The path to an experiment in space (from concept to flight)
NASA Technical Reports Server (NTRS)
Salzman, Jack A.
1994-01-01
The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.
Pletser, Vladimir
2004-11-01
Aircraft parabolic flights provide repetitively up to 20 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences, to test instrumentation and to train astronauts before a space flight. The European Space Agency (ESA) has organized since 1984 thirty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 360 experiments were successfully conducted during more than 2800 parabolas, representing a cumulated weightlessness time of 15 h 30 m. This paper presents the short duration microgravity research programme of ESA. The experiments conducted during these campaigns are summarized, and the different airplanes used by ESA are shortly presented. The technical capabilities of the Airbus A300 'Zero-G' are addressed. Some Physical Science, Technology and Life Science experiments performed during the last ESA campaigns with the Airbus A300 are presented to show the interest of this unique microgravity research tool to complement, support and prepare orbital microgravity investigations. c2004 Elsevier Ltd. All rights reserved.
1998-09-30
The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.
First Middle East Aircraft Parabolic Flights for ISU Participant Experiments
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene
2017-06-01
Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
1973-01-01
This chart describes the Skylab student experiment Objects Within Mercury's Orbit, proposed by Daniel C. Bochsler of Silverton, Oregon. This experiment utilized Skylab's White Light Coronagraph telescope to identify any objects orbiting the Sun within the orbit of Mercury. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
1973-01-01
This chart describes the Skylab student experiment X-Rays from Jupiter, proposed by Jearne Leventhal of Berkeley, California. This experiment was an investigation to detect x-rays from the planet Jupiter and determine any correlation with solar flare activity. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
1973-01-01
This chart describes the Skylab student experiment, Atmospheric Absorption of Heat, proposed by Joe B. Zmolek of Oshkosh, Wisconsin. This experiment utilized Skylab's Earth Resources Experiment spectrometers to determine the attenuation of radiant energy in the visible and near-infrared spectrums for both densely and sparsely populated areas. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
1973-01-01
This chart describes the Skylab student experiment X-Ray Stellar Classes, proposed by Joe Reihs of Baton Rouge, Louisiana. This experiment utilized Skylab's X-Ray Spectrographic Telescope to observe and determine the general characteristics and location of x-ray sources. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Research objectives, opportunities, and facilities for microgravity science
NASA Technical Reports Server (NTRS)
Bayuzick, Robert J.
1992-01-01
Microgravity Science in the U.S.A. involves research in fluids science, combustion science, materials science, biotechnology, and fundamental physics. The purpose is to achieve a thorough understanding of the effects of gravitational body forces on physical phenomena relevant to those disciplines. This includes the study of phenomena which are usually overwhelmed by the presence of gravitational body forces and, therefore, chiefly manifested when gravitational forces are weak. In the pragmatic sense, the research involves gravity level as an experimental parameter. Calendar year 1992 is a landmark year for research opportunities in low earth orbit for Microgravity Science. For the first time ever, three Spacelab flights will fly in a single year: IML-1 was launched on January 22; USML-1 was launched on June 25; and, in September, SL-J will be launched. A separate flight involving two cargo bay carriers, USMP-1, will be launched in October. From the beginning of 1993 up to and including the Space Station era (1997), nine flights involving either Spacelab or USMP carriers will be flown. This will be augmented by a number of middeck payloads and get away specials flying on various flights. All of this activity sets the stage for experimentation on Space Station Freedom. Beginning in 1997, experiments in Microgravity Science will be conducted on the Space Station. Facilities for doing experiments in protein crystal growth, solidification, and biotechnology will all be available. These will be joined by middeck-class payloads and the microgravity glove box for conducting additional experiments. In 1998, a new generation protein crystal growth facility and a facility for conducting combustion research will arrive. A fluids science facility and additional capability for conducting research in solidification, as well as an ability to handle small payloads on a quick response basis, will be added in 1999. The year 2000 will see upgrades in the protein crystal growth and fluids science facilities. From the beginning of 1997 to the fall of 1999 (the 'man-tended capability' era), there will be two or three utilization flights per year. Plans call for operations in Microgravity Science during utilization flights and between utilization flights. Experiments conducted during utilization flights will characteristically require crew interaction, short duration, and less sensitivity to perturbations in the acceleration environment. Operations between utilization flights will involve experiments that can be controlled remotely and/or can be automated. Typically, the experiments will require long times and a pristine environment. Beyond the fall of 1999 (the 'permanently-manned capability' era), some payloads will require crew interaction; others will be automated and will make use of telescience.
1973-01-01
This chart describes the Skylab student experiment Bacteria and Spores, proposed by Robert L. Staehle of Rochester, New York. This experiment was intended to determine the effect of the Skylab environment (particularly weightlessness) on the survival, growth rates, and mutations of certain bacteria and spores. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
1973-01-01
This chart describes the Skylab student experiment Libration Clouds, proposed by Alison Hopfield of Princeton, New Jersey. This experiment utilized Skylab's astronomical telescopes to observe the two zero-force regions (Lagrangian points) within the Earth-Moon System in which small space particles were expected to accumulate. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
1973-01-01
This chart describes the Skylab student experiment Ultraviolet (UV) from Quasars, proposed by John C. Hamilton of Aiea, Hawaii. This experiment utilized Skylab's Ultraviolet Stellar Astronomy equipment to photograph quasars in the UV spectrum and compare those images to existing radio and visible data. In March 1972 NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
Launch and landing site science processing for ISS utilization
NASA Astrophysics Data System (ADS)
Shao, Mimi; van Twest, Jacqueline; van den Ende, Oliver; Gruendel, Douglas; Wells, Deborah; Moyer, Jerry; Heuser, Jan; Etheridge, Guy
2000-01-01
Since 1986, Kennedy Space Center (KSC) has provided support to over 500 spaceflight experiments from NASA, international agencies, academic institutions, commercial entities, and the military sector. The experiments cover a variety of science disciplines including molecular, cellular, developmental biology, chemistry, physiology, and material sciences. KSC supports simulation, pre-flight, in-flight, and post-flight processing of flight hardware, specimens, and data at the primary and secondary landing sites. Science processing activities for spaceflight experiments occurs at the Life Science Support Facility (Hangar L) on the Cape Canaveral Air Station (CCAS) and select laboratories in the Industrial Area at KSC. Planning is underway to meet the challenges of the International Space Station (ISS). ISS support activities are expected to exceed the current launch site capability. KSC plans to replace the current facilities with Space Experiments Research and Processing Laboratory (SERPL), a collaborative effort between NASA and the State of Florida. This facility will be the cornerstone of a larger Research Park at KSC and is expected to foster relations between commercial industry and academia in areas related to space research. .
An on-orbit viewpoint of life sciences research
NASA Technical Reports Server (NTRS)
Lichtenberg, Byron K.
1992-01-01
As a Payload Specialist and a life science researcher, I want to present several issues that impact life science research in space. During early space station operations, life science and other experiments will be conducted in a time-critical manner and there will be the added duties of both space shuttle and space station systems operation (and the concomittent training overhead). Life sciences research is different from other science research done in space because the crew is involved both as an operator and as a subject. There is a need for pre- and post-flight data collection as well as in flight data collection. It is imperative that the life science researcher incorporate the crew members into their team early enough in the training cycle to fully explain the science and to make the crew aware of the importance and sensitivities of the experiment. During the pre-flight phase, the crew is incredibly busy with a myriad of duties. Therefore, it is difficult to get 'pristine' subjects for the baseline data collection. There are also circadian shifts, travel, and late nights to confound the data. During this time it is imperative that the researcher develop, along with the crew, a realistic estimate of crew-time required for their experiment. In flight issues that affect the researcher are the additional activities of the crew, the stresses inherent in space flight, and the difficulty of getting early in-flight data. During SSF activities, the first day or two will be taken up with rendezvous and docking. Other issues are the small number of subjects on any given flight, the importance of complete and concise procedures, and the vagaries of on-board data collection. Post flight, the crew is tired and experiences a 'relaxation.' This along with circadian shifts and rapid re-adaptation to 1-g make immediate post-flight data collection difficult. Finally, the blending of operational medicine and research can result in either competition for resources (crew time, etc.) or influence on the physiological state of the crew. However, the unique opportunity to conduct research in an environment that cannot be duplicated on Earth outweighs the 'challenges' that exist for space life researchers.
UPC BarcelonaTech Platform. Innovative aerobatic parabolic flights for life sciences experiments.
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni; Gonzalez, Daniel
We present an innovative method of performing parabolic flights with aerobatic single-engine planes. A parabolic platform has been established in Sabadell Airport (Barcelona, Spain) to provide an infraestructure ready to allow Life Sciences reduced gravity experiments to be conducted in parabolic flights. Test flights have demonstrated that up to 8 seconds of reduced gravity can be achieved by using a two-seat CAP10B aircraft, with a gravity range between 0.1 and 0.01g in the three axis. A parabolic flight campaign may be implemented with a significant reduction in budget compared to conventional parabolic flight campaigns, and with a very short time-to-access to the platform. Operational skills and proficiency of the pilot controling the aircraft during the maneuvre, sensitivity to wind gusts, and aircraft balance are the key issues that make a parabola successful. Efforts are focused on improving the total “zero-g” time and the quality of reduced gravity achieved, as well as providing more space for experiments. We report results of test flights that have been conducted in order to optimize the quality and total microgravity time. A computer sofware has been developed and implemented to help the pilot optimize his or her performance. Finally, we summarize the life science experiments that have been conducted in this platform. Specific focus is given to the very successful 'Barcelona ZeroG Challenge', this year in its third edition. This educational contest gives undergraduate and graduate students worldwide the opportunity to design their research within our platform and test it on flight, thus becoming real researchers. We conclude that aerobatic parabolic flights have proven to be a safe, unexpensive and reliable way to conduct life sciences reduced gravity experiments.
Kennedy Space Center Launch and Landing Support
NASA Technical Reports Server (NTRS)
Wahlberg, Jennifer
2010-01-01
The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Clervoy, Jean-Fran; Gharib, Thierry; Gai, Frederic; Mora, Christophe; Rosier, Patrice
Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballis-tic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Ma-terial Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace will offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. Scientists are invited to submit experiment proposals to be conducted at these partial gravity levels. This paper presents the technical capabilities of the Airbus A300 Zero-G aircraft used by ESA to support and conduct investigations at Moon-, Mars-and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some Physiology and Technology experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.
NASA's Microgravity Science Program
NASA Technical Reports Server (NTRS)
Salzman, Jack A.
1994-01-01
Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
In-Vitro Immunology - Skylab Student Experiment ED-31
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment In-Vitro Immunology, proposed by Todd A. Meister of Jackson Heights, New York. He suggested an in-vitro observation of the effects of zero-gravity on a presipitin-type antigen-antibody reaction, as compared with the same reaction carried out in an Earth-based laboratory. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Recognizing and optimizing flight opportunities with hardware and life sciences limitations.
Luttges, M W
1992-01-01
The availability of orbital space flight opportunities to conduct life sciences research has been limited. It is possible to use parabolic flight and sounding rocket programs to conduct some kinds of experiments during short episodes (seconds to minutes) of reduced gravity, but there are constraints and limitations to these programs. Orbital flight opportunities are major undertakings, and the potential science achievable is often a function of the flight hardware available. A variety of generic types of flight hardware have been developed and tested, and show great promise for use during NSTS flights. One such payload configuration is described which has already flown.
Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program
NASA Technical Reports Server (NTRS)
Curreri, Peter A. (Editor)
1993-01-01
This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.
NASA Technical Reports Server (NTRS)
Winkler, C. E. (Editor)
1973-01-01
The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.
NASA Technical Reports Server (NTRS)
Mckee, J. W.
1974-01-01
Experiments are performed during manned space flights in an attempt to acquire knowledge that can advance science and technology or that can be applied to operational techniques for future space flights. A description is given of the procedures that the personnel who are directly assigned to the function of crew support at the NASA Lyndon B. Johnson Space Center use to prepare for and to conduct experiments during space flight.
Columbia carries astronomy experiments on third test flight
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Transportation System 3 flight is discussed. The objectives of the test flight are given as well as an account of launch preparations, in liftoff, reentry; and landing. Numerous astronomy and space science experiments carried in the cargo bay are described.
NASA-Ames Life Sciences Flight Experiments program - 1980 status report
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.; Macleod, G.; Williams, B. A.
1980-01-01
The paper deals with the ESA's Spacelab LSFE (Life Sciences Flight Experiments) program which, once operational, will provide new and unique opportunities to conduct research into the effects of spaceflight and weightlessness on living organisms under conditions approximating ground-based laboratories. Spacelab missions, launched at 18-month intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and similar life sciences.
Experimental control requirements for life sciences
NASA Technical Reports Server (NTRS)
Berry, W. E.; Sharp, J. C.
1978-01-01
The Life Sciences dedicated Spacelab will enable scientists to test hypotheses in various disciplines. Building upon experience gained in mission simulations, orbital flight test experiments, and the first three Spacelab missions, NASA will be able to progressively develop the engineering and management capabilities necessary for the first Life Sciences Spacelab. Development of experiments for these missions will require implementation of life-support systems not previously flown in space. Plant growth chambers, animal holding facilities, aquatic specimen life-support systems, and centrifuge-mounted specimen holding units are examples of systems currently being designed and fabricated for flight.
1973-01-01
This chart describes the Skylab student experiment In-Vitro Immunology, proposed by Todd A. Meister of Jackson Heights, New York. He suggested an in-vitro observation of the effects of zero-gravity on a presipitin-type antigen-antibody reaction, as compared with the same reaction carried out in an Earth-based laboratory. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install new equipment for gas chromatography and mass spectrometry in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
Space Processing Applications Rocket (SPAR) project: SPAR 10
NASA Technical Reports Server (NTRS)
Poorman, R. (Compiler)
1986-01-01
The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space. The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (MSA) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters. This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled, Containerless Processing Technology, SPAR Experiment 76-20/3; Directional Solidification of Magnetic Composites, SPAR Experiment 76-22/3; Comparative Alloy Solidification, SPAR Experiment 76-36/3; and Foam Copper, SPAR Experiment 77-9/1R.
