimedia and immersive experiences, exhibits and community programs, and professional learning experiences that meet the needs of our audiences, with attention to underserved and underrepresented populations. In doing so, scientists and educators from the partner institutions work together as a collaborative, integrated Astrophysics team to support NASA objectives to enable STEM education, increase scientific literacy, advance national education goals, and leverage efforts through partnerships. Robust program evaluation is central to our efforts, and utilizes portfolio analysis, process studies, and studies of reach and impact. This presentation will provide an overview of NASA's Universe of Learning, our direct connection to NASA Astrophysics, and our collaborative work with the NASA Astrophysics science community.

  10. Oak Ridge National Laboratory Core Competencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competencymore » represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.« less

  11. Lunar Science Enabled by the Deep Space Gateway and PHASR Rover

    NASA Astrophysics Data System (ADS)

    Bakambu, J. N.; Shaw, A.; Fulford, P.; Osinski, G.; Bourassa, M.; Rehmatullah, F.; Zanetti, M.; Rembala, R.

    2018-02-01

    The Deep Space Gateway will be a tremendous boon to lunar surface science. It will enable the PHASR Rover, a concept for a Canadian rover system, with international contributions and the goal of sample acquisition and lunar surface science.

  12. Design and Delivery of Professional Development Through Partnerships: Long-Term, Short-Term, and Everything In-Between

    NASA Astrophysics Data System (ADS)

    Urquhart, M. L.; Curry, B.; Hairston, M. R.

    2009-12-01

    Professional development for teachers can take a variety of forms, each with unique challenges and needs. At the University of Texas at Dallas (UTD), we have leveraged partnerships between multiple groups including the Masters of Arts in Teaching program in Science Education, the joint US Air Force/NASA CINDI mission, an ionospheric explorer built at UTD, and the UTD Regional Collaborative for Excellence in Science Teaching. Each effort models, and in the case of the later two has created, inquiry-based lessons around Earth-systems science. A space science mission, currently in low Earth orbit aboard the Air Force satellite C/NOFS, provides real world connections to classroom science, scientific data and visualizations, and funding to support delivery of professional development in short courses and workshops at teacher conferences. Workshops and short course in turn often serve to recruit teachers into our longer-term programs. Long-term professional development programs such as the Collaborative provide opportunities to test curriculum and teacher learning, an interface to high-quality sustained efforts within talented communities of teachers, and much more. From the birth of our CINDI Educational Outreach program to the Collaborative project that produced geoscience kit-based modules and associated professional development adopted throughout the state of Texas, we will share highlights of our major professional development initiatives and how our partnerships have enabled us to better serve the needs of K-12 teachers expected to deliver geoscience and space science content in their classrooms.

  13. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    NASA Astrophysics Data System (ADS)

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  14. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  15. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  16. SOFIA Education and Public Outreach (EPO): Scientist/Educator Partnerships at 41,000 Feet

    NASA Astrophysics Data System (ADS)

    Backman, D.; Devore, E.; Bennett, M.

    2003-12-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a unique opportunity for education and public outreach (EPO). SOFIA is the first research observatory -- airborne or ground-based -- in which close participation by educators and journalists is being designed into both the physical facility and the administrative structure of the observatory. With the overall goal of contributing to the public's awareness and understanding of science in general and astronomy in particular, the SOFIA EPO program will include formal K-12 and undergraduate educational activities, informal education, public outreach, and media relations. One of the most exciting and unique aspects of the SOFIA EPO program is the observatory's ability to carry up to 10 educators on science flights, enabling those educators to partner with scientists and participate in real research. Some 200 formal and informal educators per year are expected to participate in the SOFIA Airborne Astronomy Ambassadors program once full-scale operation is achieved. Educators who have participated in the Airborne Astronomy Ambassadors program will be encouraged to continue their scientific partnerships and will be supported in their efforts to carry new-found knowledge and enthusiasm to their students, other educators in their communities and the general public. The Airborne Astronomy Ambassadors will be supported as a national network via continued communications and material support from the SOFIA EPO program office, and will constitute a wide-spread outreach cadre for NASA and space sciences based on their experiences with airborne astronomy. Scientists, engineers, and other members of the SOFIA team will be encouraged to partner with local teachers and visit their classrooms as a part of the SOFIA Education Partners Program. Training for scientist-educators will be offered via the Astronomical Society of the Pacific's Project ASTRO network of astronomy education sites around the USA. This program will enable students to interact with scientists and other professionals on a one-to-one basis. Participating educators may fly onboard SOFIA with their scientist partners. Scientists who participate in this program will be able to work with educators and students in their local communities to forge long-lasting science education partnerships. The SOFIA EPO staff is interested in forming collaborations with interested organizations, other NASA missions, and individual astronomers. SOFIA is being developed and will be operated for NASA by USRA. The EPO program is being developed and will be operated jointly by the SETI Institute and the Astronomical Society of the Pacific.

  17. Environmental Applications of Interfacial Materials with Special Wettability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhangxin; Elimelech, Menachem; Lin, Shihong

    Interfacial materials with special wettability have become a burgeoning research area in materials science in the past decade. The unique surface properties of materials and interfaces generated by biomimetic approaches can be leveraged to develop effective solutions to challenging environmental problems. This critical review presents the concept, mechanisms, and fabrication techniques of interfacial materials with special wettability, and assesses the environmental applications of these materials for oil-water separation, membrane-based water purification and desalination, biofouling control, high performance vapor condensation, and atmospheric water collection. We also highlight the most promising properties of interfacial materials with special wettability that enable innovative environmentalmore » applications and discuss the practical challenges for large-scale implementation of these novel materials.« less

  18. The SPIRIT Telescope Initiative: Six Years On (Abstract)

    NASA Astrophysics Data System (ADS)

    Luckas, P.

    2017-12-01

    (Abstract only) Now in its sixth year of operation, the SPIRIT initiative remains unique in Australia, as a robust web-enabled robotic telescope initiative funded for education and outreach. With multiple modes of operation catering for a variety of usage scenarios and a fully supported education program, SPIRIT provides free access to contemporary astronomical tools for students and educators in Western Australia and beyond. The technical solution itself provides an excellent model for low cost robotic telescope installations, and the education program has evolved over time to include a broad range of student experiences - from engagement activities to authentic science. This paper details the robotic telescope solution, student interface, and educational philosophy, summarizes achievements and lessons learned, and examines the possibilities for future enhancement including spectroscopy.

  19. Environmental Applications of Interfacial Materials with Special Wettability

    DOE PAGES

    Wang, Zhangxin; Elimelech, Menachem; Lin, Shihong

    2016-02-01

    Interfacial materials with special wettability have become a burgeoning research area in materials science in the past decade. The unique surface properties of materials and interfaces generated by biomimetic approaches can be leveraged to develop effective solutions to challenging environmental problems. This critical review presents the concept, mechanisms, and fabrication techniques of interfacial materials with special wettability, and assesses the environmental applications of these materials for oil-water separation, membrane-based water purification and desalination, biofouling control, high performance vapor condensation, and atmospheric water collection. We also highlight the most promising properties of interfacial materials with special wettability that enable innovative environmentalmore » applications and discuss the practical challenges for large-scale implementation of these novel materials.« less

  20. Nanoscale porosity in polymer films: fabrication and therapeutic applications

    PubMed Central

    Bernards, Daniel A.; Desai, Tejal A.

    2011-01-01

    This review focuses on current developments in the field of nanostructured bulk polymers and their application in bioengineering and therapeutic sciences. In contrast to well-established nanoscale materials, such as nanoparticles and nanofibers, bulk nanostructured polymers combine nanoscale structure in a macroscopic construct, which enables unique application of these materials. Contemporary fabrication and processing techniques capable of producing nanoporous polymer films are reviewed. Focus is placed on techniques capable of sub-100 nm features since this range approaches the size scale of biological components, such as proteins and viruses. The attributes of these techniques are compared, with an emphasis on the characteristic advantages and limitations of each method. Finally, application of these materials to biofiltration, immunoisolation, and drug delivery are reviewed. PMID:22140398

  1. WiseView: Visualizing motion and variability of faint WISE sources

    NASA Astrophysics Data System (ADS)

    Caselden, Dan; Westin, Paul, III; Meisner, Aaron; Kuchner, Marc; Colin, Guillaume

    2018-06-01

    WiseView renders image blinks of Wide-field Infrared Survey Explorer (WISE) coadds spanning a multi-year time baseline in a browser. The software allows for easy visual identification of motion and variability for sources far beyond the single-frame detection limit, a key threshold not surmounted by many studies. WiseView transparently gathers small image cutouts drawn from many terabytes of unWISE coadds, facilitating access to this large and unique dataset. Users need only input the coordinates of interest and can interactively tune parameters including the image stretch, colormap and blink rate. WiseView was developed in the context of the Backyard Worlds: Planet 9 citizen science project, and has enabled hundreds of brown dwarf candidate discoveries by citizen scientists and professional astronomers.

  2. The SPIRIT Telescope Initiative: six years on

    NASA Astrophysics Data System (ADS)

    Luckas, Paul

    2017-06-01

    Now in its sixth year of operation, the SPIRIT initiative remains unique in Australia, as a robust web-enabled robotic telescope initiative funded for education and outreach. With multiple modes of operation catering for a variety of usage scenarios and a fully supported education program, SPIRIT provides free access to contemporary astronomical tools for students and educators in Western Australia and beyond. The technical solution itself provides an excellent model for low cost robotic telescope installations, and the education program has evolved over time to include a broad range of student experiences-from engagement activities to authentic science. This paper details the robotic telescope solution, student interface and educational philosophy, summarises achievements and lessons learned and examines the possibilities for future enhancement including spectroscopy.

  3. A New Era of Multidisciplinary Expeditions: Recent Opportunities and Progress to Advance the Telepresence Paradigm

    NASA Astrophysics Data System (ADS)

    Cantwell, K. L.; Kennedy, B. R.; Malik, M.; Gray, L. M.; Elliott, K.; Lobecker, E.; Drewniak, J.; Reser, B.; Crum, E.; Lovalvo, D.

    2016-02-01

    Since it's commissioning in 2008, NOAA Ship Okeanos Explorer has used telepresence technology both as an outreach tool and as a new way to conduct interdisciplinary science expeditions. NOAA's Office of Ocean Exploration and Research (OER) has developed a set of collaboration tools and protocols to enable extensive shore-based participation. Telepresence offers unique advantages including access to a large pool of expertise on shore and flexibility to react to new discoveries as they occur. During early years, the telepresence experience was limited to Internet 2 enabled Exploration Command Centers, but with advent of improved bandwidth and new video transcoders, scientists from anywhere with an internet connection can participate in a telepresence expedition. Scientists have also capitalized on social media (Twitter, Facebook, Reddit etc.) by sharing discoveries to leverage the intellectual capital of scientists worldwide and engaging the general public in real-time. Aside from using telepresence to stream video off the ship, the high-bandwidth satellite connection allows for the transfer of large quantities of data in near real-time. This enables not only ship - shore data transfers, but can also support ship - ship collaborations as demonstrated during the 2015 and 2014 seasons where Okeanos worked directly with science teams onboard other vessels to share data and immediately follow up on features of interest, leading to additional discoveries. OER continues to expand its use of telepresence by experimenting with procedures to offload roles previously tied to the ship, such as data acquisition watch standers; prototyping tools for distributed user data analysis and video annotation; and incorporating in-situ sampling devices. OER has also developed improved tools to provide access to archived data to increase data distribution and facilitate additional discoveries post-expedition.

  4. NASA'S Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  5. NASA's Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  6. NEEMO 20: Science Training, Operations, and Tool Development

    NASA Technical Reports Server (NTRS)

    Graff, T.; Miller, M.; Rodriguez-Lanetty, M.; Chappell, S.; Naids, A.; Hood, A.; Coan, D.; Abell, P.; Reagan, M.; Janoiko, B.

    2016-01-01

    The 20th mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated evaluation of operational protocols and tools designed to enable future exploration beyond low-Earth orbit. NEEMO 20 was conducted from the Aquarius habitat off the coast of Key Largo, FL in July 2015. The habitat and its surroundings provide a convincing analog for space exploration. A crew of six (comprised of astronauts, engineers, and habitat technicians) lived and worked in and around the unique underwater laboratory over a mission duration of 14-days. Incorporated into NEEMO 20 was a diverse Science Team (ST) comprised of geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center (JSC), as well as marine scientists from the Department of Biological Sciences at Florida International University (FIU). This team trained the crew on the science to be conducted, defined sampling techniques and operational procedures, and planned and coordinated the science focused Extra Vehicular Activities (EVAs). The primary science objectives of NEEMO 20 was to study planetary sampling techniques and tools in partial gravity environments under realistic mission communication time delays and operational pressures. To facilitate these objectives two types of science sites were employed 1) geoscience sites with available rocks and regolith for testing sampling procedures and tools and, 2) marine science sites dedicated to specific research focused on assessing the photosynthetic capability of corals and their genetic connectivity between deep and shallow reefs. These marine sites and associated research objectives included deployment of handheld instrumentation, context descriptions, imaging, and sampling; thus acted as a suitable proxy for planetary surface exploration activities. This abstract briefly summarizes the scientific training, scientific operations, and tool development conducted during NEEMO 20 with an emphasis on the primary lessons learned.

  7. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  8. The Lunar Reconnaissance Orbiter Mission: Seven Years at the Moon - Accomplishments, Data, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Petro, Noah; Keller, John

    2016-07-01

    The LRO Spacecraft has been orbiting the Moon for over 7 years (~91 lunations), and in that time data from the seven instruments has contributed to a revolution in our understanding of the Moon. Since launch the mission goals and instruments science questions have evolved, from the initial characterization of the lunar surface and its environment to studying the variability of surface hydration and measuring the flux of new craters that have formed during LRO's time in lunar orbit. The growing LRO dataset in the PDS presents a unique archive that allows for an unprecedented opportunity to study how an airless body changes over time. The LRO instrument suite [1] is performing nominally, with no significant performance issues since the mission entered the current extended mission. The Mini-RF instrument team is investigating new methods for collecting bistatic data using an Earth-based X-band transmitter [2] during a possible upcoming extended mission starting in September 2016, pending NASA approval. The LRO spacecraft has been in an elliptical, polar orbit with a low perilune over the South Pole since December 2011. This orbit minimizes annual fuel consumption, enabling LRO to use fuel to maximize opportunities for obtaining unique science (e.g., lunar eclipse measurements from Diviner, measuring spacecraft impacts by GRAIL and LADEE). The LRO instrument teams deliver data to the PDS every three months, data that includes raw, calibrated, and gridded/map products [3]. As of January, over 681TB has been archived. These higher-level data products include a number of resources that are useful for mission planners, in addition to planetary scientists. A focus of the mission has been on the South Pole, therefore a number of special products (e.g., illumination maps, high resolution topography, hydration maps) are available. Beyond the poles, high-resolution (~1-2 m spatial resolution) topographic products are available for select areas, as well as maps of rock abundance and surface slopes. It is important to note that LRO data has also vastly improved our understanding of the location of surface features across the entire Moon, thus enabling the accurate geolocation of any spot on the Moon. LRO will participate in the Planetary Science Division Senior Review to propose for two years of operations (FY17-18). As part of the senior review process the LRO instrument teams and project are defining exciting new science questions and instrument modes. We are also evaluating new orbits for the spacecraft in order to maximize the science return, as well as put us in a position to leverage possible future opportunities (e.g., observe future landings by commercial/private/international missions, upcoming eclipses). [1] Vondrak, R., et al., (2010) Space Science Reviews, 150, 7-22. [2] Patterson, G. W., et al., (2016) LPSC. [3] LRO PDS Archive, (http://pds-geosciences.wustl.edu/missions/lro/).

  9. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  10. Small Particulate Contamination Survey Of Genesis Flight Sample 61423

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Schmeling, M.; Gonzalez, C. P.; Allums, K. K.; Allton, J. H.; Burnett, D. S.

    2016-01-01

    The Genesis mission collected solar wind and brought it back to Earth in order to provide precise knowledge of solar isotopic and elemental compositions. The ions in the solar wind stop in the collectors at depths on the order of 10 to a few hundred nanometers. This shallow implantation layer is critical for scientific analysis of the composition of the solar wind and must be preserved throughout sample handling, cleaning, processing, distribution, preparation and analysis. We continue to work with the community of scientists analyzing Genesis samples using our unique laboratory facilities -- and, where needed, our unique cleaning techniques -- to significantly enhance the science return from the Genesis mission. This work is motivated by the need to understand the submicron contamination on the collectors in the Genesis payload as recovered from the crash site in the Utah desert, and -- perhaps more importantly -- how to remove it. We continue to evaluate the effectiveness of the wet-chemical "cleaning" steps used by various investigators, to enable them to design improved methods of stripping spacecraft and terrestrial contamination from surfaces while still leaving the solar-wind signal intact.

  11. "Artificial humans": Psychology and neuroscience perspectives on embodiment and nonverbal communication.

    PubMed

    Vogeley, Kai; Bente, Gary

    2010-01-01

    "Artificial humans", so-called "Embodied Conversational Agents" and humanoid robots, are assumed to facilitate human-technology interaction referring to the unique human capacities of interpersonal communication and social information processing. While early research and development in artificial intelligence (AI) focused on processing and production of natural language, the "new AI" has also taken into account the emotional and relational aspects of communication with an emphasis both on understanding and production of nonverbal behavior. This shift in attention in computer science and engineering is reflected in recent developments in psychology and social cognitive neuroscience. This article addresses key challenges which emerge from the goal to equip machines with socio-emotional intelligence and to enable them to interpret subtle nonverbal cues and to respond to social affordances with naturally appearing behavior from both perspectives. In particular, we propose that the creation of credible artificial humans not only defines the ultimate test for our understanding of human communication and social cognition but also provides a unique research tool to improve our knowledge about the underlying psychological processes and neural mechanisms. Copyright © 2010. Published by Elsevier Ltd.

  12. The Role of Synthetic Biology in NASA's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  13. The European Lead Factory: A Blueprint for Public-Private Partnerships in Early Drug Discovery.

    PubMed

    Karawajczyk, Anna; Orrling, Kristina M; de Vlieger, Jon S B; Rijnders, Ton; Tzalis, Dimitrios

    2016-01-01

    The European Lead Factory (ELF) is a public-private partnership (PPP) that provides researchers in Europe with a unique platform for translation of innovative biology and chemistry into high-quality starting points for drug discovery. It combines an exceptional collection of small molecules, high-throughput screening (HTS) infrastructure, and hit follow-up capabilities to advance research projects from both private companies and publicly funded researchers. By active interactions with the wider European life science community, ELF connects and unites bright ideas, talent, and experience from several disciplines. As a result, ELF is a unique, collaborative lead generation engine that has so far resulted in >4,500 hit compounds with a defined biological activity from 83 successfully completed HTS and hit evaluation campaigns. The PPP has also produced more than 120,000 novel innovative library compounds that complement the 327,000 compounds contributed by the participating pharmaceutical companies. Intrinsic to its setup, ELF enables breakthroughs in areas with unmet medical and societal needs, where no individual entity would be able to create a comparable impact in such a short time.

  14. The European Lead Factory: A Blueprint for Public–Private Partnerships in Early Drug Discovery

    PubMed Central

    Karawajczyk, Anna; Orrling, Kristina M.; de Vlieger, Jon S. B.; Rijnders, Ton; Tzalis, Dimitrios

    2017-01-01

    The European Lead Factory (ELF) is a public–private partnership (PPP) that provides researchers in Europe with a unique platform for translation of innovative biology and chemistry into high-quality starting points for drug discovery. It combines an exceptional collection of small molecules, high-throughput screening (HTS) infrastructure, and hit follow-up capabilities to advance research projects from both private companies and publicly funded researchers. By active interactions with the wider European life science community, ELF connects and unites bright ideas, talent, and experience from several disciplines. As a result, ELF is a unique, collaborative lead generation engine that has so far resulted in >4,500 hit compounds with a defined biological activity from 83 successfully completed HTS and hit evaluation campaigns. The PPP has also produced more than 120,000 novel innovative library compounds that complement the 327,000 compounds contributed by the participating pharmaceutical companies. Intrinsic to its setup, ELF enables breakthroughs in areas with unmet medical and societal needs, where no individual entity would be able to create a comparable impact in such a short time. PMID:28154815

  15. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  16. Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.

    2018-01-01

    Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.

  17. Beyond JWST: Science Drivers for the Next Great UVOIR Space Telescope

    NASA Astrophysics Data System (ADS)

    Tumlinson, Jason; Seager, Sara; Dalcanton, Julianne; Postman, Marc; Aigrain, Suzanne; battel, Steven; Brandt, W. Niel; Conroy, Charlie; Feinberg, Lee; Gezari, Suvi; Guyon, Olivier; Harris, Walter M.; Hirata, Chris; Mather, John C.; Redding, David; Schiminovich, David; Stahl, H. Philip

    2015-01-01

    We report on the AURA 'Beyond JWST' committee's considerations and conclusions regarding the science case for the development of a large UVOIR observatory, to be launched following JWST and WFIRST-AFTA. We find that a space-based UVOIR telescope of 10 meters or more in aperture will uniquely enable a wide range of transformational science investigations by itself and in tandem with ground-based OIR and radio facilities in its era. The chief goal of this facility is to assess the possibility of life beyond our Solar System by discovering Earth-like planets in the habitable zones of their host stars, via direct imaging, and by searching spectroscopically for biosignature gases in the atmospheres of the best exo-Earth candidates. The large aperture and mission architecture required to characterize the atmospheres of a significant number of potentially life-bearing planets will also transform studies of the galaxies and stars that led up to them. At 10 meters or larger, the telescope will spatially resolve scales of 100 AU everywhere in the Milky Way, 0.1 parsec everywhere in the Local Group, and 100 parsec everywhere in the observable Universe. This unprecedented spatial resolution over large fields, with stable optics and low backgrounds, will allow astronomers to follow, in high definition, the formation and evolution of the star forming regions inside galaxies over the past 10 Gyr, to robustly determine the complete star formation histories in every galaxy within the local volume (to 10 Mpc), and to track the motions of virtually any star in the Milky Way. High spectral resolution and multi-object spectroscopy in the UV will enable revolutionary new studies of gas flows in galaxies, bodies in the outer solar system, and the evolution of the most massive stars. We present these compelling science drivers and their associated observational requirements here; we summarize the technology requirements for high angular resolution, sensitivity, wavefront stability, dynamic range, and access to ultraviolet wavelengths to support these capabilities in a companion poster.

  18. The science commons in health research: structure, function, and value.

    PubMed

    Cook-Deegan, Robert

    The "science commons," knowledge that is widely accessible at low or no cost, is a uniquely important input to scientific advance and cumulative technological innovation. It is primarily, although not exclusively, funded by government and nonprofit sources. Much of it is produced at academic research centers, although some academic science is proprietary and some privately funded R&D enters the science commons. Science in general aspires to Mertonian norms of openness, universality, objectivity, and critical inquiry. The science commons diverges from proprietary science primarily in being open and being very broadly available. These features make the science commons particularly valuable for advancing knowledge, for training innovators who will ultimately work in both public and private sectors, and in providing a common stock of knowledge upon which all players-both public and private-can draw readily. Open science plays two important roles that proprietary R&D cannot: it enables practical benefits even in the absence of profitable markets for goods and services, and its lays a shared foundation for subsequent private R&D. The history of genomics in the period 1992-2004, covering two periods when genomic startup firms attracted significant private R&D investment, illustrates these features of how a science commons contributes value. Commercial interest in genomics was intense during this period. Fierce competition between private sector and public sector genomics programs was highly visible. Seemingly anomalous behavior, such as private firms funding "open science," can be explained by unusual business dynamics between established firms wanting to preserve a robust science commons to prevent startup firms from limiting established firms' freedom to operate. Deliberate policies to create and protect a large science commons were pursued by nonprofit and government funders of genomics research, such as the Wellcome Trust and National Institutes of Health. These policies were crucial to keeping genomic data and research tools widely available at low cost.

  19. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics.

    PubMed

    Vallabani, N V Srikanth; Singh, Sanjay

    2018-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as chemically inert materials and, therefore, being extensively applied in the areas of imaging, targeting, drug delivery and biosensors. Their unique properties such as low toxicity, biocompatibility, potent magnetic and catalytic behavior and superior role in multifunctional modalities have epitomized them as an appropriate candidate for biomedical applications. Recent developments in the area of materials science have enabled the facile synthesis of Iron oxide nanoparticles (IONPs) offering easy tuning of surface properties and surface functionalization with desired biomolecules. Such developments have enabled IONPs to be easily accommodated in nanocomposite platform or devices. Additionally, the tag of biocompatible material has realized their potential in myriad applications of nanomedicines including imaging modalities, sensing, and therapeutics. Further, IONPs enzyme mimetic activity pronounced their role as nanozymes in detecting biomolecules like glucose, and cholesterol etc. Hence, based on their versatile applications in biomedicine, the present review article focusses on the current trends, developments and future prospects of IONPs in MRI, hyperthermia, photothermal therapy, biomolecules detection, chemotherapy, antimicrobial activity and also their role as the multifunctional agent in diagnosis and nanomedicines.

  20. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    NASA Astrophysics Data System (ADS)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  1. In the Footsteps of Roger Revelle: Seagoing Oceanography for Middle School Science

    NASA Astrophysics Data System (ADS)

    Brice, D.; Foley, S.; Knox, R. A.; Mauricio, P.

    2007-12-01

    Now in its fourth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with National Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO), Woods Hole Oceanographic Institution (WHOI), National Oceanic and Atmospheric Administration (NOAA), Office of Naval Research (ONR), National Science Foundation (NSF), San Diego County Office of Education (SDCOE), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum encourages active inquiry with intellectually stimulating problem-solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role- models. Recent science test scores with IFRR students have shown significant increases in classes where this curriculum has been implemented as compared to other classes where the traditional curriculum has been used. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens - a benefit for a country that depends increasingly on technically proficient personnel, and a benefit for society at large.

  2. Scientific analogs and the development of human mission architectures for the Moon, deep space and Mars

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Abercromby, A.; Beaton, K.; Brady, A. L.; Cardman, Z.; Chappell, S.; Cockell, C. S.; Cohen, B. A.; Cohen, T.; Deans, M.; Deliz, I.; Downs, M.; Elphic, R. C.; Hamilton, J. C.; Heldmann, J.; Hillenius, S.; Hoffman, J.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Lees, D. S.; Marquez, J.; Miller, M.; Milovsoroff, C.; Payler, S.; Sehlke, A.; Squyres, S. W.

    2016-12-01

    Analogs are destinations on Earth that allow researchers to approximate operational and/or physical conditions on other planetary bodies and within deep space. Over the past decade, our team has been conducting geobiological field science studies under simulated deep space and Mars mission conditions. Each of these missions integrate scientific and operational research with the goal to identify concepts of operations (ConOps) and capabilities that will enable and enhance scientific return during human and human-robotic missions to the Moon, into deep space and on Mars. Working under these simulated mission conditions presents a number of unique challenges that are not encountered during typical scientific field expeditions. However, there are significant benefits to this working model from the perspective of the human space flight and scientific operations research community. Specifically, by applying human (and human-robotic) mission architectures to real field science endeavors, we create a unique operational litmus test for those ConOps and capabilities that have otherwise been vetted under circumstances that did not necessarily demand scientific data return meeting the rigors of peer-review standards. The presentation will give an overview of our team's recent analog research, with a focus on the scientific operations research. The intent is to encourage collaborative dialog with a broader set of analog research community members with an eye towards future scientific field endeavors that will have a significant impact on how we design human and human-robotic missions to the Moon, into deep space and to Mars.

