Sample records for science-based decision support

  1. A Decision Support Framework For Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    EPA Science Inventory

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environ...

  2. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov Websites

    Science Advanced decision science methods include multi-objective and multi-criteria decision support. Our decision science methods, including multi-objective and multi-criteria decision support. For example, we

  3. Enhancing the role of science in the decision-making of the European Union.

    PubMed

    Allio, Lorenzo; Ballantine, Bruce; Meads, Richard

    2006-02-01

    Used well, science provides effective ways of identifying potential risks, protecting citizens, and using resources wisely. It enables government decisions to be based on evidence and provides a foundation for a rule-based framework that supports global trade. To ensure that the best available science becomes a key input in the decisions made by EU institutions, this abridged version of a working paper produced for the European Policy Centre, a leading, independent think tank, considers how science is currently used in the policy and decision-making processes of the EU, what the limitations of scientific evidence are, and how a risk assessment process based on scientific 'good practices' can be advantageous. Finally, the paper makes recommendations on how to improve the use of science by EU institutions.

  4. Stakeholder views of management and decision support tools to integrate climate change into Great Lakes Lake Whitefish management

    USGS Publications Warehouse

    Lynch, Abigail J.; Taylor, William W.; McCright, Aaron M.

    2016-01-01

    Decision support tools can aid decision making by systematically incorporating information, accounting for uncertainties, and facilitating evaluation between alternatives. Without user buy-in, however, decision support tools can fail to influence decision-making processes. We surveyed fishery researchers, managers, and fishers affiliated with the Lake Whitefish Coregonus clupeaformis fishery in the 1836 Treaty Waters of Lakes Huron, Michigan, and Superior to assess opinions of current and future management needs to identify barriers to, and opportunities for, developing a decision support tool based on Lake Whitefish recruitment projections with climate change. Approximately 64% of 39 respondents were satisfied with current management, and nearly 85% agreed that science was well integrated into management programs. Though decision support tools can facilitate science integration into management, respondents suggest that they face significant implementation barriers, including lack of political will to change management and perceived uncertainty in decision support outputs. Recommendations from this survey can inform development of decision support tools for fishery management in the Great Lakes and other regions.

  5. A Decision Support Framework for Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    NASA Astrophysics Data System (ADS)

    Rehr, Amanda P.; Small, Mitchell J.; Bradley, Patricia; Fisher, William S.; Vega, Ann; Black, Kelly; Stockton, Tom

    2012-12-01

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environmental stressors, processes, and outcomes; and a Decision Landscape analysis to depict the legal, social, and institutional dimensions of environmental decisions. The Decision Landscape incorporates interactions among government agencies, regulated businesses, non-government organizations, and other stakeholders. It also identifies where scientific information regarding environmental processes is collected and transmitted to improve knowledge about elements of the DPSIR and to improve the scientific basis for decisions. Our application of the decision support framework to coral reef protection and restoration in the Florida Keys focusing on anthropogenic stressors, such as wastewater, proved to be successful and offered several insights. Using information from a management plan, it was possible to capture the current state of the science with a DPSIR analysis as well as important decision options, decision makers and applicable laws with a the Decision Landscape analysis. A structured elicitation of values and beliefs conducted at a coral reef management workshop held in Key West, Florida provided a diversity of opinion and also indicated a prioritization of several environmental stressors affecting coral reef health. The integrated DPSIR/Decision landscape framework for the Florida Keys developed based on the elicited opinion and the DPSIR analysis can be used to inform management decisions, to reveal the role that further scientific information and research might play to populate the framework, and to facilitate better-informed agreement among participants.

  6. Decision-support systems for natural-hazards and land-management issues

    USGS Publications Warehouse

    Dinitz, Laura; Forney, William; Byrd, Kristin

    2012-01-01

    Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.

  7. Decision Support Framework Implementation Of The Web-Based Environmental Decision Analysis DASEES: Decision Analysis For A Sustainable Environment, Economy, And Society

    EPA Science Inventory

    Solutions to pervasive environmental problems often are not amenable to a straightforward application of science-based actions. These problems encompass large-scale environmental policy questions where environmental concerns, economic constraints, and societal values conflict ca...

  8. Geospatial decision support systems for societal decision making

    USGS Publications Warehouse

    Bernknopf, R.L.

    2005-01-01

    While science provides reliable information to describe and understand the earth and its natural processes, it can contribute more. There are many important societal issues in which scientific information can play a critical role. Science can add greatly to policy and management decisions to minimize loss of life and property from natural and man-made disasters, to manage water, biological, energy, and mineral resources, and in general, to enhance and protect our quality of life. However, the link between science and decision-making is often complicated and imperfect. Technical language and methods surround scientific research and the dissemination of its results. Scientific investigations often are conducted under different conditions, with different spatial boundaries, and in different timeframes than those needed to support specific policy and societal decisions. Uncertainty is not uniformly reported in scientific investigations. If society does not know that data exist, what the data mean, where to use the data, or how to include uncertainty when a decision has to be made, then science gets left out -or misused- in a decision making process. This paper is about using Geospatial Decision Support Systems (GDSS) for quantitative policy analysis. Integrated natural -social science methods and tools in a Geographic Information System that respond to decision-making needs can be used to close the gap between science and society. The GDSS has been developed so that nonscientists can pose "what if" scenarios to evaluate hypothetical outcomes of policy and management choices. In this approach decision makers can evaluate the financial and geographic distribution of potential policy options and their societal implications. Actions, based on scientific information, can be taken to mitigate hazards, protect our air and water quality, preserve the planet's biodiversity, promote balanced land use planning, and judiciously exploit natural resources. Applications using the GDSS have demonstrated the benefits of utilizing science for policy decisions. Investment in science reduces decision-making uncertainty and reducing that uncertainty has economic value.

  9. Integrating Climate and Risk-Informed Science to Support Critical Decisions

    ScienceCinema

    None

    2018-01-16

    The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.

  10. Integrating Climate and Risk-Informed Science to Support Critical Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-07-27

    The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.

  11. Toward the Modularization of Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Raskin, R. G.

    2009-12-01

    Decision support systems are typically developed entirely from scratch without the use of modular components. This “stovepiped” approach is inefficient and costly because it prevents a developer from leveraging the data, models, tools, and services of other developers. Even when a decision support component is made available, it is difficult to know what problem it solves, how it relates to other components, or even that the component exists, The Spatial Decision Support (SDS) Consortium was formed in 2008 to organize the body of knowledge in SDS within a common portal. The portal identifies the canonical steps in the decision process and enables decision support components to be registered, categorized, and searched. This presentation describes how a decision support system can be assembled from modular models, data, tools and services, based on the needs of the Earth science application.

  12. Integrating Agriculture and Conservation

    USGS Publications Warehouse

    Vandever, Mark W.

    2010-01-01

    The USGS produces the needed science-based information to guide management actions and policy decisions that support wildlife habitat and other environmental services compatible with USDA conservation goals and farm operations. The Policy Analysis and Science Assistance Branch of the Fort Collins Science Center (FORT) has conducted research involving a national landowner survey and numerous short- and long-term evaluations regarding vegetation responses to land management practices. This research helps land and resource managers to make informed decisions and resolve resource management conflicts.

  13. On the design of computer-based models for integrated environmental science.

    PubMed

    McIntosh, Brian S; Jeffrey, Paul; Lemon, Mark; Winder, Nick

    2005-06-01

    The current research agenda in environmental science is dominated by calls to integrate science and policy to better understand and manage links between social (human) and natural (nonhuman) processes. Freshwater resource management is one area where such calls can be heard. Designing computer-based models for integrated environmental science poses special challenges to the research community. At present it is not clear whether such tools, or their outputs, receive much practical policy or planning application. It is argued that this is a result of (1) a lack of appreciation within the research modeling community of the characteristics of different decision-making processes including policy, planning, and (2) participation, (3) a lack of appreciation of the characteristics of different decision-making contexts, (4) the technical difficulties in implementing the necessary support tool functionality, and (5) the socio-technical demands of designing tools to be of practical use. This article presents a critical synthesis of ideas from each of these areas and interprets them in terms of design requirements for computer-based models being developed to provide scientific information support for policy and planning. Illustrative examples are given from the field of freshwater resources management. Although computer-based diagramming and modeling tools can facilitate processes of dialogue, they lack adequate simulation capabilities. Component-based models and modeling frameworks provide such functionality and may be suited to supporting problematic or messy decision contexts. However, significant technical (implementation) and socio-technical (use) challenges need to be addressed before such ambition can be realized.

  14. The Value of Fidelity of Implementation Criteria to Evaluate School-Based Science Curriculum Innovations

    ERIC Educational Resources Information Center

    Lee, Yew-Jin; Chue, Shien

    2013-01-01

    School-based curriculum innovations, including those in science education, are usually not adequately evaluated, if at all. Furthermore, current procedures and instruments for programme evaluations are often unable to support evidence-based decision-making. We suggest that adopting fidelity of implementation (FOI) criteria from healthcare research…

  15. Experiences in Bridging the Gap Between Science and Decision Making at NASAs GSFC Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Kempler, S.; Teng, W.; Friedl, L.; Lynnes, C.

    2008-12-01

    In recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA has implemented the 'Decision Support Through Earth Science Research Results' program to solicit "proposals that develop and demonstrate innovative and practicable applications of NASA Earth science observations and research"that focus on improving decision making activities", as stated in the NASA ROSES-2008, A.18 solicitation. This very successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations in the areas of agriculture, air quality, disaster management, ecosystems, public health, water resources, and aviation weather. The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. Coupling this experience with the GES DISC's total understanding and vast experience regarding Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, the GES DISC is in the unique position to more readily identify challenges that come with bringing science data to decision makers. These challenges consist of those that can be met within typical science data usage frameworks, as well as those challenges that arise when utilizing science data for previously unplanned applications, such as decision support systems. The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding how decisions are made, which leads to the data receivers willingness to use new types of information to make decisions, as well as other topics. In addition, defining metrics that 'really' evaluate success will be exemplified.

  16. Experiences in Bridging the Gap between Science and Decision Making at NASA's GSFC Earth Science Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Teng, Bill; Friedl, Lawrence; Lynnes, Chris; Leptoukh, Gregory

    2008-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet s natural environment, NASA has implemented the Decision Support Through Earth Science Research Results program (NASA ROSES solicitations). a) This successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations. b) The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. c) In addition, GES DISC s understanding of Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, enables the GES DISC to identify challenges that come with bringing science data to decision makers. d) The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding of how decisions are made, and the data receivers willingness to use new types of information to make decisions, as well as other topics. In addition, defining metrics that really evaluate success will be exemplified.

  17. The Fort Collins Science Center

    USGS Publications Warehouse

    Wilson, Juliette T.; Banowetz, Michele M.

    2012-01-01

    With a focus on biological research, the U.S. Geological Survey Fort Collins Science Center (FORT) develops and disseminates science-based information and tools to support natural resource decision-making. This brochure succinctly describes the integrated science capabilities, products, and services that the FORT science community offers across the disciplines of aquatic systems, ecosystem dynamics, information science, invasive species science, policy analysis and social science assistance, and trust species and habitats.

  18. The missing link: Creating science policies that facilitate the use of research in environmental and water-related decision-making

    NASA Astrophysics Data System (ADS)

    Dilling, L.; Pielke, R.; Sarewitz, D.

    2005-12-01

    Despite all good intentions, it is clear that science intended to serve decision making needs often fails to achieve that purpose. The aftermath of Hurricane Katrina provides a recent, tragic example. The reasons for failures of science to support decision making are varied. Researchers studying forecasts of climate variability have found, for example, cases where information provided is not needed; information is needed but not provided; information lacks regional specificity; information is provided in an inaccessible form; poor communication exists between potential users and providers; there is a lack of trust in information or deliverers; institutional constraints prevent use of new information; and so on. Traditional science policies have institutionalized the separation of the conduct of science from its application and use. It is clear that as long as such a separation, reinforced by tradition, institution and culture, is the dominant paradigm of science policies, the efficient and effective use of science in environmental and water-related decision making will be hampered. We introduce here a research methodology for examining the decision making involved in setting science policies for research aimed at being useful. Based on the economic concept, the notion of "reconciling supply and demand" for information offers a framework for identifying missed opportunities where science policies can be adjusted to improve the usefulness of a given research portfolio. We present results from a case study focused on internal science policies and decision making within the Regional Integrated Sciences and Assessments (RISA) projects. The RISA program aims to "expand the range of choices available to private and public communities in a region, by...enabling practical decisions...using research-based knowledge" and so provides an excellent opportunity for harvesting lessons for creating usable science.

  19. A conceptual framework for understanding the perspectives on the causes of the science-practice gap in ecology and conservation.

    PubMed

    Bertuol-Garcia, Diana; Morsello, Carla; N El-Hani, Charbel; Pardini, Renata

    2018-05-01

    Applying scientific knowledge to confront societal challenges is a difficult task, an issue known as the science-practice gap. In Ecology and Conservation, scientific evidence has been seldom used directly to support decision-making, despite calls for an increasing role of ecological science in developing solutions for a sustainable future. To date, multiple causes of the science-practice gap and diverse approaches to link science and practice in Ecology and Conservation have been proposed. To foster a transparent debate and broaden our understanding of the difficulties of using scientific knowledge, we reviewed the perceived causes of the science-practice gap, aiming to: (i) identify the perspectives of ecologists and conservation scientists on this problem, (ii) evaluate the predominance of these perspectives over time and across journals, and (iii) assess them in light of disciplines studying the role of science in decision-making. We based our review on 1563 sentences describing causes of the science-practice gap extracted from 122 articles and on discussions with eight scientists on how to classify these sentences. The resulting process-based framework describes three distinct perspectives on the relevant processes, knowledge and actors in the science-practice interface. The most common perspective assumes only scientific knowledge should support practice, perceiving a one-way knowledge flow from science to practice and recognizing flaws in knowledge generation, communication, and/or use. The second assumes that both scientists and decision-makers should contribute to support practice, perceiving a two-way knowledge flow between science and practice through joint knowledge-production/integration processes, which, for several reasons, are perceived to occur infrequently. The last perspective was very rare, and assumes scientists should put their results into practice, but they rarely do. Some causes (e.g. cultural differences between scientists and decision-makers) are shared with other disciplines, while others seem specific to Ecology and Conservation (e.g. inadequate research scales). All identified causes require one of three general types of solutions, depending on whether the causal factor can (e.g. inadequate research questions) or cannot (e.g. scientific uncertainty) be changed, or if misconceptions (e.g. undervaluing abstract knowledge) should be solved. The unchanged predominance of the one-way perspective over time may be associated with the prestige of evidence-based conservation and suggests that debates in Ecology and Conservation lag behind trends in other disciplines towards bidirectional views ascribing larger roles to decision-makers. In turn, the two-way perspective seems primarily restricted to research traditions historically isolated from mainstream conservation biology. All perspectives represented superficial views of decision-making by not accounting for limits to human rationality, complexity of decision-making contexts, fuzzy science-practice boundaries, ambiguity brought about by science, and different types of knowledge use. However, joint knowledge-production processes from the two-way perspective can potentially allow for democratic decision-making processes, explicit discussions of values and multiple types of science use. To broaden our understanding of the interface and foster productive science-practice linkages, we argue for dialogue among different research traditions within Ecology and Conservation, joint knowledge-production processes between scientists and decision-makers and interdisciplinarity across Ecology, Conservation and Political Science in both research and education. © 2017 Cambridge Philosophical Society.

  20. An integrative model for in-silico clinical-genomics discovery science.

    PubMed

    Lussier, Yves A; Sarkar, Indra Nell; Cantor, Michael

    2002-01-01

    Human Genome discovery research has set the pace for Post-Genomic Discovery Research. While post-genomic fields focused at the molecular level are intensively pursued, little effort is being deployed in the later stages of molecular medicine discovery research, such as clinical-genomics. The objective of this study is to demonstrate the relevance and significance of integrating mainstream clinical informatics decision support systems to current bioinformatics genomic discovery science. This paper is a feasibility study of an original model enabling novel "in-silico" clinical-genomic discovery science and that demonstrates its feasibility. This model is designed to mediate queries among clinical and genomic knowledge bases with relevant bioinformatic analytic tools (e.g. gene clustering). Briefly, trait-disease-gene relationships were successfully illustrated using QMR, OMIM, SNOMED-RT, GeneCluster and TreeView. The analyses were visualized as two-dimensional dendrograms of clinical observations clustered around genes. To our knowledge, this is the first study using knowledge bases of clinical decision support systems for genomic discovery. Although this study is a proof of principle, it provides a framework for the development of clinical decision-support-system driven, high-throughput clinical-genomic technologies which could potentially unveil significant high-level functions of genes.

  1. Collaboration and co-production of climate knowledge: lessons from a network on the front-line

    NASA Astrophysics Data System (ADS)

    Kettle, N.

    2016-12-01

    The science-practice gap is broadly considered a major barrier to the production and application of decision-relevant science. This study uses a social network analysis, based on 126 interviews, to analyze the roles and network ties among climate scientists, service providers, and decision makers in Alaska. Our research highlights the importance of key actors and significant differences in bonding and bridging ties across roles - structural characteristics that provide a basis for informing recommendations to build adaptive capacity and support the co-production of knowledge. Our findings also illustrate that some individuals in the network engage in multiple roles, suggesting that conceptualizing the science-practice interface as consisting of "producers" and "consumers" oversimplifies how individuals engage in climate science, services, and decision making. This research supports the notion that the development and use of climate information is a networked phenomenon. It also emphasizes the importance of centralized individuals who are capable of engaging in multiple roles for the transition of knowledge action.

  2. Better Assessment Science Integrating Point and Nonpoint Sources

    EPA Science Inventory

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is not a model per se, but is a multipurpose environmental decision support system for use by regional, state, and local agencies in performing watershed- and water-quality-based studies. BASI...

  3. Completing the Link between Exposure Science and ...

    EPA Pesticide Factsheets

    Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports G

  4. SeaSketch: Implementation of a Decision-Support Platform for a Channel Islands National Marine Sanctuary Multi-sector Working Group

    NASA Astrophysics Data System (ADS)

    Goldberg, G.; McClintock, W.

    2016-12-01

    Effective interagency and cross-sector coordination is essential to ecosystem based management which depends on processes characterized by collaboration and science-based information. Many technological barriers that exist in the development of science-based management plans are closely tied to process challenges, such as the sharing of data and information or the inclusion of parties with varied levels of technical experience. The Channel Islands National Marine Sanctuary has convened a diverse working group to develop recommendations for the management of marine shipping in and around the Santa Barbara Channel, as well as recommendations regarding research needs and outreach strategies. Working group members take a multi-issue approach with four distinct goals related to the reduction of ship strikes on whales, emissions and air quality, conflicting ocean uses, and issues of navigational safety. Members range from industry representatives, scientists, and multiple local and federal government entities. The recommended management plans will be based in the best-available science, and will build off of previous efforts, making this an interesting case study of adaptive management. In addition to support from the Sanctuary and professional facilitators, the group is using a decision-support platform, SeaSketch (safepassage.seasketch.org). SeaSketch is a web-based GIS that supports collaborative science-based marine spatial planning (MSP). Each feature supports a step of the MSP process, from data gathering, identification of data needs, the design of spatial plans, evaluation of those plans with analytics, and map-based forums that facilitate data-driven discussions. Working group members are able to access these tools to explore management options and collaborate remotely, in addition to using the platform during in-person meetings and webinars. Empowering diverse audiences to engage in the design of science-based plans is of key importance to developing ecosystem-based management plans where multi-sector participation and inter-agency coordination are critical.

  5. SeaSketch: Implementation of a Decision-Support Platform for a Channel Islands National Marine Sanctuary Multi-sector Working Group

    NASA Astrophysics Data System (ADS)

    Goldberg, G.; McClintock, W.

    2016-02-01

    Effective interagency and cross-sector coordination is essential to ecosystem based management which depends on processes characterized by collaboration and science-based information. Many technological barriers that exist in the development of science-based management plans are closely tied to process challenges, such as the sharing of data and information or the inclusion of parties with varied levels of technical experience. The Channel Islands National Marine Sanctuary has convened a diverse working group to develop recommendations for the management of marine shipping in and around the Santa Barbara Channel, as well as recommendations regarding research needs and outreach strategies. Working group members take a multi-issue approach with four distinct goals related to the reduction of ship strikes on whales, emissions and air quality, conflicting ocean uses, and issues of navigational safety. Members range from industry representatives, scientists, and multiple local and federal government entities. The recommended management plans will be based in the best-available science, and will build off of previous efforts, making this an interesting case study of adaptive management. In addition to support from the Sanctuary and professional facilitators, the group is using a decision-support platform, SeaSketch (safepassage.seasketch.org). SeaSketch is a web-based GIS that supports collaborative science-based marine spatial planning (MSP). Each feature supports a step of the MSP process, from data gathering, identification of data needs, the design of spatial plans, evaluation of those plans with analytics, and map-based forums that facilitate data-driven discussions. Working group members are able to access these tools to explore management options and collaborate remotely, in addition to using the platform during in-person meetings and webinars. Empowering diverse audiences to engage in the design of science-based plans is of key importance to developing ecosystem-based management plans where multi-sector participation and inter-agency coordination are critical.

  6. Executive Support Systems: An Innovation Decision Perspective

    DTIC Science & Technology

    1990-01-01

    of the requirements for the degree of Master of Science Department of Management Science and Information Systems 1990 0 4 28 071 This thesis for the...Master of Science degree by Vern Edwin Hasenstein has been approved for the Department of Management Science and -formation Systems by James C...Dist Speolal Hasenstein, Vern Edwin (M.S., Management Science and Information Systems) Executive Support Systems: An Innovation-decision Perspective

  7. Advancing Alternative Analysis: Integration of Decision Science.

    PubMed

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  8. Advancing Alternative Analysis: Integration of Decision Science

    PubMed Central

    Zaunbrecher, Virginia M.; Batteate, Christina M.; Blake, Ann; Carroll, William F.; Corbett, Charles J.; Hansen, Steffen Foss; Lempert, Robert J.; Linkov, Igor; McFadden, Roger; Moran, Kelly D.; Olivetti, Elsa; Ostrom, Nancy K.; Romero, Michelle; Schoenung, Julie M.; Seager, Thomas P.; Sinsheimer, Peter; Thayer, Kristina A.

    2017-01-01

    Background: Decision analysis—a systematic approach to solving complex problems—offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. Objectives: We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. Methods: A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups’ findings. Results: We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. Conclusions: We advance four recommendations: a) engaging the systematic development and evaluation of decision approaches and tools; b) using case studies to advance the integration of decision analysis into alternatives analysis; c) supporting transdisciplinary research; and d) supporting education and outreach efforts. https://doi.org/10.1289/EHP483 PMID:28669940

  9. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare.

    PubMed

    Dolan, James G

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).

  10. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare

    PubMed Central

    Dolan, James G.

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers. Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine “hard data” with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings. The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP) PMID:21394218

  11. Safety in the Science Classroom

    ERIC Educational Resources Information Center

    Online Submission, 2006

    2006-01-01

    The goal of this K-12 science safety resource is to bring together information needed by administrators, planners, teachers and support staff to help them make sound decisions regarding science safety. The document identifies areas for decision making and action at a variety of levels. It supports planning and action by providing information on…

  12. Science informed water resources decision-making: Examples using remote sensing observations in East Africa, the Lower Mekong Basin and the western United States

    NASA Astrophysics Data System (ADS)

    Granger, S. L.; Andreadis, K.; Das, N.; Farr, T. G.; Ines, A. V. M.; Jayasinghe, S.; Jones, C. E.; Melton, F. S.; Ndungu, L. W.; Lai-Norling, J.; Painter, T. H.

    2017-12-01

    Across the globe, planners and decision makers are often hampered by organizational and data silos and/or a lack of historic data or scant in situ observations on which to base policy and action plans. The end result is a complex interaction of responsibilities, legal frameworks, and stakeholder needs guided by uncertain information that is essentially bounded by how climate extremes are defined and characterized. Because of the importance of water, considerable resources in the developing and developed world are invested in data and tools for managing water. However, the existing paradigm of water management around the world faces significant challenges including inadequate funding to install, maintain or upgrade monitoring networks, lack of resources to integrate new science and data sources into existing tools, and demands for improved spatial coverage of observations. Add to this, a changing hydrology that is so complex it requires measurements and analyses that have never been done before. Interest in applying remote sensing science and observations into the decision making process is growing the world over, but in order to succeed, it is essential to form partnerships with stakeholder organizations and decision makers at the outset. In this talk, we describe examples of succesful decision-maker and science partnering based on projects that apply remote sensing science and observations in East Africa and the Lower Mekong Basin supported by the SERVIR Initiative, a joint United States Agency for International Development (USAID) and National Aeronautics and Space Administration (NASA) program, and projects in the western United States supported by NASA's Jet Propulsion Laboratory and the Western Water Applications Office (WWAO). All of these examples have benefitted from strong, committed partnerships with end user agencies. Best practices and lessons learned in connecting science to decision making amongst these examples are explored.

  13. Building place-based collaborations to develop high school students' groundwater systems knowledge and decision-making capacity

    NASA Astrophysics Data System (ADS)

    Podrasky, A.; Covitt, B. A.; Woessner, W.

    2017-12-01

    The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.

  14. Space life sciences strategic plan

    NASA Astrophysics Data System (ADS)

    Nicogossian, Arnauld E.

    1992-05-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  15. Space life sciences strategic plan

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  16. Understandings of the nature of science and decision making on science and technology-based issues

    NASA Astrophysics Data System (ADS)

    Bell, Randy Lee

    Current reforms emphasize the development of scientific literacy as the principal goal of science education. The nature of science is considered a critical component of scientific literacy and is assumed to be an important factor in decision making on science and technology based issues. However, little research exists that delineates the role of the nature of science in decision making. The purpose of this investigation was to explicate the role of the nature of science in decision making on science and technology based issues and to delineate the reasoning and factors associated with these types of decisions. The 15-item, open-ended "Decision Making Questionnaire" (DMQ) based on four different scenarios concerning science and technology issues was developed to assess decision making. Twenty-one volunteer participants purposively selected from the faculty of geographically diverse universities completed the questionnaire and follow-up interviews. Participants were subsequently grouped according to their understandings of the nature of science, based on responses to a second open-ended questionnaire and follow-up interview. Profiles of each group's decision making were constructed, based on their previous responses to the DMQ and follow-up interviews. Finally, the two groups' decisions, decision making factors, and decision making strategies were compared. No differences were found between the decisions of the two groups, despite their disparate views of the nature of science. While their reasoning did not follow formal lines of argumentation, several influencing factors and general reasoning patterns were identified. Participants in both groups based their decisions primarily on personal values, morals/ethics, and social concerns. While all participants said they considered scientific evidence in their decision making, most did not require absolute "proof," even though Group B participants held more absolute conceptions of the nature of science. Overall, the nature of science did not figure prominently in either group's decisions. These findings contrast with the assumptions of the science education community and current reform efforts and call for a reexamination of the goals of nature of science instruction. Developing better decision making skills---even on science and technology based issues---may involve other factors, including more values-based instruction and attention to intellectual/moral development.

  17. Is treatment of feline hypertrophic cardiomyopathy based in science or faith? A survey of cardiologists and a literature search.

    PubMed

    Rishniw, Mark; Pion, Paul D

    2011-07-01

    Feline hypertrophic cardiomyopathy (HCM) is the most common cardiac disease of cats. Treatment of HCM is usually directed at controlling signs of congestive heart failure (CHF), preventing occurrence or recurrence of systemic thromboembolism or delaying/preventing/reversing progression of subclinical disease. Despite the laudable goals of therapy, however, little objective evidence supporting therapeutic decisions has been published. We, therefore, hypothesized that cardiologists base their treatment strategies on information other than published clinically relevant science. To gain insight into therapeutic decisions that cardiologists and clinicians with an interest in cardiology (n=99) make for cats with HCM, and on what information they base these decisions, we presented participants with, and asked them to select therapy for, 12 hypothetical scenarios of HCM (± CHF). Responses and justifications for treatment choices were compiled and compared with the results of a comprehensive literature search for published information about treatment of feline HCM. Evaluation of the therapeutic strategies chosen for these hypothetical cases of HCM suggests that cardiologists or clinicians with a strong interest in cardiology often prescribe treatments knowing that little documented evidence supports their decisions. Copyright © 2011 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  18. Understandings of the nature of science and decision making on science and technology based issues

    NASA Astrophysics Data System (ADS)

    Bell, Randy L.; Lederman, Norman G.

    2003-05-01

    The purpose of this investigation was to explicate the role of the nature of science in decision making on science and technology based issues and to delineate factors and reasoning associated with these types of decisions. Twenty-one volunteer participants purposively selected from the faculty of geographically diverse universities completed an open-ended questionnaire and follow-up interview designed to assess their decision making on science and technology based issues. Participants were subsequently placed in one of two groups based upon their divergent views of the nature of science as assessed by a second open-ended questionnaire and follow-up interview. Profiles of each group's decision making were then constructed, based on participants' previous responses to the decision making questionnaire and follow-up interviews. Finally, the two groups' decisions, decision influencing factors, and decision making strategies were compared. No differences were found between the decisions of the two groups, despite their disparate views of the nature of science. Participants in both groups based their decisions primarily on personal values, morals/ethics, and social concerns. While all participants considered scientific evidence in their decision making, most did not require absolute proof, even though many participants held absolute conceptions of the nature of science. Overall, the nature of science did not figure prominently in either group's decisions. These findings contrast with basic assumptions of current science education reform efforts and call for a re-examination of the goals of nature of science instruction. Developing better decision making skills - even on science and technology based issues - may involve other factors, including more value-based instruction and attention to intellectual/moral development.

  19. Launching a virtual decision lab: development and field-testing of a web-based patient decision support research platform.

    PubMed

    Hoffman, Aubri S; Llewellyn-Thomas, Hilary A; Tosteson, Anna N A; O'Connor, Annette M; Volk, Robert J; Tomek, Ivan M; Andrews, Steven B; Bartels, Stephen J

    2014-12-12

    Over 100 trials show that patient decision aids effectively improve patients' information comprehension and values-based decision making. However, gaps remain in our understanding of several fundamental and applied questions, particularly related to the design of interactive, personalized decision aids. This paper describes an interdisciplinary development process for, and early field testing of, a web-based patient decision support research platform, or virtual decision lab, to address these questions. An interdisciplinary stakeholder panel designed the web-based research platform with three components: a) an introduction to shared decision making, b) a web-based patient decision aid, and c) interactive data collection items. Iterative focus groups provided feedback on paper drafts and online prototypes. A field test assessed a) feasibility for using the research platform, in terms of recruitment, usage, and acceptability; and b) feasibility of using the web-based decision aid component, compared to performance of a videobooklet decision aid in clinical care. This interdisciplinary, theory-based, patient-centered design approach produced a prototype for field-testing in six months. Participants (n = 126) reported that: the decision aid component was easy to use (98%), information was clear (90%), the length was appropriate (100%), it was appropriately detailed (90%), and it held their interest (97%). They spent a mean of 36 minutes using the decision aid and 100% preferred using their home/library computer. Participants scored a mean of 75% correct on the Decision Quality, Knowledge Subscale, and 74 out of 100 on the Preparation for Decision Making Scale. Completing the web-based decision aid reduced mean Decisional Conflict scores from 31.1 to 19.5 (p < 0.01). Combining decision science and health informatics approaches facilitated rapid development of a web-based patient decision support research platform that was feasible for use in research studies in terms of recruitment, acceptability, and usage. Within this platform, the web-based decision aid component performed comparably with the videobooklet decision aid used in clinical practice. Future studies may use this interactive research platform to study patients' decision making processes in real-time, explore interdisciplinary approaches to designing web-based decision aids, and test strategies for tailoring decision support to meet patients' needs and preferences.

  20. Exploring Preservice Elementary Teachers' Critique and Adaptation of Science Curriculum Materials in Respect to Socioscientific Issues

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-01-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students' learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers' critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate…

  1. From science to action: Principles for undertaking environmental research that enables knowledge exchange and evidence-based decision-making.

    PubMed

    Cvitanovic, C; McDonald, J; Hobday, A J

    2016-12-01

    Effective conservation requires knowledge exchange among scientists and decision-makers to enable learning and support evidence-based decision-making. Efforts to improve knowledge exchange have been hindered by a paucity of empirically-grounded guidance to help scientists and practitioners design and implement research programs that actively facilitate knowledge exchange. To address this, we evaluated the Ningaloo Research Program (NRP), which was designed to generate new scientific knowledge to support evidence-based decisions about the management of the Ningaloo Marine Park in north-western Australia. Specifically, we evaluated (1) outcomes of the NRP, including the extent to which new knowledge informed management decisions; (2) the barriers that prevented knowledge exchange among scientists and managers; (3) the key requirements for improving knowledge exchange processes in the future; and (4) the core capacities that are required to support knowledge exchange processes. While the NRP generated expansive and multidisciplinary science outputs directly relevant to the management of the Ningaloo Marine Park, decision-makers are largely unaware of this knowledge and little has been integrated into decision-making processes. A range of barriers prevented efficient and effective knowledge exchange among scientists and decision-makers including cultural differences among the groups, institutional barriers within decision-making agencies, scientific outputs that were not translated for decision-makers and poor alignment between research design and actual knowledge needs. We identify a set of principles to be implemented routinely as part of any applied research program, including; (i) stakeholder mapping prior to the commencement of research programs to identify all stakeholders, (ii) research questions to be co-developed with stakeholders, (iii) implementation of participatory research approaches, (iv) use of a knowledge broker, and (v) tailored knowledge management systems. Finally, we articulate the individual, institutional and financial capacities that must be developed to underpin successful knowledge exchange strategies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. mobilityRERC state of the science conference: Considerations for developing an evidence base for wheeled mobility and seating service delivery.

    PubMed

    Cohen, Laura; Greer, Nancy; Berliner, Elise; Sprigle, Stephen

    2013-11-01

    This article, developed as background content for discussion during the Mobility Rehabilitation Engineering Research Center State of the Science Conference, reviews research surrounding wheeled mobility and seating (WMS) service delivery, discusses the challenges of improving clinical decision-making, and discusses research approaches used to study and improve health services in other practice areas that might be leveraged to develop the evidence base for WMS. Narrative literature review. An overview of existing research found general agreement across models of WMS service delivery but little high quality evidence to support the recommended approaches and few studies of the relationship between service delivery steps and individual patient outcomes. The definition of successful clinical decision-making is different for different stakeholders. Clinical decision-making should incorporate the best available evidence along with patient values, preferences, circumstances, and clinical expertise. To advance the evidence base for WMS service delivery, alternatives to randomized controlled trials should be considered and reliable and valid outcome measures developed. Technological advances offer tremendous opportunities for individuals with complex rehabilitation technology needs. However, with ongoing scrutiny of WMS service delivery there is an increased need for evidence to support the clinical decision-making process and to support evidence-based coverage policies for WMS services and technologies. An evidence base for wheeled mobility and seating services is an important component of the clinical decision-making process. At present, there is little evidence regarding essential components of the wheeled mobility and seating evaluation or the relationship between the evaluation process and patient outcomes. Many factors can confound this relationship and present challenges to research in this area. All stakeholders (i.e. clinicians, rehabilitation technology suppliers, manufacturers, researchers, payers, policy makers, and wheelchair users) need to work together to develop and support an evidence base for wheeled mobility and seating service delivery.

  3. Science-based natural resource management decisions: what are they?

    Treesearch

    T.J. Mills; T.M. Quigley; F.J. Everest

    2001-01-01

    While many people interested in natural resources management propose science-based decisions, it is not clear what “science-based” means. Science-based decisions are those that result from the full and complete consideration of the relevant science information. We offer five guidelines to focus the scientist’s contributions to science-based decisionmaking and use the...

  4. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  5. Arctic Collaborative Environment: A New Multi-National Partnership for Arctic Science and Decision Support

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A,; Kress, Martin P.; McCracken, Jeff E.; Spehn, Stephen L.; Tanner, Steve

    2011-01-01

    The Arctic Collaborative Environment (ACE) project is a new international partnership for information sharing to meet the challenges of addressing Arctic. The goal of ACE is to create an open source, web-based, multi-national monitoring, analysis, and visualization decision-support system for Arctic environmental assessment, management, and sustainability. This paper will describe the concept, system architecture, and data products that are being developed and disseminated among partners and independent users through remote access.

  6. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities

    USGS Publications Warehouse

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard

    2016-09-28

    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the evolution of the SE CSC science agenda, which has evolved over the first 5 years of the Center’s operation.

  7. UQ for Decision Making: How (at least five) Kinds of Probability Might Come Into Play

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2013-12-01

    In 1959 IJ Good published the discussion "Kinds of Probability" in Science. Good identified (at least) five kinds. The need for (at least) a sixth kind of probability when quantifying uncertainty in the context of climate science is discussed. This discussion brings out the differences in weather-like forecasting tasks and climate-links tasks, with a focus on the effective use both of science and of modelling in support of decision making. Good also introduced the idea of a "Dynamic probability" a probability one expects to change without any additional empirical evidence; the probabilities assigned by a chess playing program when it is only half thorough its analysis being an example. This case is contrasted with the case of "Mature probabilities" where a forecast algorithm (or model) has converged on its asymptotic probabilities and the question hinges in whether or not those probabilities are expected to change significantly before the event in question occurs, even in the absence of new empirical evidence. If so, then how might one report and deploy such immature probabilities in scientific-support of decision-making rationally? Mature Probability is suggested as a useful sixth kind, although Good would doubtlessly argue that we can get by with just one, effective communication with decision makers may be enhanced by speaking as if the others existed. This again highlights the distinction between weather-like contexts and climate-like contexts. In the former context one has access to a relevant climatology (a relevant, arguably informative distribution prior to any model simulations), in the latter context that information is not available although one can fall back on the scientific basis upon which the model itself rests, and estimate the probability that the model output is in fact misinformative. This subjective "probability of a big surprise" is one way to communicate the probability of model-based information holding in practice, the probability that the information the model-based probability is conditioned on holds. It is argued that no model-based climate-like probability forecast is complete without a quantitative estimate of its own irrelevance, and that the clear identification of model-based probability forecasts as mature or immature, are critical elements for maintaining the credibility of science-based decision support, and can shape uncertainty quantification more widely.

  8. Palliative Medicine and Decision Science: The Critical Need for a Shared Agenda To Foster Informed Patient Choice in Serious Illness

    PubMed Central

    Kryworuchko, Jennifer; Matlock, Dan D.; Volandes, Angelo E.

    2011-01-01

    Abstract Assisting patients and their families in complex decision making is a foundational skill in palliative care; however, palliative care clinicians and scientists have just begun to establish an evidence base for best practice in assisting patients and families in complex decision making. Decision scientists aim to understand and clarify the concepts and techniques of shared decision making (SDM), decision support, and informed patient choice in order to ensure that patient and family perspectives shape their health care experience. Patients with serious illness and their families are faced with myriad complex decisions over the course of illness and as death approaches. If patients lose capacity, then surrogate decision makers are cast into the decision-making role. The fields of palliative care and decision science have grown in parallel. There is much to be gained in advancing the practices of complex decision making in serious illness through increased collaboration. The purpose of this article is to use a case study to highlight the broad range of difficult decisions, issues, and opportunities imposed by a life-limiting illness in order to illustrate how collaboration and a joint research agenda between palliative care and decision science researchers, theorists, and clinicians might guide best practices for patients and their families. PMID:21895453

  9. Five-Year Bibliometric Review of Genomic Nursing Science Research.

    PubMed

    Williams, Janet K; Tripp-Reimer, Toni; Daack-Hirsch, Sandra; DeBerg, Jennifer

    2016-03-01

    This bibliometric review profiles the focus, dissemination, and impact of genomic nursing science articles from 2010 to 2014. Data-based genomic nursing articles by nursing authors and articles by non-nurse principal investigators funded by the National Institute of Nursing Research were categorized into the Genomic Nursing Science Blueprint nursing areas. Bibliometric content analysis was used. A total of 197 articles met the inclusion criteria. Of these, 60.3% were on biologic plausibility, 12.1% on client self-management, 11.1% on decision making or decision support, 8.1% on family, and 4.0% on communication, with the remaining 4.0% of articles focused on other topics. Few (11.6%) addressed healthcare disparities in the study purpose. Thirty-four references (17.2%) were cited 10 or more times. Research-based genomic nursing science articles are in the discovery phase of inquiry. All topics were investigated in more than one country. Healthcare disparities were addressed in few studies. Research findings from interdisciplinary teams were disseminated beyond nursing audiences, with findings addressing biologic discovery, decision making or support, and family being cited most frequently. Gaps in the reviewed articles included cross-cutting themes, ethics, and clinical utility. Interdisciplinary research is needed to document clinical and system outcomes of genomic nursing science implementation in health care. Although the review identifies areas that are encountered in clinical practice, relevance to practice will depend on evaluation of findings and subsequent development of clinical guidelines. © 2016 Sigma Theta Tau International.

  10. Advancing regulatory science to bring novel medical devices for use in emergency care to market: the role of the Food and Drug Administration.

    PubMed

    Scully, Christopher G; Forrest, Shawn; Galeotti, Loriano; Schwartz, Suzanne B; Strauss, David G

    2015-04-01

    The Food and Drug Administration (FDA) performs regulatory science to provide science-based medical product regulatory decisions. This article describes the types of scientific research the FDA's Center for Devices and Radiological Health performs and highlights specific projects related to medical devices for emergency medicine. In addition, this article discusses how results from regulatory science are used by the FDA to support the regulatory process as well as how the results are communicated to the public. Regulatory science supports the FDA's mission to assure safe, effective, and high-quality medical products are available to patients. Published by Elsevier Inc.

  11. Graduate Education in Risk Analysis for Food, Agriculture, and Veterinary Medicine: Challenges and Opportunities

    ERIC Educational Resources Information Center

    Correia, Ana-Paula; Wolt, Jeffrey D.

    2010-01-01

    The notion of risk in relation to food and food production has heightened the need to educate students to effectively deal with risk in relation to decision making from a science-based perspective. Curricula and related materials were developed and adopted to support graduate learning opportunities in risk analysis and decision making as applied…

  12. A Data-Driven Framework for Incorporating New Tools for ...

    EPA Pesticide Factsheets

    This talk was given during the “Exposure-Based Toxicity Testing” session at the annual meeting of the International Society for Exposure Science. It provided an update on the state of the science and tools that may be employed in risk-based prioritization efforts. It outlined knowledge gained from the data provided using these high-throughput tools to assess chemical bioactivity and to predict chemical exposures and also identified future needs. It provided an opportunity to showcase ongoing research efforts within the National Exposure Research Laboratory and the National Center for Computational Toxicology within the Office of Research and Development to an international audience. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  13. Decision Support Framework (DSF) (Formerly Decision Support Platform)

    EPA Science Inventory

    The Science Advisory Board (SAB) provided several comments on the draft Ecosystem Services Research Program's (ESRP's) Multi-Year Plan (MYP). This presentation provides a response to comments related to the decision support framework (DSF) part of Long-Term Goal 1. The comments...

  14. Models, Measurements, and Local Decisions: Assessing and ...

    EPA Pesticide Factsheets

    This presentation includes a combination of modeling and measurement results to characterize near-source air quality in Newark, New Jersey with consideration of how this information could be used to inform decision making to reduce risk of health impacts. Decisions could include either exposure or emissions reduction, and a host of stakeholders, including residents, academics, NGOs, local and federal agencies. This presentation includes results from the C-PORT modeling system, and from a citizen science project from the local area. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  15. Tribal-Focused Environmental Risk and Sustainability Tool (Tribal-FERST) Fact Sheet

    EPA Pesticide Factsheets

    The Tribal-Focused Environmental Risk and Sustainability Tool (Tribal- FERST) is a web-based geospatial decision support tool that will provide tribes with easy access to the best available human health and ecological science.

  16. Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.

    PubMed

    Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N

    2017-08-01

    Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  17. Developing Character and Values for Global Citizens: Analysis of Pre-Service Science Teachers' Moral Reasoning on Socioscientific Issues

    ERIC Educational Resources Information Center

    Lee, Hyunju; Chang, Hyunsook; Choi, Kyunghee; Kim, Sung-Won; Zeidler, Dana L.

    2012-01-01

    Character and values are the essential driving forces that serve as general guides or points of reference for individuals to support decision-making and to act responsibly about global socioscientific issues (SSIs). Based on this assumption, we investigated to what extent pre-service science teachers (PSTs) of South Korea possess character and…

  18. Watermark: An Application and Methodology and Application for Interactive and intelligent Decision Support for Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.; Wagner, K.; Schwartz, S.; Gentle, J. N., Jr.

    2016-12-01

    Critical water resources face the effects of historic drought, increased demand, and potential contamination, the need has never been greater to develop resources to effectively communicate conservation and protection across a broad audience and geographical area. The Watermark application and macro-analysis methodology merges topical analysis of context rich corpus from policy texts with multi-attributed solution sets from integrated models of water resource and other subsystems, such as mineral, food, energy, or environmental systems to construct a scalable, robust, and reproducible approach for identifying links between policy and science knowledge bases. The Watermark application is an open-source, interactive workspace to support science-based visualization and decision making. Designed with generalization in mind, Watermark is a flexible platform that allows for data analysis and inclusion of large datasets with an interactive front-end capable of connecting with other applications as well as advanced computing resources. In addition, the Watermark analysis methodology offers functionality that streamlines communication with non-technical users for policy, education, or engagement with groups around scientific topics of societal relevance. The technology stack for Watermark was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The methodology uses to topical analysis and simulation-optimization to systematically analyze the policy and management realities of resource systems and explicitly connect the social and problem contexts with science-based and engineering knowledge from models. A case example demonstrates use in a complex groundwater resources management study highlighting multi-criteria spatial decision making and uncertainty comparisons.

  19. Evaluation of a Potential for Enhancing the Decision Support System of the Interagency Modeling and Atmospheric Assessment Center with NASA Earth Science Research Results

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Berglund, Judith; Spruce, Joseph P.; McKellip, Rodney; Jasinski, Michael; Borak, Jordan; Lundquist, Julie

    2007-01-01

    NASA's objective for the Applied Sciences Program of the Science Mission Directorate is to expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology. This objective is accomplished by using a systems approach to facilitate the incorporation of Earth observations and predictions into the decision-support tools used by partner organizations to provide essential services to society. The services include management of forest fires, coastal zones, agriculture, weather prediction, hazard mitigation, aviation safety, and homeland security. In this way, NASA's long-term research programs yield near-term, practical benefits to society. The Applied Sciences Program relies heavily on forging partnerships with other Federal agencies to accomplish its objectives. NASA chooses to partner with agencies that have existing connections with end-users, information infrastructure already in place, and decision support systems that can be enhanced by the Earth science information that NASA is uniquely poised to provide (NASA, 2004).

  20. Automating Mission Scheduling for Space-Based Observatories

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Muscettola, Nicola; Hansson, Othar; Mohan, Sunil

    1998-01-01

    In this paper we describe the use of our planning and scheduling framework, HSTS, to reduce the complexity of science mission planning. This work is part of an overall project to enable a small team of scientists to control the operations of a spacecraft. The present process is highly labor intensive. Users (scientists and operators) rely on a non-codified understanding of the different spacecraft subsystems and of their operating constraints. They use a variety of software tools to support their decision making process. This paper considers the types of decision making that need to be supported/automated, the nature of the domain constraints and the capabilities needed to address them successfully, and the nature of external software systems with which the core planning/scheduling engine needs to interact. HSTS has been applied to science scheduling for EUVE and Cassini and is being adapted to support autonomous spacecraft operations in the New Millennium initiative.

  1. A pilot study of distributed knowledge management and clinical decision support in the cloud.

    PubMed

    Dixon, Brian E; Simonaitis, Linas; Goldberg, Howard S; Paterno, Marilyn D; Schaeffer, Molly; Hongsermeier, Tonya; Wright, Adam; Middleton, Blackford

    2013-09-01

    Implement and perform pilot testing of web-based clinical decision support services using a novel framework for creating and managing clinical knowledge in a distributed fashion using the cloud. The pilot sought to (1) develop and test connectivity to an external clinical decision support (CDS) service, (2) assess the exchange of data to and knowledge from the external CDS service, and (3) capture lessons to guide expansion to more practice sites and users. The Clinical Decision Support Consortium created a repository of shared CDS knowledge for managing hypertension, diabetes, and coronary artery disease in a community cloud hosted by Partners HealthCare. A limited data set for primary care patients at a separate health system was securely transmitted to a CDS rules engine hosted in the cloud. Preventive care reminders triggered by the limited data set were returned for display to clinician end users for review and display. During a pilot study, we (1) monitored connectivity and system performance, (2) studied the exchange of data and decision support reminders between the two health systems, and (3) captured lessons. During the six month pilot study, there were 1339 patient encounters in which information was successfully exchanged. Preventive care reminders were displayed during 57% of patient visits, most often reminding physicians to monitor blood pressure for hypertensive patients (29%) and order eye exams for patients with diabetes (28%). Lessons learned were grouped into five themes: performance, governance, semantic interoperability, ongoing adjustments, and usability. Remote, asynchronous cloud-based decision support performed reasonably well, although issues concerning governance, semantic interoperability, and usability remain key challenges for successful adoption and use of cloud-based CDS that will require collaboration between biomedical informatics and computer science disciplines. Decision support in the cloud is feasible and may be a reasonable path toward achieving better support of clinical decision-making across the widest range of health care providers. Published by Elsevier B.V.

  2. Problem formulation, metrics, open government, and on-line collaboration

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schofield, K.; Young, S.; Shaw, D.

    2010-12-01

    Problem formulation leading to effective environmental management, including synthesis and application of science by government agencies, may benefit from collaborative on-line environments. This is illustrated by two interconnected projects: 1) literature-based evidence tools that support causal assessment and problem formulation, and 2) development of output, outcome, and sustainability metrics for tracking environmental conditions. Specifically, peer-production mechanisms allow for global contribution to science-based causal evidence databases, and subsequent crowd-sourced development of causal networks supported by that evidence. In turn, science-based causal networks may inform problem formulation and selection of metrics or indicators to track environmental condition (or problem status). Selecting and developing metrics in a collaborative on-line environment may improve stakeholder buy-in, the explicit relevance of metrics to planning, and the ability to approach problem apportionment or accountability, and to define success or sustainability. Challenges include contribution governance, data-sharing incentives, linking on-line interfaces to data service providers, and the intersection of environmental science and social science. Degree of framework access and confidentiality may vary by group and/or individual, but may ultimately be geared at demonstrating connections between science and decision making and supporting a culture of open government, by fostering transparency, public engagement, and collaboration.

  3. Value of information analysis for interventional and counterfactual Bayesian networks in forensic medical sciences.

    PubMed

    Constantinou, Anthony Costa; Yet, Barbaros; Fenton, Norman; Neil, Martin; Marsh, William

    2016-01-01

    Inspired by real-world examples from the forensic medical sciences domain, we seek to determine whether a decision about an interventional action could be subject to amendments on the basis of some incomplete information within the model, and whether it would be worthwhile for the decision maker to seek further information prior to suggesting a decision. The method is based on the underlying principle of Value of Information to enhance decision analysis in interventional and counterfactual Bayesian networks. The method is applied to two real-world Bayesian network models (previously developed for decision support in forensic medical sciences) to examine the average gain in terms of both Value of Information (average relative gain ranging from 11.45% and 59.91%) and decision making (potential amendments in decision making ranging from 0% to 86.8%). We have shown how the method becomes useful for decision makers, not only when decision making is subject to amendments on the basis of some unknown risk factors, but also when it is not. Knowing that a decision outcome is independent of one or more unknown risk factors saves us from the trouble of seeking information about the particular set of risk factors. Further, we have also extended the assessment of this implication to the counterfactual case and demonstrated how answers about interventional actions are expected to change when some unknown factors become known, and how useful this becomes in forensic medical science. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Towards a more open debate about values in decision-making on agricultural biotechnology.

    PubMed

    Devos, Yann; Sanvido, Olivier; Tait, Joyce; Raybould, Alan

    2014-12-01

    Regulatory decision-making over the use of products of new technology aims to be based on science-based risk assessment. In some jurisdictions, decision-making about the cultivation of genetically modified (GM) plants is blocked supposedly because of scientific uncertainty about risks to the environment. However, disagreement about the acceptability of risks is primarily a dispute over normative values, which is not resolvable through natural sciences. Natural sciences may improve the quality and relevance of the scientific information used to support environmental risk assessments and make scientific uncertainties explicit, but offer little to resolve differences about values. Decisions about cultivating GM plants will thus not necessarily be eased by performing more research to reduce scientific uncertainty in environmental risk assessments, but by clarifying the debate over values. We suggest several approaches to reveal values in decision-making: (1) clarifying policy objectives; (2) determining what constitutes environmental harm; (3) making explicit the factual and normative premises on which risk assessments are based; (4) better demarcating environmental risk assessment studies from ecological research; (5) weighing the potential for environmental benefits (i.e., opportunities) as well as the potential for environmental harms (i.e., risks); and (6) expanding participation in the risk governance of GM plants. Recognising and openly debating differences about values will not remove controversy about the cultivation of GM plants. However, by revealing what is truly in dispute, debates about values will clarify decision-making criteria.

  5. Research implications of science-informed, value-based decision making.

    PubMed

    Dowie, Jack

    2004-01-01

    In 'Hard' science, scientists correctly operate as the 'guardians of certainty', using hypothesis testing formulations and value judgements about error rates and time discounting that make classical inferential methods appropriate. But these methods can neither generate most of the inputs needed by decision makers in their time frame, nor generate them in a form that allows them to be integrated into the decision in an analytically coherent and transparent way. The need for transparent accountability in public decision making under uncertainty and value conflict means the analytical coherence provided by the stochastic Bayesian decision analytic approach, drawing on the outputs of Bayesian science, is needed. If scientific researchers are to play the role they should be playing in informing value-based decision making, they need to see themselves also as 'guardians of uncertainty', ensuring that the best possible current posterior distributions on relevant parameters are made available for decision making, irrespective of the state of the certainty-seeking research. The paper distinguishes the actors employing different technologies in terms of the focus of the technology (knowledge, values, choice); the 'home base' mode of their activity on the cognitive continuum of varying analysis-to-intuition ratios; and the underlying value judgements of the activity (especially error loss functions and time discount rates). Those who propose any principle of decision making other than the banal 'Best Principle', including the 'Precautionary Principle', are properly interpreted as advocates seeking to have their own value judgements and preferences regarding mode location apply. The task for accountable decision makers, and their supporting technologists, is to determine the best course of action under the universal conditions of uncertainty and value difference/conflict.

  6. International Society for the Study of Fatty Acids and Lipids 2016 Debate: For Science-Based Dietary Guidelines on Fats, Meta-Analysis and Systematic Reviews Are Decisive.

    PubMed

    Nettleton, Joyce A; von Schacky, Clemens; Brouwer, Ingeborg A; Koletzko, Berthold

    2017-01-01

    This paper summarizes a debate on whether meta-analyses and systematic reviews are decisive in formulating guidelines for dietary fat. Held during the 12th congress of the International Society for the Study of Fatty Acids and Lipids in Stellenbosch, South Africa, September 7, 2016, the debate was hosted by the International Union of Nutritional Sciences and the International Expert Movement to Improve Dietary Fat Quality (IEM, www.theiem.org). Clemens von Schacky, Ludwig Maximilians-University, Munich, Germany, supported the statement, describing the types of weaknesses in individual studies and clinical trials. With examples of how to overcome such limitations, he concluded that nutritional guidelines on fat need a proper scientific basis in which randomized controlled trials (RCTs) with clinical endpoints and their meta-analyses are essential and decisive. In contention, Ingeborg Brouwer, Vrije Universiteit, Amsterdam, declared that recommendations on dietary fat intake should always be based on the totality of the evidence, including physiologic and biochemical knowledge and associations from observational epidemiology. RCTs and meta-analyses have their shortcomings, but well-conducted systematic reviews and meta-analyses support a transparent process for developing dietary fat guidelines. Participants agreed that evidence-based decision-making for dietary guidance should consider all the best available evidence using a transparent, systematic review. © 2017 The Author(s) Published by S. Karger AG, Basel.

  7. An International Position Statement on the Management of Frailty in Diabetes Mellitus: Summary of Recommendations 2017.

    PubMed

    Sinclair, A J; Abdelhafiz, A; Dunning, T; Izquierdo, M; Rodriguez Manas, L; Bourdel-Marchasson, I; Morley, J E; Munshi, M; Woo, J; Vellas, B

    2018-01-01

    The International Position Statement provides the opportunity to summarise all existing clinical trial and best practice evidence for older people with frailty and diabetes. It is the first document of its kind and is intended to support clinical decisions that will enhance safety in management and promote high quality care. The Review Group sought evidence from a wide range of studies that provide sufficient confidence (in the absence of grading) for the basis of each recommendation. This was supported by a given rationale and key references for our recommendations in each section, all of which have been reviewed by leading international experts. Searches for any relevant clinical evidence were generally limited to English language citations over the previous 15 years. The following databases were examined: Embase, Medline/PubMed, Cochrane Trials Register, Cinahl, and Science Citation. Hand searching of 16 key major peer-reviewed journals was undertaken by two reviewers (AJS and AA) and these included Lancet, Diabetes, Diabetologia, Diabetes Care, British Medical Journal, New England Journal of Medicine, Journal of the American Medical Association, Journal of Frailty and Aging, Journal of the American Medical Directors Association, and Journals of Gerontology - Series A Biological Sciences and Medical Sciences. Two scientific supporting statements have been provided that relate to the area of frailty and diabetes; this is accompanied by evidence-based decisions in 9 clinical domains. The Summary has been supported by diagrammatic figures and a table relating to the inter-relations between frailty and diabetes, a frailty assessment pathway, an exercise-based programme of intervention, a glucose-lowering algorithm with a description of available therapies. We have provided an up to date evidence-based approach to practical decision-making for older adults with frailty and diabetes. This Summary document includes a user-friendly set of recommendations that should be considered for implementation in primary, community-based and secondary care settings.

  8. Technology Infusion Challenges from a Decision Support Perspective

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Weisbin, C. R.

    2009-01-01

    In a restricted science budget environment and increasingly numerous required technology developments, the technology investment decisions within NASA are objectively more and more difficult to make such that the end results are satisfying the technical objectives and all the organizational constraints. Under these conditions it is rationally desirable to build an investment portfolio, which has the highest possible technology infusion rate. Arguably the path to infusion is subject to many influencing factors, but here only the challenges associated with the very initial stages are addressed: defining the needs and the subsequent investment decision-support process. It is conceivable that decision consistency and possibly its quality suffer when the decision-making process has limited or no traceability. This paper presents a structured decision-support framework aiming to provide traceable, auditable, infusion- driven recommendations towards a selection process in which these recommendations are used as reference points in further discussions among stakeholders. In this framework addressing well-defined requirements, different measures of success can be defined based on traceability to specific selection criteria. As a direct result, even by using simplified decision models the likelihood of infusion can be probed and consequently improved.

  9. U.S. Geological Survey Program on the South Florida Ecosystem; proceedings of South Florida Restoration Science Forum, May 17-19, 1999, Boca Raton, Florida

    USGS Publications Warehouse

    Gerould, Sarah; Higer, Aaron

    1999-01-01

    The purpose of the forum is to highlight the powerful connection between science and management decisions in restoration efforts. The public's investment in science is paying off in support of better management decisions and restoration of imperiled south Florida Ecosystems, including the internationally recognized, globally significant Everglades. The forum affords a unique opportunity for elected officials and other policy- and decision makers, along with the general public, to see--under one roof--highlights of the most significant restoration science and management efforts underway. The forum promotes the link between science and management. Scientists and decisionmakers will come together to discuss the needs of each in order to ensure that plans for restoration are based in science and are the most cost effective and highest quality possible. Continued vigilance over south Florida ecosystems is essential to prevent further harm and to restore them. Representatives from numerous federal, state, local, and nongovernmental entities are organizing the forum for the Science Coordination Team of the South Florida Ecosystem Working Group. The U.S. Geological Survey and the South Florida Water Management District are the primary hosts of the forum.

  10. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Urban, N.; Shakun, J. D.; Mahowald, N. M.; Clark, P. U.; Bartlein, P. J.; Mix, A. C.; Rosell-Melé, A.