2014-07-11
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen on launch Pad-0A, Friday, July 11, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)
2014-10-25
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is raised at launch Pad-0A, Saturday, Oct. 25, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Joel Kowsky)
2014-10-24
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, arrives at launch Pad-0A, Friday, Oct. 24, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Joel Kowsky)
2014-07-12
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)
The Airborne Astronomy Ambassadors (AAA) Program and NASA Astrophysics Connections
NASA Astrophysics Data System (ADS)
Backman, Dana Edward; Clark, Coral; Harman, Pamela
2018-01-01
The NASA Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content delivery, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong’s B703 science research aircraft facility in Palmdale, California, including interactions with NASA astrophysics & planetary science Subject Matter Experts (SMEs) during science flights on SOFIA, and (3) continuing post-flight opportunities for teacher & student connections with SMEs.
NASA Technical Reports Server (NTRS)
1991-01-01
A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.
2008-08-29
CAPE CANAVERAL, Fla. – Experiments are placed inside the FASTRACK Space Experiment Platform viewed in the Life Science Building at NASA's Kennedy Space Center. The space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – Experiments are placed inside the FASTRACK Space Experiment Platform viewed in the Life Science Building at NASA's Kennedy Space Center. The space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
Life Sciences Data Archive Scientific Development
NASA Technical Reports Server (NTRS)
Buckey, Jay C., Jr.
1995-01-01
The Life Sciences Data Archive will provide scientists, managers and the general public with access to biomedical data collected before, during and after spaceflight. These data are often irreplaceable and represent a major resource from the space program. For these data to be useful, however, they must be presented with enough supporting information, description and detail so that an interested scientist can understand how, when and why the data were collected. The goal of this contract was to provide a scientific consultant to the archival effort at the NASA-Johnson Space Center. This consultant (Jay C. Buckey, Jr., M.D.) is a scientist, who was a co-investigator on both the Spacelab Life Sciences-1 and Spacelab Life Sciences-2 flights. In addition he was an alternate payload specialist for the Spacelab Life Sciences-2 flight. In this role he trained on all the experiments on the flight and so was familiar with the protocols, hardware and goals of all the experiments on the flight. Many of these experiments were flown on both SLS-1 and SLS-2. This background was useful for the archive, since the first mission to be archived was Spacelab Life Sciences-1. Dr. Buckey worked directly with the archive effort to ensure that the parameters, scientific descriptions, protocols and data sets were accurate and useful.
Preliminary Findings from the SHERE ISS Experiment
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; McKinley, Gareth H.; Erni, Philipp; Soulages, Johannes; Magee, Kevin S.
2009-01-01
The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.
2014-07-12
The full Moon sets in the fog behind the Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, Saturday, July 12, 2014, launch Pad-0A, NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)
2014-10-24
Workers are seen as they prepare the Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, to be raised at launch Pad-0A, Friday, Oct. 24, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Joel Kowsky)
2014-07-12
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen during sunrise, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)
Training for life science experiments in space at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Rodrigues, Annette T.; Maese, A. Christopher
1993-01-01
As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.
IRIS Mission Operations Director's Colloquium
NASA Technical Reports Server (NTRS)
Carvalho, Robert; Mazmanian, Edward A.
2014-01-01
Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.
Flight Opportunities for Science Teacher EnRichment
NASA Astrophysics Data System (ADS)
Koch, D.; Devore, E.; Gillespie, C., Jr.; Hull, G.
1994-12-01
The Kuiper Airborne Observatory (KAO) is NASA's unique stratospheric infrared observatory. Science on board the KAO involves many disciplines and technologies. NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program is designed to nation-wide to serve fifty teachers per year on board the KAO. FOSTER is a pilot program for K-12 educational outreach for NASA's future Stratospheric Observatory for Infrared Astronomy (SOFIA) which will directly involve more than one-hundred teachers each year in airborne astronomical research missions. FOSTER aims to enrich precollege teachers' experiences and understanding of science, mathematics and technology. Teachers meet at NASA Ames Research Center for summer workshops on astronomy and contemporary astrophysics, and to prepare for flights. Further, teachers receive Internet training and support to create a FOSTER teacher network across the country, and to sustain communication with the airborne astronomy community. Each research flight of the KAO is a microcosm of the scientific method. Flying teachers obtain first-hand, real-time experiences of the scientific process: its excitement, hardships, challenges, discoveries, teamwork, and educational value. The FOSTER experience gives teachers pride and a sense of special achievement. They bring the excitement and adventure of doing first-class science to their students and communities. Flight Opportunities for Science Teacher EnRichment is funded by a NASA's Astrophysics Division grant, NAGW 3291, and supported by the SETI Institute and NASA Ames Research Center.
Space Station and the life sciences
NASA Technical Reports Server (NTRS)
White, R. J.; Leonard, J. I.; Cramer, D. B.; Bishop, W. P.
1983-01-01
Previous fundamental research in space life sciences is examined, and consideration is devoted to studies relevant to Space Station activities. Microgravity causes weight loss, hemoconcentration, and orthostatic intolerance when astronauts returns to earth. Losses in bone density, bone calcium, and muscle nitrogen have also been observed, together with cardiovascular deconditioning, fluid-electrolyte metabolism alteration, and space sickness. Experiments have been performed with plants, bacteria, fungi, protozoa, tissue cultures, invertebrate species, and with nonhuman vertebrates, showing little effect on simple cell functions. The Spacelab first flight will feature seven life science experiments and the second flight, two. Further studies will be performed on later flights. Continued life science studies to optimize human performance in space are necessary for the efficient operation of a Space Station and the assembly of large space structures, particularly in interaction with automated machinery.
MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.
1981-01-01
The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.
1973-01-01
This chart describes the Skylab student experiment Ultraviolet (UV) From Pulsars, proposed by Neal W. Sharnon of Atlanta, Georgia. This experiment was to observe several pulsars with Skylab's UV spectrometer to determine their intensities in that portion of their spectra. A more detailed description of a pulsar's electromagnetic emission profile would be expected to further define means by which its energy is released. Unfortunately, upon examination of the photographic plates containing the data from the experiment, it was found that an alignment error of the spectrometer prevented detection of any of the pulsars. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
Life and Microgravity Sciences Spacelab Mission: Human Research Pilot Study
NASA Technical Reports Server (NTRS)
Arnaud, Sara B. (Editor); Walker, Karen R. (Editor); Hargens, Alan (Editor)
1996-01-01
The Life Sciences, Microgravity Science and Spacelab Mission contains a number of human experiments directed toward identifying the functional, metabolic and neurological characteristics of muscle weakness and atrophy during space flight. To ensure the successful completion of the flight experiments, a ground-based pilot study, designed to mimic the flight protocols as closely as possible, was carried out in the head-down tilt bed rest model. This report records the rationales, procedures, preliminary results and estimated value of the pilot study, the first of its kind, for 12 of the 13 planned experiments in human research. The bed rest study was conducted in the Human Research Facility at Ames Research Center from July 11 - August 28, 1995. Eight healthy male volunteers performed the experiments before, during and after 17 days bed rest. The immediate purposes of this simulation were to integrate the experiments, provide data in a large enough sample for publication of results, enable investigators to review individual experiments in the framework of a multi-disciplinary study and relay the experience of the pilot study to the mission specialists prior to launch.
1973-01-01
This chart describes the Skylab student experiment ED-61, Plant Growth, and experiment ED-62, Plant Phototropism. Two similar proposals were submitted by Joel G. Wordekemper of West Point, Nebraska, and Donald W. Schlack of Downey, California. Wordekemper's experiment (ED-61) was to see how the lack of gravity would affect the growth of roots and stems of plants. Schlack's experiment (ED-62) was to study the effect of light on a seed developing in zero gravity. The growth container of the rice seeds for their experiment consisted of eight compartments arranged in two parallel rows of four. Each had two windowed surfaces to allow periodic photography of the developing seedlings. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
2014 Summer Series - Robert Carvalho - Pursuing the Mysteries of the Sun: The IRIS Mission
2014-06-19
Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRIS's mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.
Plant Growth/Plant Phototropism - Skylab Student Experiment ED-61/62
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment ED-61, Plant Growth, and experiment ED-62, Plant Phototropism. Two similar proposals were submitted by Joel G. Wordekemper of West Point, Nebraska, and Donald W. Schlack of Downey, California. Wordekemper's experiment (ED-61) was to see how the lack of gravity would affect the growth of roots and stems of plants. Schlack's experiment (ED-62) was to study the effect of light on a seed developing in zero gravity. The growth container of the rice seeds for their experiment consisted of eight compartments arranged in two parallel rows of four. Each had two windowed surfaces to allow periodic photography of the developing seedlings. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
The first dedicated life sciences Spacelab mission
NASA Technical Reports Server (NTRS)
Perry, T. W.; Rummel, J. A.; Griffiths, L. D.; White, R. J.; Leonard, J. I.
1984-01-01
JIt is pointed out that the Shuttle-borne Spacelab provides the capability to fly large numbers of life sciences experiments, to retrieve and rescue experimental equipment, and to undertake multiple-flight studies. A NASA Life Sciences Flight Experiments Program has been organized with the aim to take full advantages of this capability. A description is provided of the scientific aspects of the most ambitious Spacelab mission currently being conducted in connection with this program, taking into account the First Dedicated Life Sciences Spacelab Mission. The payload of this mission will contain the equipment for 24 separate investigations. It is planned to perform the mission on two separate seven-day Spacelab flights, the first of which is currently scheduled for early 1986. Some of the mission objectives are related to the study of human and animal responses which occur promptly upon achieving weightlessness.
Planning and management of science programs on Skylab
NASA Technical Reports Server (NTRS)
Parker, R. A. R.; Sevier, J. R.
1974-01-01
Discussion of the experience gained in experiment operation planning during the Skylab mission. The Skylab flight planning activity allowed the experimenters to interact with the system and provided the flexibility to respond to contingencies both major and minor. Both these aspects contributed to make efficient use of crew time thus helping to increase the science return from the mission. Examples of the need for real time scheduling response and of the tradeoffs considered between conflicting experiment requirements are presented. General management principles derived from this experience are developed. The Skylab mission experiences, together with previous Apollo mission experiences, are shown to provide a good background for Shuttle flight planning.
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. Looking over an OSTEO experiment are Mission Specialist Laurel Clark (left) and Commander Rick d. Husband. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. Looking over an OSTEO experiment are Mission Specialist Laurel Clark (left) and Commander Rick d. Husband. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla trains on a glove box experiment. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-79 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.
Panel summary of recommendations
NASA Technical Reports Server (NTRS)
Dunbar, Bonnie J.; Coleman, Martin E.; Mitchell, Kenneth L.
1990-01-01
The following Space Station internal contamination topics were addressed: past flight experience (Skylab and Spacelab missions); present flight activities (Spacelabs and Soviet Space Station Mir); future activities (materials science and life science experiments); Space Station capabilities (PPMS, FMS, ECLSS, and U.S. Laboratory overview); manned systems/crew safety; internal contamination detection; contamination control - stowage and handling; and contamination control - waste gas processing. Space Station design assumptions are discussed. Issues and concerns are discussed as they relate to (1) policy and management, (2) subsystem design, (3) experiment design, and (4) internal contamination detection and control. The recommendations generated are summarized.
2013-07-24
ISS036-E-025489 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.
2013-07-24
ISS036-E-025487 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.
2013-07-24
ISS036-E-025484 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.
2013-07-24
ISS036-E-025491 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.
Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J
2013-06-01
The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments.
NASA Astrophysics Data System (ADS)
Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J.
2013-06-01
The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments.
Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J.
2013-01-01
The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments. PMID:23794777
NASA Technical Reports Server (NTRS)
Alfrey, Clarence P.
1995-01-01
The purpose of this contract was to design and conduct experiments that would increase our understanding of the influence of space flight on erythrokinetics and the rapid change that occurs in the red blood cell mass during spaceflight. The experiment designated E261, was flown on Space Life Science missions SLS-1 and SLS-2 (STS 40 and STS 58). Unique features of this experiment included radionuclide tracer studies during flight and frequent in-flight blood samples specifically for the first three or four days of the mission. Plasma volume measurements were made early and late in the missions. Radioactive iron kinetics studies were initiated after one or three days in microgravity since the magnitude of the red blood cell mass decrease dictated that bone marrow production must be decreased very early in the flight. The schedule was designed to study the time course of the changes that occur during spaceflight and to possibly define a mechanism for the rapid reduction in red blood cell mass.
Development of a Remote Sensing and Microgravity Student GAS Payload
NASA Technical Reports Server (NTRS)
Branly, Rolando; Ritter, Joe; Friedfeld, Robert; Ackerman, Eric; Carruthers, Carl; Faranda, Jon
1999-01-01
The G-781 Terrestrial and Atmospheric Multi-Spectral Explorer payload (TAMSE) is the result of an educational partnership between Broward and Brevard Community Colleges with the Association of Small Payload Researchers (ASPR) and the Florida Space Institute, University of Central Florida. The effort focuses on flying nine experiments, including three earth viewing remote sensing experiments, three microgravity experiments involving crystal growth, and three radiation measurement experiments. The G-781 science team, composed of both student and faculty members, has been working on this payload since 1995. The dream of flying the first Florida educational GAS experiment led to the flight of a passive Radiation dosimetry experiment on STS-91 (ASPR-GraDEx-I), which will be reflown as part of TAMSE. This project has lead to the development of a mature space science program within the schools. Many students have been positively touched by direct involvement with NASA and the GAS program as well as with other flight programs e.g. the KC-135 flight program. Several students have changed majors, and selected physics, engineering, and other science career paths as a result of the experience. The importance of interdisciplinary training is fundamental to this payload and to the teaching of the natural sciences. These innovative student oriented projects will payoff not only in new science data, but also in accomplishing training for the next generation of environmental and space scientists. The details the TAMSE payload design are presented in this paper.
Low gravity environment on-board Columbia during STS-40
NASA Technical Reports Server (NTRS)
Rogers, M. J. B.; Baugher, C. R.; Blanchard, R. C.; Delombard, R.; During, W. W.; Matthiesen, D. H.; Neupert, W.; Roussel, P.
1993-01-01
The first NASA Spacelab Life Sciences mission (SLS-I) flew 5 June to 14 June 1991 on the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's adaptation to the low gravity conditions of space flight and the body's readjustment after the mission to the 1 g environment of earth. In addition to the life sciences experiments manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several principal investigators designed and flew specialized accelerometer systems to characterize the low gravity environment. This was done to better assess the results of theft experiments. This was also the first flight of the NASA Microgravity Science and Applications Division (MSAD) sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment accelerometer (OARE). We present a brief introduction to seven STS-40 accelerometer systems and discuss and compare the resulting data.