  3. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  4. Review: engineering particles using the aerosol-through-plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Jonathan; Luhrs, Claudia C; Richard, Monique

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasmamore » systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.« less

  5. Biomedical Data Sharing and Reuse: Attitudes and Practices of Clinical and Scientific Research Staff.

    PubMed

    Federer, Lisa M; Lu, Ya-Ling; Joubert, Douglas J; Welsh, Judith; Brandys, Barbara

    2015-01-01

    Significant efforts are underway within the biomedical research community to encourage sharing and reuse of research data in order to enhance research reproducibility and enable scientific discovery. While some technological challenges do exist, many of the barriers to sharing and reuse are social in nature, arising from researchers' concerns about and attitudes toward sharing their data. In addition, clinical and basic science researchers face their own unique sets of challenges to sharing data within their communities. This study investigates these differences in experiences with and perceptions about sharing data, as well as barriers to sharing among clinical and basic science researchers. Clinical and basic science researchers in the Intramural Research Program at the National Institutes of Health were surveyed about their attitudes toward and experiences with sharing and reusing research data. Of 190 respondents to the survey, the 135 respondents who identified themselves as clinical or basic science researchers were included in this analysis. Odds ratio and Fisher's exact tests were the primary methods to examine potential relationships between variables. Worst-case scenario sensitivity tests were conducted when necessary. While most respondents considered data sharing and reuse important to their work, they generally rated their expertise as low. Sharing data directly with other researchers was common, but most respondents did not have experience with uploading data to a repository. A number of significant differences exist between the attitudes and practices of clinical and basic science researchers, including their motivations for sharing, their reasons for not sharing, and the amount of work required to prepare their data. Even within the scope of biomedical research, addressing the unique concerns of diverse research communities is important to encouraging researchers to share and reuse data. Efforts at promoting data sharing and reuse should be aimed at solving not only technological problems, but also addressing researchers' concerns about sharing their data. Given the varied practices of individual researchers and research communities, standardizing data practices like data citation and repository upload could make sharing and reuse easier.

  6. A unique degree program for pre-pharmacy education: An undergraduate degree in pharmaceutical sciences.

    PubMed

    Jafari, Mahtab

    2018-02-01

    Within the coming decade, the demand for well-trained pharmacists is expected to only increase, especially with the aging of the United States (US) population. To help fill this growing demand, the University of California, Irvine (UCI) aims to offer a unique pre-pharmacy degree program and has developed a Bachelor of Science (BS) degree in Pharmaceutical Sciences to help achieve this goal. In this commentary, we share our experience with our curriculum and highlight its features in an effort to encourage other institutions to enhance the learning experience of their pre-pharmacy students. The efforts of the UCI Department of Pharmaceutical Sciences has resulted in UCI being consistently ranked as one of the top feeder institutions by the Pharmacy College Application Service (PharmCAS) in recent years. The UCI Pharmaceutical Sciences Bachelor of Science offers a unique pre-pharmacy educational experience in an effort to better prepare undergraduates for the rigors of the doctorate of pharmacy curriculum. Copyright © 2017. Published by Elsevier Inc.

  7. What is Next? Linking all Samples of Planet Earth.

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Lehnert, K.; Klump, J. F.; Arko, R. A.; Cox, S. J. D.; Devaraju, A.; Elger, K.; Murphy, F.; Fleischer, D.

    2016-12-01

    The process of sampling, observing and analyzing physical samples is not unique to the geosciences. Physical sampling (taking specimens) is a fundamental strategy in many natural sciences, typically to support ex-situ observations in laboratories with the goal of characterizing real-world entities or populations. Observations and measurements are made on individual specimens and their derived samples in various ways, with results reported in research publications. Research on an individual sample is often published in numerous articles, based on multiple, potentially unrelated research programs conducted over many years. Even high-volume Earth observation datasets are proxies of real world phenomena and require calibration by measurements made on position located, well described physical samples. Unique, persistent web-compatible identifiers for physical objects and related sampling features are required to ensure their unambiguous citation and connection to related datasets through web identifiers. Identifier systems have been established within specific domains (e.g., bio, geo, hydro) or different sectors (e.g., museums, government agencies, universities), including the International Geo Sample Number (IGSN) in the geosciences, which has been used for rock, fossil, mineral, soil, regolith, fluid, plant and synthetic materials. IGSNs are issued through a governance system that ensures they are globally unique. Each IGSN directs to a digital representation of the physical object via the Handle.net global resolver system, the same system used for resolving DOI. To enable the unique identification of all samples on Planet Earth and of data derived from them, the next step is to ensure IGSNs can either be integrated with comparable identifier systems in other domains/sectors, or introduced into domains that do not have a viable system. A registry of persistent identifier systems for physical samples would allow users to choose which system best suits their needs. Such a registry may also facilitate unifying best practice in these multiple systems to enable consistent referencing of physical samples and of methods used to link digital data to its sources. IGSNs could be extended into other domains, but additional methodologies of sample collection, curation and processing may need to be considered.

  8. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  9. A global regulatory science agenda for vaccines.

    PubMed

    Elmgren, Lindsay; Li, Xuguang; Wilson, Carolyn; Ball, Robert; Wang, Junzhi; Cichutek, Klaus; Pfleiderer, Michael; Kato, Atsushi; Cavaleri, Marco; Southern, James; Jivapaisarnpong, Teeranart; Minor, Philip; Griffiths, Elwyn; Sohn, Yeowon; Wood, David

    2013-04-18

    The Decade of Vaccines Collaboration and development of the Global Vaccine Action Plan provides a catalyst and unique opportunity for regulators worldwide to develop and propose a global regulatory science agenda for vaccines. Regulatory oversight is critical to allow access to vaccines that are safe, effective, and of assured quality. Methods used by regulators need to constantly evolve so that scientific and technological advances are applied to address challenges such as new products and technologies, and also to provide an increased understanding of benefits and risks of existing products. Regulatory science builds on high-quality basic research, and encompasses at least two broad categories. First, there is laboratory-based regulatory science. Illustrative examples include development of correlates of immunity; or correlates of safety; or of improved product characterization and potency assays. Included in such science would be tools to standardize assays used for regulatory purposes. Second, there is science to develop regulatory processes. Illustrative examples include adaptive clinical trial designs; or tools to analyze the benefit-risk decision-making process of regulators; or novel pharmacovigilance methodologies. Included in such science would be initiatives to standardize regulatory processes (e.g., definitions of terms for adverse events [AEs] following immunization). The aim of a global regulatory science agenda is to transform current national efforts, mainly by well-resourced regulatory agencies, into a coordinated action plan to support global immunization goals. This article provides examples of how regulatory science has, in the past, contributed to improved access to vaccines, and identifies gaps that could be addressed through a global regulatory science agenda. The article also identifies challenges to implementing a regulatory science agenda and proposes strategies and actions to fill these gaps. A global regulatory science agenda will enable regulators, academics, and other stakeholders to converge around transformative actions for innovation in the regulatory process to support global immunization goals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules

    NASA Astrophysics Data System (ADS)

    Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus

    2016-06-01

    Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.

  11. PLRP-3: Operational Perspectives of Conducting Science-Driven Extravehicular Activity with Communications Latency

    NASA Technical Reports Server (NTRS)

    Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.

    2016-01-01

    The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.

  12. GRDC. A Collaborative Framework for Radiological Background and Contextual Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian J. Quiter; Ramakrishnan, Lavanya; Mark S. Bandstra

    The Radiation Mobile Analysis Platform (RadMAP) is unique in its capability to collect both high quality radiological data from both gamma-ray detectors and fast neutron detectors and a broad array of contextual data that includes positioning and stance data, high-resolution 3D radiological data from weather sensors, LiDAR, and visual and hyperspectral cameras. The datasets obtained from RadMAP are both voluminous and complex and require analyses from highly diverse communities within both the national laboratory and academic communities. Maintaining a high level of transparency will enable analysis products to further enrich the RadMAP dataset. It is in this spirit of openmore » and collaborative data that the RadMAP team proposed to collect, calibrate, and make available online data from the RadMAP system. The Berkeley Data Cloud (BDC) is a cloud-based data management framework that enables web-based data browsing visualization, and connects curated datasets to custom workflows such that analysis products can be managed and disseminated while maintaining user access rights. BDC enables cloud-based analyses of large datasets in a manner that simulates real-time data collection, such that BDC can be used to test algorithm performance on real and source-injected datasets. Using the BDC framework, a subset of the RadMAP datasets have been disseminated via the Gamma Ray Data Cloud (GRDC) that is hosted through the National Energy Research Science Computing (NERSC) Center, enabling data access to over 40 users at 10 institutions.« less

  13. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  14. Creating Sister Cities: An Exchange Across Hemispheres

    NASA Astrophysics Data System (ADS)

    Adams, M. T.; Cabezon, S. A.; Hardy, E.; Harrison, R. J.

    2008-06-01

    Sponsored by Associated Universities, Inc. (AUI) and the National Radio Astronomy Observatory (NRAO), this project creates a cultural and educational exchange program between communities in South and North America, linking San Pedro de Atacama in Chile and Magdalena, New Mexico in the United States. Both communities have similar demographics, are in relatively undeveloped regions of high-elevation desert, and are located near major international radio astronomy research facilities. The Atacama Large Millimeter/submillimeter Array (ALMA) is just 40 km east of San Pedro; the Very Large Array (VLA) is just 40 km west of Magdalena. In February 2007, the Mayor of San Pedro and two teachers visited Magdalena for two weeks; in July 2007 three teachers from Magdalena will visit San Pedro. These visits enable the communities to lay the foundation for a permanent, unique partnership. The teachers are sharing expertise and teaching methodologies for physics and astronomy. In addition to creating science education opportunities, this project offers students linguistic and cultural connections. The town of San Pedro, Chile, hosts nearly 100,000 tourists per year, and English language skills are highly valued by local students. Through exchanges enabled by email and distance conferencing, San Pedro and Magdalena students will improve English and Spanish language skills while teaching each other about science and their respective cultures. This poster describes the AUI/NRAO Sister Cities program, including the challenges of cross-cultural communication and the rewards of interpersonal exchanges between continents and cultures.

  15. Bringing 3D Printing to Geophysical Science Education

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  16. Enabling Collaboration and Video Assessment: Exposing Trends in Science Preservice Teachers' Assessments

    ERIC Educational Resources Information Center

    Borowczak, Mike; Burrows, Andrea C.

    2016-01-01

    This article details a new, free resource for continuous video assessment named YouDemo. The tool enables real time rating of uploaded YouTube videos for use in science, technology, engineering, and mathematics (STEM) education and beyond. The authors discuss trends of preservice science teachers' assessments of self- and peer-created videos using…

  17. Third user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    2016-03-24

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less

  18. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  19. Natural product synthesis at the interface of chemistry and biology

    PubMed Central

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. PMID:25043880

  20. GNSS CORS hardware and software enabling new science

    NASA Astrophysics Data System (ADS)

    Drummond, P.

    2009-12-01

    GNSS CORS networks are enabling new opportunities for science and public and private sector business. This paper will explore how the newest geodetic monitoring software and GNSS receiver hardware from Trimble Navigation Ltd are enabling new science. Technology trends and science opportunities will be explored. These trends include the installation of active GNSS control, automation of observations and processing, and the advantages of multi-observable and multi-constellation observations, all performed with the use of off the shelf products and industry standard open-source data formats. Also the possibilities with moving science from an after-the-fact postprocessed model to a real-time epoch-by-epoch solution will be explored. This presentation will also discuss the combination of existing GNSS CORS networks with project specific installations used for monitoring. Experience is showing GNSS is able to provide higher resolution data than previous methods, providing new tools for science, decision makers and financial planners.

  1. Transforming Teaching Challenges into Learning Opportunities: Interdisciplinary Reflective Collaboration

    ERIC Educational Resources Information Center

    Callaghan, Ronel

    2015-01-01

    Teaching in higher education poses unique sets of challenges, especially for academics in the engineering, built sciences and information science education disciplines. This article focuses on how reflective collaboration can support academics in their quest to find unique solutions to challenges in different academic contexts. A reflective…

  2. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    PubMed

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Petascale Kinetic Simulations in Space Sciences: New Simulations and Data Discovery Techniques and Physics Results

    NASA Astrophysics Data System (ADS)

    Karimabadi, Homa

    2012-03-01

    Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.

  4. Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Bouet, Nathalie; Zhou, Juan; Huang, Xiaojing; Nazaretski, Evgeny; Xu, Weihe; Cocco, Alex P.; Chiu, Wilson K. S.; Brinkman, Kyle S.; Chu, Yong S.

    2018-03-01

    We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2‑x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.

  5. Model of fluid flow and internal erosion of a porous fragile medium

    NASA Astrophysics Data System (ADS)

    Kudrolli, Arshad; Clotet, Xavier

    2016-11-01

    We discuss the internal erosion and transport of particles leading to heterogeneity and channelization of a porous granular bed driven by fluid flow by introducing a model experimental system which enables direct visualization of the evolution of porosity from the single particle up to the system scale. Further, we develop a hybrid hydrodynamic-statistical model to understand the main ingredients needed to simulate our observations. A uniqueness of our study is the close coupling of the experiments and simulations with control parameters used in the simulations derived from the experiments. Understanding this system is of fundamental importance to a number of geophysical processes, and in the extraction of hydrocarbons in the subsurface including the deposition of proppants used in hydraulic fracturing. We provide clear evidence for the importance of curvature of the interface between high and low porosity regions in determining the flux rate needed for erosion and the spatial locations where channels grow. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences program under DE-SC0010274.

  6. Some assembly required: leveraging Web science to understand and enable team assembly

    PubMed Central

    Contractor, Noshir

    2013-01-01

    Recent advances on the Web have generated unprecedented opportunities for individuals around the world to assemble into teams. And yet, because of the Web, the nature of teams and how they are assembled has changed radically. Today, many teams are ad hoc, agile, distributed, transient entities that are assembled from a larger primordial network of relationships within virtual communities. These assemblages possess the potential to unleash the high levels of creativity and innovation necessary for productively addressing many of the daunting challenges confronting contemporary society. This article argues that Web science is particularly well suited to help us realize this potential by making a substantial interdisciplinary intellectual investment in (i) advancing theories that explain our socio-technical motivations to form teams, (ii) the development of new analytic methods and models to untangle the unique influences of these motivations on team assembly, (iii) harvesting, curating and leveraging the digital trace data offered by the Web to test our models, and (iv) implementing recommender systems that use insights gleaned from our richer theoretical understanding of the motivations that lead to effective team assembly. PMID:23419854

  7. ULTIMATE: a deployable multiple integral field unit for Subaru

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Zhelem, Ross; Brown, David; Staszak, Nicholas F.; Lidman, Chris; Nataf, David M.; Casey, Andrew R.; Xavier, Pascal; Sheinis, Andrew; Gillingham, Peter; Tims, Julia; Lawrence, Jon; Bryant, Julia; Sharp, Rob

    2016-08-01

    ULTIMATE is an instrument concept under development at the AAO, for the Subaru Telescope, which will have the unique combination of ground layer adaptive optics feeding multiple deployable integral field units. This will allow ULTIMATE to probe unexplored parameter space, enabling science cases such as the evolution of galaxies at z 0:5 to 1.5, and the dark matter content of the inner part of our Galaxy. ULTIMATE will use Starbugs to position between 7 and 13 IFUs over a 14 × 8 arcmin field-of-view, pro- vided by a new wide-field corrector. All Starbugs can be positioned simultaneously, to an accuracy of better than 5 milli-arcsec within the typical slew-time of the telescope, allowing for very efficient re-configuration between observations. The IFUs will feed either the near-infrared nuMOIRCS or the visible/ near-infrared PFS spectrographs, or both. Future possible upgrades include the possibility of purpose built spectrographs and incorporating OH suppression using fibre Bragg gratings. We describe the science case and resulting design requirements, the baseline instrument concept, and the expected performance of the instrument.

  8. NASA Langley Atmospheric Science Data Center (ASDC) Experience with Aircraft Data

    NASA Astrophysics Data System (ADS)

    Perez, J.; Sorlie, S.; Parker, L.; Mason, K. L.; Rinsland, P.; Kusterer, J.

    2011-12-01

    Over the past decade the NASA Langley ASDC has archived and distributed a variety of aircraft mission data sets. These datasets posed unique challenges for archiving from the rigidity of the archiving system and formats to the lack of metadata. The ASDC developed a state-of-the-art data archive and distribution system to serve the atmospheric sciences data provider and researcher communities. The system, called Archive - Next Generation (ANGe), is designed with a distributed, multi-tier, serviced-based, message oriented architecture enabling new methods for searching, accessing, and customizing data. The ANGe system provides the ease and flexibility to ingest and archive aircraft data through an ad hoc workflow or to develop a new workflow to suit the providers needs. The ASDC will describe the challenges encountered in preparing aircraft data for archiving and distribution. The ASDC is currently providing guidance to the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Earth Venture-1 project on developing collection, granule, and browse metadata as well as supporting the ADAM (Airborne Data For Assessing Models) site.

  9. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  10. Some assembly required: leveraging Web science to understand and enable team assembly.

    PubMed

    Contractor, Noshir

    2013-03-28

    Recent advances on the Web have generated unprecedented opportunities for individuals around the world to assemble into teams. And yet, because of the Web, the nature of teams and how they are assembled has changed radically. Today, many teams are ad hoc, agile, distributed, transient entities that are assembled from a larger primordial network of relationships within virtual communities. These assemblages possess the potential to unleash the high levels of creativity and innovation necessary for productively addressing many of the daunting challenges confronting contemporary society. This article argues that Web science is particularly well suited to help us realize this potential by making a substantial interdisciplinary intellectual investment in (i) advancing theories that explain our socio-technical motivations to form teams, (ii) the development of new analytic methods and models to untangle the unique influences of these motivations on team assembly, (iii) harvesting, curating and leveraging the digital trace data offered by the Web to test our models, and (iv) implementing recommender systems that use insights gleaned from our richer theoretical understanding of the motivations that lead to effective team assembly.

  11. NASA Astrophysics E/PO: The Impact of the Space Telescope Science Institute Office of Public Outreach

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Jirdeh, Hussein; Eisenhamer, Bonnie; Villard, Ray

    2015-01-01

    As the science operations center for Hubble and Webb, the Space Telescope Science Institute (STScI) is uniquely positioned to captivate the imagination and inspire learners of all ages in humanity's quest to understand fundamental questions about our universe and our place in it. With the 25th anniversary of Hubble's launch and deployment approaching in April 2015, this presentation will provide an overview of the impact of the STScI's Office of Public Outreach's programs to engage students, educators, and the public in exploring the universe through audience-based news, education, and outreach programs. At the heart of our programs lies a tight coupling of scientific, education, and communications expertise. By partnering scientists and educators, we assure current, accurate science content and education products and programs that are classroom-ready and held to the highest pedagogical standards. Likewise, news and outreach programs accurately convey cutting-edge science and technology in a way that is attuned to audience needs. The combination of Hubble's scientific capabilities and majestic imagery, together with a deep commitment to creating effective programs to share Hubble science with the education community and the public, has enabled the STScI Office of Public Outreach programs to engage 6 million students and ½ million educators per year, and 24 million online viewers per year. Hubble press releases generate approximately 5,000 online news articles per year with an average circulation of 125 million potential readers per press release news story. We will also share how best practices and lessons learned from this long-lived program are already being applied to engage a new generation of explorers in the science and technology of the James Webb Space Telescope.

  12. NASA Astrophysics Education and Public Outreach: The Impact of the Space Telescope Science Institute Office of Public Outreach

    NASA Astrophysics Data System (ADS)

    Smith, Denise Anne; Jirdeh, Hussein; Eisenhamer, Bonnie; Villard, Ray; Green, Joel David

    2015-08-01

    As the science operations center for the Hubble Space Telescope and the James Webb Space Telescope, the Space Telescope Science Institute (STScI) is uniquely positioned to captivate the imagination and inspire learners of all ages in humanity’s quest to understand fundamental questions about our universe and our place in it. This presentation will provide an overview of the impact of the STScI’s Office of Public Outreach’s efforts to engage students, educators, and the public in exploring the universe through audience-based news, education, and outreach programs.At the heart of our programs lies a tight coupling of scientific, education, and communications expertise. By partnering scientists and educators, we assure current, accurate science content and education products and programs that are classroom-ready and held to the highest pedagogical standards. Likewise, news and outreach programs accurately convey cutting-edge science and technology in a way that is attuned to audience needs. The combination of Hubble’s scientific capabilities, majestic imagery, and our deep commitment to create effective programs to share Hubble science with the education community and the public, has enabled the STScI Office of Public Outreach programs to engage 6 million students and ½ million educators per year, and 24 million online viewers per year. Hubble press releases generate approximately 5,000 online news articles per year with an average circulation of 125 million potential readers per press release news story. We will also share how best practices and lessons learned from this long-lived program are already being applied to engage a new generation of explorers in the science and technology of the James Webb Space Telescope.

  13. NASA'S Solar System Exploration Research Virtual Institute: An international approach toward bringing science and human exploration together for mutual benefit

    NASA Astrophysics Data System (ADS)

    Schmidt, Gregory

    2016-07-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and explora-tion, training the next generation of lunar scientists, and community development. The institute is a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdis-ciplinary, research-focused collaborations. Its relative-ly large domestic teams work together along with in-ternational partners in both traditional and virtual set-tings to bring disparate approaches together for mutual benefit. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. com-plement of the Institute and how it is engaging the in-ternational science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. The Institute is centered on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. It focuses on interdisciplinary, exploration-related science cen-tered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Mar-tian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environ-ments as well as science uniquely enabled from these bodies. The technical focus ranges from investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. SSERVI enhances the widening knowledgebase of planetary research by acting as a bridge between several differ-ent groups and bringing together researchers from the scientific and exploration communities, multiple disci-plines across the full range of planetary sciences, and domestic and international communities and partner-ships.

  14. Phonon Scattering in Thermoelectrics: Thermal Transport, Strong Anharmonicity, and Emergent Quasiparticles

    NASA Astrophysics Data System (ADS)

    Delaire, Olivier

    Modern neutron and x-ray spectrometers can map phonon dispersions and scattering rates throughout reciprocal space, providing unique insights into microscopic scattering mechanisms, including anharmonicity, electron-phonon coupling, or scattering by defects and nanostructures. In addition, first-principles simulations enable the rationalization of extensive experimental datasets. In particular, ab-initio molecular dynamics simulations can capture striking effects of anharmonicity near lattice instabilities. A number of high-performance thermoelectric materials are found in the vicinity of lattice instabilities, including Pb chalcogenides PbX, SnSe, Cu2Se, among others. The large phonon anharmonicity found in such compounds suppresses the lattice thermal conductivity, enhancing their thermoelectric efficiency. In this presentation, I will present results from our investigations of phonons in these materials using neutron and x-ray scattering combined with first-principles simulations, focusing on anharmonic effects near lattice instabilities. I will show how strong anharmonicity can lead to emergent quasiparticles qualitatively different from harmonic phonons, which we probe in our measurements and simulations of the phonon self-energy. Commonalities between systems will be highlighted, including connections between strong anharmonicity and the electronic structure. Funding from US DOE, Office of Basic Energy Sciences, Materials Science and Engineering Division, Office of Science Early Career program (DE-SC0016166), and as part of the S3TEC EFRC (DE-SC0001299).

  15. Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat

    NASA Technical Reports Server (NTRS)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Moore, Christopher; Jones, Andrew; Kohnert, Rick; Li, Xinlin; Palo, Scott; Solomon, Stanley C.

    2016-01-01

    The miniature x-ray solar spectrometer is a three-unit CubeSat developed at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at University of Colorado, Boulder and from Laboratory for Atmospheric and Space Physics scientists and engineers. The scientific objective of the miniature x-ray solar spectrometer is to study processes in the dynamic sun, from quiet sun to solar flares, and to further understand how these changes in the sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays. The enabling technology providing the advanced solar soft x-ray spectral measurements is the Amptek X123, a commercial off-the-shelf silicon drift detector. The Amptek X123 has a low mass (approx. 324 g after modification), modest power consumption (approx. 2.50 W), and small volume (6.86 x 9.91 x 2.54 cm), making it ideal for a CubeSat. This paper provides an overview of the miniature x-ray solar spectrometer mission: the science objectives, project history, subsystems, and lessons learned, which can be useful for the small-satellite community.

  16. Capacity Building for the Access and Application of NASA Earth Science Data

    NASA Astrophysics Data System (ADS)

    Blevins, B.; Prados, A. I.; Hook, E.

    2016-12-01

    Since 2008, NASA's Applied Remote Sensing Training (ARSET) program has built capacity in applied remote sensing by building awareness, and enabling access and use of NASA Earth science data. To reach decision and policy makers from all sectors, ARSET hosts hands-on workshops and online webinars. With over 70 trainings, reaching more than 6,000 people from 130 countries and 1,600 organizations, ARSET has ample experience with assessing and meeting end-user needs. To meet the spectrum of needs and levels of attendee expertise, ARSET holds trainings for both the novice and experienced end-user. Trainings employ exercises, assignments, and live demonstrations of data access tools to reinforce remote sensing concepts and to facilitate data use and analysis techniques. This program is in a unique position to collect important feedback from thousands of participants each year through formal surveys and informal methods on NASA tools, portals, data formats, and the applications of Earth science data for end-user decision making activities. This information is shared with NASA data centers and program managers to help inform data portal development and to help prioritize the production of new satellite derived data products. This presentation will discuss the challenges that arise in capacity building trainings, the integration of community feedback into the training development cycle, and lessons learned throughout the process.

  17. Semantically-enabled Knowledge Discovery in the Deep Carbon Observatory

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.; Ma, X.; Erickson, J. S.; West, P.; Fox, P. A.

    2013-12-01

    The Deep Carbon Observatory (DCO) is a decadal effort aimed at transforming scientific and public understanding of carbon in the complex deep earth system from the perspectives of Deep Energy, Deep Life, Extreme Physics and Chemistry, and Reservoirs and Fluxes. Over the course of the decade DCO scientific activities will generate a massive volume of data across a variety of disciplines, presenting significant challenges in terms of data integration, management, analysis and visualization, and ultimately limiting the ability of scientists across disciplines to make insights and unlock new knowledge. The DCO Data Science Team (DCO-DS) is applying Semantic Web methodologies to construct a knowledge representation focused on the DCO Earth science disciplines, and use it together with other technologies (e.g. natural language processing and data mining) to create a more expressive representation of the distributed corpus of DCO artifacts including datasets, metadata, instruments, sensors, platforms, deployments, researchers, organizations, funding agencies, grants and various awards. The embodiment of this knowledge representation is the DCO Data Science Infrastructure, in which unique entities within the DCO domain and the relations between them are recognized and explicitly identified. The DCO-DS Infrastructure will serve as a platform for more efficient and reliable searching, discovery, access, and publication of information and knowledge for the DCO scientific community and beyond.

  18. Revolutionary Deep Space Science Missions Enabled by Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Debban, Theresa; Yen, Chen wan; Sherwood, Robert; Castano, Rebecca; Cichy, Benjamin; Davies, Ashley; Brul, Michael; Fukunaga, Alex; Fukunaga, Alex; hide

    2003-01-01

    Breakthrough autonomy technologies enable a new range of spire missions that acquire vast amounts of data and return only the most scientifically important data to Earth. These missions would monitor science phenomena in great detail (either with frequent observations or at extremely high spatial resolution) and onboard analyze the data to detect specific science events of interest. These missions would monitor volcanic eruptions, formation and movement of aeolian features. and atmospheric phenomena. The autonomous spacecraft would respond to science events by planning its future operations to revisit or perform complementary observations. In this paradigm, the spacecraft represents the scientists agent enabling optimization of the downlink data volume resource. This paper describes preliminary efforts to define and design such missions.

  19. SeaRover: An Emerging Technology for Sea Surface Sensor Networks

    NASA Astrophysics Data System (ADS)

    Fong, T.; Kudela, R.; Curcio, J.; Davidson, K.; Darling, D.; Kirkwood, B.