    2011-12-01

    In 1959 IJ Good published the discussion "Kinds of Probability" in Science. Good identified (at least) five kinds. The need for (at least) a sixth kind of probability when quantifying uncertainty in the context of climate science is discussed. This discussion brings out the differences in weather-like forecasting tasks and climate-links tasks, with a focus on the effective use both of science and of modelling in support of decision making. Good also introduced the idea of a "Dynamic probability" a probability one expects to change without any additional empirical evidence; the probabilities assigned by a chess playing program when it is only half thorough its analysis being an example. This case is contrasted with the case of "Mature probabilities" where a forecast algorithm (or model) has converged on its asymptotic probabilities and the question hinges in whether or not those probabilities are expected to change significantly before the event in question occurs, even in the absence of new empirical evidence. If so, then how might one report and deploy such immature probabilities in scientific-support of decision-making rationally? Mature Probability is suggested as a useful sixth kind, although Good would doubtlessly argue that we can get by with just one, effective communication with decision makers may be enhanced by speaking as if the others existed. This again highlights the distinction between weather-like contexts and climate-like contexts. In the former context one has access to a relevant climatology (a relevant, arguably informative distribution prior to any model simulations), in the latter context that information is not available although one can fall back on the scientific basis upon which the model itself rests, and estimate the probability that the model output is in fact misinformative. This subjective "probability of a big surprise" is one way to communicate the probability of model-based information holding in practice, the probability that the information the model-based probability is conditioned on holds. It is argued that no model-based climate-like probability forecast is complete without a quantitative estimate of its own irrelevance, and that the clear identification of model-based probability forecasts as mature or immature, are critical elements for maintaining the credibility of science-based decision support, and can shape uncertainty quantification more widely.

  11. IONIO Project: Computer-mediated Decision Support System and Communication in Ocean Science

    NASA Astrophysics Data System (ADS)

    Oddo, Paolo; Acierno, Arianna; Cuna, Daniela; Federico, Ivan; Galati, Maria Barbara; Awad, Esam; Korres, Gerasimos; Lecci, Rita; Manzella, Giuseppe M. R.; Merico, Walter; Perivoliotis, Leonidas; Pinardi, Nadia; Shchekinova, Elena; Mannarini, Gianandrea; Vamvakaki, Chrysa; Pecci, Leda; Reseghetti, Franco

    2013-04-01

    A decision Support System is composed by four main steps. The first one is the definition of the problem, the issue to be covered, decisions to be taken. Different causes can provoke different problems, for each of the causes or its effects it is necessary to define a list of information and/or data that are required in order to take the better decision. The second step is the determination of sources from where information/data needed for decision-making can be obtained and who has that information. Furthermore it must be possible to evaluate the quality of the sources to see which of them can provide the best information, and identify the mode and format in which the information is presented. The third step is relying on the processing of knowledge, i.e. if the information/data are fitting for purposes. It has to be decided which parts of the information/data need to be used, what additional data or information is necessary to access, how can information be best presented to be able to understand the situation and take decisions. Finally, the decision making process is an interactive and inclusive process involving all concerned parties, whose different views must be taken into consideration. A knowledge based discussion forum is necessary to reach a consensus. A decision making process need to be examined closely and refined, and modified to meet differing needs over time. The report is presenting legal framework and knowledge base for a scientific based decision support system and a brief exploration of some of the skills that enhances the quality of decisions taken.

  12. The Wildland Fire Decision Support System: Integrating science, technology, and fire management

    Treesearch

    Morgan Pence; Tom Zimmerman

    2011-01-01

    Federal agency policy requires documentation and analysis of all wildland fire response decisions. In the past, planning and decision documentation for fires were completed using multiple unconnected processes, yielding many limitations. In response, interagency fire management executives chartered the development of the Wildland Fire Decision Support System (WFDSS)....

  13. Integrated Energy Solutions Research | Integrated Energy Solutions | NREL

    Science.gov Websites

    that spans the height and width of the wall they are facing. Decision Science and Informatics Enabling decision makers with rigorous, technology-neutral, data-backed decision support to maximize the impact of security in energy systems through analysis, decision support, advanced energy technology development, and

  14. NASA Enterprise Architecture and Its Use in Transition of Research Results to Operations

    NASA Astrophysics Data System (ADS)

    Frisbie, T. E.; Hall, C. M.

    2006-12-01

    Enterprise architecture describes the design of the components of an enterprise, their relationships and how they support the objectives of that enterprise. NASA Stennis Space Center leads several projects involving enterprise architecture tools used to gather information on research assets within NASA's Earth Science Division. In the near future, enterprise architecture tools will link and display the relevant requirements, parameters, observatories, models, decision systems, and benefit/impact information relationships and map to the Federal Enterprise Architecture Reference Models. Components configured within the enterprise architecture serving the NASA Applied Sciences Program include the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool. The Earth Science Components Knowledge Base systematically catalogues NASA missions, sensors, models, data products, model products, and network partners appropriate for consideration in NASA Earth Science applications projects. The Systems Components database is a centralized information warehouse of NASA's Earth Science research assets and a critical first link in the implementation of enterprise architecture. The Earth Science Architecture Tool is used to analyze potential NASA candidate systems that may be beneficial to decision-making capabilities of other Federal agencies. Use of the current configuration of NASA enterprise architecture (the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool) has far exceeded its original intent and has tremendous potential for the transition of research results to operational entities.

  15. Building a Shared Understanding of Phenology

    NASA Astrophysics Data System (ADS)

    Rosemartin, A.; Posthumus, E.; Gerst, K.

    2017-12-01

    The USA National Phenology Network (USA-NPN) seeks to advance the science of phenology and support the use of phenology information in decision-making. We envision that natural resource, human health, recreation and land-use decisions, in the context of a variable and changing climate, will be supported by USA-NPN products and tools. To achieve this vision we developed a logic model, breaking down the necessary inputs (e.g., IT infrastructure), participants, activities and the short- to long-term goals (e.g., use of phenological information in adaptive management). Here we compare the ongoing activities and outcomes of three recent collaborations to our logic model, in order to improve the model and inform future collaborations. At Midway Atoll National Wildlife Refuge, resource managers use the USA-NPN's phenology monitoring program to pinpoint the minimum number of days between initial growth and seed set in an invasive species. The data output and calendar visualizations that USA-NPN provides are sufficient to identify the appropriate treatment window. In contrast to a direct relationship with a natural resource manager using USA-NPN tools and products, some collaborations require substantive iterative work between partners. USA-NPN and National Park Service staff, along with academic researchers, assessed advancement in the timing of spring, and delivered the work in a format appropriate for park managers. Lastly, collaborations with indigenous communities reveal a requirement to reconsider the relationship between Western science and indigenous knowledge systems, as well as address ethical considerations and develop trust, before Western science can be meaningfully incorporated into decision-making. While the USA-NPN is a boundary organization, working in between federal agencies, states and universities, and is mandated to support decision-making, we still face challenges in generating usable science. We share lessons learned based on our experience with diverse and evolving partnerships.

  16. Science, Worldviews, and Education

    NASA Astrophysics Data System (ADS)

    Gauch, Hugh G.

    2009-06-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning the spectrum from positive to neutral to negative. To delineate a mainstream perspective on science, seven key characterizations or “pillars” of science are adopted from position papers from the world’s largest scientific organization, the American Association for the Advancement of Science. Based on those pillars and an examination of scientific method, I argue that the presuppositions and reasoning of science can and should be worldview independent, but empirical and public evidence from the sciences and humanities can support conclusions that are worldview distinctive. I also critique several problematic perspectives: asserting that science can say nothing about worldviews and the opposite extreme of insisting that science decisively supports one particular worldview; weakening science so severely that it lacks truth claims; and burdening science with unnecessary presuppositions. Worldview-distinctive conclusions based on empirical evidence are suitable for individual convictions and public discussions, but not for institutional endorsements and scientific literacy requirements.

  17. Decision Support Tool for Deep Energy Efficiency Retrofits in DoD Installations

    DTIC Science & Technology

    2014-01-01

    representations (HDMR). Chemical Engineering Science, 57, 4445–4460. 2. Sobol ’, I., 2001. Global sensitivity indices for nonlinear mathematical...models and their Monte Carlo estimates. Mathematics and computers in simulation, 55, 271–280. 3. Sobol , I. and Kucherenko, S., 2009. Derivative based...representations (HDMR). Chemical Engineering Science, 57, 4445–4460. 16. Sobol ’, I., 2001. Global sensitivity indices for nonlinear mathematical models and

  18. Decision science: a scientific approach to enhance public health budgeting.

    PubMed

    Honoré, Peggy A; Fos, Peter J; Smith, Torney; Riley, Michael; Kramarz, Kim

    2010-01-01

    The allocation of resources for public health programming is a complicated and daunting responsibility. Financial decision-making processes within public health agencies are especially difficult when not supported with techniques for prioritizing and ranking alternatives. This article presents a case study of a decision analysis software model that was applied to the process of identifying funding priorities for public health services in the Spokane Regional Health District. Results on the use of this decision support system provide insights into how decision science models, which have been used for decades in business and industry, can be successfully applied to public health budgeting as a means of strengthening agency financial management processes.

  19. Conditions and Decisions of Urban Elementary Teachers Regarding Instruction of STEM Curriculum

    ERIC Educational Resources Information Center

    Smith, Erica L.; Parker, Carolyn A.; McKinney, David; Grigg, Jeffrey

    2018-01-01

    The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision-making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their…

  20. The role of risk-based prioritization in total quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, C.T.

    1994-10-01

    The climate in which government managers must make decisions grows more complex and uncertain. All stakeholders - the public, industry, and Congress - are demanding greater consciousness, responsibility, and accountability of programs and their budgets. Yet, managerial decisions have become multifaceted, involve greater risk, and operate over much longer time periods. Over the last four or five decades, as policy analysis and decisions became more complex, scientists from psychology, operations research, systems science, and economics have developed a more or less coherent process called decision analysis to aid program management. The process of decision analysis - a systems theoretic approachmore » - provides the backdrop for this paper. The Laboratory Integrated Prioritization System (LIPS) has been developed as a systems analytic and risk-based prioritization tool to aid the management of the Tri-Labs` (Lawrence Livermore, Los Alamos, and Sandia) operating resources. Preliminary analyses of the effects of LIPS has confirmed the practical benefits of decision and systems sciences - the systematic, quantitative reduction in uncertainty. To date, the use of LIPS - and, hence, its value - has been restricted to resource allocation within the Tri-Labs` operations budgets. This report extends the role of risk-based prioritization to the support of DOE Total Quality Management (TQM) programs. Furthermore, this paper will argue for the requirement to institutionalize an evolutionary, decision theoretic approach to the policy analysis of the Department of Energy`s Program Budget.« less

  1. Cognitive Works Aids for C2 Planning: Actionable Information to Support Operational Decision Making

    DTIC Science & Technology

    2005-06-01

    Information to Support Operational Decision Making Topic: Decisionmaking and Cognitive Science Jeffrey Wampler†*, Randall Whitaker§, Emilie...channeled through this state-of- the- art mobility C2 hub. It is a global AOC with several hundred people planning and executing around 350 missions...2005 Topical Area: Decisionmaking and Cognitive Science CONFERENCE PRESENTATION BY: RANDALL WHITAKER, PH.D. NORTHROP GRUMMAN INFORMATION TECHNOLOGY

  2. In the Shadow of Sputnik: A Transnational Approach to Menzies Support for Science Education in Australia, 1957-1964

    ERIC Educational Resources Information Center

    Clark, Jennifer

    2017-01-01

    This paper examines prime minister Robert Menzies decision to support science education in Australian schools in 1963. This was a landmark shift in policy for the federal government, but in many ways mirrors the decision of Eisenhower who brought down the National Defense Education Act (NDEA) in 1958. The paper uses a transnational approach to…

  3. Complexity Science: A Mechanism for Strategic Foresight and Resiliency in National Security Decision-Making.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, Mark R.; Hayden, Nancy Kay; Backus, George A.

    Most national policy decisions are complex with a variety of stakeholders, disparate interests and the potential for unintended consequences. While a number of analytical tools exist to help decision makers sort through the mountains of data and myriad of options, decision support teams are increasingly turning to complexity science for improved analysis and better insight into the potential impact of policy decisions. While complexity science has great potential, it has only proven useful in limited case s and when properly applied. In advance of more widespread use, a national - level effort to refine complexity science and more rigorously establishmore » its technical underpinnings is recommended.« less

  4. A Web-Based Earth-Systems Knowledge Portal and Collaboration Platform

    NASA Astrophysics Data System (ADS)

    D'Agnese, F. A.; Turner, A. K.

    2010-12-01

    In support of complex water-resource sustainability projects in the Great Basin region of the United States, Earth Knowledge, Inc. has developed several web-based data management and analysis platforms that have been used by its scientists, clients, and public to facilitate information exchanges, collaborations, and decision making. These platforms support accurate water-resource decision-making by combining second-generation internet (Web 2.0) technologies with traditional 2D GIS and web-based 2D and 3D mapping systems such as Google Maps, and Google Earth. Most data management and analysis systems use traditional software systems to address the data needs and usage behavior of the scientific community. In contrast, these platforms employ more accessible open-source and “off-the-shelf” consumer-oriented, hosted web-services. They exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize earth, engineering, and social science datasets. Thus, they respond to the information needs and web-interface expectations of both subject-matter experts and the public. Because the platforms continue to gather and store all the contributions of their broad-spectrum of users, each new assessment leverages the data, information, and expertise derived from previous investigations. In the last year, Earth Knowledge completed a conceptual system design and feasibility study for a platform, which has a Knowledge Portal providing access to users wishing to retrieve information or knowledge developed by the science enterprise and a Collaboration Environment Module, a framework that links the user-access functions to a Technical Core supporting technical and scientific analyses including Data Management, Analysis and Modeling, and Decision Management, and to essential system administrative functions within an Administrative Module. The over-riding technical challenge is the design and development of a single technical platform that is accessed through a flexible series of knowledge portal and collaboration environment styles reflecting the information needs and user expectations of a diverse community of users. Recent investigations have defined the information needs and expectations of the major end-users and also have reviewed and assessed a wide variety of modern web-based technologies. Combining these efforts produced design specifications and recommendations for the selection and integration of web- and client-based tools. When fully developed, the resulting platform will: -Support new, advanced information systems and decision environments that take full advantage of multiple data sources and platforms; -Provide a distribution network tailored to the timely delivery of products to a broad range of users that are needed to support applications in disaster management, resource management, energy, and urban sustainability; -Establish new integrated multiple-user requirements and knowledge databases that support researchers and promote infusion of successful technologies into existing processes; and -Develop new decision support strategies and presentation methodologies for applied earth science applications to reduce risk, cost, and time.

  5. Supporting tribal agriculture and natural resources in a changing climate working group

    USDA-ARS?s Scientific Manuscript database

    The U.S. Department of Agriculture (USDA) Climate Hubs were created in 2014 to deliver science-based, region-specific information and technologies to enable climate-informed decision-making. Our stakeholders include agricultural and natural resource managers (i.e. farmers, ranchers, forest land mana...

  6. Verification and Validation of NASA-Supported Enhancements to PECAD's Decision Support Tools

    NASA Technical Reports Server (NTRS)

    McKellipo, Rodney; Ross, Kenton W.

    2006-01-01

    The NASA Applied Sciences Directorate (ASD), part of the Earth-Sun System Division of NASA's Science Mission Directorate, has partnered with the U.S. Department of Agriculture (USDA) to enhance decision support in the area of agricultural efficiency-an application of national importance. The ASD integrated the results of NASA Earth science research into USDA decision support tools employed by the USDA Foreign Agricultural Service (FAS) Production Estimates and Crop Assessment Division (PECAD), which supports national decision making by gathering, analyzing, and disseminating global crop intelligence. Verification and validation of the following enhancements are summarized: 1) Near-real-time Moderate Resolution Imaging Spectroradiometer (MODIS) products through PECAD's MODIS Image Gallery; 2) MODIS Normalized Difference Vegetation Index (NDVI) time series data through the USDA-FAS MODIS NDVI Database; and 3) Jason-1 and TOPEX/Poseidon lake level estimates through PECAD's Global Reservoir and Lake Monitor. Where possible, each enhanced product was characterized for accuracy, timeliness, and coverage, and the characterized performance was compared to PECAD operational requirements. The MODIS Image Gallery and the GRLM are more mature and have achieved a semi-operational status, whereas the USDA-FAS MODIS NDVI Database is still evolving and should be considered

  7. Science in the regulatory setting: a challenging but incompatible mix?

    PubMed

    Yetley, Elizabeth A

    2007-01-01

    Regulatory decisions informed by sound science have an important role in many regulatory applications involving drugs and foods, including applications related to dietary supplements. However, science is only one of many factors that must be taken into account in the regulatory decision-making process. In many cases, the scientific input to a regulatory decision must compete with other factors (e.g. economics, legal requirements, stakeholder interests) for impact on the resultant policy decision. Therefore, timely and effective articulation of the available science to support a regulatory decision can significantly affect the relative weight given to science. However, the incorporation of science into the regulatory process for dietary supplements is often fraught with challenges. The available scientific evidence has rarely been designed for the purpose of addressing regulatory questions and is often preliminary and of widely varying scientific quality. To add to the confusion, the same scientific evidence may result in what appears to be different regulatory decisions because the context in which the science is used differs. The underlying assumption is that scientists who have a basic understanding of the interface between science and policy decisions can more effectively provide scientific input into these decisions.

  8. Integrating environmental monitoring with cumulative effects management and decision making.

    PubMed

    Cronmiller, Joshua G; Noble, Bram F

    2018-05-01

    Cumulative effects (CE) monitoring is foundational to emerging regional and watershed CE management frameworks, yet monitoring is often poorly integrated with CE management and decision-making processes. The challenges are largely institutional and organizational, more so than scientific or technical. Calls for improved integration of monitoring with CE management and decision making are not new, but there has been limited research on how best to integrate environmental monitoring programs to ensure credible CE science and to deliver results that respond to the more immediate questions and needs of regulatory decision makers. This paper examines options for the integration of environmental monitoring with CE frameworks. Based on semistructured interviews with practitioners, regulators, and other experts in the Lower Athabasca, Alberta, Canada, 3 approaches to monitoring system design are presented. First, a distributed monitoring system, reflecting the current approach in the Lower Athabasca, where monitoring is delegated to different external programs and organizations; second, a 1-window system in which monitoring is undertaken by a single, in-house agency for the purpose of informing management and regulatory decision making; third, an independent system driven primarily by CE science and understanding causal relationships, with knowledge adopted for decision support where relevant to specific management questions. The strengths and limitations of each approach are presented. A hybrid approach may be optimal-an independent, nongovernment, 1-window model for CE science, monitoring, and information delivery-capitalizing on the strengths of distributed, 1-window, and independent monitoring systems while mitigating their weaknesses. If governments are committed to solving CE problems, they must invest in the long-term science needed to do so; at the same time, if science-based monitoring programs are to be sustainable over the long term, they must be responsive to the more immediate, often shorter term needs and CE information requirements of decision makers. Integr Environ Assess Manag 2018;14:407-417. © 2018 SETAC. © 2018 SETAC.

  9. Evaluate the ability of clinical decision support systems (CDSSs) to improve clinical practice.

    PubMed

    Ajami, Sima; Amini, Fatemeh

    2013-01-01

    Prevalence of new diseases, medical science promotion and increase of referring to health care centers, provide a good situation for medical errors growth. Errors can involve medicines, surgery, diagnosis, equipment, or lab reports. Medical errors can occur anywhere in the health care system: In hospitals, clinics, surgery centers, doctors' offices, nursing homes, pharmacies, and patients' homes. According to the Institute of Medicine (IOM), 98,000 people die every year from preventable medical errors. In 2010 from all referred medical error records to Iran Legal Medicine Organization, 46/5% physician and medical team members were known as delinquent. One of new technologies that can reduce medical errors is clinical decision support systems (CDSSs). This study was unsystematic-review study. The literature was searched on evaluate the "ability of clinical decision support systems to improve clinical practice" with the help of library, books, conference proceedings, data bank, and also searches engines available at Google, Google scholar. For our searches, we employed the following keywords and their combinations: medical error, clinical decision support systems, Computer-Based Clinical Decision Support Systems, information technology, information system, health care quality, computer systems in the searching areas of title, keywords, abstract, and full text. In this study, more than 100 articles and reports were collected and 38 of them were selected based on their relevancy. The CDSSs are computer programs, designed for help to health care careers. These systems as a knowledge-based tool could help health care manager in analyze evaluation, improvement and selection of effective solutions in clinical decisions. Therefore, it has a main role in medical errors reduction. The aim of this study was to express ability of the CDSSs to improve

  10. Let the Games Begin: New Opportunities to Address Climate Change Communication, Education, and Decision Support

    NASA Astrophysics Data System (ADS)

    Rooney-varga, J. N.; Sterman, J.; Jones, A.; Johnston, E.; Rath, K.; Nease, J.

    2014-12-01

    A rapid transition to a low-carbon, climate-resilient society is not only possible, but could also bring many co-benefits for public health, economic wellbeing, social equity, and more. The science supporting an urgent need for such a transition has never been clearer. Yet, social science data are also clear: the public in the US (and many other similar developed economies) does not, on average, share this sense of urgency, nor have policymakers shown a willingness to put scientific evidence above the perceptions of their constituents. The gulf between scientific and public understanding of climate change has spurred research on climate change communication, learning, and decision-making, identifying barriers such as misconceptions and faulty mental models of the climate and energy systems; poor understanding of complex, dynamic systems generally; and affective and social barriers to learning and action. There is also a growing opportunity to address these barriers, through tools that rely on active learning, that are social, engaging (and even fun), and that are grounded in rigorous science. An increasing number of decision-support computer simulations are being developed, intended to make complex technical problems accessible to non-experts in an interactive format. At the same time, the use of scenario planning, role-playing games, and active learning approaches are gaining ground in policy and education spheres. Simulation-based role-playing games bring these approaches together and can provide powerful learning experiences: they offer the potential to compress time and reality; create experiences without requiring the 'real thing;' explore the consequences of our decisions that often unfold over decades; and open affective and social learning pathways. Here, we offer a perspective on the potential of these tools in climate change education, communication, and decision-support, and a brief demonstration of one tool we have developed, World Energy.

  11. Uncertainty in Driftless Area Cold-Water Fishery Decision Making and a Framework for Stakeholder-Based Science

    NASA Astrophysics Data System (ADS)

    Schuster, Z.

    2015-12-01

    The paradigm of stakeholder-based science is becoming more popular as organizations such as the U.S. Department of the Interior Climate Science Centers adopt it as a way of providing practicable climate change information to practitioners. One of the key issues stakeholders face in adopting climate change information into their decision processes is how uncertainty is addressed and communicated. In this study, we conducted a series of semi-structured interviews with managers and scientists working on stream habitat restoration of cold-water fisheries in the Driftless Area of Wisconsin that were focused on how they interpret and manage uncertainty and what types of information they need to make better decisions. One of the important lessons we learned from the interviews is that if researchers are going to provide useful climate change information to stakeholders, they need to understand where and how decisions are made and what adaptation measures are actually available in a given decision arena. This method of incorporating social science methods into climate science production can provide a framework for researchers from the Climate Science Centers and others who are interested in pursuing stakeholder-based science. By indentifying a specific ecological system and conducting interviews with actors who work on that system, researchers will be able to gain a better understanding of how their climate change science can fit into existing or shape new decision processes. We also interpreted lessons learned from our interviews via existing literature in areas such as stakeholder-based modeling and the decision sciences to provide guidance specific to the stakeholder-based science process.

  12. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    NASA Astrophysics Data System (ADS)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five NASA centers (GSFC, LaRC, SSC, MSFC, ARC) participated and are currently conducting fifteen prototyping experiments covering eight of the twelve national priority applications - Energy, Coastal, Carbon, and Disaster Management; Agricultural Efficiency, Aviation, Air Quality, and Ecological Forecasting. Results from six experiments will be discussed highlighting purpose, expected results, enhancement to the decision-making process achieved, and the potential plans for future collaboration and sustainable projects.

  13. Exploring Institutional Mechanisms for Scientific Input into the Management Cycle of the National Protected Area Network of Peru: Gaps and Opportunities.

    PubMed

    López-Rodríguez, M D; Castro, H; Arenas, M; Requena-Mullor, J M; Cano, A; Valenzuela, E; Cabello, J

    2017-12-01

    Understanding how to improve decision makers' use of scientific information across their different scales of management is a core challenge for narrowing the gap between science and conservation practice. Here, we present a study conducted in collaboration with decision makers that aims to explore the functionality of the mechanisms for scientific input within the institutional setting of the National Protected Area Network of Peru. First, we analyzed institutional mechanisms to assess the scientific information recorded by decision makers. Second, we developed two workshops involving scientists, decision makers and social actors to identify barriers to evidence-based conservation practice. Third, we administered 482 questionnaires to stakeholders to explore social perceptions of the role of science and the willingness to collaborate in the governance of protected areas. The results revealed that (1) the institutional mechanisms did not effectively promote the compilation and application of scientific knowledge for conservation practice; (2) six important barriers hindered scientific input in management decisions; and (3) stakeholders showed positive perceptions about the involvement of scientists in protected areas and expressed their willingness to collaborate in conservation practice. This collaborative research helped to (1) identify gaps and opportunities that should be addressed for increasing the effectiveness of the institutional mechanisms and (2) support institutional changes integrating science-based strategies for strengthening scientific input in decision-making. These insights provide a useful contextual orientation for scholars and decision makers interested in conducting empirical research to connect scientific inputs with operational aspects of the management cycle in other institutional settings around the world.

  14. Exploring Institutional Mechanisms for Scientific Input into the Management Cycle of the National Protected Area Network of Peru: Gaps and Opportunities

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, M. D.; Castro, H.; Arenas, M.; Requena-Mullor, J. M.; Cano, A.; Valenzuela, E.; Cabello, J.

    2017-12-01

    Understanding how to improve decision makers' use of scientific information across their different scales of management is a core challenge for narrowing the gap between science and conservation practice. Here, we present a study conducted in collaboration with decision makers that aims to explore the functionality of the mechanisms for scientific input within the institutional setting of the National Protected Area Network of Peru. First, we analyzed institutional mechanisms to assess the scientific information recorded by decision makers. Second, we developed two workshops involving scientists, decision makers and social actors to identify barriers to evidence-based conservation practice. Third, we administered 482 questionnaires to stakeholders to explore social perceptions of the role of science and the willingness to collaborate in the governance of protected areas. The results revealed that (1) the institutional mechanisms did not effectively promote the compilation and application of scientific knowledge for conservation practice; (2) six important barriers hindered scientific input in management decisions; and (3) stakeholders showed positive perceptions about the involvement of scientists in protected areas and expressed their willingness to collaborate in conservation practice. This collaborative research helped to (1) identify gaps and opportunities that should be addressed for increasing the effectiveness of the institutional mechanisms and (2) support institutional changes integrating science-based strategies for strengthening scientific input in decision-making. These insights provide a useful contextual orientation for scholars and decision makers interested in conducting empirical research to connect scientific inputs with operational aspects of the management cycle in other institutional settings around the world.

  15. Recent Challenges Facing US Government Climate Science Access and Application

    NASA Astrophysics Data System (ADS)

    Goldman, G. T.; Carter, J. M.; Licker, R.

    2017-12-01

    Climate scientists have long faced politicization of their work, especially those working within the US federal government. However, political interference in federal government climate change science has escalated in the current political era with efforts by political actors to undermine and disrupt infrastructure supporting climate science. This has included funding changes, decreased access to climate science information on federal agency websites, restrictions on media access to scientific experts within the government, and rolling back of science-based policies designed to incorporate and respond to climate science findings. What are the impacts of such changes for both the climate science community and the broader public? What can be done to ensure that access to and application of climate change-related research to policy decisions continues? We will summarize and analyze the state of climate change research and application in the US government. The impacts of political interference in climate change science as well as opportunities the scientific community has to support climate science in the US government, will be discussed.

  16. Integrated Science Assessment (ISA) of Ozone and Related ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Integrated Science Assessment of Ozone and Related Photochemical Oxidants. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding the adequacy of the current national ambient air quality standards for ozone to protect human health, public welfare, and the environment. Critical evaluation and integration of the evidence on health and environmental effects of ozone to provide scientific support for the review of the NAAQS for ozone.

  17. Questioning the Relevance of Model-Based Probability Statements on Extreme Weather and Future Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2007-12-01

    We question the relevance of climate-model based Bayesian (or other) probability statements for decision support and impact assessment on spatial scales less than continental and temporal averages less than seasonal. Scientific assessment of higher resolution space and time scale information is urgently needed, given the commercial availability of "products" at high spatiotemporal resolution, their provision by nationally funded agencies for use both in industry decision making and governmental policy support, and their presentation to the public as matters of fact. Specifically we seek to establish necessary conditions for probability forecasts (projections conditioned on a model structure and a forcing scenario) to be taken seriously as reflecting the probability of future real-world events. We illustrate how risk management can profitably employ imperfect models of complicated chaotic systems, following NASA's study of near-Earth PHOs (Potentially Hazardous Objects). Our climate models will never be perfect, nevertheless the space and time scales on which they provide decision- support relevant information is expected to improve with the models themselves. Our aim is to establish a set of baselines of internal consistency; these are merely necessary conditions (not sufficient conditions) that physics based state-of-the-art models are expected to pass if their output is to be judged decision support relevant. Probabilistic Similarity is proposed as one goal which can be obtained even when our models are not empirically adequate. In short, probabilistic similarity requires that, given inputs similar to today's empirical observations and observational uncertainties, we expect future models to produce similar forecast distributions. Expert opinion on the space and time scales on which we might reasonably expect probabilistic similarity may prove of much greater utility than expert elicitation of uncertainty in parameter values in a model that is not empirically adequate; this may help to explain the reluctance of experts to provide information on "parameter uncertainty." Probability statements about the real world are always conditioned on some information set; they may well be conditioned on "False" making them of little value to a rational decision maker. In other instances, they may be conditioned on physical assumptions not held by any of the modellers whose model output is being cast as a probability distribution. Our models will improve a great deal in the next decades, and our insight into the likely climate fifty years hence will improve: maintaining the credibility of the science and the coherence of science based decision support, as our models improve, require a clear statement of our current limitations. What evidence do we have that today's state-of-the-art models provide decision-relevant probability forecasts? What space and time scales do we currently have quantitative, decision-relevant information on for 2050? 2080?

  18. The Role of Informal Support Networks in Teaching the Nature of Science

    NASA Astrophysics Data System (ADS)

    Herman, Benjamin C.; Olson, Joanne K.; Clough, Michael P.

    2017-06-01

    This study reports the participation of 13 secondary science teachers in informal support networks and how that participation was associated with their nature of science (NOS) teaching practices 2 to 5 years after having graduated from the same science teacher education program. The nine teachers who participated in informal support networks taught the NOS at high/medium levels, while the four non-participating teachers taught the NOS at low levels. The nine high/medium NOS implementation teachers credited the informal support networks for maintaining/heightening their sense of responsibility for teaching NOS and for helping them navigate institutional constraints that impede effective NOS instruction. Several high/medium NOS instruction implementers initially struggled to autonomously frame and resolve the complexities experienced in schools and thus drew from the support networks to engage in more sophisticated forms of teacher decision-making. In contrast, the NOS pedagogical decisions of the four teachers not participating in support networks were governed primarily by the expectations and constraints experienced in their schools. Implications of this study include the need for reconsidering the structure of teacher mentorship programs to ensure they do not promote archaic science teaching practices that are at odds with reform efforts in science education.

  19. Using Computer Simulations for Promoting Model-based Reasoning. Epistemological and Educational Dimensions

    NASA Astrophysics Data System (ADS)

    Develaki, Maria

    2017-11-01

    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.

  20. An Introspective Critique of Past, Present, and Future USGS Decision Support

    NASA Astrophysics Data System (ADS)

    Neff, B. P.; Pavlick, M.

    2017-12-01

    In response to increasing scrutiny of publicly funded science, the Water Mission Area of USGS is shifting its approach for informing decisions that affect the country. Historically, USGS has focused on providing sound science on cutting edge, societally relevant issues with the expectation that decision makers will take action on this information. In practice, scientists often do not understand or focus on the needs of decision makers and decision makers often cannot or do not utilize information produced by scientists. The Water Mission Area of USGS has recognized that it can better serve the taxpayer by delivering information more relevant to decision making in a form more conducive to its use. To this end, the Water Mission Area of USGS is seeking greater integration with the decision making process to better inform what information it produces. In addition, recognizing that the transfer of scientific knowledge to decision making is fundamentally a social process, USGS is embracing the use of social science to better inform how it delivers scientific information and facilitates its use. This study utilizes qualitative methods to document the evolution of decision support at USGS and provide a rationale for a shift in direction. Challenges to implementation are identified and collaborative opportunities to improve decision making are discussed.

  1. Quantitative Decision Support Requires Quantitative User Guidance

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2009-12-01

    Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output for a given problem is presented. Based on climate science, meteorology, and the details of the question in hand, this approach identifies necessary (never sufficient) conditions required for the rational use of climate model output in quantitative decision support tools. Inasmuch as climate forecasting is a problem of extrapolation, there will always be harsh limits on our ability to establish where a model is fit for purpose, this does not, however, limit us from identifying model noise as such, and thereby avoiding some cases of the misapplication and over interpretation of model output. It is suggested that failure to clearly communicate the limits of today’s climate model in providing quantitative decision relevant climate information to today’s users of climate information, would risk the credibility of tomorrow’s climate science and science based policy more generally.

  2. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-02-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  3. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-12-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  4. Incorporating Science into Decision-Making

    USGS Publications Warehouse

    Karl, Herman A.; Turner, Christine E.

    2003-01-01

    Alan Leshner's Editorial “Public engagement with science” (14 Feb., p. 977) highlights a conundrum: Why is science often ignored in important societal decisions, even as the call for decisions based on sound science escalates? One reason is that decision-making is often driven by a variety of nonscientific, adversarial, and stakeholder dynamics

  5. Bridging the gap between science and decision making.

    PubMed

    von Winterfeldt, Detlof

    2013-08-20

    All decisions, whether they are personal, public, or business-related, are based on the decision maker's beliefs and values. Science can and should help decision makers by shaping their beliefs. Unfortunately, science is not easily accessible to decision makers, and scientists often do not understand decision makers' information needs. This article presents a framework for bridging the gap between science and decision making and illustrates it with two examples. The first example is a personal health decision. It shows how a formal representation of the beliefs and values can reflect scientific inputs by a physician to combine with the values held by the decision maker to inform a medical choice. The second example is a public policy decision about managing a potential environmental hazard. It illustrates how controversial beliefs can be reflected as uncertainties and informed by science to make better decisions. Both examples use decision analysis to bridge science and decisions. The conclusions suggest that this can be a helpful process that requires skills in both science and decision making.

  6. Bridging the gap between science and decision making

    PubMed Central

    von Winterfeldt, Detlof

    2013-01-01

    All decisions, whether they are personal, public, or business-related, are based on the decision maker’s beliefs and values. Science can and should help decision makers by shaping their beliefs. Unfortunately, science is not easily accessible to decision makers, and scientists often do not understand decision makers’ information needs. This article presents a framework for bridging the gap between science and decision making and illustrates it with two examples. The first example is a personal health decision. It shows how a formal representation of the beliefs and values can reflect scientific inputs by a physician to combine with the values held by the decision maker to inform a medical choice. The second example is a public policy decision about managing a potential environmental hazard. It illustrates how controversial beliefs can be reflected as uncertainties and informed by science to make better decisions. Both examples use decision analysis to bridge science and decisions. The conclusions suggest that this can be a helpful process that requires skills in both science and decision making. PMID:23940310

  7. A gaze through the lens of decision theory toward knowledge translation science.

    PubMed

    Bucknall, Tracey

    2007-01-01

    Research findings become evidence when an individual decides that the information is relevant and useful to a particular circumstance. Prior to that point, they are unrelated facts. For research translation to occur, research evidence needs filtering, interpretation, and application by individuals to the specific situation. For this reason, decision science is complementary to knowledge translation science. Both aim to support the individual in deciding the most appropriate action in a dynamic environment where there are masses of uncensored and nonprioritized information readily available. Decision science employs research theories to study the cognitive processes underpinning the filtering and integration of current scientific information into changing contexts. Two meta-theories, coherence and correspondence theories, have been used to provide alternative views and prompt significant debate to advance the science. The aim of this article is to stimulate debate about the relationship between decision theory and knowledge translation. Discussed is the critical role of cognition in clinical decision making, with a focus on knowledge translation. A critical commentary of the knowledge utilization modeling papers is presented from a decision science perspective. The article concludes with a discussion on the implications for knowledge translation when viewed through the lens of decision science.

  8. Fuel Characteristic Classification System version 3.0: technical documentation

    Treesearch

    Susan J. Prichard; David V. Sandberg; Roger D. Ottmar; Ellen Eberhardt; Anne Andreu; Paige Eagle; Kjell Swedin

    2013-01-01

    The Fuel Characteristic Classification System (FCCS) is a software module that records wildland fuel characteristics and calculates potential fire behavior and hazard potentials based on input environmental variables. The FCCS 3.0 is housed within the Integrated Fuels Treatment Decision Support System (Joint Fire Science Program 2012). It can also be run from command...

  9. Investigating Pathways from the Earth Science Knowledge Base to Candidate Solutions

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Johnson, E.; Mita, D.; Dabbiru, L.; Katragadda, S.; Lewis, D.; O'Hara, C.

    2007-12-01

    A principle objective of the NASA Applied Sciences Program is to support the transition of scientific research results into decisions which benefit society. One of the Solutions Network activities supporting this goal is the generation of Candidate Solutions derived from NASA Earth Science research results that have the potential to enhance future operational systems for societal benefit. In short, the program seeks to fill gaps between Earth Science results and operational needs. The Earth Science Knowledge Base (ESKB) is being developed to provide connectivity and deliver content for the research information needs of the NASA Applied Science Program and related scientific communities of practice. Data has been collected which will permit users to identify and analyze the current network of interactions between organizations within the community of practice, harvest research results fixed to those interactions, examine the individual components of that research, and assist in developing strategies for furthering research. The ESKB will include information about organizations that conduct NASA-funded Earth Science research, NASA research solicitations, principal investigators, research publications and other project reports, publication authors, inter-agency agreements like memoranda-of-understanding, and NASA assets, models, decision support tools, and data products employed in the course of or developed as a part of the research. The generation of candidate solutions is the first step in developing rigorously tested applications for operational use from the normal yet chaotic process of natural discovery. While the process of 'idea generation' cannot be mechanized, the ESKB serves to provide a resource for testing theories about advancing research streams into the operational realm. Formulation Reports are the documents which outline a Candidate Solution. The reports outline the essential elements, most of which are detailed in the ESKB, which must be analyzed when assessing the value of the solution. Through developmental testing of the ESKB, several pathways to Candidate Solutions have been discovered.

  10. NASA's Applied Sciences for Water Resources

    NASA Technical Reports Server (NTRS)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  11. A Hybrid-Cloud Science Data System Enabling Advanced Rapid Imaging & Analysis for Monitoring Hazards

    NASA Astrophysics Data System (ADS)

    Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Moore, A. W.; Fielding, E. J.; Radulescu, C.; Sacco, G.; Stough, T. M.; Mattmann, C. A.; Cervelli, P. F.; Poland, M. P.; Cruz, J.

    2012-12-01

    Volcanic eruptions, landslides, and levee failures are some examples of hazards that can be more accurately forecasted with sufficient monitoring of precursory ground deformation, such as the high-resolution measurements from GPS and InSAR. In addition, coherence and reflectivity change maps can be used to detect surface change due to lava flows, mudslides, tornadoes, floods, and other natural and man-made disasters. However, it is difficult for many volcano observatories and other monitoring agencies to process GPS and InSAR products in an automated scenario needed for continual monitoring of events. Additionally, numerous interoperability barriers exist in multi-sensor observation data access, preparation, and fusion to create actionable products. Combining high spatial resolution InSAR products with high temporal resolution GPS products--and automating this data preparation & processing across global-scale areas of interests--present an untapped science and monitoring opportunity. The global coverage offered by satellite-based SAR observations, and the rapidly expanding GPS networks, can provide orders of magnitude more data on these hazardous events if we have a data system that can efficiently and effectively analyze the voluminous raw data, and provide users the tools to access data from their regions of interest. Currently, combined GPS & InSAR time series are primarily generated for specific research applications, and are not implemented to run on large-scale continuous data sets and delivered to decision-making communities. We are developing an advanced service-oriented architecture for hazard monitoring leveraging NASA-funded algorithms and data management to enable both science and decision-making communities to monitor areas of interests via seamless data preparation, processing, and distribution. Our objectives: * Enable high-volume and low-latency automatic generation of NASA Solid Earth science data products (InSAR and GPS) to support hazards monitoring. * Facilitate NASA-USGS collaborations to share NASA InSAR and GPS data products, which are difficult to process in high-volume and low-latency, for decision-support. * Enable interoperable discovery, access, and sharing of NASA observations and derived actionable products, and between the observation and decision-making communities. * Enable their improved understanding through visualization, mining, and cross-agency sharing. Existing InSAR & GPS processing packages and other software are integrated for generating geodetic decision support monitoring products. We employ semantic and cloud-based data management and processing techniques for handling large data volumes, reducing end product latency, codifying data system information with semantics, and deploying interoperable services for actionable products to decision-making communities.

  12. Using Educative Assessments to Support Science Teaching for Middle School English-language Learners

    NASA Astrophysics Data System (ADS)

    Buxton, Cory A.; Allexsaht-Snider, Martha; Suriel, Regina; Kayumova, Shakhnoza; Choi, Youn-jeng; Bouton, Bobette; Baker, Melissa

    2013-03-01

    Grounded in Hallidayan perspectives on academic language, we report on our development of an educative science assessment as one component of the language-rich inquiry science for English-language learners teacher professional learning project for middle school science teachers. The project emphasizes the role of content-area writing to support teachers in diagnosing their students' emergent understandings of science inquiry practices, science content knowledge, and the academic language of science, with a particular focus on the needs of English-language learners. In our current school policy context, writing for meaningful purposes has received decreased attention as teachers struggle to cover large numbers of discrete content standards. Additionally, high-stakes assessments presented in multiple-choice format have become the definitive measure of student science learning, further de-emphasizing the value of academic writing for developing and expressing understanding. To counter these trends, we examine the implementation of educative assessment materials—writing-rich assessments designed to support teachers' instructional decision making. We report on the qualities of our educative assessment that supported teachers in diagnosing their students' emergent understandings, and how teacher-researcher collaborative scoring sessions and interpretation of assessment results led to changes in teachers' instructional decision making to better support students in expressing their scientific understandings. We conclude with implications of this work for theory, research, and practice.

  13. Leveraging Open Standard Interfaces in Providing Efficient Discovery, Retrieval, and Information of NASA-Sponsored Observations and Predictions

    NASA Astrophysics Data System (ADS)

    Cole, M.; Alameh, N.; Bambacus, M.

    2006-05-01

    The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online at http://esg.gsfc.nasa.gov) acts as a flexible and searchable registry of NASA-related resources (files, services, models, etc) and allows scientists, decision makers and others to discover and retrieve a wide variety of observations and predictions of natural and human phenomena related to Earth Science from NASA and other sources. To support the goals of the Applied Sciences national applications, GIO staff is also working with the national applications communities to identify opportunities where open standards-based discovery and access to NASA data can enhance the decision support process of the national applications. This paper describes the work performed to-date on that front, and summarizes key findings in terms of identified data sources and benefiting national applications. The paper also highlights the challenges encountered in making NASA-related data accessible in a cross-cutting fashion and identifies areas where interoperable approaches can be leveraged.

  14. Leveraging Web Services in Providing Efficient Discovery, Retrieval, and Integration of NASA-Sponsored Observations and Predictions

    NASA Astrophysics Data System (ADS)

    Bambacus, M.; Alameh, N.; Cole, M.

    2006-12-01

    The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online at http://esg.gsfc.nasa.gov) acts as a flexible and searchable registry of NASA-related resources (files, services, models, etc) and allows scientists, decision makers and others to discover and retrieve a wide variety of observations and predictions of natural and human phenomena related to Earth Science from NASA and other sources. To support the goals of the Applied Sciences national applications, GIO staff is also working with the national applications communities to identify opportunities where open standards-based discovery and access to NASA data can enhance the decision support process of the national applications. This paper describes the work performed to-date on that front, and summarizes key findings in terms of identified data sources and benefiting national applications. The paper also highlights the challenges encountered in making NASA-related data accessible in a cross-cutting fashion and identifies areas where interoperable approaches can be leveraged.

  15. A role of decision-making competency in science learning utilizing a social valuation framework

    NASA Astrophysics Data System (ADS)

    Katsuo, Akihito

    2005-11-01

    The role of decision-making in learning performance has been an occasional topic in the research literature in science education, but rarely has it been a central issue in the field. Nonetheless, recent studies regarding the topic in several fields other than education, such as cognitive neuroscience and social choice theory, indicate the fundamental importance(s) of the topic. This study focuses on a possible role of decision-making in science learning. Initially the study was designed to probe the decision-making ability of elementary school children with a modified version of the Iowa Gambling Task (IGT). The experiment involved six Montessori 3rd and 4th grade students as the experimental group and eight public school 3rd and 4th grade students as the control group. The result of the modified IGT revealed a tendency in choice trajectories favoring children at the Montessori school. However, the probabilistic value went below the statistically significant level set by the U test. A further study focused on the impact of better decision-making ability revealed in the first experiment on performances with a science learning module that emphasized collective reasoning. The instruction was based on a set of worksheets with multiple choices on which students were asked to make predictions with and to provide supportive arguments regarding outcomes of experiments introduced in the worksheet. Then the whole class was involved with a real experiment to see which choice was correct. The findings in the study indicated that the Montessori students often obtained higher scores than non-Montessori students in making decision with a tendency of consistency in terms of their choices of the alternatives on the worksheets. The findings of the experiments were supported by a correlational analysis that was performed at the end of study. Although no statistically significant correlations were found, there was a tendency for positively associative shifts between the scores of the modified IGT and the scores for the performances on the science module for the Montessori students.

  16. Implementing interactive decision support: A case for combining cyberinfrastructure, data fusion, and social process to mobilize scientific knowledge in sustainability problems

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2014-12-01

    Geosciences are becoming increasingly data intensive, particularly in relation to sustainability problems, which are multi-dimensional, weakly structured and characterized by high levels of uncertainty. In the case of complex resource management problems, the challenge is to extract meaningful information from data and make sense of it. Simultaneously, scientific knowledge alone is insufficient to change practice. Creating tools, and group decision support processes for end users to interact with data are key challenges to transforming science-based information into actionable knowledge. The ENCOMPASS project began as a multi-year case study in the Atacama Desert of Chile to design and implement a knowledge transfer model for energy-water-mining conflicts in the region. ENCOMPASS combines the use of cyberinfrastructure (CI), automated data collection, interactive interfaces for dynamic decision support, and participatory modelling to support social learning. A pilot version of the ENCOMPASS CI uses open source systems and serves as a structure to integrate and store multiple forms of data and knowledge, such as DEM, meteorological, water quality, geomicrobiological, energy demand, and groundwater models. In the case study, informatics and data fusion needs related to scientific uncertainty around deep groundwater flowpaths and energy-water connections. Users may upload data from field sites with handheld devices or desktops. Once uploaded, data assets are accessible for a variety of uses. To address multi-attributed decision problems in the Atacama region a standalone application with touch-enabled interfaces was created to improve real-time interactions with datasets by groups. The tool was used to merge datasets from the ENCOMPASS CI to support exploration among alternatives and build shared understanding among stakeholders. To date, the project has increased technical capacity among stakeholders, resulted in the creation of both for-profit and non-profit entities, enabled cross-sector collaboration with mining-indigenous stakeholders, and produced an interactive application for group decision support. ENCOMPASS leverages advances in computational tools to deliver data and models for group decision support applied to sustainability science problems.

  17. Assessing and Synthesizing the Last Decade of Research on the Major Pools and Fluxes of the Carbon Cycle in the US and North America: An Interagency Governmental Perspective

    NASA Astrophysics Data System (ADS)

    Cavallaro, N.; Shrestha, G.; Stover, D. B.; Zhu, Z.; Ombres, E. H.; Deangelo, B.

    2015-12-01

    The 2nd State of the Carbon Cycle Report (SOCCR-2) is focused on US and North American carbon stocks and fluxes in managed and unmanaged systems, including relevant carbon management science perspectives and tools for supporting and informing decisions. SOCCR-2 is inspired by the US Carbon Cycle Science Plan (2011) which emphasizes global scale research on long-lived, carbon-based greenhouse gases, carbon dioxide and methane, and the major pools and fluxes of the global carbon cycle. Accordingly, the questions framing the Plan inform this report's topical roadmap, with a focus on US and North America in the global context: 1) How have natural processes and human actions affected the global carbon cycle on land, in the atmosphere, in the oceans and in the ecosystem interfaces (e.g. coastal, wetlands, urban-rural)? 2) How have socio-economic trends affected the levels of the primary carbon-containing gases, carbon dioxide and methane, in the atmosphere? 3) How have species, ecosystems, natural resources and human systems been impacted by increasing greenhouse gas concentrations, the associated changes in climate, and by carbon management decisions and practices? To address these aspects, SOCCR-2 will encompass the following broad assessment framework: 1) Carbon Cycle at Scales (Global Perspective, North American Perspective, US Perspective, Regional Perspective); 2) Role of carbon in systems (Soils; Water, Oceans, Vegetation; Terrestrial-aquatic Interfaces); 3) Interactions/Disturbance/Impacts from/on the carbon cycle. 4) Carbon Management Science Perspective and Decision Support (measurements, observations and monitoring for research and policy relevant decision-support etc.). In this presentation, the Carbon Cycle Interagency Working Group and the U.S. Global Change Research Program's U.S. Carbon Cycle Science Program Office will highlight the scientific context, strategy, structure, team and production process of the report, which is part of the USGCRP's Sustained National Climate Assessment process.

  18. Case based reasoning in criminal intelligence using forensic case data.

    PubMed

    Ribaux, O; Margot, P

    2003-01-01

    A model that is based on the knowledge of experienced investigators in the analysis of serial crime is suggested to bridge a gap between technology and methodology. Its purpose is to provide a solid methodology for the analysis of serial crimes that supports decision making in the deployment of resources, either by guiding proactive policing operations or helping the investigative process. Formalisation has helped to derive a computerised system that efficiently supports the reasoning processes in the analysis of serial crime. This novel approach fully integrates forensic science data.

  19. Air Quality Response Modeling for Decision Support | Science ...

    EPA Pesticide Factsheets

    Air quality management relies on photochemical models to predict the responses of pollutant concentrations to changes in emissions. Such modeling is especially important for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly with changes in emissions. Numerous techniques for probing pollutant-emission relationships within photochemical models have been developed and deployed for a variety of decision support applications. However, atmospheric response modeling remains complicated by the challenge of validating sensitivity results against observable data. This manuscript reviews the state of the science of atmospheric response modeling as well as efforts to characterize the accuracy and uncertainty of sensitivity results. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being use

  20. Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  1. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  2. A National Crop Progress Monitoring and Decision Support System Based on NASA Earth Science Results

    NASA Astrophysics Data System (ADS)

    di, L.; Yang, Z.

    2009-12-01

    Timely and accurate information on weekly crop progress and development is essential to a dynamic agricultural industry in the U. S. and the world. By law, the National Agricultural Statistics Service (NASS) of the U. S. Department of Agriculture’s (USDA) is responsible for monitoring and assessing U.S. agricultural production. Currently NASS compiles and issues weekly state and national crop progress and development reports based on reports from knowledgeable state and county agricultural officials and farmers. Such survey-based reports are subjectively estimated for an entire county, lack spatial coverage, and are labor intensive. There has been limited use of remote sensing data to assess crop conditions. NASS produces weekly 1-km resolution un-calibrated AVHRR-based NDVI static images to represent national vegetation conditions but there is no quantitative crop progress information. This presentation discusses the early result for developing a National Crop Progress Monitoring and Decision Support System. The system will overcome the shortcomings of the existing systems by integrating NASA satellite and model-based land surface and weather products, NASS’ wealth of internal crop progress and condition data and Cropland Data Layers (CDL), and the Farm Service Agency’s (FSA) Common Land Units (CLU). The system, using service-oriented architecture and web service technologies, will automatically produce and disseminate quantitative national crop progress maps and associated decision support data at 250-m resolution, as well as summary reports to support NASS and worldwide users in their decision-making. It will provide overall and specific crop progress for individual crops from the state level down to CLU field level to meet different users’ needs on all known croplands. This will greatly enhance the effectiveness and accuracy of the NASS aggregated crop condition data and charts of and provides objective and scientific evidence and guidance for the adjustment of NASS survey data. This presentation will discuss the architecture, Earth observation data, and the crop progress model used in the decision support system.

  3. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  4. Fire science application and integration in support of decision making

    Treesearch

    Tom Zimmerman

    2011-01-01

    Wildland fire management in the United States has historically been a challenging and complex program governed by a multitude of factors including situational status, objectives, operational capability, science and technology, and changes and advances in all these factors. The improvement and advancement of risk-informed decision making has the potential to improve...

  5. The Evaluation of Role-Playing in the Context of Teaching Climate Change

    ERIC Educational Resources Information Center

    Belova, Nadja; Eilks, Ingo; Feierabend, Timo

    2015-01-01

    Role-plays are a common pedagogical tool in the Social Sciences. As an imitation of societal practices, role-plays are thought to support the development of argumentation and decision-making skills among learners. However, argumentation and decision making are also goals in science education in general and in socioscientific issues-oriented…

  6. A new fit-for-purpose model testing framework: Decision Crash Tests

    NASA Astrophysics Data System (ADS)

    Tolson, Bryan; Craig, James

    2016-04-01

    Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building decisions. In one case, we show the set of model building decisions has a low probability to correctly support the upgrade decision. In the other case, we show evidence suggesting another set of model building decisions has a high probability to correctly support the decision. The proposed DCT framework focuses on what model users typically care about: the management decision in question. The DCT framework will often be very strict and will produce easy to interpret results enabling clear unsuitability determinations. In the past, hydrologic modelling progress has necessarily meant new models and model building methods. Continued progress in hydrologic modelling requires finding clear evidence to motivate researchers to disregard unproductive models and methods and the DCT framework is built to produce this kind of evidence. References: Andréassian, V., C. Perrin, L. Berthet, N. Le Moine, J. Lerat, C. Loumagne, L. Oudin, T. Mathevet, M.-H. Ramos, and A. Valéry (2009), Crash tests for a standardized evaluation of hydrological models. Hydrology and Earth System Sciences, 13, 1757-1764. Klemeš, V. (1986), Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31 (1), 13-24.

  7. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  8. Review of experimental studies in social psychology of small groups when an optimal choice exists and application to operating room management decision-making.

    PubMed

    Prahl, Andrew; Dexter, Franklin; Braun, Michael T; Van Swol, Lyn

    2013-11-01

    Because operating room (OR) management decisions with optimal choices are made with ubiquitous biases, decisions are improved with decision-support systems. We reviewed experimental social-psychology studies to explore what an OR leader can do when working with stakeholders lacking interest in learning the OR management science but expressing opinions about decisions, nonetheless. We considered shared information to include the rules-of-thumb (heuristics) that make intuitive sense and often seem "close enough" (e.g., staffing is planned based on the average workload). We considered unshared information to include the relevant mathematics (e.g., staffing calculations). Multiple studies have shown that group discussions focus more on shared than unshared information. Quality decisions are more likely when all group participants share knowledge (e.g., have taken a course in OR management science). Several biases in OR management are caused by humans' limited abilities to estimate tails of probability distributions in their heads. Groups are more susceptible to analogous biases than are educated individuals. Since optimal solutions are not demonstrable without groups sharing common language, only with education of most group members can a knowledgeable individual influence the group. The appropriate model of decision-making is autocratic, with information obtained from stakeholders. Although such decisions are good quality, the leaders often are disliked and the decisions considered unjust. In conclusion, leaders will find the most success if they do not bring OR management operational decisions to groups, but instead act autocratically while obtaining necessary information in 1:1 conversations. The only known route for the leader making such decisions to be considered likable and for the decisions to be considered fair is through colleagues and subordinates learning the management science.

  9. Environmental Public Health Indicators Impact Report: Data and methods that support environmental public health decision-making by communities

    EPA Science Inventory

    This report presents the results of twenty competitively funded Science-To-Achieve-Results (STAR) grants in EPA's Environmental Public Health Indicators (EPHI) research program. The grantsdirectly supported health interventions, informed policy and decision-making, and improved t...

  10. Distinguishing values from science in decision making: Setting harvest quotas for mountain lions in Montana

    USGS Publications Warehouse

    Mitchell, Michael S.; Cooley, Hilary; Gude, Justin A.; Kolbe, Jay; Nowak, J. Joshua; Proffitt, Kelly M.; Sells, Sarah N.; Thompson, Mike

    2018-01-01

    The relative roles of science and human values can be difficult to distinguish when informal processes are used to make complex and contentious decisions in wildlife management. Structured Decision Making (SDM) offers a formal process for making such decisions, where scientific results and concepts can be disentangled from the values of differing stakeholders. We used SDM to formally integrate science and human values for a citizen working group of ungulate hunting advocates, lion hunting advocates, and outfitters convened to address the contentious allocation of harvest quotas for mountain lions (Puma concolor) in west‐central Montana, USA, during 2014. A science team consisting of mountain lion biologists and population ecologists convened to support the working group. The science team used integrated population models that incorporated 4 estimates of mountain lion density to estimate population trajectories for 5 alternative harvest quotas developed by the working group. Results of the modeling predicted that effects of each harvest quota were consistent across the 4 density estimates; harvest quotas affected predicted population trajectories for 5 years after implementation but differences were not strong. Based on these results, the focus of the working group changed to differences in values among stakeholders that were the true impediment to allocating harvest quotas. By distinguishing roles of science and human values in this process, the working group was able to collaboratively recommend a compromise solution. This solution differed little from the status quo that had been the focus of debate, but the SDM process produced understanding and buy‐in among stakeholders involved, reducing disagreements, misunderstanding, and unproductive arguments founded on informal application of scientific data and concepts. Whereas investments involved in conducting SDM may be unnecessary for many decisions in wildlife management, the investment may be beneficial for complex, contentious, and multiobjective decisions that integrate science and human values.

  11. The influence of hazard models on GIS-based regional risk assessments and mitigation policies

    USGS Publications Warehouse

    Bernknopf, R.L.; Rabinovici, S.J.M.; Wood, N.J.; Dinitz, L.B.

    2006-01-01

    Geographic information systems (GIS) are important tools for understanding and communicating the spatial distribution of risks associated with natural hazards in regional economies. We present a GIS-based decision support system (DSS) for assessing community vulnerability to natural hazards and evaluating potential mitigation policy outcomes. The Land Use Portfolio Modeler (LUPM) integrates earth science and socioeconomic information to predict the economic impacts of loss-reduction strategies. However, the potential use of such systems in decision making may be limited when multiple but conflicting interpretations of the hazard are available. To explore this problem, we conduct a policy comparison using the LUPM to test the sensitivity of three available assessments of earthquake-induced lateral-spread ground failure susceptibility in a coastal California community. We find that the uncertainty regarding the interpretation of the science inputs can influence the development and implementation of natural hazard management policies. Copyright ?? 2006 Inderscience Enterprises Ltd.

  12. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  13. Risk and Infrastructure Science Center - Global Security Sciences

    Science.gov Websites

    delivers scientific tools and methodologies to inform decision making regarding the most challenging Sciences ASD Accelerator Systems AES APS Engineering Support XSD X-ray Science Physical Sciences and Leadership Strategic Alliance for Global Energy Solutions Overview Leadership Systems Science Center Overview

  14. GeoLab 2011: New Instruments and Operations Tested at Desert RATS

    NASA Technical Reports Server (NTRS)

    Evans, Cindy A.; Calaway, M. J.; Bell, M. S.