2000-12-07
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew are taking part in In-Flight Maintenance training. Payload Specialist Ilan Ramon of Israel, project engineer April Boody, Commander Rick D. Husband and Mission Specialist Laurel Clark look over a Biotube experiment. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-07
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew are taking part in In-Flight Maintenance training. Payload Specialist Ilan Ramon of Israel, project engineer April Boody, Commander Rick D. Husband and Mission Specialist Laurel Clark look over a Biotube experiment. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2008-08-29
CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, a space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, this space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
Mass Measurement - Skylab Student Experiment ED-74
NASA Technical Reports Server (NTRS)
1973-01-01
Vincent W. Converse of Rockford, Illinois proposed Skylab's student experiment ED-74, Mass Measurement, to measure mass in a weightless environment. This chart describes Converse's experiment. Mass is the quantity of matter in any object. The gravitational force between an object and the Earth is called weight, which is a result of the Earth's gravity acting upon the object's mass. Even though objects in Skylab were apparently weightless, their mass properties were unchanged. Measurement of mass is therefore an acceptable alternative to measurement of weight. The devices used in this experiment provided accurate mass measurements of the astronauts' weights, intakes, and body wastes throughout the missions. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Inflated concepts for the earth science geostationary platform and an associated flight experiment
NASA Technical Reports Server (NTRS)
Friese, G.
1992-01-01
Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.
Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS
NASA Technical Reports Server (NTRS)
Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor
2004-01-01
A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on a glove box experiment inside the training module. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., Mission Specialist Laurel Blair Salton Clark practices an experiment while Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla observe. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
1973-01-01
Vincent W. Converse of Rockford, Illinois proposed Skylab's student experiment ED-74, Mass Measurement, to measure mass in a weightless environment. This chart describes Converse's experiment. Mass is the quantity of matter in any object. The gravitational force between an object and the Earth is called weight, which is a result of the Earth's gravity acting upon the object's mass. Even though objects in Skylab were apparently weightless, their mass properties were unchanged. Measurement of mass is therefore an acceptable alternative to measurement of weight. The devices used in this experiment provided accurate mass measurements of the astronauts' weights, intakes, and body wastes throughout the missions. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Cytoplasmic Streaming - Skylab Student Experiment ED-63
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment (ED-63), Cytoplasmic Streaming, proposed by Cheryl A. Peitz of Arapahoe High School, Littleton, Colorado. Experiment ED-63 was to observe the effect of zero-gravity on cytoplasmic streaming in the aquatic plant named Elodea, commonly called water weed or water thyme. The phenomenon of cytoplasmic streaming is not well understood, but it is recognized as the circulation mechanism of the internal materials or cytoplasm of a cell. Cytoplasm is a gelatinous substance that has the ability to change its viscosity and flow, carrying various cell materials with it. The activity can be stimulated by sunlight or heat. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2018-01-01
Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.
NASA Technical Reports Server (NTRS)
House, G.
1980-01-01
Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.
Flying the Infrared Skies: An Authentic SOFIA Educator Experience
NASA Astrophysics Data System (ADS)
Manning, J. G.
2015-11-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) flagship education effort is its Airborne Astronomy Ambassadors (AAA) program. The program flies teams of teachers on SOFIA research flights as part of an educator professional development effort enabling these teachers to experience first-hand the workings of the airborne observatory, to interact with scientists and technologists, to observe research in progress and how scientists use technology—all in support of national STEM goals. The presenter will share his own experience as an EPO escort on a recent SOFIA flight including two educator teams, providing a first-hand account of how an “authentic” science experience can exploit unique NASA assets to improve science teaching, inspire students, inform local communities, and contribute to the elevation of public science literacy.
Coarsening Experiment Prepared for Flight
NASA Technical Reports Server (NTRS)
Hickman, J. Mark
2003-01-01
The Coarsening in Solid-Liquid Mixtures-2 (CSLM-2) experiment is a materials science spaceflight experiment whose purpose is to investigate the kinetics of competitive particle growth within a liquid matrix. During coarsening, small particles shrink by losing atoms to larger particles, causing the larger particles to grow. In this experiment, solid particles of tin will grow (coarsen) within a liquid lead-tin eutectic matrix. The following figures show the coarsening of tin particles in a lead-tin (Pb-Sn) eutectic as a function of time. By conducting this experiment in a microgravity environment, we can study a greater range of solid volume fractions, and the effects of sedimentation present in terrestrial experiments will be negligible. The CSLM-2 experiment flew November 2002 on space shuttle flight STS-113 for operation on the International Space Station, but it could not be run because of problems with the Microgravity Science Glovebox in the U.S. Laboratory module. Additional samples will be sent to ISS on subsequent shuttle flights.
2000-12-07
KENNEDY SPACE CENTER, FLA. -- During In-Flight Maintenance training, STS-107 Mission Specialist Michael Anderson looks over a “Medusa,” a piece of a Biotube experiment that will be on the STS-107 mission. The Medusa is part of a watering system for plants. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-07
KENNEDY SPACE CENTER, FLA. -- During In-Flight Maintenance training, STS-107 Mission Specialist Michael Anderson looks over a “Medusa,” a piece of a Biotube experiment that will be on the STS-107 mission. The Medusa is part of a watering system for plants. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
First Post-Flight Status Report for the Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Baugher, Charles R., III
2003-01-01
The Microgravity Science Glovebox (MSG) was launched to the International Space Station (ISS) this year on the second Utilization Flight (UF2). After successful on-orbit activation, the facility began supporting an active microgravity research program. The inaugural NASA experiments operated in the unit were the Solidification Using a Baffle in Sealed Ampoules (SUBSA, A. Ostrogorski, PI), and the Pore Formation and Mobility (PFMI, R. Grugel, PI) experiments. Both of these materials science investigations demonstrated the versatility of the facility through extensive use of telescience. The facility afforded the investigators with the capability of monitoring and operating the experiments in real-time and provided several instances in which the unique combination of scientists and flight crew were able to salvage situations which would have otherwise led to the loss of a science experiment in an unmanned, or automated, environment. The European Space Agency (ESA) also made use of the facility to perform a series of four experiments that were carried to the ISS via a Russian Soyuz and subsequently operated by a Belgium astronaut during a ten day Station visit. This imaginative approach demonstrated the ability of the MSG integration team to handle a rapid integration schedule (approximately seven months) and an intensive operations interval. Interestingly, and thanks to aggressive attention from the crew, the primary limitation to experiment thru-put in these early operational phases is proving to be the restrictions on the up-mass to the Station, rather than the availability of science operations.
Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.
2016-11-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.
Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
2001-06-11
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
2001-06-11
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
New challenges for Life Sciences flight project management
NASA Technical Reports Server (NTRS)
Huntoon, C. L.
1999-01-01
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.
New challenges for Life Sciences flight project management.
Huntoon, C L
1999-01-01
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.
New challenges for life sciences flight project management
NASA Astrophysics Data System (ADS)
Huntoon, Carolyn L.
1999-09-01
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-of-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program. The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.
Swedish materials science experiment equipment
NASA Astrophysics Data System (ADS)
Jonsson, R.
1982-09-01
Details of the apparatus and experimentation performed with the Swedish MURMEC (multi-purpose Rocket-borne Materials science Experiment Carrier) and other materials science equipment for sounding rocket and airborne trials are presented. The MURMEC science modules contain four isothermal furnaces, 12 pore formation experiment furnaces, and two gradient furnaces. The modules feature a power system, experimental control, and monitoring sensors. Design details and operational features of each of the furnaces are provided, and results of the first MURMEC flight on-board a Swedish sounding rocket with the PIRAT (Pointed IR Astronomical Telescope) are discussed. Additional tests were performed using a modified NASA F-104 aircraft flown in a parabolic trajectory to produce a 0.3-0.1 g environment for 50-60 sec. Films were made of melting and resolidification processes during nine different flights using three different samples.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- After a perfect launch, spectators try to catch a last glimpse of Space Shuttle Columbia, barely visible at the top end of the twisted column of smoke. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. Headed for a 16-day research mission, Columbia's crew will be taking part in more than 80 experiment, including FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
NASA Johnson Space Center Life Sciences Data System
NASA Technical Reports Server (NTRS)
Rahman, Hasan; Cardenas, Jeffery
1994-01-01
The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.
Space transportation system biomedical operations support study
NASA Technical Reports Server (NTRS)
White, S. C.
1983-01-01
The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.
A hitchhiker's guide to an ISS experiment in under 9 months.
Nadir, Andrei James; Sato, Kevin
2017-01-01
The International Space Station National Laboratory gives students a platform to conduct space-flight science experiments. To successfully take advantage of this opportunity, students and their mentors must have an understanding of how to develop and then conduct a science project on international space station within a school year. Many factors influence the speed in which a project progresses. The first step is to develop a science plan, including defining a hypothesis, developing science objectives, and defining a concept of operation for conducting the flight experiment. The next step is to translate the plan into well-defined requirements for payload development. The last step is a rapid development process. Included in this step is identifying problems early and negotiating appropriate trade-offs between science and implementation complexity. Organizing the team and keeping players motivated is an equally important task, as is employing the right mentors. The project team must understand the flight experiment infrastructure, which includes the international space station environment, payload resource requirements and available components, fail-safe operations, system logs, and payload data. Without this understanding, project development can be impacted, resulting in schedule delays, added costs, undiagnosed problems, and data misinterpretation. The information and processes for conducting low-cost, rapidly developed student-based international space station experiments are presented, including insight into the system operations, the development environment, effective team organization, and data analysis. The details are based on the Valley Christian Schools (VCS, San Jose, CA) fluidic density experiment and penicillin experiment, which were developed by 13- and 14-year-old students and flown on ISS.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Against a backdrop of blue sky and the blue Atlantic Ocean, launch of Space Shuttle Columbia is reflected in the nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day STS-107 research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., members of the STS-107 crew discuss the experiments in the Spacehab module. Seated, in the foreground, is Mission Specialist Laurel Blair Salton Clark; standing behind her are Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Payload Specialist Ilan Ramon (foreground), of Israel, and Mission Specialist Kalpana Chawla (background) check out experiments inside the Spacehab module. They and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. . Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
Time of flight in MUSE at PIM1 at Paul Scherrer Institute
NASA Astrophysics Data System (ADS)
Lin, Wan; Gilman, Ronald; MUSE Collaboration
2016-09-01
The MUSE experiment at PIM1 at Paul Scherrer Institute in Villigen, Switzerland, measures elastic scattering of electrons and muons from a liquid hydrogen target. The intent of the experiment is to deduce whether the radius of the proton is the same when determined from the two different particle types. Precision timing is an important aspect of the experiment, used to determine particle types, reaction types, and beam momentum. Here we present results for a test setup measuring time of flight between prototypes of two detector systems to be used in the experiment, compared to Geant4 simulations. The results demonstrate time of flight resolution better than 100 ps, and beam momentum determination at the level of a few tenths of a percent. Douglass Project for Rutgers Women in Math, Science & Engineering, National Science Foundation Grant 1306126 to Rutgers University.
Motor Sensory Performance - Skylab Student Experiment ED-41
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment Motor Sensory Performance, proposed by Kathy L. Jackson of Houston, Texas. Her proposal was a very simple but effective test to measure the potential degradation of man's motor-sensory skills while weightless. Without knowing whether or not man can retain a high level of competency in the performance of various tasks after long exposure to weightlessness, this capability could not be fully known. Skylab, with its long-duration missions, provided an ideal testing situation. The experiment Kathy Jackson proposed was similar in application to the tasks involved in docking one spacecraft to another using manual control. It required one of the greatest tests of the motor-sensory capabilities of man. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Flight equipment supporting metabolic experiments on SLS-1
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Inners, L. D.
1991-01-01
Five experiments in different aspects of human metabolism will be performed on Spacelab Life Sciences-1. Nine items of equipment from the Life Sciences Laboratory Equipment inventory will be used: the rack-mounted centrifuge, the hematocrit centrifuge, the low-gravity centrifuge, a body-mass measurement device, a urine monitoring system, the Spacelab refrigerator/freezer, the Orbiter refrigerator, an in-flight blood collection system, and a pocket voice recorder. In addition, each experiment will require some specialized equipment such as incubators and culture blocks for an immunology experiment, and tracers for a fluid and electrolyte experiment and a hematology experiment. The equipment for these experiments has been developed over many years, in some cases since the Skylab program in the early 1970s, and has been certified for use on the Space Shuttle.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Commander Michael Anderson trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Anderson and other crew members Commander Rick D. Husband, Pilot William C. McCool, Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. . As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla looks over equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Mission Specialist David M. Brown trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Brown and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, trains on equipment in the training module at SPACEHAB, Cape Canaveral. Ramon and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark manipulates a piece of equipment. She and other crew members are at SPACEHAB, Port Canaveral, Fla., for Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, David M. Brown and Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
2001-06-11
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
Flight Flutter Testing of Supersonic Interceptors
NASA Technical Reports Server (NTRS)
Dublin, M.; Peller, R.
1975-01-01
A summary is presented of experiences in connection with flight flutter testing of supersonic interceptors. The planning and operational aspects involved are described along with the difficulties encountered, and the correlation between measurement and theory. Recommendations for future research and development to advance the science of flight flutter testing are included.
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. Looking over an OSTEO experiment and paperwork are (left to right) Commander Rick D. Husband; Mission Specialists Laurel Clark, David M. Brown and Ilan Ramon of Israel; and Pilot William C. “Willie” McCool. As a research mission, STS-107will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. Looking over an OSTEO experiment and paperwork are (left to right) Commander Rick D. Husband; Mission Specialists Laurel Clark, David M. Brown and Ilan Ramon of Israel; and Pilot William C. “Willie” McCool. As a research mission, STS-107will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
FOOT experiment (Foot/Ground Reaction Forces during Space Flight)
2005-06-29
ISS011-E-09831 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, works at the Canadarm2 controls while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.
FOOT experiment (Foot/Ground Reaction Forces during Space Flight)
2005-06-29
ISS011-E-09825 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, enters data into a computer while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.