    2005-12-01

    Introduction - SeaRover is envisioned as an autonomous surface vehicle (ASV) for coastal operations. It is intended to lower the cost of existing marine survey applications while enabling new science missions. The current conceptual design is a small vehicle with hull and propulsion system optimized to eliminate cavitation and EM noise. SeaRover will make significant advances over existing platforms by providing longer duration science missions, better positioning and mission control, larger power budgets for instrumentation and significantly lower operational costs than existing vehicles. Science Enabled by SeaRover - SeaRover's unique design and autonomous capability provides several advantages compared to traditional autonomous underwater vehicles (AUV's) and crewed surface vessels: (1) Near surface sampling: SeaRover can sample within the top 1-2 meters. This is difficult to do with crewed vessels because of draft and perturbations from the hull. (2) Adaptive monitoring of dynamic events: SeaRover will be capable of intelligent decision making, as well as real-time remote control. This will enable highly-responsive autonomous tracking of moving phenomena (e.g., algal bloom). (3) Long term monitoring: SeaRover can be deployed for extended periods of time, allowing it to be used for longitudinal baseline studies. SeaRover will represent an advance over existing platforms in terms of: (1) Mobility: operational range from 10-1000 km, GPS accuracy, trajectory control with meter precision, and launch in hours. (2) Duration: from days up to months. (3) Payload and Power: accommodate approximately 100 kg for a 6m hull. Its surface design will allow access to wind and sun energy. (4) Communication: radio, wireless, satellite, direct data return. (5) Operational Cost: target costs are $2K/day (24 hour operation), with no onboard operator. (6) Recovery/Reusability: autonomous return to safe harbor provides sample return and on-base maintenance. Large science and power payload simplifies instrument design and integration. Enabling Technology for SeaRover - SeaRover's capabilities are made possible by advances in technologies developed during NASA planetary exploration missions: (1) Adaptive control (2) Automated data analysis (3) Communications management (4) Computer vision (5) Interactive 3D User Interfaces (6) Intelligent energy management (7) Long-duration operations planning (8) Multi-vehicle coordinated action As an example of what SeaRover could be used for, we envision augmenting existing monthly monitoring cruises in Monterey Bay with a SeaRover. Each month, the Center for Integrated Marine Technology (UC-Santa Cruz) conducts shipboard surveys of Monterey Bay. This requires 2-3 full days of ship time (weather dependent), 14 scientists, and 2 crew members. Operations are currently limited by sea-state, transit speed, and cost. SeaRover could provide all of the underway measurements and some of the hydrographic station measurements faster, more frequently, and for a fraction of the cost.

  20. Becoming urban science teachers by transforming middle-school classrooms: A study of the Urban Science Education Fellows Program

    NASA Astrophysics Data System (ADS)

    Furman, Melina Gabriela

    The current scenario in American education shows a large achievement and opportunity gap in science between urban children in poverty and more privileged youth. Research has shown that one essential factor that accounts for this gap is the shortage of qualified science teachers in urban schools. Teaching science in a high poverty school presents unique challenges to beginner teachers. Limited resources and support and a significant cultural divide with their students are some of the common problems that cause many novice teachers to quit their jobs or to start enacting what has been described as "the pedagogy of poverty." In this study I looked at the case of the Urban Science Education Fellows Program. This program aimed to prepare preservice teachers (i.e. "fellows") to enact socially just science pedagogies in urban classrooms. I conducted qualitative case studies of three fellows. Fellows worked over one year with science teachers in middle-school classrooms in order to develop transformative action research studies. My analysis focused on how fellows coauthored hybrid spaces within these studies that challenged the typical ways science was taught and learned in their classrooms towards a vision of socially just teaching. By coauthoring these hybrid spaces, fellows developed grounded generativity, i.e. a capacity to create new teaching scenarios rooted in the pragmatic realities of an authentic classroom setting. Grounded generativity included building upon their pedagogical beliefs in order to improvise pedagogies with others, repositioning themselves and their students differently in the classroom and constructing symbols of possibility to guide their practice. I proposed authentic play as the mechanism that enabled fellows to coauthor hybrid spaces. Authentic play involved contexts of moderate risk and of distributed expertise and required fellows to be positioned at the intersection of the margins and the center of the classroom community of practice. In all, this study demonstrates that engaging in classroom reform can support preservice teachers in developing specialized tools to teach science in urban classrooms.

  1. Eliciting and utilizing rural students' funds of knowledge in the service of science learning: An action research study

    NASA Astrophysics Data System (ADS)

    Lloyd, Ellen M.

    Several researchers have pointed out the failures of current schooling to adequately prepare students in science and called for radical reform in science education to address the problem. One dominant critique of science education is that several groups of students are not well served by current school science practices and discourses. Rural students represent one of these underserved populations. Yet, there is little in the literature that speaks specifically to reforming the science education of rural students. Utilizing action research as a methodology, this study was designed to learn more about the unique knowledge and life experiences of rural students, and how these unique knowledge, skills and interests could suggest new ways to improve science education in rural schools. Informed by this ultimate goal, I created an after school science club where the participating high school students engaged in solving a local watershed problem, while explicitly bringing to bear their unique backgrounds, local knowledge and life experiences from living in a rural area of Upstate New York. Using Funds of Knowledge as the theoretical framework, this after-school club served as the context to investigate the following research questions: (1) What science-related funds of knowledge do rural high school students have? (2) How were these funds of knowledge capitalized on to support science learning in an after-school setting?

  2. The 2017 Total Solar Eclipse: Through the Eyes of NASA

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; NASA Goddard Heliophysics Education Consortium

    2017-10-01

    The August 21st, 2017 Total Solar Eclipse Across America provided a unique opportunity to teach event-based science to nationwide audiences. NASA spent over three years planning space and Earth science education programs for informal audiences, undergraduate institutions, and life long learners to bring this celestial event to the public through the eyes of NASA. This talk outlines how NASA used its unique assets including mission scientists and engineers, space based assets, citizen science, educational technology, science visualization, and its wealth of science and technology partners to bring the eclipse to the country through multimedia, cross-discipline science activities, curricula, and media programing. Audience reach, impact, and lessons learned are detailed. Plans for similar events in 2018 and beyond are outlined.

  3. Breakthrough Science Enabled by Regular Access to Orbits Beyond Earth

    NASA Astrophysics Data System (ADS)

    Gorjian, V.

    2018-02-01

    Regular launches to the Deep Space Gateway (DSG) will enable smallsats to access orbits not currently easily available to low cost missions. These orbits will allow great new science, especially when using the DSG as an optical hub for downlink.

  4. Data Stewardship throughout the Ocean Research Data Life Cycle

    NASA Astrophysics Data System (ADS)

    Chandler, Cynthia; Groman, Robert; Allison, Molly; Wiebe, Peter; Glover, David

    2013-04-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program (OPP ANT) at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. The end goals of the BCO-DMO are to ensure preservation of NSF funded project data and to provide open access to those data; achievement of those goals is attained through successful completion of a series of related phases. BCO-DMO has developed an end-to-end data stewardship process that includes all phases of the data life cycle: (1) providing data management advice to investigators during the proposal writing stage; (2) registering their funded project at BCO-DMO; (3) adding data and supporting documentation to the BCO-DMO data repository; (4) providing geospatial and text-based data access systems that support data discovery, access, display, assessment, integration, and export of data resources; (5) exploring mechanisms for exchange of data with complementary repositories; (6) publication of data sets to provide publishers of the peer-reviewed literature with citable references (Digital Object Identifiers) and to encourage proper citation and attribution of data sets in the future and (7) submission of final data sets for preservation in the appropriate long-term data archive. Strategic development of collaborative partnerships with complementary data management organizations is essential to sustainable coverage of the full data life cycle from research proposal through preservation of the final data products. Development and incorporation of controlled vocabularies, domain-specific ontologies and globally unique, persistent identifiers to unambiguously identify resources of interest curated by and available from BCO-DMO have significantly enabled progress toward interoperability with partner systems. Several important components have emerged from early collaborative relationships: (1) identifying a trusted authoritative source of complementary content and the appropriate contact; (2) determining the globally unique, persistent identifier for resources of interest and (3) negotiating the requisite syntactic and semantic exchange systems. An added benefit is the ability to use globally unique, persistent resource identifiers to identify and compare related content in other repositories, thus enabling us to improve the accuracy of content in the BCO-DMO data collection. Results from a recent community discussion at the January 2013 Federation of Earth Science Information Partners (ESIP) meeting will be presented. Mindful of the NSF EarthCube initiative in the United States, the ESIP discussion was an effort to identify commonalities and differences in the way different communities meet the challenges of data stewardship throughout the full data life cycle and to determine any gaps that currently exist. BCO-DMO: http://bco-dmo.org ESIP: http://esipfed.org/

  5. Tracking Student Progress Through an On-Line Astro101 Module

    NASA Astrophysics Data System (ADS)

    Howard, W. H., II; Hufnagel, B.

    2004-05-01

    We present an on-line module that helps introductory-level, non-science undergraduates extract information about neutron star binary star systems from X-ray light curves. The students interface directly with the High Energy Astrophysics Science Archive Research Center (HEASARC) data through CollegeHera. Hera is a new service offered by HEASARC that enables complete interactive analysis of archived data products (see the separate Lochner & Pence paper this meeting). One of the innovative features of this module is that it records detailed student progress and automatically reports this to the professor. As the student moves through the module, student answers to multiple choice and free response questions are recorded in a personal file on the server. This is an authenticated process. The student must fill out a registration form that includes their name, course, email, professor, and professor's email. This creates a session cookie for the student that stores the unique ID given to the user by the server. In turn, the unique ID is linked to the one file that records the student's responses. When the module is completed, a brief confirmation email is sent to the student, excluding the student's unique answers to discourage sharing with other students. Simultaneously, the professor entered during the registration receives an email with the student responses and their time of entry. PERL is used for all server-side programming, and form validation functions were written in JavaScript. A laptop with internet access will be available at the poster for participants to explore the module. Learning goals and other education information for the module are at a related paper in this meeting, Hufnagel, Lochner & Howard. This module required extensive cooperation with the Hera team, and was based on a module developed by James Lochner. Irina Nelson, formerly of the Office of University Programs at GSFC, conceived the overall project. Support for this work was provided by the Southeast Regional Clearinghouse (SERCH) and the Maryland Space Grant Consortium.

  6. SCIDIP-ES - A science data e-infrastructure for preservation of earth science data

    NASA Astrophysics Data System (ADS)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. In many branches of the earth sciences the capture of key observational data may be difficult or impossible to repeat. For example, a specific geological exposure or subsurface borehole may be only temporarily available, and deriving earth observation data from a particular satellite mission is clearly often a unique opportunity. At the same time such unrepeatable observations may be a critical input to environmental, economic and political decision making. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide e-infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong business cases for the long term support of that data. This paper will describe our progress to date, including the results of community engagement and user consultation exercises designed to specify and scope the required tools and services. Our user engagement methodology, ensuring that we are capturing the views of a representative sample of institutional users, will be described. Key results of an in-depth user requirements exercise, and also the conclusions from a survey of existing technologies and policies for earth science data preservation involving almost five hundred respondents across Europe and beyond will also be outlined. A key aim of the project will also be to create harmonised data preservation and access policies for earth science data in Europe, taking into account the requirements of relevant earth science data users and archive providers across Europe, liaising appropriately with other European e-infrastructure projects, and progress on this will be explained.

  7. ScienceOrganizer System and Interface Summary

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2001-01-01

    ScienceOrganizer is a specialized knowledge management tool designed to enhance the information storage, organization, and access capabilities of distributed NASA science teams. Users access ScienceOrganizer through an intuitive Web-based interface that enables them to upload, download, and organize project information - including data, documents, images, and scientific records associated with laboratory and field experiments. Information in ScienceOrganizer is "threaded", or interlinked, to enable users to locate, track, and organize interrelated pieces of scientific data. Linkages capture important semantic relationships among information resources in the repository, and these assist users in navigating through the information related to their projects.

  8. 2015 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  9. Neurophotonics: optical methods to study and control the brain

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2015-04-01

    Methods of optical physics offer unique opportunities for the investigation of brain and higher nervous activity. The integration of cutting-edge laser technologies and advanced neurobiology opens a new cross-disciplinary area of natural sciences - neurophotonics - focusing on the development of a vast arsenal of tools for functional brain diagnostics, stimulation of individual neurons and neural networks, and the molecular engineering of brain cells aimed at the diagnosis and therapy of neurodegenerative and psychic diseases. Optical fibers help to confront the most challenging problems in brain research, including the analysis of molecular-cellular mechanisms of the formation of memory and behavior. New generation optical fibers provide new solutions for the development of fundamentally new, unique tools for neurophotonics and laser neuroengineering - fiber-optic neuroendoscopes and neurointerfaces. These instruments broaden research horizons when investigating the most complex brain functions, enabling a long-term multiplex detection of fluorescent protein markers, as well as photostimulation of neuronal activity in deep brain areas in living, freely moving animals with an unprecedented spatial resolution and minimal invasiveness. This emerging technology opens new horizons for understanding learning and long-term memory through experiments with living, freely moving mammals. Here, we present a brief review of this rapidly growing field of research.

  10. Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale Knowledge Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, Wes

    2016-07-24

    The primary challenge motivating this team’s work is the widening gap between the ability to compute information and to store it for subsequent analysis. This gap adversely impacts science code teams, who are able to perform analysis only on a small fraction of the data they compute, resulting in the very real likelihood of lost or missed science, when results are computed but not analyzed. Our approach is to perform as much analysis or visualization processing on data while it is still resident in memory, an approach that is known as in situ processing. The idea in situ processing wasmore » not new at the time of the start of this effort in 2014, but efforts in that space were largely ad hoc, and there was no concerted effort within the research community that aimed to foster production-quality software tools suitable for use by DOE science projects. In large, our objective was produce and enable use of production-quality in situ methods and infrastructure, at scale, on DOE HPC facilities, though we expected to have impact beyond DOE due to the widespread nature of the challenges, which affect virtually all large-scale computational science efforts. To achieve that objective, we assembled a unique team of researchers consisting of representatives from DOE national laboratories, academia, and industry, and engaged in software technology R&D, as well as engaged in close partnerships with DOE science code teams, to produce software technologies that were shown to run effectively at scale on DOE HPC platforms.« less

  11. The power of inexpensive satellite constellations

    NASA Astrophysics Data System (ADS)

    Dyrud, Lars P.; La Tour, Rose; Swartz, William H.; Nag, Sreeja; Lorentz, Steven R.; Hilker, Thomas; Wiscombe, Warren J.; Papadakis, Stergios J.

    2014-06-01

    Two thematic drivers are motivating the science community towards constellations of small satellites, the revelation that many next generation system science questions are uniquely addressed with sufficient numbers of simultaneous space based measurements, and the realization that space is historically expensive, and in an environment of constrained costs, we must innovate to ―do more with less‖. We present analysis that answers many of the key questions surrounding constellations of scientific satellites, including research that resulted from the GEOScan community based effort originally intended as hosted payloads on Iridium NEXT. We present analysis that answers the question how many satellites does global system science require? Perhaps serendipitously, the analyses show that many of the key science questions independently converge towards similar results, i.e. that approximately 60+ satellites are needed for transformative, as opposed to incremental capability in system science. The current challenge is how to effectively transition products from design to mass production for space based instruments and vehicles. Ideally, the lesson learned from past designs and builds of various space products should pave the way toward a better manufacturing plan that utilizes just a fraction of the prototype`s cost. Using the commercial products industry implementations of mass customization as an example, we will discuss about the benefits of standardization in design requirements for space instruments and vehicles. For example, the instruments (payloads) are designed to have standardized elements, components, or modules that interchangeably work together within a linkage system. We conclude with a discussion on implementation plans and the new paradigms for community and international cooperation enabled by small satellite constellations.

  12. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  13. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  14. Increasing Resilience Through Engagement In Sea Level Rise Community Science Initiatives.

    NASA Astrophysics Data System (ADS)

    Chilton, L. A.; Rindge, H.

    2017-12-01

    Science literate and engaged members of the public, including students, are critical to building climate resilient communities. USC Sea Grant facilitates programs that work to build and strengthen these connections. The Urban Tides Community Science Initiative (Urban Tides) and the Youth Exploring Sea Level Rise Science Program (YESS) engage communities across the boundaries of public engagement, K-12 education, and informal education. YESS is an experiential sea level rise education program that combines classroom learning, field investigations and public presentations. Students explore sea level rise using a new curricula, collect their own data on sea level rise, develop communication products, and present their findings to city governments, researchers, and others. Urban Tides engages community members, informal education centers, K-12 students, and local government leaders in a citizen science program photo- documenting extreme high tides, erosion and coastal flooding in Southern California. Images provide critical information to help calibrate scientific models used to identify locations vulnerable to damage from future sea level rise. These tools and information enable community leaders and local governments to set priorities, guidelines, and update policies as they plan strategies that will help the region adapt. The program includes a mobile app for data collection, an open database to view photos, a lesson plan, and community beach walks. Urban Tides has led to an increase in data and data-gathering capacity for regional scientists, an increase in public participation in science, and an increase in ocean and climate literacy among initiative participants. Both of these programs bring informed and diverse voices into the discussion of how to adapt and build climate resilient communities. USC Sea Grant will share impacts and lessons learned from these two unique programs.

  15. ASSESSING THE EFFECTS OF PULMONARY EXPOSURE TO NANOMATERIALS

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing a wide diversity of nano-scale (<100 nm) materials displaying unique physicochemical properties for a variety of applications. Nanomaterials may also display unique toxicological properties and routes of exp...

  16. RISK ASSESSMENT OF MANUFACTURED NANOMATERIAL: MORE THAN JUST SIZE

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing nano-scale materials with unique electrical, catalytic, thermal, mechanical, or imaging properties for a variety of applications. Nanomaterials may display unique toxicological properties and routes of expos...

  17. Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.

    2005-01-01

    This document is the final report for the project entitled, "Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components," funded under the NRA entitled "Cross-Enterprise Technology Development Program" issued by the NASA Office of Space Science in 2000. The project was funded in 2001, and spanned a four year period from March, 2001 to February, 2005. Through enhancements to and synthesis of unique, state of the art structural mechanics and micromechanics analysis software, a new multi-scale tool has been developed that enables design, analysis, and sizing of advance lightweight composite and smart materials and structures from the full vehicle, to the stiffened structure, to the micro (fiber and matrix) scales. The new software tool has broad, cross-cutting value to current and future NASA missions that will rely on advanced composite and smart materials and structures.

  18. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  19. Natural product synthesis at the interface of chemistry and biology.

    PubMed

    Hong, Jiyong

    2014-08-11

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magnetour: Surfing planetary systems on electromagnetic and multi-body gravity fields

    NASA Astrophysics Data System (ADS)

    Lantoine, Gregory; Russell, Ryan P.; Anderson, Rodney L.; Garrett, Henry B.

    2017-09-01

    A comprehensive tour of the complex outer planet systems is a central goal in space science. However, orbiting multiple moons of the same planet would be extremely prohibitive using traditional propulsion and power technologies. In this paper, a new mission concept, named Magnetour, is presented to facilitate the exploration of outer planet systems and address both power and propulsion challenges. This approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, without significant propellant or onboard power source. To achieve this free-lunch 'Grand Tour', Magnetour exploits the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare electrodynamic tether for power and propulsion. Preliminary results indicate that the Magnetour concept is sound and is potentially highly promising at Jupiter.

  1. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.

    PubMed

    Rodrigo, Daniel; Limaj, Odeta; Janner, Davide; Etezadi, Dordaneh; García de Abajo, F Javier; Pruneri, Valerio; Altug, Hatice

    2015-07-10

    Infrared spectroscopy is the technique of choice for chemical identification of biomolecules through their vibrational fingerprints. However, infrared light interacts poorly with nanometric-size molecules. We exploit the unique electro-optical properties of graphene to demonstrate a high-sensitivity tunable plasmonic biosensor for chemically specific label-free detection of protein monolayers. The plasmon resonance of nanostructured graphene is dynamically tuned to selectively probe the protein at different frequencies and extract its complex refractive index. Additionally, the extreme spatial light confinement in graphene—up to two orders of magnitude higher than in metals—produces an unprecedentedly high overlap with nanometric biomolecules, enabling superior sensitivity in the detection of their refractive index and vibrational fingerprints. The combination of tunable spectral selectivity and enhanced sensitivity of graphene opens exciting prospects for biosensing. Copyright © 2015, American Association for the Advancement of Science.

  2. Toward a Psychology of Human Agency.

    PubMed

    Bandura, Albert

    2006-06-01

    This article presents an agentic theory of human development, adaptation, and change. The evolutionary emergence of advanced symbolizing capacity enabled humans to transcend the dictates of their immediate environment and made them unique in their power to shape their life circumstances and the courses their lives take. In this conception, people are contributors to their life circumstances, not just products of them. Social cognitive theory rejects a duality between human agency and social structure. People create social systems, and these systems, in turn, organize and influence people's lives. This article discusses the core properties of human agency, the different forms it takes, its ontological and epistemological status, its development and role in causal structures, its growing primacy in the coevolution process, and its influential exercise at individual and collective levels across diverse spheres of life and cultural systems. © 2006 Association for Psychological Science.

  3. Supercolor coding methods for large-scale multiplexing of biochemical assays.

    PubMed

    Rajagopal, Aditya; Scherer, Axel; Homyk, Andrew; Kartalov, Emil

    2013-08-20

    We present a novel method for the encoding and decoding of multiplexed biochemical assays. The method enables a theoretically unlimited number of independent targets to be detected and uniquely identified in any combination in the same sample. For example, the method offers easy access to 12-plex and larger PCR assays, as contrasted to the current 4-plex assays. This advancement would allow for large panels of tests to be run simultaneously in the same sample, saving reagents, time, consumables, and manual labor, while also avoiding the traditional loss of sensitivity due to sample aliquoting. Thus, the presented method is a major technological breakthrough with far-reaching impact on biotechnology, biomedical science, and clinical diagnostics. Herein, we present the mathematical theory behind the method as well as its experimental proof of principle using Taqman PCR on sequences specific to infectious diseases.

  4. Romanticism and Romantic Science: Their Contribution to Science Education

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  5. Understanding and Engagement in Places of Science Experience: Science Museums, Science Centers, Zoos, and Aquariums

    ERIC Educational Resources Information Center

    Schwan, Stephan; Grajal, Alejandro; Lewalter, Doris

    2014-01-01

    Science museums, science centers, zoos, and aquariums (MCZAs) constitute major settings of science learning with unique characteristics of informal science education. Emphasis will be given to the analysis of four specific characteristics of MCZAs that seem relevant for educational research and practice, namely, conditions of mixed motives and…

  6. High Altitude Balloons as a Platform for Space Radiation Belt Science

    NASA Astrophysics Data System (ADS)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA. The HASP platform was launched from Fort Sumner, New Mexico, and to an altitude of about 36kilometers with flight durations of 15 to 20 hours using a small volume, low pressure balloon. The main objectives of the program, the challenges involved in developing it, and the major achievements and outcomes will be discussed. Future opportunities for the use of high altitude balloons for solar-terrestrial science, such as the diagnosis of radiation belt loss through the flight of alternative X-ray scintillator payloads, on short duration weather balloon flights will also be discussed. The UA-HAB project is undertaken with the financial support of the Canadian Space Agency.

  7. Magnetic Field Measurements on the Lunar Surface: Lessons Learned from Apollo and Science Enabled by Future Missions

    NASA Astrophysics Data System (ADS)

    Chi, P. J.

    2017-10-01

    We discuss the science to be enabled by new magnetometer measurements on the lunar surface, based on results from Apollo and other lunar missions. Also discussed are approaches to deploying magnetometers on the lunar surface with today's technology.

  8. Science Goals and Objectives for Canadian Robotic Exploration of the Moon Enabled by the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Bourassa, M.; Osinski, G. R.; Cross, M.; Hill, P.; King, D.; Morse, Z.; Pilles, E.; Tolometti, G.; Tornabene, L. L.; Zanetti, M.

    2018-02-01

    Canadian contributions to the science goals and objectives of a lunar precursor rover for HERACLES, an international mission concept, are discussed. Enabled by the Deep Space Gateway, this rover is a technical demonstrator for robotic sample return.

  9. SMD Technology Development Story for NASA Annual Technology report

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  10. Tritium Plasma Experiment Upgrade and Improvement of Surface Diagnostic Capabilities at STAR Facility for Enhancing Tritium and Nuclear PMI Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, M.; Taylor, C. N.; Pawelko, R. J.

    2016-04-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less

  11. Building Local Infrastructure for Community Adoption of Science-Based Prevention: The Role of Coalition Functioning.

    PubMed

    Shapiro, Valerie B; Hawkins, J David; Oesterle, Sabrina

    2015-11-01

    The widespread adoption of science-based prevention requires local infrastructures for prevention service delivery. Communities That Care (CTC) is a tested prevention service delivery system that enables a local coalition of community stakeholders to use a science-based approach to prevention and improve the behavioral health of young people. This paper uses data from the Community Youth Development Study (CYDS), a community-randomized trial of CTC, to examine the extent to which better internal team functioning of CTC coalitions increases the community-wide adoption of science-based prevention within 12 communities, relative to 12 matched comparison communities. Specifically, this paper examines the potential of both a direct relationship between coalition functioning and the community-wide adoption of science-based prevention and a direct relationship between functioning and the coalition capacities that ultimately enable the adoption of science-based prevention. Findings indicate no evidence of a direct relationship between four dimensions of coalition functioning and the community-wide adoption of a science-based approach to prevention, but suggest a relationship between coalition functioning and coalition capacities (building new member skills and establishing external linkages with existing community organizations) that enable science-based prevention.

  12. A new approach to driving and controlling precision lasers for cold-atom science

    NASA Astrophysics Data System (ADS)

    Luey, Ben; Shugrue, Jeremy; Anderson, Mike

    2014-05-01

    Vescent's Integrated Control Electronics (ICE) Platform is a new approach to controlling and driving lasers and other electoral devices in complex atomic and optical experiments. By employing low-noise, high-bandwidth analog electronics with digital control, ICE combines the performance of analog design with the convenience of the digital world. Utilizing a simple USB COM port interface, ICE can easily be controlled via LabView, Python, or an FPGA. High-speed TTL inputs enable precise external timing or triggering. ICE is capable of generating complex timing internally, enabling ICE to drive an entire experiment or it can be directed by an external control program. The system is capable of controlling up to 8 unique ICE slave boards providing flexibility to tailor an assortment of electronics hardware to the needs of a specific experiment. Examples of ICE slave boards are: a current controller and peak-lock laser servo, a four channel temperature controller, a current controller and offset phase lock servo. A single ensemble can drive, stabilize, and frequency lock 3 lasers in addition to powering an optical amplifier, while still leaving 2 remaining slots for further control needs. Staff Scientist

  13. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Yang, Jun; Christodoulou, Dimitris; Coe, Malcolm; Cappallo, Rigel; Zezas, Andreas; Ho, Wynn C. G.; Hong, JaeSub; Fingerman, Samuel; Drake, Jeremy J.; Kretschmar, Peter; Antoniou, Vallia

    2017-08-01

    We present our multi-satellite library of X-ray Pulsar observations to the community, and highlight recent science results. Available at www.xraypulsars.space the library provides a range of high-level data products, including: activity histories, pulse-profiles, phased event files, and a unique pulse-profile modeling interface. The initial release (v1.0) contains some 15 years of RXTE-PCA, Chandra ACIS-I, and XMM-PN observations of the Small Magellanic Cloud, creating a valuable record of pulsar behavior. Our library is intended to enable new progress on fundamental NS parameters and accretion physics. The major motivations are (1) Assemble a large homogeneous sample to enable population statistics. This has so far been used to map the propeller transition, and explore the role of retrograde and pro-grade accretion disks. (2) Obtain pulse-profiles for the same pulsars on many different occasions, at different luminosities and states in order to break model degeneracies. This effort has led to preliminary measurements of the offsets between magnetic and spin axes. With the addition of other satellites, and Galactic pulsars, the library will cover the entire available range of luminosity, variability timescales and accretion regimes.

  14. 21st century toolkit for optimizing population health through precision nutrition.

    PubMed

    O'Sullivan, Aifric; Henrick, Bethany; Dixon, Bonnie; Barile, Daniela; Zivkovic, Angela; Smilowitz, Jennifer; Lemay, Danielle; Martin, William; German, J Bruce; Schaefer, Sara Elizabeth

    2017-07-05

    Scientific, technological, and economic progress over the last 100 years all but eradicated problems of widespread food shortage and nutrient deficiency in developed nations. But now society is faced with a new set of nutrition problems related to energy imbalance and metabolic disease, which require new kinds of solutions. Recent developments in the area of new analytical tools enable us to systematically study large quantities of detailed and multidimensional metabolic and health data, providing the opportunity to address current nutrition problems through an approach called Precision Nutrition. This approach integrates different kinds of "big data" to expand our understanding of the complexity and diversity of human metabolism in response to diet. With these tools, we can more fully elucidate each individual's unique phenotype, or the current state of health, as determined by the interactions among biology, environment, and behavior. The tools of precision nutrition include genomics, metabolomics, microbiomics, phenotyping, high-throughput analytical chemistry techniques, longitudinal tracking with body sensors, informatics, data science, and sophisticated educational and behavioral interventions. These tools are enabling the development of more personalized and predictive dietary guidance and interventions that have the potential to transform how the public makes food choices and greatly improve population health.

  15. Crush-2: Communicating research through a science-art collaboration

    NASA Astrophysics Data System (ADS)

    Mair, K.; Barrett, N.; Schubnel, A. J.; Abe, S.