    2012-01-01

    GeoLab is a geological laboratory and testbed designed for supporting geoscience activities during NASA's analog demonstrations. Scientists at NASA's Johnson Space Center built GeoLab as part of a technology project to aid the development of science operational concepts for future planetary surface missions [1, 2, 3]. It is integrated into NASA's Habitat Demonstration Unit, a first generation exploration habitat test article. As a prototype workstation, GeoLab provides a high fidelity working space for analog mission crewmembers to perform in-situ characterization of geologic samples and communicate their findings with supporting scientists. GeoLab analog operations can provide valuable data for assessing the operational and scientific considerations of surface-based geologic analyses such as preliminary examination of samples collected by astronaut crews [4, 5]. Our analog tests also feed into sample handling and advanced curation operational concepts and procedures that will, ultimately, help ensure that the most critical samples are collected during future exploration on a planetary surface, and aid decisions about sample prioritization, sample handling and return. Data from GeoLab operations also supports science planning during a mission by providing additional detailed geologic information to supporting scientists, helping them make informed decisions about strategies for subsequent sample collection opportunities.

  15. Soil Quality Standards Monitoring Program administration and implementation

    Treesearch

    Randy L. Davis; Felipe Sanchez; Sharon DeHart

    2010-01-01

    Forest managers and resource scientists and specialists are engaged in a partnership to sustain the natural resource value of our national forests. Managers are faced with deciding which activities provide the best resource benefits with the least resource damage. Many, but not all, aspects of the decision process must be based on the science supporting our current...

  16. Extending the Mertonian Norms: Scientists' Subscription to Norms of Research

    ERIC Educational Resources Information Center

    Anderson, Melissa S.; Ronning, Emily A.; De Vries, Raymond; Martinson, Brian C.

    2010-01-01

    This analysis, based on focus groups and a national survey, assesses scientists' subscription to the Mertonian norms of science and associated counternorms. It also supports extension of these norms to governance (as opposed to administration), as a norm of decision-making, and quality (as opposed to quantity), as an evaluative norm. (Contains 1…

  17. Applying the Brakes: How Practical Classroom Decisions Affect the Adoption of Inquiry Instruction

    ERIC Educational Resources Information Center

    Yarnall, Louise; Fusco, Judi

    2014-01-01

    If college science instructors are to use inquiry practices more in the classroom, they need both professional support to foster comfort with the pedagogy and practical ways to engage students in inquiry. Over a semester, we studied 13 community college biology instructors as they adopted bioinformatics problem-based learning (PBL) modules in…

  18. A Science-Based Framework for Early Childhood Policy: Using Evidence to Improve Outcomes in Learning, Behavior, and Health for Vulnerable Children

    ERIC Educational Resources Information Center

    Center on the Developing Child at Harvard University, 2007

    2007-01-01

    This report combines neuroscience, child development research, and program evaluation data to better inform policymakers' decisions about investing in and supporting existing early childhood programs. Core child development concepts highlight the importance of early experiences on the development of brain architecture and, in turn, future…

  19. Workshop: Community Based Environmental Decision Making, Proceedings of the Fifth Workshop in the Environmental Policy and Economics Workshop Series (2000)

    EPA Pesticide Factsheets

    Proceedings from a one-day workshop cosponsored by US EPA Office of Economy and Environment and National Center for Environmental Research and the National Science Foundation Decision, Risk,and Management Science Program on community-based decision making

  20. A Customized Drought Decision Support Tool for Hsinchu Science Park

    NASA Astrophysics Data System (ADS)

    Huang, Jung; Tien, Yu-Chuan; Lin, Hsuan-Te; Liu, Tzu-Ming; Tung, Ching-Pin

    2016-04-01

    Climate change creates more challenges for water resources management. Due to the lack of sufficient precipitation in Taiwan in fall of 2014, many cities and counties suffered from water shortage during early 2015. Many companies in Hsinchu Science Park were significantly influenced and realized that they need a decision support tool to help them managing water resources. Therefore, a customized computer program was developed, which is capable of predicting the future status of public water supply system and water storage of factories when the water rationing is announced by the government. This program presented in this study for drought decision support (DDSS) is a customized model for a semiconductor company in the Hsinchu Science Park. The DDSS is programmed in Java which is a platform-independent language. System requirements are any PC with the operating system above Windows XP and an installed Java SE Runtime Environment 7. The DDSS serves two main functions. First function is to predict the future storage of Baoshan Reservoir and Second Baoshan Reservoir, so to determine the time point of water use restriction in Hsinchu Science Park. Second function is to use the results to help the company to make decisions to trigger their response plans. The DDSS can conduct real-time scenario simulations calculating the possible storage of water tank for each factory with pre-implementation and post-implementation of those response plans. In addition, DDSS can create reports in Excel to help decision makers to compare results between different scenarios.

  1. Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information

    NASA Astrophysics Data System (ADS)

    Li, Shu-Bin; Wang, Guang-Min; Wang, Tao; Ren, Hua-Ling; Zhang, Lin

    2018-05-01

    This paper studies how to generate the reasonable information of travelers’ decision in real network. This problem is very complex because the travelers’ decision is constrained by different human behavior. The network conditions can be predicted by using the advanced dynamic OD (Origin-Destination, OD) estimation techniques. Based on the improved mesoscopic traffic model, the predictable dynamic traffic guidance information can be obtained accurately. A consistency algorithm is designed to investigate the travelers’ decision by simulating the dynamic response to guidance information. The simulation results show that the proposed method can provide the best guidance information. Further, a case study is conducted to verify the theoretical results and to draw managerial insights into the potential of dynamic guidance strategy in improving traffic performance. Supported by National Natural Science Foundation of China under Grant Nos. 71471104, 71771019, 71571109, and 71471167; The University Science and Technology Program Funding Projects of Shandong Province under Grant No. J17KA211; The Project of Public Security Department of Shandong Province under Grant No. GATHT2015-236; The Major Social and Livelihood Special Project of Jinan under Grant No. 20150905

  2. Science Teacher Decision-Making in a Climate of Heightened Accountability: A Rhizomatic Case Study Analysis of Two Science Departments in New York City

    NASA Astrophysics Data System (ADS)

    Purohit, Kiran Dilip

    Secondary science teachers make many daily decisions in the enactment of curriculum. Although curriculum materials are widely available to address science content, practices, and skills, the consideration that goes into deciding how and whether to use such materials is complicated by teachers' beliefs about science, their understandings of school-level accountability and testing measures, and their perspectives on the adolescent students they teach. This study addresses the need to understand how teachers consider multiple forces in their enactment of science curriculum. The purpose of this study was to explore the ways that discourses around accountability, science, and science education emerge in the narratives around teachers' decision-making in secondary science classrooms. Using a case study approach, I worked at two school sites with two pairs of science teachers. We established criteria for critical incidents together, then teachers identified critical decision-making moments in their classrooms. We analyzed those incidents together using a consultancy protocol, allowing teachers to focus their thinking on reframing the incidents and imagining other possible outcomes. Using post-structuralist rhizomatics, I assembled analyses of teachers' discussions of the critical incidents in the form of dramatization--scenes and monologues. I then developed two major interpretive strands. First, I connected teachers' sense of having "no time" to blocs of affect tied to larger discourses of national security, teacher accountability, and the joy of scientific discovery. Second, I demonstrated how teachers' concern in following logical pathways and sequences in science relates to the imposition of accountability measures that echo the outcomes-driven logic of the learning sciences. Across both interpretations, I found accountability to be complex, multidirectional, and unpredictable in how it works on and through teachers as they make decisions. Research in this area has important practical implications in the fields of professional development, curriculum development, and school change. As more states (including New York) adopt standards derived from the Next Generation Science Standards (NGSS), the importance of privileging teachers' investment and critical decision-making in the process of new curriculum development is vital. I suggest that tools like video-based coaching and consultancy protocol discussions support this kind of thoughtful curricular change.

  3. A work-centered cognitively based architecture for decision support: the work-centered infomediary layer (WIL) model

    NASA Astrophysics Data System (ADS)

    Zachary, Wayne; Eggleston, Robert; Donmoyer, Jason; Schremmer, Serge

    2003-09-01

    Decision-making is strongly shaped and influenced by the work context in which decisions are embedded. This suggests that decision support needs to be anchored by a model (implicit or explicit) of the work process, in contrast to traditional approaches that anchor decision support to either context free decision models (e.g., utility theory) or to detailed models of the external (e.g., battlespace) environment. An architecture for cognitively-based, work centered decision support called the Work-centered Informediary Layer (WIL) is presented. WIL separates decision support into three overall processes that build and dynamically maintain an explicit context model, use the context model to identify opportunities for decision support and tailor generic decision-support strategies to the current context and offer them to the system-user/decision-maker. The generic decision support strategies include such things as activity/attention aiding, decision process structuring, work performance support (selective, contextual automation), explanation/ elaboration, infosphere data retrieval, and what if/action-projection and visualization. A WIL-based application is a work-centered decision support layer that provides active support without intent inferencing, and that is cognitively based without requiring classical cognitive task analyses. Example WIL applications are detailed and discussed.

  4. Navigating the science, technology, engineering, and mathematics pipeline: How social capital impacts the educational attainment of college-bound female students

    NASA Astrophysics Data System (ADS)

    Lee, Rebecca Elizabeth

    Despite the proliferation of women in higher education and the workforce, they have yet to achieve parity with men in many of the science, technology, engineering, and math (STEM) majors and careers. The gap is even greater in the representation of women from lower socioeconomic backgrounds. This study examined pre-college intervention strategies provided by the University of Southern California's Math, Engineering, Science Achievement (MESA) program, as well as the relationships and experiences that contributed to the success of underrepresented female high school students in the STEM pipeline. A social capital framework provided the backdrop to the study. This qualitative study takes an ethnographic approach, incorporating 11 interviews, 42 hours of observation, and document analysis to address the research questions: How does involvement in the MESA program impact female students' decisions to pursue a mathematics or science major in college? What is the role of significant others in supporting and encouraging student success? The findings revealed a continuous cycle of support for these students. The cycle started in the home environment, where parents were integral in the early influence on the students' decisions to pursue higher education. Relationships with teachers, counselors, and peers provided critical networks of support in helping these students to achieve their academic goals. Participation in the MESA program empowered the students and provided additional connections to knowledge-based resources. This study highlights the interplay among family, school, and the MESA program in the overall support of underrepresented female students in the STEM pipeline.

  5. TEMPO Early Adopters in Air-Quality Forecasting, Planning and Assessment, Pollution Emissions, Health, Agriculture, and Environmental Impacts: Applications and Decision Support

    NASA Astrophysics Data System (ADS)

    Newchurch, M.; Zavodsky, B.; Chance, K.; Haynes, J.; Lefer, B. L.; Naeger, A.

    2016-12-01

    The AQ research community has a long legacy of using space-based observations (e.g., Solar Backscatter Ultraviolet Instrument [SBUV], Global Ozone Monitoring Experiment [GOME], Ozone Monitoring Instrument [OMI], and the Ozone Mapping & Profiler Suite [OMPS]) to study atmospheric chemistry. These measurements have been used to observe day-to-day and year-to-year changes in atmospheric constituents. However, they have not been able to capture the diurnal variability of pollution with enough temporal or spatial fidelity and a low enough latency for regular use by operational decision makers. As a result, the operational AQ community has traditionally relied on ground-based (e.g., collection stations, LIDAR) and airborne observing systems to study tropospheric chemistry. In order to maximize its utility for applications and decision support, there is a need to educate the community about the game-changing potential for the geostationary TEMPO mission well ahead of its expected launch date early in the third decade of this millinium. This NASA mission will engage user communities and enable science across the NASA Applied Science Focus Areas of Health and Air Quality, Disasters, Water Resources, and Ecological Forecasting, In addition, topics discussed will provide opportunities for collaborations extending TEMPO applications to future program areas in Agriculture, Weather and Climate (including Numerical Weather Prediction), Energy, and Oceans.

  6. Enabling Autonomous Rover Science through Dynamic Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Gaines, Daniel; Chouinard, Caroline; Fisher, Forest; Castano, Rebecca; Judd, Michele; Nesnas, Issa

    2005-01-01

    This paper describes how dynamic planning and scheduling techniques can be used onboard a rover to autonomously adjust rover activities in support of science goals. These goals could be identified by scientists on the ground or could be identified by onboard data-analysis software. Several different types of dynamic decisions are described, including the handling of opportunistic science goals identified during rover traverses, preserving high priority science targets when resources, such as power, are unexpectedly over-subscribed, and dynamically adding additional, ground-specified science targets when rover actions are executed more quickly than expected. After describing our specific system approach, we discuss some of the particular challenges we have examined to support autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations.

  7. NASA Applied Sciences Disasters Program Support for the September 2017 Mexico Earthquakes

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Kirschbaum, D.; Torres-Perez, J. L.; Yun, S. H.; Owen, S. E.; Hua, H.; Fielding, E. J.; Liang, C.; Bekaert, D. P.; Osmanoglu, B.; Amini, R.; Green, D. S.; Murray, J. J.; Stough, T.; Struve, J. C.; Seepersad, J.; Thompson, V.

    2017-12-01

    The 8 September M 8.1 Tehuantepec and 19 September M 7.1 Puebla earthquakes were among the largest earthquakes recorded in Mexico. These two events caused widespread damage, affecting several million people and causing numerous casualties. A team of event coordinators in the NASA Applied Sciences Program activated soon after these devastating earthquakes in order to support decision makers in Mexico, using NASA modeling and international remote sensing capabilities to generate decision support products to aid in response and recovery. The NASA Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. For these two events, the Disasters Program worked with Mexico's space agency (Agencia Espacial Mexico, AEM) and the National Center for Prevention of Disasters (Centro Nacional de Prevención de Desastres, CENAPRED) to generate products to support response, decision-making, and recovery. Products were also provided to academic partners, technical institutions, and field responders to support response. In addition, the Program partnered with the US Geological Survey (USGS), Office of Foreign Disaster Assistance (OFDA), and other partners in order to provide information to federal and domestic agencies that were supporting event response. Leveraging the expertise of investigators at NASA Centers, products such as landslide susceptibility maps, precipitation models, and radar based damage assessments and surface deformation maps were generated and used by AEM, CENAPRED, and others during the event. These were used by AEM in collaboration with other government agencies in Mexico to make appropriate decisions for mapping damage, rescue and recovery, and informing the population regarding areas prone to potential risk. We will provide an overview of the response activities and data products generated in support of the earthquake response, partnerships with domestic and international partners, and preliminary feedback from end-user partners in Mexico during response efforts following these two earthquakes.

  8. Does STES-Oriented Science Education Promote 10th-Grade Students' Decision-Making Capability?

    NASA Astrophysics Data System (ADS)

    Levy Nahum, Tami; Ben-Chaim, David; Azaiza, Ibtesam; Herskovitz, Orit; Zoller, Uri

    2010-07-01

    Today's society is continuously coping with sustainability-related complex issues in the Science-Technology-Environment-Society (STES) interfaces. In those contexts, the need and relevance of the development of students' higher-order cognitive skills (HOCS) such as question-asking, critical-thinking, problem-solving and decision-making capabilities within science teaching have been argued by several science educators for decades. Three main objectives guided this study: (1) to establish "base lines" for HOCS capabilities of 10th grade students (n = 264) in the Israeli educational system; (2) to delineate within this population, two different groups with respect to their decision-making capability, science-oriented (n = 142) and non-science (n = 122) students, Groups A and B, respectively; and (3) to assess the pre-post development/change of students' decision-making capabilities via STES-oriented HOCS-promoting curricular modules entitled Science, Technology and Environment in Modern Society (STEMS). A specially developed and validated decision-making questionnaire was used for obtaining a research-based response to the guiding research questions. Our findings suggest that a long-term persistent application of purposed decision-making, promoting teaching strategies, is needed in order to succeed in affecting, positively, high-school students' decision-making ability. The need for science teachers' involvement in the development of their students' HOCS capabilities is thus apparent.

  9. Improving management of small natural features on private lands by negotiating the science-policy boundary for Maine vernal pools.

    PubMed

    Calhoun, Aram J K; Jansujwicz, Jessica S; Bell, Kathleen P; Hunter, Malcolm L

    2014-07-29

    Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social-ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science-policy boundary.

  10. 76 FR 13182 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Science Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... results of fact-finding activities conducted as part of a study of science integration supporting EPA... ENVIRONMENTAL PROTECTION AGENCY [FRL-9278-1] Science Advisory Board Staff Office; Notification of a Public Meeting of the Science Advisory Board Committee on Science Integration for Decision Making...

  11. Making the Connection between Environmental Science and Decision Making

    NASA Astrophysics Data System (ADS)

    Woodhouse, C. A.; Crimmins, M.; Ferguson, D. B.; Garfin, G. M.; Scott, C. A.

    2011-12-01

    As society is confronted with population growth, limited resources, and the impacts of climate variability and change, it is vital that institutions of higher education promote the development of professionals who can work with decision-makers to incorporate scientific information into environmental planning and management. Skills for the communication of science are essential, but equally important is the ability to understand decision-making contexts and engage with resource managers and policy makers. It is increasingly being recognized that people who understand the linkages between science and decision making are crucial if science is to better support planning and policy. A new graduate-level seminar, "Making the Connection between Environmental Science and Decision Making," is a core course for a new post-baccalaureate certificate program, Connecting Environmental Science and Decision Making at the University of Arizona. The goal of the course is to provide students with a basic understanding of the dynamics between scientists and decision makers that result in scientific information being incorporated into environmental planning, policy, and management decisions. Through readings from the environmental and social sciences, policy, and planning literature, the course explores concepts including scientific information supply and demand, boundary organizations, co-production of knowledge, platforms for engagement, and knowledge networks. Visiting speakers help students understand some of the challenges of incorporating scientific information into planning and decision making within institutional and political contexts. The course also includes practical aspects of two-way communication via written, oral, and graphical presentations as well as through the interview process to facilitate the transfer of scientific information to decision makers as well as to broader audiences. We aspire to help students develop techniques that improve communication and understanding between scientists and decision-makers, leading to enhanced outcomes in the fields of climate science, water resources, and ecosystem services.

  12. Implications of Modern Decision Science for Military Decision-Support Systems

    DTIC Science & Technology

    2005-01-01

    B. Another major challenge is learning how to exploit the technology of modern recreational games , including massively parallel online activities... online .7 In preparing this monograph, we also concluded that the most valuable aspects of game theory for high-level decision support are the basic...Philosophy, online at http://plato.stanford.edu/ entries/ game -theory. 8 In one example that still rankles, some Cold War game theorists (and military

  13. Interpretive investigation of the science-related career decisions of three African-American college students

    NASA Astrophysics Data System (ADS)

    Lewis, Bradford F.; Collins, Angelo

    2001-05-01

    Reports published since 1977 indicate that African Americans are underrepresented among Ph.D.-holding scientists. Although researchers have identified numerous factors that correlate with career choice, they have failed to address students' reasons for choosing or not choosing science and science-related careers. This study examines the career decisions of three African-American college students. All three students began college aspiring toward science-related careers. However, by the end of data collection only one student was working toward a science-related career. Data were collected by means of eight, open-ended, 1-hour interviews conducted over a period of 6 months. Findings indicate that students' interest in a science-related career is directly related to the degree to which they perceive that career as being supportive of deep-seated life goals; and that a deeper view of the nature of science better enables students to perceive a science-related career as supportive of life goals.

  14. Lessons learned: the switch from VMS to UNIX operations for the STScI's Science and Mission Scheduling Branch

    NASA Astrophysics Data System (ADS)

    Adler, David S.; Workman, William M., III; Chance, Don

    2004-09-01

    The Science and Mission Scheduling Branch (SMSB) of the Space Telescope Science Institute (STScI) historically operated exclusively under VMS. Due to diminished support for VMS-based platforms at STScI, SMSB recently transitioned to Unix operations. No additional resources were available to the group; the project was SMSB's to design, develop, and implement. Early decisions included the choice of Python as the primary scripting language; adoption of Object-Oriented Design in the development of base utilities; and the development of a Python utility to interact directly with the Sybase database. The project was completed in January 2004 with the implementation of a GUI to generate the Command Loads that are uplinked to HST. The current tool suite consists of 31 utilities and 271 tools comprising over 60,000 lines of code. In this paper, we summarize the decision-making process used to determine the primary scripting language, database interface, and code management library. We also describe the finished product and summarize lessons learned along the way to completing the project.

  15. Towards a web-based decision support tool for selecting appropriate statistical test in medical and biological sciences.

    PubMed

    Suner, Aslı; Karakülah, Gökhan; Dicle, Oğuz

    2014-01-01

    Statistical hypothesis testing is an essential component of biological and medical studies for making inferences and estimations from the collected data in the study; however, the misuse of statistical tests is widely common. In order to prevent possible errors in convenient statistical test selection, it is currently possible to consult available test selection algorithms developed for various purposes. However, the lack of an algorithm presenting the most common statistical tests used in biomedical research in a single flowchart causes several problems such as shifting users among the algorithms, poor decision support in test selection and lack of satisfaction of potential users. Herein, we demonstrated a unified flowchart; covers mostly used statistical tests in biomedical domain, to provide decision aid to non-statistician users while choosing the appropriate statistical test for testing their hypothesis. We also discuss some of the findings while we are integrating the flowcharts into each other to develop a single but more comprehensive decision algorithm.

  16. Building Fire Behavior Analyst (FBAN) capability and capacity: Lessons learned From Victoria, Australia's Bushfire Behavior Predictive Services Strategy

    Treesearch

    K. E. Gibos; A. Slijepcevic; T. Wells; L. Fogarty

    2015-01-01

    Wildland fire managers must frequently make meaning from chaos in order to protect communities and infrastructure from the negative impacts of fire. Fire management personnel are increasingly turning to science to support their experience-based decision-making processes and to provide clear, confident leadership for communities frequently exposed to risk from wildfire...

  17. Overview of NASA Langley's Systems Analysis Capabilities

    NASA Technical Reports Server (NTRS)

    Cavanaugh, Stephen; Kumar, Ajay; Brewer, Laura; Kimmel, Bill; Korte, John; Moul, Tom

    2006-01-01

    The Systems Analysis and Concepts Directorate (SACD) has been in the systems analysis business line supporting National Aeronautics and Space Administration (NASA) aeronautics, exploration, space operations and science since the 1960 s. Our current organization structure is shown in Figure 1. SACD mission can be summed up in the following statements: 1. We conduct advanced concepts for Agency decision makers and programs. 2. We provide aerospace systems analysis products such as mission architectures, advanced system concepts, system and technology trades, life cycle cost and risk analysis, system integration and pre-decisional sensitive information. 3. Our work enables informed technical, programmatic and budgetary decisions. SACD has a complement of 114 government employees and approximately 50 on-site contractors which is equally split between supporting aeronautics and exploration. SACD strives for technical excellence and creditability of the systems analysis products delivered to its customers. The Directorate office is continuously building market intelligence and working with other NASA centers and external partners to expand our business base. The Branches strive for technical excellence and credibility of our systems analysis products by seeking out existing and new partnerships that are critical for successful systems analysis. The Directorates long term goal is to grow the amount of science systems analysis business base.

  18. Starting Small, Thinking Big - Continuum Magazine | NREL

    Science.gov Websites

    field of urban science by preparing cities with world-class decision support. -Written by Kevin Eber How generation of clean energy decision science. Photo of two long cabins with a view of one roof, which is solar power systems to the grid in the U.S. Virgin Islands have led to a significant growth in installed

  19. Enhanced cardiac perception is associated with increased susceptibility to framing effects.

    PubMed

    Sütterlin, Stefan; Schulz, Stefan M; Stumpf, Theresa; Pauli, Paul; Vögele, Claus

    2013-07-01

    Previous studies suggest in line with dual process models that interoceptive skills affect controlled decisions via automatic or implicit processing. The "framing effect" is considered to capture implicit effects of task-irrelevant emotional stimuli on decision-making. We hypothesized that cardiac awareness, as a measure of interoceptive skills, is positively associated with susceptibility to the framing effect. Forty volunteers performed a risky-choice framing task in which the effect of loss versus gain frames on decisions based on identical information was assessed. The results show a positive association between cardiac awareness and the framing effect, accounting for 24% of the variance in the framing effect. These findings demonstrate that good interoceptive skills are linked to poorer performance in risky choices based on ambivalent information when implicit bias is induced by task-irrelevant emotional information. These findings support a dual process perspective on decision-making and suggest that interoceptive skills mediate effects of implicit bias on decisions. Copyright © 2013 Cognitive Science Society, Inc.

  20. Novice High School Science Teachers: Lesson Plan Adaptations

    ERIC Educational Resources Information Center

    Scharon, Aracelis Janelle

    2013-01-01

    The Next Generation Science Standards (NRC, 2013) positions teachers as responsible for necessary decision making about how their intended science lesson plan content supports continuous student science learning. Teachers interact with their instructional lesson plans in dynamic and constructive ways. Adapting lesson plans is complex. This process…

  1. Impacts of psychological science on national security agencies post-9/11.

    PubMed

    Brandon, Susan E

    2011-09-01

    Psychologists have been an integral part of national security agencies since World War I, when psychological science helped in personnel selection. A robust infrastructure supporting wider applications of psychology to military and intelligence problems developed further during World War II and the years following, primarily in the areas of testing, human factors, perception, and the decision sciences. Although the nature of the attacks on 9/11 raised the level of perceived need for increased human-based intelligence, the impacts of psychologists on the policies and practices of national security agencies in the decade since have not increased significantly. © 2011 American Psychological Association

  2. Integrative review of clinical decision support for registered nurses in acute care settings.

    PubMed

    Dunn Lopez, Karen; Gephart, Sheila M; Raszewski, Rebecca; Sousa, Vanessa; Shehorn, Lauren E; Abraham, Joanna

    2017-03-01

    To report on the state of the science of clinical decision support (CDS) for hospital bedside nurses. We performed an integrative review of qualitative and quantitative peer-reviewed original research studies using a structured search of PubMed, Embase, Cumulative Index to Nursing and Applied Health Literature (CINAHL), Scopus, Web of Science, and IEEE Xplore (Institute of Electrical and Electronics Engineers Xplore Digital Library). We included articles that reported on CDS targeting bedside nurses and excluded in stages based on rules for titles, abstracts, and full articles. We extracted research design and methods, CDS purpose, electronic health record integration, usability, and process and patient outcomes. Our search yielded 3157 articles. After removing duplicates and applying exclusion rules, 28 articles met the inclusion criteria. The majority of studies were single-site, descriptive or qualitative (43%) or quasi-experimental (36%). There was only 1 randomized controlled trial. The purpose of most CDS was to support diagnostic decision-making (36%), guideline adherence (32%), medication management (29%), and situational awareness (25%). All the studies that included process outcomes (7) and usability outcomes (4) and also had analytic procedures to detect changes in outcomes demonstrated statistically significant improvements. Three of 4 studies that included patient outcomes and also had analytic procedures to detect change showed statistically significant improvements. No negative effects of CDS were found on process, usability, or patient outcomes. Clinical support systems targeting bedside nurses have positive effects on outcomes and hold promise for improving care quality; however, this research is lagging behind studies of CDS targeting medical decision-making in both volume and level of evidence. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Linking science and decision making to promote an ecology for the city: practices and opportunities

    Treesearch

    Morgan Grove; Daniel L. Childers; Michael Galvin; Sarah J. Hines; Tischa Munoz-Erickson; Erika S. Svendsen

    2016-01-01

    To promote urban sustainability and resilience, there is an increasing demand for actionable science that links science and decision making based on social–ecological knowledge. Approaches, frameworks, and practices for such actionable science are needed and have only begun to emerge. We propose that approaches based on the co- design and co- production of knowledge...

  4. Using an ecosystem service decision support tool to support ridge to reef management: An example of sediment reduction in west Maui, Hawaii

    NASA Astrophysics Data System (ADS)

    Falinski, K. A.; Oleson, K.; Htun, H.; Kappel, C.; Lecky, J.; Rowe, C.; Selkoe, K.; White, C.

    2016-12-01

    Faced with anthropogenic stressors and declining coral reef states, managers concerned with restoration and resilience of coral reefs are increasingly recognizing the need to take a ridge-to-reef, ecosystem-based approach. An ecosystem services framing can help managers move towards these goals, helping to illustrate trade-offs and opportunities of management actions in terms of their impacts on society. We describe a research program building a spatial ecosystem services-based decision-support tool, and being applied to guide ridge-to-reef management in a NOAA priority site in West Maui. We use multiple modeling methods to link biophysical processes to ecosystem services and their spatial flows and social values in an integrating platform. Modeled services include water availability, sediment retention, nutrient retention and carbon sequestration on land. A coral reef ecosystem service model is under development to capture the linkages between terrestrial and coastal ecosystem services. Valuation studies are underway to quantify the implications for human well-being. The tool integrates techniques from decision science to facilitate decision making. We use the sediment retention model to illustrate the types of analyses the tool can support. The case study explores the tradeoffs between road rehabilitation costs and sediment export avoided. We couple the sediment and cost models with trade-off analysis to identify optimal distributed solutions that are most cost-effective in reducing erosion, and then use those models to estimate sediment exposure to coral reefs. We find that cooperation between land owners reveals opportunities for maximizing the benefits of fixing roads and minimizes costs. This research forms the building blocks of an ecosystem service decision support tool that we intend to continue to test and apply in other Pacific Island settings.

  5. Enlisting qualitative methods to improve environmental monitoring

    EPA Science Inventory

    Environmental monitoring tracks ecological changes in order to support environmental management decisions. Monitoring design is driven by natural scientists, usually lacking a formal social science basis. However, human perspectives drive environmental resource decisions, with ...

  6. Scientists and Stakeholders in the Chesapeake Bay: How the Mid-Atlantic RISA Strengthens Climate Resilience Through Participatory Decision-Making Processes

    NASA Astrophysics Data System (ADS)

    Knopman, D.; Berg, N.

    2017-12-01

    The NOAA Mid-Atlantic Regional Integrated Sciences and Assessments (MARISA) program was formed in September 2016 to increase climate resilience in the Mid-Atlantic, with an initial focus on the Chesapeake Bay Watershed. In this talk, we will discuss how the program's unique structure and approach are designed to advance resilience to a changing climate through improved data, place-based decision support, and public engagement. Emphasis will be placed on MARISA's approach to integrating stakeholder perspectives from the onset of decision scoping, through the creation of actionable data sets, and concluding with the co-development of adaptation strategies between the scientific community, decision-makers, and stakeholders. Specific examples of this process involving climate-sensitive decisions and investments regarding water resources, land management, and urban corridors will be discussed.

  7. An Overview of R in Health Decision Sciences.

    PubMed

    Jalal, Hawre; Pechlivanoglou, Petros; Krijkamp, Eline; Alarid-Escudero, Fernando; Enns, Eva; Hunink, M G Myriam

    2017-10-01

    As the complexity of health decision science applications increases, high-level programming languages are increasingly adopted for statistical analyses and numerical computations. These programming languages facilitate sophisticated modeling, model documentation, and analysis reproducibility. Among the high-level programming languages, the statistical programming framework R is gaining increased recognition. R is freely available, cross-platform compatible, and open source. A large community of users who have generated an extensive collection of well-documented packages and functions supports it. These functions facilitate applications of health decision science methodology as well as the visualization and communication of results. Although R's popularity is increasing among health decision scientists, methodological extensions of R in the field of decision analysis remain isolated. The purpose of this article is to provide an overview of existing R functionality that is applicable to the various stages of decision analysis, including model design, input parameter estimation, and analysis of model outputs.

  8. How research funding agencies support science integration into policy and practice: An international overview

    PubMed Central

    2014-01-01

    Background Funding agencies constitute one essential pillar for policy makers, researchers and health service delivery institutions. Such agencies are increasingly providing support for science implementation. In this paper, we investigate health research funding agencies and how they support the integration of science into policy, and of science into practice, and vice versa. Methods We selected six countries: Australia, The Netherlands, France, Canada, England and the United States. For 13 funding agencies, we compared their intentions to support, their actions related to science integration into policy and practice, and the reported benefits of this integration. We did a qualitative content analysis of the reports and information provided on the funding agencies’ websites. Results Most funding agencies emphasized the importance of science integration into policy and practice in their strategic orientation, and stated how this integration was structured. Their funding activities were embedded in the push, pull, or linkage/exchange knowledge transfer model. However, few program funding efforts were based on all three models. The agencies reported more often on the benefits of integration on practice, rather than on policy. External programs that were funded largely covered science integration into policy and practice at the end of grant stage, while overlooking the initial stages. Finally, external funding actions were more prominent than internally initiated bridging activities and training activities on such integration. Conclusions This paper contributes to research on science implementation because it goes beyond the two community model of researchers versus end users, to include funding agencies. Users of knowledge may be end users in health organizations like hospitals; civil servants assigned to decision making positions within funding agencies; civil servants outside of the Ministry of Health, such as the Ministry of the Environment; politicians deciding on health-related legislation; or even university researchers whose work builds on previous research. This heterogeneous sample of users may require different user-specific mechanisms for research initiation, development and dissemination. This paper builds the foundation for further discussion on science implementation from the perspective of funding agencies in the health field. In general, case studies can help in identifying best practices for evidence-informed decision making. PMID:24565209

  9. How research funding agencies support science integration into policy and practice: an international overview.

    PubMed

    Smits, Pernelle A; Denis, Jean-Louis

    2014-02-24

    Funding agencies constitute one essential pillar for policy makers, researchers and health service delivery institutions. Such agencies are increasingly providing support for science implementation. In this paper, we investigate health research funding agencies and how they support the integration of science into policy, and of science into practice, and vice versa. We selected six countries: Australia, The Netherlands, France, Canada, England and the United States. For 13 funding agencies, we compared their intentions to support, their actions related to science integration into policy and practice, and the reported benefits of this integration. We did a qualitative content analysis of the reports and information provided on the funding agencies' websites. Most funding agencies emphasized the importance of science integration into policy and practice in their strategic orientation, and stated how this integration was structured. Their funding activities were embedded in the push, pull, or linkage/exchange knowledge transfer model. However, few program funding efforts were based on all three models. The agencies reported more often on the benefits of integration on practice, rather than on policy. External programs that were funded largely covered science integration into policy and practice at the end of grant stage, while overlooking the initial stages. Finally, external funding actions were more prominent than internally initiated bridging activities and training activities on such integration. This paper contributes to research on science implementation because it goes beyond the two community model of researchers versus end users, to include funding agencies. Users of knowledge may be end users in health organizations like hospitals; civil servants assigned to decision making positions within funding agencies; civil servants outside of the Ministry of Health, such as the Ministry of the Environment; politicians deciding on health-related legislation; or even university researchers whose work builds on previous research. This heterogeneous sample of users may require different user-specific mechanisms for research initiation, development and dissemination. This paper builds the foundation for further discussion on science implementation from the perspective of funding agencies in the health field. In general, case studies can help in identifying best practices for evidence-informed decision making.

  10. Integrating NASA Earth Science Enterprise (ESE) Data Into Global Agricultural Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.

    2003-12-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to agriculture-related products from other data producers. The AIS? system approach will provide a generic mechanism for easily incorporating new products and making them accessible to users.

  11. The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES): Enhancing Collaboration to Support Science-Based Decision-Making

    NASA Astrophysics Data System (ADS)

    Duke, C. S.; Quach, K.; Jackson, S. T.

    2015-12-01

    The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) offers major opportunities to enhance scientific collaboration and advance global environmental sustainability. IPBES was established in 2012 as an independent intergovernmental body dedicated to assessing the state of the planet's biodiversity, its ecosystems, and the essential services they provide to society. IPBES has four functions: 1) identify and prioritize key scientific information needed for policymakers and catalyze efforts to generate new knowledge by engaging relevant scientific, policy and funding organizations; 2) perform regular and timely assessments of knowledge on biodiversity and ecosystem services and their interlinkages; 3) support policy formulation and implementation by identifying policy-relevant tools and methodologies; and 4) prioritize key capacity-building needs to improve the science-policy interface and catalyze related financing. To date, IPBES has brought together representatives of 124 countries at three annual plenary meetings and numerous panel meetings about specific assessments. This presentation will summarize IPBES' opportunities and achievements to date. These include a conceptual framework for IPBES processes and products, an assessment of the status of pollination and pollinators associated with food production, draft reports on scenario analyses and capacity building, and scoping for assessments of land degradation and restoration and of biodiversity in five regions of the world. IPBES provides natural and social scientists and other experts with important opportunities to support collaborative, science-based environmental decision-making at global to local scales. The presentation will conclude by describing opportunities to participate as expert panel members, contributors to assessments, and reviewers.

  12. Perceptions of Support, Induction, and Intentions by Secondary Science and Mathematics Teachers on Job Retention

    NASA Astrophysics Data System (ADS)

    Bond, Sharon C.

    This study was designed to examine the teacher characteristics, workplace factors, and type of induction supports that contribute to the retention of secondary science and mathematics teachers. Using the sample of secondary science and mathematics teachers extracted from the National Center for Educational Statistics (NCES) 2007--2008 Schools and Staffing Survey (SASS), research was conducted to analyze teachers' responses relative to induction and support by looking at what teachers valued, what they actually received, and what impacted their decision to remain in the teaching profession. In addition to predisposing characteristics that have been shown to influence retention, the research conceptualized the type of induction to include mentoring, professional development, and administrative supports, and employed logistic regression to estimate the individual and collective effects of these factors on teachers' decisions to stay in the profession. Consistent with many areas of education, the fields of science and mathematics in North Carolina remain predominantly White (81%) with Blacks holding 14%, while Asians and Native Americans represent less than 5%. The examination of the Schools and Staffing Survey 2007--2008 showed that the primary supports received by beginning teachers were seminars or classes, common planning, mentoring, and communication with principals. Controlling for certain teacher characteristics, research indicated that science and mathematics teachers in North Carolina rated positively many variables related to support, climate, and classroom practices. Primarily, secondary science and mathematics teachers indicated satisfaction in the areas of mentoring, working conditions, and administrative support, and remained in teaching.

  13. Workshop summary: 'Integrating air quality and climate mitigation - is there a need for new metrics to support decision making?'

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, E.; Schmale, J.; Van Aardenne, J.

    2013-12-01

    Air pollution and climate change are often treated at national and international level as separate problems under different regulatory or thematic frameworks and different policy departments. With air pollution and climate change being strongly linked with regard to their causes, effects and mitigation options, the integration of policies that steer air pollutant and greenhouse gas emission reductions might result in cost-efficient, more effective and thus more sustainable tackling of the two problems. To support informed decision making and to work towards an integrated air quality and climate change mitigation policy requires the identification, quantification and communication of present-day and potential future co-benefits and trade-offs. The identification of co-benefits and trade-offs requires the application of appropriate metrics that are well rooted in science, easy to understand and reflect the needs of policy, industry and the public for informed decision making. For the purpose of this workshop, metrics were loosely defined as a quantified measure of effect or impact used to inform decision-making and to evaluate mitigation measures. The workshop held on October 9 and 10 and co-organized between the European Environment Agency and the Institute for Advanced Sustainability Studies brought together representatives from science, policy, NGOs, and industry to discuss whether current available metrics are 'fit for purpose' or whether there is a need to develop alternative metrics or reassess the way current metrics are used and communicated. Based on the workshop outcome the presentation will (a) summarize the informational needs and current application of metrics by the end-users, who, depending on their field and area of operation might require health, policy, and/or economically relevant parameters at different scales, (b) provide an overview of the state of the science of currently used and newly developed metrics, and the scientific validity of these metrics, (c) identify gaps in the current information base, whether from the scientific development of metrics or their application by different users.

  14. Clarity versus complexity: land-use modeling as a practical tool for decision-makers

    USGS Publications Warehouse

    Sohl, Terry L.; Claggett, Peter

    2013-01-01

    The last decade has seen a remarkable increase in the number of modeling tools available to examine future land-use and land-cover (LULC) change. Integrated modeling frameworks, agent-based models, cellular automata approaches, and other modeling techniques have substantially improved the representation of complex LULC systems, with each method using a different strategy to address complexity. However, despite the development of new and better modeling tools, the use of these tools is limited for actual planning, decision-making, or policy-making purposes. LULC modelers have become very adept at creating tools for modeling LULC change, but complicated models and lack of transparency limit their utility for decision-makers. The complicated nature of many LULC models also makes it impractical or even impossible to perform a rigorous analysis of modeling uncertainty. This paper provides a review of land-cover modeling approaches and the issues causes by the complicated nature of models, and provides suggestions to facilitate the increased use of LULC models by decision-makers and other stakeholders. The utility of LULC models themselves can be improved by 1) providing model code and documentation, 2) through the use of scenario frameworks to frame overall uncertainties, 3) improving methods for generalizing key LULC processes most important to stakeholders, and 4) adopting more rigorous standards for validating models and quantifying uncertainty. Communication with decision-makers and other stakeholders can be improved by increasing stakeholder participation in all stages of the modeling process, increasing the transparency of model structure and uncertainties, and developing user-friendly decision-support systems to bridge the link between LULC science and policy. By considering these options, LULC science will be better positioned to support decision-makers and increase real-world application of LULC modeling results.

  15. Decision-making and evaluation of science causal claims: Effects of goals on uses of evidence and explanatory mechanism

    NASA Astrophysics Data System (ADS)

    Wong, Jacqueline Yin Sang

    2015-10-01

    Evidence and explanatory mechanism are central to scientific practices. Using such information could also inform decisions about issues in which science can play some role, from policy issues like climate change to personal issues like vaccination. While research suggests that people tend to focus on non-science considerations when making science-related decisions, there is also evidence that people can reason very productively with evidence and mechanism. This study examines how the goals participants pursue when reading a science report influences how they attend to information about causal mechanism and evidence. Two hundred and seventeen high school students were asked either to evaluate the truth of a scientific claim, to make a personal decision based on the claim, or to make a social policy decision based on the claim using an online task-based survey. All three groups of participants attended to evidence and mechanism, but participants with different goals requested different types of information and were influenced by evidence and mechanism for different reasons. The findings suggest that goals influence how participants use evidence and mechanism.

  16. Communicating scientific uncertainty

    PubMed Central

    Fischhoff, Baruch; Davis, Alex L.

    2014-01-01

    All science has uncertainty. Unless that uncertainty is communicated effectively, decision makers may put too much or too little faith in it. The information that needs to be communicated depends on the decisions that people face. Are they (i) looking for a signal (e.g., whether to evacuate before a hurricane), (ii) choosing among fixed options (e.g., which medical treatment is best), or (iii) learning to create options (e.g., how to regulate nanotechnology)? We examine these three classes of decisions in terms of how to characterize, assess, and convey the uncertainties relevant to each. We then offer a protocol for summarizing the many possible sources of uncertainty in standard terms, designed to impose a minimal burden on scientists, while gradually educating those whose decisions depend on their work. Its goals are better decisions, better science, and better support for science. PMID:25225390

  17. A Decision-Tree-Oriented Guidance Mechanism for Conducting Nature Science Observation Activities in a Context-Aware Ubiquitous Learning

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Chu, Hui-Chun; Shih, Ju-Ling; Huang, Shu-Hsien; Tsai, Chin-Chung

    2010-01-01

    A context-aware ubiquitous learning environment is an authentic learning environment with personalized digital supports. While showing the potential of applying such a learning environment, researchers have also indicated the challenges of providing adaptive and dynamic support to individual students. In this paper, a decision-tree-oriented…

  18. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Sivapalan, M.; Harman, C. J.; Srinivasan, V.; Hipsey, M. R.; Reed, P.; Montanari, A.; Blöschl, G.

    2013-12-01

    Globally, many different kinds of water resources management issues call for policy- and infrastructure-based responses. Yet responsible decision-making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal- to century-long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water and other changing, coupled environmental subsystems. These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle - a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges from the perspectives of hydrologic science research. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior of the coupled systems. Three research directions support the development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management. Fully realizing the potential of this approach will ultimately require detailed integration of social science and physical science understanding of water systems, and is a priority for the developing field of sociohydrology.

  19. Quinceaneras and Quadratics: Experiences of Latinas in State-Supported Residential Schools of Science and Math

    ERIC Educational Resources Information Center

    Sayman, Donna M.

    2013-01-01

    This qualitative study sought to understand the experiences of Latinas enrolled in residential state schools of science, technology, engineering, and math (STEM). Goals of the study focused on understanding experiences and identifying factors such as decisions to enroll, barriers and supports, and issues contributing to retention. These schools…

  20. Development, Implementation, and Analysis of an Environmental Simulation Information Reference Library and Archive (ESIRLA)

    DTIC Science & Technology

    1997-12-01

    of the DoD environmental science community to identify cloud modeling and other environmental capabilities that support or could potentially support...benefit of the DoD environmental science community. STC determined the detailed requirements for weather effects products and decision aids for specific Air Force operational electro-optical systems.

  1. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    PubMed

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  2. Basic principles of information technology organization in health care institutions.

    PubMed

    Mitchell, J A

    1997-01-01

    This paper focuses on the basic principles of information technology (IT) organization within health sciences centers. The paper considers the placement of the leader of the IT effort within the health sciences administrative structure and the organization of the IT unit. A case study of the University of Missouri-Columbia Health Sciences Center demonstrates how a role-based organizational model for IT support can be effective for determining the boundary between centralized and decentralized organizations. The conclusions are that the IT leader needs to be positioned with other institutional leaders who are making strategic decisions, and that the internal IT structure needs to be a role-based hybrid of centralized and decentralized units. The IT leader needs to understand the mission of the organization and actively use change-management techniques.

  3. The development and application of a decision support system for land management in the Lake Tahoe Basin—The Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson; Crescenti, Neil

    2013-01-01

    This report describes and applies the Land Use Simulation Model (LUSM), the final modeling product for the long-term decision support project funded by the Southern Nevada Public Land Management Act and developed by the U.S. Geological Survey’s Western Geographic Science Center for the Lake Tahoe Basin. Within the context of the natural-resource management and anthropogenic issues of the basin and in an effort to advance land-use and land-cover change science, this report addresses the problem of developing the LUSM as a decision support system. It includes consideration of land-use modeling theory, fire modeling and disturbance in the wildland-urban interface, historical land-use change and its relation to active land management, hydrologic modeling and the impact of urbanization as related to the Lahontan Regional Water Quality Control Board’s recently developed Total Maximum Daily Load report for the basin, and biodiversity in urbanizing areas. The LUSM strives to inform land-management decisions in a complex regulatory environment by simulating parcel-based, land-use transitions with a stochastic, spatially constrained, agent-based model. The tool is intended to be useful for multiple purposes, including the multiagency Pathway 2007 regional planning effort, the Tahoe Regional Planning Agency (TRPA) Regional Plan Update, and complementary research endeavors and natural-resource-management efforts. The LUSM is an Internet-based, scenario-generation decision support tool for allocating retired and developed parcels over the next 20 years. Because USGS staff worked closely with TRPA staff and their “Code of Ordinances” and analyzed datasets of historical management and land-use practices, this report accomplishes the task of providing reasonable default values for a baseline scenario that can be used in the LUSM. One result from the baseline scenario for the model suggests that all vacant parcels could be allocated within 12 years. Results also include: assessment of model functionality, brief descriptions of the 7 basic output tables, assessment of the rate of change in land-use allocation pools over time, locations and amounts of the spatially explicit probabilities of land-use transitions by real estate commodity, and analysis of the state change from today’s existing land cover to potential land uses in the future. Assumptions and limitations of the model are presented. This report concludes with suggested next steps to support the continued utility of the LUSM and additional research avenues.

  4. Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.

    2006-05-01

    One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.

  5. Exploring preservice elementary teachers' critique and adaptation of science curriculum materials in respect to socioscientific issues

    NASA Astrophysics Data System (ADS)

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-09-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students’ learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers’ critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate this process. Four undergraduate preservice elementary teachers were studied over the course of one semester. Results indicate that the teachers navigated multiple learning goals, as well as their own subject-matter knowledge, informal reasoning about SSI, and role identity, in their critique and adaptation of SSI-oriented science instructional materials. Implications for science teacher education and the design of curriculum materials in respect to SSI are discussed.

  6. Opportunities and Examples for Integration of Socio-environmental Approaches to Support Climate-informed Decisions

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.

    2014-12-01

    Climate and environmental decisions require science that couples human and natural systems to quantify or articulate the observed physical, natural, and societal changes or likely consequences of different decision options. Despite the need for such policy-relevant research, multidisciplinary collaborations can be wrought with challenges of data integration, model interoperability, and communication across disciplinary divides. In this talk, I will present several examples where I have collaborated with colleagues from the physical, natural, and social sciences to develop novel, actionable science to inform decision-making. Specifically, I will discuss a cost analysis of water and sediment diversions to optimize land building in the Mississippi River delta (winner of American Geophysical Union Water Resources Research Editor's Choice Award 2014) and the development of a National Climate Indicator System that uses knowledge across the physical, natural, and social sciences to establish an end-to-end indicator system of climate changes, impacts, vulnerabilities, and responses. The latter project is in the process of moving from research to operations, an additional challenge and opportunity, as we work with the U.S. Global Change Research Program and their affiliated Federal agencies to establish it beyond the research prototype. Using these examples, I will provide some lessons learned that would have general applicability to socio-environmental research collaborations and integration of data, models, and information systems to support climate and environmental decision-making.

  7. A case study of systemic curricular reform: A forty-year history

    NASA Astrophysics Data System (ADS)

    Laubach, Timothy Alan

    What follows is a description of the development of a particular inquiry-based elementary school science curriculum program and how its theoretical underpinnings positively influenced a school district's (K-12) science program and also impacted district- and state-wide curriculum reform initiatives. The district's science program has evolved since the inception of the inquiry-based elementary school science curriculum reform forty years ago. Therefore, a historical case study, which incorporated grounded theory methodology, was used to convey the forty-year development of a science curriculum reform effort and its systemic influences. Data for this study were collected primarily through artifacts, such as technical and non-technical documents, and supported and augmented with interviews. Fifteen people comprised the interview consortium with professional responsibilities including (a) administrative roles, such as superintendents, assistant superintendents, principals, and curriculum consultants/coordinators; (b) classroom roles, such as elementary and secondary school teachers who taught science; (c) partnership roles, such as university faculty who collaborated with those in administrative and classroom positions within the district; and (d) the co-director of SCIS who worked with the SCIS trial center director. Data were analyzed and coded using the constant comparative method. The analysis of data uncovered five categories or levels in which the curriculum reform evolved throughout its duration. These themes are Initiation, Education, Implementation, Confirmation, and Continuation. These five categories lead to several working hypotheses that supported the sustaining and continuing of a K-12 science curriculum reform effort. These components are a committed visionary; a theory base of education; forums promoting the education of the theory base components; shared-decision making; a university-school partnership; a core group of committed educators and teachers; evidences of success; national and state reform initiatives; a core group of administrators; longevity of the science program; district support (philosophical, financial, and emotional); and community support all contributed to the initiation, education, implementation, confirmation, and the continuation of the systemic curricular reform. The underlying component, or grounded theory generated by the study, that ties these experiences together is the "theory base" that concurrently evolved in the local school district and in a nearby university.

  8. Integrating Ecosystem-Based Management Principles of Adaptive Management and Stakeholder Engagement in California Fisheries

    NASA Astrophysics Data System (ADS)

    Erickson, A.; Martone, R. G.; Hazen, L.; Mease, L.; Gourlie, D.; Le Cornu, E.; Ourens, R.; Micheli, F.

    2016-12-01

    California's fisheries management law, the Marine Life Management Act (MLMA) of 1998, signaled a transformative shift from traditional single-species management to an ecosystem-based approach. In response, the fisheries management community in California is striving to integrate new science and management innovations while maximizing its limited capacity. However, data gaps, high compliance costs, capacity constraints, and limited access to the best available data and technologies persist. Here we present two decision support tools being developed to aid California fisheries managers as they continue to implement ecosystem-based management (EBM). First, to practice adaptive management, a key principle of EBM, managers must know whether and how their decisions are meeting their management objectives over time. Based on a cross-walk of MLMA goals with metrics and indicators from sustainable fishery certification programs, we present a flexible and practical tool for tracking fishery management performance in California. We showcase a draft series of decision trees and questionnaires managers can use to quantitatively or qualitatively measure both ecological and social outcomes, helping them to prioritize management options and limited resources. Second, state fisheries managers acknowledge the need for more effective stakeholder engagement to facilitate and inform decision-making and long-term outcomes, another key principle of EBM. Here, we present a pilot version of a decision-support tool to aid managers in choosing the most appropriate stakeholder engagement strategies in various types of decision contexts. This online tool will help staff identify their engagement goals, when they can strategically engage stakeholders based on their needs, and the fishery characteristics that will inform how engagement strategies are tailored to specific contexts. We also share opportunities to expand these EBM tools to other resource management contexts and scales.

  9. Integrating Ecosystem-Based Management Principles of Adaptive Management and Stakeholder Engagement in California Fisheries

    NASA Astrophysics Data System (ADS)

    Erickson, A.; Martone, R. G.; Hazen, L.; Mease, L.; Gourlie, D.; Le Cornu, E.; Ourens, R.; Micheli, F.

    2016-02-01

    California's fisheries management law, the Marine Life Management Act (MLMA) of 1998, signaled a transformative shift from traditional single-species management to an ecosystem-based approach. In response, the fisheries management community in California is striving to integrate new science and management innovations while maximizing its limited capacity. However, data gaps, high compliance costs, capacity constraints, and limited access to the best available data and technologies persist. Here we present two decision support tools being developed to aid California fisheries managers as they continue to implement ecosystem-based management (EBM). First, to practice adaptive management, a key principle of EBM, managers must know whether and how their decisions are meeting their management objectives over time. Based on a cross-walk of MLMA goals with metrics and indicators from sustainable fishery certification programs, we present a flexible and practical tool for tracking fishery management performance in California. We showcase a draft series of decision trees and questionnaires managers can use to quantitatively or qualitatively measure both ecological and social outcomes, helping them to prioritize management options and limited resources. Second, state fisheries managers acknowledge the need for more effective stakeholder engagement to facilitate and inform decision-making and long-term outcomes, another key principle of EBM. Here, we present a pilot version of a decision-support tool to aid managers in choosing the most appropriate stakeholder engagement strategies in various types of decision contexts. This online tool will help staff identify their engagement goals, when they can strategically engage stakeholders based on their needs, and the fishery characteristics that will inform how engagement strategies are tailored to specific contexts. We also share opportunities to expand these EBM tools to other resource management contexts and scales.

  10. Disputes over science and dispute resolution approaches - A survey of Bureau of Reclamation employees

    USGS Publications Warehouse

    Burkardt, Nina; Ruell, Emily W.

    2012-01-01

    Water resources in parts of the Western United States are over-allocated, which intensifies the pressure to support water management decisions with strong scientific evidence. Because scientific studies sometimes provide uncertain or competing results or recommendations, science can become a source of disputes during decision-making processes. The Bureau of Reclamation (Reclamation) is an important water manager in the Western United States, and Reclamation decision processes are often contested by a variety of affected constituencies. We conducted a Web-based survey of Reclamation employees to determine (1) which types of disputes over science are occurring and how common they are, (2) which approaches have been used by Reclamation to try to resolve these different types of disputes, (3) how useful Reclamation employees find these approaches at resolving these types of disputes, (4) the final outcomes of these disputes and the decision-making processes that were hindered by the disputes over science, and (5) the potential usefulness of several different types of dispute resolution resources that Reclamation could provide for employees that become involved in disputes over science. The calculated minimum response rate for the survey was 59 percent. Twenty-five percent of respondents indicated that they had been involved in a dispute over science while working at Reclamation. Native species and species listed under the Endangered Species Act of 1973 were the most common issue types reported in these disputes over science. Survey respondents indicated that they used a variety of approaches to resolve disputes over science and rated most approaches as either neutral or somewhat helpful in these endeavors. Future research is needed to determine whether there are additional variables underlying these disputes that were not measured in this survey that may identify when dispute resolution methods are most effective, or whether resolving aspects of these disputes, such as differing interpretations of science, is very difficult or impossible regardless of the dispute resolution methods used.

  11. Utility of the clue - From assessing the investigative contribution of forensic science to supporting the decision to use traces.

    PubMed

    Bitzer, Sonja; Albertini, Nicola; Lock, Eric; Ribaux, Olivier; Delémont, Olivier

    2015-12-01

    In an attempt to grasp the effectiveness of forensic science in the criminal justice process, a number of studies introduced some form of performance indicator. However, most of these indicators suffer from different weaknesses, from the definition of forensic science itself to problems of reliability and validity. We suggest the introduction of the concept of utility of the clue as an internal evaluation indicator of forensic science in the investigation. Utility of the clue is defined as added value of information, gained by the use of traces. This concept could be used to assess the contribution of the trace in the context of the case. By extension, a second application of this concept is suggested. By formalising and considering, a priori, the perceived utility of using traces, we introduce the notion of expected utility that could be used as decision factor when choosing which traces to use, once they have been collected at the crime scene or from an object in the laboratory. In a case-based approach, utility can be assessed in the light of the available information to evaluate the investigative contribution of forensic science. In the decision-making process, the projection or estimation of the utility of the clue is proposed to be a factor to take into account when triaging the set of traces. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  12. A Prototype Decision Support System for the Location of Military Water Points.

    DTIC Science & Technology

    1980-06-01

    create an environ- ment which is conductive to an efficient man/machine decision making system . This could be accomplished by designing the operating...Figure 12. Flowchart of Program COMPUTE 50 Procedure This Decision Support System was designed to be interactive. That is, it requests data from the user...Pg. 82-114, 1974. 24. Geoffrion, A.M. and G.W. Graves, "Multicomodity Distribution System Design by Benders Partition", Management Science, Vol. 20, Pg

  13. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Treesearch

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  14. Support for improved quality control but misplaced criticism of GBR science. Reply to viewpoint "The need for a formalised system of Quality Control for environmental policy-science" by P. Larcombe and P. Ridd (Marine Pollution Bulletin 126: 449-461, 2018).

    PubMed

    Schaffelke, Britta; Fabricius, Katharina; Kroon, Frederieke; Brodie, Jon; De'ath, Glenn; Shaw, Roger; Tarte, Diane; Warne, Michael; Thorburn, Peter

    2018-04-01

    This is a response to the published Viewpoint by Larcombe and Ridd (2018). We agree with Larcombe and Ridd (2018) that scientific merit goes hand in hand with rigorous quality control. However, we are responding here to several points raised by Larcombe and Ridd (2018) which in our view were misrepresented. We describe the formal and effective science review, synthesis and advice processes that are in place for science supporting decision-making in the Great Barrier Reef. We also respond in detail to critiques of selected publications that were used by Larcombe and Ridd (2018) as a case study to illustrate shortcomings in science quality control. We provide evidence that their representation of the published research and arguments to support the statement that "many (…) conclusions are demonstrably incorrect" is based on misinterpretation, selective use of data and over-simplification, and also ignores formal responses to previously published critiques. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Awakening the Scientist Inside: Global Climate Change and the Nature of Science in an Elementary Science Methods Course

    NASA Astrophysics Data System (ADS)

    Matkins, Juanita Jo; Bell, Randy L.

    2007-04-01

    This investigation assessed the impact of situating explicit nature of science (NOS) instruction within the issues surrounding global climate change and global warming (GCC/GW). Participants in the study were 15 preservice elementary teachers enrolled in a science methods course. The instructional intervention included explicit NOS instruction combined with explicit GCC/GW instruction situated within the normal elementary science methods curriculum. Participants’ conceptions of NOS and GCC/GW were assessed with pre- and postadministrations of open-ended questionnaires and interviews. Results indicated that participants’ conceptions of NOS and GCC/GW improved over the course of the semester. Furthermore, participants were able to apply their conceptions to decision making about socioscientific issues. The results provide support for context-based NOS instruction in an elementary science methods course.

  16. Dimensions of autonomy: Primary teachers' decisions about involvement in science professional development

    NASA Astrophysics Data System (ADS)

    Schibeci, Renato A.; Hickey, Ruth L.

    2004-01-01

    Professional development (PD) for primary science teachers is recognized as an important activity which can support improved science education for students. Analysis of interviews with practicing primary science teachers is used to identify the range of PD experiences of a sample of teachers from Western Australia. Teachers' reasons for attending or avoiding science-related PD are categorized as decision issues which include opportunity, compulsion, convenience, enticement, interest, recommendation, and relevance. Case studies describe the interplay of these issues, which result in teachers' attendance or avoidance of PD. A subset of the sample is used to explore teachers' views of other activities which they recognize as contributing to their science teaching, content knowledge, and pedagogy. These other activities include hobbies, partner's job, and pursuing students' interests. Legitimating teachers' own interests as a source of personally derived PD is supported as an avenue to increase the diversity of topics studied by students and to increase the level of content knowledge held by teachers.