Coarsening Experiment Being Prepared for Flight
NASA Technical Reports Server (NTRS)
Hickman, J. Mark
2001-01-01
The Coarsening in Solid-Liquid Mixtures-2 (CSLM-2) experiment is a materials science space flight experiment whose purpose is to investigate the kinetics of competitive particle growth within a liquid matrix. During coarsening, small particles shrink by losing atoms to larger particles, causing the larger particles to grow. In this experiment, solid particles of tin will grow (coarsen) within a liquid lead-tin eutectic matrix. The preceding figures show the coarsening of tin particles in a lead-tin eutectic as a function of time. By conducting this experiment in a microgravity environment, we can study a greater range of solid volume fractions, and the effects of sedimentation present in terrestrial experiments will be negligible. The CSLM-2 experiment is slated to fly onboard the International Space Station. The experiment will be run in the Microgravity Science Glovebox installed in the U.S. Laboratory module.
2003-01-16
KENNEDY SPACE CENTER, FLA. - A crowd by the countdown clock watches as Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Seconds after launch, Space Shuttle Columbia appears as a flaming tip of the smoke column it trails. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Seconds after launch, Space Shuttle Columbia appears as a flaming tip of the smoke column it trails. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Trailing a twisting column of smoke, Space Shuttle Columbia hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia hurtles through a perfect blue Florida sky following a flawless and uneventful countdown. Liftoff of Columbia on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program
Recent Results and Near Term Outlook for the NASA Balloon Science Program
NASA Astrophysics Data System (ADS)
Jones, William Vernon
Long-duration and conventional balloon flights in the traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines have continued in both polar and non-polar regions since the 39th COSPAR Assembly in Mysore, India. One of these established a new flight record of 55 days over Antarctica during the 2012-2013 austral season. That Super-TIGER science flight broke both the 42-day record of the CREAM science flight during the 2004-2005 season and the 54-day super pressure balloon test flight in 2008-2009. With two comets approaching the sun in 2013-2014, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System. All of the above science disciplines are interested in super pressure balloon (SPB) flights, which have been under development by NASA, and which were strongly supported by the Astro2010 Decadal Study. A 532,152 m3 (18.8 MCF) SPB with a major gamma ray astrophysics payload is planned for an ultra-long duration balloon (ULDB) test flight around and from Antarctica during the upcoming 2014-2015 season. Flights for SPB qualification to support 1000 kg science instruments to 33 km altitude have proceeded in parallel with planning for options to increase the altitude for less massive instruments that require less atmospheric overburden. The nearly constant SPB volume will provide stable altitude long-duration flights at non-polar latitudes, thereby supporting a much broader range of scientific investigations. Scientific ballooning continues to complement and enable space missions, while training young scientists and systems engineers for the workforce needed to conduct future missions. Highlights of results from past balloon-borne measurements and expected results from ongoing and planned balloon-borne experiments will be presented.
NASA Technical Reports Server (NTRS)
Herren, B.
1992-01-01
In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.
2008-07-31
ISS017-E-012288 (31 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Shear History Extensional Rheology Experiment (SHERE) rheometer inside the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
2008-07-31
ISS017-E-012283 (31 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Shear History Extensional Rheology Experiment (SHERE) rheometer inside the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
Matroshka AstroRad Radiation Experiment (MARE) on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Gaza, R.; Hussein, H.; Murrow, D.; Hopkins, J.; Waterman, G.; Milstein, O.; Berger, T.; Przybyla, B.; Aeckerlein, J.; Marsalek, K.; Matthiae, D.; Rutczynska, A.
2018-02-01
The Matroshka AstroRad Radiation Experiment is a science payload on Orion EM-1 flight. A research platform derived from MARE is proposed for the Deep Space Gateway. Feedback is invited on desired Deep Space Gateway design features to maximize its science potential.
2000-12-06
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Laurel Clark looks over equipment and paperwork for the mission. She and other crew members are taking part in In-Flight Maintenance training. As a research mission, STS-107will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-06
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Laurel Clark looks over equipment and paperwork for the mission. She and other crew members are taking part in In-Flight Maintenance training. As a research mission, STS-107will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.
2012-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.
Spacelab Accomplishments Forum 4
NASA Technical Reports Server (NTRS)
Emond, J. (Editor); Bennet, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler); Baugher, Charles R. (Technical Monitor)
1999-01-01
The Spacelab Module, exposed platforms, and supporting instrumentation were designed and developed by the European Space Agency to house advanced experiments inside the Space Shuttle cargo bay. The Spacelab program has hosted a cross-disciplinary research agenda over a 17-year flight history. Several variations of Spacelab were used to host payloads for almost every space research discipline that NASA pursues-life sciences, microgravity research, space sciences, and earth observation studies. After seventeen years of flight, Spacelab modules, pallets, or variations thereof flew on the Shuttle 36 times for a total of 375 flight days.
FOOT experiment (Foot/Ground Reaction Forces during Space Flight)
2005-06-29
ISS011-E-09822 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, uses the Cycle Ergometer with Vibration Isolation System (CEVIS) while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.
Final Science Reports of the US Experiments Flown on the Russian Biosatellite Cosmos 2229
NASA Technical Reports Server (NTRS)
Connolly, James P. (Editor); Skidmore, Michael G. (Editor); Helwig, Denice A. (Editor)
1997-01-01
Cosmos 2229 was launched on December 29, 1992, containing a biological payload including two young male rhesus monkeys, insects, amphibians, and cell cultures. The biosatellite was launched from the Plesetsk Cosmodrome in Russia for a mission duration of 11.5 days. The major research objectives were: (1) Study of adaptive response mechanisms of mammals during flight; and (2) Study of physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases. American scientists and their Russian collaborators conducted 11 experiments on this mission which included extensive preflight and postflight studies with rhesus monkeys. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included the development of experiment protocols, the fabrication of some flight instrumentation and experiment-specific ground-based hardware, the conducting of preflight and postflight testing and the analysis of biospecimens and data for the U.S. experiments. A description of the Cosmos 2229 mission is presented in this report including preflight, on-orbit and postflight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and Russia is also described, along with the associated preflight testing ot the U.S. hardware. Final Science Reports for the experiments are also included.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Commander Rick D. Husband (left) and Pilot William C. McCool train in the SPACHEAB Double Module that will fly on their mission. Husband, McCool and other crew members Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB, Cape Canaveral, Fla., to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., the STS-107 crew takes part in Crew Equipment Interface Test (CEIT) activities. From left are Mission Specialist Laurel Blair Salton Clark, Commander Rick Douglas Husband, Payload Specialist Ilan Ramon, of Israel, and Payload Commander Michael P. Anderson. A trainer is at far right. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool and Mission Specialists Kalpana Chawla and David M. Brown. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
1973-01-01
This chart describes the Skylab student experiment Motor Sensory Performance, proposed by Kathy L. Jackson of Houston, Texas. Her proposal was a very simple but effective test to measure the potential degradation of man's motor-sensory skills while weightless. Without knowing whether or not man can retain a high level of competency in the performance of various tasks after long exposure to weightlessness, this capability could not be fully known. Skylab, with its long-duration missions, provided an ideal testing situation. The experiment Kathy Jackson proposed was similar in application to the tasks involved in docking one spacecraft to another using manual control. It required one of the greatest tests of the motor-sensory capabilities of man. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
SLS-1 flight experiments preliminary significant results
NASA Technical Reports Server (NTRS)
1992-01-01
Spacelab Life Sciences-1 (SLS-1) is the first of a series of dedicated life sciences Spacelab missions designed to investigate the mechanisms involved in the physiological adaptation to weightlessness and the subsequent readaptation to 1 gravity (1 G). Hypotheses generated from the physiological effects observed during earlier missions led to the formulation of several integrated experiments to determine the underlying mechanisms responsible for the observed phenomena. The 18 experiments selected for flight on SLS-1 investigated the cardiovascular, cardiopulmonary, regulatory physiology, musculoskeletal, and neuroscience disciplines in both human and rodent subjects. The SLS-1 preliminary results gave insight to the mechanisms involved in the adaptation to the microgravity environment and readaptation when returning to Earth. The experimental results will be used to promote health and safety for future long duration space flights and, as in the past, will be applied to many biomedical problems encountered here on Earth.
The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments
NASA Technical Reports Server (NTRS)
Torrez, Jonathan
2009-01-01
The goal of this project was to assist in the creation of the appendix for the book being written about the Space Shuttle that is titled The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments. The specific responsibility of the intern was the creation of the human health and performance (life sciences) and space biology sections of the appendix. This included examining and finalizing the list of flights with life sciences and space biology experiments flown aboard them, researching the experiments performed, synopsizing each experiment into two sentences, and placing the synopses into an appendix template. Overall, approximately 70 flights had their experiments synopsized and a good method for researching and construction of the template was established this summer.
Spacelab mission 1 experiment descriptions, third edition
NASA Technical Reports Server (NTRS)
Craven, P. D. (Editor)
1983-01-01
Experiments and facilities selected for flight on the first Spacelab mission are described. Chosen from responses to the Announcement of Opportunity for the Spacelab 1 mission, the experiments cover five broad areas of investigation: atmospheric physics and Earth observations; space plasma physics; astronomy and solar physics; material sciences and technology; and life sciences. The name of the principal investigator and country is listed for each experiment.
Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn
2009-01-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.
Web Formation - Skylab Student Experiment ED-52
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment Web Formation. Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed a study of the spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
1992-09-12
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) of Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Pfister, L.; Selkirk, H. B.
1993-01-01
An overview is presented of the tropical component of STEP. The STEP cooperative experiments are described and summaries are presented of the STEP tropical ER-2 aircraft flights. STEP tropical results on dehydration and transfer and the mechanisms of upward transfer are summarized. Illustrations show flight paths for each sortie on satellite images and on 100 hPa synoptic flow charts, as well as the timing of flights with respect to overall cloudiness in the Australian region.
Citizen Science and Citizen Space Exploration: Potentials for Professional Collaboration
NASA Astrophysics Data System (ADS)
Wright, E.
2012-12-01
Citizens in Space is a project of the United States Rocket Academy, with the goal of promoting citizen science and citizen space exploration. This goal is enabled by the new reusable suborbital spacecraft now under development by multiple companies in the US. For the first phase of this project, we have acquired a contract for 10 flights on the Lynx suborbital spacecraft, which is under construction by XCOR Aerospace in Mojave, CA. This represents, to the best of our knowledge, the largest single bulk purchase of suborbital flights to date. Citizens in Space has published an open call for experiments to fly on these missions, which we expect will begin in late 2013 or early 2014. We will be selecting approx. 100 small experiments and 10 citizen astronauts to fly as payload operators. Although our primary goal is to encourage citizen science, these flight opportunities are also open to professional researchers who have payloads that meet our criteria. We believe that the best citizen-science projects are collaborations between professional and citizen scientists. We will discuss various ways in which professional scientists can collaborate with citizen scientists to take advantage of the flight opportunities provided by our program. We will discuss the capabilities of the Lynx vehicle, the 1u- and 2u-CubeSat form factor we are using for our payloads, and general considerations for payload integration. As an example of the payloads we can accommodate, we will discuss a NASA-inspired experiment to collect particles from the upper atmosphere.;
HRP Data Accessibility Current Status
NASA Technical Reports Server (NTRS)
Sams, Clarence
2009-01-01
Overview of talk: a) Content of Human Life Science data; b) Data archive structure; c) Applicable legal documents and policies; and d) Methods for data access. Life Science Data Archive (LSDA) contains research data from NASA-funded experiments, primarily data from flight experiments and ground analog data collected at NASA facilities. Longitudinal Study of Astronaut Health (LSAH) contains electronic health records (medical data) of all astronauts, including mission data. Data are collected for clinical purposes. Clinical data are analyzed by LSAH epidemiologists to identify trends in crew health and implement changes in pre-, in-, or post-flight medical care.
2000-12-07
KENNEDY SPACE CENTER, FLA. -- As part of In-Flight Maintenance training, members of the STS-107 crew check out one of the Biotube experiments that will be part of their research mission. From left (in uniform) are Payload Specialist Ilan Ramon of Israel, Mission Specialists David M. Brown and Kalpana Chawla, Pilot William C. “Willie” McCool (crouching behind the table), Commander Rick D. Husband, and Mission Specialist Laurel Clark. STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-07
KENNEDY SPACE CENTER, FLA. -- As part of In-Flight Maintenance training, members of the STS-107 crew check out one of the Biotube experiments that will be part of their research mission. From left (in uniform) are Payload Specialist Ilan Ramon of Israel, Mission Specialists David M. Brown and Kalpana Chawla, Pilot William C. “Willie” McCool (crouching behind the table), Commander Rick D. Husband, and Mission Specialist Laurel Clark. STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
1992-01-01
The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), The French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. This photograph shows Astronaut Norman Thagard performing the fluid experiment at the Fluid Experiment System (FES) facility inside the laboratory module. The FES facility had sophisticated optical systems for imaging fluid flows during materials processing, such as experiments to grow crystals from solution and solidify metal-modeling salts. A special laser diagnostic technique recorded the experiments, holograms were made for post-flight analysis, and video was used to view the samples in space and on the ground. Managed by the Marshall Space Flight Center (MSFC), the IML-1 mission was launched on January 22, 1992 aboard the Shuttle Orbiter Discovery (STS-42).
1981-01-01
The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew did research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new mini-labs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. The instruments requiring direct exposure to space were mounted outside in the open payload bay of the Shuttle. Spacelab represented the merger of science and marned spaceflight. It opened remarkable opportunities to push the frontiers of knowledge beyond the limits of research on Earth. Scientists in space performed experiments in close collaboration with their colleagues on the ground. On the Spacelab-3 mission, managed by the Marshall Space Flight Center, this versatile laboratory entered routine operation service for the next two decades. Spacelab-3 (STS-51B mission) was launched aboard Space Shuttle Orbiter Challenger on April 29, 1985.
2000-12-06
KENNEDY SPACE CENTER, FLA. -- STS-107 Pilot William C. “Willie” McCool (left) and Commander Rick D. Husband look over equipment for their mission. They and other crew members are taking part in In-Flight Maintenance training. Research mission STS-107, scheduled to launch July 19, 2001, will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science
2000-12-06
KENNEDY SPACE CENTER, FLA. -- STS-107 Pilot William C. “Willie” McCool (left) and Commander Rick D. Husband look over equipment for their mission. They and other crew members are taking part in In-Flight Maintenance training. Research mission STS-107, scheduled to launch July 19, 2001, will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science
First Materials Science Research Facility Rack Capabilities and Design Features
NASA Technical Reports Server (NTRS)
Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)
2002-01-01
The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.