    2011-12-01

    Historically, the Earth's environment and dynamics have influenced and inspired the arts. Art in turn is a powerful vehicle for expression of the natural world. It lends itself to public presentation in many forms and appeals to a diverse audience. Science-art collaborations provide a unique opportunity to connect with the public by taking science out of the classroom and into museums, galleries and public spaces. Here we investigate the use of contemporary digital sound-art in communicating geoscience research to the general public through the installation Crush-2. Crush-2, is an interactive sound-art installation exploring the microscopic forces released during the crushing of rock. Such processes have a strong influence on the sliding behaviour and hence earthquake potential of active faults. This work is a collaboration between sound artist and composer Natasha Barrett (Oslo) and geoscientists Karen Mair (University of Oslo), Alexandre Schubnel (Ecole Normale Superieure, Paris) and Steffen Abe (RWTH Aachen). Using a sonification technique, Barrett has assigned sound recorded from rocks, of different pitches, timbres and durations, to individual fracturing events produced in our 3D fault fragmentation models and laboratory rock breaking experiments. In addition, ultrasonic acoustic emissions recorded directly in the laboratory are made audible for our hearing and feature in the work. The installation space comprises a loudspeaker array and sensor enabled helmet with wireless headphones. By wearing the helmet, moving and listening, the audience explores an artistic interpretation of the scientific data in physical space. On entering the space, one is immediately immersed in a 3D cacophony of sound. Sustained or intermittent pings, burrs, plops and tingles jostle for position in our heads whilst high pitched delicate cascades juxtapose with deep thunder like rumbles. Depending on the user's precise path through the soundscape, the experience changes accordingly, so every visitor has a unique sound adventure. The experience is intensely engaging, playful and yet a little unsettling and provides a truly unique way to explore our scientific data and present geoscience research to the public. Crush-2 has featured in an exhibition on Sonic Interaction Design at the Norwegian Museum of Science, Technology and Medicine, Oslo, Norway (27 May - 21 August 2011) and forms part of a solo exhibition by Barrett at Galleri ROM, Oslo in fall 2011. Visitor feedback from the Museum exhibition suggests that users were initially attracted to the exhibit by its interactive 'hands-on' nature and dramatic sounds, but as they 'explored' the soundspace, became curious to ask questions about the underlying science. The concept of using sound rather than visual gives an unusual and therefore highly memorable experience. This science-art collaboration provides a novel and highly enjoyable way to present our work to the public - that is particularly attractive to youngsters. Visitors to this poster presentation will be able to explore the Crush-2 soundscape using a laptop and headphone interactive mode.

  16. Social Networking Adapted for Distributed Scientific Collaboration

    NASA Technical Reports Server (NTRS)

    Karimabadi, Homa

    2012-01-01

    Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and messaging encryption; and g) Easy-to-use intuitive workflow.

  17. Using immersive media and digital technology to communicate Earth Science

    NASA Astrophysics Data System (ADS)

    Kapur, Ravi

    2016-04-01

    A number of technologies in digital media and interactivity have rapidly advanced and are now converging to enable rich, multi-sensoral experiences which create opportunities for both digital art and science communication. Techniques used in full-dome film-making can now be deployed in virtual reality experiences; gaming technologies can be utilised to explore real data sets; and collaborative interactivity enable new forms of public artwork. This session will explore these converging trends through a number of emerging and forthcoming projects dealing with Earth science, climate change and planetary science.

  18. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  19. Left Limb of North Pole of the Sun, March 20, 2007 (Anaglyph)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Left eye view of a stereo pair Click on the image for full resolution TIFF Figure 2: Right eye view of a stereo pair Click on the image for full resolution TIFF Figure 1: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun. This location enables us to view the Sun from the position of a virtual left eye in space. Figure 2: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-A spacecraft. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    NASA's Solar TErrestrial RElations Observatory (STEREO) satellites have provided the first three-dimensional images of the Sun. For the first time, scientists will be able to see structures in the Sun's atmosphere in three dimensions. The new view will greatly aid scientists' ability to understand solar physics and thereby improve space weather forecasting.

    This image is a composite of left and right eye color image pairs taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B and STEREO-A spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual left eye in space. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    The EUVI imager is sensitive to wavelengths of light in the extreme ultraviolet portion of the spectrum. EUVI bands at wavelengths of 304, 171 and 195 Angstroms have been mapped to the red blue and green visible portion of the spectrum; and processed to emphasize the three-dimensional structure of the solar material.

    STEREO, a two-year mission, launched October 2006, will provide a unique and revolutionary view of the Sun-Earth System. The two nearly identical observatories -- one ahead of Earth in its orbit, the other trailing behind -- will trace the flow of energy and matter from the Sun to Earth. They will reveal the 3D structure of coronal mass ejections; violent eruptions of matter from the sun that can disrupt satellites and power grids, and help us understand why they happen. STEREO will become a key addition to the fleet of space weather detection satellites by providing more accurate alerts for the arrival time of Earth-directed solar ejections with its unique side-viewing perspective.

    STEREO is the third mission in NASA's Solar Terrestrial Probes program within NASA's Science Mission Directorate, Washington. The Goddard Science and Exploration Directorate manages the mission, instruments, and science center. The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., designed and built the spacecraft and is responsible for mission operations. The imaging and particle detecting instruments were designed and built by scientific institutions in the U.S., UK, France, Germany, Belgium, Netherlands, and Switzerland. JPL is a division of the California Institute of Technology in Pasadena.

  20. First Look--The Aerospace Database.

    ERIC Educational Resources Information Center

    Kavanagh, Stephen K.; Miller, Jay G.

    1986-01-01

    Presents overview prepared by producer of database newly available in 1985 that covers 10 subject categories: engineering, geosciences, chemistry and materials, space sciences, aeronautics, astronautics, mathematical and computer sciences, physics, social sciences, and life sciences. Database development, unique features, document delivery, sample…

  1. Archival Research Capabilities of the WFIRST Data Set

    NASA Astrophysics Data System (ADS)

    Szalay, Alexander

    WFIRST's unique combination of a large (~0.3 deg2) field of view and HST-like angular resolution and sensitivity in the near infrared will produce spectacular new insights into the origins of stars, galaxies, and structure in the cosmos. We propose a WFIRST Archive Science Investigation Team (SIT-F) to define an archival, query, and analysis system that will enable scientific discovery in all relevant areas of astrophysics and maximize the overall scientific yield of the mission. Guest investigators (GIs), guest observers (GOs), the WFIRST SIT's, WFIRST Science Center(s), and astronomers using data from other surveys will all benefit from the extensive, easy, fast and reliable use of the WFIRST archives. We propose to develop the science requirements for the archive and work to understand its interactions with other elements of the WFIRST mission. To accomplish this, we will conduct case studies to derive performance requirements for the WFIRST archives. These will clarify what is needed for GIs to make important scientific discoveries across a broad range of astrophysics. While other SITs will primarily address the science capabilities of the WFIRST instruments, we will look ahead to the science enabling capabilities of the WFIRST archives. We will demonstrate how the archive can be optimized to take advantage of the extraordinary science capabilities of the WFIRST instruments as well as major space and ground observatories to maximize the science return of the mission. We will use the "20 queries" methodology, formulated by Jim Gray, to cover the most important science analysis patterns and use these to establish the performance required of the WFIRST archive. The case studies will be centered on studying galaxy evolution as a function of cosmic time, environment and intrinsic properties. The analyses will require massive angular and spatial cross correlations between key galaxy properties to search for new fundamental scaling relations that may only become apparent when exploring a database of 108 galaxies with multiband photometry and grism spectroscopy. The case studies will require (i) the creation of a unified WFIRST object catalog consisting of data cross-matched to external catalogs, (ii) an easy-to-access, scalable database, utilizing the latest data discovery and querying techniques, (iii) in situ analyses of large and/or complex data, (iv) identification of links to supporting data and enabling queries spanning WFIRST and other databases, (v) combining simulations with modeling software. To accomplish these objectives, we will prototype a system capable of executing complex user-defined scripts including database access to a shared computational facility with tools for joining WFIRST to other surveys, also enabling comparisons to physical models. Our organizational plan divides the work into several general areas where our team members have specific expertise: (a) apply the 20 queries methodology to derive performance and functionality requirements, (b) develop a practical interactive server-side query system, built on our SDSS experience, (c) apply advanced cross-matching techniques, (d) create mock WFIRST imaging and grism data, (e) develop high level cross correlation tools, (e) optimize scripting systems using high-level languages (iPython), (f) perform close integration of cosmological simulations with observational data, (g) apply advanced machine learning techniques. Our efforts will be coordinated with the WFIRST Science Center (WSC), the other SITs, and the broader community in a manner consistent with direction and review of the Project Office. We will publish our results as milestones are reached, and issue progress reports on a regular basis. We will represent SIT-F at all relevant meetings including meetings of the other SITs (SITs A-E), and participate in "Big Data" conferences to interact with others in the field and learn new techniques that might be applicable to WFIRST.

  2. Gifted Education in the Enabling Sciences with a Particular Emphases on Chemistry

    ERIC Educational Resources Information Center

    Chowdhury, Mohammad Anisuzzaman

    2017-01-01

    The article provides syntheses and critical analyses of literature, creative insights, fruitful information, reflections on gifted education perspectives, and discusses the pertinent issues related to enabling sciences, with a particular focus on chemistry. The misconceptions among the gifted students, and a range of pedagogical approaches to…

  3. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papka, M.; Messina, P.; Coffey, R.

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursormore » to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to implement those algorithms. The Data Analytics and Visualization Team lends expertise in tools and methods for high-performance, post-processing of large datasets, interactive data exploration, batch visualization, and production visualization. The Operations Team ensures that system hardware and software work reliably and optimally; system tools are matched to the unique system architectures and scale of ALCF resources; the entire system software stack works smoothly together; and I/O performance issues, bug fixes, and requests for system software are addressed. The User Services and Outreach Team offers frontline services and support to existing and potential ALCF users. The team also provides marketing and outreach to users, DOE, and the broader community.« less

  4. Mini-MITEE: Ultra Small, Ultra Light NTP Engines for Robotic Science and Manned Exploration Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John

    2006-01-01

    A compact, ultra lightweight Nuclear Thermal Propulsion (NTP) engine design is described with the capability to carry out a wide range of unique and important robotic science missions that are not possible using chemical or Nuclear Electric Propulsion (NEP). The MITEE (MInature ReacTor EnginE) reactor uses hydrogeneous moderator, such as solid lithium-7 hydride, and high temperature cermet tungsten/UO2 nuclear fuel. The reactor is configured as a modular pressure tube assembly, with each pressure tube containing an outer annual shell of moderator with an inner annular region of W/UO2 cermet fuel sheets. H2 propellant flows radially inwards through the moderator and fuel regions, exiting at ~3000 K into a central channel that leads to a nozzle at the end of the pressure tube. Power density in the fuel region is 10 to 20 megawatts per liter, depending on design, producing a thrust output on the order of 15,000 Newtons and an Isp of ~1000 seconds. 3D Monte Carlo neutronic analyses are described for MITEE reactors utilizing various fissile fuel options (U-235, U-233, and Am242m) and moderators (7LiH and BeH2). Reactor mass ranges from a maximum of 100 kg for the 7LiH/U-235 option to a minimum of 28 kg for the BeH2/Am-242 m option. Pure thrust only and bi-modal (thrust plus electric power generation) MITEE designs are described. Potential unique robotic science missions enabled by the MITEE engine are described, including landing on Europa and exploring the ice sheet interior with return of samples to Earth, hopping to and exploring multiple sites on Mars, unlimited ramjet flight in the atmospheres of Jupiter, Saturn, Uranus, and Neptune and landing on, and sample return from Pluto.

  5. Mini-MITEE: Ultra Small, Ultra Light NTP Engines for Robotic Science and Manned Exploration Missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, James; Maise, George; Paniagua, John

    2006-01-20

    A compact, ultra lightweight Nuclear Thermal Propulsion (NTP) engine design is described with the capability to carry out a wide range of unique and important robotic science missions that are not possible using chemical or Nuclear Electric Propulsion (NEP). The MITEE (MInature ReacTor EnginE) reactor uses hydrogeneous moderator, such as solid lithium-7 hydride, and high temperature cermet tungsten/UO2 nuclear fuel. The reactor is configured as a modular pressure tube assembly, with each pressure tube containing an outer annual shell of moderator with an inner annular region of W/UO2 cermet fuel sheets. H2 propellant flows radially inwards through the moderator andmore » fuel regions, exiting at {approx}3000 K into a central channel that leads to a nozzle at the end of the pressure tube. Power density in the fuel region is 10 to 20 megawatts per liter, depending on design, producing a thrust output on the order of 15,000 Newtons and an Isp of {approx}1000 seconds. 3D Monte Carlo neutronic analyses are described for MITEE reactors utilizing various fissile fuel options (U-235, U-233, and Am242m) and moderators (7LiH and BeH2). Reactor mass ranges from a maximum of 100 kg for the 7LiH/U-235 option to a minimum of 28 kg for the BeH2/Am-242 m option. Pure thrust only and bi-modal (thrust plus electric power generation) MITEE designs are described. Potential unique robotic science missions enabled by the MITEE engine are described, including landing on Europa and exploring the ice sheet interior with return of samples to Earth, hopping to and exploring multiple sites on Mars, unlimited ramjet flight in the atmospheres of Jupiter, Saturn, Uranus, and Neptune and landing on, and sample return from Pluto.« less

  6. Exploring the Possibilities: Earth and Space Science Missions in the Context of Exploration

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Calabrese, Michael; Kirkpatrick, James; Malay, Jonathan T.

    2006-01-01

    According to Dr. Edward J. Weiler, Director of the Goddard Space Flight Center, "Exploration without science is tourism". At the American Astronautical Society's 43rd Annual Robert H. Goddard Memorial Symposium it was quite apparent to all that NASA's current Exploration Initiative is tightly coupled to multiple scientific initiatives: exploration will enable new science and science will enable exploration. NASA's Science Mission Directorate plans to develop priority science missions that deliver science that is vital, compelling and urgent. This paper will discuss the theme of the Goddard Memorial Symposium that science plays a key role in exploration. It will summarize the key scientific questions and some of the space and Earth science missions proposed to answer them, including the Mars and Lunar Exploration Programs, the Beyond Einstein and Navigator Programs, and the Earth-Sun System missions. It will also discuss some of the key technologies that will enable these missions, including the latest in instruments and sensors, large space optical system technologies and optical communications, and briefly discuss developments and achievements since the Symposium. Throughout history, humans have made the biggest scientific discoveries by visiting unknown territories; by going to the Moon and other planets and by seeking out habitable words, NASA is continuing humanity's quest for scientific knowledge.

  7. Native America: American Indian Geoscientists & Earth System Science Leaders

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2011-12-01

    We are living in a definite time of change. Distinct changes are being experienced in our most sacred and natural environments. This is especially true on Native lands across the Americas. Native people have lived for millennia in distinct and unique ways. The knowledge of balancing the needs of people with the needs of our natural environments is paramount in all Tribal societies. These changes have accelerated the momentum to ensure the future of American Indian Geoscientists and Earth Systems Science Leaders. The presentation will bring to prominence the unique recruitment and mentoring necessary to achieve success that emerged through working with Tribal people. The presentation will highlight: 1) past and present philosophies on recruitment and mentoring of Native/Tribal students in geoscience and earth systems science; 2) current Native leadership and research development; 3) unique collaborations "bridging" Native people across geographic areas (International) in developing educational/research experiences which integrate the distinctive geoscience and earth systems science knowledge of Tribal peoples throughout the Americas. The presentation will highlight currently funded projects and initiatives as well as success stories of emerging Native geoscientists and earth systems science leaders.

  8. Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Benson, Scott W.; Falck, Robert D.; Fixsen, Dale J.; Gardner, Joseph P.; Garvin, James B.; Kruk, Jeffrey W.; Oleson, Stephen R.; Thronson, Harley A.

    2012-01-01

    We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to 13X increased photometric sensitivity and 160X increased observing speed relative to a Sun- Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

  9. Fundamental plant biology enabled by the space shuttle.

    PubMed

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  10. Science Hybrid Orbiter and Lunar Relay (SCHOLR) Architecture and Design

    NASA Technical Reports Server (NTRS)

    Trase, Kathryn K.; Barch, Rachel A.; Chaney, Ryan E.; Coulter, Rachel A.; Gao, Hui; Huynh, David P.; Iaconis, Nicholas A.; MacMillan, Todd S.; Pitner, Gregory M.; Schwab, Devin T.

    2011-01-01

    Considered both a stepping-stone to deep space and a key to unlocking the mysteries of planetary formation, the Moon offers a unique opportunity for scientific study. Robotic precursor missions are being developed to improve technology and enable new approaches to exploration. Robots, lunar landers, and satellites play significant roles in advancing science and technologies, offering close range and in-situ observations. Science and exploration data gathered from these nodes and a lunar science satellite is intended to support future human expeditions and facilitate future utilization of lunar resources. To attain a global view of lunar science, the nodes will be distributed over the lunar surface, including locations on the far side of the Moon. Given that nodes on the lunar far side do not have direct line-of-sight for Earth communications, the planned presence of such nodes creates the need for a lunar communications relay satellite. Since the communications relay capability would only be required for a small portion of the satellite s orbit, it may be possible to include communication relay components on a science spacecraft. Furthermore, an integrated satellite has the potential to reduce lunar surface mission costs. A SCience Hybrid Orbiter and Lunar Relay (SCHOLR) is proposed to accomplish scientific goals while also supporting the communications needs of landers on the far side of the Moon. User needs and design drivers for the system were derived from the anticipated needs of future robotic and lander missions. Based on these drivers and user requirements, accommodations for communications payload aboard a science spacecraft were developed. A team of interns identified and compared possible SCHOLR architectures. The final SCHOLR architecture was analyzed in terms of orbiter lifetime, lunar surface coverage, size, mass, power, and communications data rates. This paper presents the driving requirements, operational concept, and architecture views for SCHOLR within a lunar surface nodal network. Orbital and bidirectional link analysis, between lunar nodes, orbiter, and Earth, as well as a conceptual design for the spacecraft are also presented

  11. BioSIGHT: Interactive Visualization Modules for Science Education

    NASA Technical Reports Server (NTRS)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high-speed network capabilities. The BioSIGHT project at is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches toward the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students.

  12. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses Informal Educators' Preferences for PD and Materials

    NASA Astrophysics Data System (ADS)

    Bartolone, Lindsay; Nelson, Andi; Smith, Denise A.; NASA SMD Astrophysics E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects. These teams work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to support educators in Science, Technology, Engineering, and Math (STEM) and to enable youth to engage in doing STEM inside and outside of school. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO, which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise, and makes SMD E/PO resources and expertise accessible to the science and education communities. Informal educators participated in a recent nationally-distributed survey from the NASA SMD SEPOF Informal Education Working Group. The results show the preferences of staff from museums, parks, public libraries, community/afterschool centers, and others with regard to professional development and material resources. The results of the survey will be presented during this session.In addition, we present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in K-12 Formal Education, Informal Science Education, and Outreach. These efforts focus on enhancing instruction, as well as youth and public engagement, in STEM via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences. The Forums' efforts for the Formal, Informal Science Education and Outreach communities include a literature review, appraisal of informal educators' needs, coordination of audience-based NASA resources and opportunities, professional development, plus support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K-12 Formal Education community and to reach the informal science education and outreach communities based upon mutual needs and interests.

  13. Recommendations and Ongoing Efforts within the NASA Data Quality Working Group

    NASA Astrophysics Data System (ADS)

    Moroni, D. F.; Ramapriyan, H.; Bagwell, R.; Downs, R. R.

    2015-12-01

    Since its inception in March 2014, the NASA Data Quality Working Group (DQWG) has procured a set of 12 high level recommendations which had been sifted from and aggregated from a prioritized subset of nearly 100 unique recommendations spanning four unique data quality management phases and distributed between two actionable categories. The four data quality management phases as identified by the DQWG are: 1. Capturing (i.e., deriving, collecting and organizing the information), 2. Describing (i.e., documenting and procuring the information for public consumption), 3. Facilitating Discovery (i.e., publishing and providing access to the information), and 4. Enabling Use (i.e., enhancing the utility of the information). Mapping each of our recommendations to one or more of the above management phases is intended to enable improved assessment of cost, feasibility, and relevancy to the entities responsible for implementing such recommendations. The DQWG further defined two distinct actionable categories: 1) Data Systems and 2) Science. The purpose of these actionable categories is to define specifically who is responsible for the implementation and adherence toward these recommendations; we refer to the responsible entities as the "actionees". Here we will summarize each of the high level recommendations along with their corresponding management phases and actionees. We will present what has recently been identified as our set of "low-hanging fruit" recommendations, which are intended for near-term implementation. Finally, we will present the status and motivation for continuing and future planned activities, which include but are not limited to: engaging inter-agency and international communities, more direct feedback from Earth observation missions, and mapping of "low-hanging fruit" recommendations to existing solutions.

  14. AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-08-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope.

  15. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope

  16. Coordinating Multiple Spacecraft Assets for Joint Science Campaigns

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Chien, Steve; Castano, Rebecca; Gaines, Daniel; de Granville, Charles; Doubleday, Josh; Anderson, Robert C.; Knight, Russell; Bornstein, Benjamin; Rabideau, Gregg; hide

    2010-01-01

    This paper describes technology to support a new paradigm of space science campaigns. These campaigns enable opportunistic science observations to be autonomously coordinated between multiple spacecraft. Coordinated spacecraft can consist of multiple orbiters, landers, rovers, or other in-situ vehicles (such as an aerobot). In this paradigm, opportunistic science detections can be cued by any of these assets where additional spacecraft are requested to take further observations characterizing the identified event or surface feature. Such coordination will enable a number of science campaigns not possible with present spacecraft technology. Examples from Mars include enabling rapid data collection from multiple craft on dynamic events such as new Mars dark slope streaks, dust-devils or trace gases. Technology to support the identification of opportunistic science events and/or the re-tasking of a spacecraft to take new measurements of the event is already in place on several individual missions such as the Mars Exploration Rover (MER) Mission and the Earth Observing One (EO1) Mission. This technology includes onboard data analysis techniques as well as capabilities for planning and scheduling. This paper describes how these techniques can be cue and coordinate multiple spacecraft in observing the same science event from their different vantage points.

  17. Enabling Science and Technology Research Teams: A Breadmaking Metaphor

    ERIC Educational Resources Information Center

    Pennington, Deana

    2010-01-01

    Anyone who has been involved with a cross-disciplinary team that combines scientists and information technology specialists knows just how tough it can be to move these efforts forward. Decades of experience point to the transformative potential of technology-enabled science efforts, and the success stories offer hope for future efforts. But for…

  18. Biotechniques Laboratory: An Enabling Course in the Biological Sciences

    ERIC Educational Resources Information Center

    Di Trapani, Giovanna; Clarke, Frank

    2012-01-01

    Practical skills and competencies are critical to student engagement and effective learning in laboratory courses. This article describes the design of a yearlong, stand-alone laboratory course--the Biotechniques Laboratory--a common core course in the second year of all our degree programs in the biological sciences. It is an enabling,…

  19. Enabling Research Tools for Sustained Climate Assessment

    NASA Technical Reports Server (NTRS)

    Leidner, Allison K.; Bosilovich, Michael G.; Jasinski, Michael F.; Nemani, Ramakrishna R.; Waliser, Duane Edward; Lee, Tsengdar J.

    2016-01-01

    The U.S. Global Change Research Program Sustained Assessment process benefits from long-term investments in Earth science research that enable the scientific community to conduct assessment-relevant science. To this end, NASA initiated several research programs over the past five years to support the Earth observation community in developing indicators, datasets, research products, and tools to support ongoing and future National Climate Assessments. These activities complement NASA's ongoing Earth science research programs. One aspect of the assessment portfolio funds four "enabling tools" projects at NASA research centers. Each tool leverages existing capacity within the center, but has developed tailored applications and products for National Climate Assessments. The four projects build on the capabilities of a global atmospheric reanalysis (MERRA-2), a continental U.S. land surface reanalysis (NCA-LDAS), the NASA Earth Exchange (NEX), and a Regional Climate Model Evaluation System (RCMES). Here, we provide a brief overview of each enabling tool, highlighting the ways in which it has advanced assessment science to date. We also discuss how the assessment community can access and utilize these tools for National Climate Assessments and other sustained assessment activities.

  20. A Unique Perspective from Space on our Planet: Science, Technologies and Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shaid

    2006-01-01

    The study of Planet earth is a very complex problem. It has many non-linear and chaotic systems operating in parallel and have interdependencies. In reality, these systems/phenomena s are not well understood or mathematically modeled because of our lack of knowledge of such intricate processes. However, in order to further the subject of Earth as an integrated system, space provides excellent vantage points to look at these processes in multidimensional framework. For example, we can make strives to understand the global water cycle, carbon cycle, atmospheric chemistry, biomass changes, oceans and solid Earth variations by making multitude of global measurements such as soil moisture, precipitation, tropospheric and stratospheric gases, aerosols, tropospheric winds, ocean salinity, ocean color, vegetation cover, crustal dynamics and many more. Such suites of measurements derive the coupled models so we may predict the changes due to natural and anthropogenic forcing. NASA along with other international space agencies have made tremendous investments in recent years in developing and flying remote sensing space borne sensors to enable these measurements. These science measurements and products are further used to address pressing issues such as coastal zone erosion, air quality, severe weather, water availability and quality, public health, fires, earthquakes, land slides and others for societal benefits. This presentation provides a comprehensive overview of NASA s science investigations, related technologies and satellites/sensors and applications.

  1. Direct Comparison of the Performance of a Bio-inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Macia, Patricia; Dutta, Arnab; Lubitz, Wolfgang

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we’ve come in mimicking the impressive enzymatic performance. Here we directly compare the catalytic properties of the [Ni(PCy2NGly2)2]2+ complex with the [NiFe]-hydrogenase from Desulfobivrio vulgaris Miyazaki F (DvMF) immobilized to a functionalized electrode under identical conditions. At pH=7, the enzyme has higher performance in both activity and overpotential, and is more stable, whilemore » at low pH, the molecular catalyst outperforms the enzyme in all respects. The Ni complex also has increased tolerance to CO. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bioinspired complexes in fuel cells. AD and WJS acknowledge the Office of Science Early Career Research Program through the US Department of Energy (US DOE), Office of Science, Office of Basic Energy Sciences (BES), and Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE.« less

  2. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Calhourn, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  3. Building Science-Relevant Literacy with Technical Writing in High School

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girill, T R

    2006-06-02

    By drawing on the in-class work of an on-going literacy outreach project, this paper explains how well-chosen technical writing activities can earn time in high-school science courses by enabling underperforming students (including ESL students) to learn science more effectively. We adapted basic research-based text-design and usability techniques into age-appropriate exercises and cases using the cognitive apprenticeship approach. This enabled high-school students, aided by explicit guidelines, to build their cognitive maturity, learn how to craft good instructions and descriptions, and apply those skills to better note taking and technical talks in their science classes.

  4. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  5. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  6. Synthetic Approach to biomolecular science by cyborg supramolecular chemistry.

    PubMed

    Kurihara, Kensuke; Matsuo, Muneyuki; Yamaguchi, Takumi; Sato, Sota

    2018-02-01

    To imitate the essence of living systems via synthetic chemistry approaches has been attempted. With the progress in supramolecular chemistry, it has become possible to synthesize molecules of a size and complexity close to those of biomacromolecules. Recently, the combination of precisely designed supramolecules with biomolecules has generated structural platforms for designing and creating unique molecular systems. Bridging between synthetic chemistry and biomolecular science is also developing methodologies for the creation of artificial cellular systems. This paper provides an overview of the recently expanding interdisciplinary research to fuse artificial molecules with biomolecules, that can deepen our understanding of the dynamical ordering of biomolecules. Using bottom-up approaches based on the precise chemical design, synthesis and hybridization of artificial molecules with biological materials have been realizing the construction of sophisticated platforms having the fundamental functions of living systems. The effective hybrid, molecular cyborg, approaches enable not only the establishment of dynamic systems mimicking nature and thus well-defined models for biophysical understanding, but also the creation of those with highly advanced, integrated functions. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. AIRES: an Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Haas, M. R.; Colgan, S. W. J.; Roellig, T.; Simpson, J. P.; Telesco, C. M.; Pina, R. K.; Young, E. T.; Wolf, J.