  17. Affordances and Challenges of Using Argument as a Connective Discourse for Scientific Practices to Teach Climate Science

    NASA Astrophysics Data System (ADS)

    Sezen-Barrie, A.; Wolfson, J.

    2015-12-01

    An important goal of science education is to support development of citizens to participate in public debate and make informed decisions relevant to their lives and their worlds. The NGSS (Next Generation Science Standards) suggest engaging students in science classrooms in argumentation as a practice to help enhance the quality of evidence based decision making. In this multi-case study, we explored the use of written argumentation in eight secondary school science classrooms during a lesson on the relationship between ocean temperature and its CO2 holding capacity. All teachers of these classrooms were trained during a day long NSF funded Climate Literacy Workshop on the basic concepts of climate science, scientific practices and implementation of an activity called "It's a Gassy World". The data of the current study involved students' written arguments, teachers' written reflections on the implementation of the activity as well as field notes from the Climate Literacy Workshop. A qualitative discourse analysis of the data was used to find common themes around affordances and challenges of argument as a connective discourse for scientific practices to teach climate change. The findings show that participating in written argumentation process encouraged students to discuss their experimental design and use data interpretation for their evidences. However, the results also indicated the following challenges: a) teachers themselves need support in connecting their evidence to their claims, b) arguing a socioscientific issue creates a sensitive environment c) conceptual quality of an argument needs to be strengthen through background in courses other than science, and d) graphing skills (or lack of) can interfere with constructing scientifically accurate claims. This study has implications in effectively teaching climate change through argumentation, and thus creating opportunities for practicing authentic climate science research in K-12 classrooms.

  18. The Pacific Northwest's Climate Impacts Group: Climate Science in the Public Interest

    NASA Astrophysics Data System (ADS)

    Mantua, N.; Snover, A.

    2006-12-01

    Since its inception in 1995, the University of Washington's Climate Impacts Group (CIG) (funded under NOAA's Regional Integrated Science and Assessments (RISA) Program) has become the leader in exploring the impacts of climate variability and climate change on natural and human systems in the U.S. Pacific Northwest (PNW), specifically climate impacts on water, forest, fish and coastal resource systems. The CIG's research provides PNW planners, decision makers, resource managers, local media, and the general public with valuable knowledge of ways in which the region's key natural resources are vulnerable to changes in climate, and how this vulnerability can be reduced. The CIG engages in climate science in the public interest, conducting original research on the causes and consequences of climate variability and change for the PNW and developing forecasts and decision support tools to support the use of this information in federal, state, local, tribal, and private sector resource management decisions. The CIG's focus on the intersection of climate science and public policy has placed the CIG nationally at the forefront of regional climate impacts assessment and integrated analysis.

  19. An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials.

    PubMed

    Tolaymat, Thabet; El Badawy, Amro; Sequeira, Reynold; Genaidy, Ash

    2015-11-15

    There is an urgent need for broad and integrated studies that address the risks of engineered nanomaterials (ENMs) along the different endpoints of the society, environment, and economy (SEE) complex adaptive system. This article presents an integrated science-based methodology to assess the potential risks of engineered nanomaterials. To achieve the study objective, two major tasks are accomplished, knowledge synthesis and algorithmic computational methodology. The knowledge synthesis task is designed to capture "what is known" and to outline the gaps in knowledge from ENMs risk perspective. The algorithmic computational methodology is geared toward the provision of decisions and an understanding of the risks of ENMs along different endpoints for the constituents of the SEE complex adaptive system. The approach presented herein allows for addressing the formidable task of assessing the implications and risks of exposure to ENMs, with the long term goal to build a decision-support system to guide key stakeholders in the SEE system towards building sustainable ENMs and nano-enabled products. Published by Elsevier B.V.

  20. Socio-Hydrology Modelling for an Uncertain Future, with Examples from the USA and Canada (Invited)

    NASA Astrophysics Data System (ADS)

    White, D. D.; Gober, P.; Sampson, D. A.; Quay, R.; Kirkwood, C.

    2013-12-01

    Socio-hydrology brings an interest in human values, markets, social organizations and public policy to the traditional emphasis of water science on climate, hydrology, toxicology,and ecology. It also conveys a decision focus in the form of decision support tools, engagement, and new knowledge about the science-policy interface. This paper demonstrates how policy decisions and human behavior can be better integrated into climate and hydrological models to improve their usefulness for support in decision making. Examples from the Southwest USA and Western Canada highlight uncertainties, vulnerabilities, and critical tradeoffs facing water decision makers in the face of rapidly changing environmental and societal conditions. Irreducible uncertainties in downscaled climate and hydrological models limit the usefulness of climate-driven, predict-and-plan methods of water resource planning and management. Thus, it is argued that such methods should be replaced by approaches that use exploratory modelling, scenario planning, and risk assessment in which the emphasis is on managing uncertainty rather than on reducing it.

  1. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    NASA Astrophysics Data System (ADS)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  2. Evidence based communication for health promotion: Indian lessons of last decade.

    PubMed

    Suresh, K

    2011-01-01

    Good health promotion programs which help achieve public health goals are derived from using a mix of epidemiological and social and behavioral science research information. Social data informed by behavioral theories provides a lens of understanding how recommended behaviors are adopted by different individuals within the population over a period of time. In addition to social and epidemiological data, evidence based and scientifically planned and monitored strategic communication interventions have to be linked to available service components of the program. Communication is increasingly understood as an enabler of individual and social level change to achieve established developmental goals including health. Democratization movements and the advent of the internet have changed the environment around any program communication from top-down, expert-to-consumer (vertical) communication towards non-hierarchical, dialogue-based (horizontal) communication, through which the public increasingly questions recommendations of experts and public institutions on the basis of their own, often web based, research. The amount of information available has increased greatly, including scientifically valid data and evidence-based recommendations alongside poor quality data, personal opinions, and misinformation. Evidence-based approaches include engagement with and listening to stakeholders, and being transparent about decision making, and honest and open about uncertainty and risks. Decision and policy makers cannot assume what the public wants without undertaking social science and decision science research. The Global Polio Eradication Initiative and Integrated Disease Surveillance Projects (IDSP) in India haves shown that monitoring of public concerns needs to be continuous and responsive, and hand in hand with the monitoring of technical strategies and appropriate Information Technology support for, not only data transmission but also for videoconferencing and community involvement through toll free 24 × 7 call service with universal access. This article elucidates the vital role of Health Promotion, a research based communication process, in achieving developmental, particularly health goals. It underscores that communication is as much a science as an art, as much process as it is about outcomes. It advocates for increased linkages between epidemiological research and social science research in planning effective health promotion interventions with quality service delivery.

  3. Decision support system development at the Upper Midwest Environmental Sciences Center

    USGS Publications Warehouse

    Fox, Timothy J.; Nelson, J. C.; Rohweder, Jason J.

    2014-01-01

    A Decision Support System (DSS) can be defined in many ways. The working definition used by the U.S. Geological Survey Upper Midwest Environmental Sciences Center (UMESC) is, “A spatially based computer application or data that assists a researcher or manager in making decisions.” This is quite a broad definition—and it needs to be, because the possibilities for types of DSSs are limited only by the user group and the developer’s imagination. There is no one DSS; the types of DSSs are as diverse as the problems they help solve. This diversity requires that DSSs be built in a variety of ways, using the most appropriate methods and tools for the individual application. The skills of potential DSS users vary widely as well, further necessitating multiple approaches to DSS development. Some small, highly trained user groups may want a powerful modeling tool with extensive functionality at the expense of ease of use. Other user groups less familiar with geographic information system (GIS) and spatial data may want an easy-to-use application for a nontechnical audience. UMESC has been developing DSSs for almost 20 years. Our DSS developers offer our partners a wide variety of technical skills and development options, ranging from the most simple Web page or small application to complex modeling application development.

  4. An Emerging New Risk Analysis Science: Foundations and Implications.

    PubMed

    Aven, Terje

    2018-05-01

    To solve real-life problems-such as those related to technology, health, security, or climate change-and make suitable decisions, risk is nearly always a main issue. Different types of sciences are often supporting the work, for example, statistics, natural sciences, and social sciences. Risk analysis approaches and methods are also commonly used, but risk analysis is not broadly accepted as a science in itself. A key problem is the lack of explanatory power and large uncertainties when assessing risk. This article presents an emerging new risk analysis science based on novel ideas and theories on risk analysis developed in recent years by the risk analysis community. It builds on a fundamental change in thinking, from the search for accurate predictions and risk estimates, to knowledge generation related to concepts, theories, frameworks, approaches, principles, methods, and models to understand, assess, characterize, communicate, and (in a broad sense) manage risk. Examples are used to illustrate the importance of this distinct/separate risk analysis science for solving risk problems, supporting science in general and other disciplines in particular. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  5. The impact of management science on political decision making

    NASA Technical Reports Server (NTRS)

    White, M. J.

    1971-01-01

    The possible impact on public policy and organizational decision making of operations research/management science (OR/MS) is discussed. Criticisms based on the assumption that OR/MS will have influence on decision making and criticisms based on the assumption that it will have no influence are described. New directions in the analysis of analysis and in thinking about policy making are also considered.

  6. Identifying Key Features, Cutting Edge Cloud Resources, and Artificial Intelligence Tools to Achieve User-Friendly Water Science in the Cloud

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2017-12-01

    Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.

  7. GROTTO visualization for decision support

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.

    1998-08-01

    In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.

  8. Improving Medical Students' Application of Knowledge and Clinical Decision-Making Through a Porcine-Based Integrated Cardiac Basic Science Program.

    PubMed

    Stott, Martyn Charles; Gooseman, Michael Richard; Briffa, Norman Paul

    2016-01-01

    Despite the concerted effort of modern undergraduate curriculum designers, the ability to integrate basic sciences in clinical rotations is an ongoing problem in medical education. Students and newly qualified doctors themselves report worry about the effect this has on their clinical performance. There are examples in the literature to support development of attempts at integrating such aspects, but this "vertical integration" has proven to be difficult. We designed an expert-led integrated program using dissection of porcine hearts to improve the use of cardiac basic sciences in clinical medical students' decision-making processes. To our knowledge, this is the first time in the United Kingdom that an animal model has been used to teach undergraduate clinical anatomy to medical students to direct wider application of knowledge. Action research methodology was used to evaluate the local curriculum and assess learners needs, and the agreed teaching outcomes, methods, and delivery outline were established. A total of 18 students in the clinical years of their degree program attended, completing precourse and postcourse multichoice questions examinations and questionnaires to assess learners' development. Student's knowledge scores improved by 17.5% (p = 0.01; students t-test). Students also felt more confident at applying underlying knowledge to decision-making and diagnosis in clinical medicine. An expert teacher (consultant surgeon) was seen as beneficial to students' understanding and appreciation. This study outlines how the development of a teaching intervention using porcine-based methods successfully improved both student's knowledge and application of cardiac basic sciences. We recommend that clinicians fully engage with integrating previously learnt underlying sciences to aid students in developing decision-making and diagnostic skills as well as a deeper approach to learning. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Personal and Social Support Factors Involved in Students' Decision to Participate in Formal Academic Mentoring

    ERIC Educational Resources Information Center

    Larose, Simon; Cyrenne, Diane; Garceau, Odette; Harvey, Marylou; Guay, Frederic; Deschenes, Claire

    2009-01-01

    In this study, we examined the role of personal and social support factors involved in students' decision to participate in formal academic mentoring. Three hundred and eighteen students completing Grade 11 and planning to study sciences in college filled out a questionnaire and were then asked to participate in an academic mentoring program…

  10. A Rapid Prototyping Look at NASA's Next Generation Earth-Observing Satellites; Opportunities for Global Change Research and Applications

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.

    2006-12-01

    The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.

  11. Climate in Context - How partnerships evolve in regions

    NASA Astrophysics Data System (ADS)

    Parris, A. S.

    2014-12-01

    In 2015, NOAA's RISA program will celebrate its 20th year of exploration in the development of usable climate information. In the mid-1990s, a vision emerged to develop interdisciplinary research efforts at the regional scale for several important reasons. Recognizable climate patterns, such as the El Nino Southern Oscillation (ENSO), emerge at the regional level where our understanding of observations and models coalesce. Critical resources for society are managed in a context of regional systems, such as water supply and human populations. Multiple scales of governance (local, state, and federal) with complex institutional relationships can be examined across a region. Climate information (i.e. data, science, research etc) developed within these contexts has greater potential for use. All of this work rests on a foundation of iterative engagement between scientists and decision makers. Throughout these interactions, RISAs have navigated diverse politics, extreme events and disasters, socio-economic and ecological disruptions, and advances in both science and technology. Our understanding of information needs is evolving into a richer understanding of complex institutional, legal, political, and cultural contexts within which people can use science to make informed decisions. The outcome of RISA work includes both cases where climate information was used in decisions and cases where capacity for using climate information and making climate resilient decisions has increased over time. In addition to balancing supply and demand of scientific information, RISAs are engaged in a social process of reconciling climate information use with important drivers of society. Because partnerships are critical for sustained engagement, and because engagement is critically important to the use of science, the rapid development of new capacity in regionally-based science programs focused on providing climate decision support is both needed and challenging. New actors can bolster existing partnerships, but also impact trust developed through engagement. Examining other partnership-driven science initiatives, such as Digital Coast or NIDIS, can help identify critical elements of governance and network management that could be applied to the regional climate programs.

  12. Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 Science

    ERIC Educational Resources Information Center

    Bybee, Rodger; McCrae, Barry

    2011-01-01

    International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development…

  13. LAMDA at TREC CDS track 2015: Clinical Decision Support Track

    DTIC Science & Technology

    2015-11-20

    outperforms all the other vector space models supported by Elasticsearch. MetaMap is the online tool that maps biomedical text to the Metathesaurus, and...cases. The medical knowledge consists of 700,000 biomedical documents supported by the PubMed Central [3] which is online digital database freely...Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT , and Future Planning (MSIP

  14. Comprehensive process model of clinical information interaction in primary care: results of a "best-fit" framework synthesis.

    PubMed

    Veinot, Tiffany C; Senteio, Charles R; Hanauer, David; Lowery, Julie C

    2018-06-01

    To describe a new, comprehensive process model of clinical information interaction in primary care (Clinical Information Interaction Model, or CIIM) based on a systematic synthesis of published research. We used the "best fit" framework synthesis approach. Searches were performed in PubMed, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Library and Information Science Abstracts, Library, Information Science and Technology Abstracts, and Engineering Village. Two authors reviewed articles according to inclusion and exclusion criteria. Data abstraction and content analysis of 443 published papers were used to create a model in which every element was supported by empirical research. The CIIM documents how primary care clinicians interact with information as they make point-of-care clinical decisions. The model highlights 3 major process components: (1) context, (2) activity (usual and contingent), and (3) influence. Usual activities include information processing, source-user interaction, information evaluation, selection of information, information use, clinical reasoning, and clinical decisions. Clinician characteristics, patient behaviors, and other professionals influence the process. The CIIM depicts the complete process of information interaction, enabling a grasp of relationships previously difficult to discern. The CIIM suggests potentially helpful functionality for clinical decision support systems (CDSSs) to support primary care, including a greater focus on information processing and use. The CIIM also documents the role of influence in clinical information interaction; influencers may affect the success of CDSS implementations. The CIIM offers a new framework for achieving CDSS workflow integration and new directions for CDSS design that can support the work of diverse primary care clinicians.

  15. It's Not Just About More Data: Translation of Science and Decision Support Evaluation for Climate Impact Indicators

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.

    2014-12-01

    The U.S. Global Change Research Program is currently considering establishing a National Climate Indicators System, which would be a set of physical, ecological, and societal indicators that would communicate key aspects of climate changes, impacts, vulnerabilities, and preparedness to inform mitigation and adaptation decisions. Thus, over the past several years 150+ scientists and practitioners representing a range of expertise from the climate system to natural systems to human sectors have developed a set of indicator recommendations that could be used as a first step to establishing such an indicator system. These recommendations have been implemented into a pilot system, with the goal of working with stakeholder communities to evaluate the understandability of individual indicators and learn how users are combining indicators for their own understanding or decision needs through this multiple Federal agency decision support platform. This prototype system provides the perfect test bed for evaluating the translation of scientific data - observations, remote sensing, and citizen science data -- and data products, such as indicators, for decision-making audiences. Often translation of scientific information into decision support products is developed and improved given intuition and feedback. Though this can be useful in many cases, more rigorous testing using social science methodologies would provide greater assurance that the data products are useful for the intended audiences. I will present some initial research using surveys to assess the understandability of indicators and whether that understanding is influenced by one's attitude toward climate change. Such information is critical to assess whether products developed for scientists by scientists have been appropriately translated for non-scientists, thus assuring that the data will have some value for the intended audience. Such survey information will provide a data driven approach to further develop and improve the National Climate Indicators System and could be applied to improve other decision support systems.

  16. An advance care plan decision support video before major surgery: a patient- and family-centred approach.

    PubMed

    Isenberg, Sarina R; Crossnohere, Norah L; Patel, Manali I; Conca-Cheng, Alison; Bridges, John F P; Swoboda, Sandy M; Smith, Thomas J; Pawlik, Timothy M; Weiss, Matthew; Volandes, Angelo E; Schuster, Anne; Miller, Judith A; Pastorini, Carolyn; Roter, Debra L; Aslakson, Rebecca A

    2018-06-01

    Video-based advanc care planning (ACP) tools have been studied in varied medical contexts; however, none have been developed for patients undergoing major surgery. Using a patient- and family-centredness approach, our objective was to implement human-centred design (HCD) to develop an ACP decision support video for patients and their family members when preparing for major surgery. The study investigators partnered with surgical patients and their family members, surgeons and other health professionals to design an ACP decision support video using key HCD principles. Adapting Maguire's HCD stages from computer science to the surgical context, while also incorporating Elwyn et al 's specifications for patient-oriented decision support tool development, we used a six-stage HCD process to develop the video: (1) plan HCD process; (2) specify where video will be used; (3) specify user and organisational requirements; (4) produce and test prototypes; (5) carry out user-based assessment; (6) field test with end users. Over 450 stakeholders were engaged in the development process contributing to setting objectives, applying for funding, providing feedback on the storyboard and iterations of the decision tool video. Throughout the HCD process, stakeholders' opinions were compiled and conflicting approaches negotiated resulting in a tool that addressed stakeholders' concerns. Our patient- and family-centred approach using HCD facilitated discussion and the ability to elicit and balance sometimes competing viewpoints. The early engagement of users and stakeholders throughout the development process may help to ensure tools address the stated needs of these individuals. NCT02489799. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Integrating Microcomputers into Science Education. Computer Technology Program Reports to Decision Makers. Number 6, November 1985.

    ERIC Educational Resources Information Center

    Batey, Anne

    Computers are integrated into science education when they are used as the most appropriate tool or delivery system to support the goals of science education. The goals of science education can be condensed into two general areas. One area concerns the preparation of a science-literate citizenry; the second area concerns understanding the…

  18. Building University Capacity to Visualize Solutions to Complex Problems in the Arctic

    NASA Astrophysics Data System (ADS)

    Broderson, D.; Veazey, P.; Raymond, V. L.; Kowalski, K.; Prakash, A.; Signor, B.

    2016-12-01

    Rapidly changing environments are creating complex problems across the globe, which are particular magnified in the Arctic. These worldwide challenges can best be addressed through diverse and interdisciplinary research teams. It is incumbent on such teams to promote co-production of knowledge and data-driven decision-making by identifying effective methods to communicate their findings and to engage with the public. Decision Theater North (DTN) is a new semi-immersive visualization system that provides a space for teams to collaborate and develop solutions to complex problems, relying on diverse sets of skills and knowledge. It provides a venue to synthesize the talents of scientists, who gather information (data); modelers, who create models of complex systems; artists, who develop visualizations; communicators, who connect and bridge populations; and policymakers, who can use the visualizations to develop sustainable solutions to pressing problems. The mission of Decision Theater North is to provide a cutting-edge visual environment to facilitate dialogue and decision-making by stakeholders including government, industry, communities and academia. We achieve this mission by adopting a multi-faceted approach reflected in the theater's design, technology, networking capabilities, user support, community relationship building, and strategic partnerships. DTN is a joint project of Alaska's National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) and the University of Alaska Fairbanks (UAF), who have brought the facility up to full operational status and are now expanding its development space to support larger team science efforts. Based in Fairbanks, Alaska, DTN is uniquely poised to address changes taking place in the Arctic and subarctic, and is connected with a larger network of decision theaters that include the Arizona State University Decision Theater Network and the McCain Institute in Washington, DC.

  19. Instructional decision making of high school science teachers

    NASA Astrophysics Data System (ADS)

    Carver, Jeffrey S.

    The instructional decision-making processes of high school science teachers have not been well established in the literature. Several models for decision-making do exist in other teaching disciplines, business, computer game programming, nursing, and some fields of science. A model that incorporates differences in science teaching that is consistent with constructivist theory as opposed to conventional science teaching is useful in the current climate of standards-based instruction that includes an inquiry-based approach to teaching science. This study focuses on three aspects of the decision-making process. First, it defines what factors, both internal and external, influence high school science teacher decision-making. Second, those factors are analyzed further to determine what instructional decision-making processes are articulated or demonstrated by the participants. Third, by analyzing the types of decisions that are made in the classroom, the classroom learning environments established as a result of those instructional decisions are studied for similarities and differences between conventional and constructivist models. While the decision-making process for each of these teachers was not clearly articulated by the teachers themselves, the patterns that establish the process were clearly exhibited by the teachers. It was also clear that the classroom learning environments that were established were, at least in part, established as a result of the instructional decisions that were made in planning and implementation of instruction. Patterns of instructional decision-making were different for each teacher as a result of primary instructional goals that were different for each teacher. There were similarities between teachers who exhibited more constructivist epistemological tendencies as well as similarities between teachers who exhibited a more conventional epistemology. While the decisions that will result from these two camps may be different, the six step process for instructional decision-making that was established during this study shows promise for use in both situations.

  20. Writing in elementary school science: Factors that influence teacher beliefs and practices

    NASA Astrophysics Data System (ADS)

    Glen, Nicole J.

    Recent calls for scientifically literate citizens have prompted science educators to examine the roles that literacy holds in students' science learning processes. Although many studies have investigated the cognitive gains students acquire when they write in science, these writing-to-learn studies have typically been conducted with only middle and secondary school students. Few studies have explored how teachers, particularly elementary teachers, understand the use of writing in science and the factors that influence their science and writing lessons. This was a qualitative case study conducted in one suburban school with four elementary teachers. The purpose of this study was to understand: (a) how teachers' uses of and purposes for writing in science compared to that in English language arts; (b) the factors that drove teachers' pedagogical decisions to use writing in certain ways; (c) teachers' beliefs about science teaching and learning and its relation to how they used writing; (d) teachers' perceptions of students' writing abilities and its relation to how they used writing; and (e) teachers' views about how writing is used by scientists. Seven main findings resulted from this research. In summary, teachers' main uses of and purposes for writing were similar in science and English language arts. For much of the writing done in both subjects, teachers' expectations of students' writing were typically based on their general literacy writing skills. The teachers believed that scientific writing is factual, for the purpose of communicating about science, and is not as creative or "fun" as other types of writing. The teachers' pedagogical practices in science included teaching by experiences, reading, and the transmission of information. These practices were related to their understanding of scientific writing. Finally, additional factors drove the decisions teachers made regarding the use of writing in science, including time, knowledge of curriculum requirements, science and writing content knowledge, and classroom management. The findings indicated that the teachers were using writing in some of the ways supported by science and literacy education, but there were many areas of writing in science in which teachers could use support and education. This included more knowledge of authentic uses of writing in the science discipline, general writing-to-learn strategies, and assessment of student ideas and information in writing and not only writing skills. The teachers also needed support in better understanding the nature of science and scientific inquiry, and in how to negotiate the social and cultural factors that influence their pedagogical decisions in order to use writing in more authentic ways. This study suggests that teacher educators and administrators must learn more about how teachers understand their role as elementary teachers, as teachers of writing and science, and the environments within which they work in order to help them move toward authentic literacy and science writing practices.

  1. A decision framework for identifying models to estimate forest ecosystem services gains from restoration

    USGS Publications Warehouse

    Christin, Zachary; Bagstad, Kenneth J.; Verdone, Michael

    2016-01-01

    Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving “tools landscape” presents a dilemma: more tools are available, but selecting appropriate tools has become more challenging. We present a Restoration Ecosystem Service Tool Selector (RESTS) framework that describes key characteristics of 13 ecosystem service assessment tools. Analysts enter information about their decision context, services to be analyzed, and desired outputs. Tools are filtered and presented based on five evaluative criteria: scalability, cost, time requirements, handling of uncertainty, and applicability to benefit-cost analysis. RESTS uses a spreadsheet interface but a web-based interface is planned. Given the rapid evolution of ecosystem services science, RESTS provides an adaptable framework to guide forest restoration decision makers toward tools that can help quantify ecosystem services in support of restoration.

  2. PopHR: a knowledge-based platform to support integration, analysis, and visualization of population health data.

    PubMed

    Shaban-Nejad, Arash; Lavigne, Maxime; Okhmatovskaia, Anya; Buckeridge, David L

    2017-01-01

    Population health decision makers must consider complex relationships between multiple concepts measured with differential accuracy from heterogeneous data sources. Population health information systems are currently limited in their ability to integrate data and present a coherent portrait of population health. Consequentially, these systems can provide only basic support for decision makers. The Population Health Record (PopHR) is a semantic web application that automates the integration and extraction of massive amounts of heterogeneous data from multiple distributed sources (e.g., administrative data, clinical records, and survey responses) to support the measurement and monitoring of population health and health system performance for a defined population. The design of the PopHR draws on the theories of the determinants of health and evidence-based public health to harmonize and explicitly link information about a population with evidence about the epidemiology and control of chronic diseases. Organizing information in this manner and linking it explicitly to evidence is expected to improve decision making related to the planning, implementation, and evaluation of population health and health system interventions. In this paper, we describe the PopHR platform and discuss the architecture, design, key modules, and its implementation and use. © 2016 New York Academy of Sciences.

  3. Investigating the role of educative curriculum materials in supporting teacher enactment of a field-based urban ecology investigation

    NASA Astrophysics Data System (ADS)

    Houle, Meredith

    2008-10-01

    This multiple case study examined how three urban science teachers used curriculum materials designed educatively. Educative curriculum materials have been suggested as one way to support science teacher learning, particularly around new innovations and new pedagogies and to support teachers in evaluating and modifying materials to meet the needs of their students (Davis & Krajcik, 2005). While not a substitute for professional development, educative curriculum materials may provide an opportunity to support teachers' enactment and learning in the classroom context (Davis & Krajcik, 2005; Remillard, 2005; Schneider & Krajcik, 2002). However, little work has examined how science teachers interact with written curriculum materials to design classroom instruction. Grounded in sociocultural analysis, this study takes the theoretical stance that teachers and curriculum materials are engaged in a dynamic and participatory relationship from which the planned and enacted curriculum emerges (Remillard, 2005). Teaching is therefore a design activity where teachers rely on their personal resources and the curricular resources to construct and shape their students' learning experiences (Brown, 2002). Specifically this study examines how teacher beliefs influence their reading and use of curriculum and how educative features in the written curriculum inform teachers' pedagogical decisions. Data sources included classroom observation and video, teacher interviews, and classroom artifacts. To make sense how teachers' make curricular decisions, video were analyzed using Brown's (2002) Pedagogical Design for Enactment Framework. These coded units were examined in light of the teacher interviews, classroom notes and artifacts to examine how teachers' beliefs influenced these decisions. Data sources were then reexamined for evidence of teachers' use of specific educative features. My analyses revealed that teachers' beliefs about curriculum influenced the degree to which teachers relied on their own personal resources or the curricular resources in designing the taught curriculum. Teacher experience was also found to influence the degree to which teachers relied on their personal resources. Implications for teacher learning, professional development and curriculum development are discussed.

  4. Next generation data systems and knowledge products to support agricultural producers and science-based policy decision making.

    PubMed

    Capalbo, Susan M; Antle, John M; Seavert, Clark

    2017-07-01

    Research on next generation agricultural systems models shows that the most important current limitation is data, both for on-farm decision support and for research investment and policy decision making. One of the greatest data challenges is to obtain reliable data on farm management decision making, both for current conditions and under scenarios of changed bio-physical and socio-economic conditions. This paper presents a framework for the use of farm-level and landscape-scale models and data to provide analysis that could be used in NextGen knowledge products, such as mobile applications or personal computer data analysis and visualization software. We describe two analytical tools - AgBiz Logic and TOA-MD - that demonstrate the current capability of farmlevel and landscape-scale models. The use of these tools is explored with a case study of an oilseed crop, Camelina sativa , which could be used to produce jet aviation fuel. We conclude with a discussion of innovations needed to facilitate the use of farm and policy-level models to generate data and analysis for improved knowledge products.

  5. Citizen Science to Support Community-based Flood Early Warning and Resilience Building

    NASA Astrophysics Data System (ADS)

    Paul, J. D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J. A.; Bhusal, J.; Cieslik, K.; Clark, J.; Dewulf, A.; Dhital, M. R.; Hannah, D. M.; Liu, W.; Nayaval, J. L.; Schiller, A.; Smith, P. J.; Stoffel, M.; Supper, R.

    2017-12-01

    In Disaster Risk Management, an emerging shift has been noted from broad-scale, top-down assessments towards more participatory, community-based, bottom-up approaches. Combined with technologies for robust and low-cost sensor networks, a citizen science approach has recently emerged as a promising direction in the provision of extensive, real-time information for flood early warning systems. Here we present the framework and initial results of a major new international project, Landslide EVO, aimed at increasing local resilience against hydrologically induced disasters in western Nepal by exploiting participatory approaches to knowledge generation and risk governance. We identify three major technological developments that strongly support our approach to flood early warning and resilience building in Nepal. First, distributed sensor networks, participatory monitoring, and citizen science hold great promise in complementing official monitoring networks and remote sensing by generating site-specific information with local buy-in, especially in data-scarce regions. Secondly, the emergence of open source, cloud-based risk analysis platforms supports the construction of a modular, distributed, and potentially decentralised data processing workflow. Finally, linking data analysis platforms to social computer networks and ICT (e.g. mobile phones, tablets) allows tailored interfaces and people-centred decision- and policy-support systems to be built. Our proposition is that maximum impact is created if end-users are involved not only in data collection, but also over the entire project life-cycle, including the analysis and provision of results. In this context, citizen science complements more traditional knowledge generation practices, and also enhances multi-directional information provision, risk management, early-warning systems and local resilience building.

  6. Effect of an Experiential and Work-Based Learning Program on Vocational Identity, Career Decision Self-Efficacy, and Career Maturity

    ERIC Educational Resources Information Center

    Esters, Levon T.; Retallick, Michael S.

    2013-01-01

    This exploratory study examined the effect of an agriculturally-based experiential and work-based learning program, Science With Practice (SWP), on the vocational identity, career decision self-efficacy, and career maturity of undergraduate agriculture and life sciences students. The SWP experience helped clarify students' career interests and…

  7. Producing More Actionable Science Isn't the Problem; It's Providing Decision-Makers with Access to Right Actionable Knowledge

    NASA Astrophysics Data System (ADS)

    Trexler, M.

    2017-12-01

    Policy-makers today have almost infinite climate-relevant scientific and other information available to them. The problem for climate change decision-making isn't missing science or inadequate knowledge of climate risks; the problem is that the "right" climate change actionable knowledge isn't getting to the right decision-maker, or is getting there too early or too late to effectively influence her decision-making. Actionable knowledge is not one-size-fit-all, and for a given decision-maker might involve scientific, economic, or risk-based information. Simply producing more and more information as we are today is not the solution, and actually makes it harder for individual decision-makers to access "their" actionable knowledge. The Climatographers began building the Climate Web five years ago to test the hypothesis that a knowledge management system could help navigate the gap between infinite information and individual actionable knowledge. Today the Climate Web's more than 1,500 index terms allow instant access to almost any climate change topic. It is a curated public-access knowledgebase of more than 1,000 books, 2,000 videos, 15,000 reports and articles, 25,000 news stories, and 3,000 websites. But it is also much more, linking together tens of thousands of individually extracted ideas and graphics, and providing Deep Dives into more than 100 key topics from changing probability distributions of extreme events to climate communications best practices to cognitive dissonance in climate change decision-making. The public-access Climate Web is uniquely able to support cross-silo learning, collaboration, and actionable knowledge dissemination. The presentation will use the Climate Web to demonstrate why knowledge management should be seen as a critical component of science and policy-making collaborations.

  8. Make or Buy: A Systematic Approach to Department of Defense Sourcing Decisions

    DTIC Science & Technology

    2013-07-30

    Defense-Industrial Initiatives Group at CSIS, where he worked on projects related to U.S. and European technology and industrial bases supporting defense...Prior to joining CSIS, Mr. Ben-Ari was a research associate at George Washington University’s Center for International Science and Technology ...collaborative research and development programs for Gilat Satellite Networks Ltd., an Israeli high- technology company in the field of satellite

  9. The Roles of Science in Local Resilience Policy Development: A Case Study of Three U.S. Cities

    NASA Astrophysics Data System (ADS)

    Clavin, C.; Gupta, N.

    2015-12-01

    The development and deployment of resilience policies within communities in the United States often respond to the place-based, hazard-specific nature of disasters. Prior to the onset of a disaster, municipal and regional decision makers establish long-term development policies, such as land use planning, infrastructure investment, and economic development policies. Despite the importance of incorporating disaster risk within community decision making, resilience and disaster risk are only one consideration community decision makers weigh when choosing how and whether to establish resilience policy. Using a case study approach, we examine the governance, organizational, management, and policy making processes and the involvement of scientific advice in designing and implementing resilience policy in three U.S. communities: Los Angeles, CA; Norfolk, VA; and Flagstaff, AZ. Disaster mitigation or resilience initiatives were developed and deployed in each community with differing levels and types of scientific engagement. Engagement spanned from providing technical support with traditional risk assessment to direct engagement with community decision makers and design of community resilience outreach. Best practices observed include embedding trusted, independent scientific advisors with strong community credibility within local government agencies, use of interdisciplinary and interdepartmental expert teams with management and technical skillsets, and establishing scientifically-informed disaster and hazard scenarios to enable community outreach. Case study evidence suggest science communication and engagement within and across municipal government agencies and scientifically-informed direct engagement with community stakeholders are effective approaches and roles that disaster risk scientists can fill to support resilience policy development.

  10. The web of life: Natural science information on the Internet

    USGS Publications Warehouse

    Clement, Gail

    2000-01-01

    As society has come to equate economic prosperity with the health of our living resources, national science policy has called for the development of a comprehensive digital knowledge base to support informed decision making and wise resource management. The Internet and World Wide Web demonstrate the earliest stages of this evolving virtual library of the natural world, offering an increasing array of high-quality, innovative resources and services in the natural science arena. This article discusses the leading providers of natural science information on the Internet and highlights some of the exemplary resources they are delivering online. The discussion concludes with a brief discussion of the role of the librarian in developing the Web of natural science knowledge online and provides a short Webliography of starting points for further exploration of this subject area. PDF

  11. How do students navigate and learn from nonlinear science texts: Can metanavigation support promote science learning?

    NASA Astrophysics Data System (ADS)

    Stylianou, Agni

    2003-06-01

    Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.

  12. Buffelgrass-Integrated modeling of an invasive plant

    USGS Publications Warehouse

    Holcombe, Tracy R.

    2011-01-01

    Buffelgrass (Pennisetum ciliare) poses a problem in the deserts of the United States, growing in dense stands and introducing a wildfire risk in an ecosystem not adapted to fire. The Invasive Species Science Branch of the Fort Collins Science Center has worked with many partners to develop a decision support model and a data management system to address the problem. The decision support model evaluates potential strategies for resource use and allocation. The data management system is a portal where users can submit, view, and download buffelgrass data. These tools provide a case study showcasing how the FORT is working to address the urgent issue of invasive species in the United States.

  13. Advancing clinical decision support using lessons from outside of healthcare: an interdisciplinary systematic review.

    PubMed

    Wu, Helen W; Davis, Paul K; Bell, Douglas S

    2012-08-17

    Greater use of computerized decision support (DS) systems could address continuing safety and quality problems in healthcare, but the healthcare field has struggled to implement DS technology. This study surveys DS experience across multiple non-healthcare disciplines for new insights that are generalizable to healthcare provider decisions. In particular, it sought design principles and lessons learned from the other disciplines that could inform efforts to accelerate the adoption of clinical decision support (CDS). Our systematic review drew broadly from non-healthcare databases in the basic sciences, social sciences, humanities, engineering, business, and defense: PsychINFO, BusinessSource Premier, Social Sciences Abstracts, Web of Science, and Defense Technical Information Center. Because our interest was in DS that could apply to clinical decisions, we selected articles that (1) provided a review, overview, discussion of lessons learned, or an evaluation of design or implementation aspects of DS within a non-healthcare discipline and (2) involved an element of human judgment at the individual level, as opposed to decisions that can be fully automated or that are made at the organizational level. Clinical decisions share some similarities with decisions made by military commanders, business managers, and other leaders: they involve assessing new situations and choosing courses of action with major consequences, under time pressure, and with incomplete information. We identified seven high-level DS system design features from the non-healthcare literature that could be applied to CDS: providing broad, system-level perspectives; customizing interfaces to specific users and roles; making the DS reasoning transparent; presenting data effectively; generating multiple scenarios covering disparate outcomes (e.g., effective; effective with side effects; ineffective); allowing for contingent adaptations; and facilitating collaboration. The article provides examples of each feature. The DS literature also emphasizes the importance of organizational culture and training in implementation success. The literature contrasts "rational-analytic" vs. "naturalistic-intuitive" decision-making styles, but the best approach is often a balanced approach that combines both styles. It is also important for DS systems to enable exploration of multiple assumptions, and incorporation of new information in response to changing circumstances. Complex, high-level decision-making has common features across disciplines as seemingly disparate as defense, business, and healthcare. National efforts to advance the health information technology agenda through broader CDS adoption could benefit by applying the DS principles identified in this review.

  14. Evidence-based librarianship: an overview.

    PubMed

    Eldredge, J D

    2000-10-01

    To demonstrate how the core characteristics of both evidence-based medicine (EBM) and evidence-based health care (EBHC) can be adapted to health sciences librarianship. Narrative review essay involving development of a conceptual framework. The author describes the central features of EBM and EBHC. Following each description of a central feature, the author then suggests ways that this feature applies to health sciences librarianship. First, the decision-making processes of EBM and EBHC are compatible with health sciences librarianship. Second, the EBM and EBHC values of favoring rigorously produced scientific evidence in decision making are congruent with the core values of librarianship. Third, the hierarchical levels of evidence can be applied to librarianship with some modifications. Library researchers currently favor descriptive-survey and case-study methods over systematic reviews, randomized controlled trials, or other higher levels of evidence. The library literature nevertheless contains diverse examples of randomized controlled trials, controlled-comparison studies, and cohort studies conducted by health sciences librarians. Health sciences librarians are confronted with making many practical decisions. Evidence-based librarianship offers a decision-making framework, which integrates the best available research evidence. By employing this framework and the higher levels of research evidence it promotes, health sciences librarians can lay the foundation for more collaborative and scientific endeavors.

  15. Evidence-based librarianship: an overview

    PubMed Central

    Eldredge, Jonathan D.

    2000-01-01

    Objective: To demonstrate how the core characteristics of both evidence-based medicine (EBM) and evidence-based health care (EBHC) can be adapted to health sciences librarianship. Method: Narrative review essay involving development of a conceptual framework. The author describes the central features of EBM and EBHC. Following each description of a central feature, the author then suggests ways that this feature applies to health sciences librarianship. Results: First, the decision-making processes of EBM and EBHC are compatible with health sciences librarianship. Second, the EBM and EBHC values of favoring rigorously produced scientific evidence in decision making are congruent with the core values of librarianship. Third, the hierarchical levels of evidence can be applied to librarianship with some modifications. Library researchers currently favor descriptive-survey and case-study methods over systematic reviews, randomized controlled trials, or other higher levels of evidence. The library literature nevertheless contains diverse examples of randomized controlled trials, controlled-comparison studies, and cohort studies conducted by health sciences librarians. Conclusions: Health sciences librarians are confronted with making many practical decisions. Evidence-based librarianship offers a decision-making framework, which integrates the best available research evidence. By employing this framework and the higher levels of research evidence it promotes, health sciences librarians can lay the foundation for more collaborative and scientific endeavors. PMID:11055296

  16. Bibliometrics as a Tool for Supporting Prospective R&D Decision-Making in the Health Sciences

    PubMed Central

    Ismail, Sharif; Nason, Edward; Marjanovic, Sonja; Grant, Jonathan

    2012-01-01

    Abstract Bibliometric analysis is an increasingly important part of a broader “toolbox” of evaluation methods available to research and development (R&D) policymakers to support decision-making. In the US, UK and Australia, for example, there is evidence of gradual convergence over the past ten years towards a model of university research assessment and ranking incorporating the use of bibliometric measures. In Britain, the Department of Health (England) has shown growing interest in using bibliometric analysis to support prospective R&D decision-making, and has engaged RAND Europe's expertise in this area through a number of exercises since 2005. These range from the macro-level selection of potentially high impact institutions, to micro-level selection of high impact individuals for the National Institute for Health Research's faculty of researchers. The aim of this study is to create an accessible, “beginner's guide” to bibliometric theory and application in the area of health R&D decision-making. The study also aims to identify future directions and possible next steps in this area, based on RAND Europe's work with the Department of Health to date. It is targeted at a range of audiences, and will be of interest to health and biomedical researchers, as well as R&D decision-makers in the UK and elsewhere. The study was completed with funding support from RAND Europe's Health R&D Policy Research Unit with the Department of Health. PMID:28083218

  17. Evidence-based periodontal therapy: An overview

    PubMed Central

    Vijayalakshmi, R.; Anitha, V.; Ramakrishnan, T.; Sudhakar, Uma

    2008-01-01

    Dentists need to make clinical decisions based on limited scientific evidence. In clinical practice, a clinician must weigh a myriad of evidences every day. The goal of evidence-based dentistry is to help practitioners provide their patients with optimal care. This is achieved by integrating sound research evidence with personal clinical expertise and patient values to determine the best course of treatment. Periodontology has a rich background of research and scholarship. Therefore, efficient use of this wealth of research data needs to be a part of periodontal practice. Evidence-based periodontology aims to facilitate such an approach and it offers a bridge from science to clinical practice. The clinician must integrate the evidence with patient preference, scientific knowledge, and personal experience. Most important, it allows us to care for our patients. Therefore, evidence-based periodontology is a tool to support decision-making and integrating the best evidence available with clinical practice. PMID:20142947

  18. Creating State-based Alliances to Support Earth and Space Science Education Reform

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Manduca, C. A.; Barstow, D.

    2002-05-01

    Seven years after the publication of the National Science Education Standards and adoption of new state science education standards, Earth and space science remains outside the mainstream K-12 curriculum. Currently, less than ten percent of high school students in the United States of America take an Earth or space science course before graduation. This state of affairs is simply unacceptable. "All of us who live on this planet have the right and the obligation to understand Earth's unique history, its dynamic processes, its abundant resources, and its intriguing mysteries. As citizens of Earth, with the power to modify our climate and ecosystems, we also have a personal and collective responsibility to understand Earth so that we can make wise decisions about its and our future". As one step toward addressing this situation, we support the establishment of state-based alliances to promote Earth and space science education reform. "In many ways, states are the most vital locus of change in our nation's schools. State departments of education define curriculum frameworks, establish testing policies, support professional development and, in some cases, approve textbooks and materials for adoption". State alliance partners should include a broad spectrum of K-16 educators, scientists, policy makers, parents, and community leaders from academic institutions, businesses, museums, technology centers, and not-for profit organizations. The focus of these alliances should be on systemic and sustainable reform of K-16 Earth and space science education. Each state-based alliance should focus on specific educational needs within their state, but work together to share ideas, resources, and models for success. As we build these alliances we need to take a truly collaborative approach working with the other sciences, geography, and mathematics so that collectively we can improve the caliber and scope of science and mathematics education for all students.

  19. Science Operations Management

    NASA Astrophysics Data System (ADS)

    Squibb, Gael F.

    1984-10-01

    The operation teams for the Infrared Astronomical Satellite (IRAS) included scientists from the IRAS International Science Team. The scientific decisions on an hour-to-hour basis, as well as the long-term strategic decisions, were made by science team members. The IRAS scientists were involved in the analysis of the instrument performance, the analysis of the quality of the data, the decision to reacquire data that was contaminated by radiation effects, the strategy for acquiring the survey data, and the process for using the telescope for additional observations, as well as the processing decisions required to ensure the publication of the final scientific products by end of flight operations plus one year. Early in the project, two science team members were selected to be responsible for the scientific operational decisions. One, located at the operations control center in England, was responsible for the scientific aspects of the satellite operations; the other, located at the scientific processing center in Pasadena, was responsible for the scientific aspects of the processing. These science team members were then responsible for approving the design and test of the tools to support their responsibilities and then, after launch, for using these tools in making their decisions. The ability of the project to generate the final science data products one year after the end of flight operations is due in a large measure to the active participation of the science team members in the operations. This paper presents a summary of the operational experiences gained from this scientific involvement.

  20. Current Status and Future Prospects of Clinical Psycholog

    PubMed Central

    Baker, Timothy B.; McFall, Richard M.; Shoham, Varda

    2010-01-01

    SUMMARY The escalating costs of health care and other recent trends have made health care decisions of great societal import, with decision-making responsibility often being transferred from practitioners to health economists, health plans, and insurers. Health care decision making increasingly is guided by evidence that a treatment is efficacious, effective–disseminable, cost-effective, and scientifically plausible. Under these conditions of heightened cost concerns and institutional–economic decision making, psychologists are losing the opportunity to play a leadership role in mental and behavioral health care: Other types of practitioners are providing an increasing proportion of delivered treatment, and the use of psychiatric medication has increased dramatically relative to the provision of psychological interventions. Research has shown that numerous psychological interventions are efficacious, effective, and cost-effective. However, these interventions are used infrequently with patients who would benefit from them, in part because clinical psychologists have not made a convincing case for the use of these interventions (e.g., by supplying the data that decision makers need to support implementation of such interventions) and because clinical psychologists do not themselves use these interventions even when given the opportunity to do so. Clinical psychologists’ failure to achieve a more significant impact on clinical and public health may be traced to their deep ambivalence about the role of science and their lack of adequate science training, which leads them to value personal clinical experience over research evidence, use assessment practices that have dubious psychometric support, and not use the interventions for which there is the strongest evidence of efficacy. Clinical psychology resembles medicine at a point in its history when practitioners were operating in a largely prescientific manner. Prior to the scientific reform of medicine in the early 1900s, physicians typically shared the attitudes of many of today’s clinical psychologists, such as valuing personal experience over scientific research. Medicine was reformed, in large part, by a principled effort by the American Medical Association to increase the science base of medical school education. Substantial evidence shows that many clinical psychology doctoral training programs, especially PsyD and for-profit programs, do not uphold high standards for graduate admission, have high student–faculty ratios, deemphasize science in their training, and produce students who fail to apply or generate scientific knowledge. A promising strategy for improving the quality and clinical and public health impact of clinical psychology is through a new accreditation system that demands highquality science training as a central feature of doctoral training in clinical psychology. Just as strengthening training standards in medicine markedly enhanced the quality of health care, improved training standards in clinical psychology will enhance health and mental health care. Such a system will (a) allow the public and employers to identify scientifically trained psychologists; (b) stigmatize ascientific training programs and practitioners; (c) produce aspirational effects, thereby enhancing training quality generally; and (d) help accredited programs improve their training in the application and generation of science. These effects should enhance the generation, application, and dissemination of experimentally supported interventions, thereby improving clinical and public health. Experimentally based treatments not only are highly effective but also are cost-effective relative to other interventions; therefore, they could help control spiraling health care costs. The new Psychological Clinical Science Accreditation System (PCSAS) is intended to accredit clinical psychology training programs that offer highquality science-centered education and training, producing graduates who are successful in generating and applying scientific knowledge. Psychologists, universities, and other stakeholders should vigorously support this new accreditation system as the surest route to a scientifically principled clinical psychology that can powerfully benefit clinical and public health. PMID:20865146

  1. Beginning science teachers' performances: Assessment in times of reform

    NASA Astrophysics Data System (ADS)

    Budzinsky, Fie K.

    2000-10-01

    The current reform in science education and the research on effective teaching and student learning have reinforced the importance of teacher competency. To better measure performances in the teaching of science, performance assessment has been added to Connecticut's licensure process for beginning science teachers. Teaching portfolios are used to document teaching and learning over time. Portfolios, however, are not without problems. One of the major concerns with the portfolio assessment process is its subjectivity. Assessors may not have opportunities to ask clarifying or follow-up questions to enhance the interpretation of a teacher's performance. In addition, portfolios often contain components based on self-documentation, which are subjective. Furthermore, the use of portfolios raises test equity issues. These concerns present challenges for persons in charge of establishing the validity of a portfolio-based licensure process. In high-stakes decision processes, such as teaching licensure, the validity of the assessment instruments must be studied. The primary purpose of this study was to explore the criterion-related validity of the Connecticut State Department of Education's Beginning Science Teaching Portfolio by comparing the interpretations of performances from science teaching portfolios to those derived from another assessment method, the Expert Science Teaching Educational and Evaluation Model, (ESTEEM). The analysis of correlations between the Beginning Science Teaching Portfolio and ESTEEM instrument scores was the primary method for establishing support for validity. The results indicated moderate correlations between all Beginning Science Teaching Portfolio and ESTEEM category and total variables. Multiple regression was used to examine whether differences existed in beginning science teachers' performances based on gender, poverty group, school level, and science discipline taught. None of these variables significantly contributed to the explanation of variance in the ESTEEM (p > .05), but poverty group and gender were significant predictors of portfolio performances, accounting for 21% of the total variance. Finally, data from interviews, written surveys, and beginning teacher attendance records at state-supported seminars were analyzed qualitatively and quantitatively. This information provided insight about the quality and quantity of support beginning science teachers received in their efforts to document, via the science teaching portfolio, their abilities to implement the Connecticut Professional Science Teaching Standards.

  2. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature.

    PubMed

    Roman, Tamlyn Eslie; Cleary, Susan; McIntyre, Diane

    2017-02-27

    The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. The literature supports Bossert's conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  3. Understanding decisions Latino students make regarding persistence in the science and math pipeline

    NASA Astrophysics Data System (ADS)

    Munro, Janet Lynn

    This qualitative study focused on the knowledge and perceptions of Latino high school students, as well those of their parents and school personnel, at a southwestern, suburban high school regarding persistence in the math/science pipeline. In the context of the unique school and community setting these students experience, the decision-making process was examined with particular focus on characterizing the relationships that influence the process. While the theoretical framework that informs this study was that of social capital, its primary purpose was to inform the school's processes and policy in support of increased Latino participation in the math and science pipeline. Since course selection may be the most powerful factor affecting school achievement and college-preparedness, and since course selection is influenced by school policy, school personnel, students, parents, and teachers alike, it is important to understand the beliefs and perceptions that characterize the relationships among them. The qualitative research design involved a phenomenological study of nine Latino students, their parents, their teachers and counselors, and certain support personnel from the high school. The school's and community's environment in support of academic intensity served as context for the portrait that developed. Given rapidly changing demographics that bring more and more Latino students to suburban high schools, the persistent achievement gap experienced by Latino students, and the growing dependence of the world economy on a citizenry versed in the math- and science-related fields, a deeper understanding of the decision-making processes Latino 12 students experience can inform school policy as educators struggle to influence those decisions. This study revealed a striking lack of knowledge concerning the college-entrance ramifications of continued course work in math and science beyond that required for graduation, relationships among peers, parents, and school personnel that were markedly lacking in influence over the decision a student makes to continue, or not, course work beyond that required for graduation, and a general dismissal of the value of math- and science-related careers. Also lacking was any evidence of social capital within parental networks that reflected intergenerational closure.

  4. IMPROVED SCIENCE AND DECISION SUPPORT FOR MANAGING WATERSHED NUTRIENT LOADS

    EPA Science Inventory

    The proposed research addresses two critical gaps in the TMDL process: (1) the inadequacy of presently existing receiving water models to accurately simulate nutrient-sediment-water interactions and fixed plants; and (2) the lack of decision-oriented optimization f...

  5. How Decision Support Systems Can Benefit from a Theory of Change Approach.

    PubMed

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-06-01

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  6. How Decision Support Systems Can Benefit from a Theory of Change Approach

    NASA Astrophysics Data System (ADS)

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-06-01

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  7. Investigating 6th graders' use of a tablet-based app supporting synchronous use of multiple tools designed to promote collaborative knowledge building in science

    NASA Astrophysics Data System (ADS)

    Sherwood, Carrie-Anne

    At this pivotal moment in time, when the proliferation of mobile technologies in our daily lives is influencing the relatively fast integration of these technologies into classrooms, there is little known about the process of student learning, and the role of collaboration, with app-based learning environments on mobile devices. To address this gap, this dissertation, comprised of three manuscripts, investigated three pairs of sixth grade students' synchronous collaborative use of a tablet-based science app called WeInvestigate . The first paper illustrated the methodological decisions necessary to conduct the study of student synchronous and face-to-face collaboration and knowledge building within the complex WeInvestigate and classroom learning environments. The second paper provided the theory of collaboration that guided the design of supports in WeInvestigate, and described its subsequent development. The third paper detailed the interactions between pairs of students as they engaged collaboratively in model construction and explanation tasks using WeInvestigate, hypothesizing connections between these interactions and the designed supports for collaboration. Together, these manuscripts provide encouraging evidence regarding the potential of teaching and learning with WeInvestigate. Findings demonstrated that the students in this study learned science through WeInvestigate , and were supported by the app - particularly the collabrification - to engage in collaborative modeling of phenomena. The findings also highlight the potential of the multiple methods used in this study to understand students' face-to-face and technology-based interactions within the "messy" context of an app-based learning environment and a traditional K-12 classroom. However, as the third manuscript most clearly illustrates, there are still a number of modifications to be made to the WeInvestigate technology before it can be optimally used in classrooms to support students' collaborative science endeavors. The findings presented in this dissertation contribute in theoretical, methodological, and applied ways to the fields of science education, educational technology, and the learning sciences, and point to exciting possibilities for future research on students' collaborations using future iterations of WeInvestigate with more embedded supports; comparative studies of students' use of synchronous collaboration; and studies focused on elucidating the role of the teacher using WeInvestigate - and similar mobile platforms - for teaching and learning.

  8. Framing of Uncertainty in Scientific Publications: Towards Recommendations for Decision Support

    NASA Astrophysics Data System (ADS)

    Guillaume, J. H. A.; Helgeson, C.; Elsawah, S.; Jakeman, A. J.; Kummu, M.

    2016-12-01

    Uncertainty is recognised as an essential issue in environmental decision making and decision support. As modellers, we notably use a variety of tools and techniques within an analysis, for example related to uncertainty quantification and model validation. We also address uncertainty by how we present results. For example, experienced modellers are careful to distinguish robust conclusions from those that need further work, and the precision of quantitative results is tailored to their accuracy. In doing so, the modeller frames how uncertainty should be interpreted by their audience. This is an area which extends beyond modelling to fields such as philosophy of science, semantics, discourse analysis, intercultural communication and rhetoric. We propose that framing of uncertainty deserves greater attention in the context of decision support, and that there are opportunities in this area for fundamental research, synthesis and knowledge transfer, development of teaching curricula, and significant advances in managing uncertainty in decision making. This presentation reports preliminary results of a study of framing practices. Specifically, we analyse the framing of uncertainty that is visible in the abstracts from a corpus of scientific articles. We do this through textual analysis of the content and structure of those abstracts. Each finding that appears in an abstract is classified according to the uncertainty framing approach used, using a classification scheme that was iteratively revised based on reflection and comparison amongst three coders. This analysis indicates how frequently the different framing approaches are used, and provides initial insights into relationships between frames, how the frames relate to interpretation of uncertainty, and how rhetorical devices are used by modellers to communicate uncertainty in their work. We propose initial hypotheses for how the resulting insights might influence decision support, and help advance decision making to better address uncertainty.

  9. Using Co-production to Enhance Co-production: Cultivating institutional capacity through exchange between climate science, social science, and practice

    NASA Astrophysics Data System (ADS)

    Kalafatis, S.

    2015-12-01

    Many climate scientists and boundary organizations have accumulated years of experience providing decision support for climate adaptation related to landscape change. The Great Lakes Integrated Sciences + Assessments (GLISA) is one such organization that has developed a reputation for providing stakeholders with climate change decision support throughout the Great Lakes region of North America. After five years of applied outreach, GLISA climate scientists working with practitioners identified three common limitations across projects that were slowing down the use of information, describing them as mismatched terminology, unrealistic expectations, and disordered integration. Discussions with GLISA-affiliated social scientists revealed compelling parallels between these observations and the existing social science literature on the persistent "usability gap" in information use as well as opportunities to preemptively overcome these barriers. The discovery of these overlaps between the climate scientists' experience of barriers and the social science literature as well as strategies to systematically address them demonstrate the potential for boundary organizations to act as incubators of more and more efficient co-production over time. To help illustrate these findings, this presentation also provides an example of decision-making for adaptation in the face of landscape change in which GLISA scientists assisted Isle Royale National Park with assessing the implications of future ecological transitions for current wildlife management efforts.

  10. A system-of-systems approach as a broad and integrated paradigm for sustainable engineered nanomaterials.

    PubMed

    Tolaymat, Thabet; El Badawy, Amro; Sequeira, Reynold; Genaidy, Ash

    2015-04-01

    There is an urgent need for a trans-disciplinary approach for the collective evaluation of engineered nanomaterial (ENM) benefits and risks. Currently, research studies are mostly focused on examining effects at individual endpoints with emphasis on ENM risk effects. Less research work is pursuing the integration needed to advance the science of sustainable ENMs. Therefore, the primary objective of this article is to discuss the system-of-systems (SoS) approach as a broad and integrated paradigm to examine ENM benefits and risks to society, environment, and economy (SEE) within a sustainability context. The aims are focused on: (a) current approaches in the scientific literature and the need for a broad and integrated approach, (b) documentation of ENM SoS in terms of architecture and governing rules and practices within sustainability context, and (c) implementation plan for the road ahead. In essence, the SoS architecture is a communication vehicle offering the opportunity to track benefits and risks in an integrated fashion so as to understand the implications and make decisions about advancing the science of sustainable ENMs. In support of the SoS architecture, we propose using an analytic-based decision support system consisting of a knowledge base and analytic engine along the benefit and risk informatics routes in the SEE system to build sound decisions on what constitutes sustainable and unsustainable ENMs in spite of the existing uncertainties and knowledge gaps. The work presented herein is neither a systematic review nor a critical appraisal of the scientific literature. Rather, it is a position paper that largely expresses the views of the authors based on their expert opinion drawn from industrial and academic experience. Copyright © 2014. Published by Elsevier B.V.