2002-04-04
KENNEDY SPACE CENTER, FLA. - In the Multi-Payload Processing Facility, members of the STS-107 crew run tests on the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) experiments, part of the payload on their mission. A research mission, the primary payload is the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences (many rats). STS-107 is scheduled to launch July 11, 2002
Microgravity Science in Space Flight Gloveboxes
NASA Technical Reports Server (NTRS)
Baugher, Charles; Bennett, Nancy; Cockrell, David; Jex, David; Musick, Barry; Poe, James; Roark, Walter
1998-01-01
Microgravity science studies the influences of gravity on phenomena in fluids, materials processes, combustion, and human cell growth in the low acceleration environment of space flight. During the last decade, the accomplishment of the flight research in the field has evolved into an effective cooperation between the flight crew in the Shuttle and the ground-based investigator using real-time communication via voice and video links. This team structure has led to interactive operations in which the crew performs the experimentation while guided, as necessary, by the science investigator who formulated the investigation and who will subsequently interpret and analyze the data. One of the primary challenges to implementing this interactive research has been the necessity of structuring a means of handling fluids, gases, and hazardous materials in a manned laboratory that exhibits the novelty of weightlessness. Developing clever means of designing experiments in closed vessels is part of the solution- but the space flight requirement for one and two failure-tolerant containment systems leads to serious complications in the physical handling of sample materials. In response to the conflict between the clear advantage of human operation and judgment, versus the necessity to isolate the experiment from the crewmember and the spacecraft environment, the Microgravity Research Program has initiated a series of Gloveboxes in the various manned experiment carriers. These units provide a sealed containment vessel whose interior is under a negative pressure with respect to the ambient environment but is accessible to a crewmember through the glove ports.
Gene, Immune and Cellular Responses to Single and Combined Space Flight Conditions-B (TripleLux-B):
2015-03-31
ISS043E070945 (03/31/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti, Expedition 43 flight engineer aboard the International Space Station, is seen working on a science experiment that includes photographic documentation of Cellular Responses to Single and Combined Space Flight Conditions. Some effects of the space environment level appear to act at the cellular level and it is important to understand the underlying mechanisms of these effects. This science project uses invertebrate hemocytes to focus on two aspects of cellular function which may have medical importance. The synergy between the effects of the space radiation environment and microgravity on cellular function is the goal of this experiment along with studying the impairment of immune functions under spaceflight conditions.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- As billows of smoke and steam roll across the landscape, the fiery launch of Space Shuttle Columbia on mission STS-107 is reflected in nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Silhouetted against the blue Atlantic Ocean, Space Shuttle Columbia breaks free of the launch pad as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- A twisting column of smoke points the way to Space Shuttle Columbia at its tip as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Pulling free of Earth's gravity, and leaving a trail of smoke behind, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia seems to leap from amid the trees as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
2003-01-16
KENNEDY SPACE CENTER, FLA. - A closeup camera view shows Space Shuttle Columbia as it lifts off from Launch Pad 39A on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - All eyes in the VIP stand at KSC focus on Space Shuttle Columbia as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Photographers and spectators watch from across the turn basin as Space Shuttle Columbia begins a perfect launch from Pad 39A following a flawless and uneventful countdown. Liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia seems to leap from amid the trees as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Competing with the brilliant blue sky, flames behind Space Shuttle Columbia trail a column of smoke as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia leaps off Launch Pad 39A and the clouds of smoke and steam as it races toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- A twisting column of smoke points the way to Space Shuttle Columbia at its tip as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Through a cloud-washed blue sky above Launch Pad 39A, Space Shuttle Columbia hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
Results of the life sciences DSOs conducted aboard the space shuttle 1981-1986
NASA Technical Reports Server (NTRS)
Bungo, Michael W.; Bagian, Tandi M.; Bowman, Mark A.; Levitan, Barry M.
1987-01-01
Results are presented for a number of life sciences investigations sponsored by the Space Biomedical Research Institute at the NASA Lyndon B. Johnson Space Center and conducted as Detailed Supplementary Objectives (DSOs) on Space Shuttle flights between 1981 and 1986. An introduction and a description of the DSO program are followed by summary reports on the investigations. Reports are grouped into the following disciplines: Biochemistry and Pharmacology, Cardiovascular Effects and Fluid Shifts, Equipment Testing and Experiment Verification, Microbiology, Space Motion Sickness, and Vision. In the appendix, the status of every medical/life science DSO is presented in graphical form, which enables the flight history, the number of subjects tested, and the experiment results to be reviewed at a glance.
2003-01-16
KENNEDY SPACE CENTER, FLA. --Framed by branches across from Launch Pad 39A, Space Shuttle Columbia leaps toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Viewed from among branches across from Launch Pad 39A, Space Shuttle Columbia leaps toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
Life science experiments performed in space in the ISS/Kibo facility and future research plans
Ohnishi, Takeo
2016-01-01
Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692
Enhancements and Evolution of the Real Time Mission Monitor
NASA Technical Reports Server (NTRS)
Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn
2008-01-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and then compare it to the actual real time flight progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.
Development and Flight of the NASA-Ames Research Center Payload on Spacelab-J
NASA Technical Reports Server (NTRS)
Schmidt, Gregory K.; Ball, Sally M.; Stolarik, Thomas M.; Eodice, Michael T.
1993-01-01
Spacelab-J was an international Spacelab mission with numerous innovative Japanese and American materials and life science experiments. Two of the Spacelab-J experiments were designed over a period of more than a decade by a team from NASA-Ames Research Center. The Frog Embryology Experiment investigated and is helping to resolve a century-long quandary on the effects of gravity on amphibian development. The Autogenic Feedback Training Experiment, flown on Spacelab-J as part of a multi-mission investigation, studied the effects of Autogenic Feedback Therapy on limiting the effects of Space Motion Sickness on astronauts. Both experiments employed the use of a wide variety of specially designed hardware to achieve the experiment objectives. This paper reviews the development of both experiments, from the initial announcement of opportunity in 1978, through selection on Spacelab-J and subsequent hardware and science procedures development, culminating in the highly successful Spacelab-J flight in September 1992.
NASA Technical Reports Server (NTRS)
Anderson, M.; Rummel, J. A. (Editor); Deutsch, S. (Editor)
1979-01-01
United States space life science experiments, encompassing 27 years of experience beginning with sounding rocket flights carrying primates (1948) to the last U.S. spaceflight, the joint US/USSR Apollo Test Project (1975), are presented. The information for each experiment includes Principal Investigators, the program and mission on which it was flown, the specimens used, the objectives, protocol, equipment, results, conclusions, and bibliographic reference citations for publications derived from each experiment.
2008-10-15
ISS017-E-018411 (15 Oct. 2008) --- Russian Federal Space Agency cosmonaut Yury Lonchakov, Expedition 18 flight engineer, looks over a procedures checklist while holding Space Science P/L Crystallizer Module-1 experiment hardware in the Zvezda Service Module of the International Space Station.
2003-09-10
KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
1992-09-12
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists’ first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).
Gradient Heating Facility in the Materials Science Double Rack (MSDR) on Spacelab-1 Module
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle was designed to carry large payloads into Earth orbit. One of the most important payloads is Spacelab. The Spacelab serves as a small but well-equipped laboratory in space to perform experiments in zero-gravity and make astronomical observations above the Earth's obscuring atmosphere. In this photograph, Payload Specialist, Ulf Merbold, is working at Gradient Heating Facility on the Materials Science Double Rack (MSDR) inside the science module in the Orbiter Columbia's payload bay during STS-9, Spacelab-1 mission. Spacelab-1, the joint ESA (European Space Agency)/NASA mission, was the first operational flight for the Spacelab, and demonstrated new instruments and methods for conducting experiments that are difficult or impossible in ground-based laboratories. This facility performed, in extremely low gravity, a wide variety of materials processing experiments in crystal growth, fluid physics, and metallurgy. The Marshall Space Flight Center had overall management responsibilities.
Utilization of sounding rockets and balloons in the German Space Programme
NASA Astrophysics Data System (ADS)
Preu, Peter; Friker, Achim; Frings, Wolfgang; Püttmann, Norbert
2005-08-01
Sounding rockets and balloons are important tools of Germany's Space Programme. DLR manages these activities and promotes scientific experiments and validation programmes within (1) Space Science, (2) Earth Observation, (3) Microgravity Research and (4) Re-entry Technologies (SHEFEX). In Space Science the present focus is at atmospheric research. Concerning Earth Observation balloon-borne measurements play a key role in the validation of atmospheric satellite sounders (ENVISAT). TEXUS and MAXUS sounding rockets are successfully used for short duration microgravity experiments. The Sharp Edge Flight Experiment SHEFEX will deliver data from a hypersonic flight for the validation of a new Thermal Protection System (TPS), wind tunnel testing and numerical analysis of aerothermodynamics. Signing the Revised Esrange and Andøya Special Project (EASP) Agreement 2006-2010 in June 2004 Germany has made an essential contribution to the long-term availability of the Scandinavian ranges for the European science community.
The Global Hawk Unmanned Aerial Vehicle Acquisition Process: A Summary of Phase I Experience,
1997-01-01
8217 ]p ßSTEIM ■ nvrmim ü f ATX » LJ^P^ iiaiiiiiiaJ Mm MM» .. VHP The research described in this report was sponsored by the Defense Advanced...Flight Sciences, Northrop Grumman, Boeing, Raytheon, Westinghouse, Scaled Composites , Teledyne Ryan Aeronautical, and E-Systems, without whose...Corporation, Westinghouse, Northrop Grumman, Scaled Composites , Raytheon, Boeing, Teledyne Ryan, E-Systems, and Aurora Flight Sciences. It should be noted
NASA Technical Reports Server (NTRS)
2001-01-01
The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)
NASA Technical Reports Server (NTRS)
Page, L. W.; From, T. P.
1977-01-01
The objectives and planning activities for the Apollo-Soyuz mission are summarized. Aspects of the space flight considered include the docking module and launch configurations, spacecraft orbits, and weightlessness. The 28 NASA experiments conducted onboard the spacecraft are summarized. The contributions of the mission to the fields of astronomy, geoscience, biology, and materials sciences resulting from the experiments are explored.
Lopez-Alegria with TRAC experiment in Destiny laboratory
2007-01-02
ISS014-E-11061 (2 Jan. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, works with the Test of Reaction and Adaptation Capabilities (TRAC) experiment in the Destiny laboratory of the International Space Station. The TRAC investigation will test the theory of brain adaptation during space flight by testing hand-eye coordination before, during and after the space flight.
Virts preps MSG for Micro-5 experiment
2014-12-16
iss042e046523 (12/16/14) --- Expedition 42 Flight Engineer Terry Virts of NASA is seen here on 16 December 2014 setting up the station’s Microgravity Science Glovebox for the upcoming Micro-5 experiment. Micro-5 will use roundworms as a model organism with the microbe Salmonella typhimurium, which causes food poisoning in humans, to better understand the risks of in-flight infections in space explorers.
NASA Technical Reports Server (NTRS)
Ng, C. Y. (Editor); Sheu, Y. T. P. (Editor)
1985-01-01
The National Space Science Data Center (NSSDC) provides data from and information about space science and applications flight investigations in support of additional studies beyond those performed as the principal part of any flight mission. The Earth-orbiting spacecraft for investigations of the earth and its atmosphere is discussed. Geodetic tracking data are included in this category. The principal subject areas presented are meteorology and earth resources survey, and the spacecraft selection is made according to those subjects. All experiments on board the spacecraft are described. No attempt is made to reference investigations that are related to the above disciplines, but that are described in other volumes of this series.
Life science experiments during parabolic flight: The McGill experience
NASA Technical Reports Server (NTRS)
Watt, D. G. D.
1988-01-01
Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.
Enhancements and Evolution of the Real Time Mission Monitor
NASA Astrophysics Data System (ADS)
Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.
2008-12-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for planning discussions, as well as comparisons to real time flight tracks in progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.
Pegasus Engine Ignites after Drop from B-52 Mothership
NASA Technical Reports Server (NTRS)
1991-01-01
Against the midnight blue of a high-altitude sky, Orbital Sciences' Pegasus winged rocket booster ignites after being dropped from NASA's B-52 mothership on a July 1991 flight. A NASA chase plane for the flight is also visible above the rocket and below the B-52. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)
2000-12-07
KENNEDY SPACE CENTER, FLA. -- The STS-107 crew takes part in In-Flight Maintenance training, learning more about experiments that will be part of the mission. Seated in front (left to right) are Mission Specialist Kalpana Chawla, Payload Specialist Ilan Ramon of Israel; Commander Rick D. Husband; Mission Specialist Laurel Clark; and Pilot William C. “Willie” McCool; in back are Mission Specialists David M. Brown and Michael Anderson. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-07
KENNEDY SPACE CENTER, FLA. -- The STS-107 crew takes part in In-Flight Maintenance training, learning more about experiments that will be part of the mission. Seated in front (left to right) are Mission Specialist Kalpana Chawla, Payload Specialist Ilan Ramon of Israel; Commander Rick D. Husband; Mission Specialist Laurel Clark; and Pilot William C. “Willie” McCool; in back are Mission Specialists David M. Brown and Michael Anderson. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
The photons payload, G-494: A learning experience
NASA Technical Reports Server (NTRS)
Harris, F. R.; Gattinger, R. L.; Creutzberg, F.; Llewellyn, E. J.
1988-01-01
PHOTONS (Photometric Thermospheric Oxygen Nightglow Study) is an optical remote sensing payload developed for Get Away Special (GAS) flight by the National Research Council of Canada. The device is extremely sensitive and is suitable for making measurements of low intensity, aeronomically generated atmospheric emissions in the nadir and the limb and of Shuttle ram glow. The unit uses a sealed canister and UV transmitting viewing ports. During the flight of STS 61-C, PHOTONS received one hour of operation and aeronomic observations were made. Good diagnostic data were obtained and the science part of the experiment malfunctioned. Post flight inspection revealed that the payload was in perfect working order except for total failure of the photomultiplier detectors. The experiment and the payload are described and the flight results are discussed along with the cause of the malfunctions. It is shown that enough was learned from the flight diagnostic data and about the cause of the malfunction to conclude that the engineering flight was successful and that subsequent flight of the PHOTONS payload will be productive.