    1997-12-01

    The Stratospheric Observatory for Infrared Astronomy, SOFIA, is a 2.7 meter telescope which is scheduled to begin observations in a Boeing 747 in October 2001. Among other SOFIA science instruments recently selected for development is the facility spectrometer AIRES. AIRES is designed for studies of a broad range of phenomena occuring in the interstellar medium (ISM) which are uniquely enabled by SOFIA. Examples include accretion and outflow in protostars and young stellar objects, the morphology, dynamics, and excitation of neutral and ionized gas at the Galactic center, and the recycling of material to the ISM from evolved stars. Astronomers using AIRES will be able to select any wavelength from 17 to 210 mu m., with corresponding spectral resolving powers ranging from 60,000 to 4000 in less than a minute. This entire wavelength range is important because it contains spectral features, often widely separated in wavelength, which characterize fundamental ISM processes. AIRES will utilize two-dimensional detector arrays and a large echelle grating to achieve spectral imaging with excellent sensitivity and unparalleled angular resolution at these wavelengths. As a facility science instrument, AIRES will provide guest investigators frequent opportunities for far infrared spectroscopic observations when SOFIA begins operations.

  8. Adapting Practices of Science Journalism to Foster Science Literacy

    ERIC Educational Resources Information Center

    Polman, Joseph L.; Newman, Alan; Saul, Ellen Wendy; Farrar, Cathy

    2014-01-01

    In this paper, the authors describe how the practices of expert science journalists enable them to act as "competent outsiders" to science. We assert that selected science journalism practices can be used to design reform-based science instruction; these practices not only foster science literacy that is useful in daily life, but also…

  9. DSMS science operations concept

    NASA Technical Reports Server (NTRS)

    Connally, M. J.; Kuiper, T. B.

    2001-01-01

    The Deep Space Mission System (DSMS) Science Operations Concept describes the vision for enabling the use of the DSMS, particularly the Deep Space Network (DSN) for direct science observations in the areas of radio astronomy, planetary radar, radio science and VLBI.

  10. Returning to the Moon: Building the Systems Engineering Base for Successful Science Missions

    NASA Astrophysics Data System (ADS)

    Eppler, D.; Young, K.; Bleacher, J.; Klaus, K.; Barker, D.; Evans, C.; Tewksbury, B.; Schmitt, H.; Hurtado, J.; Deans, M.; Yingst, A.; Spudis, P.; Bell, E.; Skinner, J.; Cohen, B.; Head, J.

    2018-04-01

    Enabling science return on future lunar missions will require coordination between the science community, design engineers, and mission operators. Our chapter is based on developing science-based systems engineering and operations requirements.

  11. Biologically-inspired navigation and flight control for Mars flyer missions

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Chahl, J.; Hine, B.; Zornetzer, S.

    2003-01-01

    Bioinspired Engineering Exploration Systems (BEES), is enabling new bioinspired sensors for autonomous exploration of Mars. The steps towards autonomy in development of these BEES flyers are described. A future set of Mars mission that are uniquely enabled by surch flyers are finally described.

  12. Enabling Laser and Lidar Technologies for NASA's Science and Exploration Mission's Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA s Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  13. [Personalized medicine: an elusive concept, diversified practices].

    PubMed

    Bateman, Simone

    2014-11-01

    This article proposes a brief inquiry into the field of scientific and medical practices currently referred to as "personalized medicine". Our inquiry identifies four recurring themes in the literature: health care that is tailored to the individual patient, that is enabled by emerging technologies, in which genetics and genomics occupy a prominent place, and which requires the collection of a massive amount of data. Personalized medicine, thus characterized, turns out to be less interested in the uniqueness of each patient's case than in the differences among patients within the same category. The aim of personalized medicine, thus described, is to obtain, with the help of cutting edge technology, more objective biological data on patients, in an attempt to improve the tools it has at its disposal to establish diagnoses, make therapeutic decisions, and provide more effective preventive measures. © 2014 médecine/sciences – Inserm.

  14. Advancing environmental risk assessment for transgenic biofeedstock crops

    PubMed Central

    Wolt, Jeffrey D

    2009-01-01

    Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release. For currently envisioned biofeedstock crops, particular emphasis in risk assessment will be given to characterization of altered metabolic profiles and their implications relative to non-target environmental effects and food safety; weediness and invasiveness when plants are modified for abiotic stress tolerance or are domesticated; and aggregate risk when plants are platforms for multi-product production. Robust risk assessments for transgenic biofeedstock crops are case-specific, initiated through problem formulation, and use tiered approaches for risk characterization. PMID:19883509

  15. Nanophase materials assembled from clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, R.W.

    1992-02-01

    The preparation of metal and ceramic atom clusters by means of the gas-condensation method, followed by their in situ collection and consolidation under high-vacuum conditions, has recently led to the synthesis of a new class of ultrafine-grained materials. These nanophase materials, with typical average grain sizes of 5 to 50 nm and, hence, a large fraction of their atoms in interfaces, exhibit properties that are often considerably improved relative to those of conventional materials. Furthermore, their synthesis and processing characteristics should enable the design of new materials with unique properties. Some examples are ductile ceramics that can be formed andmore » sintered to full density at low temperatures without the need for binding or sintering aids, and metals with dramatically increased strength. The synthesis of these materials is briefly described along with what is presently known of their structure and properties. Their future impact on materials science and technology is also considered.« less

  16. Scale-free networks of the earth’s surface

    NASA Astrophysics Data System (ADS)

    Liu, Gang; He, Jing; Luo, Kaitian; Gao, Peichao; Ma, Lei

    2016-06-01

    Studying the structure of real complex systems is of paramount importance in science and engineering. Despite our understanding of lots of real systems, we hardly cognize our unique living environment — the earth. The structural complexity of the earth’s surface is, however, still unknown in detail. Here, we define the modeling of graph topology for the earth’s surface, using the satellite images of the earth’s surface under different spatial resolutions derived from Google Earth. We find that the graph topologies of the earth’s surface are scale-free networks regardless of the spatial resolutions. For different spatial resolutions, the exponents of power-law distributions and the modularity are both quite different; however, the average clustering coefficient is approximately equal to a constant. We explore the morphology study of the earth’s surface, which enables a comprehensive understanding of the morphological feature of the earth’s surface.

  17. High energy X-ray phase and dark-field imaging using a random absorption mask.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  18. Applications of science and engineering to quantify and control the Deepwater Horizon oil spill

    PubMed Central

    McNutt, Marcia K.; Chu, Steven; Lubchenco, Jane; Hunter, Tom; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.

    2012-01-01

    The unprecedented engagement of scientists from government, academia, and industry enabled multiple unanticipated and unique problems to be addressed during the Deepwater Horizon oil spill. During the months between the initial blowout on April 20, 2010, and the final well kill on September 19, 2010, researchers prepared options, analyses of tradeoffs, assessments, and calculations of uncertainties associated with the flow rate of the well, well shut in, killing the well, and determination of the location of oil released into the environment. This information was used in near real time by the National Incident Commander and other government decision-makers. It increased transparency into BP’s proposed actions and gave the government confidence that, at each stage proposed, courses of action had been thoroughly vetted to reduce risk to human life and the environment and improve chances of success. PMID:23213225

  19. Creation of Data Repositories to Advance Nursing Science.

    PubMed

    Perazzo, Joseph; Rodriguez, Margaret; Currie, Jackson; Salata, Robert; Webel, Allison R

    2017-12-01

    Data repositories are a strategy in line with precision medicine and big data initiatives, and are an efficient way to maximize data utility and form collaborative research relationships. Nurse researchers are uniquely positioned to make a valuable contribution using this strategy. The purpose of this article is to present a review of the benefits and challenges associated with developing data repositories, and to describe the process we used to develop and maintain a data repository in HIV research. Systematic planning, data collection, synthesis, and data sharing have enabled us to conduct robust cross-sectional and longitudinal analyses with more than 200 people living with HIV. Our repository building has also led to collaboration and training, both in and out of our organization. We present a pragmatic and affordable way that nurse scientists can build and maintain a data repository, helping us continue to make to our understanding of health phenomena.

  20. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    NASA Technical Reports Server (NTRS)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  1. Mobile quantum gravity sensor with unprecedented stability

    NASA Astrophysics Data System (ADS)

    Freier, C.; Hauth, M.; Schkolnik, V.; Leykauf, B.; Schilling, M.; Wziontek, H.; Scherneck, H.-G.; Müller, J.; Peters, A.

    2016-06-01

    Changes of surface gravity on Earth are of great interest in geodesy, earth sciences and natural resource exploration. They are indicative of Earth system's mass redistributions and vertical surface motion, and are usually measured with falling corner-cube- and superconducting gravimeters (FCCG and SCG). Here we report on absolute gravity measurements with a mobile quantum gravimeter based on atom interferometry. The measurements were conducted in Germany and Sweden over periods of several days with simultaneous SCG and FCCG comparisons. They show the best-reported performance of mobile atomic gravimeters to date with an accuracy of 39nm/s2, long-term stability of 0.5nm/s2 and short-term noise of 96nm/s2/√Hz. These measurements highlight the unique properties of atomic sensors. The achieved level of performance in a transportable instrument enables new applications in geodesy and related fields, such as continuous absolute gravity monitoring with a single instrument under rough environmental conditions.

  2. An OSI architecture for the deep space network

    NASA Technical Reports Server (NTRS)

    Heuser, W. Randy; Cooper, Lynne P.

    1993-01-01

    The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.

  3. NASA Invites Artists to Visit James Webb Space Telescope

    NASA Image and Video Library

    2017-12-08

    Witness History: Be inspired by giant, golden, fully-assembled James Webb Space Telescope mirror on display at NASA Goddard. Read more: go.nasa.gov/2dUOmSX Are you an artist? If so, we have a unique opportunity to view the amazing and aesthetic scientific marvel that is the James Webb Space Telescope. Because of Webb’s visually striking appearance, we are hosting a special viewing event on Wednesday, Nov. 2, 2016, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Artists are invited to apply to attend. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Applications of science and engineering to quantify and control the Deepwater Horizon oil spill

    USGS Publications Warehouse

    McNutt, Marcia K.; Chu, Steven; Lubchenco, Jane; Hunter, Tom; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.

    2012-01-01

    The unprecedented engagement of scientists from government, academia, and industry enabled multiple unanticipated and unique problems to be addressed during the Deepwater Horizon oil spill. During the months between the initial blowout on April 20, 2010, and the final well kill on September 19, 2010, researchers prepared options, analyses of tradeoffs, assessments, and calculations of uncertainties associated with the flow rate of the well, well shut in, killing the well, and determination of the location of oil released into the environment. This information was used in near real time by the National Incident Commander and other government decision-makers. It increased transparency into BP’s proposed actions and gave the government confidence that, at each stage proposed, courses of action had been thoroughly vetted to reduce risk to human life and the environment and improve chances of success.

  5. NASA's EPIC View of 2017 Eclipse Across America

    NASA Image and Video Library

    2017-08-22

    From a million miles out in space, NASA’s Earth Polychromatic Imaging Camera (EPIC) captured natural color images of the moon’s shadow crossing over North America on Aug. 21, 2017. EPIC is aboard NOAA’s Deep Space Climate Observatory (DSCOVR), where it photographs the full sunlit side of Earth every day, giving it a unique view of total solar eclipses. EPIC normally takes about 20 to 22 images of Earth per day, so this animation appears to speed up the progression of the eclipse. To see the images of Earth every day, go to: epic.gsfc.nasa.gov NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Unique Blasting

    NASA Image and Video Library

    2017-12-08

    The Sun blasted out five coronal mass ejections (CMEs) over about two days (Feb. 26-28, 2013) and each one had quite a different shape and structure, seen here in a video bit.ly/Za8Aso. The most interesting one (seen above) blew out to the right with a bright, elongated center, likely part of a solar filament, that maintained its curly-Q shape as it expanded out of view. The images were taken by SOHO LASCO C2 coronagraph. The Sun is represented by the white circle and the red disk blocks out the Sun and part of the corona. Credit: NASA/Goddard/SOHO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. We Are NOT Alone!

    NASA Astrophysics Data System (ADS)

    Griffin, Elizabeth

    2014-01-01

    Astronomy has many caches of valuable data. In addition to the ever-expanding databases from modern surveys, there are also photographic archives of historic observations, each a unique image of some event, object or spectrum - a once-only observation, and a one-only version. Analogue data like that cannot be copied; they are precious, fragile, and imperilled. They are essential for time-sensitive research but cannot be ingested into modern analyses until they have been correctly and completely digitized, a procedure that is not easy, not cheap, and not commonly found. This story is not new, but what IS new to many astronomers is the realization that other sciences are in just the same, or even worse, predicament. In other sciences, historic data may be heaps of record sheets, the ink fading and the paper attacked by vermin. Unlike astronomy, whose plates are neatly filed in observatory plate vaults, and carefully card-catalogued, other sciences look for their historic data in uncharted territory, often relying on word of mouth or chance for their discovery and recovery. The situation must be addressed before the records and photographs degrade to being unuseable. Individual sciences have to compete with one another for funds to translate their analogue data into manageable electronic versions, but if the individual challenges are federated into a global scientific project, with Astronomy being just one partner that also has good experience to share, the problem becomes a recognized, international shared concern. Its solution will enable all sciences (and thereby human knowledge) to become become much better informed. The talk will demonstrate that claim through specific examples, and will also bring the HAD up to date on the progress being made to provide rapid and reliable access to the historic astronomical data of the world.

  8. NASA’s Universe of Learning: Connecting Scientists, Educators, and Learners

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Lestition, Kathleen; Squires, Gordon K.; Greene, W. M.; Biferno, Anya A.; Cominsky, Lynn R.; Goodman, Irene; Walker, Allyson; Universe of Learning Team

    2017-01-01

    NASA’s Universe of Learning (UoL) is one of 27 competitively awarded education programs selected by NASA’s Science Mission Directorate (SMD) in its newly restructured education effort. Through these 27 programs, SMD aims to infuse NASA science experts and content more effectively and efficiently into learning environments serving audiences of all ages. UoL is a unique partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University that will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of partners to advance SMD education objectives. External evaluation is provided through a partnership with Goodman Research Group and Cornerstone Evaluation Associates. The multi-institutional team is working to develop and deliver a unified, consolidated and externally evaluated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Cosmic Origins, Physics of the Cosmos, and Exoplanet Exploration themes. Products and programs focus on out-of-school-time learning environments and include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; and producing resources for special needs and underserved/underrepresented audiences. The UoL team also works with a network of partners to provide professional learning experiences for informal educators, pre-service educators, and undergraduate instructors. This presentation will provide an overview of the UoL team’s approach to partnering scientists and educators to engage learners in Astrophysics discoveries and data; progress to date; and pathways for science community involvement.

  9. Using Citizen Science for Water Quality Monitoring: Preaching the Message Beyond the Choir

    NASA Astrophysics Data System (ADS)

    Jollymore, A. J.

    2015-12-01

    Citizen science has emerged a means for augmenting the scope of research while educating the community. Environmental research has a particularly strong motivation for engagement, given its often-local context. We implemented a citizen science campaign to investigate relationships between land use and dissolved organic matter (DOM) in surface water environments proximal to Vancouver, British Columbia, Canada. Citizen science was intended to increase sampling breadth, and engage the community about human activities and water quality effects. Participants were given a sample kit and a simple sampling protocol; we then used fast and economic absorbance and fluorescence spectrophotometry to determine DOM concentration and composition. Participants, including individuals from over 10 municipalities and community organizations, submitted over 200 samples; these were compared to investigator-led sampling, as well as data mining existing sources, to verify results. Analyzing the fluorescence excitation-emission matrices (EEMs) with a five-component parallel factor (PARAFAC) model showed that samples from watersheds with increased urbanization had unique microbial-like peaks, suggesting variances in DOM lability and origins compared to more pristine watersheds. Community engagement was extended by making data available online in an interactive map, as well as by presenting the project to the public. Despite this, engagement occurred most with community organizations; these participants tended to have scientific training, with a higher knowledge baseline regarding their specific watershed and water quality issues generally. While this served scientific goals, our campaign was less successful at engaging citizens with less-developed scientific backgrounds. In this presentation we will discuss the merits and scientific milestones enabled by citizen science, and lessons learned about how to get beyond 'preaching to the choir' in crafting and implementing such projects.

  10. New modes of electron microscopy for materials science enabled by fast direct electron detectors

    NASA Astrophysics Data System (ADS)

    Minor, Andrew

    There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.

  11. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  12. AS12-AS101-3 Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew; Benson, S.; Falck, R.; Fixsen, D.; Gardner, J.; Garvin, J.; Kruk, J.; Oleson, S.; Thronson, H.

    2011-01-01

    We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. Over the above wavelength range, observatory performance is limited by zodiacal light. This new capability enables up to 10X increased photometric sensitivity and 160X increased observing speed relative to a Sun-Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRl-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the Science performance of much larger long development time systems; thuS, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions and is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

  13. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7

  14. Hydrology Applications of the GRACE missions

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. M.; Ivins, E. R.; Jasinski, M. F.

    2014-12-01

    NASA and their German space agency partners have a rich history of global gravity observations beginning with the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002. The science goals of the mission include providing monthly maps of variations in the gravity field, where the major time-varying signal is due to water motion in the Earth system. GRACE has a unique ability to observe the mass flux of water movement at monthly time scales. The hydrology applications of the GRACE mission include measurements of seasonal storage of surface and subsurface water and evapotranspiration at the land-ocean-atmosphere boundary. These variables are invaluable for improved modeling and prediction of Earth system processes. Other mission-critical science objectives include measurements that are a key component of NASA's ongoing climate measuring capabilities. Successful strategies to enhance science and practical applications of the proposed GRACE-Follow On (GRACE-FO) mission, scheduled to launch in 2017, will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities. NASA's Applied Sciences Program is supporting collaboration on an applied approach to identifying communities of potential and of practice in order to identify and promote the societal benefits of these and future gravity missions. The objective is to engage applications-oriented users and organizations and enable them to envision possible applications and end-user needs as a way to increase the benefits of these missions to the nations. The focus of activities for this applications program include; engaging the science community in order to identify applications and current and potential data users, developing a written Applications Plan, conducting workshops and user tutorials, providing ready access to information via web pages, developing databases of key and interested users/scientists, creating printed materials (posters, brochures) that identify key capabilities and applications of the missions and data, and participation in key science meetings and decision support processes.

  15. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  16. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  17. The Laboratory is Vital in Science Instruction in the Secondary School.

    ERIC Educational Resources Information Center

    Klein, Sarah E.; And Others

    1982-01-01

    Presents the National Science Teachers Associations's (NSTA) position statement on the place of the laboratory in science education followed by other statements unique for teaching science in middle, junior, and senior high schools. Statements focus on teaching, research, and curriculum perspectives, laboratory's role, and laboratory's enhancement…

  18. 78 FR 13743 - Requirements for the Recognizing Aviation and Aerospace Innovation in Science and Engineering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Aerospace Innovation in Science and Engineering (RAISE) Award AGENCY: Office of the Secretary, U.S... demonstrate unique, innovative thinking in aerospace science and engineering. With this award, the Secretary... Science and Engineering) Award will recognize innovative scientific and engineering achievements that will...

  19. Creative Science Teaching Labs: New Dimensions in CPD

    ERIC Educational Resources Information Center

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  20. Using Video in Higher Education. IET Paper on Broadcasting No. 243.

    ERIC Educational Resources Information Center

    Bates, A. W.

    Television has unique teaching functions that are significant for university education, and new developments in technology enable television to overcome some of its previous difficulties and weaknesses. Television's presentational power gives it two unique teaching characteristics: its ability to provide learning materials otherwise unavailable to…

  1. Preparing Science Librarians for Success: An Evaluation of Position Advertisements and Recommendations for Library Science Curricula

    ERIC Educational Resources Information Center

    DeArmond, A. R.; Oster, A. D.; Overhauser, E. A.; Palos, M. K.; Powell, S. M.; Sago, K. K.; Schelling, L. R.

    2009-01-01

    Science librarianship is a rapidly changing professional specialization that requires unique skills and experiences for science librarians to perform at the highest level. A content analysis of recent job advertisements was conducted to determine the most desirable qualifications for science librarians. It was found that the most frequently cited…

  2. Science Framework for the 2009 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2008

    2008-01-01

    This document sets forth recommendations for the design of a new science assessment. The assessment resulting from this framework will start a new NAEP science trend (i.e., measure of student progress in science) beginning in 2009. This framework represents a unique opportunity to build on previous NAEP science work as well as key developments in…

  3. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    ERIC Educational Resources Information Center

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  4. The Societal Dimension in German Science Education--From Tradition towards Selected Cases and Recent Developments

    ERIC Educational Resources Information Center

    Marks, Ralf; Stuckey, Marc; Belova, Nadja; Eilks, Ingo

    2014-01-01

    This paper reflects the theory and practice of societal-oriented science education in the past and present of German science teaching. Starting from a quite unique German justification for more thorough societal-oriented science education and some historical reflections a model for socio-scientific issues-based science teaching will be presented.…

  5. Reel Science: An Ethnographic Study of Girls' Science Identity Development in and through Film

    ERIC Educational Resources Information Center

    Chaffee, Rachel L.

    2016-01-01

    This dissertation study contributes to the research on filmmaking and identity development by exploring the ways that film production provided unique opportunities for a team of four girls to engage in science, to develop identities in science, and to see and understand science differently. Using social practice, identity, and feminist theory and…

  6. The autonomous sciencecraft constellations

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2003-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.

  8. NASA'S Space Launch System: Opening Opportunities for Mission Design

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will demonstrate, SLS is making strong progress toward first launch, and represents a unique new capability for spaceflight, and an opportunity to reinvent space by developing out-of-the-box missions and mission designs unlike any flown before.

  9. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Creech, Stephen D.; Robinson,Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will demonstrate, SLS represents a unique new capability for spaceflight, and an opportunity to reinvent space by developing out-of-the-box missions and mission designs unlike any flown before.

  10. NuLat: 3D Event Reconstruction of a ROL Detector for Neutrino Detection and Background Rejection

    NASA Astrophysics Data System (ADS)

    Yokley, Zachary; NuLat Collaboration

    2015-04-01

    NuLat is a proposed very-short baseline reactor antineutrino experiment that employs a unique detector design, a Ragahavan Optical Lattice (ROL), developed for the LENS solar neutrino experiment. The 3D lattice provides high spatial and temporal resolution and allows for energy deposition in each voxel to be determined independently of other voxels, as well as the time sequence associated with each voxel energy deposition. This unique feature arises from two independent means to spatially locate energy deposits: via timing and via optical channeling. NuLat, the first application of a ROL detector targeting physics results, will measure the reactor antineutrino flux at very short baselines via inverse beta decay (IBD). The ROL design of NuLat makes possible the reconstruction of positron energy with little contamination due to the annihilation gammas which smear the positron energy resolution in a traditional detector. IBD events are cleanly tagged via temporal and spatial coincidence of neutron capture in the vertex voxel or nearest neighbors. This talk will present work on IBD event reconstruction in NuLat and its likely impact on sterile neutrino detection via operation in higher background locations enabled by its superior rejection of backgrounds. This research has been funded in part by the National Science Foundation on Award Numbers 1001394 and 1001078.

  11. Bayesian Approach for Reliability Assessment of Sunshield Deployment on JWST

    NASA Technical Reports Server (NTRS)

    Kaminskiy, Mark P.; Evans, John W.; Gallo, Luis D.

    2013-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications, for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a Bayesian approach for reliability estimation of spacecraft deployment was developed for this purpose. This approach was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the observatory's telescope and science instruments. In order to collect the prior information on deployable systems, detailed studies of "heritage information", were conducted extending over 45 years of spacecraft launches. The NASA Goddard Space Flight Center (GSFC) Spacecraft Operational Anomaly and Reporting System (SOARS) data were then used to estimate the parameters of the conjugative beta prior distribution for anomaly and failure occurrence, as the most consistent set of available data and that could be matched to launch histories. This allows for an emperical Bayesian prediction for the risk of an anomaly occurrence of the complex Sunshield deployment, with credibility limits, using prior deployment data and test information.

  12. Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots.

    PubMed

    Wang, Junpeng; Liu, Xiaotong; Shen, Han-Wei; Lin, Guang

    2017-01-01

    Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.

  13. The International Space Station as a Key Platform to Synergize Observations of Fundamental Ecosystem Properties

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Stavros, E. N.; Pavlick, R.; Hook, S. J.; Eldering, A.; Dubayah, R.; Schimel, D.

    2016-12-01

    Terrestrial ecosystems can be described in terms of trait composition, physiological function, and physical structure; all three of these are observable remotely to varying degrees. Yet, no mission is able to singularly capture all three together, thus inhibiting our ability to dynamically measure and describe ecosystems as holistic, integrated, and interconnected entities. The International Space Station (ISS) is a new platform for global ecology. The variable overpass time offers a key advantage to investigations interested in sampling over the diurnal cycle, critical to understanding ecosystem function. The ISS also offers another key advantage—financial; it is already there with funded astronaut cargo re-supply missions, so the cost of launch and platform do not need to be added onto new science missions, thereby enabling NASA to select more missions at lower costs. In 2018, NASA will begin sending a series of independently-selected missions to the ISS focused on terrestrial ecosystems. First, ECOSTRESS will produce thermal-based evapotranspiration (ET) data, among other products. OCO-3 will arrive a few months later to measure chlorophyll fluorescence (related to gross primary production, GPP) and atmospheric CO2. Finally, GEDI will produce LiDAR-based ecosystem structure (height, leaf area index, biomass). While each mission is independently developed and funded, the respective mission scientists are working together to bridge observations and leverage their unique contemporaneous and synergistic value for global ecology. A composition-based mission is still missing from the ISS, but airborne and other space agency missions may be leveraged. This talk will describe these ISS-based terrestrial ecosystem science missions, and discuss synergies that will enable the study of ecosystems as a whole that is larger than the sum of their parts.

  14. Science Enabling Exploration: Using LRO to Prepare for Future Missions

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J.; Jolliff, B. L.; Stopar, J. D.; Speyerer, E. J.; Petro, N. E.

    2016-01-01

    Discoveries from LRO have transformed our understanding of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. A high lunar exploration priority is the collection of new samples and their return to Earth for comprehensive analysis. The importance of sample return from South Pole-Aitken is well-established [Jolliff et al., this conference], but there are numerous other locations where sample return will yield important advances in planetary science. Using new LRO data, we have defined an achievability envelope based on the physical characteristics of successful lunar landing sites. Those results were then used to define 1km x 1km regions of interest where sample return could be executed, including: the basalt flows in Oceanus Procellarum (22.1N, 53.9W), the Gruithuisen Domes (36.1N, 39.7W), the Dewar cryptomare (2.2S, 166.8E), the Aristarchus pyroclastic deposit (24.8N, 48.5W), the Sulpicius Gallus formation (19.9N, 10.3E), the Sinus Aestuum pyroclastic deposit (5.2N, 9.2W), the Compton-Belkovich volcanic complex (61.5N, 99.9E), the Ina Irregular Mare Patch (18.7N, 5.3E), and the Marius Hills volcanic complex (13.4N, 55.9W). All of these locations represent safe landing sites where sample returns are needed to advance our understanding of the evolution of the lunar interior and the timescales of lunar volcanism. If LRO is still active when any future mission reaches the surface, LRO's capability to rapidly place surface activities into broader geologic context will provide operational advantages. LRO remains a unique strategic asset that continues to address the needs of future missions.

  15. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  16. The SLICE, CHESS, and SISTINE Ultraviolet Spectrographs: Rocket-Borne Instrumentation Supporting Future Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.

    2016-03-01

    NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.

  17. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  18. 78 FR 59978 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... developing a survey with content specifically designed to address the experiences unique to ERC personnel... inside these centers and how it impacts faculty, students and their success. This information will enable... environments for all. This diversity climate survey will enable us to evaluate how close we are to that goal...

  19. Engineering Specifications derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott; Kirk, Charles S.; Postman, Marc

    2013-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, we use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  20. Innovations in mission architectures for exploration beyond low Earth orbit

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.; Joosten, B. J.; Lo, M. W.; Ford, K. M.; Hansen, R. J.

    2003-01-01

    Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  1. Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior

    ERIC Educational Resources Information Center

    Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.