  11. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    NASA Technical Reports Server (NTRS)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John

    2017-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  12. Bridging the Gap Between Policy and Research Infrastructure: Risk and Vulnerability Case Study

    NASA Astrophysics Data System (ADS)

    Hugo, Wim; Rogers, Annabelle

    2017-04-01

    Linking sound scientific data and conclusions to decision and policy support is not a trivial task, and the difficulty in achieving this has been highlighted more than a decade ago (Reid, 2004). There are several reasons why this is the case, inter alia: 1. The language, (vocabularies, framework, and heuristics) adopted by the research community in a specific discipline may not translate into meaningful implementation language (Preston et al., 2015); 2. The researchers may not be in a position of influence (which includes aspects such as writing policy briefs, undertaking personal initiatives, and building up public or industry concern and interest) (Fox and Sitkin, 2015); 3. The frequency, timing, and/or certainty associated with research output is at odds with decision and policy-making cycles. Research typically progresses until there is a defensible level of certainty in statistical assessment of a result, while policy decisions are often made within a regular cycle; 4. Scientists are not trained for, or measured by, the typical work required for decision and policy support: synthesis of scenarios and cost-benefits of such scenarios given sometimes significant uncertainty in the input data, and cross-disciplinary concerns that need to be balanced. There is a significant expectation that research output, being increasingly open, standardised, and managed in formal research data infrastructure, will be useful to policy and decision makers without much additional intervention and modification. We believe that this is unlikely to be feasible in the majority of cases. For most instances, it will be necessary to provide a framework for the translation of scientific output into decision and policy support metrics or indicators at a frequency, with spatial and temporal resolution, and thematic coverage that suits the decision to be made. Such frameworks exist, since the need has been identified - sometimes formally - such as the very detailed framework developed by IPCC for translating climate science into policy - (IPCC, 2007), or less formally - such as the move to develop Essential Biodiversity Variables, loosely designed to support Aichi Targets (Pereira et al., 2013) or the UN Sustainable Development Goals (UN, 2016). In the paper, we examine a number of these frameworks, map them onto a generic framework for the translation of research output into policy and decision support, and discuss an example from the South African Risk and Vulnerability Atlas in detail. References Craig R. Fox & Sim B. Sitkin (2015). Bridging the divide between behavioral science & policy, Behavioral Science & Policy, Spring 2015, https://behavioralpolicy.org/wp-content/uploads/2016/1-1/Bridging-the-divide-between-behavioral-science-and-policy.pdf IPCC (2007). Conceptual framework for the identification and assessment of key vulnerabilities, https://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch19s19-1-2.html Pereira et al. (2013). Essential Biodiversity Variables, Science 18 Jan 2013: Vol. 339, Issue 6117, pp. 277-278 DOI: 10.1126/science.1229931 Preston, B.L., Mustelin, J. & Maloney, M.C. Mitig Adapt Strateg Glob Change (2015) 20: 467. doi:10.1007/s11027-013-9503-x Reid WV (2004) Bridging the Science-Policy Divide. PLoS Biol 2(2): e27. doi:10.1371/journal.pbio.0020027 UN (2016). Sustainable Development Goals, http://www.un.org/sustainabledevelopment/sustainable-development-goals/

  13. Carpal tunnel syndrome: assessment of surgeon and patient preferences and priorities for decision-making.

    PubMed

    Hageman, Michiel G J S; Kinaci, Ahmet; Ju, Kevin; Guitton, Thierry G; Mudgal, Chaitanya S; Ring, David

    2014-09-01

    This study tested the null hypothesis that there are no differences between the preferences of hand surgeons and those patients with carpal tunnel syndrome (CTS) facing decisions about management of CTS (ie, the preferred content of a decision aid). One hundred three hand surgeons of the Science of Variation Group and 79 patients with CTS completed a survey about their priorities and preferences in decision making regarding the management of CTS. The questionnaire was structured according the Ottawa Decision Support Framework for the development of a decision aid. Important areas on which patient and hand surgeon interests differed included a preference for nonpainful, nonoperative treatment and confirmation of the diagnosis with electrodiagnostic testing. For patients, the main disadvantage of nonoperative treatment was that it was likely to be only palliative and temporary. Patients preferred, on average, to take the lead in decision making, whereas physicians preferred shared decision making. Patients and physicians agreed on the value of support from family and other physicians in the decision-making process. There were some differences between patient and surgeon priorities and preferences regarding decision making for CTS, particularly the risks and benefits of diagnostic and therapeutic procedures. Information that helps inform patients of their options based on current best evidence might help patients understand their own preferences and values, reduce decisional conflict, limit surgeon-to-surgeon variations, and improve health. Copyright © 2014 American Society for Surgery of the Hand. All rights reserved.

  14. Agile science: creating useful products for behavior change in the real world.

    PubMed

    Hekler, Eric B; Klasnja, Predrag; Riley, William T; Buman, Matthew P; Huberty, Jennifer; Rivera, Daniel E; Martin, Cesar A

    2016-06-01

    Evidence-based practice is important for behavioral interventions but there is debate on how best to support real-world behavior change. The purpose of this paper is to define products and a preliminary process for efficiently and adaptively creating and curating a knowledge base for behavior change for real-world implementation. We look to evidence-based practice suggestions and draw parallels to software development. We argue to target three products: (1) the smallest, meaningful, self-contained, and repurposable behavior change modules of an intervention; (2) "computational models" that define the interaction between modules, individuals, and context; and (3) "personalization" algorithms, which are decision rules for intervention adaptation. The "agile science" process includes a generation phase whereby contender operational definitions and constructs of the three products are created and assessed for feasibility and an evaluation phase, whereby effect size estimates/casual inferences are created. The process emphasizes early-and-often sharing. If correct, agile science could enable a more robust knowledge base for behavior change.

  15. 76 FR 62812 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... information to OMB for review and clearance. Appeals of Science-Based Decisions Above the Division Level at...] Agency Information Collection Activities; Submission for Office of Management and Budget Review; Comment Request; Appeals of Science- Based Decisions Above the Division Level at the Center for Veterinary...

  16. Interactive and Participatory Decision Support: Linking Cyberinfrastructure, Multi-Touch Interfaces, and Substantive Dialogue for Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Malin, R.; Pierce, S. A.; Bass, B. J.

    2012-12-01

    Socio-technical approaches to complex, ill-structured decision problems are needed to identify adaptive responses for earth resource management. This research presents a hybrid approach to create decision tools and engender dialogue among stakeholders for geothermal development in Idaho, United States and El Tatio, Chile. Based on the scarcity of data, limited information availability, and tensions across stakeholder interests we designed and constructed a decision support model that allows stakeholders to rapidly collect, input, and visualize geoscientific data to assess geothermal system impacts and possible development strategies. We have integrated this decision support model into multi-touch interfaces that can be easily used by scientists and stakeholders alike. This toolkit is part of a larger cyberinfrastructure project designed to collect and present geoscientific information to support decision making processes. Consultation with stakeholders at the El Tatio geothermal complex of northern Chile—indigenous communities, local and national government agencies, developers, and geoscientists - informed the implementation of a sustained dialogue process. The El Tatio field case juxtaposes basic parameters such as pH, spring temperature, geochemical content, and FLIR imagery with stakeholder perceptions of risks due to mineral extraction and energy exploration efforts. The results of interviews and a participatory workshop are driving the creation of three initiatives within an indigenous community group; 1) microentrepreneurial efforts for science-based tourism, 2) design of a citizen-led environmental monitoring network in the Altiplano, and 3) business planning for an indigenous renewable energy cooperative. This toolkit is also being applied in the Snake River Plain of Idaho has as part of the DOE sponsored National Student Geothermal Competition. The Idaho case extends results from the Chilean case to implement a more streamlined system to analyze geothermal resource potential as well as integrate the decision support system with multi-touch interfaces which allow multiple stakeholders to view and interact with data. Beyond visual and tactile appeal, these interfaces also allow participants to dynamically update decision variables and decision preferences to create multiple scenarios and evaluate potential outcomes. Through this interactive scenario building, potential development sites can be targeted and stakeholders can interact with data to engage in substantive dialogue for related long-term planning or crisis response.

  17. Toward Epistemologically Authentic Engineering Design Activities in the Science Classroom

    ERIC Educational Resources Information Center

    Leonard, Mary J.

    2004-01-01

    In recent years educators and educational researchers in the U.S. have begun to introduce engineering design activities in secondary science classrooms for the purpose of scaffolding science learning as well as supporting such general problem-solving skills as decision making and working in teams. However, such curricula risk perpetuating a…

  18. Scientific Literacy for Democratic Decision-Making

    ERIC Educational Resources Information Center

    Yacoubian, Hagop A.

    2018-01-01

    Scientifically literate citizens must be able to engage in making decisions on science-based social issues. In this paper, I start by showing examples of science curricula and policy documents that capitalise the importance of engaging future citizens in decision-making processes whether at the personal or at the societal levels. I elucidate the…

  19. Information Product Development: Data product life cycle links engineering, science, and applications

    NASA Astrophysics Data System (ADS)

    Stavros, E. N.; Owen, S. E.

    2016-12-01

    Information products are assimilated and used to: a) conduct scientific research and b) provide decision support for management and policy. For example, aboveground biomass (i.e. an information product) can be integrated into Earth system models to test hypotheses about the changing world, or used to inform decision-making with respect to natural resource management and policy. Production and dissemination of an information product is referred to as the data product life cycle, which includes: 1) identifying needed information from decision-makers and researchers, 2) engineering an instrument and collecting the raw physical measurements (e.g, number of photons returned), 3) the scientific algorithm(s) for processing the data into an observable (e.g., number of dying trees), and 4) the integration and utilization of that observables by researchers and decision-makers. In this talk, I will discuss the data product life cycle in detail and provide examples from the pre-Hyperspectral Infrared Imager (HyspIRI) airborne campaign and the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) mission. Examples will focus on information products related to terrestrial ecosystems and natural resource management and will demonstrate that the key to providing information products for advancing scientific understanding and informing decision-makers, is the interdisciplinary integration of science, engineering and applied science - noting that applied science defines the wider impact and adoption of scientific principles by a wider community. As pre-HyspIRI airborne data is for research and development and NISAR is not yet launched, examples will include current plans for developing exemplar data products (from pre-HyspIRI) and the mission Applications Plan (for NISAR). Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.

  20. Audio-video decision support for patients: the documentary genré as a basis for decision aids.

    PubMed

    Volandes, Angelo E; Barry, Michael J; Wood, Fiona; Elwyn, Glyn

    2013-09-01

    Decision support tools are increasingly using audio-visual materials. However, disagreement exists about the use of audio-visual materials as they may be subjective and biased. This is a literature review of the major texts for documentary film studies to extrapolate issues of objectivity and bias from film to decision support tools. The key features of documentary films are that they attempt to portray real events and that the attempted reality is always filtered through the lens of the filmmaker. The same key features can be said of decision support tools that use audio-visual materials. Three concerns arising from documentary film studies as they apply to the use of audio-visual materials in decision support tools include whose perspective matters (stakeholder bias), how to choose among audio-visual materials (selection bias) and how to ensure objectivity (editorial bias). Decision science needs to start a debate about how audio-visual materials are to be used in decision support tools. Simply because audio-visual materials may be subjective and open to bias does not mean that we should not use them. Methods need to be found to ensure consensus around balance and editorial control, such that audio-visual materials can be used. © 2011 John Wiley & Sons Ltd.

  1. Audio‐video decision support for patients: the documentary genré as a basis for decision aids

    PubMed Central

    Volandes, Angelo E.; Barry, Michael J.; Wood, Fiona; Elwyn, Glyn

    2011-01-01

    Abstract Objective  Decision support tools are increasingly using audio‐visual materials. However, disagreement exists about the use of audio‐visual materials as they may be subjective and biased. Methods  This is a literature review of the major texts for documentary film studies to extrapolate issues of objectivity and bias from film to decision support tools. Results  The key features of documentary films are that they attempt to portray real events and that the attempted reality is always filtered through the lens of the filmmaker. The same key features can be said of decision support tools that use audio‐visual materials. Three concerns arising from documentary film studies as they apply to the use of audio‐visual materials in decision support tools include whose perspective matters (stakeholder bias), how to choose among audio‐visual materials (selection bias) and how to ensure objectivity (editorial bias). Discussion  Decision science needs to start a debate about how audio‐visual materials are to be used in decision support tools. Simply because audio‐visual materials may be subjective and open to bias does not mean that we should not use them. Conclusion  Methods need to be found to ensure consensus around balance and editorial control, such that audio‐visual materials can be used. PMID:22032516

  2. The Administrator's Use of Microcomputer Systems.

    ERIC Educational Resources Information Center

    Brown, Kenneth C.

    1983-01-01

    The use of microcomputers by college administrators to increase productivity is discussed. Microcomputers can help increase productivity in the following administrative office tasks: decision support, communication, personal assistance, and task management. One of the most promising developments to emerge from the decision sciences over the past…

  3. Integrating local, expert, and practical knowledge in community remediation and revitalization

    EPA Science Inventory

    Researchers and natural resource managers often develop tools and methods to facilitate the inclusion of science in local environmental decision-making. The eternal hope is to find that model or concept that provides the “right” information to support these decisions....

  4. The Quantitative Evaluation of the Clinical and Translational Science Awards (CTSA) Program Based on Science Mapping and Scientometric Analysis

    PubMed Central

    Zhang, Yin; Wang, Lei

    2013-01-01

    Abstract The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. PMID:24330689

  5. The quantitative evaluation of the Clinical and Translational Science Awards (CTSA) program based on science mapping and scientometric analysis.

    PubMed

    Zhang, Yin; Wang, Lei; Diao, Tianxi

    2013-12-01

    The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. © 2013 Wiley Periodicals, Inc.

  6. The Value of Fidelity of Implementation Criteria to Evaluate School-Based Science Curriculum Innovations

    NASA Astrophysics Data System (ADS)

    Lee, Yew-Jin; Chue, Shien

    2013-10-01

    School-based curriculum innovations, including those in science education, are usually not adequately evaluated, if at all. Furthermore, current procedures and instruments for programme evaluations are often unable to support evidence-based decision-making. We suggest that adopting fidelity of implementation (FOI) criteria from healthcare research can both characterize and narrow the separation between programme intent and actual implementation, which is a mandatory stage of evaluation before determining overall programme value. We demonstrate how such a process could be applied by science educators using data from a secondary school in Singapore that had devised a new curriculum to promote interest, investigative processes, and knowledge in science. Results showed that there were ambivalent student responses to this programme, while there were high levels of science process skill instruction and close alignment with the intended lesson design. The implementation of this programme appeared to have a satisfactory overall level of FOI, but we also detected tensions between programme intent and everyday classroom teaching. If we want to advance science education, then our argument is that applying FOI criteria is necessary when evaluating all curricular innovations, not just those that originate from schools.

  7. Our Changing Planet: The U.S. Climate Change Science Program for Fiscal Year 2006

    DTIC Science & Technology

    2005-11-01

    any remaining uncertainties for the Amazon region of South America.These results are expected to greatly reduce errors and uncertainties concerning...changing the concentration of atmospheric CO2 are fossil -fuel burning, deforestation, land-use change, and cement production.These processes have...the initial phases of work on the remaining products. Specific plans for enhanced decision-support resources include: – Developing decision-support

  8. USGS Science for Restoration of South Florida: The South Florida Ecosystem Program

    USGS Publications Warehouse

    McPherson, Benjamin F.; Gerould, Sarah; Higer, Aaron L.

    1999-01-01

    As land and resource managers see the value of their resources diminish, and the public watches the environments they knew as children become degraded, there are increasing calls to restore what has been lost, or to build productive ecosystems that will be healthy and sustainable under the conditions of human use. The U.S. Geological Survey's (USGS) Placed-Based Studies Program was established to provide sound science for resource managers in critical ecosystems such as South Florida (fig. 1). The program, which began in south Florida in 1995, provides relevant information, high-quality data, and models to support decisions for ecosystem restoration and management. The program applies multi- and interdisciplinary science to address regional and subregional environmental resources issues.

  9. Research on web-based decision support system for sports competitions

    NASA Astrophysics Data System (ADS)

    Huo, Hanqiang

    2010-07-01

    This paper describes the system architecture and implementation technology of the decision support system for sports competitions, discusses the design of decision-making modules, management modules and security of the system, and proposes the development idea of building a web-based decision support system for sports competitions.

  10. Developing and Transitioning Numerical Air Quality Models to Improve Air Quality and Public Health Decision-Making in El Salvador and Costa Rica As Part of the Servir Applied Sciences Team

    NASA Astrophysics Data System (ADS)

    Thomas, A.; Huff, A. K.; Gomori, S. G.; Sadoff, N.

    2014-12-01

    In order to enhance the capacity for air quality modeling and improve air quality monitoring and management in the SERVIR Mesoamerica region, members of SERVIR's Applied Sciences Team (AST) are developing national numerical air quality models for El Salvador and Costa Rica. We are working with stakeholders from the El Salvador Ministry of the Environment and Natural Resources (MARN); National University of Costa Rica (UNA); the Costa Rica Ministry of the Environment, Energy, and Telecommunications (MINAET); and Costa Rica National Meteorological Institute (IMN), who are leaders in air quality monitoring and management in the Mesoamerica region. Focusing initially on these institutions will build sustainability in regional modeling activities by developing air quality modeling capability that can be shared with other countries in Mesoamerica. The air quality models are based on the Community Multi-scale Air Quality (CMAQ) model and incorporate meteorological inputs from the Weather Research and Forecasting (WRF) model, as well as national emissions inventories from El Salvador and Costa Rica. The models are being optimized for urban air quality, which is a priority of decision-makers in Mesoamerica. Once experimental versions of the modeling systems are complete, they will be transitioned to servers run by stakeholders in El Salvador and Costa Rica. The numerical air quality models will provide decision support for stakeholders to identify 1) high-priority areas for expanding national ambient air monitoring networks, 2) needed revisions to national air quality regulations, and 3) gaps in national emissions inventories. This project illustrates SERVIR's goal of the transition of science to support decision-making through capacity building in Mesoamerica, and it aligns with the Group on Earth Observations' health societal benefit theme. This presentation will describe technical aspects of the development of the models and outline key steps in our successful collaboration with the Mesoamerican stakeholders, including the processes of identifying and engaging decision-makers, understanding their requirements and limitations, communicating status updates on a regular basis, and providing sufficient training for end users to be able to utilize the models in a decision-making context.

  11. Biomedical wellness challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  12. The adaptive use of recognition in group decision making.

    PubMed

    Kämmer, Juliane E; Gaissmaier, Wolfgang; Reimer, Torsten; Schermuly, Carsten C

    2014-06-01

    Applying the framework of ecological rationality, the authors studied the adaptivity of group decision making. In detail, they investigated whether groups apply decision strategies conditional on their composition in terms of task-relevant features. The authors focused on the recognition heuristic, so the task-relevant features were the validity of the group members' recognition and knowledge, which influenced the potential performance of group strategies. Forty-three three-member groups performed an inference task in which they had to infer which of two German companies had the higher market capitalization. Results based on the choice data support the hypothesis that groups adaptively apply the strategy that leads to the highest theoretically achievable performance. Time constraints had no effect on strategy use but did have an effect on the proportions of different types of arguments. Possible mechanisms underlying the adaptive use of recognition in group decision making are discussed. © 2014 Cognitive Science Society, Inc.

  13. Toward detecting deception in intelligent systems

    NASA Astrophysics Data System (ADS)

    Santos, Eugene, Jr.; Johnson, Gregory, Jr.

    2004-08-01

    Contemporary decision makers often must choose a course of action using knowledge from several sources. Knowledge may be provided from many diverse sources including electronic sources such as knowledge-based diagnostic or decision support systems or through data mining techniques. As the decision maker becomes more dependent on these electronic information sources, detecting deceptive information from these sources becomes vital to making a correct, or at least more informed, decision. This applies to unintentional disinformation as well as intentional misinformation. Our ongoing research focuses on employing models of deception and deception detection from the fields of psychology and cognitive science to these systems as well as implementing deception detection algorithms for probabilistic intelligent systems. The deception detection algorithms are used to detect, classify and correct attempts at deception. Algorithms for detecting unexpected information rely upon a prediction algorithm from the collaborative filtering domain to predict agent responses in a multi-agent system.

  14. Getting Beyond First Base: Science-Society Communication for Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Garfin, G. M.

    2010-12-01

    At a 2009 international workshop on transboundary climate and water issues, a former World Bank official and current academic mentioned that “crisis, risk and uncertainty” are the three words that motivate decision-makers to act. However, decade-scale climate variability and trend-driven climate changes are phenomena characterized by creeping onset, diffuse and non-synchronous impacts, and complexity. Thus, there is a balancing act to addressing the complexity of uncertainties, while adequately assessing risk, and keeping the potential for crisis in focus without creating a “Chicken Little” situation. This presentation examines translational science approaches to three stages in the continuum from initial communication to societal action: raising awareness, building capacity, and making progress toward action. We examine the roles of scientists, knowledge brokers, decision makers, and the general public in the context of climate services. Although there is no “one size fits all” science communication method, we argue that best practices require that scientists pay particular attention to cultural and political sensitivities associated with decision contexts. We give examples from seasonal forecast communication, drought planning, climate literacy and education needs assessments, and the nexus of climate adaptation planning and uncertainty. In general, we find that constructive approaches make use of alliances with early adopters and opinion leaders, and make strong links between (a) predictions, impacts and solutions and (b) global to regional to local spatial scales. Often building partnerships for moving science information from observations to knowledge to decisions requires discussion support, a concept borrowed from Australian colleagues, which describes a multi-faceted and undervalued aspect of moving forward in adaptation planning: clarifying plausible cascades of interactions leading to potential impacts. Discussion support also fosters examination of how others confronting similar issues have both adapted well-known management strategies and developed outside-the-box ideas to move beyond “uncertainty paralysis.” Some preliminary conclusions from our work include the following: (a) iterative and ongoing engagements are necessary to build trust and bolster science credibility; (b) uncertainty, formerly a topic to avoided, forms the foundation for constructive progress in adaptation planning and improving forecast use, and (c) candid exploration of the array of uncertainties, which includes those due to modeling, institutional, policy and economic factors - with decision-making peers, science translators, and subject experts, is needed to stimulate constructive thinking on adaptation strategies. For scientists, gaining insight into how decisions are made is the most important part of scientist-stakeholder interactions. For managers, the most important factors are holistic, cross-sectoral, examination of both climate and non-climate factors affecting resources, and the diversity of public values regarding resource management.

  15. Formal ontologies in biomedical knowledge representation.

    PubMed

    Schulz, S; Jansen, L

    2013-01-01

    Medical decision support and other intelligent applications in the life sciences depend on increasing amounts of digital information. Knowledge bases as well as formal ontologies are being used to organize biomedical knowledge and data. However, these two kinds of artefacts are not always clearly distinguished. Whereas the popular RDF(S) standard provides an intuitive triple-based representation, it is semantically weak. Description logics based ontology languages like OWL-DL carry a clear-cut semantics, but they are computationally expensive, and they are often misinterpreted to encode all kinds of statements, including those which are not ontological. We distinguish four kinds of statements needed to comprehensively represent domain knowledge: universal statements, terminological statements, statements about particulars and contingent statements. We argue that the task of formal ontologies is solely to represent universal statements, while the non-ontological kinds of statements can nevertheless be connected with ontological representations. To illustrate these four types of representations, we use a running example from parasitology. We finally formulate recommendations for semantically adequate ontologies that can efficiently be used as a stable framework for more context-dependent biomedical knowledge representation and reasoning applications like clinical decision support systems.

  16. Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris

    2009-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.

  17. From guideline modeling to guideline execution: defining guideline-based decision-support services.

    PubMed Central

    Tu, S. W.; Musen, M. A.

    2000-01-01

    We describe our task-based approach to defining the guideline-based decision-support services that the EON system provides. We categorize uses of guidelines in patient-specific decision support into a set of generic tasks--making of decisions, specification of work to be performed, interpretation of data, setting of goals, and issuance of alert and reminders--that can be solved using various techniques. Our model includes constructs required for representing the knowledge used by these techniques. These constructs form a toolkit from which developers can select modeling solutions for guideline task. Based on the tasks and the guideline model, we define a guideline-execution architecture and a model of interactions between a decision-support server and clients that invoke services provided by the server. These services use generic interfaces derived from guideline tasks and their associated modeling constructs. We describe two implementations of these decision-support services and discuss how this work can be generalized. We argue that a well-defined specification of guideline-based decision-support services will facilitate sharing of tools that implement computable clinical guidelines. PMID:11080007

  18. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system.

    PubMed

    Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  19. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: methods of a decision-maker-researcher partnership systematic review.

    PubMed

    Haynes, R Brian; Wilczynski, Nancy L

    2010-02-05

    Computerized clinical decision support systems are information technology-based systems designed to improve clinical decision-making. As with any healthcare intervention with claims to improve process of care or patient outcomes, decision support systems should be rigorously evaluated before widespread dissemination into clinical practice. Engaging healthcare providers and managers in the review process may facilitate knowledge translation and uptake. The objective of this research was to form a partnership of healthcare providers, managers, and researchers to review randomized controlled trials assessing the effects of computerized decision support for six clinical application areas: primary preventive care, therapeutic drug monitoring and dosing, drug prescribing, chronic disease management, diagnostic test ordering and interpretation, and acute care management; and to identify study characteristics that predict benefit. The review was undertaken by the Health Information Research Unit, McMaster University, in partnership with Hamilton Health Sciences, the Hamilton, Niagara, Haldimand, and Brant Local Health Integration Network, and pertinent healthcare service teams. Following agreement on information needs and interests with decision-makers, our earlier systematic review was updated by searching Medline, EMBASE, EBM Review databases, and Inspec, and reviewing reference lists through 6 January 2010. Data extraction items were expanded according to input from decision-makers. Authors of primary studies were contacted to confirm data and to provide additional information. Eligible trials were organized according to clinical area of application. We included randomized controlled trials that evaluated the effect on practitioner performance or patient outcomes of patient care provided with a computerized clinical decision support system compared with patient care without such a system. Data will be summarized using descriptive summary measures, including proportions for categorical variables and means for continuous variables. Univariable and multivariable logistic regression models will be used to investigate associations between outcomes of interest and study specific covariates. When reporting results from individual studies, we will cite the measures of association and p-values reported in the studies. If appropriate for groups of studies with similar features, we will conduct meta-analyses. A decision-maker-researcher partnership provides a model for systematic reviews that may foster knowledge translation and uptake.

  20. How to achieve benefit from mission-oriented research: lessons from the U.S. Department of Agriculture and the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Logar, N. J.

    2006-12-01

    Does the research performed by government mission agencies contribute to improved decision-making? Climate research within the U.S. Department of Agriculture (USDA) has the stated goal of providing "optimal benefit" to decision makers on all levels, and the meteorology division of Department of Defense's Naval Research Laboratory promises research directed towards application. Assuming that research can lead to benefit for decision makers with minimal guidance can lead to irrelevance, wasted effort, and missed opportunities. Moving beyond the assumption leads to critical consideration of processes creating climate and meteorological science. I report the results of contextual mapping, of research on decision processes, and of interviews with agency scientists and users of science to evaluate their science regimes. In the case of the USDA scientists do target stakeholders through formal and informal mechanisms, but much of the science does not find use due to institutional constraints, political considerations, and disciplinary inertia. The research results will provide options for closing these policy gaps, such as higher-level stakeholder interaction and better representation of diverse interests. I apply the economic concept of supply and demand to describe where supply of science provides decision support that matches user demand, and where science policies might miss opportunities or mischaracterize research as useful to a specific user. This analysis leads to increased understanding of how factors such as the definition of scientific problems, hierarchies in science decision-making structures, quality control mechanisms beyond peer review, distribution of participants in the knowledge production enterprise, and social accountability guide the process of producing useful information.

  1. Implementation of workflow engine technology to deliver basic clinical decision support functionality.

    PubMed

    Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B

    2011-04-10

    Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform.

  2. The Business of Co-Production: Assessing Efforts to Bridge Science and Decision-Making for Adaptation in California

    NASA Astrophysics Data System (ADS)

    Webber, S.; MacDonald, G. M.

    2016-12-01

    The last decades have seen scholars argue for a greater integration of science and decision-making in order to more effectively respond to climate change. It has been suggested that overcoming the gap between science, on the one hand, and policy-making and management, on the other, requires building bridges through methods of co-production, creating actionable science, or through boundary organizations. In this paper, we review attempts at co-production for policy-making and management in the context of climate change adaptation in California. Building on field research, including numerous interviews conducted with scientists and decision-makers who are co-producers of adaptation projects, we make three arguments. First, we show that an emphasis on co-production and science-informed climate change adaptation decision-making has bolstered a contract-oriented, and decentralized network-based model of producing climate science. Second, reviewing successes and failures in co-production - as reported in interviews - indicates that it is principally in cases of neatly defined, and spatially and temporarily narrow decision-making contexts, and with highly motivated decision-makers, that climate science is used. Finally, we suggest that the ideas of co-production and actionable science may have increased the institutional and organizational burden at the science-decision interface, lengthening the boundary-organization-chain rather than necessarily facilitating adaptive policy-making and management.

  3. Role Of Synchrotron Techniques In USEPA Regulatory And Remediation Decisions

    EPA Science Inventory

    Science provides the foundation for credible decision making. Science is observation followed by an interpretation and understanding of the result of the measurement. Observations may not be correct, complete, or fully descriptive of the phenomena. Interpretation based on avai...

  4. Teaching Strategies for Developing Students' Argumentation Skills about Socioscientific Issues in High School Genetics

    ERIC Educational Resources Information Center

    Dawson, Vaille Maree; Venville, Grady

    2010-01-01

    An outcome of science education is that young people have the understandings and skills to participate in public debate and make informed decisions about science issues that influence their lives. Toulmin's argumentation skills are emerging as an effective strategy to enhance the quality of evidence based decision making in science classrooms. In…

  5. Imaging informatics-based multimedia ePR system for data management and decision support in rehabilitation research

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Verma, Sneha; Qin, Yi; Sterling, Josh; Zhou, Alyssa; Zhang, Jeffrey; Martinez, Clarisa; Casebeer, Narissa; Koh, Hyunwook; Winstein, Carolee; Liu, Brent

    2013-03-01

    With the rapid development of science and technology, large-scale rehabilitation centers and clinical rehabilitation trials usually involve significant volumes of multimedia data. Due to the global aging crisis, millions of new patients with age-related chronic diseases will produce huge amounts of data and contribute to soaring costs of medical care. Hence, a solution for effective data management and decision support will significantly reduce the expenditure and finally improve the patient life quality. Inspired from the concept of the electronic patient record (ePR), we developed a prototype system for the field of rehabilitation engineering. The system is subject or patient-oriented and customized for specific projects. The system components include data entry modules, multimedia data presentation and data retrieval. To process the multimedia data, the system includes a DICOM viewer with annotation tools and video/audio player. The system also serves as a platform for integrating decision-support tools and data mining tools. Based on the prototype system design, we developed two specific applications: 1) DOSE (a phase 1 randomized clinical trial to determine the optimal dose of therapy for rehabilitation of the arm and hand after stroke.); and 2) NEXUS project from the Rehabilitation Engineering Research Center(RERC, a NIDRR funded Rehabilitation Engineering Research Center). Currently, the system is being evaluated in the context of the DOSE trial with a projected enrollment of 60 participants over 5 years, and will be evaluated by the NEXUS project with 30 subjects. By applying the ePR concept, we developed a system in order to improve the current research workflow, reduce the cost of managing data, and provide a platform for the rapid development of future decision-support tools.

  6. Web-services-based spatial decision support system to facilitate nuclear waste siting

    NASA Astrophysics Data System (ADS)

    Huang, L. Xinglai; Sheng, Grant

    2006-10-01

    The availability of spatial web services enables data sharing among managers, decision and policy makers and other stakeholders in much simpler ways than before and subsequently has created completely new opportunities in the process of spatial decision making. Though generally designed for a certain problem domain, web-services-based spatial decision support systems (WSDSS) can provide a flexible problem-solving environment to explore the decision problem, understand and refine problem definition, and generate and evaluate multiple alternatives for decision. This paper presents a new framework for the development of a web-services-based spatial decision support system. The WSDSS is comprised of distributed web services that either have their own functions or provide different geospatial data and may reside in different computers and locations. WSDSS includes six key components, namely: database management system, catalog, analysis functions and models, GIS viewers and editors, report generators, and graphical user interfaces. In this study, the architecture of a web-services-based spatial decision support system to facilitate nuclear waste siting is described as an example. The theoretical, conceptual and methodological challenges and issues associated with developing web services-based spatial decision support system are described.

  7. Youth Science Ambassadors: Connecting Indigenous communities with Ocean Networks Canada tools to inspire future ocean scientists and marine resource managers

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Hoeberechts, M.; Hale, C.; McLean, M. A.

    2017-12-01

    This presentation describes Ocean Networks Canada's (ONC) Youth Science Ambassador Program. The Youth Science Ambassadors are a growing network of youth in Canadian coastal communities whose role is to connect ocean science, ONC data, and Indigenous knowledge. By directly employing Indigenous youth in communities in which ONC operates monitoring equipment, ONC aims to encourage wider participation and interest in ocean science and exploration. Further, the Youth Science Ambassadors act as role models and mentors to other local youth by highlighting connections between Indigenous and local knowledge and current marine science efforts. Ocean Networks Canada, an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories as well as community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. Youth Science Ambassadors are part of the Learning and Engagement team whose role includes engaging Indigenous communities and schools in ocean science through ONC's K-12 Ocean Sense education program. All of the data collected by ONC are freely available over the Internet for non-profit use, including disaster planning, community-based decision making, and education. The Youth Science Ambassadors support collaboration with Indigenous communities and schools by facilitating educational programming, encouraging participation in ocean data collection and analysis, and fostering interest in ocean science. In addition, the Youth Science Ambassadors support community collaboration in decision-making for instrument deployment locations and identify ways in which ONC can help to address any areas of concern raised by the community. This presentation will share the successes and challenges of the Youth Science Ambassador program in engaging both rural and urban Indigenous communities. We will share activities and experiences, discuss how we have adapted to meet the needs of each community, and outline ideas we have for the future development of the program.

  8. Big-Data Based Decision-Support Systems to Improve Clinicians' Cognition.

    PubMed

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians' cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems.

  9. Big-Data Based Decision-Support Systems to Improve Clinicians’ Cognition

    PubMed Central

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians’ cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems. PMID:27990498

  10. EVALUATING HYDROLOGICAL RESPONSE TO FORECASTED LAND-USE CHANGE: SCENARIO TESTING IN TWO WESTERN U.S. WATERSHEDS

    EPA Science Inventory

    Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions ...

  11. Overview of USEPA's ORD Technical Outreach and Support Activities on Vapor Intrusion Impacts - 03/2008

    EPA Science Inventory

    The science of determining, characterizing and managing vapor intrusion risks is constantly evolving. Much remains to be done in assisting regulators, consultants and other decision-makers to make informed decisions in mitigating the problem and reducing these risks. ORD has been...

  12. Unpacking the Complex Relationship Between Beliefs, Practice, and Change Related to Inquiry-Based Instruction of One Science Teacher

    NASA Astrophysics Data System (ADS)

    Lebak, Kimberly

    2015-12-01

    This case study examines the complex relationship between beliefs, practice, and change related to inquiry-based instruction of one science teacher teaching in a high-poverty urban school. This study explores how video-supported collaboration with peers can provide the catalyst for change. Transcribed collaborative dialogue sessions, written self-reflections, and videotapes of lessons were used to identify and isolate the belief systems that were critical to the teacher's decision making. The Interconnected Model of Professional Growth was then used to trace the trajectories of change of the individual belief systems. Analysis of the data revealed the relationship between beliefs and practices was complex in which initially espoused beliefs were often inconsistent with enacted practice and some beliefs emerged as more salient than others for influencing practice. Furthermore, this research indicates change in both beliefs and practice was an interactive process mediated by collaborative and self-reflection through participation in the video-supported process.

  13. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  14. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework.

    PubMed

    Teeguarden, Justin G; Tan, Yu-Mei; Edwards, Stephen W; Leonard, Jeremy A; Anderson, Kim A; Corley, Richard A; Kile, Molly L; Simonich, Staci M; Stone, David; Tanguay, Robert L; Waters, Katrina M; Harper, Stacey L; Williams, David E

    2016-05-03

    Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the "systems approaches" used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.

  15. What We Can Learn from Amazon for Clinical Decision Support Systems.

    PubMed

    Abid, Sidra; Keshavjee, Karim; Karim, Arsalan; Guergachi, Aziz

    2017-01-01

    Health care continue to lag behind other industries, such as retail and financial services, in the use of decision-support-like tools. Amazon is particularly prolific in the use of advanced predictive and prescriptive analytics to assist its customers to purchase more, while increasing satisfaction, retention, repeat-purchases and loyalty. How can we do the same in health care? In this paper, we explore various elements of the Amazon website and Amazon's data science and big data practices to gather inspiration for re-designing clinical decision support in the health care sector. For each Amazon element we identified, we present one or more clinical applications to help us better understand where Amazon's.

  16. Advancing clinical decision support using lessons from outside of healthcare: an interdisciplinary systematic review

    PubMed Central

    2012-01-01

    Background Greater use of computerized decision support (DS) systems could address continuing safety and quality problems in healthcare, but the healthcare field has struggled to implement DS technology. This study surveys DS experience across multiple non-healthcare disciplines for new insights that are generalizable to healthcare provider decisions. In particular, it sought design principles and lessons learned from the other disciplines that could inform efforts to accelerate the adoption of clinical decision support (CDS). Methods Our systematic review drew broadly from non-healthcare databases in the basic sciences, social sciences, humanities, engineering, business, and defense: PsychINFO, BusinessSource Premier, Social Sciences Abstracts, Web of Science, and Defense Technical Information Center. Because our interest was in DS that could apply to clinical decisions, we selected articles that (1) provided a review, overview, discussion of lessons learned, or an evaluation of design or implementation aspects of DS within a non-healthcare discipline and (2) involved an element of human judgment at the individual level, as opposed to decisions that can be fully automated or that are made at the organizational level. Results Clinical decisions share some similarities with decisions made by military commanders, business managers, and other leaders: they involve assessing new situations and choosing courses of action with major consequences, under time pressure, and with incomplete information. We identified seven high-level DS system design features from the non-healthcare literature that could be applied to CDS: providing broad, system-level perspectives; customizing interfaces to specific users and roles; making the DS reasoning transparent; presenting data effectively; generating multiple scenarios covering disparate outcomes (e.g., effective; effective with side effects; ineffective); allowing for contingent adaptations; and facilitating collaboration. The article provides examples of each feature. The DS literature also emphasizes the importance of organizational culture and training in implementation success. The literature contrasts “rational-analytic” vs. “naturalistic-intuitive” decision-making styles, but the best approach is often a balanced approach that combines both styles. It is also important for DS systems to enable exploration of multiple assumptions, and incorporation of new information in response to changing circumstances. Conclusions Complex, high-level decision-making has common features across disciplines as seemingly disparate as defense, business, and healthcare. National efforts to advance the health information technology agenda through broader CDS adoption could benefit by applying the DS principles identified in this review. PMID:22900537

  17. Objectives, priorities, reliable knowledge, and science-based management of Missouri River interior least terns and piping plovers

    USGS Publications Warehouse

    Sherfy, Mark; Anteau, Michael J.; Shaffer, Terry; Sovada, Marsha; Stucker, Jennifer

    2011-01-01

    Supporting recovery of federally listed interior least tern (Sternula antillarum athalassos; tern) and piping plover (Charadrius melodus; plover) populations is a desirable goal in management of the Missouri River ecosystem. Many tools are implemented in support of this goal, including habitat management, annual monitoring, directed research, and threat mitigation. Similarly, many types of data can be used to make management decisions, evaluate system responses, and prioritize research and monitoring. The ecological importance of Missouri River recovery and the conservation status of terns and plovers place a premium on efficient and effective resource use. Efficiency is improved when a single data source informs multiple high-priority decisions, whereas effectiveness is improved when decisions are informed by reliable knowledge. Seldom will a single study design be optimal for addressing all data needs, making prioritization of needs essential. Data collection motivated by well-articulated objectives and priorities has many advantages over studies in which questions and priorities are determined retrospectively. Research and monitoring for terns and plovers have generated a wealth of data that can be interpreted in a variety of ways. The validity and strength of conclusions from analyses of these data is dependent on compatibility between the study design and the question being asked. We consider issues related to collection and interpretation of biological data, and discuss their utility for enhancing the role of science in management of Missouri River terns and plovers. A team of USGS scientists at Northern Prairie Wildlife Research Center has been conducting tern and plover research on the Missouri River since 2005. The team has had many discussions about the importance of setting objectives, identifying priorities, and obtaining reliable information to answer pertinent questions about tern and plover management on this river system. The objectives of this presentation are to summarize those conversations and to share insights about concepts that could contribute to rigorous science support for management of this river system.

  18. The money blind: how to stop industry bias in biomedical science, without violating the First Amendment.

    PubMed

    Robertson, Christopher T

    2011-01-01

    The pharmaceutical and medical device industries use billions of dollars to support the biomedical science that physicians, regulators, and patients use to make healthcare decisions--the decisions that drive an increasingly large portion of the American economy. Compelling evidence suggests that this industry money buys favorable results, biasing the outcomes of scientific research. Current efforts to manage the problem, including disclosure mandates and peer reviews, are ineffective. A blinding mechanism, operating through an intermediary such as the National Institutes of Health, could instead be developed to allow industry support of science without allowing undue influence. If the editors of biomedical journals fail to mandate that industry funders utilize such a solution, the federal government has several regulatory levers available, including conditioning federal funding and direct regulation, both of which could be done without violating the First Amendment.

  19. Serving California's Science and Governance Needs through Crisis-driven Collaborations

    NASA Astrophysics Data System (ADS)

    Bernacchi, L.

    2015-12-01

    Due to its magnitude, the ongoing drought in California (USA) serves as an experimental space for innovative resource management and will define responses to predicted widespread drought. Due to the magnitude of its effect on humans and natural ecosystems and the water resources on which they depend, governmental programs are granting support to scientifically-valid, locally-produced solutions to water scarcity. Concurrently, University of California Water (UC Water) Security and Sustainability Research Initiative is focused on strategic research to build the knowledge base for better water resources management. This paper examines how a team of transdisciplinary scientists are engaged in water governance and information, providing examples of actionable research successfully implemented by decision makers. From a sociology of science perspective, UC Water scientists were interviewed about their engagement practices with California water decision makers. Their "co-production of knowledge" relationships produce effective responses to climatic, landcover and population changes by expanding from singularly information-based, unidirectional communication to governance-relevant, co-constructed knowledge and wisdom. This is accomplished by serving on decision making organizational boards and developing information in a productive format. The perceived crisis of California's drought is an important impetus in cross-sector collaborations, and in combination with governance and institution parameters, defines the inquiry and decision space. We conclude by describing a process of clear problem-solution definition made possible through transparent communication, salient and credible information, and relevant tools and techniques for interpreting scientific findings.

  20. A rural virtual health sciences library project: research findings with implications for next generation library services.

    PubMed

    Richwine, M P; McGowan, J J

    2001-01-01

    The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals. Based on the results of a needs assessment, a virtual medical library was created; various levels of training were provided. Virtual library users were asked to complete a Likert-type survey, which included questions on intent of use and impact of use. At the conclusion of the project period, structured interviews were conducted. Impact of the virtual health sciences library showed a strong correlation with the impact of information provided by health sciences librarians. Both interventions resulted in avoidance of adverse health events. Data collected from the structured interviews confirmed the perceived value of the virtual library. While librarians continue to hold a strong position in supporting information access for health care providers, their roles in the information age must begin to move away from providing information toward selecting and organizing knowledge resources and instruction in their use.

  1. Supporting UK adaptation: building services for the next set of UK climate projections

    NASA Astrophysics Data System (ADS)

    Fung, Fai; Lowe, Jason

    2016-04-01

    As part of the Climate Change Act 2008, the UK Government sets out a national adaptation programme to address the risks and opportunities identified in a national climate change risk assessment (CCRA) every five years. The last risk assessment in 2012 was based on the probabilistic projections for the UK published in 2009 (UKCP09). The second risk assessment will also use information from UKCP09 alongside other evidence on climate projections. However, developments in the science of climate projeciton, and evolving user needs (based partly on what has been learnt about the diverse user requirements of the UK adaptation community from the seven years of delivering and managing UKCP09 products, market research and the peer-reviewed literature) suggest now is an appropriate time to update the projections and how they are delivered. A new set of UK climate projections are now being produced to upgrade UKCP09 to reflect the latest developments in climate science, the first phase of which will be delivered in 2018 to support the third CCRA. A major component of the work is the building of a tailored service to support users of the new projections during their development and to involve users in key decisions so that the projections are of most use. We will set out the plan for the new climate projections that seek to address the evolving user need. We will also present a framework which aims to (i) facilitate the dialogue between users, boundary organisations and producers, reflecting their different decision-making roles (ii) produce scientifically robust, user-relevant climate information (iii) provide the building blocks for developing further climate services to support adaptation activities in the UK.

  2. APPLICATION OF THE REGIONAL VULNERABILITY ASSESSMENT (REVA) INTEGRATION TOOL AND UNDERLYING METHODS FOR MULTI-SCALE DECISION MAKING

    EPA Science Inventory

    In support of the National Science and Technology Council's cross-Agency priority of Integrated Science for Ecological Challenges (ISEC) EPA is conducting research to improve capabilities in the area of regional vulnerability assessment and ecological forecasting. EPA's research...

  3. Introduction to Decision Support Systems for Risk Based Management of Contaminated Sites

    EPA Science Inventory

    A book on Decision Support Systems for Risk-based Management of contaminated sites is appealing for two reasons. First, it addresses the problem of contaminated sites, which has worldwide importance. Second, it presents Decision Support Systems (DSSs), which are powerful comput...

  4. From a Vital Sign to Vitality: Selling Exercise So Patients Want to Buy It.

    PubMed

    Segar, Michelle L; Guérin, Eva; Phillips, Edward; Fortier, Michelle

    2016-01-01

    Exercise is Medicine (EIM) and physical activity as a vital sign are based on health-focused research and reflect ideal frames and messages for clinicians. However, they are nonoptimal for patients because they do not address what drives patients' decision-making and motivation. With the growing national emphasis on patient-centered and value-based care, it is the perfect time for EIM to evolve and advance a second-level consumer-oriented exercise prescription and communication strategy. Through research on decision-making, motivation, consumer behavior, and meaningful goal pursuit, this article features six evidence-based issues to help clinicians make physical activity more relevant and compelling for patients to sustain in ways that concurrently support patient-centered care. Physical activity prescriptions and counseling can evolve to reflect affective and behavioral science and sell exercise so patients want to buy it.

  5. Next-generation Strategies for Human Lunar Sorties

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.

    2013-01-01

    The science community has had success in remote field experiences using two distinctly different models for humans-in-the-loop: the Apollo Science Support team (science backroom), and the robotic exploration of Mars. In the Apollo experience, the science team helped train the crew, designed geologic traverses, and made real-time decisions by reviewing audio and video transmissions and providing recommendations for geologic sampling. In contrast, the Mars Exploration Rover (MER) and Mars Science Lab (MSL) missions have been conducted entirely robotically, with significant time delays between science- driven decisions and remote field activities. Distinctive operations methods and field methodologies were developed for MER/MSL [1,2] because of the reliance on the "backroom" science team (rather than astronaut crew members) to understand the surroundings. Additionally, data are relayed to the team once per day, giving the team many hours or even days to assimilate the data and decide on a plan of action.

  6. Urban Climate Resilience - Connecting climate models with decision support cyberinfrastructure using open standards

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Percivall, G.; Idol, T. A.

    2015-12-01

    Experts in climate modeling, remote sensing of the Earth, and cyber infrastructure must work together in order to make climate predictions available to decision makers. Such experts and decision makers worked together in the Open Geospatial Consortium's (OGC) Testbed 11 to address a scenario of population displacement by coastal inundation due to the predicted sea level rise. In a Policy Fact Sheet "Harnessing Climate Data to Boost Ecosystem & Water Resilience", issued by White House Office of Science and Technology (OSTP) in December 2014, OGC committed to increase access to climate change information using open standards. In July 2015, the OGC Testbed 11 Urban Climate Resilience activity delivered on that commitment with open standards based support for climate-change preparedness. Using open standards such as the OGC Web Coverage Service and Web Processing Service and the NetCDF and GMLJP2 encoding standards, Testbed 11 deployed an interoperable high-resolution flood model to bring climate model outputs together with global change assessment models and other remote sensing data for decision support. Methods to confirm model predictions and to allow "what-if-scenarios" included in-situ sensor webs and crowdsourcing. A scenario was in two locations: San Francisco Bay Area and Mozambique. The scenarios demonstrated interoperation and capabilities of open geospatial specifications in supporting data services and processing services. The resultant High Resolution Flood Information System addressed access and control of simulation models and high-resolution data in an open, worldwide, collaborative Web environment. The scenarios examined the feasibility and capability of existing OGC geospatial Web service specifications in supporting the on-demand, dynamic serving of flood information from models with forecasting capacity. Results of this testbed included identification of standards and best practices that help researchers and cities deal with climate-related issues. Results of the testbeds will now be deployed in pilot applications. The testbed also identified areas of additional development needed to help identify scientific investments and cyberinfrastructure approaches needed to improve the application of climate science research results to urban climate resilence.

  7. NASA Earth Observations Informing Renewable Energy Management and Policy Decision Making

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.; Stackhouse, Paul W., Jr.

    2008-01-01

    The NASA Applied Sciences Program partners with domestic and international governmental organizations, universities, and private entities to improve their decisions and assessments. These improvements are enabled by using the knowledge generated from research resulting from spacecraft observations and model predictions conducted by NASA and providing these as inputs to the decision support and scenario assessment tools used by partner organizations. The Program is divided into eight societal benefit areas, aligned in general with the Global Earth Observation System of Systems (GEOSS) themes. The Climate Application of the Applied Sciences Program has as one of its focuses, efforts to provide for improved decisions and assessments in the areas of renewable energy technologies, energy efficiency, and climate change impacts. The goals of the Applied Sciences Program are aligned with national initiatives such as the U.S. Climate Change Science and Technology Programs and with those of international organizations including the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). Activities within the Program are funded principally through proposals submitted in response to annual solicitations and reviewed by peers.

  8. 76 FR 41264 - Agency Information Collection Activities; Proposed Collection; Comment Request; Appeals of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ...] Agency Information Collection Activities; Proposed Collection; Comment Request; Appeals of Science-Based... notice solicits comments on the information collection requirements for appeals of science-based... appropriate, and other forms of information technology. Appeals of Science-Based Decisions Above the Division...

  9. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    NASA Astrophysics Data System (ADS)

    Bubenheim, D.; Potter, C. S.; Zhang, M.; Madsen, J.

    2017-12-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern and Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant management in the California Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they improve decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  10. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Neil, Doreen O.; Kondragunbta, Shobha; Osterman, Gregory; Pickering, Kenneth; Pinder, Robert W.; Prados, Ana I.; Szykman, James

    2009-01-01

    The satellite observations provide constraints on detailed atmospheric modeling, including emissions inventories, indications of transport, harmonized data over vast areas suitable for trends analysis, and a link between spatial scales ranging from local to global, and temporal scales from diurnal to interannual. 1 The National Oceanic and Atmospheric Administration's (NOAA) long-term commitments help provide these observations in cooperation with international meteorological organizations. NASA s long-term commitments will advance scientifically important observations as part of its Earth Science Program, and will assist the transition of the science measurements to applied analyses through the Applied Science Program. Both NASA and NOAA have begun to provide near realtime data and tools to visualize and analyze satellite data,2 while maintaining data quality, validation, and standards. Consequently, decision-makers can expect satellite data services to support air quality decision making now and in the future. The international scientific community's Integrated Global Atmosphere Chemistry Observation System Report3 outlined a plan for ground-based, airborne and satellite measurements and models to integrate the observations into a four-dimensional representation of the atmosphere (space and time) to support assessment and policy information needs. This plan is being carried out under the Global Earth Observation System of Systems (GEOSS). Demonstrations of such an integrated capability4 provide new understanding of the changing atmosphere and link policy decisions to benefits for society. In this article, we highlight the use of satellite data to constrain biomass burning emissions, to assess oxides of nitrogen (NO(x)) emission reductions, and to contribute to state implementation plans, as examples of the use of satellite observations for detecting and tracking changes in atmospheric composition.

  11. Decision Support Systems and the Conflict Model of Decision Making: A Stimulus for New Computer-Assisted Careers Guidance Systems.

    ERIC Educational Resources Information Center

    Ballantine, R. Malcolm

    Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…

  12. Translational Environmental Research: Improving the Usefulness and Usability of Research Results

    NASA Astrophysics Data System (ADS)

    Garfin, G.

    2008-12-01

    In recent years, requests for proposals more frequently emphasize outreach to stakeholder communities, decision support, and science that serves societal needs. Reports from the National Academy of Sciences and Western States Water Council emphasize the need for science translation and outreach, in order to address societal concerns with climate extremes, such as drought, the use of climate predictions, and the growing challenges of climate change. In the 1990s, the NOAA Climate Program Office developed its Regional Integrated Sciences and Asssessments program to help bridge the gap between climate science (notably, seasonal predictions) and society, to improve the flow of information to stakeholders, and to increase the relevance of climate science to inform decisions. During the same time period, the National Science Foundation initiated multi-year Science and Technology Centers and Decision Making Under Uncertainty Centers, with similar goals, but different metrics of success. Moreover, the combination of population growth, climate change, and environmental degradation has prompted numerous research initiatives on linking knowledge and action for sustainable development. This presentation reviews various models and methodologies for translating science results from field, lab, or modeling work to use by society. Lessons and approaches from cooperative extension, boundary organizations, co-production of science and policy, and medical translational research are examined. In particular, multi-step translation as practiced within the health care community is examined. For example, so- called "T1" (translation 1) research moves insights from basic science to clinical research; T2 research evaluates the effectiveness of clinical practice, who benefits from promising care regimens, and develops tools for clinicians, patients, and policy makers. T3 activities test the implementation, delivery, and spread of research results and clinical practices in order to foster policy changes and improve general health. Parallels in environmental sciences might be TER1 (translational environmental research 1), basic insights regarding environmental processes and relationships between environmental changes and their causes. TER2, applied environmental research, development of best practices, and development of decision support tools. TER3, might include usability and impact evaluation, effective outreach and implementation of best practices, and application of research insights to public policy and institutional change. According to the medical literature, and in anecdotal evidence from end-to-end environmental science, decision-maker and public involvement in these various forms of engaged research decreases the lag between scientific discovery and implementation of discoveries in operational practices, information tools, and organizational and public policies.

  13. Systematic Review of Medical Informatics-Supported Medication Decision Making.

    PubMed

    Melton, Brittany L

    2017-01-01

    This systematic review sought to assess the applications and implications of current medical informatics-based decision support systems related to medication prescribing and use. Studies published between January 2006 and July 2016 which were indexed in PubMed and written in English were reviewed, and 39 studies were ultimately included. Most of the studies looked at computerized provider order entry or clinical decision support systems. Most studies examined decision support systems as a means of reducing errors or risk, particularly associated with medication prescribing, whereas a few studies evaluated the impact medical informatics-based decision support systems have on workflow or operations efficiency. Most studies identified benefits associated with decision support systems, but some indicate there is room for improvement.

  14. Science and Systems in Support of Multi-hazard Early Warnings and Decisions

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2015-12-01

    The demand for improved climate knowledge and information is well documented. As noted in the IPCC (SREX, AR5), the UNISDR Global Assessment Reports and other assessments, this demand has increased pressure for information to support planning under changing rates and emergence of multiple hazards including climate extremes (drought, heat waves, floods). "Decision support" is now a popular term in the climate applications research community. While existing decision support activities can be identified in many disparate settings (e.g. federal, academic, private), the challenge of changing environments (coupled physical and social) is actually one of crafting implementation strategies for improving decision quality (not just meeting "user needs"). This includes overcoming weaknesses in co-production models, moving beyond DSSs as simply "software", coordinating innovation mapping and diffusion, and providing fora and gaming tools to identify common interests and differences in the way risks are perceived and managed among the affected groups. We outline the development and evolution of multi-hazard early warning systems in the United States and elsewhere, focusing on climate-related hazards. In particular, the presentation will focus on the climate science and information needed for (1) improved monitoring and modeling, (2) generating risk profiles, (3) developing information systems and scenarios for critical thresholds, (4) the net benefits of using new information (5) characterizing and bridging the "last mile" in the context of longer-term risk management.

  15. The role of academic institutions in leveraging engagement and action on climate change

    NASA Astrophysics Data System (ADS)

    Hill, T. M.; Palca, J.

    2016-12-01

    Growing global concern over the impact of climate change places climate scientists at the forefront of communicating risks, impacts, and adaptation strategies to non-scientists. Academic institutions can play a leadership role in providing support, incentives, and structures that encourage scientific engagement on this, and other, complex societal and scientific issues. This presentation will focus on `best practices' in supporting university scientists in communicating their science and engaging in thoughtful dialogue with decision makers, managers, media, and public audiences. For example, institutions that can provide significant administrative support for science communication (press officers, training workshops) may decrease barriers between academic science and public knowledge. Additionally, financial (or similar) support in the form of teaching releases and institutional awards can be utilized to acknowledge the time and effort spent in engagement. This presentation will feature examples from universities, professional societies and other institutions where engagement on climate science is structurally encouraged and supported.

  16. Decisions Based on Science.

    ERIC Educational Resources Information Center

    Campbell, Vincent; Lofstrom, Jocelyn; Jerome, Brian

    This guide makes the case for a decision-making focus in the science curriculum as a response to concern over preparing scientifically literate students. The student activities are organized by guided activities and independent exercises. Themes of the guided activities include xenotransplants, immunizations, household cleaning products, ozone,…

  17. Teaching science for public understanding: Developing decision-making abilities

    NASA Astrophysics Data System (ADS)

    Siegel, Marcelle A.

    One of the most important challenges educators have is teaching students how to make decisions about complex issues. In this study, methods designed to enhance students' decision-making skills and attitudes were investigated. An issue-oriented science curriculum was partly replaced with activities designed by the experimenter. The first objective of the study was to examine the effects of an instructional method to increase students' use of relevant scientific evidence in their decisions. The second goal of the research was to test whether the instructional activities could promote students' beliefs that science is relevant to them, because attitudes have been shown to affect students' performance and persistence (Schommer, 1994). Third, the study was designed to determine whether the instructional activities would affect students' beliefs that their intelligence is not fixed but can grow; this question is based on Dweck and Leggett's (1988) definition of two orientations toward intelligence---entity theorists and incremental theorists (Dweck & Leggett, 1988; Dweck & Henderson, 1989). Two urban high-school classrooms participated in this study. Tenth graders examined scientific materials about current issues involving technology and society. Instructional materials on decision making were prepared for one class of students to enhance their regular issue-oriented course, Science and Sustainability. A computer program, called Convince Me (Schank, Ranney & Hoadley, 1996), provided scaffolding for making an evidence-based decision. The experimental group's activities also included pen-and-paper lessons on decision making and the effect of experience on the structure of the brain. The control class continued to engage in Science and Sustainability decision-making activities during the time the experimental class completed the treatment. The control group did not show significant improvement on decision-making tasks, and the experimental group showed marginally significant gains (p = .06) according to the Rasch analysis. A measure of students' understanding of coherent argumentation was correlated with higher decision posttest scores. Over time, both classes significantly regarded science as being more relevant to everyday life. Students' attitudes about ability showed insignificant changes.

  18. History of Geoscience Research Matters to You

    NASA Astrophysics Data System (ADS)

    Fleming, J. R.

    2017-12-01

    The geosciences have a long, distinguished, and very useful history Today's science is tomorrow's history of science. If we don't study the past, then every decision we face will seem unprecedented. If we don't study the history of science and apply its lessons, then I don't think we can say we really understand science. Actual research results and ongoing programs will be highlighted, with a focus on public understanding and support for atmospheric science and global change.

  19. [Evidence-based medicine - the current self-reflection of an individualised approach to medicine as an action science].

    PubMed

    Behrens, Johann

    2010-01-01

    Evidence-based Medicine (EbM) is the ongoing self-reflection of an individualised approach to medicine in terms of a science that originates from and focuses on clinical decision-making (pragmatic science="Handlungswissenschaft"). EbM is particularly suitable for self-reflecting individualised medicine on the basis of decision-oriented pragmatic science because it consistently distinguishes between external evidence (i.e., other subjects' experience gained through "qualitative" and "quantitative" scientific methods) and internal evidence, i.e., the individual user's, or patient's, own experience manifesting and developing in the individual contact between therapist and patient. Therefore, internal evidence is completely different from the individual clinical experience, expertise, and conviction which therapists contribute to the encounter with clients. A deeper understanding of internal evidence as a result of this encounter has emerged only in the past 15 years. However, it is an integral part of the logic of evidence-based professional decision-making. Scientifically justified beneficial and effective treatment in the individual case cannot be deduced from external evidence but can only be gathered from internal evidence for which the best external evidence available has been utilised. In the past 15 years nursing science has not only carved out the decision-oriented scientific core of evidence-based practice but has also tried to increase the validity of studies on external evidence by employing a combination of 'qualitative' social science studies and clinical epidemiological methods. Copyright © 2010. Published by Elsevier GmbH.