Transition Analysis for the HIFiRE-5 Vehicle
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Chang, Chau-Lyan; Li, Fei; Berger, Karen T.; Candler, Graham V.; Kimmel, Roger
2009-01-01
The Hypersonic International Flight Research and Experimentation (HIFiRE) 5 flight experiment by Air Force Research Laboratories and Australian Defense Science and Technology Organization is designed to provide in-flight boundary-layer transition data for a canonical 3D configuration at hypersonic Mach numbers. This paper outlines the progress, to date, on boundary layer stability analysis for the HIFiRE-5 flight configuration, as well as for selected test conditions from the wind tunnel experiments supporting the flight test. At flow conditions corresponding to the end of the test window, rather large values of linear amplification factor are predicted for both second mode (N>40) and crossflow (N>20) instabilities, strongly supporting the feasibility of first in-flight measurements of natural transition on a fully three-dimensional hypersonic configuration. Additional results highlight the rich mixture of instability mechanisms relevant to a large segment of the flight trajectory, as well as the effects of angle of attack and yaw angle on the predicted transition fronts for ground facility experiments at Mach 6.
Summary Status of the Space Acceleration Measurement System (SAMS), September 1993
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1993-01-01
The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the flrst Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and.the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Seeming to be perched on twin columns of fire, Space Shuttle Columbia leaps off Launch Pad 39A and races toward space on missions STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Spewing flames and billowing clouds of smoke across Launch Pad 39A, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
2003-01-16
KENNEDY SPACE CENTER, FLA. -- A mirror image in nearby water reflects the perfect launch of Space Shuttle Columbia on a perfect Florida day. Following a flawless and uneventful countdown, liftoff of the Shuttle on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Spewing flames and billowing clouds of smoke across Launch Pad 39A, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Billows of white clouds of steam and smoke frame Space Shuttle Columbia as it rises above the launch tower on Launch Pad 39A on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- A mirror image in nearby water reflects the perfect launch of Space Shuttle Columbia on a perfect Florida day. Following a flawless and uneventful countdown, liftoff of the Shuttle on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- As billows of smoke and steam roll across the landscape, the fiery launch of Space Shuttle Columbia on mission STS-107 is reflected in nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
2003-01-16
KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia outraces the multi-colored clouds of smoke and steam rising below it from Launch Pad 39A as it races toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - The VIP stand at KSC is filled with not only friends and families of the astronauts, but also representatives of Israel who came to support the first Israeli to fly on a Shuttle, Ilan Ramon. As a payload specialist, Ramon will take part in some of the research on the mission. He is also a colonel in the Israel Air Force. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
Flight Engineer Donald R. Pettit works with the InSpace experiments in the MSG in the U.S. Lab
2003-04-01
ISS006-E-41733 (1 April 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, works with the InSpace (Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions) experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
STS-50 Columbia, Orbiter Vehicle (OV) 102, crew insignia
1999-07-26
STS050-S-001 (January 1992) --- Designed by the flight crew, the insignia for the United States Microgravity Laboratory (USML-1), captures a space shuttle traveling above Earth while trailing the USML banner. The orbiter is oriented vertically in a typical attitude for microgravity science and in this position represents the numeral 1 in the mission's abbreviated title. This flight represents the first in a series of USML flights on which the primary objective is microgravity science, planned and executed through the combined efforts of the United States of America's government, industry and academia. Visible in the payload bay are the Spacelab module, and the extended duration orbiter "cryo" pallet which will be making its first flight. The small g and Greek letter mu on the Spacelab module symbolize the microgravity environment being used for research in the areas of materials science and fluid physics. The large block letter U extends outside the patch perimeter, symbolizing the potential for the experiments on this flight to expand the current boundaries of knowledge in microgravity science. The Stars and Stripes of the USML block letters and the United States landmass in the Earth scene below reflect the crew's pride in the United States origin of all onboard experiments. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections
NASA Astrophysics Data System (ADS)
Backman, D. E.; Clark, C.; Harman, P. K.
2017-12-01
NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51
NASA Technical Reports Server (NTRS)
Rummel, J. A.
1982-01-01
The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.
Multiple Payload Ejector for Education, Science and Technology Experiments
NASA Technical Reports Server (NTRS)
Lechworth, Gary
2005-01-01
The education research community no longer has a means of being manifested on Space Shuttle flights, and small orbital payload carriers must be flown as secondary payloads on ELV flights, as their launch schedule, secondary payload volume and mass permits. This has resulted in a backlog of small payloads, schedule and cost problems, and an inability for the small payloads community to achieve routine, low-cost access to orbit. This paper will discuss Goddard's Wallops Flight Facility funded effort to leverage its core competencies in small payloads, sounding rockets, balloons and range services to develop a low cost, multiple payload ejector (MPE) carrier for orbital experiments. The goal of the MPE is to provide a low-cost carrier intended primarily for educational flight research experiments. MPE can also be used by academia and industry for science, technology development and Exploration experiments. The MPE carrier will take advantage of the DARPAI NASA partnership to perform flight testing of DARPA s Falcon small, demonstration launch vehicle. The Falcon is similar to MPE fiom the standpoint of focusing on a low-cost, responsive system. Therefore, MPE and Falcon complement each other for the desired long-term goal of providing the small payloads community with a low-cost ride to orbit. The readiness dates of Falcon and MPE are complementary, also. MPE is being developed and readied for flight within 18 months by a small design team. Currently, MPE is preparing for Critical Design Review in fall 2005, payloads are being manifested on the first mission, and the carrier will be ready for flight on the first Falcon demonstration flight in summer, 2006. The MPE and attached experiments can weigh up to 900 lb. to be compatible with Falcon demonstration vehicle lift capabilities fiom Wallops, and will be delivered to the Falcon demonstration orbit - 100 nautical mile circular altitude.
Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A
2010-02-01
A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla checks out items stored in the Spacehab module. Behind her, left, is Payload Specialist Ilan Ramon, of Israel, looking over a piece of equipment. At right is a trainer. The crew is taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Port Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
1973-01-01
This chart describes the Skylab student experiment Web Formation. Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed a study of the spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission
NASA Technical Reports Server (NTRS)
1992-01-01
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).
Apollo 17 preliminary science report. [Apollo 17 investigation of Taurus-Littrow lunar region
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of the Apollo 17 flight is presented in the form of a preliminary science report. The subjects discussed are: (1) Apollo 17 site selection, (2) mission description, (3) geological investigation of landing site, (4) lunar experiments, (5) visual flight flash phenomenon, (6) volcanic studies, (7) mare ridges and related studies, (8) remote sensing and photogrammetric studies, and (9) astronomical photography. Extensive photographic data are included for all phases of the mission.
2010-07-14
ISS024-E-008369 (14 July 2010)--- Astronaut Shannon Walker, Expedition 24 flight engineer, works on the Smoke Aerosol Measurement Experiment (SAME) inside the Microgravity Science Glovebox (MSG) in the European laboratory Columbus on the International Space Station.
2010-07-14
ISS024-E-008364 (14 July 2010)--- Astronaut Shannon Walker, Expedition 24 flight engineer, works on the Smoke Aerosol Measurement Experiment (SAME) inside the Microgravity Science Glovebox (MSG) in the European laboratory Columbus on the International Space Station.
ERIC Educational Resources Information Center
Christy, Raymond M.
1975-01-01
Describes an unusual learning experience available to eighth-grade students in Louisiana through exposure to a World War II B-25 simulator. The flight simulator is used to motivate students in the science area, develop an awareness of flight problems and challenges and provide exposure to the electronics career field. (BR)
Science Fair Report: Flight of the Split-Fingered Fastball.
ERIC Educational Resources Information Center
Mitchell, Richard J.
1991-01-01
Reports on the results of an eighth grade student's experiments, conducted with a moving car, concerning the aerodynamics of a baseball in flight. Describes the peculiar diving ability of the split-fingered fastball, as well as the dancing and weaving effect of the knuckleball. (JJK)
1999-09-12
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in joint ground activities during the SL-J mission are NASA/NASDA personnel at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).
1992-09-12
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured along with George Norris in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.
Alternate NASDA Payload Specialists in the Huntsville Operations Support Center (HOSC) Spacelab
NASA Technical Reports Server (NTRS)
1992-01-01
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured along with George Norris in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.
Alternate NASDA Payload Specialists in the Huntsville Operations Support Center (HOSC) Spacelab
NASA Technical Reports Server (NTRS)
1992-01-01
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) of Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.
Joint Spacelab-J (SL-J) Activities at the Huntsville Operations Support Center (HOSC) Spacelab
NASA Technical Reports Server (NTRS)
1999-01-01
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in joint ground activities during the SL-J mission are NASA/NASDA personnel at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).
The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform
NASA Astrophysics Data System (ADS)
Bhattacharya, S.
2018-02-01
Life science research on the Deep Space Gateway platform is an important precursor for long term human exploration of deep space. Ideas for utilizing flight hardware and well characterized model organisms will be discussed.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
MIT-KSC space life sciences telescience testbed
NASA Technical Reports Server (NTRS)
1989-01-01
A Telescience Life Sciences Testbed is being developed. The first phase of this effort consisted of defining the experiments to be performed, investigating the various possible means of communication between KSC and MIT, and developing software and hardware support. The experiments chosen were two vestibular sled experiments: a study of ocular torsion produced by Y axis linear acceleration, based on the Spacelab D-1 072 Vestibular Experiment performed pre- and post-flight at KSC; and an optokinetic nystagmus (OKN)/linear acceleration interaction experiment. These two experiments were meant to simulate actual experiments that might be performed on the Space Station and to be representative of space life sciences experiments in general in their use of crew time and communications resources.
Some special sub-systems for stratospheric balloon flights in India
NASA Astrophysics Data System (ADS)
Damle, S. V.; Gokhale, G. S.; Kundapurkar, R. U.
During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.
The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science
NASA Astrophysics Data System (ADS)
He, M.; Goodman, H. M.; Blakeslee, R.; Hall, J. M.
2010-12-01
NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA’s well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when “chasing” a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool, that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map draped with real time satellite imagery. The Waypoint Planning Tool has further advanced to include satellite orbit predictions and seamlessly interfaces with the Real Time Mission Monitor which tracks the aircraft’s position when the planes are flying. This presentation will describe the capabilities and features of the Waypoint Planning Tool highlighting the real time aspect, interactive nature and the resultant benefits to the airborne science community.
The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science
NASA Technical Reports Server (NTRS)
He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John
2010-01-01
NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA's well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when "chasing" a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool, that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map draped with real time satellite imagery. The Waypoint Planning Tool has further advanced to include satellite orbit predictions and seamlessly interfaces with the Real Time Mission Monitor which tracks the aircraft s position when the planes are flying. This presentation will describe the capabilities and features of the Waypoint Planning Tool highlighting the real time aspect, interactive nature and the resultant benefits to the airborne science community.
Lockheed L-1011 Test Station installation in support of the Adaptive Performance Optimization flight
NASA Technical Reports Server (NTRS)
1997-01-01
Technicians John Huffman, Phil Gonia and Mike Kerner of NASA's Dryden Flight Research Center, Edwards, California, carefully insert a monitor into the Research Engineering Test Station during installation of equipment for the Adaptive Performance Optimization experiment aboard Orbital Sciences Corporation's Lockheed L-1011 in Bakersfield, California, May, 6, 1997. The Adaptive Performance Optimization project is designed to reduce the aerodynamic drag of large subsonic transport aircraft by varying the camber of the wing through real-time adjustment of flaps or ailerons in response to changing flight conditions. Reducing the drag will improve aircraft efficiency and performance, resulting in signifigant fuel savings for the nation's airlines worth hundreds of millions of dollars annually. Flights for the NASA experiment will occur periodically over the next couple of years on the modified wide-bodied jetliner, with all flights flown out of Bakersfield's Meadows Field. The experiment is part of Dryden's Advanced Subsonic Transport Aircraft Research program.
NASA Technical Reports Server (NTRS)
1996-01-01
A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)
Spacelab Life Sciences 1 results
NASA Technical Reports Server (NTRS)
Seddon, Rhea
1992-01-01
Results are presented from the experiments conducted by the first Shuttle/Spacelab mission dedicated entirely to the life sciences, the Spacelab Life Sciences 1, launched on June 5, 1991. The experiments carried out during the 9-day flight included investigations of changes in the human cardiovascular, pulmonary, renal/endocrine, blood, and vestibular systems that were brought about by microgravity. Results were also obtained from the preflight and postflight complementary experiments performed on rats, which assessed the suitability of rodents as animal models for humans. Most results verified, or expanded on, the accepted theories of adaptation to zero gravity.
Development and approach to low-frequency microgravity isolation systems
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1990-01-01
The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.
2010-07-15
ISS024-E-008351 (15 July 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with the Smoke Aerosol Measurement Experiment (SAME) in the Microgravity Sciences Glovebox (MSG) located in the Columbus laboratory of the International Space Station.
2000-12-05
KENNEDY SPACE CENTER, Fla. -- STS-107 crew members take part in In-Flight Maintenance training for their mission. Under the watchful eyes of SPACEHAB trainer David Butler (left), Payload Specialist Ilan Ramon of Israel (center) and Mission Specialist David M. Brown (right) check equipment and paperwork inside the SPACEHAB Double Module. Research mission STS-107, scheduled to launch July 19, 2001, will carry the SPACEHAB Double Module in its first flight into space and a broad collection of experiments ranging from material science to life science
2000-12-05
KENNEDY SPACE CENTER, Fla. -- STS-107 crew members take part in In-Flight Maintenance training for their mission. Under the watchful eyes of SPACEHAB trainer David Butler (left), Payload Specialist Ilan Ramon of Israel (center) and Mission Specialist David M. Brown (right) check equipment and paperwork inside the SPACEHAB Double Module. Research mission STS-107, scheduled to launch July 19, 2001, will carry the SPACEHAB Double Module in its first flight into space and a broad collection of experiments ranging from material science to life science
Towards understanding software: 15 years in the SEL
NASA Technical Reports Server (NTRS)
Mcgarry, Frank; Pajerski, Rose
1990-01-01
For 15 years, the Software Engineering Laboratory (SEL) at GSFC has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software, and software processes within a production software environment. The SEL comprises three major organizations: (1) the GSFC Flight Dynamics Division; (2) the University of Maryland Computer Science Department; and (3) the Computer Sciences Corporation Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents: all describing some aspect of the software engineering technology that has undergone analysis in the flight dynamics environment. The studies range from small controlled experiments (such as analyzing the effectiveness of code reading versus functional testing) to large, multiple-project studies (such as assessing the impacts of Ada on a production environment). The key findings that NASA feels have laid the foundation for ongoing and future software development and research activities are summarized.