    2016-01-01

    Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected…

  2. Institutionalization in Action: Interactive Science Center Interactivity and Materiality from the Family Perspective

    ERIC Educational Resources Information Center

    Crain, Rhiannon Lorraine

    2009-01-01

    Interactive science centers are unique players in the science education community, but their positioning as both authorities on science and providers of "free choice" learning presents learning researchers with a problematic contradiction rooted in the complexities of trying to be both "scientific" and "education" organizations. Using insight from…

  3. The New Science Education Leadership: An IT-Based Learning Ecology Model. Technology, Education--Connections (TEC) Series

    ERIC Educational Resources Information Center

    Schielack, Jane F., Ed.; Knight, Stephanie L., Ed.

    2012-01-01

    How can we use new technology to support and educate the science leaders of tomorrow? This unique book describes the design, development, and implementation of an effective science leadership program that promotes collaboration among scientists and science educators, provides authentic research experiences for educators, and facilitates adaptation…

  4. HRD Domain in the Service Science Discipline: Developing Interdisciplinary Professionals

    ERIC Educational Resources Information Center

    Dickson, Donna; Noveski, Igor; Hamidi, Hana

    2011-01-01

    Purpose: The purpose of this paper is to identify critical components for service science curricula that address the unique competency needs of the service sector. Design/methodology/approach: The method for this investigation included a comprehensive review, analysis, and synthesis of service science, as well as service science management and…

  5. But Is It Science?

    ERIC Educational Resources Information Center

    Watts, Mike; Salehjee, Saima; Essex, Jane

    2017-01-01

    Early years science education is not science, but a curricular construction designed to induct young children into a range of ideas and practices related to the natural world. While inquiry-based learning is an important approach to this, it is not of itself unique to science and there are a range of logico-mathematical constructions that come…

  6. An Exploratory Case Study of Olympiad Students' Attitudes towards and Passion for Science

    ERIC Educational Resources Information Center

    Oliver, Mary; Venville, Grady

    2011-01-01

    Much is known about high school students' attitudes towards science but there is almost no research on what passion for science might look like and how it might be manifested. This exploratory case study took advantage of a unique group of highly gifted science students participating in the Australian Science Olympiad (N = 69) to explore their…

  7. Stripline split-ring resonator with integrated optogalvanic sample cell

    NASA Astrophysics Data System (ADS)

    Persson, Anders; Berglund, Martin; Thornell, Greger; Possnert, Göran; Salehpour, Mehran

    2014-04-01

    Intracavity optogalvanic spectroscopy (ICOGS) has been proposed as a method for unambiguous detection of rare isotopes. Of particular interest is 14C, where detection of extremely low concentrations in the 1:1015 range (14C: 12C), is of interest in, e.g., radiocarbon dating and pharmaceutical sciences. However, recent reports show that ICOGS suffers from substantial problems with reproducibility. To qualify ICOGS as an analytical method, more stable and reliable plasma generation and signal detection are needed. In our proposed setup, critical parameters have been improved. We have utilized a stripline split-ring resonator microwave-induced microplasma source to excite and sustain the plasma. Such a microplasma source offers several advantages over conventional ICOGS plasma sources. For example, the stripline split-ring resonator concept employs separated plasma generation and signal detection, which enables sensitive detection at stable plasma conditions. The concept also permits in situ observation of the discharge conditions, which was found to improve reproducibility. Unique to the stripline split-ring resonator microplasma source in this study, is that the optogalvanic sample cell has been embedded in the device itself. This integration enables improved temperature control and more stable and accurate signal detection. Significant improvements are demonstrated, including reproducibility, signal-to-noise ratio, and precision.

  8. Career Orientation: Grade 7 and 8: A Unified Approach: Science Careers. Activity Manual.

    ERIC Educational Resources Information Center

    Cincinnati Public Schools, OH.

    Career orientation in the science curriculum introduces students to science-related careers and opportunities and enables them to prepare an educational program if they choose a science career. The curriculum guide is designed to aid junior high school science teachers in relating the seventh and eighth grade science curriculum to careers in…

  9. Satellite stories: capturing professional experiences of academic health sciences librarians working in delocalized health sciences programs.

    PubMed

    Phinney, Jackie; Horsman, Amanda Rose

    2018-01-01

    Health sciences training programs have progressively expanded onto satellite campuses, allowing students the opportunity to learn in communities away from an academic institution's main campus. This expansion has encouraged a new role for librarians to assume, in that a subset of health sciences librarians identify as "satellite librarians" who are permanently located at a distance from the main campus. Due to the unique nature of this role and lack of existing data on the topic, the authors investigated the experiences and perceptions of this unique group of information professionals. An electronic survey was distributed to health sciences librarians via two prominent North American email discussion lists. Questions addressed the librarians' demographics, feelings of social inclusion, technological support, autonomy, professional support, and more. Eighteen surveys were analyzed. While several respondents stated that they had positive working relationships with colleagues, many cited issues with technology, scheduling, and lack of consideration as barriers to feeling socially included at both the parent and local campuses. Social inclusion, policy creation, and collection management issues were subject to their unique situations and their colleagues' perceptions of their roles as satellite librarians. The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.

  10. In the Footsteps of Roger Revelle: A STEM Partnership Between Scripps Institution of Oceanography, Office of Naval Research and Middle School Science Students Bringing Next Generation Science Standards into the Classroom through Ocean Science

    NASA Astrophysics Data System (ADS)

    Brice, D.; Appelgate, B., Jr.; Mauricio, P.

    2014-12-01

    Now in its tenth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with Next Generation Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO Ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of Biogeochemical research in the field as it relates to their classroom studies. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum models the Next Generation Science Standards encouraging active inquiry and critical thinking with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role-models. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens, a benefit for our society at large.

  11. The Crossroads of Science and Faith

    NASA Astrophysics Data System (ADS)

    Benecchi, Susan D.; Kober, Gladys; Gossard, Paula

    2015-11-01

    We have recently completed a 4-year project to produce a textbook for students that uniquely addresses the needs of the Christian homeschool community. It is also relevant for students of other faith and non-faith backgrounds. Two elements are at work: parents want their kids to become mature adults adhering to the faith of their upbringing, and students are challenged when they don't understand how to rationally discuss their beliefs in relation to many current scientific discoveries. To add to the polarization, a few scientists have spread an atheistic naturalistic worldview together with their teaching of science as if it was part of science itself. As a result many parents avoid materials they consider controversial and students later come to believe they must choose between science and their faith. The key to bridging this gap are professional astronomers who hold to a Christian worldview and who can speak both languages, understanding the complexities of both communities. The role of science educators is to teach science, not to impose worldviews. Science is well received by Christians when it is presented not as a threat to faith, but rather as a complementary way to understand God, leading to a more integrated view of reality. Our textbook boasts four hallmarks, providing students with: 1) An understanding of the relationship between faith and science with the goal of helping students to identify and integrate their own worldview. 2) Scientifically reviewed and accurate astronomical information. 3) Examples of scientists who have wrestled with science/faith issues and come to a coherent relationship between the two. And 4) exercises for the students to interact with the material in both faith and scientific areas. We hope this will be a resource to help parents who hold tightly to particular ideologies to be less closed to current scientific discovery and more excited about how new discoveries can bolster and enable their faith. We will present an overview of our materials, the positive experience we have had so far in testing our materials, and our goals for future training within the homeschool and church communities. For more information about the textbook see, http://www.glimpseofhissplendor.com/

  12. Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Smith, W. Scott

    2013-01-01

    The Advance Mirror Technology Development (AMTD) project is a three year effort initiated in FY12 to mature by at least a half TRL step six critical technologies required to enable 4 to 8 meter UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. A key accomplishment is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints.

  13. Aliphatic imines in titanium-mediated reductive cross-coupling: unique reactivity of Ti(O-i-Pr)4/n-BuLi.

    PubMed

    Tarselli, Michael A; Micalizio, Glenn C

    2009-10-15

    A procedure for the coupling of aliphatic imines with allylic and allenic alkoxides is described. The success of these studies was enabled by a unique reactivity profile of Ti(IV) isopropoxide/n-BuLi compared to well-known Ti(IV) isopropoxide/RMgX systems.

  14. Productization and Commercialization of IT-Enabled Higher Education in Computer Science: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Kankaanpää, Irja; Isomäki, Hannakaisa

    2013-01-01

    This paper reviews research literature on the production and commercialization of IT-enabled higher education in computer science. Systematic literature review (SLR) was carried out in order to find out to what extent this area has been studied, more specifically how much it has been studied and to what detail. The results of this paper make a…

  15. Advanced thermal control technologies for space science missions at JPL

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; O'Donnell, T.

    2000-01-01

    A wide range of deep space science missions are planned by NASA for the future. Many of these missions are being planned under strict cost caps and advanced technologies are needed in order to enable these challenging mssions. Because of the wide range of thermal environments the spacecraft experience during the mission, advanced thermal control technologies are the key to enabling many of these missions.

  16. A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission

    DTIC Science & Technology

    2016-08-17

    and Technology, ‡Department of Chemistry, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical Science and Engineering, and...enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism ...delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. Small (micrometer) scale damage in

  17. How a Deweyan science education further enables ethics education

    NASA Astrophysics Data System (ADS)

    Webster, Scott

    2008-09-01

    This paper questions the perceived divide between ‘science’ subject matter and ‘moral’ or ‘ethical’ subject matter. A difficulty that this assumed divide produces is that science teachers often feel that there needs to be ‘special treatment’ given to certain issues which are of an ethical or moral nature and which are ‘brought into’ the science class. The case is made in this article that dealing with ethical issues in the science class should not call for a sensitivity that is beyond the expertise of the science teacher. Indeed it is argued here that science teachers in particular have a great deal to offer in enabling ethics education. To overcome this perceived divide between science and values it needs to be recognised that the educative development of learners is both scientific and moral. I shall be using a Deweyan perspective to make the case that we as science teachers can overcome this apparent divide and significantly contribute to an ethics education of our students.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.

  19. Finding the UV-Visible Path Forward: Proceedings of the Community Workshop to Plan the Future of UV/Visible Space Astrophysics

    NASA Astrophysics Data System (ADS)

    Scowen, Paul A.; Tripp, Todd; Beasley, Matt; Ardila, David; Andersson, B.-G.; Maíz Apellániz, Jesús; Barstow, Martin; Bianchi, Luciana; Calzetti, Daniela; Clampin, Mark; Evans, Christopher J.; France, Kevin; García García, Miriam; Gomez de Castro, Ana; Harris, Walt; Hartigan, Patrick; Howk, J. Christopher; Hutchings, John; Larruquert, Juan; Lillie, Charles F.; Matthews, Gary; McCandliss, Stephan; Polidan, Ron; Perez, Mario R.; Rafelski, Marc; Roederer, Ian U.; Sana, Hugues; Sanders, Wilton T.; Schiminovich, David; Thronson, Harley; Tumlinson, Jason; Vallerga, John; Wofford, Aida

    2017-07-01

    We present the science cases and technological discussions that came from the workshop titled “Finding the ultraviolet (UV)-Visible Path Forward” held at NASA GSFC 2015 June 25-26. The material presented outlines the compelling science that can be enabled by a next generation space-based observatory dedicated for UV-visible science, the technologies that are available to include in that observatory design, and the range of possible alternative launch approaches that could also enable some of the science. The recommendations to the Cosmic Origins Program Analysis Group from the workshop attendees on possible future development directions are outlined.

  20. Unique geologic insights from "non-unique" gravity and magnetic interpretation

    USGS Publications Warehouse

    Saltus, R.W.; Blakely, R.J.

    2011-01-01

    Interpretation of gravity and magnetic anomalies is mathematically non-unique because multiple theoretical solutions are always possible. The rigorous mathematical label of "nonuniqueness" can lead to the erroneous impression that no single interpretation is better in a geologic sense than any other. The purpose of this article is to present a practical perspective on the theoretical non-uniqueness of potential-field interpretation in geology. There are multiple ways to approach and constrain potential-field studies to produce significant, robust, and definitive results. The "non-uniqueness" of potential-field studies is closely related to the more general topic of scientific uncertainty in the Earth sciences and beyond. Nearly all results in the Earth sciences are subject to significant uncertainty because problems are generally addressed with incomplete and imprecise data. The increasing need to combine results from multiple disciplines into integrated solutions in order to address complex global issues requires special attention to the appreciation and communication of uncertainty in geologic interpretation.

  1. On the Existence and Uniqueness of the Scientific Method.

    PubMed

    Wagensberg, Jorge

    2014-01-01

    The ultimate utility of science is widely agreed upon: the comprehension of reality. But there is much controversy about what scientific understanding actually means, and how we should proceed in order to gain new scientific understanding. Is there a method for acquiring new scientific knowledge? Is this method unique and universal? There has been no shortage of proposals, but neither has there been a shortage of skeptics about these proposals. This article proffers for discussion a potential scientific method that aspires to be unique and universal and is rooted in the recent and ancient history of scientific thinking. Curiously, conclusions can be inferred from this scientific method that also concern education and the transmission of science to others.

  2. The virtual mission approach: Empowering earth and space science missions

    NASA Astrophysics Data System (ADS)

    Hansen, Elaine

    1993-08-01

    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  3. Paint-Stirrer Submarine

    ERIC Educational Resources Information Center

    Young, Jocelyn; Hardy, Kevin

    2007-01-01

    In this article, the authors discuss a unique and challenging laboratory exercise called, the paint-stir-stick submarine, that keeps the students enthralled. The paint-stir-stick submarine fits beautifully with the National Science Education Standards Physical Science Content Standard B, and with the California state science standards for physical…

  4. A concept for performance management for Federal science programs

    USGS Publications Warehouse

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  5. The Autonomous Sciencecraft and applications to future science missions

    NASA Astrophysics Data System (ADS)

    Chien, S.

    2006-05-01

    The Autonomous Sciencecraft Software has operated the Earth Observing One (EO-1) Mission for over 5000 science observations [Chien et al. 2005a]. This software enables onboard analysis of data to drive: 1. production of rapid alerts summary products, 2. data editing, and 3. to inform subsequent observations. This methodology has been applied to more effectively study Volcano, Flooding, and Cryosphere processes on Earth. In this talk we discuss how this software enables new paradigms for science missions and discuss the types of science phenomena that can now be more readily studied (e.g. dynamic investigations, large scale searches for specific events). We also describe a range of Earth, Solar, and Space science applications under concept study for onboard autonomy. Finally, we describe ongoing work to link EO-1 with other spacecraft and in-situ sensor networks to enable a sensorweb for monitoring dynamic science events [Chien et al. 2005b]. S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castano, A. Davies, D. Mandl, S. Frye, B. Trout, S. Shulman, D. Boyer, "Using Autonomy Flight Software to Improve Science Return on Earth Observing One, Journal of Aerospace Computing, Information, & Communication, April 2005, AIAA. S. Chien, B. Cichy, A. Davies, D. Tran, G. Rabideau, R. Castano, R. Sherwood, D. Mandl, S. Frye, S. Shulman, J. Jones, S. Grosvenor, "An Autonomous Earth Observing Sensorweb," IEEE Intelligent Systems, May-June 2005, pp. 16- 24.

  6. The NASA Ames Research Center Institutional Scientific Collection: History, Best Practices and Scientific Opportunities

    NASA Technical Reports Server (NTRS)

    Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen

    2017-01-01

    The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique scientific opportunities for temporal assessment across historical missions. Support from the NASA Space Biology Program and the NASA Human Research Program is gratefully acknowledged.

  7. Low-Cost SIRTF Flight Operations

    NASA Astrophysics Data System (ADS)

    Deutsch, M.-J.; Ebersole, M.; Nichols, J.

    1997-12-01

    The Space Infrared Telescope Facility (SIRTF) , the fourth of the Great Observatories, will be placed in a unique solar orbit trailing the Earth, in 2001. SIRTF will acquire both imaging and spectral data using large infrared detector arrays from 3.5mm to 160mm. The primary science objectives are (1) search for and study of brown dwarfs and super planets, (2) discovery and study of protoplanetary debris disks, (3) study of ultraluminous galaxies and active galactic nuclei, and (4) study of the early Universe. Driven by the limited cryogenic lifetime of 2.5 years, with a goal of 5 years, and the severely cost-capped development, a Mission Planning and Operations system is being designed that will result in high on-board efficiency (>90%) and low-cost operation, yet will accommodate rapid response science requirements . SIRTF is designing an architecture for an operations system that will be shared between science and flight operations. Crucial to this effort is the philosophy of an integrated science and engineering plan, co-location, cross-training of teams and common planning tools. The common tool set will enable the automatic generation of an integrated and conflict free planned schedule accommodating 20 000 observations and engineering activities a year. The shared tool set will help generate standard observations , (sometimes non-standard) engineering activities and manage the ground and flight resources and constraints appropriately. The ground software will allow the development from the ground of robust event driven sequences. Flexibility will be provided to incorporate newly discovered science opportunities or health issues late in the process and via quick links. This shared science and flight operations process if used from observation selection through sequence and command generation, will provide a low-cost operations system. Though SIRTF is a 'Great Observatory', its annual mission operations costs will more closely resemble those of an Explorer class mission.

  8. STEREO-IMPACT Education and Public Outreach: Sharing STEREO Science

    NASA Astrophysics Data System (ADS)

    Craig, N.; Peticolas, L. M.; Mendez, B. J.

    2005-12-01

    The Solar TErrestrial RElations Observatory (STEREO) is scheduled for launch in Spring 2006. STEREO will study the Sun with two spacecrafts in orbit around it and on either side of Earth. The primary science goal is to understand the nature and consequences of Coronal Mass Ejections (CMEs). Despite their importance, scientists don't fully understand the origin and evolution of CMEs, nor their structure or extent in interplanetary space. STEREO's unique 3-D images of the structure of CMEs will enable scientists to determine their fundamental nature and origin. We will discuss the Education and Public Outreach (E/PO) program for the In-situ Measurement of Particles And CME Transients (IMPACT) suite of instruments aboard the two crafts and give examples of upcoming activities, including NASA's Sun-Earth day events, which are scheduled to coincide with a total solar eclipse in March. This event offers a good opportunity to engage the public in STEREO science, because an eclipse allows one to see the solar corona from where CMEs erupt. STEREO's connection to space weather lends itself to close partnerships with the Sun-Earth Connection Education Forum (SECEF), The Exploratorium, and UC Berkeley's Center for New Music and Audio Technologies to develop informal science programs for science centers, museum visitors, and the public in general. We will also discuss our teacher workshops locally in California and also at annual conferences such as those of the National Science Teachers Association. Such workshops often focus on magnetism and its connection to CMEs and Earth's magnetic field, leading to the questions STEREO scientists hope to answer. The importance of partnerships and coordination in working in an instrument E/PO program that is part of a bigger NASA mission with many instrument suites and many PIs will be emphasized. The Education and Outreach Porgram is funded by NASA's SMD.

  9. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  10. Expanding Science Knowledge: Enabled by Nuclear Power

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2011-01-01

    The availability of Radioisotope Power Sources (RPSs) power opens up new and exciting mission concepts (1) New trajectories available (2) Power for long term science and operations Astonishing science value associated with these previously non-viable missions

  11. Enabling interoperability in planetary sciences and heliophysics: The case for an information model

    NASA Astrophysics Data System (ADS)

    Hughes, J. Steven; Crichton, Daniel J.; Raugh, Anne C.; Cecconi, Baptiste; Guinness, Edward A.; Isbell, Christopher E.; Mafi, Joseph N.; Gordon, Mitchell K.; Hardman, Sean H.; Joyner, Ronald S.

    2018-01-01

    The Planetary Data System has developed the PDS4 Information Model to enable interoperability across diverse science disciplines. The Information Model is based on an integration of International Organization for Standardization (ISO) level standards for trusted digital archives, information model development, and metadata registries. Where controlled vocabularies provides a basic level of interoperability by providing a common set of terms for communication between both machines and humans the Information Model improves interoperability by means of an ontology that provides semantic information or additional related context for the terms. The information model was defined by team of computer scientists and science experts from each of the diverse disciplines in the Planetary Science community, including Atmospheres, Geosciences, Cartography and Imaging Sciences, Navigational and Ancillary Information, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies. The model was designed to be extensible beyond the Planetary Science community, for example there are overlaps between certain PDS disciplines and the Heliophysics and Astrophysics disciplines. "Interoperability" can apply to many aspects of both the developer and the end-user experience, for example agency-to-agency, semantic level, and application level interoperability. We define these types of interoperability and focus on semantic level interoperability, the type of interoperability most directly enabled by an information model.

  12. The Nation's Report Card: Science in Action--Hands-On and Interactive Computer Tasks from the 2009 Science Assessment. NCES 2012-468

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2012

    2012-01-01

    Science education is not just about learning facts in a classroom--it's about doing activities where students put their understanding of science principles into action. That's why two unique types of activity-based tasks were administered as part of the 2009 National Assessment of Educational Progress (NAEP) science assessment. In addition to the…

  13. Microgravity Program strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The all encompassing objective of the NASA Microgravity Program is the use of space as a lab to conduct research and development. The on-orbit microgravity environment, with its substantially reduced buoyancy forces, hydrostatic pressures, and sedimentation, enables the conduction of scientific studies not possible on Earth. This environment allows processes to be isolated and controlled with an accuracy that cannot be obtained in the terrestrial environment. The Microgravity Science and Applications Div. has defined three major science categories in order to develop a program structure: fundamental science, including the study of the behavior of fluids, transport phenomena, condensed matter physics, and combustion science; materials science, including electronic and photonic materials, metals and alloys, and glasses and ceramics; and biotechnology, focusing on macromolecular crystal growth as well as cell and molecular science. Experiments in these areas seek to provide observations of complex phenomena and measurements of physical attributes with a precision that is enabled by the microgravity environment.

  14. Science and Literacy: Incorporating Vocabulary, Reading Comprehension, Research Methods, and Writing into the Science Curriculum

    NASA Astrophysics Data System (ADS)

    Nieser, K.; Carlson, C.; Bering, E. A.; Slagle, E.

    2012-12-01

    Part of preparing the next generation of STEM researchers requires arming these students with the requisite literacy and research skills they will need. In a unique collaboration, the departments of Physics (ECE) and Psychology at the University of Houston have teamed up with NASA in a grant to develop a supplemental curriculum for elementary (G3-5) and middle school (G6-8) science teachers called Mars Rover. During this six week project, students work in teams to research the solar system, the planet Mars, design a research mission to Mars, and create a model Mars Rover to carry out this mission. Targeted Language Arts skills are embedded in each lesson so that students acquire the requisite academic vocabulary and research skills to enable them to successfully design their Mars Rover. Students learn academic and scientific vocabulary using scientifically based reading research. They receive direct instruction in research techniques, note-taking, summarizing, writing and other important language skills. The interdisciplinary collaboration empowers students as readers, writers and scientists. After the curriculum is completed, a culminating Mars Rover event is held at a local university, bringing students teams in contact with real-life scientists who critique their work, ask questions, and generate excite about STEM careers. Students have the opportunity to showcase their Mars Rover and to orally demonstrate their knowledge of Mars. Students discover the excitement of scientific research, STEM careers, important research and writing tools in a practical, real-life setting.

  15. Relay Support for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.

  16. A Mars Micro-Meteorological Station Mission

    NASA Technical Reports Server (NTRS)

    Merrihew, Steven C.; Haberle, Robert; Lemke, Lawrence G.

    1995-01-01

    The Mars Micro-Meteorological Station (Micro-Met) Mission is designed to provide the global surface pressure measurements required to help characterize the martian general circulation and climate system. Measurements of surface pressure distributed both spatially and temporally, coupled with simultaneous measurements from orbit, will enable the determination of the general circulation, structure and driving factors of the martian atmosphere as well as the seasonal CO2 cycle. The influence of these atmospheric factors will in turn provide insight into the overall martian climate system. With the science objective defined as the long term (at least one Mars year) globally distributed measurement of surface atmospheric pressure, a straightforward, near term and low cost network mission has been designed. The Micro-Met mission utilizes a unique silicon micro-machined pressure sensor coupled with a robust and lightweight surface station to deliver to Mars 16 Micro-Met stations via a Med-Lite launch vehicle. The battery powered Micro-Met surface stations are designed to autonomously measure, record and transmit the science data via a UHF relay satellite. Entry, descent and landing is provided by an aeroshell with a new lightweight ceramic thermal protection system, a parachute and an impact absorbing structure. The robust lander is capable of surviving the landing loads imposed by the high altitude landing sites required in a global network. By trading the ability to make many measurements at a single site for the ability to make a single measurement at several sites, the Micro-Met mission design satisfies the requirement for truly global meteorological science.

  17. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    ERIC Educational Resources Information Center

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  18. Students' Attitudes toward Science as Predictors of Gains on Student Content Knowledge: Benefits of an After-School Program

    ERIC Educational Resources Information Center

    Newell, Alana D.; Zientek, Linda R.; Tharp, Barbara Z.; Vogt, Gregory L.; Moreno, Nancy P.

    2015-01-01

    High-quality after-school programs devoted to science have the potential to enhance students' science knowledge and attitudes, which may impact their decisions about pursuing science-related careers. Because of the unique nature of these informal learning environments, an understanding of the relationships among aspects of students' content…

  19. Science Practical Work Instructional Technologies and Open Distance Learning in Science Teacher Training: A Case Study in Zimbabwe

    ERIC Educational Resources Information Center

    Bhukuvhani, Crispen; Mupa, Mathew; Mhishi, Misheck; Dziva, Daimond

    2012-01-01

    The practical work component offers unique challenges for university science courses. This is even more pertinent in an Open and Distance Learning (ODL) environment like the Bindura University of Science Education's Virtual and Open Distance Learning (VODL) programme. Effective ODL education should be flexible enough to accommodate science…

  20. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth orbit, including dedicated science missions and lunar support/cargo vehicles; earth/moon transit; lunar in-situ operations; and other missions within approximately 2 million km of earth (e.g., at the sun/earth libration points). Given that the NER is an evolution of TDRSS, one element of this NASA-wide architecture development activity is a trade study of future NER architecture candidates. The present paper focuses on trade study aspects associated with the NER, highlights study elements, and provides representative interim results.

  1. The Mysteries of Diamonds: Bizarre History, Amazing Properties, Unique Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Harris

    2008-06-24

    Diamonds have been a prized material throughout history. They are scarce and beautiful, wars have been fought over them, and they remain today a symbol of wealth and power. Diamonds also have exceptional physical properties which can lead to unique applications in science. There are now techniques to artificially synthesize diamonds of extraordinarily high quality. In this talk, Professor Kagan will discuss the history of diamonds, their bizarre properties, and their manufacture and use for 21st century science.

  2. Quantum Opportunities and Challenges for Fundamental Sciences in Space

    NASA Technical Reports Server (NTRS)

    Yu, Nan

    2012-01-01

    Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.

  3. Damsel: A Data Model Storage Library for Exascale Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koziol, Quincey

    The goal of this project is to enable exascale computational science applications to interact conveniently and efficiently with storage through abstractions that match their data models. We will accomplish this through three major activities: (1) identifying major data model motifs in computational science applications and developing representative benchmarks; (2) developing a data model storage library, called Damsel, that supports these motifs, provides efficient storage data layouts, incorporates optimizations to enable exascale operation, and is tolerant to failures; and (3) productizing Damsel and working with computational scientists to encourage adoption of this library by the scientific community.

  4. Overview and Recent Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.

  5. Recognizing Excellence: Pinging--Sound at Work

    ERIC Educational Resources Information Center

    Lindquist, William; Forsberg, Britt

    2014-01-01

    One author shares the unique opportunity to be immersed in the science of "sound at work" through participation in NOAA's (National Oceanic and Atmospheric Administration) Teacher at Sea Program. A third- through fifth-grade learning outcome within the Nature of Science section of the "Next Generation Science Standards"…

  6. Crowdsourcing Scientific Work: A Comparative Study of Technologies, Processes, and Outcomes in Citizen Science

    ERIC Educational Resources Information Center

    Wiggins, Andrea

    2012-01-01

    Citizen science projects involve the public with scientists in collaborative research. Information and communication technologies for citizen science can enable massive virtual collaborations based on voluntary contributions by diverse participants. As the popularity of citizen science increases, scientists need a more thorough understanding of…

  7. Quantum Sensors at the Intersections of Fundamental Science, Quantum Information Science & Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, Swapan; Falcone, Roger; Walsworth, Ronald

    Over the last twenty years, there has been a boom in quantum science - i.e., the development and exploitation of quantum systems to enable qualitatively and quantitatively new capabilities, with high-impact applications and fundamental insights that can range across all areas of science and technology.