  20. Home care decision support using an Arden engine--merging smart home and vital signs data.

    PubMed

    Marschollek, Michael; Bott, Oliver J; Wolf, Klaus-H; Gietzelt, Matthias; Plischke, Maik; Madiesh, Moaaz; Song, Bianying; Haux, Reinhold

    2009-01-01

    The demographic change with a rising proportion of very old people and diminishing resources leads to an intensification of the use of telemedicine and home care concepts. To provide individualized decision support, data from different sources, e.g. vital signs sensors and home environmental sensors, need to be combined and analyzed together. Furthermore, a standardized decision support approach is necessary. The aim of our research work is to present a laboratory prototype home care architecture that integrates data from different sources and uses a decision support system based on the HL7 standard Arden Syntax for Medical Logical Modules. Data from environmental sensors connected to a home bus system are stored in a data base along with data from wireless medical sensors. All data are analyzed using an Arden engine with the medical knowledge represented in Medical Logic Modules. Multi-modal data from four different sensors in the home environment are stored in a single data base and are analyzed using an HL7 standard conformant decision support system. Individualized home care decision support must be based on all data available, including context data from smart home systems and medical data from electronic health records. Our prototype implementation shows the feasibility of using an Arden engine for decision support in a home setting. Our future work will include the utilization of medical background knowledge for individualized decision support, as there is no one-size-fits-all knowledge base in medicine.

  1. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    PubMed Central

    2011-01-01

    Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform. PMID:21477364

  2. Decision Making Under Uncertainty and Complexity: A Model-Based Scenario Approach to Supporting Integrated Water Resources Management

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gupta, H.; Wagener, T.; Stewart, S.; Mahmoud, M.; Hartmann, H.; Springer, E.

    2007-12-01

    Some of the most challenging issues facing contemporary water resources management are those typified by complex coupled human-environmental systems with poorly characterized uncertainties. In other words, major decisions regarding water resources have to be made in the face of substantial uncertainty and complexity. It has been suggested that integrated models can be used to coherently assemble information from a broad set of domains, and can therefore serve as an effective means for tackling the complexity of environmental systems. Further, well-conceived scenarios can effectively inform decision making, particularly when high complexity and poorly characterized uncertainties make the problem intractable via traditional uncertainty analysis methods. This presentation discusses the integrated modeling framework adopted by SAHRA, an NSF Science & Technology Center, to investigate stakeholder-driven water sustainability issues within the semi-arid southwestern US. The multi-disciplinary, multi-resolution modeling framework incorporates a formal scenario approach to analyze the impacts of plausible (albeit uncertain) alternative futures to support adaptive management of water resources systems. Some of the major challenges involved in, and lessons learned from, this effort will be discussed.

  3. Opening Pandora's Box: Texas Elementary Campus Administrators use of Educational Policy And Highly Qualified Classroom Teachers Professional Development through Data-informed Decisions for Science Education

    NASA Astrophysics Data System (ADS)

    Brown, Linda Lou

    Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data-warehouse programs; teachers' applications of DIDM to modify lessons for differentiated science instruction, the numbers of years' teachers attended science PD, and teachers' influence on CILs staffing decisions. Yet CILs reported 14% of Texas elementary campuses had limited or no science education programs due to federal policy requirement for reading and mathematics. Three hypothesis components were supported and accepted from research data resulted in two models addressing elementary science, science education PD, and CILs impact for federal policy applications.

  4. A Web-Based Tool to Support Data-Based Early Intervention Decision Making

    ERIC Educational Resources Information Center

    Buzhardt, Jay; Greenwood, Charles; Walker, Dale; Carta, Judith; Terry, Barbara; Garrett, Matthew

    2010-01-01

    Progress monitoring and data-based intervention decision making have become key components of providing evidence-based early childhood special education services. Unfortunately, there is a lack of tools to support early childhood service providers' decision-making efforts. The authors describe a Web-based system that guides service providers…

  5. Taking the Next Step: Using Water Quality Data in a Decision Support System for County, State, and Federal Land Managers

    NASA Astrophysics Data System (ADS)

    Raby, K. S.; Williams, M. W.

    2004-12-01

    Each passing year amplifies the demands placed on communities across the US in terms of population growth, increased tourism, and stresses resulting from escalated use. The conflicting concerns of recreational users, local citizens, environmentalists, and traditional economic interests cause land managers to contend with controversial decisions regarding development and protection of watersheds. Local history and culture, politics, economic goals, and science are all influential factors in land use decision making. Here we report on a scientific study to determine the sensitivity of alpine areas, and the adaptation of this study into a decision support framework. We use water quality data as an indicator of ecosystem health across a variety of alpine and subalpine landscapes, and input this information into a spatially-based decision support tool that planners can use to make informed land use decisions. We develop this tool in a case study in San Juan County, Colorado, a site chosen because its largest town, Silverton, is a small mountain community experiencing a recent surge in tourism and development, and its fragile high elevation locale makes it more sensitive to environmental changes. Extensive field surveys were conducted in priority drainages throughout the county to map the spatial distribution and aerial extent of landscape types during the summers of 2003 and 2004. Surface water samples were collected and analyzed for inorganic and organic solutes, and water quality values were associated with different land covers to enable sensitivity analysis at the landscape scale. Water quality results for each watershed were entered into a module linked to a geographic information system (GIS), which displays maps of sensitive areas based on criteria selected by the user. The decision support system initially incorporates two major water quality parameters: acid neutralizing capacity (ANC) and nitrate (NO3-) concentration, and several categories of sensitivity were created based on ANC and NO3- levels (e.g., pristine, slightly sensitive, moderately sensitive, highly sensitive, sensitive but unimpacted, disturbance impacted). We based threshold concentrations for these water quality parameters on first principles developed at the Niwot Ridge LTER site. Additional parameters such as specific conductance, base cation concentration, sulfate concentration, and dissolved organic carbon concentration may be added for a particular landscape type. Superimposed on this categorization, federal, state, and county planners are able to make decisions about the degree of potential impairment or enhancement produced by a particular project, or the maximum level of acceptable impairment to a particular area. Because water quality parameters are correlated with landscape types, the model returns a map of the watershed, partitioned by landscape type, presenting the sensitivity level of each area. This format provides land use managers with spatial criteria for project implementation.

  6. Distributed Hydrologic Modeling Apps for Decision Support in the Cloud

    NASA Astrophysics Data System (ADS)

    Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.

    2013-12-01

    Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it requires the use of additional software. In particular, there are at least three elements that are needed: a geospatially enabled database, a map server, and geoprocessing toolbox. We recommend a software stack for geospatial web application development comprising: MapServer, PostGIS, and 52 North with Python as the scripting language to tie them together. Another hurdle that must be cleared is managing the cloud-computing load. We are using HTCondor as a solution to this end. Finally, we are creating a scripting environment wherein developers will be able to create apps that use existing hydrologic models in our system with minimal effort. This capability will be accomplished by creating a plugin for a Python content management system called CKAN. We are currently developing cyberinfrastructure that utilizes this stack and greatly lowers the investment required to deploy cloud-based modeling apps. This material is based upon work supported by the National Science Foundation under Grant No. 1135482

  7. EVALUATING HYDROLOGICAL RESPONSE TO FORECASTED LAND-USE CHANGE: SCENARIO TESTING WITH THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA) TOOL

    EPA Science Inventory

    Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions...

  8. Scenario Analysis: Evaluating Biodiversity Response to Forecasted Land-Use Change in the San Pedro River Basin (U.S.-Mexico)

    EPA Science Inventory

    Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions...

  9. Enhancing army analysis capability for warfighter protection: TRADOC-RDECOM M&S decision support environment collaboration

    NASA Astrophysics Data System (ADS)

    Athmer, Keith; Gaughan, Chris; McDonnell, Joseph S.; Leach, Robert; Davis, Bert; Truong, Kiet; Borum, Howard; Leslie, Richard; Ma, Lein

    2012-05-01

    The development of an Integrated Base Defense (IBD) is a significant challenge for the Army with many analytical gaps. The IBD problem space is complex, with evolving requirements and a large stakeholder base. In order to evaluate and analyze IBD decisions, the Training & Doctrine Command (TRADOC) Maneuver Support Center of Excellence (MSCoE) led and continues to lead a series of IBD focused experiments and wargames. Modeling and Simulation (M&S) significantly contributes to this effort. To improve IBD M&S capabilities, a collaborative demonstration with the Research, Development and Engineering Command's (RDECOM's) M&S Decision Support Environment (MSDSE) was held in September 2011. The results of this demonstration provided key input to MSCoE IBD related concepts and technologies. Moreover, it established an initial M&S toolset that will significantly improve force protection in combat zones and Army installations worldwide by providing leaders a capability to conduct analysis of defense and mission rehearsals. The demonstration was executed with a "human in the loop" Battle Captain, who was aided by mission command assets such as Base Expeditionary Targeting and Surveillance Sensors-Combined (BETSS-C). The Common Operating Picture was populated and stimulated using Science & Technology (S&T) M&S, allowing for a realistic representation of physical phenomena without the need for real systems. Novel methods were used for simulation orchestration, and for initializing the simulations and Opposing Force (OPFOR) activities. Ultimately, this demonstration showed that the MSDSE is suitable to support TRADOC IBD analyses and that S&T M&S is ready to be used in a demanding simulation environment. This paper will highlight the event's outcomes and lessons identified.

  10. Insights into water managers' perception and handling of uncertainties - a study of the role of uncertainty in practitioners' planning and decision-making

    NASA Astrophysics Data System (ADS)

    Höllermann, Britta; Evers, Mariele

    2017-04-01

    Planning and decision-making under uncertainty is common in water management due to climate variability, simplified models, societal developments, planning restrictions just to name a few. Dealing with uncertainty can be approached from two sites, hereby affecting the process and form of communication: Either improve the knowledge base by reducing uncertainties or apply risk-based approaches to acknowledge uncertainties throughout the management process. Current understanding is that science more strongly focusses on the former approach, while policy and practice are more actively applying a risk-based approach to handle incomplete and/or ambiguous information. The focus of this study is on how water managers perceive and handle uncertainties at the knowledge/decision interface in their daily planning and decision-making routines. How they evaluate the role of uncertainties for their decisions and how they integrate this information into the decision-making process. Expert interviews and questionnaires among practitioners and scientists provided an insight into their perspectives on uncertainty handling allowing a comparison of diverse strategies between science and practice as well as between different types of practitioners. Our results confirmed the practitioners' bottom up approach from potential measures upwards instead of impact assessment downwards common in science-based approaches. This science-practice gap may hinder effective uncertainty integration and acknowledgement in final decisions. Additionally, the implementation of an adaptive and flexible management approach acknowledging uncertainties is often stalled by rigid regulations favouring a predict-and-control attitude. However, the study showed that practitioners' level of uncertainty recognition varies with respect to his or her affiliation to type of employer and business unit, hence, affecting the degree of the science-practice-gap with respect to uncertainty recognition. The level of working experience was examined as a cross-cutting property of science and practice with increasing levels of uncertainty awareness and integration among more experienced researchers and practitioners. In conclusion, our study of water managers' perception and handling of uncertainties provides valuable insights for finding routines for uncertainty communication and integration into planning and decision-making processes by acknowledging the divers perceptions among producers, users and receivers of uncertainty information. These results can contribute to more effective integration of hydrological forecast and improved decisions.

  11. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Tan, Yu-Mei; Edwards, Stephen W.

    Driven by major scientific advances in analytical methods, biomonitoring, and computational exposure assessment, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the computationally enabled “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) conceptmore » in the toxicological sciences. The AEP framework offers an intuitive approach to successful organization of exposure science data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathway and adverse outcome pathways, completing the source to outcome continuum and setting the stage for more efficient integration of exposure science and toxicity testing information. Together these frameworks form and inform a decision making framework with the flexibility for risk-based, hazard-based or exposure-based decisions.« less

  12. Tracking Expected Improvements of Decadal Prediction in Climate Services

    NASA Astrophysics Data System (ADS)

    Suckling, E.; Thompson, E.; Smith, L. A.

    2013-12-01

    Physics-based simulation models are ultimately expected to provide the best available (decision-relevant) probabilistic climate predictions, as they can capture the dynamics of the Earth System across a range of situations, situations for which observations for the construction of empirical models are scant if not nonexistent. This fact in itself provides neither evidence that predictions from today's Earth Systems Models will outperform today's empirical models, nor a guide to the space and time scales on which today's model predictions are adequate for a given purpose. Empirical (data-based) models are employed to make probability forecasts on decadal timescales. The skill of these forecasts is contrasted with that of state-of-the-art climate models, and the challenges faced by each approach are discussed. The focus is on providing decision-relevant probability forecasts for decision support. An empirical model, known as Dynamic Climatology is shown to be competitive with CMIP5 climate models on decadal scale probability forecasts. Contrasting the skill of simulation models not only with each other but also with empirical models can reveal the space and time scales on which a generation of simulation models exploits their physical basis effectively. It can also quantify their ability to add information in the formation of operational forecasts. Difficulties (i) of information contamination (ii) of the interpretation of probabilistic skill and (iii) of artificial skill complicate each modelling approach, and are discussed. "Physics free" empirical models provide fixed, quantitative benchmarks for the evaluation of ever more complex climate models, that is not available from (inter)comparisons restricted to only complex models. At present, empirical models can also provide a background term for blending in the formation of probability forecasts from ensembles of simulation models. In weather forecasting this role is filled by the climatological distribution, and can significantly enhance the value of longer lead-time weather forecasts to those who use them. It is suggested that the direct comparison of simulation models with empirical models become a regular component of large model forecast intercomparison and evaluation. This would clarify the extent to which a given generation of state-of-the-art simulation models provide information beyond that available from simpler empirical models. It would also clarify current limitations in using simulation forecasting for decision support. No model-based probability forecast is complete without a quantitative estimate if its own irrelevance; this estimate is likely to increase as a function of lead time. A lack of decision-relevant quantitative skill would not bring the science-based foundation of anthropogenic warming into doubt. Similar levels of skill with empirical models does suggest a clear quantification of limits, as a function of lead time, for spatial and temporal scales on which decisions based on such model output are expected to prove maladaptive. Failing to clearly state such weaknesses of a given generation of simulation models, while clearly stating their strength and their foundation, risks the credibility of science in support of policy in the long term.

  13. California teachers' perceptions of standards-based reform in middle school science: A mixed-methods study

    NASA Astrophysics Data System (ADS)

    Leggett, Allison Gail Wilson

    The No Child Left Behind (NCLB) Act of 2001 presented one of the most significant and comprehensive literacy reforms in many years (McDonnell, 2005; U.S. Department of Education, 2006). The era of school accountability and standards based reform has brought many challenges and changes to public schools. Increasingly, public officials and educational administrators are asked to use standards based assessments to make high-stakes decisions, such as whether a student will move on to the next grade level or receive a diploma (American Psychological Association, 2005). It is important to understand any shifts in teachers' perceptions and to identify the changes teachers are making as they implement standards-based reform. This mixed-methods study was designed to assess teachers' perceptions of changes related to standards-based reform as supported by Fullan's (2001) change theory and transformational leadership theory. Survey questions sought to identify teacher perceptions of changes in curriculum, instruction and daily practice as schools documented and incorporated standards-based reform and began focusing on preparing students for the California Standards Test in Science (CSTS). Using descriptive statistical analysis and in-depth interviews, results show favorable insight towards standards-based reform. The survey was distributed to 30 middle school science teachers from 10 low-performing schools in Los Angeles, California. Results were analyzed using Spearman rank-ordered correlations. Interviews were conducted on middle school teachers represented by each grade level. Teachers who receive more support from administrators have more positive attitudes toward all aspects of SBR and the CSTS as measured in this study. No school should overlook the potential of a supportive administration in its effort to improve school programs.

  14. An Internationally Consented Standard for Nursing Process-Clinical Decision Support Systems in Electronic Health Records.

    PubMed

    Müller-Staub, Maria; de Graaf-Waar, Helen; Paans, Wolter

    2016-11-01

    Nurses are accountable to apply the nursing process, which is key for patient care: It is a problem-solving process providing the structure for care plans and documentation. The state-of-the art nursing process is based on classifications that contain standardized concepts, and therefore, it is named Advanced Nursing Process. It contains valid assessments, nursing diagnoses, interventions, and nursing-sensitive patient outcomes. Electronic decision support systems can assist nurses to apply the Advanced Nursing Process. However, nursing decision support systems are missing, and no "gold standard" is available. The study aim is to develop a valid Nursing Process-Clinical Decision Support System Standard to guide future developments of clinical decision support systems. In a multistep approach, a Nursing Process-Clinical Decision Support System Standard with 28 criteria was developed. After pilot testing (N = 29 nurses), the criteria were reduced to 25. The Nursing Process-Clinical Decision Support System Standard was then presented to eight internationally known experts, who performed qualitative interviews according to Mayring. Fourteen categories demonstrate expert consensus on the Nursing Process-Clinical Decision Support System Standard and its content validity. All experts agreed the Advanced Nursing Process should be the centerpiece for the Nursing Process-Clinical Decision Support System and should suggest research-based, predefined nursing diagnoses and correct linkages between diagnoses, evidence-based interventions, and patient outcomes.

  15. From molecule to market access: drug regulatory science as an upcoming discipline.

    PubMed

    Gispen-de Wied, Christine C; Leufkens, Hubertus G M

    2013-11-05

    Regulatory science as a discipline has evolved over the past years with the object to boost and promote scientific rationale behind benefit/risk and decision making by regulatory authorities. The European Medicines Agency, EMA, the Food and Drug Administration, FDA, and the Japanese Pharmaceutical and Medical Devices Agency, PMDA, highlighted in their distinct ways the importance of regulatory science as a basis of good quality assessment in their strategic plans. The Medicines Evaluation Board, MEB, states: 'regulatory science is the science of developing and validating new standards and tools to evaluate and assess the benefit/risk of medicinal products, facilitating sound and transparent regulatory decision making'. Through analysis of regulatory frameworks itself and their effectiveness, however, regulatory science can also advance knowledge of these systems in general. The comprehensive guidance that is issued to complete an application dossier for regulatory product approval has seldomly been scrutinized for its efficiency. Since it is the task of regulatory authorities to protect and promote public health, it is understood that they take a cautious approach in regulating drugs prior to market access. In general, the authorities are among the first to be blamed if dangerous or useless drugs were allowed to the market. Yet, building a regulatory framework that is not challenged continuously in terms of deliverables for public health and cost-effectiveness, might be counterproductive in the end. Regulatory science and research can help understand how and why regulatory decisions are made, and where renewed discussions may be warranted. The MEB supports regulatory science as an R&D activity to fuel primary regulatory processes on product evaluation and vigilance, but also invests in a 'looking into the mirror' approach. Along the line of the drug life-cycle, publicly available data are reviewed and their regulatory impact highlighted. If made explicit, regulatory research can open the door to evidence based regulatory practice and serve the regulator's contribution to innovative drug licensing today. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Feature Statistics Modulate the Activation of Meaning During Spoken Word Processing.

    PubMed

    Devereux, Barry J; Taylor, Kirsten I; Randall, Billi; Geertzen, Jeroen; Tyler, Lorraine K

    2016-03-01

    Understanding spoken words involves a rapid mapping from speech to conceptual representations. One distributed feature-based conceptual account assumes that the statistical characteristics of concepts' features--the number of concepts they occur in (distinctiveness/sharedness) and likelihood of co-occurrence (correlational strength)--determine conceptual activation. To test these claims, we investigated the role of distinctiveness/sharedness and correlational strength in speech-to-meaning mapping, using a lexical decision task and computational simulations. Responses were faster for concepts with higher sharedness, suggesting that shared features are facilitatory in tasks like lexical decision that require access to them. Correlational strength facilitated responses for slower participants, suggesting a time-sensitive co-occurrence-driven settling mechanism. The computational simulation showed similar effects, with early effects of shared features and later effects of correlational strength. These results support a general-to-specific account of conceptual processing, whereby early activation of shared features is followed by the gradual emergence of a specific target representation. Copyright © 2015 The Authors. Cognitive Science published by Cognitive Science Society, Inc.

  17. Effective Recruitment of Schools for Randomized Clinical Trials: Role of School Nurses.

    PubMed

    Petosa, R L; Smith, L

    2017-01-01

    In school settings, nurses lead efforts to improve the student health and well-being to support academic success. Nurses are guided by evidenced-based practice and data to inform care decisions. The randomized controlled trial (RCT) is considered the gold standard of scientific rigor for clinical trials. RCTs are critical to the development of evidence-based health promotion programs in schools. The purpose of this article is to present practical solutions to implementing principles of randomization to RCT trials conducted in school settings. Randomization is a powerful sampling method used to build internal and external validity. The school's daily organization and educational mission provide several barriers to randomization. Based on the authors' experience in conducting school-based RCTs, they offer a host of practical solutions to working with schools to successfully implement randomization procedures. Nurses play a critical role in implementing RCTs in schools to promote rigorous science in support of evidence-based practice.

  18. Semantic Clinical Guideline Documents

    PubMed Central

    Eriksson, Henrik; Tu, Samson W.; Musen, Mark

    2005-01-01

    Decision-support systems based on clinical practice guidelines can support physicians and other health-care personnel in the process of following best practice consistently. A knowledge-based approach to represent guidelines makes it possible to encode computer-interpretable guidelines in a formal manner, perform consistency checks, and use the guidelines directly in decision-support systems. Decision-support authors and guideline users require guidelines in human-readable formats in addition to computer-interpretable ones (e.g., for guideline review and quality assurance). We propose a new document-oriented information architecture that combines knowledge-representation models with electronic and paper documents. The approach integrates decision-support modes with standard document formats to create a combined clinical-guideline model that supports on-line viewing, printing, and decision support. PMID:16779037

  19. Science support for managing migratory waterfowl.

    USGS Publications Warehouse

    Fleskes, Joseph P.; Miller, Michael R.; Takekawa, John Y.

    2003-01-01

    Migratory birds in North America are an international resource shared by Canada, the United States, and Mexico. Ultimate population management authority in the U.S. lies with the U.S. Fish and Wildlife Service (FWS), but states participate in development of management decisions through the Flyway system. The FWS, state wildlife agencies, and nongovernmental organizations participate through independent actions and cooperative Joint Ventures under the North American Waterfowl Management Plan (NAWMP) to acquire, protect, restore, and enhance wetlands and other habitats critical to the long-term conservation of breeding, migrating, and wintering waterfowl. A thorough base of scientific information is required to support and evaluate waterfowl populations and habitat management in North America.

  20. Medical decision-making in children and adolescents: developmental and neuroscientific aspects.

    PubMed

    Grootens-Wiegers, Petronella; Hein, Irma M; van den Broek, Jos M; de Vries, Martine C

    2017-05-08

    Various international laws and guidelines stress the importance of respecting the developing autonomy of children and involving minors in decision-making regarding treatment and research participation. However, no universal agreement exists as to at what age minors should be deemed decision-making competent. Minors of the same age may show different levels of maturity. In addition, patients deemed rational conversation-partners as a child can suddenly become noncompliant as an adolescent. Age, context and development all play a role in decision-making competence. In this article we adopt a perspective on competence that specifically focuses on the impact of brain development on the child's decision-making process. We believe that the discussion on decision-making competence of minors can greatly benefit from a multidisciplinary approach. We adopted such an approach in order to contribute to the understanding on how to deal with children in decision-making situations. Evidence emerging from neuroscience research concerning the developing brain structures in minors is combined with insights from various other fields, such as psychology, decision-making science and ethics. Four capacities have been described that are required for (medical) decision-making: (1) communicating a choice; (2) understanding; (3) reasoning; and (4) appreciation. Each capacity is related to a number of specific skills and abilities that need to be sufficiently developed to support the capacity. Based on this approach it can be concluded that at the age of 12 children can have the capacity to be decision-making competent. However, this age coincides with the onset of adolescence. Early development of the brain's reward system combined with late development of the control system diminishes decision-making competence in adolescents in specific contexts. We conclude that even adolescents possessing capacities required for decision-making, may need support of facilitating environmental factors. This paper intends to offer insight in neuroscientific mechanisms underlying the medical decision-making capacities in minors and to stimulate practices for optimal involvement of minors. Developing minors become increasingly capable of decision-making, but the neurobiological development in adolescence affects competence in specific contexts. Adequate support should be offered in order to create a context in which minors can make competently make decisions.

  1. Assessing experience in the deliberate practice of running using a fuzzy decision-support system

    PubMed Central

    Roveri, Maria Isabel; Manoel, Edison de Jesus; Onodera, Andrea Naomi; Ortega, Neli R. S.; Tessutti, Vitor Daniel; Vilela, Emerson; Evêncio, Nelson

    2017-01-01

    The judgement of skill experience and its levels is ambiguous though it is crucial for decision-making in sport sciences studies. We developed a fuzzy decision support system to classify experience of non-elite distance runners. Two Mamdani subsystems were developed based on expert running coaches’ knowledge. In the first subsystem, the linguistic variables of training frequency and volume were combined and the output defined the quality of running practice. The second subsystem yielded the level of running experience from the combination of the first subsystem output with the number of competitions and practice time. The model results were highly consistent with the judgment of three expert running coaches (r>0.88, p<0.001) and also with five other expert running coaches (r>0.86, p<0.001). From the expert’s knowledge and the fuzzy model, running experience is beyond the so-called "10-year rule" and depends not only on practice time, but on the quality of practice (training volume and frequency) and participation in competitions. The fuzzy rule-based model was very reliable, valid, deals with the marked ambiguities inherent in the judgment of experience and has potential applications in research, sports training, and clinical settings. PMID:28817655

  2. Estimating and communicating prognosis in advanced neurologic disease

    PubMed Central

    Gramling, Robert; Kelly, Adam G.

    2013-01-01

    Prognosis can no longer be relegated behind diagnosis and therapy in high-quality neurologic care. High-stakes decisions that patients (or their surrogates) make often rest upon perceptions and beliefs about prognosis, many of which are poorly informed. The new science of prognostication—the estimating and communication “what to expect”—is in its infancy and the evidence base to support “best practices” is lacking. We propose a framework for formulating a prediction and communicating “what to expect” with patients, families, and surrogates in the context of common neurologic illnesses. Because neurologic disease affects function as much as survival, we specifically address 2 important prognostic questions: “How long?” and “How well?” We provide a summary of prognostic information and highlight key points when tailoring a prognosis for common neurologic diseases. We discuss the challenges of managing prognostic uncertainty, balancing hope and realism, and ways to effectively engage surrogate decision-makers. We also describe what is known about the nocebo effects and the self-fulfilling prophecy when communicating prognoses. There is an urgent need to establish research and educational priorities to build a credible evidence base to support best practices, improve communication skills, and optimize decision-making. Confronting the challenges of prognosis is necessary to fulfill the promise of delivering high-quality, patient-centered care. PMID:23420894

  3. Mind the Gap: Integrating Science and Policy Cultures and Practices

    NASA Astrophysics Data System (ADS)

    Lev, S. M.; Simon, I.

    2015-12-01

    A 2014 survey conducted by the Pew Research Center asked members of the American Association for the Advancement of Science about their support for active engagement in public policy debates. The survey found that 87% of the respondents supported scientists taking an active role in public policy debates about science and technology (S&T), but most believed that regulations related to areas like land use and clean air and water are not guided by the best science. Despite the demand for actionable scientific information by policy makers, these survey results underscore the gap that exists between the scientific and the public policy communities. There are fundamental differences that exist between the perspectives of these two groups, even within Federal S&T agencies that are required to balance the perspectives of the science and policy communities in order to fulfill their agency mission. In support of an ongoing agency effort to strengthen communication and interaction among staff, we led a Federal S&T agency office through an examination and comparison of goals, processes, external drivers, decision making, and timelines within their organization. This workshop activity provided an opportunity to identify the interdependence of science and policy, as well as the challenges to developing effective science-based policy solutions. The workshop featured strategies for achieving balanced science policy outcomes using examples from a range of Federal S&T agencies. The examples presented during the workshop illustrated best practices for more effective communication and interaction to resolve complex science policy issues. The workshop culminated with a group activity designed to give participants the opportunity to identify the challenges and apply best practices to real world science policy problems. Workshop examples and outcomes will be presented along with lessons learned from this agency engagement activity.

  4. The Importance Of Integrating Narrative Into Health Care Decision Making.

    PubMed

    Dohan, Daniel; Garrett, Sarah B; Rendle, Katharine A; Halley, Meghan; Abramson, Corey

    2016-04-01

    When making health care decisions, patients and consumers use data but also gather stories from family and friends. When advising patients, clinicians consult the medical evidence but also use professional judgment. These stories and judgments, as well as other forms of narrative, shape decision making but remain poorly understood. Furthermore, qualitative research methods to examine narrative are rarely included in health science research. We illustrate how narratives shape decision making and explain why it is difficult but necessary to integrate qualitative research on narrative into the health sciences. We draw on social-scientific insights on rigorous qualitative research and our ongoing studies of decision making by patients with cancer, and we describe new tools and approaches that link qualitative research findings with the predominantly quantitative health science scholarship. Finally, we highlight the benefits of more fully integrating qualitative research and narrative analysis into the medical evidence base and into evidence-based medical practice. Project HOPE—The People-to-People Health Foundation, Inc.

  5. MCSDSS: A Multi-Criteria Decision Support System for Merging Geoscience Information with Natural User Interfaces, Preference Ranking, and Interactive Data Utilities

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.; Gentle, J.

    2015-12-01

    The multi-criteria decision support system (MCSDSS) is a newly completed application for touch-enabled group decision support that uses D3 data visualization tools, a geojson conversion utility that we developed, and Paralelex to create an interactive tool. The MCSDSS is a prototype system intended to demonstrate the potential capabilities of a single page application (SPA) running atop a web and cloud based architecture utilizing open source technologies. The application is implemented on current web standards while supporting human interface design that targets both traditional mouse/keyboard interactions and modern touch/gesture enabled interactions. The technology stack for MCSDSS was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The application integrates current frameworks for highly performant agile development with unit testing, statistical analysis, data visualization, mapping technologies, geographic data manipulation, and cloud infrastructure while retaining support for traditional HTML5/CSS3 web standards. The software lifecylcle for MCSDSS has following best practices to develop, share, and document the codebase and application. Code is documented and shared via an online repository with the option for programmers to see, contribute, or fork the codebase. Example data files and tutorial documentation have been shared with clear descriptions and data object identifiers. And the metadata about the application has been incorporated into an OntoSoft entry to ensure that MCSDSS is searchable and clearly described. MCSDSS is a flexible platform that allows for data fusion and inclusion of large datasets in an interactive front-end application capable of connecting with other science-based applications and advanced computing resources. In addition, MCSDSS offers functionality that enables communication with non-technical users for policy, education, or engagement with groups around scientific topics with societal relevance.

  6. What Can Funders Do to Better Link Science with Decisions? Case Studies of Coastal Communities and Climate Change

    NASA Astrophysics Data System (ADS)

    Matso, Kalle E.; Becker, Mimi L.

    2014-12-01

    Many reports and studies have noted that a significant portion of problem-oriented coastal science does not actually link to decisions. Here, three competitively funded project case studies are studied to determine what funders can and should do to better link science with decisions. The qualitative analysis used for this study indicates that the studied program was seen as being unusually attentive to the issue of linking science to decisions, as opposed to simply generating new knowledge. Nevertheless, much of the data indicate that funders can and should do more. Three ideas figured most prominently in the qualitative data: (1) funders should do more to ensure that the problem itself is defined more thoroughly with people who are envisioned as potential users of the science; (2) funders need to allocate more resources and attention to communicating effectively (with users) throughout the project; and (3) funders need to demand more engagement of users throughout the project. These findings have important implications for how funders review and support science, especially when competitive processes are used. Most importantly, funders should adjust what kind of science they ask for. Secondly, funders need to change who is involved in the review process. Currently, review processes focus on knowledge generation, which means that the reviewers themselves have expertise in that area. Instead, review panels should be balanced between those who focus on knowledge generation and those who focus on linking knowledge to decisions; this is a separate but critical discipline currently left out of the review process.

  7. An evaluation of the science needs to inform decisions on Outer Continental Shelf energy development in the Chukchi and Beaufort Seas, Alaska

    USGS Publications Warehouse

    Holland-Bartels, Leslie; Pierce, Brenda

    2011-01-01

    The U. S. Geological Survey (USGS) was asked to conduct an initial, independent evaluation of the science needs that would inform the Administration's consideration of the right places and the right ways in which to develop oil and gas resources in the Arctic Outer Continental Shelf (OCS), particularly focused on the Beaufort and Chukchi Seas. Oil and gas potential is significant in Arctic Alaska. Beyond petroleum potential, this region supports unique fish and wildlife resources and ecosystems, and indigenous people who rely on these resources for subsistence. This report summarizes key existing scientific information and provides initial guidance of what new and (or) continued research could inform decision making. This report is presented in a series of topical chapters and various appendixes each written by a subset of the USGS OCS Team based on their areas of expertise. Three chapters (Chapters 2, 3, and 4) provide foundational information on geology; ecology and subsistence; and climate settings important to understanding the conditions pertinent to development in the Arctic OCS. These chapters are followed by three chapters that examine the scientific understanding, science gaps, and science sufficiency questions regarding oil-spill risk, response, and impact (Chapter 5), marine mammals and anthropogenic noise (Chapter 6), and cumulative impacts (Chapter 7). Lessons learned from the 1989 Exxon Valdez Oil Spill are included to identify valuable "pre-positioned" science and scientific approaches to improved response and reduced uncertainty in damage assessment and restoration efforts (appendix D). An appendix on Structured Decision Making (appendix C) is included to illustrate the value of such tools that go beyond, but incorporate, science in looking at what can/should be done about policy and implementation of Arctic development. The report provides a series of findings and recommendations for consideration developed during the independent examination of science gaps and sufficiency. These recommendations are important for understanding what the USGS discovered in the course of this study and to help inform and improve decision making.

  8. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework

    PubMed Central

    Teeguarden, Justin. G.; Tan, Yu-Mei; Edwards, Stephen W.; Leonard, Jeremy A.; Anderson, Kim A.; Corley, Richard A.; Harding, Anna K; Kile, Molly L.; Simonich, Staci M; Stone, David; Tanguay, Robert L.; Waters, Katrina M.; Harper, Stacey L.; Williams, David E.

    2016-01-01

    Synopsis Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the Aggregate Exposure Pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the Adverse Outcome Pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more efficient integration of exposure assessment and hazard identification. Together, the two pathways form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. PMID:26759916

  9. Completing the link between exposure science and toxicology for improved environmental health decision making: The aggregate exposure pathway framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.

    Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less

  10. Completing the link between exposure science and toxicology for improved environmental health decision making: The aggregate exposure pathway framework

    DOE PAGES

    Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.; ...

    2016-01-13

    Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less

  11. Adaptation of a Knowledge-Based Decision-Support System in the Tactical Environment.

    DTIC Science & Technology

    1981-12-01

    002-04-6411S1CURITY CL All PICATION OF 1,416 PAGE (00HIR Onto ea0aOW .L10 *GU9WVC 4bGSI.CAYON S. Voss 10466lVka t... OftesoE ’ making decisons . The...noe..aaw Ad tdlalttt’ IV 680011 MMib) Artificial Intelligence; Decision-Support Systems; Tactical Decision- making ; Knowledge-based Decision-support...tactical information to assist tactical commanders in making decisions. The system, TAC*, for "Tactical Adaptable Consultant," incorporates a database

  12. EMDS users guide (version 2.0): knowledge-based decision support for ecological assessment.

    Treesearch

    Keith M. Reynolds

    1999-01-01

    The USDA Forest Service Pacific Northwest Research Station in Corvallis, Oregon, has developed the ecosystem management decision support (EMDS) system. The system integrates the logical formalism of knowledge-based reasoning into a geographic information system (GIS) environment to provide decision support for ecological landscape assessment and evaluation. The...

  13. Making the Most of Ourselves

    ERIC Educational Resources Information Center

    Groombridge, Brian

    2008-01-01

    Foresight reports are meant to help "decision-makers" understand the possible future effects of their decisions. "Visions of the future", based on "robust science", should be used by policymakers "to inform government policy and strategy, and to improve how science and technology are used within government and by society". They are also intended…

  14. EPA Leadership on Science, Innovation, and Decision Support Tools for Addressing Current and Future Challenges.

    PubMed

    Hecht, Alan D; Ferster, Aaron; Summers, Kevin

    2017-10-16

    When the U.S. Environmental Protection Agency (EPA) was established nearly 50 years ago, the nation faced serious threats to its air, land, and water, which in turn impacted human health. These threats were effectively addressed by the creation of EPA (in 1970) and many subsequent landmark environmental legislations which in turn significantly reduced threats to the Nation's environment and public health. A key element of historic legislation is research aimed at dealing with current and future problems. Today we face national and global challenges that go beyond classic media-specific (air, land, water) environmental legislation and require an integrated paradigm of action and engagement based on (1) innovation based on science and technology, (2) stakeholder engagement and collaboration, and (3) public education and support. This three-pronged approach recognizes that current environmental problems, include social as well as physical and environmental factors, are best addressed through collaborative problem solving, the application of innovation in science and technology, and multiple stakeholder engagement. To achieve that goal, EPA's Office of Research and Development (ORD) is working directly with states and local communities to develop and apply a suite of accessible decision support tools (DST) that aim to improve environmental conditions, protect human health, enhance economic opportunity, and advance a resilient and sustainability society. This paper showcases joint EPA and state actions to develop tools and approaches that not only meet current environmental and public health challenges, but do so in a way that advances sustainable, healthy, and resilient communities well into the future. EPA's future plans should build on current work but aim to effectively respond to growing external pressures. Growing pressures from megatrends are a major challenge for the new Administration and for cities and states across the country. The recent hurricanes hitting Texas and the Gulf Coast, part of the increase in extreme weather events, make it clear that building resilient infrastructure is a crucial step to sustainability.

  15. Science communication and vernal pool conservation: a study of local decision maker attitudes in a knowledge-action system.

    PubMed

    McGreavy, Bridie; Webler, Thomas; Calhoun, Aram J K

    2012-03-01

    In this study, we describe local decision maker attitudes towards vernal pools to inform science communication and enhance vernal pool conservation efforts. We conducted interviews with town planning board and conservation commission members (n = 9) from two towns in the State of Maine in the northeastern United States. We then mailed a questionnaire to a stratified random sample of planning board members in August and September 2007 with a response rate of 48.4% (n = 320). The majority of survey respondents favored the protection and conservation of vernal pools in their towns. Decision makers were familiar with the term "vernal pool" and demonstrated positive attitudes to vernal pools in general. General appreciation and willingness to conserve vernal pools predicted support for the 2006 revisions to the Natural Resource Protection Act regulating Significant Vernal Pools. However, 48% of respondents were unaware of this law and neither prior knowledge of the law nor workshop attendance predicted support for the vernal pool law. Further, concerns about private property rights and development restrictions predicted disagreement with the vernal pool law. We conclude that science communication must rely on specific frames of reference, be sensitive to cultural values, and occur in an iterative system to link knowledge and action in support of vernal pool conservation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Achieving conservation science that bridges the knowledge-action boundary.

    PubMed

    Cook, Carly N; Mascia, Michael B; Schwartz, Mark W; Possingham, Hugh P; Fuller, Richard A

    2013-08-01

    There are many barriers to using science to inform conservation policy and practice. Conservation scientists wishing to produce management-relevant science must balance this goal with the imperative of demonstrating novelty and rigor in their science. Decision makers seeking to make evidence-based decisions must balance a desire for knowledge with the need to act despite uncertainty. Generating science that will effectively inform management decisions requires that the production of information (the components of knowledge) be salient (relevant and timely), credible (authoritative, believable, and trusted), and legitimate (developed via a process that considers the values and perspectives of all relevant actors) in the eyes of both researchers and decision makers. We perceive 3 key challenges for those hoping to generate conservation science that achieves all 3 of these information characteristics. First, scientific and management audiences can have contrasting perceptions about the salience of research. Second, the pursuit of scientific credibility can come at the cost of salience and legitimacy in the eyes of decision makers, and, third, different actors can have conflicting views about what constitutes legitimate information. We highlight 4 institutional frameworks that can facilitate science that will inform management: boundary organizations (environmental organizations that span the boundary between science and management), research scientists embedded in resource management agencies, formal links between decision makers and scientists at research-focused institutions, and training programs for conservation professionals. Although these are not the only approaches to generating boundary-spanning science, nor are they mutually exclusive, they provide mechanisms for promoting communication, translation, and mediation across the knowledge-action boundary. We believe that despite the challenges, conservation science should strive to be a boundary science, which both advances scientific understanding and contributes to decision making. © 2013 Society for Conservation Biology.

  17. [Involving patients, the insured and the general public in healthcare decision making].

    PubMed

    Mühlbacher, Axel C; Juhnke, Christin

    2016-01-01

    No doubt, the public should be involved in healthcare decision making, especially when decision makers from politics and self-government agencies are faced with the difficult task of setting priorities. There is a general consensus on the need for a stronger patient centeredness, even in HTA processes, and internationally different ways of public participation are discussed and tested in decision making processes. This paper describes how the public can be involved in different decision situations, and it shows how preference measurement methods are currently being used in an international context to support decision making. It distinguishes between different levels of decision making on health technologies: approval, assessment, pricing, and finally utilization. The range of participation efforts extends from qualitative surveys of patients' needs (Citizen Councils of NICE in the UK) to science-based documentation of quantitative patient preferences, such as in the current pilot projects of the FDA in the US and the EMA at the European level. Possible approaches for the elicitation and documentation of preference structures and trade-offs in relation to alternate health technologies are decision aids, such as multi-criteria decision analysis (MCDA), that provide the necessary information for weighting and prioritizing decision criteria. Copyright © 2015. Published by Elsevier GmbH.

  18. Conflict Management in Collaborative Engineering Design: Basic Research in Fundamental Theory, Modeling Framework, and Computer Support for Collaborative Engineering Activities

    DTIC Science & Technology

    2002-01-01

    behaviors are influenced by social interactions, and to how modern IT sys- tems should be designed to support these group technical activities. The...engineering disciplines to behavior, decision, psychology, organization, and the social sciences. “Conflict manage- ment activity in collaborative...Researchers instead began to search for an entirely new paradigm, starting from a theory in social science, to construct a conceptual framework to describe

  19. A Decision Support System for Optimum Use of Fertilizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskinson, Reed Louis; Hess, John Richard; Fink, Raymond Keith

    1999-07-01

    The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems’ infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less

  20. A Decision Support System for Optimum Use of Fertilizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Hoskinson; J. R. Hess; R. K. Fink

    1999-07-01

    The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems' infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less

  1. Success matters: Recasting the relationship among geophysical, biological, and behavioral scientists to support decision making on major environmental challenges

    NASA Astrophysics Data System (ADS)

    Knopman, Debra S.

    2006-03-01

    Coping with global change, providing clean water for growing populations, and disposing of nuclear waste are some of the most difficult public policy challenges of our time. Unknowns in the physical sciences are one source of the difficulty. Real difficulties in meeting these challenges also arise in the behavioral sciences. A potentially rich vein of transdisciplinary research is to integrate the psychology of decision making, known as "judgment and decision making," or JDM, with the development of technical information and decision support tools for complex, long-term environmental problems. Practitioners of JDM conduct research on how individuals and groups respond to uncertainty and ambiguity, hedge against risks, anchor decisions to the status quo, compare relative risks and rewards of alternative strategies, and cope with other classes of decisions. Practitioners use a variety of stimuli, chance devices, hypothetical and real choices involving small stakes, scenarios, and questionnaires to measure (directly and indirectly) preferences under varying conditions. These kinds of experiments can help guide choices about the level of complexity required for different types of decision-making processes, the value of new data collection efforts, and the ways in which uncertainty in model outcomes can be cast to minimize decision-making paralysis. They can also provide a scientific basis for interacting with decision makers throughout the model development process, designing better ways of eliciting and combining opinions and of communicating information relevant to public policy issues with the goal of improving the value of the scientific contribution to the social decision.

  2. The Role of Human Factors/Ergonomics in the Science of Security: Decision Making and Action Selection in Cyberspace.

    PubMed

    Proctor, Robert W; Chen, Jing

    2015-08-01

    The overarching goal is to convey the concept of science of security and the contributions that a scientifically based, human factors approach can make to this interdisciplinary field. Rather than a piecemeal approach to solving cybersecurity problems as they arise, the U.S. government is mounting a systematic effort to develop an approach grounded in science. Because humans play a central role in security measures, research on security-related decisions and actions grounded in principles of human information-processing and decision-making is crucial to this interdisciplinary effort. We describe the science of security and the role that human factors can play in it, and use two examples of research in cybersecurity--detection of phishing attacks and selection of mobile applications--to illustrate the contribution of a scientific, human factors approach. In these research areas, we show that systematic information-processing analyses of the decisions that users make and the actions they take provide a basis for integrating the human component of security science. Human factors specialists should utilize their foundation in the science of applied information processing and decision making to contribute to the science of cybersecurity. © 2015, Human Factors and Ergonomics Society.

  3. Design Approaches to Support Preservice Teachers in Scientific Modeling

    NASA Astrophysics Data System (ADS)

    Kenyon, Lisa; Davis, Elizabeth A.; Hug, Barbara

    2011-02-01

    Engaging children in scientific practices is hard for beginning teachers. One such scientific practice with which beginning teachers may have limited experience is scientific modeling. We have iteratively designed preservice teacher learning experiences and materials intended to help teachers achieve learning goals associated with scientific modeling. Our work has taken place across multiple years at three university sites, with preservice teachers focused on early childhood, elementary, and middle school teaching. Based on results from our empirical studies supporting these design decisions, we discuss design features of our modeling instruction in each iteration. Our results suggest some successes in supporting preservice teachers in engaging students in modeling practice. We propose design principles that can guide science teacher educators in incorporating modeling in teacher education.

  4. An Innovative Approach to Effective Climate Science Application through Stakeholder Participation in Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Athearn, N.; Broska, J.

    2015-12-01

    For natural resource managers and other Great Plains stakeholders, climate uncertainties further confound decision-making on a highly altered landscape. Partner organizations comprising the Great Plains Landscape Conservation Cooperative (GPLCC) acknowledge climate change as a high-priority threat to grasslands and associated habitats, affecting water availability, species composition, and other factors. Despite its importance, incorporation of climate change impacts into planning is hindered by high uncertainty and lack of translation to a tangible outcome: effects on species and their habitats. In 2014, the GPLCC initiated a Landscape Conservation Design (LCD) process to ultimately improve the size and connectivity of grasslands - informing land managers of the landscape-scale impacts of local decisions about where to restore, enhance, protect, and develop lands. Defining this goal helped stakeholders envision a tangible product. High resolution land cover data recently completed for Texas and Oklahoma represent current grassland locations. By focusing climate change models to project changes in these land cover datasets, resulting land cover projections can be directly incorporated into LCD-based models to focus restoration where future climates will support grasslands. Broad organizational cooperation has been critical for this USGS-led project, which uses downscaled climate data and other support from the South Central Climate Science Center Consortium and builds on existing work including LCD efforts of the Playa Lakes Joint Venture and the Bureau of Land Management's Southern Great Plains Rapid Ecological Assessment. Ongoing stakeholder guidance through an advisory team ensures effective application of a product that will be both relevant to and understood by decision makers, for whom the primary role of research is to reduce uncertainties and clear the path for more efficient decision-making in the face of climatic uncertainty.

  5. Uncertainty and probability in wildfire management decision support: An example from the United States [Chapter 4

    Treesearch

    Matthew Thompson; David Calkin; Joe H. Scott; Michael Hand

    2017-01-01

    Wildfire risk assessment is increasingly being adopted to support federal wildfire management decisions in the United States. Existing decision support systems, specifically the Wildland Fire Decision Support System (WFDSS), provide a rich set of probabilistic and risk‐based information to support the management of active wildfire incidents. WFDSS offers a wide range...

  6. The challenges and related strategies of planning for wilderness experiences

    Treesearch

    Kerri Cahill

    2012-01-01

    Planning is where science, public interests and management of wilderness areas come together. Unfortunately, science and information specifically supporting wilderness experiences, if any exists, is often perceived by managers as subjective, value laden, and hard to defend. This can sometimes lead to the tough decisions about providing high quality wilderness...

  7. Science for action at the local landscape scale

    Treesearch

    Paul Opddam; Joan Iverson Nassauer; Zhifang Wang; Christian Albert; Gary Bentrup; Jean-Christophe Castella; Clive McAlpine; Jianguo Liu; Stephen Sheppard; Simon Swaffield

    2013-01-01

    For landscape ecology to produce knowledge relevant to society, it must include considerations of human culture and behavior, extending beyond the natural sciences to synthesize with many other disciplines. Furthermore, it needs to be able to support landscape change processes which increasingly take the shape of deliberative and collaborative decision making by local...

  8. Assessing the quality of the nation's water resources

    USGS Publications Warehouse

    Hamilton, Pixie A.

    2002-01-01

    This issue of IMPACT highlights findings from the first decade of studies (1991 to 2001) by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The articles also discuss the Program’s approaches and models designed to help understand and estimate the fate and transport of contaminants in different geographic areas and environmental settings and over different time frames. NAWQA was established by Congress in 1991 with a goal of developing long-term, consistent, and comparable science-based information on nationwide water-quality conditions. This information is used to support sound management and policy decisions by decision makers at all levels – local, state, and national – who, every day, face complex regulations and management issues related to water resources.

  9. Using Fuzzy-Trace Theory to Understand and Improve Health Judgments, Decisions, and Behaviors: A Literature Review

    PubMed Central

    Blalock, Susan J.; Reyna, Valerie F.

    2016-01-01

    Objective Fuzzy-trace theory is a dual-process model of memory, reasoning, judgment, and decision making that contrasts with traditional expectancy-value approaches. We review the literature applying fuzzy-trace theory to health with three aims: evaluating whether the theory’s basic distinctions have been validated empirically in the domain of health; determining whether these distinctions are useful in assessing, explaining, and predicting health-related psychological processes; and determining whether the theory can be used to improve health judgments, decisions, or behaviors, especially in comparison to other approaches. Methods We conducted a literature review using PubMed, PsycInfo, and Web of Science to identify empirical peer-reviewed papers that applied fuzzy-trace theory, or central constructs of the theory, to investigate health judgments, decisions, or behaviors. Results 79 studies were identified, over half published since 2012, spanning a wide variety of conditions and populations. Study findings supported the prediction that verbatim and gist representations are distinct constructs that can be retrieved independently using different cues. Although gist-based reasoning was usually associated with improved judgment and decision making, four sources of bias that can impair gist reasoning were identified. Finally, promising findings were reported from intervention studies that used fuzzy-trace theory to improve decision making and decrease unhealthy risk taking. Conclusions Despite large gaps in the literature, most studies supported all three aims. By focusing on basic psychological processes that underlie judgment and decision making, fuzzy-trace theory provides insights into how individuals make decisions involving health risks and suggests innovative intervention approaches to improve health outcomes. PMID:27505197

  10. A computational framework for supporting environmental-climate-energy decision-making

    EPA Science Inventory

    GLIMPSE is a effort in which the U.S. EPA Office of Research and Development is developing tools to support long-term, coordinated environmental, climate, and energy planning. The purpose of this presentation is to discuss the underlying science questions; provide an overview of ...

  11. Conditions for quantum interference in cognitive sciences.

    PubMed

    Yukalov, Vyacheslav I; Sornette, Didier

    2014-01-01

    We present a general classification of the conditions under which cognitive science, concerned, e.g. with decision making, requires the use of quantum theoretical notions. The analysis is done in the frame of the mathematical approach based on the theory of quantum measurements. We stress that quantum effects in cognition can arise only when decisions are made under uncertainty. Conditions for the appearance of quantum interference in cognitive sciences and the conditions when interference cannot arise are formulated. Copyright © 2013 Cognitive Science Society, Inc.

  12. Behavioral Economics: A New Lens for Understanding Genomic Decision Making.

    PubMed

    Moore, Scott Emory; Ulbrich, Holley H; Hepburn, Kenneth; Holaday, Bonnie; Mayo, Rachel; Sharp, Julia; Pruitt, Rosanne H

    2018-05-01

    This article seeks to take the next step in examining the insights that nurses and other healthcare providers can derive from applying behavioral economic concepts to support genomic decision making. As genomic science continues to permeate clinical practice, nurses must continue to adapt practice to meet new challenges. Decisions associated with genomics are often not simple and dichotomous in nature. They can be complex and challenging for all involved. This article offers an introduction to behavioral economics as a possible tool to help support patients', families', and caregivers' decision making related to genomics. Using current writings from nursing, ethics, behavioral economic, and other healthcare scholars, we review key concepts of behavioral economics and discuss their relevance to supporting genomic decision making. Behavioral economic concepts-particularly relativity, deliberation, and choice architecture-are specifically examined as new ways to view the complexities of genomic decision making. Each concept is explored through patient decision making and clinical practice examples. This article also discusses next steps and practice implications for further development of the behavioral economic lens in nursing. Behavioral economics provides valuable insight into the unique nature of genetic decision-making practices. Nurses are often a source of information and support for patients during clinical decision making. This article seeks to offer behavioral economic concepts as a framework for understanding and examining the unique nature of genomic decision making. As genetic and genomic testing become more common in practice, it will continue to grow in importance for nurses to be able to support the autonomous decision making of patients, their families, and caregivers. © 2018 Sigma Theta Tau International.

  13. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature

    PubMed Central

    Roman, Tamlyn Eslie; Cleary, Susan; McIntyre, Diane

    2017-01-01

    Background: The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. Methods: A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. Results: The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. Conclusion: The literature supports Bossert’s conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning. PMID:28812832

  14. Knowledge-Based Information Management in Decision Support for Ecosystem Management

    Treesearch

    Keith Reynolds; Micahel Saunders; Richard Olson; Daniel Schmoldt; Michael Foster; Donald Latham; Bruce Miller; John Steffenson; Lawrence Bednar; Patrick Cunningham

    1995-01-01

    The Pacific Northwest Research Station (USDA Forest Service) is developing a knowledge-based information management system to provide decision support for watershed analysis in the Pacific Northwest region of the U.S. The decision support system includes: (1) a GIS interface that allows users to graphically navigate to specific provinces and watersheds and display a...

  15. Real-time science operations to support a lunar polar volatiles rover mission

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; Stoker, Carol R.

    2015-05-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the ∼ 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.

  16. Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; hide

    2014-01-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.

  17. Co-Production of Actionable Science: Recommendations to the Secretary of Interior and a San Francisco Case Study

    NASA Astrophysics Data System (ADS)

    Behar, D. H.; Pfeffer, W. T.; Beier, P.

    2015-12-01

    "Actionable Science provides data, analyses, projections, or tools that can support decisions regarding the management of the risks and impacts of climate change. It is ideally co-produced by scientists and decision makers and creates rigorous and accessible products to meet the needs of stakeholders. (Report to the Secretary of the Interior, Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS), March 30, 2015)During one 17 month period ending in 2013, three major reports on sea level rise from three highly respected science providers produced three divergent estimates of sea level rise. These reports collectively flummoxed the lay reader seeking direction for adaptation planning. Guidance documents soon emerged from state entities which caused further confusion. The City and County of San Francisco began developing "Guidance for Incorporating Sea Level Rise into Capital Planning" in 2013 at the direction of San Francisco Mayor Edwin Lee (http://onesanfrancisco.org/staff-resources/sea-level-rise-guidance/). The first task in developing this Guidance was to convert these highly technical reports into "actionable science." This required extensive expert elicitation to tease out their meaning and use value for decision making. This process, which resulted in detailed guidance on the use of SLR science in planning, is increasingly being called "co-production."Co-production requires both scientist and decision-maker to hear the other's perspective, reflect upon the decision-maker's precise needs, and translate peer review science into lay language and practical advice for decision making. The co-production dynamic was the subject of extensive discussion in the federal Advisory Committee on Climate Change and Natural Resource Science. The ACCCNRS recommendations (https://nccwsc.usgs.gov/acccnrs) include not only the new definition of Actionable Science cited above, but also a "How-To-Guide" that outlines principles for successfully creating a co-production environment and case studies highlighting where this has worked to date.This talk will summarize our state of understanding of "actionable science" and this new "co-production" dynamic within climate change science and planning, with focused reference on recent case studies, particularly San Francisco.

  18. Evidence-based medicine: the fourth revolution in American medicine?

    PubMed

    Chung, Kevin C; Ram, Ashwin N

    2009-01-01

    The use of evidence has become a force in American medicine to improve the quality of health care. Funding decisions from payers will demand studies with high-level evidence to support many of the costly interventions in medicine. Plastic surgery is certainly not immune to this national tidal wave to revamp the health care system by embracing evidence-based medicine in our practices. In scientific contributions of plastic surgery research, application of evidence-based principles should enhance the care of all patients by relying on science rather than opinions. In this article, the genesis of evidence-based medicine is discussed to guide plastic surgery in this new revolution in American medicine.

  19. A two-stage clinical decision support system for early recognition and stratification of patients with sepsis: an observational cohort study.

    PubMed

    Amland, Robert C; Lyons, Jason J; Greene, Tracy L; Haley, James M

    2015-10-01

    To examine the diagnostic accuracy of a two-stage clinical decision support system for early recognition and stratification of patients with sepsis. Observational cohort study employing a two-stage sepsis clinical decision support to recognise and stratify patients with sepsis. The stage one component was comprised of a cloud-based clinical decision support with 24/7 surveillance to detect patients at risk of sepsis. The cloud-based clinical decision support delivered notifications to the patients' designated nurse, who then electronically contacted a provider. The second stage component comprised a sepsis screening and stratification form integrated into the patient electronic health record, essentially an evidence-based decision aid, used by providers to assess patients at bedside. Urban, 284 acute bed community hospital in the USA; 16,000 hospitalisations annually. Data on 2620 adult patients were collected retrospectively in 2014 after the clinical decision support was implemented. 'Suspected infection' was the established gold standard to assess clinical decision support clinimetric performance. A sepsis alert activated on 417 (16%) of 2620 adult patients hospitalised. Applying 'suspected infection' as standard, the patient population characteristics showed 72% sensitivity and 73% positive predictive value. A postalert screening conducted by providers at bedside of 417 patients achieved 81% sensitivity and 94% positive predictive value. Providers documented against 89% patients with an alert activated by clinical decision support and completed 75% of bedside screening and stratification of patients with sepsis within one hour from notification. A clinical decision support binary alarm system with cross-checking functionality improves early recognition and facilitates stratification of patients with sepsis.

  20. Misconceptions and biases in German students' perception of multiple energy sources: implications for science education

    NASA Astrophysics Data System (ADS)

    Lee, Roh Pin

    2016-04-01

    Misconceptions and biases in energy perception could influence people's support for developments integral to the success of restructuring a nation's energy system. Science education, in equipping young adults with the cognitive skills and knowledge necessary to navigate in the confusing energy environment, could play a key role in paving the way for informed decision-making. This study examined German students' knowledge of the contribution of diverse energy sources to their nation's energy mix as well as their affective energy responses so as to identify implications for science education. Specifically, the study investigated whether and to what extent students hold mistaken beliefs about the role of multiple energy sources in their nation's energy mix, and assessed how misconceptions could act as self-generated reference points to underpin support/resistance of proposed developments. An in-depth analysis of spontaneous affective associations with five key energy sources also enabled the identification of underlying concerns driving people's energy responses and facilitated an examination of how affective perception, in acting as a heuristic, could lead to biases in energy judgment and decision-making. Finally, subgroup analysis differentiated by education and gender supported insights into a 'two culture' effect on energy perception and the challenge it poses to science education.

  1. Bridging the Gap Between NASA Earth Observations and Decision Makers Through the NASA Develop National Program

    NASA Astrophysics Data System (ADS)

    Remillard, C. M.; Madden, M.; Favors, J.; Childs-Gleason, L.; Ross, K. W.; Rogers, L.; Ruiz, M. L.