Shuttle spacelab simulation using a Lear jet aircraft: Mission no. 3 (ASSESS program)
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.
1974-01-01
The third ASSESS mission using a Lear Jet aircraft conducted to continue the study of scientific experiment operations in a simulated Spacelab environment. Prior to the mission, research planning and equipment preparation were observed and documented. A flight readiness review for the experiment was conducted. Nine of the ten scheduled flights were completed during simulation mission and all major science objectives were accomplished. The equipment was well qualified for flight and gave little trouble; telescope malfunctions occurred early in the mission and were corrected. Both real-time and post-observation data evaluation were used to assess research progress and to plan subsequent flight observations for maximum effectiveness.
DomeGene Sample Removal from Cell Biology Experiment Facility (CBEF)
2009-03-28
ISS018-E-044235 (28 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, works on an experiment at the Ryutai fluid science experiment rack in the Kibo laboratory of the International Space Station.
Animal experimentation in Spacelab - Present and future U.S. plans
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.
1983-01-01
Current development of life-sciences hardware and experiments for the fourth Spacelab mission in the Life Sciences Flight Experiments Program at NASA Ames is reviewed. The research-animal holding facility, the general-purpose work station, and the life sciences laboratory equipment are characterized, and the 14 Ames projects accepted for the mission are listed and discussed. Several hardware systems and experimental procedures will be verified on the Spacelab-3 mission scheduled for late 1984.
Spacelab Life Sciences 1 - Dedicated life sciences mission
NASA Technical Reports Server (NTRS)
Womack, W. D.
1990-01-01
The Spacelab Life Sciences 1 (SLS-1) mission is discussed, and an overview of the SLS-1 Spacelab configuration is shown. Twenty interdisciplinary experiments, planned for this mission, are intended to explore the early stages of human and animal physiological adaptation to space flight conditions. Biomedical and gravitational biology experiments include cardiovascular and cardiopulmonary deconditioning, altered vestibular functions, altered metabolic functions (including altered fluid-electrolyte regulation), muscle atrophy, bone demineralization, decreased red blood cell mass, and altered immunologic responses.
1985-04-01
The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew performed research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new minilabs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. In this photograph, astronaut Don Lind observes the mercuric iodide growth experiment through a microscope at the vapor crystal growth furnace. The goals of this investigation were to grow near-perfect single crystals of mercuric iodide and to gain improved understanding of crystal growth by a vapor process. Mercuric iodide crystals have practical use as sensitive x-ray and gamma-ray detectors, and in portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications in diagnosis and therapy, and in astronomical instruments. Managed by the Marshall Space Flight Center, Spacelab-3 (STS-51B) was launched aboard the Space Shuttle Orbiter Challenger on April 29, 1985.
Spacelab-3 (STS-51B) Onboard Photograph
NASA Technical Reports Server (NTRS)
1985-01-01
The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew performed research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new minilabs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. In this photograph, astronaut Don Lind observes the mercuric iodide growth experiment through a microscope at the vapor crystal growth furnace. The goals of this investigation were to grow near-perfect single crystals of mercuric iodide and to gain improved understanding of crystal growth by a vapor process. Mercuric iodide crystals have practical use as sensitive x-ray and gamma-ray detectors, and in portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications in diagnosis and therapy, and in astronomical instruments. Managed by the Marshall Space Flight Center, Spacelab-3 (STS-51B) was launched aboard the Space Shuttle Orbiter Challenger on April 29, 1985.
2001-05-31
The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)
ERIC Educational Resources Information Center
Lunde, Paul; And Others
1986-01-01
In the wake of the first space voyage and in-flight experiments by a Muslim astronaut, this document focuses upon the story of Islamic science through the ages. It is intended to demonstrate the resurgence of scientific research and technological development in the Muslim world. The booklet contains chapters on: (1) science: the Islamic legacy;…
2003-01-16
KENNEDY SPACE CENTER, FLA. - In this view, Space Shuttle Columbia is almost dwarfed by the rolling clouds of smoke and steam across Launch Pad 39A. Following a flawless and uneventful countdown, launch of Columbia on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab
2002-12-06
ISS006-E-07133 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition 6 NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition 6 is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.
Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab
2002-12-06
ISS006-E-07134 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.
2014-08-05
ISS040-E-088798 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2014-08-05
ISS040-E-088800 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2014-08-05
ISS040-E-088801 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2000-12-07
KENNEDY SPACE CENTER, FLA. -- As part of In-Flight Maintenance training, members of the STS-107 crew check out one of the Biotube experiments that will be part of their research mission . From left (in uniform) are Mission Specialist David M. Brown, Payload Specialist Ilan Ramon of Israel, and Mission Specialist Kalpana Chawla; Pilot William C. “Willie” McCool (crouching behind the table); Commander Rick D. Husband; and Mission Specialist Laurel Clark. At right is project engineer April Boody. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-07
KENNEDY SPACE CENTER, FLA. -- As part of In-Flight Maintenance training, members of the STS-107 crew check out one of the Biotube experiments that will be part of their research mission . From left (in uniform) are Mission Specialist David M. Brown, Payload Specialist Ilan Ramon of Israel, and Mission Specialist Kalpana Chawla; Pilot William C. “Willie” McCool (crouching behind the table); Commander Rick D. Husband; and Mission Specialist Laurel Clark. At right is project engineer April Boody. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. Looking over the OSTEO experiment and paperwork are (at left) Mission Specialists David M. Brown and Laurel Clark and Payload Specialist Ilan Roman of Israel; Pilot William C. “Willie” McCool; and Commander Rick D. Husband. Looking on are project engineers and scientists. On the right are Mission Specialists Michael Anderson (back to camera) and Kalpana Chawla. As a research mission, STS-107will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. Looking over the OSTEO experiment and paperwork are (at left) Mission Specialists David M. Brown and Laurel Clark and Payload Specialist Ilan Roman of Israel; Pilot William C. “Willie” McCool; and Commander Rick D. Husband. Looking on are project engineers and scientists. On the right are Mission Specialists Michael Anderson (back to camera) and Kalpana Chawla. As a research mission, STS-107will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
Life science experiments performed in space in the ISS/Kibo facility and future research plans.
Ohnishi, Takeo
2016-08-01
Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success
NASA Technical Reports Server (NTRS)
Ott, Melanie N.
2010-01-01
For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.
First Materials Science Research Rack Capabilities and Design Features
NASA Technical Reports Server (NTRS)
Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.
Life Science Research In Space: The Spacelab Era
NASA Astrophysics Data System (ADS)
Farrell, R. M.; Cramer, D. B.; Reid, D. H.
1982-02-01
This manuscript summarizes the events leading to the first Spacelab mission dedicated exclusively to life sciences experimentation. This mission is currently planned for a Space Shuttle flight in the 1984-1985 time frame. Following publication of a NASA Announce ment of Opportunity in 1978, approximately 400 proposals were received from researchers in universities, government laboratories, and industrial firms both in the U. S. and abroad. In 1979, 87 candidate experiments were selected for definition studies to identify the detailed resources which would need to be accommodated by the Spacelab. These proposals addressed problems encountered in man's previous space flight experience, such as space motion sickness, cardiovascular deconditioning, muscle wasting, calcium loss and a reduction in red cell mass. Additionally, experiments were selected in areas of bioengineering, behavior and performance, Plant physiology, and cell biology. Animal species (rodents and small primates) to be investigated will be housed in a specially-developed animal holding facility which will provide all life support requirements for the animals. Human subjects will consist of a Mission Specialist Astronaut and up to four Payload Specialists. Plant species will be housed in Plant Growth Units. A general purpose work station and biological containment facility will provide the working area for much of the in-space experimentation. A comprehensive array of flight qualified laboratory equipment will be made available by NASA to Principal Investigators for in-flight use by the Payload Specialists. This equipment includes microscopes, biotelemetry systems, cameras, centrifuges, refrigerators, and similar equipment. All of this equipment has been designed for use in weightlessness. The process to develop a primary payload of about 20 experiments is now underway for Spacelab mission number four, the first dedicated life sciences flight. Under the overall guidance of NASA Headquarters, responsibility for carrying out this program rests with NASA and contractor scientists, physicians, engineers hind technicians at the Johnson Space Center, Ames Research Center, and the Kennedy Space Center. Spacelab-4 will be the first of a series of dedicated life sciences missions; future dedicated missions are planned at 18-month intervals.
Dyson works with IVGEN Experiment Payload in Columbus MSG
2010-05-03
ISS023-E-030740 (3 May 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 23 flight engineer, works with experiment hardware in the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.
Mastracchio installs MSG LSAH Decontamination System
2014-02-10
ISS038-E-044829 (10 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares to use an ultraviolet light to decontaminate hardware used for life science experiments inside the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Neutron Analysis - Skylab Student Experiment ED-76
NASA Technical Reports Server (NTRS)
1973-01-01
The rate of neutron flow is commonly referred to as a flux. The measurement of neutron fluxes in Skylab was the subject of a proposal by Terry Quist of San Antonio, Texas. This chart describes Quist's experiment, Neutron Analysis, Skylab student experiment ED-76. These measurements were considered important not only by NASA but also by the scientific community for four reasons. High energy neutrons can be harmful to human tissue if they are present in significant quantities. Fluxes of neutrons can damage film and other sensitive experimental equipment in a marner similar to those produced by x-rays or other radiation. Furthermore, neutron fluxes can be used as a calibration source for other space-oriented particle physics experiments. Finally, neutron fluxes can affect sensitive x-ray and gamma-ray astronomy observations. Quist's objectives were to measure the neutron fluxes present in Skylab and, with the assistance of NASA and other physicists, to attempt determination of their origin as well as their energy range or spectrum. This experiment had stimulated interest in further studies of neutron phenomena in space. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
International Space Station (ISS)
2002-07-10
Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
NASA Technical Reports Server (NTRS)
Choi, Sungshin Y.; Cole, Nicolas; Reyes, America; Lai, San-Huei; Klotz, Rebecca; Beegle, Janet E.; Wigley, Cecilia L.; Pletcher, David; Globus, Ruth K.
2015-01-01
Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Prior rodent experiments on the Shuttle were limited by the short flight duration. The International Space Station (ISS) provides a new platform for conducting rodent experiments under long duration conditions. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 days (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNAlater at -80C (n2group) until their return to Earth. Remaining carcasses on-orbit were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls housed in standard cages, and Ground Controls (GC) housed in flight hardware within an environmental chamber. Upon return to Earth, there were no differences in body weights between Flight (FLT) and GC at the end of the 37 days in space. Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were processed under optimal conditions in the laboratory. Liver samples dissected on-orbit yielded high quality RNA (RIN8.99+-0.59, n7). Liver samples dissected post-flight from the intact, frozen FLT carcasses yielded RIN of 7.27 +- 0.52 (n6). Additionally, wet weights of various tissues were measured. Adrenal glands and spleen showed no significant differences in FLT compared to GC although thymus and livers weights were significantly greater in FLT compared to GC. Over 3,000 tissue aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for future Biospecimen Sharing Program. Together, the RR validation flight successfully demonstrates the capability to support long-duration experimentation on the ISS to achieve both basic science and biomedical objectives.
Flight Validation of On-Demand Operations: The Deep Space One Beacon Monitor Operations Experiment
NASA Technical Reports Server (NTRS)
Wyatt, Jay; Sherwood, Rob; Sue, Miles; Szijjarto, John
2000-01-01
After a brief overview of the operational concept, this paper will provide a detailed description of the _as-flown_ flight software components, the DS1 experiment plan, and experiment results to date. Special emphasis will be given to experiment results and lessons learned since the basic system design has been previously reported. Mission scenarios where beacon operations is highly applicable will be described. Detailed cost savings estimates for a sample science mission will be provided as will cumulative savings that are possible over the next fifteen years of NASA missions.
NASA Technical Reports Server (NTRS)
Herrick, W. D.; Penegor, G. T.; Cotton, D. M.; Kaplan, G. C.; Chakrabarti, S.
1990-01-01
In September 1988 the Earth and Planetary Atmospheres Group of the Space Sciences Laboratory of the University of California at Berkeley flew an experiment on a high-altitude sounding rocket launched from the NASA Wallops Flight Facility in Virginia. The experiment, BEARS (Berkeley EUV Airglow Rocket Spectrometer), was designed to obtain spectroscopic data on the composition and structure of the earth's upper atmosphere. Consideration is given to the objectives of the BEARS experiment; the computer interface and software; the use of remote data transmission; and calibration, integration, and flight operations.
DC-8 Airborne Laboratory in flight during research mission - view from above
NASA Technical Reports Server (NTRS)
1999-01-01
The DC-8 Airborne Science Laboratroy is shown flying above a solid layer of clouds. The aircraft was transferred from the Ames Research Center to the Dryden Flight Research Center in late 1997. Over the past several years, it has undertaken a wide range of research in such fields as archeology, ecology, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, and other fields. In this photo, it is shown flying over a bank of clouds. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.
Realtime Decision Making on EO-1 Using Onboard Science Analysis
NASA Technical Reports Server (NTRS)
Sherwood, Robert; Chien, Steve; Davies, Ashley; Mandl, Dan; Frye, Stu
2004-01-01
Recent autonomy experiments conducted on Earth Observing 1 (EO-1) using the Autonomous Sciencecraft Experiment (ASE) flight software has been used to classify key features in hyperspectral images captured by EO-1. Furthermore, analysis is performed by this software onboard EO-1 and then used to modify the operational plan without interaction from the ground. This paper will outline the overall operations concept and provide some details and examples of the onboard science processing, science analysis, and replanning.