  8. Bangladeshi Science Teachers' Perspectives of Scientific Literacy and Teaching Practices

    ERIC Educational Resources Information Center

    Sarkar, Mahbub; Corrigan, Deborah

    2014-01-01

    In line with a current global trend, junior secondary science education in Bangladesh aims to provide science education for all students to enable them to use their science learning in everyday life. This aim is consistent with the call for scientific literacy, which argues for engaging students with science in everyday life. This paper…

  9. On-Orbit Planetary Science Laboratories for Simulating Surface Conditions of Planets and Small Bodies

    NASA Astrophysics Data System (ADS)

    Thangavelautham, J.; Asphaug, E.; Schwartz, S.

    2017-02-01

    Our work has identified the use of on-orbit centrifuge science laboratories as a key enabler towards low-cost, fast-track physical simulation of off-world environments for future planetary science missions.

  10. Aliphatic Imines in Titanium-Mediated Reductive Cross-Coupling: Unique Reactivity of Ti(Oi-Pr)4/n-BuLi

    PubMed Central

    Tarselli, Michael A.; Micalizio, Glenn C.

    2009-01-01

    A procedure for the coupling of aliphatic imines with allylic and allenic alkoxides is described. The success of these studies was enabled by a unique reactivity profile of Ti(IV) isopropoxide/n-BuLi compared to well-known Ti(IV) isopropoxide/R-MgX systems. PMID:19810765

  11. Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation

    NASA Technical Reports Server (NTRS)

    McComas, D. J.; Alexander, N.; Angold, N.; Bale, S.; Beebe, C.; Birdwell, B.; Boyle, M.; Burgum, J. M.; Burnham, J. A.; Christian, E. R.; hide

    2014-01-01

    The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun's surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1) Origins-defining the seed populations and physical conditions necessary for energetic particle acceleration; (2) Acceleration-determining the roles of shocks, reconnection, waves, and turbulence in accelerating energetic particles; and (3) Transport-revealing how energetic particles propagate from the corona out into the heliosphere. The two ISIS Energetic Particle Instruments measure lower (EPI-Lo) and higher (EPI-Hi) energy particles. EPI-Lo measures ions and ion composition from approx. 20 keV/nucleon-15 MeV total energy and electrons from approx.25-1000 keV. EPI-Hi measures ions from approx. 1-200 MeV/nucleon and electrons from approx. 0.5-6 MeV. EPI-Lo comprises 80 tiny apertures with fields-of-view (FOVs) that sample over nearly a complete hemisphere, while EPI-Hi combines three telescopes that together provide five large-FOV apertures. ISIS observes continuously inside of 0.25 AU with a high data collection rate and burst data (EPI-Lo) coordinated with the rest of the SPP payload; outside of 0.25 AU, ISIS runs in low-rate science mode whenever feasible to capture as complete a record as possible of the solar energetic particle environment and provide calibration and continuity for measurements closer in to the Sun. The ISIS Science Operations Center plans and executes commanding, receives and analyzes all ISIS data, and coordinates science observations and analyses with the rest of the SPP science investigations. Together, ISIS' unique observations on SPP will enable the discovery, untangling, and understanding of the important physical processes that govern energetic particles in the innermost regions of our heliosphere, for the first time. This paper summarizes the ISIS investigation at the time of the SPP mission Preliminary Design Review in January 2014.

  12. Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Alexander, N.; Angold, N.; Bale, S.; Beebe, C.; Birdwell, B.; Boyle, M.; Burgum, J. M.; Burnham, J. A.; Christian, E. R.; Cook, W. R.; Cooper, S. A.; Cummings, A. C.; Davis, A. J.; Desai, M. I.; Dickinson, J.; Dirks, G.; Do, D. H.; Fox, N.; Giacalone, J.; Gold, R. E.; Gurnee, R. S.; Hayes, J. R.; Hill, M. E.; Kasper, J. C.; Kecman, B.; Klemic, J.; Krimigis, S. M.; Labrador, A. W.; Layman, R. S.; Leske, R. A.; Livi, S.; Matthaeus, W. H.; McNutt, R. L.; Mewaldt, R. A.; Mitchell, D. G.; Nelson, K. S.; Parker, C.; Rankin, J. S.; Roelof, E. C.; Schwadron, N. A.; Seifert, H.; Shuman, S.; Stokes, M. R.; Stone, E. C.; Vandegriff, J. D.; Velli, M.; von Rosenvinge, T. T.; Weidner, S. E.; Wiedenbeck, M. E.; Wilson, P.

    2016-12-01

    The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun's surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1) Origins—defining the seed populations and physical conditions necessary for energetic particle acceleration; (2) Acceleration—determining the roles of shocks, reconnection, waves, and turbulence in accelerating energetic particles; and (3) Transport—revealing how energetic particles propagate from the corona out into the heliosphere. The two ISIS Energetic Particle Instruments measure lower (EPI-Lo) and higher (EPI-Hi) energy particles. EPI-Lo measures ions and ion composition from ˜20 keV/nucleon-15 MeV total energy and electrons from ˜25-1000 keV. EPI-Hi measures ions from ˜1-200 MeV/nucleon and electrons from ˜0.5-6 MeV. EPI-Lo comprises 80 tiny apertures with fields-of-view (FOVs) that sample over nearly a complete hemisphere, while EPI-Hi combines three telescopes that together provide five large-FOV apertures. ISIS observes continuously inside of 0.25 AU with a high data collection rate and burst data (EPI-Lo) coordinated with the rest of the SPP payload; outside of 0.25 AU, ISIS runs in low-rate science mode whenever feasible to capture as complete a record as possible of the solar energetic particle environment and provide calibration and continuity for measurements closer in to the Sun. The ISIS Science Operations Center plans and executes commanding, receives and analyzes all ISIS data, and coordinates science observations and analyses with the rest of the SPP science investigations. Together, ISIS' unique observations on SPP will enable the discovery, untangling, and understanding of the important physical processes that govern energetic particles in the innermost regions of our heliosphere, for the first time. This paper summarizes the ISIS investigation at the time of the SPP mission Preliminary Design Review in January 2014.

  13. Citizen Science for public health.

    PubMed

    Den Broeder, Lea; Devilee, Jeroen; Van Oers, Hans; Schuit, A Jantine; Wagemakers, Annemarie

    2018-06-01

    Community engagement in public health policy is easier said than done. One reason is that public health policy is produced in a complex process resulting in policies that may appear not to link up to citizen perspectives. We therefore address the central question as to whether citizen engagement in knowledge production could enable inclusive health policy making. Building on non-health work fields, we describe different types of citizen engagement in scientific research, or 'Citizen Science'. We describe the challenges that Citizen Science poses for public health, and how these could be addressed. Despite these challenges, we expect that Citizen Science or similar approaches such as participatory action research and 'popular epidemiology' may yield better knowledge, empowered communities, and improved community health. We provide a draft framework to enable evaluation of Citizen Science in practice, consisting of a descriptive typology of different kinds of Citizen Science and a causal framework that shows how Citizen Science in public health might benefit both the knowledge produced as well as the 'Citizen Scientists' as active participants.

  14. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  15. Structured Light-Matter Interactions Enabled By Novel Photonic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litchinitser, Natalia; Feng, Liang

    The synergy of complex materials and complex light is expected to add a new dimension to the science of light and its applications [1]. The goal of this program is to investigate novel phenomena emerging at the interface of these two branches of modern optics. While metamaterials research was largely focused on relatively “simple” linearly or circularly polarized light propagation in “complex” nanostructured, carefully designed materials with properties not found in nature, many singular optics studies addressed “complex” structured light transmission in “simple” homogeneous, isotropic, nondispersive transparent media, where both spin and orbital angular momentum are independently conserved. However, ifmore » both light and medium are complex so that structured light interacts with a metamaterial whose optical materials properties can be designed at will, the spin or angular momentum can change, which leads to spin-orbit interaction and many novel optical phenomena that will be studied in the proposed project. Indeed, metamaterials enable unprecedented control over light propagation, opening new avenues for using spin and quantum optical phenomena, and design flexibility facilitating new linear and nonlinear optical properties and functionalities, including negative index of refraction, magnetism at optical frequencies, giant optical activity, subwavelength imaging, cloaking, dispersion engineering, and unique phase-matching conditions for nonlinear optical interactions. In this research program we focused on structured light-matter interactions in complex media with three particularly remarkable properties that were enabled only with the emergence of metamaterials: extreme anisotropy, extreme material parameters, and magneto-electric coupling–bi-anisotropy and chirality.« less

  16. Croatian Medical Journal citation score in Web of Science, Scopus, and Google Scholar.

    PubMed

    Sember, Marijan; Utrobicić, Ana; Petrak, Jelka

    2010-04-01

    To analyze the 2007 citation count of articles published by the Croatian Medical Journal in 2005-2006 based on data from the Web of Science, Scopus, and Google Scholar. Web of Science and Scopus were searched for the articles published in 2005-2006. As all articles returned by Scopus were included in Web of Science, the latter list was the sample for further analysis. Total citation counts for each article on the list were retrieved from Web of Science, Scopus, and Google Scholar. The overlap and unique citations were compared and analyzed. Proportions were compared using chi(2)-test. Google Scholar returned the greatest proportion of articles with citations (45%), followed by Scopus (42%), and Web of Science (38%). Almost a half (49%) of articles had no citations and 11% had an equal number of identical citations in all 3 databases. The greatest overlap was found between Web of Science and Scopus (54%), followed by Scopus and Google Scholar (51%), and Web of Science and Google Scholar (44%). The greatest number of unique citations was found by Google Scholar (n=86). The majority of these citations (64%) came from journals, followed by books and PhD theses. Approximately 55% of all citing documents were full-text resources in open access. The language of citing documents was mostly English, but as many as 25 citing documents (29%) were in Chinese. Google Scholar shares a total of 42% citations returned by two others, more influential, bibliographic resources. The list of unique citations in Google Scholar is predominantly journal based, but these journals are mainly of local character. Citations received by internationally recognized medical journals are crucial for increasing the visibility of small medical journals but Google Scholar may serve as an alternative bibliometric tool for an orientational citation insight.

  17. Nanometre-scale thermometry in a living cell

    NASA Astrophysics Data System (ADS)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2013-08-01

    Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz-1/2) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.

  18. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required DeltaV to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated DeltaV's are calculated to maintain the formation in the presence of perturbations.

  19. WFIRST: Science from the Guest Investigator and Parallel Observation Programs

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Nataf, David; Furlanetto, Steve; Milam, Stephanie; Robertson, Brant; Williams, Ben; Teplitz, Harry; Moustakas, Leonidas; Geha, Marla; Gilbert, Karoline; Dickinson, Mark; Scolnic, Daniel; Ravindranath, Swara; Strolger, Louis; Peek, Joshua; Marc Postman

    2018-01-01

    The Wide Field InfraRed Survey Telescope (WFIRST) mission will provide an extremely rich archival dataset that will enable a broad range of scientific investigations beyond the initial objectives of the proposed key survey programs. The scientific impact of WFIRST will thus be significantly expanded by a robust Guest Investigator (GI) archival research program. We will present examples of GI research opportunities ranging from studies of the properties of a variety of Solar System objects, surveys of the outer Milky Way halo, comprehensive studies of cluster galaxies, to unique and new constraints on the epoch of cosmic re-ionization and the assembly of galaxies in the early universe.WFIRST will also support the acquisition of deep wide-field imaging and slitless spectroscopic data obtained in parallel during campaigns with the coronagraphic instrument (CGI). These parallel wide-field imager (WFI) datasets can provide deep imaging data covering several square degrees at no impact to the scheduling of the CGI program. A competitively selected program of well-designed parallel WFI observation programs will, like the GI science above, maximize the overall scientific impact of WFIRST. We will give two examples of parallel observations that could be conducted during a proposed CGI program centered on a dozen nearby stars.

  20. Observation Platform for Dynamic Biomedical and Biotechnology Experiments Using the International Space Station (ISS) Light Microscopy Module (LMM)

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.

  1. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.

  2. Flight Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    Leonardo-BRDF (Bidirectional Reflectance Distribution Function) is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required Delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated Delta-V's are calculated to maintain the formation in the presence of perturbations.

  3. JunoCam Images of Jupiter: Science from an Outreach Experiment

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Orton, G. S.; Caplinger, M. A.; Ravine, M. A.; Rogers, J.; Eichstädt, G.; Jensen, E.; Bolton, S. J.; Momary, T.; Ingersoll, A. P.

    2017-12-01

    The Juno mission to Jupiter carries a visible imager on its payload primarily for outreach, and also very useful for jovian atmospheric science. Lacking a formal imaging science team, members of the public have volunteered to process JunoCam images. Lightly processed and raw JunoCam data are posted on the JunoCam webpage at https://missionjuno.swri.edu/junocam/processing. Citizen scientists download these images and upload their processed contributions. JunoCam images through broadband red, green and blue filters and a narrowband methane filter centered at 889 nm mounted directly on the detector. JunoCam is a push-frame imager with a 58 deg wide field of view covering a 1600 pixel width, and builds the second dimension of the image as the spacecraft rotates. This design enables capture of the entire pole of Jupiter in a single image at low emission angle when Juno is 1 hour from perijove (closest approach). At perijove the wide field of view images are high-resolution while still capturing entire storms, e.g. the Great Red Spot. Juno's unique polar orbit yields polar perspectives unavailable to earth-based observers or most previous spacecraft. The first discovery was that the familiar belt-zone structure gives way to more chaotic storms, with cyclones grouped around both the north and south poles [1, 2]. Recent time-lapse sequences have enabled measurement of the rotation rates and wind speeds of these circumpolar cyclones [3]. Other topics are being investigated with substantial, in many cases essential, contributions from citizen scientists. These include correlating the high resolution JunoCam images to storms and disruptions of the belts and zones tracked throughout the historical record. A phase function for Jupiter is being developed empirically to allow image brightness to be flattened from the subsolar point to the terminator. We are studying high hazes and the stratigraphy of the upper atmosphere, utilizing the methane filter, structures illuminated beyond the terminator, and clouds casting shadows. Numerous high altitude clouds have been detected and we are investigating whether they are the jovian equivalent of squall lines. [1] Bolton, S. et al. (2017) Science 356:821; [2] Orton, G. et al. (2017) GRL 44:4599; [3] Adriani, A. et al. (2017) submitted to Nature.

  4. Science Missions Enabled by the Ares V

    NASA Technical Reports Server (NTRS)

    Worden, Simon Peter; Weiler, Edward J.

    2008-01-01

    NASA's planned heavy-lift Ares V rocket is a centerpiece of U.S. Space Exploration Policy. With approximately 30% more capacity to Trans-Lunar Injection (TLI) than the Saturn V, Ares V could also enable additional science and exploration missions currently unachievable or extremely unworkable under current launch vehicle architectures. During the spring and summer of 2008, NASA held two workshops dedicated to the discussion of these new mission concepts for the Ares V rocket. The first workshop dealt with astronomy and astrophysics, and the second dealt primarily with planetary science and exploration, but did touch on Earth science and heliophysics. We present here the summary results and outcomes of these meetings, including a discussion of specific mission concepts and ideas, as well as suggestions on design for the Ares V fairing and flight configurations that improve science return.

  5. Politics of prevention: The emergence of prevention science.

    PubMed

    Roumeliotis, Filip

    2015-08-01

    This article critically examines the political dimension of prevention science by asking how it constructs the problems for which prevention is seen as the solution and how it enables the monitoring and control of these problems. It also seeks to examine how prevention science has established a sphere for legitimate political deliberation and which kinds of statements are accepted as legitimate within this sphere. The material consists of 14 publications describing and discussing the goals, concepts, promises and problems of prevention science. The analysis covers the period from 1993 to 2012. The analysis shows that prevention science has established a narrow definition of "prevention", including only interventions aimed at the reduction of risks for clinical disorders. In publications from the U.S. National Institute of Drug Abuse, the principles of prevention science have enabled a commitment to a zero-tolerance policy on drugs. The drug using subject has been constructed as a rational choice actor lacking in skills in exerting self-control in regard to drug use. Prevention science has also enabled the monitoring and control of expertise, risk groups and individuals through specific forms of data gathering. Through the juxtaposition of the concepts of "objectivity" and "morality", prevention science has constituted a principle of delineation, disqualifying statements not adhering to the principles of prevention science from the political field, rendering ethical and conflictual dimensions of problem representations invisible. The valorisation of scientific accounts of drugs has acted to naturalise specific political ideals. It simultaneously marginalises the public from the public policy process, giving precedence to experts who are able to provide information that policy-makers are demanding. Alternative accounts, such as those based on marginalisation, poverty or discrimination are silenced within prevention science. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Image Detective 2.0: Engaging Citizen Scientists with NASA Astronaut Photography

    NASA Technical Reports Server (NTRS)

    Higgins, Melissa; Graff, Paige Valderrama; Heydorn, James; Jagge, Amy; Vanderbloemen, Lisa; Stefanov, William; Runco, Susan; Lehan, Cory; Gay, Pamela

    2017-01-01

    Image Detective 2.0 engages citizen scientists with NASA astronaut photography of the Earth obtained by crew members on the International Space Station (ISS). Engaged citizen scientists are helping to build a more comprehensive and searchable database by geolocating this imagery and contributing to new imagery collections. Image Detective 2.0 is the newest addition to the suite of citizen scientist projects available through CosmoQuest, an effort led by the Astronomical Society of the Pacific (ASP) and supported through a NASA Science Mission Directorate Cooperative Agreement Notice award. CosmoQuest hosts a number of citizen science projects enabling individuals from around the world to engage in authentic NASA science. Image Detective 2.0, an effort that focuses on imagery acquired by astronauts on the International Space Station, builds on work initiated in 2012 by scientists and education specialists at the NASA Johnson Space Center. Through the many lessons learned, Image Detective 2.0 enhances the original project by offering new and improved options for participation. Existing users, as well as new Image Detective participants joining through the CosmoQuest platform, gain first-hand experience working with astronaut photography and become more engaged with this valuable data being obtained from the International Space Station. Citizens around the world are captivated by astronauts living and working in space. As crew members have a unique vantage point from which to view our Earth, the Crew Earth Observations (CEO) online database, referred to as the Gateway to Astronaut Photography of Earth (https://eol.jsc.nasa.gov/), provides a means for crew members to share their unique views of our home planet from the ISS with the scientific community and the public. Astronaut photography supports multiple uses including scientific investigations, visualizations, education, and outreach. These astronaut images record how the planet is changing over time, from human-made changes like urban growth and agriculture, to natural features and landforms such as tropical cyclones, aurora, coastlines, volcanoes and more. This imagery provides researchers on Earth with data to understand the planet from the perspective of the ISS, and is a useful complement to other remotely sensed datasets collected from robotic satellite platforms.

  7. Machine Learning Approaches to Increasing Value of Spaceflight Omics Databases

    NASA Technical Reports Server (NTRS)

    Gentry, Diana

    2017-01-01

    The number of spaceflight bioscience mission opportunities is too small to allow all relevant biological and environmental parameters to be experimentally identified. Simulated spaceflight experiments in ground-based facilities (GBFs), such as clinostats, are each suitable only for particular investigations -- a rotating-wall vessel may be 'simulated microgravity' for cell differentiation (hours), but not DNA repair (seconds) -- and introduce confounding stimuli, such as motor vibration and fluid shear effects. This uncertainty over which biological mechanisms respond to a given form of simulated space radiation or gravity, as well as its side effects, limits our ability to baseline spaceflight data and validate mission science. Machine learning techniques autonomously identify relevant and interdependent factors in a data set given the set of desired metrics to be evaluated: to automatically identify related studies, compare data from related studies, or determine linkages between types of data in the same study. System-of-systems (SoS) machine learning models have the ability to deal with both sparse and heterogeneous data, such as that provided by the small and diverse number of space biosciences flight missions; however, they require appropriate user-defined metrics for any given data set. Although machine learning in bioinformatics is rapidly expanding, the need to combine spaceflight/GBF mission parameters with omics data is unique. This work characterizes the basic requirements for implementing the SoS approach through the System Map (SM) technique, a composite of a dynamic Bayesian network and Gaussian mixture model, in real-world repositories such as the GeneLab Data System and Life Sciences Data Archive. The three primary steps are metadata management for experimental description using open-source ontologies, defining similarity and consistency metrics, and generating testing and validation data sets. Such approaches to spaceflight and GBF omics data may soon enable unique insight into which measured phenomena correlate to biological mechanisms that are truly affected by spaceflight conditions; which are most likely to be confounded by other variables; and which are insufficiently characterized, significantly increasing existing and future science return from ISS and spaceflight missions.

  8. The Stocker AstroScience Center at Florida International University

    NASA Astrophysics Data System (ADS)

    Webb, James R.

    2014-01-01

    The new Stocker AstroScience Center located on the MMC campus at Florida International University in Miami Florida represents a unique facility for STEM education that arose from a combination of private, State and university funding. The building, completed in the fall of 2013, contains some unique spaces designed not only to educate, but also to inspire students interested in science and space exploration. The observatory consists of a 4-story building (3 floors) with a 24” ACE automated telescope in an Ash dome, and an observing platform above surrounding buildings. Some of the unique features of the observatory include an entrance/exhibition hall with a 6-ft glass tile floor mural linking the Florida climate to space travel, a state-of-the art telescope control that looks like a starship bridge, and displays such as “Music from the universe”. The observatory will also be the focus of our extensive public outreach program that is entering its 20 year.

  9. Astronomy Outreach for Large and Unique Audiences

    NASA Astrophysics Data System (ADS)

    Lubowich, D.; Sparks, R. T.; Pompea, S. M.; Kendall, J. S.; Dugan, C.

    2013-04-01

    In this session, we discuss different approaches to reaching large audiences. In addition to star parties and astronomy events, the audiences for some of the events include music concerts or festivals, sick children and their families, minority communities, American Indian reservations, and tourist sites such as the National Mall. The goal is to bring science directly to the public—to people who attend astronomy events and to people who do not come to star parties, science museums, or science festivals. These programs allow the entire community to participate in astronomy activities to enhance the public appreciation of science. These programs attract large enthusiastic crowds often with young children participating in these family learning experiences. The public will become more informed, educated, and inspired about astronomy and will also be provided with information that will allow them to continue to learn after this outreach activity. Large and unique audiences often have common problems, and their solutions and the lessons learned will be presented. Interaction with the participants in this session will provide important community feedback used to improve astronomy outreach for large and unique audiences. New ways to expand astronomy outreach to new large audiences will be discussed.

  10. Theory-Guided Technology in Computer Science.

    ERIC Educational Resources Information Center

    Ben-Ari, Mordechai

    2001-01-01

    Examines the history of major achievements in computer science as portrayed by winners of the prestigious Turing award and identifies a possibly unique activity called Theory-Guided Technology (TGT). Researchers develop TGT by using theoretical results to create practical technology. Discusses reasons why TGT is practical in computer science and…

  11. Utilizing Science Outreach to Foster Professional Skills Development in University Students

    ERIC Educational Resources Information Center

    Eng, Edward; Febria, Catherine

    2011-01-01

    Students seek unique experiences to obtain and enhance professional development skills and to prepare for future careers. Through the Let's Talk Science Partnership Program (LTSPP), a voluntary science outreach program at University of Toronto Scarborough, students are given the opportunity to continually improve on skills which include: the…

  12. Short-Form Science

    ERIC Educational Resources Information Center

    Murphy, Beth; Hedwall, Melissa; Dirks, Andrew; Stretch, Elizabeth

    2017-01-01

    Reading provides a unique window into the history and nature of science and the norms of scientific communication and supports students in developing critical-reading skills in engaging ways. Effective use of reading promotes a spirit of inquiry and an understanding of science concepts while also addressing expectations of the Common Core State…

  13. Translating Current Science into Materials for High School via a Scientist-Teacher Partnership

    ERIC Educational Resources Information Center

    Brown, Julie C.; Bokor, Julie R.; Crippen, Kent J.; Koroly, Mary Jo

    2014-01-01

    Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers' practices by supporting them in the…

  14. Science, Technology and Innovation in Uganda

    ERIC Educational Resources Information Center

    Brar, Sukhdeep; Farley, Sara E.; Hawkins, Robert; Wagner, Caroline S.

    2010-01-01

    Science, Technology and Innovation in Uganda is part of the World Bank Studies series. These papers are published to communicate the results of the Bank's ongoing research and to stimulate public discussion. This study presents a unique methodology to view science, technology and innovation (STI) in developing countries. The study provides a set…

  15. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  16. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE PAGES

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  17. Discovery Bottles: A Unique Inexpensive Tool for the K-2 Science Classroom

    ERIC Educational Resources Information Center

    Watson, Sandy

    2008-01-01

    Discover discovery bottles! These wide-mouth plastic containers of any size filled with objects of different kinds can be terrific tools for science explorations and a great way to cultivate science minds in a K-2 science classroom. In addition, the author has found them to be a useful, inexpensive, and engaging way to help students develop skills…

  18. A Computational Study of Commonsense Science: An Exploration in the Automated Analysis of Clinical Interview Data

    ERIC Educational Resources Information Center

    Sherin, Bruce

    2013-01-01

    A large body of research in the learning sciences has focused on students' commonsense science knowledge--the everyday knowledge of the natural world that is gained outside of formal instruction. Although researchers studying commonsense science have employed a variety of methods, 1-on-1 clinical interviews have played a unique role. The data…

  19. Assessing the Life Science Knowledge of Students and Teachers Represented by the K-8 National Science Standards

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Coyle, Harold; Cook Smith, Nancy; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test…

  20. Earth Exploration Toolbook Workshops: Helping Teachers and Students Analyze Web-based Scientific Data

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.; Ledley, T.; Dahlman, L.; Haddad, N.

    2007-12-01

    One of the challenges faced by Earth science teachers, particularly in K-12 settings, is that of connecting scientific research to classroom experiences. Helping teachers and students analyze Web-based scientific data is one way to bring scientific research to the classroom. The Earth Exploration Toolbook (EET) was developed as an online resource to accomplish precisely that. The EET consists of chapters containing step-by-step instructions for accessing Web-based scientific data and for using a software analysis tool to explore issues or concepts in science, technology, and mathematics. For example, in one EET chapter, users download Earthquake data from the USGS and bring it into a geographic information system (GIS), analyzing factors affecting the distribution of earthquakes. The goal of the EET Workshops project is to provide professional development that enables teachers to incorporate Web-based scientific data and analysis tools in ways that meet their curricular needs. In the EET Workshops project, Earth science teachers participate in a pair of workshops that are conducted in a combined teleconference and Web-conference format. In the first workshop, the EET Data Analysis Workshop, participants are introduced to the National Science Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). They also walk through an Earth Exploration Toolbook (EET) chapter and discuss ways to use Earth science datasets and tools with their students. In a follow-up second workshop, the EET Implementation Workshop, teachers share how they used these materials in the classroom by describing the projects and activities that they carried out with students. The EET Workshops project offers unique and effective professional development. Participants work at their own Internet-connected computers, and dial into a toll-free group teleconference for step-by-step facilitation and interaction. They also receive support via Elluminate, a Web-conferencing software program. The software allows participants to see the facilitator's computer as the analysis techniques of an EET chapter are demonstrated. If needed, the facilitator can also view individual participant's computers, assisting with technical difficulties. In addition, it enables a large number of end users, often widely distributed, to engage in interactive, real-time instruction. In this presentation, we will describe the elements of an EET Workshop pair, highlighting the capabilities and use of Elluminate. We will share lessons learned through several years of conducting this type of professional development. We will also share findings from survey data gathered from teachers who have participated in our workshops.

  1. It's NOT rocket science: rethinking our metaphors for research in health professions education.

    PubMed

    Regehr, Glenn

    2010-01-01

    The health professional education community is struggling with a number of issues regarding the place and value of research in the field, including: the role of theory-building versus applied research; the relative value of generalisable versus contextually rich, localised solutions, and the relative value of local versus multi-institutional research. In part, these debates are limited by the fact that the health professional education community has become deeply entrenched in the notion of the physical sciences as presenting a model for 'ideal' research. The resulting emphasis on an 'imperative of proof' in our dominant research approaches has translated poorly to the domain of education, with a resulting denigration of the domain as 'soft' and 'unscientific' and a devaluing of knowledge acquired to date. Similarly, our adoption of the physical sciences''imperative of generalisable simplicity' has created difficulties for our ability to represent well the complexity of the social interactions that shape education and learning at a local level. Using references to the scientific paradigms associated with the physical sciences, this paper will reconsider the place of our current goals for education research in the production and evolution of knowledge within our community, and will explore the implications for enhancing the value of research in health professional education. Reorienting education research from its alignment with the imperative of proof to one with an imperative of understanding, and from the imperative of simplicity to an imperative of representing complexity well may enable a shift in research focus away from a problematic search for proofs of simple generalisable solutions to our collective problems, towards the generation of rich understandings of the complex environments in which our collective problems are uniquely embedded.