    2016-06-01

    The NASA DEVELOP National Program bridges the gap between NASA Earth Science and society by building capacity in both participants and partner organizations that collaborate to conduct projects. These rapid feasibility projects highlight the capabilities of satellite and aerial Earth observations. Immersion of decision and policy makers in these feasibility projects increases awareness of the capabilities of Earth observations and contributes to the tools and resources available to support enhanced decision making. This paper will present the DEVELOP model, best practices, and two case studies, the Colombia Ecological Forecasting project and the Miami-Dade County Ecological Forecasting project, that showcase the successful adoption of tools and methods for decision making. Through over 90 projects each year, DEVELOP is always striving for the innovative, practical, and beneficial use of NASA Earth science data.

  2. Opportunities for Web-Based Indicators in Environmental Sciences

    PubMed Central

    Malcevschi, Sergio; Marchini, Agnese; Savini, Dario; Facchinetti, Tullio

    2012-01-01

    This paper proposes a set of web-based indicators for quantifying and ranking the relevance of terms related to key-issues in Ecology and Sustainability Science. Search engines that operate in different contexts (e.g. global, social, scientific) are considered as web information carriers (WICs) and are able to analyse; (i) relevance on different levels: global web, individual/personal sphere, on-line news, and culture/science; (ii) time trends of relevance; (iii) relevance of keywords for environmental governance. For the purposes of this study, several indicators and specific indices (relational indices and dynamic indices) were applied to a test-set of 24 keywords. Outputs consistently show that traditional study topics in environmental sciences such as water and air have remained the most quantitatively relevant keywords, while interest in systemic issues (i.e. ecosystem and landscape) has grown over the last 20 years. Nowadays, the relevance of new concepts such as resilience and ecosystem services is increasing, but the actual ability of these concepts to influence environmental governance needs to be further studied and understood. The proposed approach, which is based on intuitive and easily replicable procedures, can support the decision-making processes related to environmental governance. PMID:22905118

  3. Opportunities for web-based indicators in environmental sciences.

    PubMed

    Malcevschi, Sergio; Marchini, Agnese; Savini, Dario; Facchinetti, Tullio

    2012-01-01

    This paper proposes a set of web-based indicators for quantifying and ranking the relevance of terms related to key-issues in Ecology and Sustainability Science. Search engines that operate in different contexts (e.g. global, social, scientific) are considered as web information carriers (WICs) and are able to analyse; (i) relevance on different levels: global web, individual/personal sphere, on-line news, and culture/science; (ii) time trends of relevance; (iii) relevance of keywords for environmental governance. For the purposes of this study, several indicators and specific indices (relational indices and dynamic indices) were applied to a test-set of 24 keywords. Outputs consistently show that traditional study topics in environmental sciences such as water and air have remained the most quantitatively relevant keywords, while interest in systemic issues (i.e. ecosystem and landscape) has grown over the last 20 years. Nowadays, the relevance of new concepts such as resilience and ecosystem services is increasing, but the actual ability of these concepts to influence environmental governance needs to be further studied and understood. The proposed approach, which is based on intuitive and easily replicable procedures, can support the decision-making processes related to environmental governance.

  4. Engaging Students In The Science Of Climate Change

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.

    2013-12-01

    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest research on learning this curriculum provides numerous opportunities for students to use real data to make evidence-based explanations. During the session, we will discuss ways in which students can use scientific data related to climate change as evidence in their construction of scientific arguments.

  5. Strategies for Teaching Regional Climate Modeling: Online Professional Development for Scientists and Decision Makers

    NASA Astrophysics Data System (ADS)

    Walton, P.; Yarker, M. B.; Mesquita, M. D. S.; Otto, F. E. L.

    2014-12-01

    There is a clear role for climate science in supporting decision making at a range of scales and in a range of contexts: from Global to local, from Policy to Industry. However, clear a role climate science can play, there is also a clear discrepancy in the understanding of how to use the science and associated tools (such as climate models). Despite there being a large body of literature on the science there is clearly a need to provide greater support in how to apply appropriately. However, access to high quality professional development courses can be problematic, due to geographic, financial and time constraints. In attempt to address this gap we independently developed two online professional courses that focused on helping participants use and apply two regional climate models, WRF and PRECIS. Both courses were designed to support participants' learning through tutor led programs that covered the basic climate scientific principles of regional climate modeling and how to apply model outputs. The fundamental differences between the two courses are: 1) the WRF modeling course expected participants to design their own research question that was then run on a version of the model, whereas 2) the PRECIS course concentrated on the principles of regional modeling and how the climate science informed the modeling process. The two courses were developed to utilise the cost and time management benefits associated with eLearning, with the recognition that this mode of teaching can also be accessed internationally, providing professional development courses in countries that may not be able to provide their own. The development teams saw it as critical that the courses reflected sound educational theory, to ensure that participants had the maximum opportunity to learn successfully. In particular, the role of reflection is central to both course structures to help participants make sense of the science in relation to their own situation. This paper details the different structures of both courses, evaluating the advantages and disadvantages of each, along with the educational approaches used. We conclude by proposing a framework for the develop of educationally robust online professional development programs that actively supports decision makers in understanding, developing and applying regional climate models.

  6. Troubling STEM: Making a Case for an Ethics/STEM Partnership

    NASA Astrophysics Data System (ADS)

    Steele, Astrid

    2016-06-01

    Set against the backdrop of a STEM-based (science, technology, engineering and mathematics) activity in a teacher education science methods class, the author examines the need for ethics education to be partnered with STEM education. To make the case, the origin of the STEM initiative, undertaken and strongly supported by both US government and corporate sources, is briefly recounted. The STSE initiative (science, technology, society and environment) is posited as a counterpoint to STEM. Also considered are: (a) an historical perspective of science and technology as these impact difficult individual and social decision making; (b) STEM knowledge generation considered through the lens of Habermas' threefold knowledge typology; and (c) the experiences of the teacher candidates working through the STEM activity when an ethical challenge is posed. The author demonstrates the need for a moral component for science education and makes the case for a partnership between STEM and ethics education. Further, such a partnership has been shown to increase student enjoyment and motivation for their science studies. Three possible ethical frameworks are examined for their theoretical and practical utility in a science classroom.

  7. Development of transportation asset management decision support tools : final report.

    DOT National Transportation Integrated Search

    2017-08-09

    This study developed a web-based prototype decision support platform to demonstrate the benefits of transportation asset management in monitoring asset performance, supporting asset funding decisions, planning budget tradeoffs, and optimizing resourc...

  8. Design and realization of tourism spatial decision support system based on GIS

    NASA Astrophysics Data System (ADS)

    Ma, Zhangbao; Qi, Qingwen; Xu, Li

    2008-10-01

    In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.

  9. CorRECTreatment: A Web-based Decision Support Tool for Rectal Cancer Treatment that Uses the Analytic Hierarchy Process and Decision Tree

    PubMed Central

    Karakülah, G.; Dicle, O.; Sökmen, S.; Çelikoğlu, C.C.

    2015-01-01

    Summary Background The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians’ decision making. Objective The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. Methods The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. Results In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. Conclusions The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options. PMID:25848413

  10. CorRECTreatment: a web-based decision support tool for rectal cancer treatment that uses the analytic hierarchy process and decision tree.

    PubMed

    Suner, A; Karakülah, G; Dicle, O; Sökmen, S; Çelikoğlu, C C

    2015-01-01

    The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians' decision making. The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options.

  11. An Innovative Spreadsheet Application to Teach Management Science Decision Criteria

    ERIC Educational Resources Information Center

    Hozak, Kurt

    2018-01-01

    This article describes a Microsoft Excel-based application that uses humorous voice synthesis and timed competition to make it more fun and engaging to learn management science decision criteria. In addition to providing immediate feedback and easily customizable tips that facilitate self-learning, the software randomly generates both the problem…

  12. Development of the Tailored Adaptive Personality Assessment System (TAPAS) to Support Army Personnel Selection and Classification Decisions

    DTIC Science & Technology

    2012-08-01

    Behavioral and Social Sciences. 22 Knapp, D . J., McCloy, R. A., Heffner, T . S. (2004...Report 1168). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. 104 Knapp, D . J., & Heffner, T . S. (Eds...Arlington, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. Knapp, D . J., Heffner, T . S., & White, L. (Eds.) (2011).

  13. Geospatial Data Fusion and Multigroup Decision Support for Surface Water Quality Management

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Osidele, O.; Green, R. T.; Xie, H.

    2010-12-01

    Social networking and social media have gained significant popularity and brought fundamental changes to many facets of our everyday life. With the ever-increasing adoption of GPS-enabled gadgets and technology, location-based content is likely to play a central role in social networking sites. While location-based content is not new to the geoscience community, where geographic information systems (GIS) are extensively used, the delivery of useful geospatial data to targeted user groups for decision support is new. Decision makers and modelers ought to make more effective use of the new web-based tools to expand the scope of environmental awareness education, public outreach, and stakeholder interaction. Environmental decision processes are often rife with uncertainty and controversy, requiring integration of multiple sources of information and compromises between diverse interests. Fusing of multisource, multiscale environmental data for multigroup decision support is a challenging task. Toward this goal, a multigroup decision support platform should strive to achieve transparency, impartiality, and timely synthesis of information. The latter criterion often constitutes a major technical bottleneck to traditional GIS-based media, featuring large file or image sizes and requiring special processing before web deployment. Many tools and design patterns have appeared in recent years to ease the situation somewhat. In this project, we explore the use of Web 2.0 technologies for “pushing” location-based content to multigroups involved in surface water quality management and decision making. In particular, our granular bottom-up approach facilitates effective delivery of information to most relevant user groups. Our location-based content includes in-situ and remotely sensed data disseminated by NASA and other national and local agencies. Our project is demonstrated for managing the total maximum daily load (TMDL) program in the Arroyo Colorado coastal river basin in Texas. The overall design focuses on assigning spatial information to decision support elements and on efficiently using Web 2.0 technologies to relay scientific information to the nonscientific community. We conclude that (i) social networking, if appropriately used, has great potential for mitigating difficulty associated with multigroup decision making; (ii) all potential stakeholder groups should be involved in creating a useful decision support system; and (iii) environmental decision support systems should be considered a must-have, instead of an optional component of TMDL decision support projects. Acknowledgment: This project was supported by NASA grant NNX09AR63G.

  14. Towards "open applied" Earth sciences

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  15. Examining Challenges Related to the Production of Actionable Climate Knowledge for Adaptation Decision-Making: A Focus on Climate Knowledge System Producers

    NASA Astrophysics Data System (ADS)

    Ernst, K.; Preston, B. L.; Tenggren, S.; Klein, R.; Gerger-Swartling, Å.

    2017-12-01

    Many challenges to adaptation decision-making and action have been identified across peer-reviewed and gray literature. These challenges have primarily focused on the use of climate knowledge for adaptation decision-making, the process of adaptation decision-making, and the needs of the decision-maker. Studies on climate change knowledge systems often discuss the imperative role of climate knowledge producers in adaptation decision-making processes and stress the need for producers to engage in knowledge co-production activities and to more effectively meet decision-maker needs. While the influence of climate knowledge producers on the co-production of science for adaptation decision-making is well-recognized, hardly any research has taken a direct approach to analyzing the challenges that climate knowledge producers face when undertaking science co-production. Those challenges can influence the process of knowledge production and may hinder the creation, utilization, and dissemination of actionable knowledge for adaptation decision-making. This study involves semi-structured interviews, focus groups, and participant observations to analyze, identify, and contextualize the challenges that climate knowledge producers in Sweden face as they endeavor to create effective climate knowledge systems for multiple contexts, scales, and levels across the European Union. Preliminary findings identify complex challenges related to education, training, and support; motivation, willingness, and culture; varying levels of prioritization; professional roles and responsibilities; the type and amount of resources available; and professional incentive structures. These challenges exist at varying scales and levels across individuals, organizations, networks, institutions, and disciplines. This study suggests that the creation of actionable knowledge for adaptation decision-making is not supported across scales and levels in the climate knowledge production landscape. Additionally, enabling the production of actionable knowledge for adaptation decision-making requires multi-level effort beyond the individual level.

  16. Shaping the Future Landscape: Catchment Systems Engineering and the Decision Support Matrix Approach

    NASA Astrophysics Data System (ADS)

    Hewett, Caspar; Quinn, Paul; Wilkinson, Mark; Wainwright, John

    2017-04-01

    Land degradation is widely recognised as one of the great environmental challenges facing humanity today, much of which is directly associated with human activity. The negative impacts of climate change and of the way in which we have engineered the landscape through, for example, agriculture intensification and deforestation, need to be addressed. However, the answer is not a simple matter of doing the opposite of current practice. Nor is non-intervention a viable option. There is a need to bring together approaches from the natural and social sciences both to understand the issues and to act to solve real problems. We propose combining a Catchment Systems Engineering (CSE) approach that builds on existing approaches such as Natural Water Retention Measures, Green infrastructure and Nature-Based Solutions with a multi-scale framework for decision support that has been successfully applied to diffuse pollution and flood risk management. The CSE philosophy follows that of Earth Systems Engineering and Management, which aims to engineer and manage complex coupled human-natural systems in a highly integrated, rational manner. CSE is multi-disciplinary, and necessarily involves a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. It offers a rational approach which accepts the fact that we need to engineer and act to improve the functioning of the existing catchment entity on which we rely. The decision support framework proposed draws on physical and mathematical modelling; Participatory Action Research; and demonstration sites at which practical interventions are implemented. It is predicated on the need to work with stakeholders to co-produce knowledge that leads to proactive interventions to reverse the land degradation we observe today while sustaining the agriculture humanity needs. The philosophy behind CSE and examples of where it has been applied successfully are presented. The Decision Support Matrix (DSM) approach is introduced as a way to engage stakeholders at all scales, helping to inform decision making and motivate intervention. Two existing visualization and communication tools produced using the DSM approach are discussed: The FARM (Floods and Agriculture Risk Matrix) and CAVERTI (Communication And Visualizing Erosion-associated Risks to Infrastructure). Such tools can play a central role in encouraging a more holistic engineering approach to managing catchment system function that combines food production with a reversal of land degradation, providing a 'win-win' situation for all.

  17. Developing Intuitive Reasoning with Graphs to Support Science Arguments

    ERIC Educational Resources Information Center

    Grueber, David

    2011-01-01

    Graphs are important for supporting critical thinking and scientific argumentation because students can use them to reason, make judgments and decisions, and solve problems like a scientist (Connery 2007). Yet teaching students how to use math to actually think critically continues to be difficult for teachers. This article describes two…

  18. Linking science, public values, and decision-making: Case study development for public deliberations about climate change resilience

    NASA Astrophysics Data System (ADS)

    Weller, N.; Bennett, I.; Bernstein, M.; Farooque, M.; Lloyd, J.; Lowenthal, C.; Sittenfeld, D.

    2016-12-01

    Actionable science seeks to align scientific inquiry with decision-making priorities to overcome rifts between scientific knowledge and the needs of decision makers. Combining actionable science with explorations of public values and priorities creates useful support for decision makers facing uncertainty, tradeoffs, and limited resources. As part of a broader project to create public forums about climate change resilience, we convened workshops with decision makers, resilience experts, and community stakeholders to discuss climate change resilience. Our goals were 1) to create case studies of resilience strategies for use in public deliberations at science museums across 8 U.S. cities; and 2) to build relationships with decision makers and stakeholders interested in these public deliberations. Prior to workshops, we created summaries of resilience strategies using academic literature, government assessments, municipal resilience plans, and conversations with workshop participants. Workshops began with example deliberation activities followed by semi-structured discussions of resilience strategies centered on 4 questions: 1) What are the key decisions to be made regarding each strategy? 2) What stakeholders and perspectives are relevant to each strategy? 3) What available data are relevant to each strategy? 4) What visualizations or other resources are useful for communicating things about each strategy? Workshops yielded actionable dialogue regarding issues of justice, feasibility, and the socio-ecological-technical systems impacted by climate change hazards and resilience strategies. For example, discussions of drought revealed systemic and individual-level challenges and opportunities; discussions of sea level rise included ways to account for the cultural significance of many coastal communities. The workshops provide a model for identifying decision-making priorities and tradeoffs and building partnerships among stakeholders, scientists, and decision makers.

  19. A Pedagogical Model for Ethical Inquiry into Socioscientific Issues In Science

    NASA Astrophysics Data System (ADS)

    Saunders, Kathryn J.; Rennie, Léonie J.

    2013-02-01

    Internationally there is concern that many science teachers do not address socioscientific issues (SSI) in their classrooms, particularly those that are controversial. However with increasingly complex, science-based dilemmas being presented to society, such as cloning, genetic screening, alternative fuels, reproductive technologies and vaccination, there is a growing call for students to be more scientifically literate and to be able to make informed decisions on issues related to these dilemmas. There have been shifts in science curricula internationally towards a focus on scientific literacy, but research indicates that many secondary science teachers lack the support and confidence to address SSI in their classrooms. This paper reports on a project that developed a pedagogical model that scaffolded teachers through a series of stages in exploring a controversial socioscientific issue with students and supported them in the use of pedagogical strategies and facilitated ways of ethical thinking. The study builds on existing frameworks of ethical thinking. It presents an argument that in today's increasingly pluralistic society, these traditional frameworks need to be extended to acknowledge other worldviews and identities. Pluralism is proposed as an additional framework of ethical thinking in the pedagogical model, from which multiple identities, including cultural, ethnic, religious and gender perspectives, can be explored.

  20. Science Faculty Belief Systems in a Professional Development Program: Inquiry in College Laboratories

    NASA Astrophysics Data System (ADS)

    Hutchins, Kristen L.; Friedrichsen, Patricia J.

    2012-12-01

    The purpose of this study was to investigate how science faculty members' belief systems about inquiry-based teaching changed through their experience in a professional development program. The program was designed to support early career science faculty in learning about inquiry and incorporating an inquiry-based approach to teaching laboratories. Data sources for this qualitative study included three semi-structured interviews, observations during the program and during faculty members' implementation in their courses, and a researcher's journal. In the first phase of data analysis, we created profiles for each of the four participants. Next, we developed assertions, and tested for confirming and disconfirming evidence across the profiles. The assertions indicated that, through the professional development program, participants' knowledge and beliefs about inquiry-based teaching shifted, placing more value on student-directed learning and classroom inquiry. Participants who were internally motivated to participate and held incoming positive attitudes toward the mini-journal inquiry-based approach were more likely to incorporate the approach in their future practice. Students' responses played a critical role in participants' belief systems and their decision to continue using the inquiry-based format. The findings from this study have implications for professional development design.

  1. Interior's Climate Science Centers: Focus or Fail

    NASA Astrophysics Data System (ADS)

    Udall, B.

    2012-12-01

    After a whirlwind two years of impressive and critical infrastructure building, the Department of Interior's Climate Science Centers are now in a position to either succeed or fail. The CSCs have a number of difficult structural problems including too many constituencies relative to the available resources, an uneasy relationship among many of the constituencies including the DOI agencies themselves, a need to do science in a new, difficult and non-traditional way, and a short timeframe to produce useful products. The CSCs have built a broad and impressive network of scientists and stakeholders. These entities include science providers of the universities and the USGS, and decision makers from the states, tribes, DOI land managers and other federal agencies and NGOs. Rather than try to support all of these constituencies the CSCs would be better served by refocusing on a core mission of supporting DOI climate related decision making. The CSCs were designed to service the climate science needs of DOI agencies, many of which lost their scientific capabilities in the 1990s due to a well-intentioned but ultimately harmful re-organization at DOI involving the now defunct National Biological Survey. Many of these agencies would like to have their own scientists, have an uneasy relationship with the nominal DOI science provider, the USGS, and don't communicate effectively among themselves. The CSCs must not succumb to pursuing science in either the traditional mode of the USGS or in the traditional mode of the universities, or worse, both of them. These scientific partners will need to be flexible, learn how to collaborate and should expect to see fewer resources. Useful CSC processes and outputs should start with the recommendations of the 2009 NRC Report Informing Decisions in a Changing Climate: (1) begin with users' needs; (2) give priority to process over products; (3) link information producers and users; (4) build connections across disciplines and organizations; (5) seek institutional stability; and (6) design processes for learning. In addition, CSC outputs should help decision makers to embrace and focus on uncertainty rather than on attempts to reduce uncertainty. Model building can be a useful exercise if used as a broad intellectual exercise to understand systems instead of narrow projection-based efforts. In some cases DOI agencies may want very simple products including scientific syntheses. Social science work including but not limited to economics and policy should be considered when appropriate to decision maker needs. One method for allocating CSC resources would involve a limited number of small scoping meetings with climate sensitive regional DOI agencies. In the Southwest, for example, regional entities would include at least the Landscape Conservation Cooperatives, National Park Service, Fish and Wildlife Service, Bureau of Land Management, Reclamation and the US Forest Service, a critically important land manager with a well-funded and well-structured climate program. Given DOI's trust responsibility to the tribes, at least one project should be focused on meeting those needs in this region. The goal of these meetings would be to identify a small number of projects each with adequate funding for interdisciplinary teams of university and USGS scientists and DOI decision makers. Done correctly, the CSCs should be able to leverage resources with these DOI partners.

  2. Actionable Science in the Gulf of Mexico: Connecting Researchers and Resource Managers

    NASA Astrophysics Data System (ADS)

    Lartigue, J.; Parker, F.; Allee, R.; Young, C.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) RESTORE Science Program was established in the wake of the Deepwater Horizon oil spill to to carry out research, observation, and monitoring to support the long-term sustainability of the Gulf of Mexico ecosystem, including its fisheries. Administered in partnership with the US Fish and Wildlife Service, the Science Program emphasizes a connection between science and decision-making. This emphasis translated into an engagement process that allowed for resource managers and other users of information about the ecosystem to provide direct input into the science plan for the program. In developing funding opportunities, the Science Program uses structured conversations with resource managers and other decision makers to focus competitions on specific end user needs. When evaluating proposals for funding, the Science Program uses criteria that focus on applicability of a project's findings and products, end user involvement in project planning, and the approach for transferring findings and products to the end user. By including resource managers alongside scientific experts on its review panels, the Science Program ensures that these criteria are assessed from both the researcher and end user perspectives. Once funding decisions are made, the Science Program assigns a technical monitor to each award to assist with identifying and engaging end users. Sharing of best practices among the technical monitors has provided the Science Program insight on how best to bridge the gap between research and resource management and how to build successful scientist-decision maker partnerships. During the presentation, we will share two case studies: 1) design of a cooperative (fisheries scientist, fisheries managers, and fishers), Gulf-wide conservation and monitoring program for fish spawning aggregations and 2) development of habitat-specific ecosystem indicators for use by federal and state resource managers.

  3. EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith

    Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less

  4. EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases

    DOE PAGES

    Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith; ...

    2017-11-06

    Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less

  5. A knowledge-based decision support system for payload scheduling

    NASA Technical Reports Server (NTRS)

    Floyd, Stephen; Ford, Donnie

    1988-01-01

    The role that artificial intelligence/expert systems technologies play in the development and implementation of effective decision support systems is illustrated. A recently developed prototype system for supporting the scheduling of subsystems and payloads/experiments for NASA's Space Station program is presented and serves to highlight various concepts. The potential integration of knowledge based systems and decision support systems which has been proposed in several recent articles and presentations is illustrated.

  6. 77 FR 1932 - Notification of a Public Teleconference of the Science Advisory Board Committee on Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... a draft report based on fact-finding activities conducted as part of a study of science integration... Science Advisory Board Committee on Science Integration for Decision Making AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental Protection Agency (EPA or Agency) Science...

  7. Clinical decision support provided within physician order entry systems: a systematic review of features effective for changing clinician behavior.

    PubMed

    Kawamoto, Kensaku; Lobach, David F

    2003-01-01

    Computerized physician order entry (CPOE) systems represent an important tool for providing clinical decision support. In undertaking this systematic review, our objective was to identify the features of CPOE-based clinical decision support systems (CDSSs) most effective at modifying clinician behavior. For this review, two independent reviewers systematically identified randomized controlled trials that evaluated the effectiveness of CPOE-based CDSSs in changing clinician behavior. Furthermore, each included study was assessed for the presence of 14 CDSS features. We screened 10,023 citations and included 11 studies. Of the 10 studies comparing a CPOE-based CDSS intervention against a non-CDSS control group, 7 reported a significant desired change in professional practice. Moreover, meta-regression analysis revealed that automatic provision of the decision support was strongly associated with improved professional practice (adjusted odds ratio, 23.72; 95% confidence interval, 1.75-infiniti). Thus, we conclude that automatic provision of decision support is a critical feature of successful CPOE-based CDSS interventions.

  8. Science for watershed decisions on abandoned mine lands; review of preliminary results, Denver, Colorado, February 4-5, 1998

    USGS Publications Warehouse

    Nimick, David A.; Von Guerard, Paul

    1998-01-01

    From the Preface: There are thousands of abandoned or inactive mines on or adjacent to public lands administered by the U.S. Forest Service, Bureau of Land Management, and National Park Service. Mine wastes from many of these abandoned mines adversely affect resources on public lands. In 1995, an interdepartmental work group within the Federal government developed a strategy to address remediation of the many abandoned mines on public lands. This strategy is based on using a watershed approach to address the abandoned mine lands (AML) problem. The USGS, working closely with the Federal land-management agencies (FLMAs), is key for the success of this watershed approach. In support of this watershed approach, the USGS developed an AML Initiative with pilot studies in the Boulder River in Montana and the Animas River in Colorado. The goal of these studies is to design and implement a reliable strategy that will supply the scientific information to the FLMAs so that land managers can develop efficient and cost-effective remediation of AML. The symposium 'Science for Watershed Decisions on Abandoned Mine Lands: Review of Preliminary Results' held in Denver, Colorado, on February 4-5, 1998, provided the FLMAs a first look at the techniques, data, and interpretations being generated by the USGS pilot studies. This multidisciplined effort already is proving very valuable to land managers in making science-based AML cleanup decisions and will continue to be of increasing value as additional and more complete information is obtained. Ongoing interaction between scientists and land managers is essential to insure the efficient continuation and success of AML cleanup efforts.

  9. The Rise of Political Interference in Science Policy

    NASA Astrophysics Data System (ADS)

    Carter, J. M.; Goldman, G. T.; Barry, J.

    2017-12-01

    The United States federal government has long relied on independent science to inform policy decisions that impact public health and safety, and the environment. Yet, losses of scientific integrity in federal decisionmaking have persisted, politicizing science and undermining science-based public health protections the government is charged with overseeing. However, politicization of science has accelerated in recent months. Focusing on a series of recent case studies, we investigated different tactics used by political actors to undermine the use of independent science in the policy making process. In this talk, we will highlight and discuss many of these tactics used in the current political era including the delay of science-based decisions, disbanding scientific advisory boards, and the dismissal of scientific evidence. Additionally, this talk will be followed by a discussion of what we might expect for federal scientific integrity in the next few years.

  10. Designing for the Future: How the Learning Sciences Can Inform the Trajectories of Preservice Teachers

    ERIC Educational Resources Information Center

    Jurow, A. Susan; Tracy, Rita; Hotchkiss, Jacqueline S.; Kirshner, Ben

    2012-01-01

    In this article, the authors discuss how they redesigned an educational psychology course for preservice teachers using insights from the burgeoning, interdisciplinary field of the Learning Sciences. Research on the situated nature of learning and the value of out-of-school contexts for supporting children s development informed their decisions to…

  11. Scaling the Pyramid Model across Complex Systems Providing Early Care for Preschoolers: Exploring How Models for Decision Making May Enhance Implementation Science

    ERIC Educational Resources Information Center

    Johnson, LeAnne D.

    2017-01-01

    Bringing effective practices to scale across large systems requires attending to how information and belief systems come together in decisions to adopt, implement, and sustain those practices. Statewide scaling of the Pyramid Model, a framework for positive behavior intervention and support, across different types of early childhood programs…

  12. The use of the Dutch Self-Sufficiency Matrix (SSM-D) to inform allocation decisions to public mental health care for homeless people.

    PubMed

    Lauriks, Steve; de Wit, Matty A S; Buster, Marcel C A; Fassaert, Thijs J L; van Wifferen, Ron; Klazinga, Niek S

    2014-10-01

    The current study set out to develop a decision support tool based on the Self-Sufficiency Matrix (Dutch version; SSM-D) for the clinical decision to allocate homeless people to the public mental health care system at the central access point of public mental health care in Amsterdam, The Netherlands. Logistic regression and receiver operating characteristic-curve analyses were used to model professional decisions and establish four decision categories based on SSM-D scores from half of the research population (Total n = 612). The model and decision categories were found to be accurate and reliable in predicting professional decisions in the second half of the population. Results indicate that the decision support tool based on the SSM-D is useful and feasible. The method to develop the SSM-D as a decision support tool could be applied to decision-making processes in other systems and services where the SSM-D has been implemented, to further increase the utility of the instrument.

  13. Creating Useable Science? Policy Plays a Vital Role

    NASA Astrophysics Data System (ADS)

    Hooke, W. H.

    2006-12-01

    According to the International Council for Science (ICSU), the greatest challenge facing 21st century science is the widening gap between the advance of science and society's ability to use it. A recently constituted ICSU panel on natural and human-induced environmental disasters has a corollary charge: to better understand why, despite advances in scientific understanding of the natural and social causes for disasters, disaster losses continue to mount. If the gap between science and society's ability to use it is indeed widening, then we as individual scientists ought to be concerned, because the challenge threatens the social contract we've enjoyed for decades: the ability to pursue curiosity-driven research, relatively unfettered, and handsomely supported by a taxpaying public on the premise that the benefits will more than exceed the costs. We also ought to care on purely humanitarian grounds: A range of social ills: poverty, environmental despoliation, disease, and many more desperately call for help from science. Over the years, scientists have responded. Investments in applied research, systems development, technology transfer, rapid prototyping, decision support tools, community-based research and extension services, and other efforts to reconcile the supply and demand for science all attempt to accelerate societal benefit from science and technology. A new breed of experts, known variously as bridgers, information brokers, translators, or interpreters, is emerging to facilitate this work. Additionally, cost-benefit analyses and other socio- economic research can help prioritize science and technology based on likely societal utility. Such efforts are necessary. Are they sufficient? So far, the work has proven demanding, the support has been minimal, and improvements have been uneven and incremental at best. Moreover, the benefits of science (though they can be characterized) are not fundamental constants, but vary considerably, depending upon the prevailing policy framework at all levels of government. Some illustrations, e.g., electricity deregulation and water resource management, readily show the contrast. In the future, scientists, policy makers, and the public will have to collaborate more effectively if scientific advance is to rapidly improve the human condition.

  14. Literacy Strategies in the Science Classroom The Influence of Teacher Cognitive Resources on Implementation

    NASA Astrophysics Data System (ADS)

    Mawyer, Kirsten Kamaile Noelani

    Scientific literacy is at the heart of science reform (AAAS, 1989; 1993: NRC, 1996). These initiatives advocate inquiry-based science education reform that promotes scientific literacy as the prerequisite ability to both understand and apply fundamental scientific ideas to real-world problems and issues involving science, technology, society and the environment. It has been argued that literacy, the very ability to read and write, is foundational to western science and is essential for the attainment of scientific literacy and the reform of science education in this country (Norris & Phillips, 2004). With this wave of reform comes the need to study initiatives that seek to support science teachers, as they take on the task of becoming teachers of literacy in the secondary science classroom. This qualitative research examines one such initiative that supports and guides teachers implementing literacy strategies designed to help students develop reading skills that will allow them to read closely, effectively, and with greater comprehension of texts in the context of science. The goal of this study is to gather data as teachers learn about literacy strategies through supports built into curricular materials, professional development, and implementation in the classroom. In particular, this research follows four secondary science teachers implementing literacy strategies as they enact a yearlong earth and environmental science course comprised of two different reform science curricula. The findings of this research suggest teacher's development of teacher cognitive resources bearing on Teaching & Design can be dynamic or static. They also suggest that the development of pedagogical design capacity (PDC) can be either underdeveloped or emergent. This study contributes to current understandings of the participatory relationship between curricular resources and teacher cognitive resources that reflects the design decision of teachers. In particular, it introduces a Cognitive Resources Framework, a tool researchers can use to identify the cognitive resources of teachers, and adds to the characterization of PDC. The data emerging from this study will inform the future design and refinement of curricular and professional development materials to better support teachers as they learn, use and adapt literacy strategies in the science classroom.

  15. Enhancing access and usage of earth observations to support environmental decision making in Eastern and Southern Africa

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Husak, G. J.; Macharia, D.; Peterson, P.; Landsfeld, M. F.; Funk, C.; Flores, A.

    2017-12-01

    Remote sensing, reanalysis and model based earth observations (EOs) are crucial for environmental decision making, particularly in a region like Eastern and Southern Africa, where ground-based observations are sparse. NASA and the Famine Early Warning System Network (FEWS NET) provide several EOs relevant for monitoring, providing early warning of agroclimatic conditions. Nonetheless, real-time application of those EOs for decision making in the region is still limited. This presentation reports on an ongoing SERVIR-supported Applied Science Team (AST) project that aims to fill that gap by working in close collaboration with Regional Centre for Mapping of Resources for Development (RCMRD), the NASA SERVIR regional hub. The three main avenues being taken to enhance access and usage of EOs in the region are: (1) Transition and implementation of web-based tools to RCMRD to allow easy processing and visualization of EOs (2) Capacity building of personnel from regional and national agroclimate service agencies in using EOs, through training using targeted case studies, and (3) Development of new datasets to meet the specific needs of RCMRD and regional stakeholders. The presentation will report on the initial success, lessons learned, and feedback thus far in this project regarding the implementation of web-based tool and capacity building efforts. It will also briefly describe three new datasets, currently in development, to improve agroclimate monitoring in the region, which are: (1) Satellite infrared and stations based temperature maximum dataset (CHIRTS) (2) NASA's GEOS5 and NCEP's CFSv2 based seasonal scale reference evapotranspiration forecasts and (3) NCEP's GEFS based medium range weather forecasts which are bias-corrected to USGS and UCSB's rainfall monitoring dataset (CHIRPS).

  16. Lessons Learned on Effective Co-production of Drought Science and Decision Support Tools with the Wind River Reservation Tribal Water Managers

    NASA Astrophysics Data System (ADS)

    McNeeley, S.; Ojima, D. S.; Beeton, T.

    2015-12-01

    The Wind River Reservation in west-central Wyoming is home of the Eastern Shoshone and Northern Arapaho Tribes. The reservation has experienced severe drought impacts on Tribal livelihoods and cultural activities in recent years. Scientists from the North Central Climate Science Center, the National Drought Mitigation Center, the High Plains Regional Climate Center, and multiple others are working in close partnership with the tribal water managers on a reservation-wide drought preparedness project that includes a technical assessment of drought risk, capacity building to train managers on drought and climate science and indicators, and drought planning. This talk will present project activities to date along with the valuable and transferrable lessons learned on effective co-production of actionable science for decision making in a tribal context.

  17. ENergy and Power Evaluation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development,more » energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.« less

  18. A decision-based perspective for the design of methods for systems design

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Muster, Douglas; Shupe, Jon A.; Allen, Janet K.

    1989-01-01

    Organization of material, a definition of decision based design, a hierarchy of decision based design, the decision support problem technique, a conceptual model design that can be manufactured and maintained, meta-design, computer-based design, action learning, and the characteristics of decisions are among the topics covered.

  19. Building Capacity for Actionable Science and Decision Making in Alaska

    NASA Astrophysics Data System (ADS)

    Timm, K.; Kettle, N.; Buxbaum, T. M.; Trainor, S.; Walsh, J. E.; York, A.

    2017-12-01

    Investigations of the processes for developing actionable science and supporting partnerships between researchers and practitioners has received increasing attention over the past decade. These studies highlight the importance of leveraging existing relationships and trust, supporting iterative interactions, and dedicating sufficient financial and human capital to the development of usable climate science. However, significant gaps remain in our understanding of how to build capacity for more effective partnerships. To meet these ends, the Alaska Center for Climate Assessment and Policy (ACCAP) is developing a series of trainings for scientists and practitioners to build capacity for producing actionable science. This process includes three phases: scoping and development, training, and evaluation. This presentation reports on the scoping and development phase of the project, which draws on an extensive web-based search of past and present capacity building and training activities, document analysis, and surveys of trainers. A synthesis of successful formats (e.g., training, placements, etc.), curriculum topics (e.g., climate science, interpersonal communication), and approaches to recruitment and curriculum development will be outlined. We then outline our approach for co-developing trainings in three different sectors, which engages other boundary organizations to leverage trust and exiting network connections to tailor the training activities. Through this effort we ultimately seek to understand how the processes and outcomes for co-developing trainings in actionable science vary across sectors and their implications for building capacity.

  20. E-Science technologies in a workflow for personalized medicine using cancer screening as a case study.

    PubMed

    Spjuth, Ola; Karlsson, Andreas; Clements, Mark; Humphreys, Keith; Ivansson, Emma; Dowling, Jim; Eklund, Martin; Jauhiainen, Alexandra; Czene, Kamila; Grönberg, Henrik; Sparén, Pär; Wiklund, Fredrik; Cheddad, Abbas; Pálsdóttir, Þorgerður; Rantalainen, Mattias; Abrahamsson, Linda; Laure, Erwin; Litton, Jan-Eric; Palmgren, Juni

    2017-09-01

    We provide an e-Science perspective on the workflow from risk factor discovery and classification of disease to evaluation of personalized intervention programs. As case studies, we use personalized prostate and breast cancer screenings. We describe an e-Science initiative in Sweden, e-Science for Cancer Prevention and Control (eCPC), which supports biomarker discovery and offers decision support for personalized intervention strategies. The generic eCPC contribution is a workflow with 4 nodes applied iteratively, and the concept of e-Science signifies systematic use of tools from the mathematical, statistical, data, and computer sciences. The eCPC workflow is illustrated through 2 case studies. For prostate cancer, an in-house personalized screening tool, the Stockholm-3 model (S3M), is presented as an alternative to prostate-specific antigen testing alone. S3M is evaluated in a trial setting and plans for rollout in the population are discussed. For breast cancer, new biomarkers based on breast density and molecular profiles are developed and the US multicenter Women Informed to Screen Depending on Measures (WISDOM) trial is referred to for evaluation. While current eCPC data management uses a traditional data warehouse model, we discuss eCPC-developed features of a coherent data integration platform. E-Science tools are a key part of an evidence-based process for personalized medicine. This paper provides a structured workflow from data and models to evaluation of new personalized intervention strategies. The importance of multidisciplinary collaboration is emphasized. Importantly, the generic concepts of the suggested eCPC workflow are transferrable to other disease domains, although each disease will require tailored solutions. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  1. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  2. Connecting Inquiry and Values in Science Education. An Approach Based on John Dewey's Philosophy

    NASA Astrophysics Data System (ADS)

    Lee, Eun Ah; Brown, Matthew J.

    2018-03-01

    Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.

  3. Establishing a regional network of academic centers to support decision making for new vaccine introduction in Latin America and the Caribbean: the ProVac experience.

    PubMed

    Toscano, C M; Jauregui, B; Janusz, C B; Sinha, A; Clark, A D; Sanderson, C; Resch, S; Ruiz Matus, C; Andrus, J K

    2013-07-02

    The Pan American Health Organization's ProVac Initiative, designed to strengthen national decision making regarding the introduction of new vaccines, was initiated in 2004. Central to realizing ProVac's vision of regional capacity building, the ProVac Network of Centers of Excellence (CoEs) was established in 2010 to provide research support to the ProVac Initiative, leveraging existing capacity at Latin American and Caribbean (LAC) universities. We describe the process of establishing the ProVac Network of CoEs and its initial outcomes and challenges. A survey was sent to academic, not-for-profit institutions in LAC that had recently published work in the areas of clinical decision sciences and health economic analysis. Centers invited to join the Network were selected by an international committee on the basis of the survey results. Selection criteria included academic productivity in immunization-related work, team size and expertise, successful collaboration with governmental agencies and international organizations, and experience in training and education. The Network currently includes five academic institutions across LAC. Through open dialog and negotiation, specific projects were assigned to centers according to their areas of expertise. Collaboration among centers was highly encouraged. Faculty from ProVac's technical partners were assigned as focal points for each project. The resulting work led to the development and piloting of tools, methodological guides, and training materials that support countries in assessing existing evidence and generating new evidence on vaccine introduction. The evidence generated is shared with country-level decision makers and the scientific community. As the ProVac Initiative expands to other regions of the world with support from immunization and public health partners, the establishment of other regional and global networks of CoEs will be critical. The experience of LAC in creating the current network could benefit the formation of similar structures that support evidence-based decisions regarding new public health interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The U.S. Geological Survey Ecosystem Science Strategy, 2012-2022 - Advancing discovery and application through collaboration

    USGS Publications Warehouse

    Williams, Byron K.; Wingard, G. Lynn; Brewer, Gary; Cloern, James E.; Gelfenbaum, Guy R.; Jacobson, Robert B.; Kershner, Jeffrey L.; McGuire, Anthony David; Nichols, James D.; Shapiro, Carl D.; van Riper, Charles; White, Robin P.

    2012-01-01

    Ecosystem science is critical to making informed decisions about natural resources that can sustain our Nation’s economic and environmental well-being. Resource managers and policy-makers are faced with countless decisions each year at local, state, tribal, territorial, and national levels on issues as diverse as renewable and non-renewable energy development, agriculture, forestry, water supply, and resource allocations at the urban-rural interface. The urgency for sound decision-making is increasing dramatically as the world is being transformed at an unprecedented pace and in uncertain directions. Environmental changes are associated with natural hazards, greenhouse gas emissions, and increasing demands for water, land, food, energy, mineral, and living resources. At risk is the Nation’s environmental capital, the goods and services provided by resilient ecosystems that are vital to the health and well-being of human societies. Ecosystem science—the study of systems of organisms interacting with their environment and the consequences of natural and human-induced change on these systems—is necessary to inform decision-makers as they develop policies to adapt to these changes.This Ecosystems Science Strategy is built on a framework that includes basic and applied science. It highlights the critical roles that USGS scientists and partners can play in building scientific understanding and providing timely information to decision-makers. The strategy underscores the connection between scientific discoveries and the application of new knowledge. The strategy integrates ecosystem science and decision-making, producing new scientific outcomes to assist resource managers and providing public benefits.The USGS is uniquely positioned to play an important role in ecosystem science. With its wide range of expertise, the agency can bring holistic, cross-scale, interdisciplinary capabilities to the design and conduct of monitoring, research, and modeling and to new technologies for data collection, management, and visualization. Collectively, these capabilities can be used to reveal ecological patterns and processes, explain how and why ecosystems change, and forecast change over different spatial and temporal scales. USGS science can provide managers with options and decision-support tools to use resources sustainably. The USGS has long-standing, collaborative relationships with the DOI and other partners in the natural sciences, in both conducting science and its application. The USGS engages these partners in cooperative investigations that otherwise would lack the necessary support or be too expensive for a single bureau to conduct.The heart of this strategy is a framework and vision for USGS ecosystems science that focuses on five long-term goals, which are seen as interconnected and reinforcing components:• Improve understanding of ecosystem structure, function, and processes. The focus for this goal is an understanding of how ecosystems work, including the dynamics of species, their populations, interactions, and genetics, and how they change across spatial and temporal scales. • Advance understanding of how drivers influence ecosystem change. The challenges here are explaining the drivers of ecosystem change, their spatio-temporal patterns, their uncertainties and interactions, and their influence on ecosystem processes and dynamics. • Improve understanding of the services that ecosystems provide to society. Here the emphasis is on the measurement of environmental capital and ecosystem services, and the identification of sources and patterns of change in space and time. • Develop tools, technologies, and capacities to inform decision-making about ecosystems. This includes developing new technologies and approaches for conducting applications-oriented ecosystem science. A principal challenge will be how to quantify uncertainty and incorporate it in decision analysis. • Apply science to enhance strategies for management, conservation, and restoration of ecosystems. These challenges include development of novel approaches to monitoring, assessment, and restoration of ecosystems; new methods to address species of concern and communities at risk; and innovations in decision analysis and support to address imminent ecosystem changes or those that are underway.Closely integrated with the five goals are four strategic approaches that provide the path forward for the USGS Ecosystems Mission Area. These approaches cross-cut all of the goals and are seen as essential to the implementation of this strategy:• Assess information needs for ecosystem science through enhanced partnerships. Work with the DOI and other agencies and institutions to identify, design, and implement priority decision-driven ecological research.• Promote the use of interdisciplinary ecosystem science. Design and conduct interdisciplinary process-oriented research in ecosystem science. • Enhance modeling and forecasting. Build models to forecast ecosystem change, assess future management scenarios, and reduce uncertainties through an adaptive learning process. • Support decision-making. Use quantitative approaches to assess the vulnerabilities of ecosystems, habitats, and species, and evaluate strategies for adaptation, restoration, and sustainable management.Following the strategic approaches are a set of proposed actions that represent a sampling of specific activities that align with this strategy and that address the Nation’s most pressing environmental needs.The strategy emphasizes coordination of activities across the USGS mission areas pursuant to these goals. Ecosystem science is inherently interdisciplinary and requires a broad perspective that incorporates the biological and physical sciences, climate science, information technology, and scientific capacity in mission areas across the Bureau. With its emphasis on coordination, this strategy can provide a critical underpinning for integrated science efforts with scientists from multiple mission areas of the USGS working together. Of course, the USGS will continue to conduct both discipline-specific and interdisciplinary investigations, and both will continue to be vital parts of the ecosystem science portfolio.Finally, the strategy stresses the importance of coordination with other Federal agencies and organizations in the natural resources community. The USGS collaborates with resource agencies in the DOI and other organizations throughout the world to meet societal needs for species and ecosystem management. Working with these agencies and organizations, the USGS will play a key role over the next decade in advancing the scientific foundation for sustaining the natural resources that diverse, productive, resilient ecosystems provide.

  5. Decision analysis framing study; in-valley drainage management strategies for the western San Joaquin Valley, California

    USGS Publications Warehouse

    Presser, Theresa S.; Jenni, Karen E.; Nieman, Timothy; Coleman, James

    2010-01-01

    Constraints on drainage management in the western San Joaquin Valley and implications of proposed approaches to management were recently evaluated by the U.S. Geological Survey (USGS). The USGS found that a significant amount of data for relevant technical issues was available and that a structured, analytical decision support tool could help optimize combinations of specific in-valley drainage management strategies, address uncertainties, and document underlying data analysis for future use. To follow-up on USGS's technical analysis and to help define a scientific basis for decisionmaking in implementing in-valley drainage management strategies, this report describes the first step (that is, a framing study) in a Decision Analysis process. In general, a Decision Analysis process includes four steps: (1) problem framing to establish the scope of the decision problem(s) and a set of fundamental objectives to evaluate potential solutions, (2) generation of strategies to address identified decision problem(s), (3) identification of uncertainties and their relationships, and (4) construction of a decision support model. Participation in such a systematic approach can help to promote consensus and to build a record of qualified supporting data for planning and implementation. In December 2008, a Decision Analysis framing study was initiated with a series of meetings designed to obtain preliminary input from key stakeholder groups on the scope of decisions relevant to drainage management that were of interest to them, and on the fundamental objectives each group considered relevant to those decisions. Two key findings of this framing study are: (1) participating stakeholders have many drainage management objectives in common; and (2) understanding the links between drainage management and water management is necessary both for sound science-based decisionmaking and for resolving stakeholder differences about the value of proposed drainage management solutions. Citing ongoing legal processes associated with drainage management in the western San Joaquin Valley, the U.S. Bureau of Reclamation (USBR) withdrew from the Decision Analysis process early in the proceedings. Without the involvement of the USBR, the USGS discontinued further development of this study.

  6. Integration of Cognitive Skills as a Cross-Cutting Theme Into the Undergraduate Medical Curriculum at Tehran University of Medical Sciences.

    PubMed

    Soltani, Akbar; Allaa, Maryam; Moosapour, Hamideh; Aletaha, Azadeh; Shahrtash, Farzaneh; Monajemi, Alireza; Arastoo, Tohid; Ahmadinejad, Maryam; Mirzazadeh, Azim; Khabaz Mafinejad, Mahboobeh

    2017-01-01

    Nowadays, improvement of thinking skills of students is one of the universally supported aims in the majority of medical schools. This study aims to design longitudinal theme of reasoning, problem-solving and decision-making into the undergraduate medical curriculum at Tehran University of Medical Sciences (TUMS). A participatory approach was applied to design the curriculum during 2009-2011. The project was conducted by the contribution of representatives of both basic and clinical faculty members, students and graduates at Tehran University of Medical Sciences. The first step toward integrating cognitive skills into the curriculum was to assemble a taskforce of different faculty and students, including a wide variety of fields with multidisciplinary expertise using nonprobability sampling and the snowball method. Several meetings with the contribution of experts and some medical students were held to generate the draft of expected outcomes. Subsequently, the taskforce also determined what content would fit best into each phase of the program and what teaching and assessment methods would be more appropriate for each outcome. After a pilot curriculum with a small group of second-year medical students, we implemented this program for all first-year students since 2011 at TUMS. Based on findings, the teaching of four areas, including scientific and critical thinking skills (Basic sciences), problem-solving and reasoning (Pathophysiology), evidence-based medicine (Clerkship), and clinical decision-making (Internship) were considered in the form of a longitudinal theme. The results of this study could be utilized as a useful pattern for integration of psycho-social subjects into the medical curriculum.

  7. Metaphorical Roots of Beliefs about Teaching and Learning Science and Their Modifications in the Standard-Based Science Teacher Preparation Programme

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2011-01-01

    Beliefs are psychological constructs potentially driving a teacher to make pedagogical decisions and act. In this study, the metaphor construction task (MCT) was utilised to uncover beliefs about teaching and learning science held by 110 pre-service science teachers participating in the standard-based teacher preparation programme. Overall, the…

  8. The REVEL Project: Long-Term Investment in K-12 Education at a RIDGE 2000 Integrated Study Site

    NASA Astrophysics Data System (ADS)

    Robigou, V.

    2005-12-01

    The REVEL Project has provided dozens of science teachers from throughout the U.S. an opportunity to explore the links between mid-ocean ridge processes and life along the RIDGE 2000 Juan de Fuca Ridge Integrated Study Site. In turn, these educators have facilitated deep-sea, research-based teaching and learning in hundreds of classrooms, contributed to mid-ocean ridge curriculum and programs development ranging from IMAX movies and museum exhibits to the R2K-SEAS (Student Experiment At Sea) program. In addition, the REVEL educators take on the mission to champion the importance of science in education and to bring ocean sciences into their local and regional communities. For the scientific community, research in an environment as large, dynamic and remote as the ocean intrinsically requires long-term investment to advance the understanding of the interactions between the processes shaping our planet. Similarly, research-based education requires long-term investment to incrementally change the way science is taught in schools, informal settings or even at home. It takes even longer to perceptibly measure the result of new teaching methods on students' learning and the impact of these methods on citizens' scientific literacy. Research-based education involving teachers practicing research in the field, and collaborating with scientists to experience and understand the process of science is still in its infancy - despite 20 years of NSF's efforts in teachers' professional development. This poster reports on strategies that the REVEL Project has designed over 9 years to help teachers that adopt research-based education transform their way of teaching in the classroom and bring cutting-edge, exciting science into schools through rigorous science learning. Their teaching approaches encourage students' interest in science, and engage students in the life-long skills of reasoning and decision making through the practice of science. Evaluation results of how the research-based teacher development program REVEL contributes to changing the way teachers view the scientific process once they have 'done' science and how the program supports teachers to change their teaching methods will be presented. The REVEL Project is funded by the National Science Foundation and receives additional support from the University of Washington and private donors. REVEL - Research and Education: Volcanoes-Exploration-Life.

  9. The anatomy of decision support during inpatient care provider order entry (CPOE): Empirical observations from a decade of CPOE experience at Vanderbilt

    PubMed Central

    Miller, Randolph A.; Waitman, Lemuel R.; Chen, Sutin; Rosenbloom, S. Trent

    2006-01-01

    The authors describe a pragmatic approach to the introduction of clinical decision support at the point of care, based on a decade of experience in developing and evolving Vanderbilt’s inpatient “WizOrder” care provider order entry (CPOE) system. The inpatient care setting provides a unique opportunity to interject CPOE-based decision support features that restructure clinical workflows, deliver focused relevant educational materials, and influence how care is delivered to patients. From their empirical observations, the authors have developed a generic model for decision support within inpatient CPOE systems. They believe that the model’s utility extends beyond Vanderbilt, because it is based on characteristics of end-user workflows and on decision support considerations that are common to a variety of inpatient settings and CPOE systems. The specific approach to implementing a given clinical decision support feature within a CPOE system should involve evaluation along three axes: what type of intervention to create (for which the authors describe 4 general categories); when to introduce the intervention into the user’s workflow (for which the authors present 7 categories), and how disruptive, during use of the system, the intervention might be to end-users’ workflows (for which the authors describe 6 categories). Framing decision support in this manner may help both developers and clinical end-users plan future alterations to their systems when needs for new decision support features arise. PMID:16290243

  10. Gaming science innovations to integrate health systems science into medical education and practice

    PubMed Central

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers’ abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  11. Gaming science innovations to integrate health systems science into medical education and practice.

    PubMed

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  12. My, your and our needs for safety and security: relatives' reflections on using information and communication technology in dementia care.

    PubMed

    Olsson, Annakarin; Engström, Maria; Skovdahl, Kirsti; Lampic, Claudia

    2012-03-01

    The present paper reports on a study aimed at describing relatives' reflections on different kinds of information and communication technology (ICT) devices that are used or can be used in the daily care of persons with dementia. Many persons with dementia continue living in their own homes, which requires the support of their relatives. One way to meet the needs of relatives and persons with dementia is to use ICT. An interview study was conducted in Sweden (2007-2008) with a purposive sample of 14 spouses of a person with dementia. Qualitative content analysis was used to identify categories and themes in the data. Relatives' reflections on the use of ICT were described as ICT - a support in daily life, ICT - internal and external conditions and ICT - the decision to use or not use. Based on these categories, a theme was revealed: shifting between different perspectives: my, your and our needs for safety and security. Relatives struggle to create a situation of safety and security in daily life for themselves and the persons with dementia. ICT devices with the right functionality and used at the right time are regarded as useful in solving everyday problems. In the decision to use or not use ICT, the opportunity to create a safe and secure environment overshadows potential ethical problems. Providing early information about ICT to persons with dementia and their relatives could facilitate joint decision-making regarding use of ICT. © 2011 The Authors. Scandinavian Journal of Caring Sciences © 2011 Nordic College of Caring Science.

  13. Mountain research

    NASA Astrophysics Data System (ADS)

    The newly incorporated International Mountain Society (IMS) will in May begin publication of an interdisciplinary scientific journal, Mountain Research and Development. The quarterly will be copublished with the United National University; additional support will come from UNESCO.A primary objective of IMS is to ‘help solve mountain land-use problems by developing a foundation of scientific and technical knowledge on which to base management decisions,’ according to Jack D. Ives, president of the Boulder-based organization. ‘The Society is strongly committed to the belief that a rational worldwide approach to mountain problems must involve a wide range of disciplines in the natural and human sciences, medicine, architecture, engineering, and technology.’

  14. The loss of reason in patient decision aid research: do checklists damage the quality of informed choice interventions?

    PubMed

    Bekker, Hilary L

    2010-03-01

    To discuss whether using the International Patient Decision Aids Standards (IPDAS) Collaboration checklist as a gold standard to judge interventions' quality is premature and potentially detrimental to the validity of resources designed to help patients make treatment choices. Conceptual review integrating the science behind individuals' decision making with the demands of designing complex, healthcare interventions. Patient decision aids are promoted as interventions to help professionals engage in shared and/or patient-centred care. The IPDAS domains were informed by experts' opinions of best practice. Decision scientists study how individuals make decisions, what biases their choices and how best to support decisions. There is debate from decision scientists about which component parts are the active ingredients that help people make decisions. Interventions to help patients make choices have different purposes, component parts and outcomes to those facilitating professional-patient communications. The IPDAS checklist will change to respond to new evidence from the decision sciences. Adhering uncritically to the IPDAS checklist may reduce service variation but is not sufficient to ensure interventions enable good patient decision making. Developers must be encouraged to reason about the IPDAS checklist to identify those component parts that do (not) meet their intervention's purpose. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. IEEE 1982. Proceedings of the international conference on cybernetics and society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The following topics were dealt with: knowledge-based systems; risk analysis; man-machine interactions; human information processing; metaphor, analogy and problem-solving; manual control modelling; transportation systems; simulation; adaptive and learning systems; biocybernetics; cybernetics; mathematical programming; robotics; decision support systems; analysis, design and validation of models; computer vision; systems science; energy systems; environmental modelling and policy; pattern recognition; nuclear warfare; technological forecasting; artificial intelligence; the Turin shroud; optimisation; workloads. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.

  16. Using DCOM to support interoperability in forest ecosystem management decision support systems

    Treesearch

    W.D. Potter; S. Liu; X. Deng; H.M. Rauscher

    2000-01-01

    Forest ecosystems exhibit complex dynamics over time and space. Management of forest ecosystems involves the need to forecast future states of complex systems that are often undergoing structural changes. This in turn requires integration of quantitative science and engineering components with sociopolitical, regulatory, and economic considerations. The amount of data...

  17. Moving toward equitable, systemic science education reform: The synergy among science education and school-level reforms in an urban middle school

    NASA Astrophysics Data System (ADS)

    Kelly, Mary Kathryn

    The purpose of this study was to develop an understanding of the relationships among school-level and science education reform efforts and how, collectively, they contribute to the progress of equitable, systemic science education reform. A case study research design was employed to gather both qualitative and quantitative data between 1995 and 1999. The site of this study is a non-selective, urban middle school in a large district that participated in several reform efforts. These reforms include both efforts focused on school-level change and efforts focused on change in science teaching and learning. Its program incorporates aspects of several school-level reforms---from the underlying Paideia philosophy, to structural characteristics of middle schools, to site-based decision-making, to its status as a magnet school, to its participation as a professional development school. Further, the participation of all science teachers in the intensive, standards-based professional development offered by Ohio's systemic reform of mathematics and science created a critical mass of reform-oriented teachers who supported one another as they incorporated reform-based practices into their teaching. The interplay of the reform efforts has manifested in a high level of science achievement in comparison to the school's district. Addressing the third component of O'Day and Smith's model for systemic reform, the need for school-level change to enable implementation of curriculum frameworks and aligned policies, this study illustrates two important points. First, the high-quality teacher professional development increased teachers' capacity to change their practices by enhancing their knowledge of and skills in implementing standards-based teaching practices. Second, because of the synchrony among the school-level reforms and between the school-level and science education reforms, the context of Webster provided a supportive environment in which lasting changes in science teaching and learning were implemented. Science education reform efforts were mediated by the school's context to create an environment in which the reform practices could be implemented and sustained. Using Kahle's (1998) Equity Metric, this study demonstrates that the synergy of the policies and practices of school-level and science education reforms can contribute to the progress of equitable, systemic science education reform.

  18. Drought Risk and Adaptation in the Interior (DRAI)

    NASA Astrophysics Data System (ADS)

    McNeeley, S.; Ojima, D. S.

    2013-12-01

    Drought is part of the normal climate variability in the Great Plains and Intermountain Western United States, but recent severe droughts along with climate change projections have increased the interest and need for better understanding of drought science and decision making. The purpose of this study is to understand how the U.S. Department of the Interior's (DOI) federal land and resource managers and their stakeholders (i.e., National Park Service, Bureau of Land Management, Fish and Wildlife Service, Bureau of Reclamation, Bureau of Indian Affairs and tribes, among others) are experiencing and dealing with drought in their landscapes. The Drought Risk and Adaptation in the Interior (DRAI) project is part of a new DOI-sponsored North Central Climate Science Center (NC CSC) crosscutting science initiative on drought across the Center's three foundational science areas: 1. physical climate, 2. ecosystems impacts and responses, and 3. human adaptation and decision making. The overarching goal is to learn more about drought within the DOI public lands and resource management in order to contribute to both the NC CSC regional science as well as providing managers and other decision makers with the most salient, credible, and legitimate research to support land and resource management decisions. Here we will present the project approach along with some initial insights learned from the research to date along with its utility for climate adaptation.

  19. A data management life-cycle

    USGS Publications Warehouse

    Ferderer, David A.