  2. Engaging Middle School Students with Google Earth Technology to Analyze Ocean Cores as Evidence for Sea Floor Spreading

    NASA Astrophysics Data System (ADS)

    Prouhet, T.; Cook, J.

    2006-12-01

    Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.

  3. Integrating local environmental research into K-12 science classrooms and the value of graduate student-educator partnerships

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Petrik-Finley, R.

    2015-12-01

    Collaboration between researchers and K-12 educators enables an invaluable exchange of teaching philosophies and educational tools. Programs that partner graduate students with K-12 educators serve the dual purpose of training future educators and providing K-12 students with unique opportunities and perspectives. The benefits of this type of partnership include providing students with enhanced educational experiences and positive student-mentor relationships, training STEM graduate students in effective teaching strategies, and providing teachers with a firsthand resource for scientific information and novel educational materials. Many high school students have had little exposure to science beyond the classroom. Frequent interactions with "real-life" scientists can help make science more approachable and is an effective strategy for promoting science as a career. Here I describe my experiences and several lessons designed as a NSK GK-12 fellow. For example, a month-long unit on biogeochemical principles was framed as a crime scene investigation of a fish kill event in Hood Canal, Washington, in which students were given additional pieces of evidence to solve the mystery as they satisfied checkpoints in their understanding of key concepts. The evidence pieces included scientific plots, maps, datasets, and laboratory exercises. A clear benefit of this investigation-style unit is that students were able to learn the material at their individual pace. This structure allowed for a streamlined integration of differentiated materials such as simplified background readings or visual learning aids for struggling students or more detailed news articles and primary literature for more advanced students. Although the NSF GK-12 program has been archived, educators and researchers should pursue new partnerships, leveraging local and state-level STEM outreach programs with the goal of increasing national exposure of the societal benefits of such synergistic activities.

  4. Robotic lunar exploration: Architectures, issues and options

    NASA Astrophysics Data System (ADS)

    Mankins, John C.; Valerani, Ernesto; Della Torre, Alberto

    2007-06-01

    The US ‘vision for space exploration’ articulated at the beginning of 2004 encompasses a broad range of human and robotic space missions, including missions to the Moon, Mars and destinations beyond. It establishes clear goals and objectives, yet sets equally clear budgetary ‘boundaries’ by stating firm priorities, including ‘tough choices’ regarding current major NASA programs. The new vision establishes as policy the goals of pursuing commercial and international collaboration in realizing future space exploration missions. Also, the policy envisions that advances in human and robotic mission technologies will play a key role—both as enabling and as a major public benefit that will result from implementing that vision. In pursuing future international space exploration goals, the exploration of the Moon during the coming decades represents a particularly appealing objective. The Moon provides a unique venue for exploration and discovery—including the science of the Moon (e.g., geological studies), science from the Moon (e.g., astronomical observatories), and science on the Moon (including both basic research, such as biological laboratory science, and applied research and development, such as the use of the Moon as a test bed for later exploration). The Moon may also offer long-term opportunties for utilization—including Earth observing applications and commercial developments. During the coming decade, robotic lunar exploration missions will play a particularly important role, both in their own right and as precursors to later, more ambitious human and robotic exploration and development efforts. The following paper discusses some of the issues and opportunities that may arise in establishing plans for future robotic lunar exploration. Particular emphasis is placed on four specific elements of future robotic infrastructure: Earth Moon in-space transportation systems; lunar orbiters; lunar descent and landing systems; and systems for long-range transport on the Moon.

  5. Tracking interstellar space weather toward timing-array millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; Shannon, R. M.; van Straten, W.; Kaplan, D. L.; Macquart, J.-P.; Kirsten, F.

    2016-07-01

    Recent LIGO detection of milli-Hertz gravitational wave (GW) signals from a black-hole merger event has further reinforced the important role of Pulsar timing array (PTA) experiments in the GW astronomy. PTAs exploit the clock-like stability of fast-spinning millisecond pulsars (MSPs) to make a direct detection of ultra-low frequency (nano-Hertz) gravitational waves. The science enabled by PTAs is thus highly complementary to that possible by LIGO-like detectors. PTAs are also a key science objective for the SKA. PTA efforts over the past few years suggest that interstellar propagation effects on pulsar signals may ultimately limit the detection sensitivity of PTAs unless they are accurately measured and corrected for in timing measurements. Interstellar medium (ISM) effects are much stronger at lower radio frequencies and therefore the MWA presents an exciting and unique opportunity to calibrate interstellar propagation delays. This will potentially lead to enhanced sensitivity and scientific impact of PTA projects. Since our first demonstration of ability to form a coherent (tied-array) beam by reprocessing the recorded VCS data (Bhat et al. 2016), we have successfully ported the full processing chain to the Galaxy cluster of Pawsey and demonstrated the value of high-sensitivity multi-band pulsar observations that are now possible with the MWA. Here we propose further observations of two most promising PTA pulsars that will be nightly objects in the 2016B period. Our main science driver is to characterise the nature of the turbulent ISM through high-quality scintillation and dispersion studies including the investigation of chromatic (frequency-dependent) DMs. Success of these efforts will define the breadth and scope of a more ambitious program in the future, bringing in a new science niche for the MWA and SKA-low.

  6. Enhanced International Space Station Ku-Band Telemetry Service

    NASA Technical Reports Server (NTRS)

    Cecil, Andrew; Pitts, Lee; Welch, Steven; Bryan, Jason

    2014-01-01

    (1) The ISS is diligently working to increase utilization of the resources this unique laboratory provides; (2) Recent upgrades enabled the use of Internet Protocol communication using the CCSDS IP Encapsulation protocol; and (3) The Huntsville Operations Support Center has extended the onboard LAN to payload teams enabling the use of standard IP protocols for payload operations.

  7. The Deep Space Atomic Clock: Ushering in a New Paradigm for Radio Navigation and Science

    NASA Technical Reports Server (NTRS)

    Ely, Todd; Seubert, Jill; Prestage, John; Tjoelker, Robert

    2013-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the on-orbit performance of a high-accuracy, high-stability miniaturized mercury ion atomic clock during a year-long experiment in Low Earth Orbit. DSAC's timing error requirement provides the frequency stability necessary to perform deep space navigation based solely on one-way radiometric tracking data. Compared to a two-way tracking paradigm, DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC also enables fully-autonomous onboard navigation useful for time-sensitive situations. The technology behind the mercury ion atomic clock and a DSAC mission overview are presented. Example deep space applications of DSAC, including navigation of a Mars orbiter and Europa flyby gravity science, highlight the benefits of DSAC-enabled one-way Doppler tracking.

  8. The OptIPuter microscopy demonstrator: enabling science through a transatlantic lightpath

    PubMed Central

    Ellisman, M.; Hutton, T.; Kirkland, A.; Lin, A.; Lin, C.; Molina, T.; Peltier, S.; Singh, R.; Tang, K.; Trefethen, A.E.; Wallom, D.C.H.; Xiong, X.

    2009-01-01

    The OptIPuter microscopy demonstrator project has been designed to enable concurrent and remote usage of world-class electron microscopes located in Oxford and San Diego. The project has constructed a network consisting of microscopes and computational and data resources that are all connected by a dedicated network infrastructure using the UK Lightpath and US Starlight systems. Key science drivers include examples from both materials and biological science. The resulting system is now a permanent link between the Oxford and San Diego microscopy centres. This will form the basis of further projects between the sites and expansion of the types of systems that can be remotely controlled, including optical, as well as electron, microscopy. Other improvements will include the updating of the Microsoft cluster software to the high performance computing (HPC) server 2008, which includes the HPC basic profile implementation that will enable the development of interoperable clients. PMID:19487201

  9. The OptIPuter microscopy demonstrator: enabling science through a transatlantic lightpath.

    PubMed

    Ellisman, M; Hutton, T; Kirkland, A; Lin, A; Lin, C; Molina, T; Peltier, S; Singh, R; Tang, K; Trefethen, A E; Wallom, D C H; Xiong, X

    2009-07-13

    The OptIPuter microscopy demonstrator project has been designed to enable concurrent and remote usage of world-class electron microscopes located in Oxford and San Diego. The project has constructed a network consisting of microscopes and computational and data resources that are all connected by a dedicated network infrastructure using the UK Lightpath and US Starlight systems. Key science drivers include examples from both materials and biological science. The resulting system is now a permanent link between the Oxford and San Diego microscopy centres. This will form the basis of further projects between the sites and expansion of the types of systems that can be remotely controlled, including optical, as well as electron, microscopy. Other improvements will include the updating of the Microsoft cluster software to the high performance computing (HPC) server 2008, which includes the HPC basic profile implementation that will enable the development of interoperable clients.

  10. Pragmatists, positive communicators, and shy enthusiasts: three viewpoints on Web conferencing in health sciences education.

    PubMed

    Valaitis, Ruta; Akhtar-Danesh, Noori; Eva, Kevin; Levinson, Anthony; Wainman, Bruce

    2007-12-31

    Web conferencing is a synchronous technology that allows coordinated online audio and visual interactions with learners logged in to a central server. Recently, its use has grown rapidly in academia, while research on its use has not kept up. Conferencing systems typically facilitate communication and support for multiple presenters in different locations. A paucity of research has evaluated synchronous Web conferencing in health sciences education. McMaster University Faculty of Health Sciences trialed Wimba's Live Classroom Web conferencing technology to support education and curriculum activities with students and faculty. The purpose of this study was to explore faculty, staff, and student perceptions of Web conferencing as a support for teaching and learning in health sciences. The Live Classroom technology provided features including real-time VoIP audio, an interactive whiteboard, text chat, PowerPoint slide sharing, application sharing, and archiving of live conferences to support student education and curriculum activities. Q-methodology was used to identify unique and common viewpoints of participants who had exposure to Web conferencing to support educational applications during the trial evaluation period. This methodology is particularly useful for research on human perceptions and interpersonal relationships to identify groups of participants with different perceptions. It mixes qualitative and quantitative methods. In a Q-methodology study, the goal is to uncover different patterns of thought rather than their numerical distribution among the larger population. A total of 36 people participated in the study, including medical residents (14), nursing graduate students (11), health sciences faculty (9), and health sciences staff (2). Three unique viewpoints were identified: pragmatists (factor 1), positive communicators (factor 2A), and shy enthusiasts (factor 2B). These factors explained 28% (factor 1) and 11% (factor 2) of the total variance, respectively. The majority of respondents were pragmatists (n = 26), who endorsed the value of Web conferencing yet identified that technical and ease-of-use problems could jeopardize its use. Positive communicators (N = 4) enjoyed technology and felt that Web conferencing could facilitate communication in a variety of contexts. Shy enthusiasts (N = 4) were also positive and comfortable with the technology but differed in that they preferred communicating from a distance rather than face-to-face. Common viewpoints were held by all groups: they found Web conferencing to be superior to audio conferencing alone, felt more training would be useful, and had no concerns that Web conferencing would hamper their interactivity with remote participants or that students accustomed to face-to-face learning would not enjoy Web conferencing. Overall, all participants, including pragmatists who were more cautious about the technology, viewed Web conferencing as an enabler, especially when face-to-face meetings were not possible. Adequate technical support and training need to be provided for successful ongoing implementation of Web conferencing.

  11. Within-culture variations of uniqueness: towards an integrative approach based on social status, gender, life contexts, and interpersonal comparison.

    PubMed

    Causse, Elsa; Félonneau, Marie-Line

    2014-01-01

    Research on uniqueness is widely focused on cross-cultural comparisons and tends to postulate a certain form of within-culture homogeneity. Taking the opposite course of this classic posture, we aimed at testing an integrative approach enabling the study of within-culture variations of uniqueness. This approach considered different sources of variation: social status, gender, life contexts, and interpersonal comparison. Four hundred seventy-nine participants completed a measure based on descriptions of "self" and "other." Results showed important variations of uniqueness. An interaction between social status and life contexts revealed the expression of uniqueness in the low-status group. This study highlights the complexity of uniqueness that appears to be related to both cultural ideology and social hierarchy.

  12. Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten

    2014-01-01

    The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…

  13. Do Pre-Service Science Teachers Have Understanding of the Nature of Science?: Explicit-Reflective Approach

    ERIC Educational Resources Information Center

    Örnek, Funda; Turkey, Kocaeli

    2014-01-01

    Current approaches in Science Education attempt to enable students to develop an understanding of the nature of science, develop fundamental scientific concepts, and develop the ability to structure, analyze, reason, and communicate effectively. Students pose, solve, and interpret scientific problems, and eventually set goals and regulate their…

  14. Science Development: An Evaluation Study. Technical Report No. 4.

    ERIC Educational Resources Information Center

    Drew, David E.

    The National Science Foundation initiated the Science Development Program in 1965 in order to enable selected universities to improve the quality of their resources for science education and research. The specific purpose was to develop the competence of the funded institutions in preparing research scholars (as certified by their awarding of the…

  15. Science Literacy: Concepts, Contexts, and Consequences

    ERIC Educational Resources Information Center

    Snow, Catherine E., Ed.; Dibner, Kenne A., Ed.

    2016-01-01

    Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to science--whether using knowledge or creating it--necessitates some level of familiarity with the enterprise and…

  16. Science Opportunities Enabled by NASA's Constellation System: Interim Report

    NASA Astrophysics Data System (ADS)

    Committee On Science Opportunities Enabled By Nasa'S Constellation System, National Research Council

    To begin implementation of the Vision for Space Exploration (recently renamed "United States Space Exploration Policy"), NASA has begun development of new launch vehicles and a human-carrying spacecraft that are collectively called the Constellation System. In November 2007, NASA asked the NRC to evaluate the potential for the Constellation System to enable new space science opportunities. For this interim report, 11 existing "Vision Mission" studies of advanced space science mission concepts inspired by earlier NASA forward-looking studies were evaluated. The focus was to assess the concepts and group them into two categories: more-deserving or less deserving of future study. This report presents a description of the Constellation System and its opportunities for enabling new space science opportunities, and a systematic analysis of the 11 Vision Mission studies. For the final report, the NRC issued a request for information to the relevant communities to obtain ideas for other mission concepts that will be assessed by the study committee, and several issues addressed only briefly in the interim report will be explored more fully.

  17. Reconfigurable Software for Mission Operations

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2014-01-01

    We developed software that provides flexibility to mission organizations through modularity and composability. Modularity enables removal and addition of functionality through the installation of plug-ins. Composability enables users to assemble software from pre-built reusable objects, thus reducing or eliminating the walls associated with traditional application architectures and enabling unique combinations of functionality. We have used composable objects to reduce display build time, create workflows, and build scenarios to test concepts for lunar roving operations. The software is open source, and may be downloaded from https:github.comnasamct.

  18. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankinds understand of the universe and extending human presence into the solar system.

  19. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system.

  20. Digital Object Identifiers for NASA's Earth Observing System Products

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; James, N.

    2012-12-01

    The science community has long recognized the importance of citing data in published literature to encourage replication of experiments and verification of results. Authors that try to cite their data often find that publishers will not accept Internet addresses because they are viewed as transient references, frequently changed by the data provider after the paper is published. Digital Object Identifiers (DOIs) and the DOI® System were created to avoid this problem by providing a unique and persistent identifier scheme and an online resolution service. DOIs and the Internet service provided by the DOI System have emerged as the most acceptable scheme for publishers. NASA's Earth Science Data and Information System (ESDIS) Project, in cooperation with several Earth Observing System (EOS) instrument teams and data providers, has developed methods for assigning DOIs to EOS products. By assigning DOIs we are enabling authors and publishers to find it easier and more compelling to cite EOS data products. DOIs are unique alphanumeric strings that consist of a prefix and suffix. The prefix is assigned by a registration agency for the DOI System. The suffix must be unique, but is otherwise free to be constructed by the publisher, in this case NASA ESDIS Project. A strategy was needed for constructing DOI suffix names that corresponds to each EOS product. Since the onset of the DOI System, publishers have developed conventions to suit their own purposes. These range from random generation to complex, formally controlled vocabularies. An overarching ESDIS goal has been for the DOI names to be attractive for researchers to use in publication applications. Keeping them short and simple is paramount. When adding meaning to the string, it is also important that the name only refer to the data and not to the publisher, so that the DOI can be accepted as persistent even if the data is moved to a new publisher. Most users download EOS product files to their local facilities when they want to use the data for analysis or applications. By imbedding DOIs in the file metadata, users have access to the DOI value long after the product has left the source data center. This enables users to find documentation about the product in the future - long after it has left the contextual environment of the data provider. Existing HDF and netCDF metadata structures have been adapted to accommodate the addition of DOIs. In addition, associated EOSDIS core metadata will also contain a product specific attribute for DOIs. Advances in computer science and Internet brought about a host of data identification schemes designed to solve problems inherent in developing advanced provenance models. Lessons from trying to use early satellite observations in climate studies today point to the importance of providing links in data archives to documentation and publications about the data. Data system engineers link data records to standard product documentation prepared at the time of the mission and archive with the data, but will need to add links to the whole range of information needed to support future research and long-term climate studies. DOIs can serve this need if referenced by developers when preparing technical data and reports, as well as when publishing research results.

  1. The Geospace Dynamics Observatory; a mission of discovery for Geospace

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Paxton, L.; Burch, J. L.; Reardon, P.; Habash Krause, L.; Gallagher, D. L.; Hopkins, R.

    2013-12-01

    Geospace Dynamics Observatory (GDO) takes advantage a repurposed optical system to provide new, unique, and cost-effective insights into the dynamics of geospace. New missions investigating the ITM system and the magnetospheric-ionospheric coupling processes have generally been very focused on specific phenomena, generally limited by the resource constraints and mission size. Exploring options for observing these regions with instrumentation that is 'non-traditional' is not often considered. The possibility of using very large optics to image Geospace has recently come to the fore. This talk will address the science that would be enabled by flying an ultraviolet telescope imaging the ITM region with an aperture greater than 2 meters. A brief overview of the use of this asset in a science-driven mission concept called the Geospace Dynamics Observatory (GDO) will be presented. This talk will explore the optical and technical aspects of the GDO mission and the implementation strategy. Additionally, the case will be made that GDO will address a significant portion of the priority mission science articulated in the recent Solar and Space Physics Decadal Survey, and provide unprecedented discovery opportunities. One of the problems common to all of geospace research is that of resolving temporal and spatial ambiguities: are the observed changes due the fact that the location of the observation has changed or have the state variables changed? This is a particularly vexing problem for low-cost missions that may have to rely on in situ measurements or other low spatial resolution techniques such as GPS radio occultation. The exceptional capabilities of the GDO mission include (1) unprecedented improvement in signal to noise for global-scale imaging of Earth's space environment that enables changes in the Earth's space environment to be resolved with orders of magnitude higher temporal and spatial resolution compared to existing data and other approaches, and (2) unrivaled capability for resolving the temporal evolution, over many days, in local time or latitude with a continuous view of Earth's global-scale evolution while simultaneously capturing the changes at scales smaller than are possible with other methods. GDO can provide the contextual measurements to support other investigations in space or from the ground or provide its own unique insights into the system. This combination of new capabilities found in GDO is a proven path to major scientific advances. A few examples of potential advances include: 1. Unparalleled advances in the connection of the upper atmosphere to the Sun. In the aurora and lower latitudes, extending the duration of uninterrupted images would advance understanding of the transfer of energy from the Sun to the upper atmosphere and the response of the space environment. 2. Advances in the influence of waves and tides on the upper atmosphere. Increasing both the signal to noise and the duration of the observations would reveal contributions that are not identifiable using other approaches. 3. The ability to probe the mechanisms that control the evolution of planetary atmospheres. The vantage point provided by this mission allows the flux of hydrogen (which is tied to the escape of water from a planet) to be mapped globally. It also allows unique observations of changes in the atmospheric structure and their causes.

  2. A Case Study Exploring the Identity of an In-Service Elementary Science Teacher: a Language Teacher First

    NASA Astrophysics Data System (ADS)

    Marco-Bujosa, Lisa; Levy, Abigail Jurist; McNeill, Katherine

    2018-01-01

    Teachers are central to providing high-quality science learning experiences called for in recent reform efforts, as their understanding of science impacts both what they teach and how they teach it. Yet, most elementary teachers do not enter the profession with a particular interest in science or expertise in science teaching. Research also indicates elementary schools present unique barriers that may inhibit science teaching. This case study utilizes the framework of identity to explore how one elementary classroom teacher's understandings of herself as a science specialist were shaped by the bilingual elementary school context as she planned for and provided reform-based science instruction. Utilizing Gee's (2000) sociocultural framework, identity was defined as consisting of four interrelated dimensions that served as analytic frames for examining how this teacher understood her new role through social positioning within her school. Findings describe the ways in which this teacher's identity as a science teacher was influenced by the school context. The case study reveals two important implications for teacher identity. First, collaboration for science teaching is essential for elementary teachers to change their practice. It can be challenging for teachers to form an identity as a science teacher in isolation. In addition, elementary teachers new to science teaching negotiate their emerging science practice with their prior experiences and the school context. For example, in the context of a bilingual school, this teacher adapted the reform-based science curriculum to better meet the unique linguistic needs of her students.

  3. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  4. An Open Science and Reproducible Research Primer for Landscape Ecologists

    EPA Science Inventory

    In recent years many funding agencies, some publishers, and even the United States government have enacted policies that encourage open science and strive for reproducibility; however, the knowledge and skills to implement open science and enable reproducible research are not yet...

  5. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William

    2014-01-01

    ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  6. Overview and Recent Accomplishments of Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.

  7. Success in the workplace: From the voice of (dis)abled to the voice of enabled

    PubMed Central

    2014-01-01

    The intention of this article is twofold; first to encourage a shift in seeing ‘the disabled’ not as people with disabilities but rather as people with unique abilities. Secondly, to explore ways of facilitating gainful employment for these uniquely abled people. The term disability is examined against a backdrop of definitions including the definition postulated by the International Classification of Functioning. In this article, the life experiences of a purposive sample of people with (dis)abilities who have been successful in the world of work are explored. A narrative approach gives voice to their experiences. Quotes from the participants’ responses are used to illustrate the common themes that emerged relating to their experiences. These themes are resonated against a backdrop of relevant literature. If disabled people are enabled to recognize and use their unique abilities, as well as develop various self-determination skills, imagine the endless possibilities which could arise for them and society in general. PMID:28729997

  8. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground-based systems, increase the accessibility and utility of science data, and to enable new observation measurements and information products. We will discuss the ESTO investment strategy for information technology development, the methods used to assess stakeholder needs and technology advancements, and technology partnerships to enhance the infusion for the resulting technology. We also describe specific investments and their potential impact on enabling NASA missions and scientific discovery. [1] "Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey", 2012: National Academies Press, http://www.nap.edu/catalog.php?record_id=13405 [2] "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space", 2010: NASA Tech Memo, http://science.nasa.gov/media/medialibrary/2010/07/01/Climate_Architecture_Final.pdf

  9. Slithering into Summer

    ERIC Educational Resources Information Center

    Scott, Catherine; Matthews, Catherine

    2012-01-01

    The summer provides a unique opportunity for children to further their interests in science, especially science in the out-of-doors. Once school is out for the summer, there is seemingly unlimited time, with no strict curriculum guidelines to follow. For students with a passion for the out-of-doors, summer science camps and school-based summer…

  10. Career-Life Balance for Women of Color: Experiences in Science and Engineering Academia

    ERIC Educational Resources Information Center

    Kachchaf, Rachel; Ko, Lily; Hodari, Apriel; Ong, Maria

    2015-01-01

    The National Science Foundation recently recognized that career-life balance in science, technology, engineering, and mathematics (STEM) may present some unique challenges for women of color compared with their White and/or male counterparts, thus negatively impacting retention and advancement for a minority demographic that has long been…

  11. Civic Science for Public Use: Mind in the Making and Vroom

    ERIC Educational Resources Information Center

    Galinsky, Ellen; Bezos, Jackie; McClelland, Megan; Carlson, Stephanie M.; Zelazo, Philip D.

    2017-01-01

    Mind in the Making and Vroom are partner initiatives that exemplify a unique "civic science" approach to "bringing developmental science into the world." Mind in the Making offers families and professionals working with children 0-8 access to developmental research, by engaging them in an active process of professional…

  12. Using Scientific Enquiry to Make Sense of Global Challenges

    ERIC Educational Resources Information Center

    Hogg, Max

    2010-01-01

    In a context where the science underlying global issues such as climate change often loses out to political opinions and distortions, science teachers have a unique and very important role. Science teachers can use global-learning approaches to encourage learners to develop skills in scientific enquiry and critical analysis of scientific issues.…

  13. Networking Antarctic Research Discoveries to a Science Classroom

    ERIC Educational Resources Information Center

    Podoll, Andrew; Olson, Barry; Montplaisir, Lisa; Schwert, Donald; McVicar, Kim; Comez, Dogan; Martin, William

    2008-01-01

    In 2006, a unique scenario transported eighth-grade Earth science students from the classroom into the cold, dry, pristine surroundings of Antarctica. The mission was to expose the students to hands-on science using satellite telephones, Contact 3.0 software, and some very creative improvisation. In addition, a detailed, well-illustrated blog…

  14. What Can Students Do with the Words They Know? An ELA Teacher Takes on Science

    ERIC Educational Resources Information Center

    Hayden, H. Emily; Eades-Baird, Michelle

    2016-01-01

    The Common Core State Standard and Next Generation Science Standards emphasize language and literacy across disciplines, requiring shifts in teaching practices and inventive approaches. This case study focuses on the instructional decision-making and activities of one uniquely experienced and qualified seventh-grade science teacher, whose English…

  15. Science in action: An interdisciplinary science education program

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines - the core sciences, engineering, and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, business, and academic institutions. An outline of the program is given.

  16. Gender Representation on Journal Editorial Boards in the Mathematical Sciences.

    PubMed

    Topaz, Chad M; Sen, Shilad

    2016-01-01

    We study gender representation on the editorial boards of 435 journals in the mathematical sciences. Women are known to comprise approximately 15% of tenure-stream faculty positions in doctoral-granting mathematical sciences departments in the United States. Compared to this group, we find that 8.9% of the 13067 editorships in our study are held by women. We describe group variations within the editorships by identifying specific journals, subfields, publishers, and countries that significantly exceed or fall short of this average. To enable our study, we develop a semi-automated method for inferring gender that has an estimated accuracy of 97.5%. Our findings provide the first measure of gender distribution on editorial boards in the mathematical sciences, offer insights that suggest future studies in the mathematical sciences, and introduce new methods that enable large-scale studies of gender distribution in other fields.

  17. Gender Representation on Journal Editorial Boards in the Mathematical Sciences

    PubMed Central

    2016-01-01

    We study gender representation on the editorial boards of 435 journals in the mathematical sciences. Women are known to comprise approximately 15% of tenure-stream faculty positions in doctoral-granting mathematical sciences departments in the United States. Compared to this group, we find that 8.9% of the 13067 editorships in our study are held by women. We describe group variations within the editorships by identifying specific journals, subfields, publishers, and countries that significantly exceed or fall short of this average. To enable our study, we develop a semi-automated method for inferring gender that has an estimated accuracy of 97.5%. Our findings provide the first measure of gender distribution on editorial boards in the mathematical sciences, offer insights that suggest future studies in the mathematical sciences, and introduce new methods that enable large-scale studies of gender distribution in other fields. PMID:27536970

  18. Charter for the ARM Climate Research Facility Science Board

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, W

    The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

  19. Livermore Accelerator Source for Radionuclide Science (LASRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Bleuel, Darren; Johnson, Micah

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  20. Montgomery Blair Science, Mathematics and Computer Science Magnet Program: A Successful Model for Meeting the Needs of Highly Able STEM Learners

    ERIC Educational Resources Information Center

    Stein, David; Ostrander, Peter; Lee, G. Maie

    2016-01-01

    The Magnet Program at Montgomery Blair High School is an application-based magnet program utilizing a curriculum focused on science, mathematics, and computer science catering to interested, talented, and eager to learn students in Montgomery County, Maryland. This article identifies and discusses some of the unique aspects of the Magnet Program…

Top