    2001-01-01

    Documented, reliable, and accessible data and information are essential building blocks supporting scientific research and applications that enhance society's knowledge base (fig. 1). The U.S. Geological Survey (USGS), a leading provider of science data, information, and knowledge, is uniquely positioned to integrate science and natural resource information to address societal needs. The USGS Central Energy Resources Team (USGS-CERT) provides critical information and knowledge on the quantity, quality, and distribution of the Nation's and the world's oil, gas, and coal resources. By using a life-cycle model, the USGS-CERT Data Management Project is developing an integrated data management system to (1) promote access to energy data and information, (2) increase data documentation, and (3) streamline product delivery to the public, scientists, and decision makers. The project incorporates web-based technology, data cataloging systems, data processing routines, and metadata documentation tools to improve data access, enhance data consistency, and increase office efficiency

  20. Risk communication, geoethics and decision science issues in Japan's disaster management system

    NASA Astrophysics Data System (ADS)

    Sugimoto, M.

    2014-12-01

    Issues in Japan's disaster management system were revealed by the 2011 Tohoku earthquake and tsunami, and by the Fukushima Dai-ichi nuclear power station accident. Many important decisions were based on scientific data, but appear not to have sufficiently considered the uncertainties of the data and the societal aspects of the problems. The issues that arose show the need for scientists to appropriately deal with risk communication and geoethics and issues. This paper discusses necessity of education for risk communication, geoethics and decisions science in school before students become sicentific decision makers in future.

  1. Evaluating a Web-Based MMR Decision Aid to Support Informed Decision-Making by UK Parents: A Before-and-After Feasibility Study

    ERIC Educational Resources Information Center

    Jackson, Cath; Cheater, Francine M.; Peacock, Rose; Leask, Julie; Trevena, Lyndal

    2010-01-01

    Objective: The objective of this feasibility study was to evaluate the acceptability and potential effectiveness of a web-based MMR decision aid in supporting informed decision-making for the MMR vaccine. Design: This was a prospective before-and-after evaluation. Setting: Thirty parents of children eligible for MMR vaccination were recruited from…

  2. Using fuzzy-trace theory to understand and improve health judgments, decisions, and behaviors: A literature review.

    PubMed

    Blalock, Susan J; Reyna, Valerie F

    2016-08-01

    Fuzzy-trace theory is a dual-process model of memory, reasoning, judgment, and decision making that contrasts with traditional expectancy-value approaches. We review the literature applying fuzzy-trace theory to health with 3 aims: evaluating whether the theory's basic distinctions have been validated empirically in the domain of health; determining whether these distinctions are useful in assessing, explaining, and predicting health-related psychological processes; and determining whether the theory can be used to improve health judgments, decisions, or behaviors, especially compared to other approaches. We conducted a literature review using PubMed, PsycINFO, and Web of Science to identify empirical peer-reviewed papers that applied fuzzy-trace theory, or central constructs of the theory, to investigate health judgments, decisions, or behaviors. Seventy nine studies (updated total is 94 studies; see Supplemental materials) were identified, over half published since 2012, spanning a wide variety of conditions and populations. Study findings supported the prediction that verbatim and gist representations are distinct constructs that can be retrieved independently using different cues. Although gist-based reasoning was usually associated with improved judgment and decision making, 4 sources of bias that can impair gist reasoning were identified. Finally, promising findings were reported from intervention studies that used fuzzy-trace theory to improve decision making and decrease unhealthy risk taking. Despite large gaps in the literature, most studies supported all 3 aims. By focusing on basic psychological processes that underlie judgment and decision making, fuzzy-trace theory provides insights into how individuals make decisions involving health risks and suggests innovative intervention approaches to improve health outcomes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. User-centered design to improve clinical decision support in primary care.

    PubMed

    Brunner, Julian; Chuang, Emmeline; Goldzweig, Caroline; Cain, Cindy L; Sugar, Catherine; Yano, Elizabeth M

    2017-08-01

    A growing literature has demonstrated the ability of user-centered design to make clinical decision support systems more effective and easier to use. However, studies of user-centered design have rarely examined more than a handful of sites at a time, and have frequently neglected the implementation climate and organizational resources that influence clinical decision support. The inclusion of such factors was identified by a systematic review as "the most important improvement that can be made in health IT evaluations." (1) Identify the prevalence of four user-centered design practices at United States Veterans Affairs (VA) primary care clinics and assess the perceived utility of clinical decision support at those clinics; (2) Evaluate the association between those user-centered design practices and the perceived utility of clinical decision support. We analyzed clinic-level survey data collected in 2006-2007 from 170 VA primary care clinics. We examined four user-centered design practices: 1) pilot testing, 2) provider satisfaction assessment, 3) formal usability assessment, and 4) analysis of impact on performance improvement. We used a regression model to evaluate the association between user-centered design practices and the perceived utility of clinical decision support, while accounting for other important factors at those clinics, including implementation climate, available resources, and structural characteristics. We also examined associations separately at community-based clinics and at hospital-based clinics. User-centered design practices for clinical decision support varied across clinics: 74% conducted pilot testing, 62% conducted provider satisfaction assessment, 36% conducted a formal usability assessment, and 79% conducted an analysis of impact on performance improvement. Overall perceived utility of clinical decision support was high, with a mean rating of 4.17 (±.67) out of 5 on a composite measure. "Analysis of impact on performance improvement" was the only user-centered design practice significantly associated with perceived utility of clinical decision support, b=.47 (p<.001). This association was present in hospital-based clinics, b=.34 (p<.05), but was stronger at community-based clinics, b=.61 (p<.001). Our findings are highly supportive of the practice of analyzing the impact of clinical decision support on performance metrics. This was the most common user-centered design practice in our study, and was the practice associated with higher perceived utility of clinical decision support. This practice may be particularly helpful at community-based clinics, which are typically less connected to VA medical center resources. Published by Elsevier B.V.

  4. Validation of educational assessments: a primer for simulation and beyond.

    PubMed

    Cook, David A; Hatala, Rose

    2016-01-01

    Simulation plays a vital role in health professions assessment. This review provides a primer on assessment validation for educators and education researchers. We focus on simulation-based assessment of health professionals, but the principles apply broadly to other assessment approaches and topics. Validation refers to the process of collecting validity evidence to evaluate the appropriateness of the interpretations, uses, and decisions based on assessment results. Contemporary frameworks view validity as a hypothesis, and validity evidence is collected to support or refute the validity hypothesis (i.e., that the proposed interpretations and decisions are defensible). In validation, the educator or researcher defines the proposed interpretations and decisions, identifies and prioritizes the most questionable assumptions in making these interpretations and decisions (the "interpretation-use argument"), empirically tests those assumptions using existing or newly-collected evidence, and then summarizes the evidence as a coherent "validity argument." A framework proposed by Messick identifies potential evidence sources: content, response process, internal structure, relationships with other variables, and consequences. Another framework proposed by Kane identifies key inferences in generating useful interpretations: scoring, generalization, extrapolation, and implications/decision. We propose an eight-step approach to validation that applies to either framework: Define the construct and proposed interpretation, make explicit the intended decision(s), define the interpretation-use argument and prioritize needed validity evidence, identify candidate instruments and/or create/adapt a new instrument, appraise existing evidence and collect new evidence as needed, keep track of practical issues, formulate the validity argument, and make a judgment: does the evidence support the intended use? Rigorous validation first prioritizes and then empirically evaluates key assumptions in the interpretation and use of assessment scores. Validation science would be improved by more explicit articulation and prioritization of the interpretation-use argument, greater use of formal validation frameworks, and more evidence informing the consequences and implications of assessment.

  5. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    NASA Astrophysics Data System (ADS)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning assistants, increased interest in K-12 teaching as a career, and increased appreciation and understanding of student-centered and inquiry-based learning. Data to support these claims will be presented. Neuschatz, M. & McFarling, M. (2003). Broadning the Base: High School Physics Education at the Turn of a New Century, AIP Report No. R-439.

  6. Cloud-Based Tools to Support High-Resolution Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Jones, N.; Nelson, J.; Swain, N.; Christensen, S.

    2013-12-01

    The majority of watershed models developed to support decision-making by water management agencies are simple, lumped-parameter models. Maturity in research codes and advances in the computational power from multi-core processors on desktop machines, commercial cloud-computing resources, and supercomputers with thousands of cores have created new opportunities for employing more accurate, high-resolution distributed models for routine use in decision support. The barriers for using such models on a more routine basis include massive amounts of spatial data that must be processed for each new scenario and lack of efficient visualization tools. In this presentation we will review a current NSF-funded project called CI-WATER that is intended to overcome many of these roadblocks associated with high-resolution modeling. We are developing a suite of tools that will make it possible to deploy customized web-based apps for running custom scenarios for high-resolution models with minimal effort. These tools are based on a software stack that includes 52 North, MapServer, PostGIS, HT Condor, CKAN, and Python. This open source stack provides a simple scripting environment for quickly configuring new custom applications for running high-resolution models as geoprocessing workflows. The HT Condor component facilitates simple access to local distributed computers or commercial cloud resources when necessary for stochastic simulations. The CKAN framework provides a powerful suite of tools for hosting such workflows in a web-based environment that includes visualization tools and storage of model simulations in a database to archival, querying, and sharing of model results. Prototype applications including land use change, snow melt, and burned area analysis will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1135482

  7. Applications Integration Strategy in the Mission Development Process

    NASA Astrophysics Data System (ADS)

    Cox, E. L., Jr.

    2016-12-01

    NASA's Earth Science Applied Science Program has worked for the past four to five years with the Earth Science Division's Flight Program to cultivate an understanding of the importance of satellite remote sensing impacts on decision-making policy and decision support tools utilized by academia, state and local governments, other government agencies, private sector companies, and non-profit organizations. It has long been recognized that applications projects and studies in areas such as Health and Air Quality, Water Resources, Disasters, and Ecological Forecasting, have benefited and been enhanced through the use of satellite remote sensing. Applications researchers often use remote sensing data once it becomes available after the post-launch evaluation phase in the format and level of fidelity that is available. The results from the many applications projects, over the years, have been significant and there are countless examples of improvements and enhancements to operational systems and decision-making policies in the Applied Sciences community. However, feedback received from the applications community regarding the need for improved data availability and latency; processing and formatting, to name a few, prompted the idea of applied science involvement early in the life cycle of mission development. Over time, the Applied Science Program personnel have learned a great deal from the flight mission development life cycle process and recognized key areas of alignment. This presentation will discuss specific aspects of applied science that investigators should consider when proposing to future announcements involving an applications dimension. The Program's experience with user community needs, decision-making requirements, and stakeholder operations requirements will be highlighted.

  8. A mixed-methods study of mid-career science teachers: The growth of professional empowerment

    NASA Astrophysics Data System (ADS)

    Moreland, Amy Laphelia

    The purpose of this concurrent, mixed-methods study was to examine the professional empowerment qualities of mid-career (years 4-8), science teachers. I used the construct of professional empowerment as the theoretical frame to explore K-12 mid-career science teachers' career trajectories and consider how they can be supported professionally and ideally retained over time. In investigating the qualities of these teachers, I also constructed a new teaching trajectory model and tested the differences between mid-career and veteran science teachers. I analyzed seventy-eight surveys of mid-career science teachers across Texas, including six in-depth, interview-based case studies. The qualitative piece used behavior-over-time graphing combined with the interviews and the quantitative component used survey data from the Teacher Empowerment Survey (TES). Results indicated that science content knowledge gain through professional development opportunities was an especially important factor in supporting mid-career teachers' sense of empowerment. This increased content knowledge connected positively with the dimensions of decision-making, status, and impact. In a between-group analysis using a larger subset of TES data, I analyzed 254 surveys by conducting a nonparametric statistical test. A statistically significant difference was found between the two groups, in that mid-career science teachers had a lower sense of "status" than their more experienced counterparts (p < .05). I could infer that, for this sample, as teaching experience increases, so does at least one dimension of empowerment. The study was situated within a broader scope of exploring how educational leaders and professional development providers can understand and support science teachers of varying experience levels. A well-designed and possibly differentiated professional development program could successfully connect with these kind of empowered and receptive mid-career science teachers, and thus increase the probability of implementing quality science education programs, content, and pedagogy into schools. The results of this study also have the potential to provide self-reflective career empowerment information to science teachers in their mid-career years.

  9. An Interactive Decision Support System for Technology Transfer Pertaining to Organization and Management

    DTIC Science & Technology

    1980-07-01

    and concludes that task is a vital ingredient in assessing overall organizational climate. He identifies satisfaction , tension performance and...Generation Performances and Perceived Satisfaction Levels...", Proceedings of the American Institute of Decision Sciences , 1978, pp. 171-173. Jackson...to Organization and Management Technical S. PERFORMING ORG. REPORT NUMBER 7. AUTHORS 8. CONTRACT OR GRANT NUMBERfsj Ronald J. Roland 9. PERFORMING

  10. Astronomy in post-apartheid South Africa

    NASA Astrophysics Data System (ADS)

    Whitelock, Patricia Ann

    2011-06-01

    Astronomy was one of the sciences earmarked for major support by South Africa's first democratically elected government in 1994. This was a very remarkable decision for a country with serious challenges in poverty, health and unemployment, but shows something of the long term vision of the new government. In this paper I give one astronomer's perception of the reasons behind the decision and some of its consequences.

  11. Evidence and Options for Informed Decision-Making to Achive Arctic Sustainability

    NASA Astrophysics Data System (ADS)

    Berkman, P. A.

    2017-12-01

    This presentation will consider the development of evidence and options for informed decision-making that will need to operate across generations to achieve Arctic sustainability (Figure). Context of these Arctic decisions is global, recognizing that we live in an interconnected civilization on a planetary scale, as revealed unambiguously with evidence from the `world' wars in the first half of the 20thcentury. First, for clarification, data and evidence are not the same. Data is generated from information and observations to answer specific questions, posed with methods from the natural and social sciences as well as indigenous knowledge. These data reveal patterns and trends in our societies and natural world, underscoring the evidence for decisions to address impacts, issues and resources within, across and beyond the boundaries of nations - recognizing that nations still are the principal jurisdictional unit. However, for this decision-support process to be effective, options (without advocacy) - which can be used or ignored explicitly - must be generated from the evidence, taking into consideration stakeholder perspectives and governance records in a manner that will contribute to informed decision-making. The resulting decisions will involve built elements that require capitalization and technology as well as governance mechanisms coming from diverse jurisdictional authorities. The innovation required is to balance economic prosperity, environmental protection and societal well-being. These three pillars of sustainability further involve stability, balancing urgencies of the moment and of future generations, recognizing that children born today will be alive in the 22nd century. Consequently, options for informed decisions must operate across a continuum of urgencies from security time scales to sustainability time scales. This decision-support process is holistic (international, interdisciplinary and inclusive), reflecting the applications of science diplomacy to balance national interests and common interests for the benefit of all on Earth.

  12. Superfund and Technology Liaison Program Fact Sheet

    EPA Pesticide Factsheets

    The Superfund and Technology Liaison (STL) Program was established to facilitate regional access to ORD laboratories, provide technical support, and assist with the integration of science and technology into decision-making for hazardous waste programs.

  13. Social science informing forest management — bringing new knowledge to fuels managers

    Treesearch

    Pamela Jakes

    2007-01-01

    To improve access, interpretability, and use of the full body of research, a pilot project was initiated by the USDA Forest Service to synthesize relevant scientific information and develop publications and decision support tools that managers can use to inform fuels treatment plans. This article provides an overview of the work of the Social Science Core Team. Team...

  14. Research and development portfolio of the sustainability science team national sustainable operations USDA Forest Service

    Treesearch

    Trista Patterson; David Nicholls; Jonathan Long

    2015-01-01

    The Sustainability Science Team (SST) of the U.S. Department of Agriculture (USDA) Forest Service Sustainable Operations Initiative is a 18-member virtual research and development team, located across five regions and four research stations of the USDA Forest Service. The team provides research, publication, systems analysis, and decision support to the Sustainable...

  15. Intelligent Case Based Decision Support System for Online Diagnosis of Automated Production System

    NASA Astrophysics Data System (ADS)

    Ben Rabah, N.; Saddem, R.; Ben Hmida, F.; Carre-Menetrier, V.; Tagina, M.

    2017-01-01

    Diagnosis of Automated Production System (APS) is a decision-making process designed to detect, locate and identify a particular failure caused by the control law. In the literature, there are three major types of reasoning for industrial diagnosis: the first is model-based, the second is rule-based and the third is case-based. The common and major limitation of the first and the second reasonings is that they do not have automated learning ability. This paper presents an interactive and effective Case Based Decision Support System for online Diagnosis (CB-DSSD) of an APS. It offers a synergy between the Case Based Reasoning (CBR) and the Decision Support System (DSS) in order to support and assist Human Operator of Supervision (HOS) in his/her decision process. Indeed, the experimental evaluation performed on an Interactive Training System for PLC (ITS PLC) that allows the control of a Programmable Logic Controller (PLC), simulating sensors or/and actuators failures and validating the control algorithm through a real time interactive experience, showed the efficiency of our approach.

  16. IAI Capacity Building Activities in the Americas: Fostering Multinational and Multidisciplinary Research

    NASA Astrophysics Data System (ADS)

    Ohira, M. S.

    2007-05-01

    The IAI's Training and Education (T&E) activities are designed to encourage capacity building in the Americas and are developed within and in parallel with the IAI research programs in global environmental change (GEC). The IAI has various training priorities: (1) support for graduate students in the form of fellowships through research programs; (2) development of IAI Training Institutes in Interdisciplinary Sciences and Science-Policy Fora; and (3) support for technical workshops, scientific meetings, and seminars. It becomes increasingly evident that institutions such as IAI must provide training and support to policy and decision makers who deal with environmental issues. The IAI Training Institutes emphasize an exchange of information about the various scientific languages, needs, and methodologies of disciplines that study GEC. Particular attention is given to socio-economic impacts and ways in which nations can gain a better understanding of the complex mechanisms, degrees of change, causes, and consequences - and therefore, plan sound public and private policies to minimize problems and maximize opportunities. The IAI has also implemented a Training Institute Seed Grant (TISG) Program as an assessment activity of the Training Institutes to further encourage network building and multinational and multidisciplinary collaboration among its 19 member countries in the Americas. By fostering the development of such new multidisciplinary, multinational teams, the IAI ensures a future generation of professionals who will be engaged in IAI research programs and networks and will lead the integrated science programs in the next decades. Furthermore, IAI has organized Science-Policy Fora, which focus on the science- policy interface and ways to incorporate scientific information into policy and decision-making processes. Participants discussed what scientific information is available, what aspects need to be better understood, translation of scientific information for the nonscientific community, potential uses of technical information, and policy issues that should be incorporated into the scientific community's agenda. Participants are individuals from governmental agencies, national and international organizations, nongovernmental organizations (NGO), universities, and private companies. Various other T&E-based initiatives that contribute to the building of scientific capacity in the Americas are supported by the IAI. Workshops, seminars, conferences, and other venues encourage the exchange of information and data providing scientists and professionals in global change related fields many opportunities to interact and benefit from multinational, multidisciplinary collaborations.

  17. Scientific literacy for democratic decision-making

    NASA Astrophysics Data System (ADS)

    Yacoubian, Hagop A.

    2018-02-01

    Scientifically literate citizens must be able to engage in making decisions on science-based social issues. In this paper, I start by showing examples of science curricula and policy documents that capitalise the importance of engaging future citizens in decision-making processes whether at the personal or at the societal levels. I elucidate the ideological underpinnings behind a number of the statements within those documents that have defined the trajectory of scientific literacy and have shaped what ought to be considered as personal and societal benefits. I argue that science curricula and policy documents can truly endorse scientific literacy when they embed principles of democratic education at their core. The latter entails fostering learning experiences where some of the underlying assumptions and political ideologies are brought to the conscious level and future citizens encouraged to reflect upon them critically and explicitly. Such a proposal empowers the future citizens to engage in critical deliberation on science-based social issues without taking the underlying status quo for granted. I end up the paper by situating the preparation of scientifically literate citizens within a framework of democratic education, discuss conditions through which a curriculum for scientific literacy can serve democratic decision-making processes, and provide modest recommendations.

  18. How Citizens Learn and Use Scientific and Technical Information in Environmental Decision Making

    ERIC Educational Resources Information Center

    Hartley, Troy W.

    2005-01-01

    There is concern that laypersons participating in environmental or natural resource decision making cannot or do not engage the scientific and technical information sufficiently to integrate that information into the decisions and reach a highquality, science-based decision. This study examined how thirteen citizens participating in two Superfund…

  19. The influence of science funding agencies in support of effective decision-maker scientist partnerships

    NASA Astrophysics Data System (ADS)

    Arnott, J. C.; Lemos, M. C.

    2017-12-01

    A wealth of evidence supports the idea that collaboration between scientists and decision-makers is an influential factor in generating actionable knowledge. Nevertheless, persistent obstacles across the research-policy-practice interface limit the amount of engagement that may be necessary to satisfy demands for information to support decisions. Funding agencies have been identified as one possible driver of change, but few multi-year studies have been conducted to trace the influence of program designs on research practices or other outcomes. To fill this gap, we examine a body of applied science projects (n=120) funded through NOAA's National Estuarine Research Reserve System from 1998-2014. Periodic innovation in the structure of this funding program, including requirements for end user engagement and the inclusion of collaboration specialists, offers a natural experiment from which to test hypotheses about the how funding program design influences research practice, utilization, and broader impacts. Using content analysis of project reports and interviews of project team members, end users, and program managers (n=40), we produce a data that can be analyzed through both statistical and qualitative methods. We find that funder mandates significantly influence the intensity of interaction between researchers and practitioners as well as affect long-term change in research cultures. When interaction intensifies, corresponding gains appear in the readiness of research to support decision-making and the readiness of user groups to incorporate findings into their work. While collaborative methods transform research practice and positively influence the applied contexts in which partnerships occur, it remains less clear whether this actually increases the direct use of scientific to inform decisions. For example, collaboration may lead to outcomes other than new knowledge or knowledge application, yielding many positive outcomes that are distinct from knowledge use itself. We find that improved and more flexible evaluation approaches at the project level and more nuanced, supported and guided by program sponsors, are needed.

  20. Klimanavigator - Climate Navigator - Gateway to climate knowledge in Germany

    NASA Astrophysics Data System (ADS)

    Schuck-Zöller, Susanne

    2013-04-01

    Objective More than 50 German research institutions and networks are represented on www.klimanavigator.de, a common platform, where information about their work, and the latest findings from climate research and adaptation can be found. Thus Klimanavigator as a gateway to climate knowledge provides a information portal for those who have to respond to climate change. The internet portal gives an overview of the present state of research and is estimated as a decision support tool for appropriate mitigation and adaptation measures. Target Groups The portal collects the German climate research institutions to publish their scientific knowledge in a non-scientific language. Economists, policymakers, administration and the media are bound to find the names of scientific experts and institutions by an elaborated research tool. Methodology The chapter "Dossiers" is edited by the Klimanavigator-Coordinator CSC. It gathers information to a special issue looked upon from various points of view. Publications of outstanding German scientists are presented side by side, current knowledge is being synthesized, scientifically reviewed and disseminated. The latest news from climate and adaptation research is presented in an own chapter, dedicated to the press releases of the portal members. Via RSS-feed the press releases are collected from the different partner institutions. Thirdly, portraits of the member institutions, that are individually edited by themselves, draw a map of science in Germany and help to find appropriate cooperation partners. For the future further development is being planned. Common Management Klimanavigator is being managed by the partners in common. The main decisions concerning the concept and shape of the portal are made by the partners' assembly. An elected editorial committee decides about the content between the assemblies. The Climate Service Center (part of the Helmholtz-Zentrum Geesthacht) concentrates on facilitating the cooperation, and delivering the technical support. Results/Outcome/Products Map and navigator of climate and adaptation science in Germany Representation of science in Germany and Germany as a country of science Synthesis of knowledge Network of science institutions and projects Decision support tool

  1. Aquatics Systems Branch: transdisciplinary research to address water-related environmental problems

    USGS Publications Warehouse

    Dong, Quan; Walters, Katie D.

    2015-01-01

    The Aquatic Systems Branch at the Fort Collins Science Center is a group of scientists dedicated to advancing interdisciplinary science and providing science support to solve water-related environmental issues. Natural resource managers have an increasing need for scientific information and stakeholders face enormous challenges of increasing and competing demands for water. Our scientists are leaders in ecological flows, riparian ecology, hydroscape ecology, ecosystem management, and contaminant biology. The Aquatic Systems Branch employs and develops state-of-the-science approaches in field investigations, laboratory experiments, remote sensing, simulation and predictive modeling, and decision support tools. We use the aquatic experimental laboratory, the greenhouse, the botanical garden and other advanced facilities to conduct unique research. Our scientists pursue research on the ground, in the rivers, and in the skies, generating and testing hypotheses and collecting quantitative information to support planning and design in natural resource management and aquatic restoration.

  2. Environmental protection belongs to the public: A vision for citizen science at EPA

    NASA Astrophysics Data System (ADS)

    Parker, A.; Dosemagen, S.

    2017-12-01

    As a collaborative and open approach to science, citizen science has the potential make science more actionable, applicable, and usable, especially when designed with scientists, communities and decision-makers as partners. In response to recent interest in citizen science from the US Environmental Protection Agency, the National Advisory Council for Environmental Policy and Technology provided EPA with advice and recommendations on how to integrate citizen science into the core work of EPA. The Council's 28 members—representatives of academia; business and industry; nongovernmental organizations; and state, local and tribal governments—identifies citizen science as an invaluable opportunity for EPA to strengthen public support for EPA's mission and the best approach for the Agency to connect with the public on environmental protection. The report recommends that EPA embrace citizen science as a core tenet of environmental protection, invest in citizen science for communities, partners, and the Agency, enable the use of citizen science data at the Agency, integrate citizen science into the full range of work of EPA. This presentation will outline principles and strategy for integrating citizen science into science and policy at the national level, increasing the usability of citizen science data for decision-making and policy, and leveraging citizen science for environmental protection.

  3. Environmental Biosciences Program Second Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2004-12-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene (TCE), polychlorinated biphenyls (PCBs), and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  4. Environmental Biosciences Program Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2006-10-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  5. Environmental Biosciences Program Fourth Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2005-06-30

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation s need for new and better approaches to the solution of a complex and expansive array of environment-related health problems.more » The intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene (TCE), polychlorinated biphenyles (PCBs), and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  6. Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation.

    PubMed

    Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia

    2016-06-01

    Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. © 2016 Society for Conservation Biology.

  7. E-DECIDER: Using Earth Science Data and Modeling Tools to Develop Decision Support for Earthquake Disaster Response

    NASA Astrophysics Data System (ADS)

    Glasscoe, Margaret T.; Wang, Jun; Pierce, Marlon E.; Yoder, Mark R.; Parker, Jay W.; Burl, Michael C.; Stough, Timothy M.; Granat, Robert A.; Donnellan, Andrea; Rundle, John B.; Ma, Yu; Bawden, Gerald W.; Yuen, Karen

    2015-08-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing new capabilities for decision making utilizing remote sensing data and modeling software to provide decision support for earthquake disaster management and response. E-DECIDER incorporates the earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools allows us to provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). This in turn is delivered through standards-compliant web services for desktop and hand-held devices.

  8. Integrating land cover modeling and adaptive management to conserve endangered species and reduce catastrophic fire risk

    USGS Publications Warehouse

    Breininger, David; Duncan, Brean; Eaton, Mitchell J.; Johnson, Fred; Nichols, James

    2014-01-01

    Land cover modeling is used to inform land management, but most often via a two-step process, where science informs how management alternatives can influence resources, and then, decision makers can use this information to make decisions. A more efficient process is to directly integrate science and decision-making, where science allows us to learn in order to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by the specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuel monitoring with decision-making focused on the dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy; other conditions require tradeoffs between objectives. Knowledge about system responses to actions can be informed by developing hypotheses based on ideas about fire behavior and then applying competing management actions to different land units in the same system state. Monitoring and management integration is important to optimize state-specific management decisions and to increase knowledge about system responses. We believe this approach has broad utility and identifies a clear role for land cover modeling programs intended to inform decision-making.

  9. Evolving the US Climate Resilience Toolkit to Support a Climate-Smart Nation

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Niepold, F., III; Fox, J. F.; Herring, D.; Dahlman, L. E.; Hall, N.; Gardiner, N.

    2015-12-01

    Communities, businesses, resource managers, and decision-makers at all levels of government need information to understand and ameliorate climate-related risks. Likewise, climate information can expose latent opportunities. Moving from climate science to social and economic decisions raises complex questions about how to communicate the causes and impacts of climate variability and change; how to characterize and quantify vulnerabilities, risks, and opportunities faced by communities and businesses; and how to make and implement "win-win" adaptation plans at local, regional, and national scales. A broad coalition of federal agencies launched the U.S. Climate Resilience Toolkit (toolkit.climate.gov) in November 2014 to help our nation build resilience to climate-related extreme events. The site's primary audience is planners and decision makers in business, resource management, and government (at all levels) who seek science-based climate information and tools to help them in their near- and long-term planning. The Executive Office of the President assembled a task force of dozens of subject experts from across the 13 agencies of the U.S. Global Change Research Program to guide the site's development. The site's ongoing evolution is driven by feedback from the target audience. For example, based on feedback, climate projections will soon play a more prominent role in the site's "Climate Explorer" tool and case studies. The site's five-step adaptation planning process is being improved to better facilitate people getting started and to provide clear benchmarks for evaluating progress along the way. In this session, we will share lessons learned from a series of user engagements around the nation and evidence that the Toolkit couples climate information with actionable decision-making processes in ways that are helping Americans build resilience to climate-related stressors.

  10. Grade 7 students' normative decision making in science learning about global warming through science technology and society (STS) approach

    NASA Astrophysics Data System (ADS)

    Luengam, Piyanuch; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 7 students' normative decision making in teaching and learning about global warming through science technology and society (STS) approach. The participants were 43 Grade 7 students in Sungkom, Nongkhai, Thailand. The teaching and learning about global warming through STS approach had carried out for 5 weeks. The global warming unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' normative decision making was collected during their learning by questionnaire, participant observation, and students' tasks. Students' normative decision making were analyzed from both pre-and post-intervention and students' ideas during the intervention. The aspects of normative include influences of global warming on technology and society; influences of values, culture, and society on global warming; and influences of technology on global warming. The findings revealed that students have chance to learn science concerning with the relationship between science, technology, and society through their giving reasons about issues related to global warming. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  11. Rhetorical Use of Inscriptions in Students' Written Arguments About Socioscientific Issues

    NASA Astrophysics Data System (ADS)

    Xiao, Sihan

    2018-05-01

    Educators expect that students be able to make informed decisions about science-related problems in their everyday lives. Engaging science in such problems often entails evaluating available evidence for given arguments. This study explores how students use inscriptions as evidence to argue about socioscientific issues. Fifth- and sixth-grade students (N = 102) in two intact classrooms completed written argument tasks in which they were asked to cite given inscriptions to support their decisions about energy use or genetically modified organisms. Qualitative content analyses of these written arguments, which focused on the coordination between inscriptions and claims, show three patterns of rhetorical use of inscriptions: seeing is believing, believing is seeing, and asserting is inferring. What counts as evidence was not the inscriptions per se, but the rhetorical functions they performed in particular arguments. These findings suggest that justifying socioscientific decisions is functionally different from explaining scientific phenomena. Linking these two activities in school may help students more productively engage with science in their everyday lives.

  12. Bioinformatics for Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy A.

    2006-01-01

    For the purpose of this paper, bioinformatics is defined as the application of computer technology to the management of biological information. It can be thought of as the science of developing computer databases and algorithms to facilitate and expedite biological research. This is a crosscutting capability that supports nearly all human health areas ranging from computational modeling, to pharmacodynamics research projects, to decision support systems within autonomous medical care. Bioinformatics serves to increase the efficiency and effectiveness of the life sciences research program. It provides data, information, and knowledge capture which further supports management of the bioastronautics research roadmap - identifying gaps that still remain and enabling the determination of which risks have been addressed.

  13. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; hide

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more efficiently plan, prepare and execute missions, as well as to playback and review past mission data. To paraphrase the old television commercial RTMM doesn t make the airborne science, it makes the airborne science easier.

  14. The Infusion of Dust Model Model Outputs into Public Health Decision Making - an Examination of Differential Adoption of SOAP and Open Geospatial Consortium Service Products into Public Health Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Benedict, K. K.

    2008-12-01

    Since 2004 the Earth Data Analysis Center, in collaboration with the researchers at the University of Arizona and George Mason University, with funding from NASA, has been developing a services oriented architecture (SOA) that acquires remote sensing, meteorological forecast, and observed ground level particulate data (EPA AirNow) from NASA, NOAA, and DataFed through a variety of standards-based service interfaces. These acquired data are used to initialize and set boundary conditions for the execution of the Dust Regional Atmospheric Model (DREAM) to generate daily 48-hour dust forecasts, which are then published via a combination of Open Geospatial Consortium (OGC) services (WMS and WCS), basic HTTP request-based services, and SOAP services. The goal of this work has been to develop services that can be integrated into existing public health decision support systems (DSS) to provide enhanced environmental data (i.e. ground surface particulate concentration estimates) for use in epidemiological analysis, public health warning systems, and syndromic surveillance systems. While the project has succeeded in deploying these products into the target systems, there has been differential adoption of the different service interface products, with the simple OGC and HTTP interfaces generating much greater interest by DSS developers and researchers than the more complex SOAP service interfaces. This paper reviews the SOA developed as part of this project and provides insights into how different service models may have a significant impact on the infusion of Earth science products into decision making processes and systems.

  15. A Science Framework for Connecticut River Watershed Sustainability

    USGS Publications Warehouse

    Rideout, Stephen; Nicolson, Craig; Russell-Robinson, Susan L.; Mecray, Ellen L.

    2005-01-01

    Introduction: This document outlines a research framework for water resource managers and land-use planners in the four-state Connecticut River Watershed (CRW). It specifically focuses on developing the decision-support tools and data needed by managers in the watershed. The purpose of the Science Framework is to identify critical research issues and information required to better equip managers to make decisions on desirable changes in the CRW. This Science Framework is the result of a cooperative project between the U.S. Geological Survey (USGS), the University of Massachusetts at Amherst (UMass-Amherst), and the U.S. Fish and Wildlife Service (FWS). The cooperative project was guided by a Science Steering Committee (SC) and included several focus groups, a 70-person workshop in September 2004, and an open collaborative process by which the workshop outcomes were synthesized, written up, and then progressively refined through peer review. This document is the product of that collaborative process.

  16. Science-policy processes for transboundary water governance.

    PubMed

    Armitage, Derek; de Loë, Rob C; Morris, Michelle; Edwards, Tom W D; Gerlak, Andrea K; Hall, Roland I; Huitema, Dave; Ison, Ray; Livingstone, David; MacDonald, Glen; Mirumachi, Naho; Plummer, Ryan; Wolfe, Brent B

    2015-09-01

    In this policy perspective, we outline several conditions to support effective science-policy interaction, with a particular emphasis on improving water governance in transboundary basins. Key conditions include (1) recognizing that science is a crucial but bounded input into water resource decision-making processes; (2) establishing conditions for collaboration and shared commitment among actors; (3) understanding that social or group-learning processes linked to science-policy interaction are enhanced through greater collaboration; (4) accepting that the collaborative production of knowledge about hydrological issues and associated socioeconomic change and institutional responses is essential to build legitimate decision-making processes; and (5) engaging boundary organizations and informal networks of scientists, policy makers, and civil society. We elaborate on these conditions with a diverse set of international examples drawn from a synthesis of our collective experiences in assessing the opportunities and constraints (including the role of power relations) related to governance for water in transboundary settings.

  17. Data-Powered Participatory Decision Making: Leveraging Systems Thinking and Simulation to Guide Selection and Implementation of Evidence-Based Colorectal Cancer Screening Interventions.

    PubMed

    Wheeler, Stephanie B; Leeman, Jennifer; Hassmiller Lich, Kristen; Tangka, Florence K L; Davis, Melinda M; Richardson, Lisa C

    A robust evidence base supports the effectiveness of timely colorectal cancer (CRC) screening, follow-up of abnormal results, and referral to care in reducing CRC morbidity and mortality. However, only two-thirds of the US population is current with recommended screening, and rates are much lower for those who are vulnerable because of their race/ethnicity, insurance status, or rural location. Multiple, multilevel factors contribute to observed disparities, and these factors vary across different populations and contexts. As highlighted by the Cancer Moonshot Blue Ribbon Panel working groups focused on Prevention and Early Detection and Implementation Science inadequate CRC screening and follow-up represent an enormous missed opportunity in cancer prevention and control. To measurably reduce CRC morbidity and mortality, the evidence base must be strengthened to guide the identification of (1) multilevel factors that influence screening across different populations and contexts, (2) multilevel interventions and implementation strategies that will be most effective at targeting those factors, and (3) combinations of strategies that interact synergistically to improve outcomes. Systems thinking and simulation modeling (systems science) provide a set of approaches and techniques to aid decision makers in using the best available data and research evidence to guide implementation planning in the context of such complexity. This commentary summarizes current challenges in CRC prevention and control, discusses the status of the evidence base to guide the selection and implementation of multilevel CRC screening interventions, and describes a multi-institution project to showcase how systems science can be leveraged to optimize selection and implementation of CRC screening interventions in diverse populations and contexts.

  18. SERVIR Science Applications for Capacity Building

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh; Searby, Nancy D.; Irwin, Daniel

    2012-01-01

    SERVIR is a regional visualization and monitoring system using Earth observations to support environmental management, climate adaptation, and disaster response in developing countries. SERVIR is jointly sponsored by NASA and the U.S. Agency for International Development (USAID). SERVIR has been instrumental in development of science applications to support the decision-making and capacity building in the developing countries with the help of SERVIR Hubs. In 2011, NASA Research Opportunities in Space and Earth Sciences (ROSES) included a call for proposals to form SERVIR Applied Sciences Team (SERVIR AST) under Applied Sciences Capacity Building Program. Eleven proposals were selected, the Principal Investigators of which comprise the core of the SERVIR AST. The expertise on the Team span several societal benefit areas including agriculture, disasters, public health and air quality, water, climate and terrestrial carbon assessments. This presentation will cover the existing SERVIR science applications, capacity building components, overview of SERVIR AST projects, and anticipated impacts.

  19. Science, Policy, and Rationality in a Partisan Era

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2017-12-01

    Science plays an essential role in public policy by outlining the factual foundations of policy decisions. Political partisans, however, often use science the way drunkards use lampposts: for support rather than illumination. Thus science can become a political football, with partisans dismissing or misrepresenting scientific findings that conflict with their political views. Presenting and defending science in a highly charged political environment is therefore challenging. Here I argue that scientists can most effectively speak out, not as activists supporting particular political causes, but instead as advocates for a fundamentally rational public discourse, one that starts from the facts - not from whatever one might choose to believe - and then explores how society should respond. Recognizing the distinction between facts and values, and respecting their different roles in the policy process, are essential not only for the future of science, but also for the future of democratic institutions in the broadest sense.

  20. An Integrated Web-based Decision Support System in Disaster Risk Management

    NASA Astrophysics Data System (ADS)

    Aye, Z. C.; Jaboyedoff, M.; Derron, M. H.

    2012-04-01

    Nowadays, web based decision support systems (DSS) play an essential role in disaster risk management because of their supporting abilities which help the decision makers to improve their performances and make better decisions without needing to solve complex problems while reducing human resources and time. Since the decision making process is one of the main factors which highly influence the damages and losses of society, it is extremely important to make right decisions at right time by combining available risk information with advanced web technology of Geographic Information System (GIS) and Decision Support System (DSS). This paper presents an integrated web-based decision support system (DSS) of how to use risk information in risk management efficiently and effectively while highlighting the importance of a decision support system in the field of risk reduction. Beyond the conventional systems, it provides the users to define their own strategies starting from risk identification to the risk reduction, which leads to an integrated approach in risk management. In addition, it also considers the complexity of changing environment from different perspectives and sectors with diverse stakeholders' involvement in the development process. The aim of this platform is to contribute a part towards the natural hazards and geosciences society by developing an open-source web platform where the users can analyze risk profiles and make decisions by performing cost benefit analysis, Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) with the support of others tools and resources provided. There are different access rights to the system depending on the user profiles and their responsibilities. The system is still under development and the current version provides maps viewing, basic GIS functionality, assessment of important infrastructures (e.g. bridge, hospital, etc.) affected by landslides and visualization of the impact-probability matrix in terms of socio-economic dimension.

  1. Complex Decision-Making in Heart Failure: A Systematic Review and Thematic Analysis.

    PubMed

    Hamel, Aimee V; Gaugler, Joseph E; Porta, Carolyn M; Hadidi, Niloufar Niakosari

    Heart failure follows a highly variable and difficult course. Patients face complex decisions, including treatment with implantable cardiac defibrillators, mechanical circulatory support, and heart transplantation. The course of decision-making across multiple treatments is unclear yet integral to providing informed and shared decision-making. Recognizing commonalities across treatment decisions could help nurses and physicians to identify opportunities to introduce discussions and support shared decision-making. The specific aims of this review are to examine complex treatment decision-making, specifically implantable cardiac defibrillators, ventricular assist device, and cardiac transplantation, and to recognize commonalities and key points in the decisional process. MEDLINE, CINAHL, PsycINFO, and Web of Science were searched for English-language studies that included qualitative findings reflecting the complexity of heart failure decision-making. Using a 3-step process, findings were synthesized into themes and subthemes. Twelve articles met criteria for inclusion. Participants included patients, caregivers, and clinicians and included decisions to undergo and decline treatment. Emergent themes were "processing the decision," "timing and prognostication," and "considering the future." Subthemes described how participants received and understood information about the therapy, making and changing a treatment decision, timing their decision and gauging health status outcomes in the context of their decision, the influence of a life or death decision, and the future as a factor in their decisional process. Commonalities were present across therapies, which involved the timing of discussions, the delivery of information, and considerations of the future. Exploring this further could help support patient-centered care and optimize shared decision-making interventions.

  2. Integrating Socioeconomic and Earth Science Data Using Geobrowsers and Web Services: A Demonstration

    NASA Astrophysics Data System (ADS)

    Schumacher, J. A.; Yetman, G. G.

    2007-12-01

    The societal benefit areas identified as the focus for the Global Earth Observing System of Systems (GEOSS) 10- year implementation plan are an indicator of the importance of integrating socioeconomic data with earth science data to support decision makers. To aid this integration, CIESIN is delivering its global and U.S. demographic data to commercial and open source Geobrowsers and providing open standards based services for data access. Currently, data on population distribution, poverty, and detailed census data for the U.S. are available for visualization and access in Google Earth, NASA World Wind, and a browser-based 2-dimensional mapping client. The mapping client allows for the creation of web map documents that pull together layers from distributed servers and can be saved and shared. Visualization tools with Geobrowsers, user-driven map creation and sharing via browser-based clients, and a prototype for characterizing populations at risk to predicted precipitation deficits will be demonstrated.

  3. Science, policy advocacy, and marine protected areas.

    PubMed

    Gray, Noella J; Campbell, Lisa M

    2009-04-01

    Much has been written in recent years regarding whether and to what extent scientists should engage in the policy process, and the focus has been primarily on the issue of advocacy. Despite extensive theoretical discussions, little has been done to study attitudes toward and consequences of such advocacy in particular cases. We assessed attitudes toward science and policy advocacy in the case of marine protected areas (MPAs) on the basis of a survey of delegates at the First International Marine Protected Areas Congress. Delegates were all members of the international marine conservation community and represented academic, government, and nongovernmental organizations. A majority of respondents believed science is objective but only a minority believed that values can be eliminated from science. Respondents showed only partial support of positivist principles of science. Almost all respondents supported scientists being integrated into MPA policy making, whereas half of the respondents agreed that scientists should actively advocate for particular MPA policies. Scientists with a positivist view of science supported a minimal role for scientists in policy, whereas government staff with positivist beliefs supported an advocacy or decision-making role for scientists. Policy-making processes for MPAs need to account for these divergent attitudes toward science and advocacy if science-driven and participatory approaches are to be reconciled.

  4. Managing controversy through consultation: a qualitative study of communication and trust around MMR vaccination decisions

    PubMed Central

    McMurray, Robert; Cheater, Francine M; Weighall, Anna; Nelson, Carolyn; Schweiger, Martin; Mukherjee, Suzanne

    2004-01-01

    Background: Controversy over the measles, mumps, and rubella (MMR) vaccine has reduced uptake, raising concerns of a future disease epidemic. Aims: To explore parents' accounts of decision making relating to the MMR vaccine controversy, identifying uptake determinants and education needs. Design of study: Qualitative interviews analysed using the ‘framework’ approach. Setting: Five general practices in the Leeds area, 2002–2003. Method: Sixty-nine interviews conducted with parents of children aged between 4 and 5 years, and 12 interviews with primary care practitioners, managers and immunisation coordinators serving participating sites. Participants were interviewed one-to-one in a place of their choice. Results: The vaccination decision is primarily a function of parental assessments of the relative acceptability and likelihood of possible outcomes. For most parents the evidence of science and medicine plays little role in the decision. Although local general practitioners and health visitors are trusted information sources, the influence of primary care providers on the vaccination decision is limited by concerns over consultation legitimacy, discussion opportunity, and perceptions of financial and political partiality. Parents and practitioners identify a need for new approaches to support decisions and learning when faced with this and similar healthcare controversies. These include new collaborative approaches to information exchange designed to transform rather than supplant existing parent knowledge as part of an ongoing learning process. Conclusion: The study identified new ways in which parents and practitioners need to be supported in order to increase understanding of medical science and secure more informed decisions in the face of health controversy. PMID:15239914

  5. Beliefs and Willingness to Act about Global Warming: Where to Focus Science Pedagogy?

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin

    2013-01-01

    Science educators have a key role in empowering students to take action to reduce global warming. This involves assisting students to understand its causes as well as taking pedagogical decisions that have optimal probabilities of leading to students being motivated to take actions based on empirically based science beliefs. To this end New South…

  6. The Technology of Evidence-Based Practice: Tools for Navigating the Health Sciences Literature

    ERIC Educational Resources Information Center

    Townsend, Whitney

    2011-01-01

    Medical and health sciences libraries have incorporated the elements of evidence-based practice (EBP) into their reference services, instruction, and online resource development for years. While EBP focuses on the use of medical and health sciences literature in the clinical environment (i.e., making decisions about how to treat a particular…

  7. Using Data-Based Inquiry and Decision Making To Improve Instruction.

    ERIC Educational Resources Information Center

    Feldman, Jay; Tung, Rosann

    2001-01-01

    Discusses a study of six schools using data-based inquiry and decision-making process to improve instruction. Findings identified two conditions to support successful implementation of the process: administrative support, especially in providing teachers learning time, and teacher leadership to encourage and support colleagues to own the process.…

  8. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Sivapalan, M.; Harman, C. J.; Srinivasan, V.; Hipsey, M. R.; Reed, P.; Montanari, A.; Blöschl, G.

    2013-06-01

    Globally, many different kinds of water resources management issues call for policy and infrastructure based responses. Yet responsible decision making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal-to-century long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water and other changing, coupled environmental subsystems. These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle - a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior of the coupled systems. Three research directions support the development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management.

  9. "The first step is admitting you have a problem…": the process of advancing science communication in Landscape Conservation Cooperatives in Alaska

    NASA Astrophysics Data System (ADS)

    Buxbaum, T. M.; Trainor, S.; Warner, N.; Timm, K.

    2015-12-01

    Climate change is impacting ecological systems, coastal processes, and environmental disturbance regimes in Alaska, leading to a pressing need to communicate reliable scientific information about climate change, its impacts, and future projections for land and resource management and decision-making. However, little research has been done to dissect and analyze the process of making the results of scientific inquiry directly relevant and usable in resource management. Based within the Science Application division of the US Fish and Wildlife Service, Landscape Conservation Cooperatives (LCCs) are regional conservation science partnerships that provide scientific and technical expertise needed to support conservation planning at landscape scales and promote collaboration in defining shared conservation goals. The five LCCs with jurisdiction in Alaska recently held a training workshop with the goals of advancing staff understanding and skills related to science communication and translation. We report here preliminary results from analysis of workshop discussions and pre- and post- workshop interviews and surveys revealing expectations, assumptions, and mental models regarding science communication and the process of conducting use-inspired science. Generalizable conclusions can assist scientists and boundary organizations bridge knowledge gaps between science and resource management.

  10. Supporting decision-making processes for evidence-based mental health promotion.

    PubMed

    Jané-Llopis, Eva; Katschnig, Heinz; McDaid, David; Wahlbeck, Kristian

    2011-12-01

    The use of evidence is critical in guiding decision-making, but evidence from effect studies will be only one of a number of factors that will need to be taken into account in the decision-making processes. Equally important for policymakers will be the use of different types of evidence including implementation essentials and other decision-making principles such as social justice, political, ethical, equity issues, reflecting public attitudes and the level of resources available, rather than be based on health outcomes alone. This paper, aimed to support decision-makers, highlights the importance of commissioning high-quality evaluations, the key aspects to assess levels of evidence, the importance of supporting evidence-based implementation and what to look out for before, during and after implementation of mental health promotion and mental disorder prevention programmes.

  11. Communicating Uncertainty about Climate Change for Application to Security Risk Management

    NASA Astrophysics Data System (ADS)

    Gulledge, J. M.

    2011-12-01

    The science of climate change has convincingly demonstrated that human activities, including the release of greenhouse gases, land-surface changes, particle emissions, and redistribution of water, are changing global and regional climates. Consequently, key institutions are now concerned about the potential social impacts of climate change. For example, the 2010 Quadrennial Defense Review Report from the U.S. Department of Defense states that "climate change, energy security, and economic stability are inextricably linked." Meanwhile, insured losses from climate and weather-related natural disasters have risen dramatically over the past thirty years. Although these losses stem largely from socioeconomic trends, insurers are concerned that climate change could exacerbate this trend and render certain types of climate risk non-diversifiable. Meanwhile, the climate science community-broadly defined as physical, biological, and social scientists focused on some aspect of climate change-remains largely focused scholarly activities that are valued in the academy but not especially useful to decision makers. On the other hand, climate scientists who engage in policy discussions have generally permitted vested interests who support or oppose climate policies to frame the discussion of climate science within the policy arena. Such discussions focus on whether scientific uncertainties are sufficiently resolved to justify policy and the vested interests overstate or understate key uncertainties to support their own agendas. Consequently, the scientific community has become absorbed defending scientific findings to the near exclusion of developing novel tools to aid in risk-based decision-making. For example, the Intergovernmental Panel on Climate Change (IPCC), established expressly for the purpose of informing governments, has largely been engaged in attempts to reduce unavoidable uncertainties rather than helping the world's governments define a science-based risk-management framework for climate security. The IPCC's Fourth Assessment Report concluded that "Responding to climate change involves an iterative risk management process that includes both adaptation and mitigation and takes into account climate change damages, co-benefits, sustainability, equity and attitudes to risk." In risk management, key uncertainties guide action aimed at reducing risk and cannot be ignored or used to justify inaction. Security policies such as arms control and counter-terrorism demonstrate that high-impact outcomes matter to decision makers even if they are likely to be rare events. In spite of this fact, the long tail on the probability distribution of climate sensitivity was largely ignored by the climate science community until recently and its implications for decision making are still not receiving adequate attention. Informing risk management requires scientists to shift from a singular aversion to type I statistical error (i.e. false positive) to a balanced presentation of both type I error and type II error (i.e. false negative) when the latter may have serious consequences. Examples from national security, extreme weather, and economics illustrate these concepts.

  12. Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment

    NASA Astrophysics Data System (ADS)

    Rycroft, Taylor; Trump, Benjamin; Poinsatte-Jones, Kelsey; Linkov, Igor

    2018-02-01

    The fields of nanomedicine, risk analysis, and decision science have evolved considerably in the past decade, providing developers of nano-enabled therapies and diagnostic tools with more complete information than ever before and shifting a fundamental requisite of the nanomedical community from the need for more information about nanomaterials to the need for a streamlined method of integrating the abundance of nano-specific information into higher-certainty product design decisions. The crucial question facing nanomedicine developers that must select the optimal nanotechnology in a given situation has shifted from "how do we estimate nanomaterial risk in the absence of good risk data?" to "how can we derive a holistic characterization of the risks and benefits that a given nanomaterial may pose within a specific nanomedical application?" Many decision support frameworks have been proposed to assist with this inquiry; however, those based in multicriteria decision analysis have proven to be most adaptive in the rapidly evolving field of nanomedicine—from the early stages of the field when conditions of significant uncertainty and incomplete information dominated, to today when nanotoxicology and nano-environmental health and safety information is abundant but foundational paradigms such as chemical risk assessment, risk governance, life cycle assessment, safety-by-design, and stakeholder engagement are undergoing substantial reformation in an effort to address the needs of emerging technologies. In this paper, we reflect upon 10 years of developments in nanomedical engineering and demonstrate how the rich knowledgebase of nano-focused toxicological and risk assessment information developed over the last decade enhances the capability of multicriteria decision analysis approaches and underscores the need to continue the transition from traditional risk assessment towards risk-based decision-making and alternatives-based governance for emerging technologies.

  13. Sound data management as a foundation for natural resources management and science

    USGS Publications Warehouse

    Burley, Thomas E.

    2012-01-01

    Effective decision making is closely related to the quality and completeness of available data and information. Data management helps to ensure data quality in any discipline and supports decision making. Managing data as a long-term scientific asset helps to ensure that data will be usable beyond the original intended application. Emerging issues in water-resources management and climate variability require the ability to analyze change in the conditions of natural resources over time. The availability of quality, well-managed, and documented data from the past and present helps support this requirement.

  14. The ends of uncertainty: Air quality science and planning in Central California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, James

    Air quality planning in Central California is complicated and controversial despite millions of dollars invested to improve scientific understanding. This research describes and critiques the use of photochemical air quality simulation modeling studies in planning to attain standards for ground-level ozone in the San Francisco Bay Area and the San Joaquin Valley during the 1990's. Data are gathered through documents and interviews with planners, modelers, and policy-makers at public agencies and with representatives from the regulated and environmental communities. Interactions amongst organizations are diagramed to identify significant nodes of interaction. Dominant policy coalitions are described through narratives distinguished by theirmore » uses of and responses to uncertainty, their exposures to risks, and their responses to the principles of conservatism, civil duty, and caution. Policy narratives are delineated using aggregated respondent statements to describe and understand advocacy coalitions. I found that models impacted the planning process significantly, but were used not purely for their scientific capabilities. Modeling results provided justification for decisions based on other constraints and political considerations. Uncertainties were utilized opportunistically by stakeholders instead of managed explicitly. Ultimately, the process supported the partisan views of those in control of the modeling. Based on these findings, as well as a review of model uncertainty analysis capabilities, I recommend modifying the planning process to allow for the development and incorporation of uncertainty information, while addressing the need for inclusive and meaningful public participation. By documenting an actual air quality planning process these findings provide insights about the potential for using new scientific information and understanding to achieve environmental goals, most notably the analysis of uncertainties in modeling applications. Concurrently, needed uncertainty information is identified and capabilities to produce it are assessed. Practices to facilitate incorporation of uncertainty information are suggested based on research findings, as well as theory from the literatures of the policy sciences, decision sciences, science and technology studies, consensus-based and communicative planning, and modeling.« less

  15. Relational Algebra in Spatial Decision Support Systems Ontologies.

    PubMed

    Diomidous, Marianna; Chardalias, Kostis; Koutonias, Panagiotis; Magnita, Adrianna; Andrianopoulos, Charalampos; Zimeras, Stelios; Mechili, Enkeleint Aggelos

    2017-01-01

    Decision Support Systems (DSS) is a powerful tool, for facilitates researchers to choose the correct decision based on their final results. Especially in medical cases where doctors could use these systems, to overcome the problem with the clinical misunderstanding. Based on these systems, queries must be constructed based on the particular questions that doctors must answer. In this work, combination between questions and queries would be presented via relational algebra.

  16. Designing Computerized Decision Support That Works for Clinicians and Families

    PubMed Central

    Fiks, Alexander G.

    2011-01-01

    Evidence-based decision-making is central to the practice of pediatrics. Clinical trials and other biomedical research provide a foundation for this process, and practice guidelines, drawing from their results, inform the optimal management of an increasing number of childhood health problems. However, many clinicians fail to adhere to guidelines. Clinical decision support delivered using health information technology, often in the form of electronic health records, provides a tool to deliver evidence-based information to the point of care and has the potential to overcome barriers to evidence-based practice. An increasing literature now informs how these systems should be designed and implemented to most effectively improve outcomes in pediatrics. Through the examples of computerized physician order entry, as well as the impact of alerts at the point of care on immunization rates, the delivery of evidence-based asthma care, and the follow-up of children with attention deficit hyperactivity disorder, the following review addresses strategies for success in using these tools. The following review argues that, as decision support evolves, the clinician should no longer be the sole target of information and alerts. Through the Internet and other technologies, families are increasingly seeking health information and gathering input to guide health decisions. By enlisting clinical decision support systems to deliver evidence-based information to both clinicians and families, help families express their preferences and goals, and connect families to the medical home, clinical decision support may ultimately be most effective in improving outcomes. PMID:21315295

  17. The Science of Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makundi, Willy R.

    2002-09-20

    What constitutes 'dangerous anthropogenic interference' is a value judgment arrived at through a socio-political process, taking issues like equity and sustainability into account. Science provides key information needed to arrive at an informed judgment. However, that judgment is primarily a political one, and not a purely scientific decision. Such judgments are based on risk assessment, and lead to risk management choices by decision makers, about actions and policies.

  18. Supporting Energy-Related Societal Applications Using NASA's Satellite and Modeling Data

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Whitlock, C. H.; Chandler, W. S.; Hoell, J. M.; Zhang, T.; Mikovitz, J. C.; Leng, G. S.; Lilienthal, P.

    2006-01-01

    Improvements to NASA Surface Meteorology and Solar Energy (SSE) web site are now being made through the Prediction of Worldwide Energy Resource (POWER) project under NASA Science Mission Directorate Applied Science Energy Management Program. The purpose of this project is to tailor NASA Science Mission results for energy sector applications and decision support systems. The current status of SSE and research towards upgrading estimates of total, direct and diffuse solar irradiance from NASA satellite measurements and analysis are discussed. Part of this work involves collaborating with partners such as the National Renewable Energy Laboratory (NREL) and the Natural Resources Canada (NRCan). Energy Management and POWER plans including historic, near-term and forecast datasets are also overviewed.

  19. Amplion, Inc.

    PubMed

    Taylor, Seth; Carroll, Adam; Lord, Jessi

    2016-07-01

    Amplion, Inc. (OR, USA) is focused on progressing the primary drivers of precision medicine. Focused on enabling the front end of the healthcare value chain, pharmaceutical developers and diagnostic test developers, Amplion zeros in on the research and market components that will make precision medicine a reality. With BiomarkerBase™, Amplion's flagship product, Amplion provides evidence-based biomarker information that support the key strategic decisions pharmaceutical and diagnostic developers need to make to be successful in the emerging world of precision medicine. A passion for saving lives and improving patient outcomes using precision medicine inspires Amplion's product BiomarkerBase™. A unique combination of hard science and data science positions Amplion to surface the relationships of biomarkers and clinical evidence that gives pharmaceutical and diagnostic companies unique insight into the technical realities and market opportunities provided by biomarkers.

  20. Beyond Prediction: the Many Ways in which Climate Science can Inform Adaptation Decisions

    NASA Astrophysics Data System (ADS)

    Lempert, R. J.

    2017-12-01

    Climate science provides an increasingly rich understanding of current and future climate, but this understanding is often not fully incorporated into climate adaptation decisions. In particular, the provision of climate information is still trapped in a narrow prediction-based framework, which envisions a sequential process that begins with model-based forecasts of future climate and decision makers then acting on those forecasts. Among its challenges, this framework can discourage action when climate predictions are deemed too uncertain, encourage overconfidence when climate scientists and decision makers fail to focus on decision-relevant but poorly understood extreme events, and offers a too-narrow communication path among climate scientists and decision makers. This talk will describe how robust decision approaches, organized around the idea of stress testing proposed adaptation decisions over a wide range of futures, can enable a richer flow information among climate scientists and decision makers. The talk illustrates these themes with two examples: 1) conservation management that explores the tradeoffs among alternative climate information products with different combinations of ensemble size and spatial resolution and 2) water quality implementation planning that focuses on the handling of extremes.

Top