2003-10-09
The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is a state-of-the-art facility built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor is the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
2000-12-07
KENNEDY SPACE CENTER, FLA. -- As part of In-Flight Maintenance training at SPACEHAB, in Cape Canaveral, Fla., the STS-107 crew learns about Biological Research in Canisters (BRIC) experiments that will be on their mission. Seen looking over paperwork and one of the BRIC experiments are Commander Rick D. Husband (left) and Payload Specialist Ilan Ramon of Israel. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-07
KENNEDY SPACE CENTER, FLA. -- As part of In-Flight Maintenance training at SPACEHAB, in Cape Canaveral, Fla., the STS-107 crew learns about Biological Research in Canisters (BRIC) experiments that will be on their mission. Seen looking over paperwork and one of the BRIC experiments are Commander Rick D. Husband (left) and Payload Specialist Ilan Ramon of Israel. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
Definition of Throw-Away Detectors (TADs) and VLF antenna for the AMPS laboratory
NASA Technical Reports Server (NTRS)
Koons, H. C.; Fennell, J. F.
1975-01-01
A Throw Away Detector (TAD)/subsatellite to be used as an experiment platform for the test flights to map the EMI from the shuttle and during the AMPS science flights is defined. A range of instrument platforms of varying capabilities is examined with emphasis on the EMI test vehicle. The operational support requirements of TAD/subsatellites are determined. The throw away detector is envisioned as a simple instrument package for supporting specific experiments.
NASA Technical Reports Server (NTRS)
1979-01-01
A NASA News Release is presented which contains the following: (1) general release; (2) two views of Voyager 2 flight past Jupiter; (3) Voyager mission summary; (4) Voyager 1 science results; (5) Jupiter science objectives; (6) Jupiter the planet and its satellites; (7) Voyager experiments; (8) planet comparison; (9) a list of Voyager science investigators and (10) the Voyager team.
2003-01-22
One of the first materials science experiments on the International Space Station -- the Solidification Using a Baffle in Sealed Ampoules (SUBSA) -- will be conducted during Expedition Five inside the Microgravity Science Glovebox. The glovebox is the first dedicated facility delivered to the Station for microgravity physical science research, and this experiment will be the first one operated inside the glovebox. The glovebox's sealed work environment makes it an ideal place for the furnace that will be used to melt semiconductor crystals. Astronauts can change out samples and manipulate the experiment by inserting their hands into a pair of gloves that reach inside the sealed box. Dr. Aleksandar Ostrogorsky, a materials scientist from the Rensselaer Polytechnic Institute, Troy, N.Y., and the principal investigator for the SUBSA experiment, uses the gloves to examine an ampoule like the ones used for his experiment inside the glovebox's work area. The Microgravity Science Glovebox and the SUBSA experiment are managed by NASA's Marshall Space Flight Center in Huntsville, Ala.
Summary Status of the Space Acceleration Measurement System (SAMS), September 1993
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1994-01-01
The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition 6 member Don Pettit (Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)) is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. Pettit, who had been training as a backup crewmember, discusses the importance of training backups for ISS missions. He gives details on the goals and significance of the ISS, regarding experiments in various scientific disciplines such as the life sciences and physical sciences. Pettit also comments on the value of conducting experiments under microgravity. He also gives an overview of the ISS program to date, including the ongoing construction, international aspects, and the routines of ISS crewmembers who inhabit the station for four months at a time. He gives a cursory description of crew transfer procedures that will take place when STS-113 docks with ISS to drop off Pettit and the rest of Expedition 6, and retrieve the Expedition 5 crew.
Legacy of Biomedical Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Hayes, Judith C.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.
The Software Engineering Laboratory: An operational software experience factory
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon
1992-01-01
For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.
Droplet combustion experiment drop tower tests using models of the space flight apparatus
NASA Technical Reports Server (NTRS)
Haggard, J. B.; Brace, M. H.; Kropp, J. L.; Dryer, F. L.
1989-01-01
The Droplet Combustion Experiment (DCE) is an experiment that is being developed to ultimately operate in the shuttle environment (middeck or Spacelab). The current experiment implementation is for use in the 2.2 or 5 sec drop towers at NASA Lewis Research Center. Initial results were reported in the 1986 symposium of this meeting. Since then significant progress was made in drop tower instrumentation. The 2.2 sec drop tower apparatus, a conceptual level model, was improved to give more reproducible performance as well as operate over a wider range of test conditions. Some very low velocity deployments of ignited droplets were observed. An engineering model was built at TRW. This model will be used in the 5 sec drop tower operation to obtain science data. In addition, it was built using the flight design except for changes to accommodate the drop tower requirements. The mechanical and electrical assemblies have the same level of complexity as they will have in flight. The model was tested for functional operation and then delivered to NASA Lewis. The model was then integrated into the 5 sec drop tower. The model is currently undergoing initial operational tests prior to starting the science tests.
2012-05-19
CAPE CANAVERAL, Fla. – Student investigator Emily Soice is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Soice is an eighth-grade student at Johnston Middle School in Houston, Texas. Her experiment, “Hepatocyte Development in Bioscaffolds Infused with TGFB3 in Microgravity,” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods
Science at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2012-01-01
The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.
Ion Mass Spectrometer for Sporadic-E Rocket Experiments
NASA Technical Reports Server (NTRS)
Heelis, R. A.; Earle, G. D.; Pfaff, Robert
2000-01-01
NASA grant NAG5-5086 provided funding for the William B. Hanson Center for Space Sciences at the University of Texas at Dallas (UTD) to design, fabricate, calibrate, and ultimately fly two ion mass spectrometer instruments on a pair of sounding rocket payloads. Drs. R.A. Heelis and G.D. Earle from UTD were co-investigators on the project. The principal investigator for both rocket experiments was Dr. Robert Pfaff of the Goddard Space Flight Center. The overall project title was "Rocket/Radar Investigation of Lower Ionospheric Electrodynamics Associated with Intense Mid-Latitude Sporadic-E Layers". This report describes the overall objectives of the project, summarizes the instrument design and flight experiment details, and presents representative data obtained during the flights.
NASA Technical Reports Server (NTRS)
1995-01-01
A mock-up of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental 'glove' undergoes hot-loads tests at NASA's Dryden Flight Research Center, Edwards, California. The thermal ground test simulates heats and pressures the wing glove will experience at hypersonic speeds. Quartz heat lamps subject this model of a Pegasus booster rocket's right wing glove to the extreme heats it will experience at speeds approaching Mach 8. The glove has a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experimental flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)
NASA Astrophysics Data System (ADS)
Jiang, Peidong; Zhang, Jingxue
The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.
2012-05-19
CAPE CANAVERAL, Fla. – Student investigator Ryan Puri is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Puri, a tenth-grade student at San Marino High School in San Marino, Calif., is co-investigator of the student-developed experiment “Effect of Microgravity on the Antibacterial Resistance of P. aeruginosa.” The experiment is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods
1973-01-01
The rate of neutron flow is commonly referred to as a flux. The measurement of neutron fluxes in Skylab was the subject of a proposal by Terry Quist of San Antonio, Texas. This chart describes Quist's experiment, Neutron Analysis, Skylab student experiment ED-76. These measurements were considered important not only by NASA but also by the scientific community for four reasons. High energy neutrons can be harmful to human tissue if they are present in significant quantities. Fluxes of neutrons can damage film and other sensitive experimental equipment in a marner similar to those produced by x-rays or other radiation. Furthermore, neutron fluxes can be used as a calibration source for other space-oriented particle physics experiments. Finally, neutron fluxes can affect sensitive x-ray and gamma-ray astronomy observations. Quist's objectives were to measure the neutron fluxes present in Skylab and, with the assistance of NASA and other physicists, to attempt determination of their origin as well as their energy range or spectrum. This experiment had stimulated interest in further studies of neutron phenomena in space. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
2012-05-19
CAPE CANAVERAL, Fla. – Teacher Anthonette Pena is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Pena is the facilitator for the student experiment developed by a team of eighth-graders at the Capitol Hill Cluster School in Washington, D.C. The experiment, “Does Hay Bacillus Break Down Human Waste Represented by Brown Egg in Microgravity as Well as in Earth Gravity?” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods
Nuclear Emulsion - Skylab Experiment S009
NASA Technical Reports Server (NTRS)
1970-01-01
This photograph shows Skylab's Nuclear Emulsion experiment, a Skylab science facility that was mounted inside the Multiple Docking Adapter used to record the relative abundance of primary, high-energy heavy nuclei outside the Earth's atmosphere. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
STS-114 Crew Interview: Soichi Noguchi
NASA Technical Reports Server (NTRS)
2003-01-01
Soichi Noguchi, Mission Specialist 1 (MS1) representing Japan's National Space Development Agency (NASDA) is seen during a prelaunch interview. He discusses the main goals of this flight which are to take expedition 7 to the International Space Station and bring back expedition 6 to the Earth. He is also responsible for all Extravehicular (EVA) work on this mission. Expedition seven includes: Mission Specialist and Commander Yuri Malenchenko; NASA ISS Science Officer Edward Lu; and Flight Engineer Alexander Kaleri. Expedition Six includes: Commander Kenneth Bowersox; NASA ISS Science Officer Donald Petit; and Flight Engineer Nikolai Budarin. Noguchi explains the Utilization and Logistics Flight 1 (ULF1) Mission which entails the exchange of crewmembers, various supplies and experiments and the replacement of a control component on the International Space Station. This is also will be Soichi Noguchi's first spacewalk.
1990-12-04
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of WUPPE (Wisconsin Ultraviolet Photo-Polarimeter Experiment) data review at the Science Operations Area during the mission. This image shows mission activities at the Broad Band X-Ray Telescope (BBXRT) Work Station in the Science Operations Area (SOA).
Early space experiments in materials processing
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1979-01-01
A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.
2015-01-01
The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.
Assess 2: Spacelab simulation. Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
An Airborne Science/Spacelab Experiments System Simulation (ASSESS II) mission, was conducted with the CV-990 airborne laboratory in May 1977. The project studied the full range of Spacelab-type activities including management interactions, experiment selection and funding, hardware development, payload integration and checkout, mission specialist and payload specialist selection and training, mission control center payload operations control center arrangements and interactions, real time interaction during flight between principal investigators and the flight crew, and retrieval of scientific flight data. ESA established an integration and coordination center for the ESA portion of the payload as planned for Spacelab. A strongly realistic Spacelab mission was conducted on the CV-990 aircraft. U.S. and ESA scientific experiments were integrated into a payload and flown over a 10 day period, with the payload flight crew fully-confined to represent a Spacelab mission. Specific conclusions for Spacelab planning are presented along with a brief explanation of each.
LWS/SET Technology Experiment Carrier
NASA Technical Reports Server (NTRS)
Sherman, Barry; Giffin, Geoff
2002-01-01
This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be accumulated by the Project and manifested for specific flight opportunities as they become available. The SET Carrier is designed to present a standard set of interfaces to SET technology experiments and to be modular and flexible enough to interface to a variety of possible host spacecraft. The Carrier will have core components and mission unique components. Once the core carrier elements have been developed, only the mission unique components need to be defined and developed for any particular mission. This approach will minimize the mission specific cost and development schedule for a given flight opportunity. The standard set of interfaces provided by SET to experiments allows them to be developed independent of the particulars of a host spacecraft. The Carrier will provide the power, communication, and the necessary monitoring features to operate experiments. The Carrier will also provide all of the mechanical assemblies and harnesses required to adapt experiments to a particular host. Experiments may be hosted locally with the Carrier or remotely on the host spacecraft. The Carrier design will allow a single Carrier to support a variable number of experiments and will include features that support the ability to incrementally add experiments without disturbing the core architecture.
COLLIDE-2: Collisions Into Dust Experiment-2
NASA Technical Reports Server (NTRS)
Colwell, Joshua E.
2002-01-01
The Collisions Into Dust Experimental (COLLIDE-2) was the second flight of the COLLIDE payload. The payload performs six low-velocity impact experiments to study the collisions that are prevalent in planetary ring systems and in the early stages of planet formation. Each impact experiment is into a target of granular material, and the impacts occur at speeds between 1 and 100 cm/s in microgravity and in a vacuum. The experiments are recorded on digital videotape which is later analyzed. During the period of performance a plan was developed to address some of the technical issues that prevented the first flight of COLLIDE from being a complete success, and also to maximize the scientific return based on the science results from the first flight. The experiment was modified following a series of reviews of the design plan, and underwent extensive testing. The data from the experiment show that the primary goal of identifying transition regimes for low-velocity impacts based on cratering versus accretion was achieved. Following a brief period of storage, the experiment flew regimes for low-velocity impacts based on cratering versus accretion was achieved. as a Hitchhiker payload on the MACH-1 Hitchhiker bridge on STS-108 in December 2001. These data have been analyzed and submitted for publication. That manuscript is attached to this report. The experiment was retrieved in January 2002, and all six impact experiments functioned nominally. Preliminary results were reported at the Lunar and Planetary Science Conference.
Microgravity Science Glovebox - Interior Lamps
NASA Technical Reports Server (NTRS)
1997-01-01
An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1985-04-01
Activities inside the laboratory module during the Spacelab-3 mission are shown in this photograph. Left to right are astronauts Robert Overmyer, Commander of the mission; Don Lind, Mission Specialist; Lodewijk van den Berg, Payload Specialist; and William Thornton, Mission Specialist. The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew did research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new minilabs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. Spacelab-3 (STS-51B) was launched aboard the Space Shuttle Challenger on April 29, 1985. The Marshall Space Flight Center had managing responsibilities of the mission.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Choi, S.; Gong, C.; Leveson-Gower, D.; Ronca, A.; Taylor, E.; Beegle, J.
2016-01-01
Rodent research is a valuable essential tool for advancing biomedical discoveries in life sciences on Earth and in space. The National Research Counsel's Decadal survey (1) emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, new flight hardware, operations, and science capabilities were developed at NASA ARC to support commercial and government-sponsored research. The flight phases of two separate spaceflight missions (Rodent Research-1 and Rodent Research-2) have been completed and new capabilities are in development. The first flight experiments carrying 20 mice were launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4; Rodent Research-1 was dedicated to achieving both NASA validation and CASIS science objectives, while Rodent Reesearch-2 extended the period on orbit to 60 days. Groundbased control groups (housed in flight hardware or standard cages) were maintained in environmental chambers at Kennedy Space Center. Crewmembers previously trained in animal handling transferred mice from the Transporter into Habitats under simultaneous veterinary supervision by video streaming and were deemed healthy. Health and behavior of all mice on the ISS was monitored by video feed on a daily basis, and post-flight quantitative analyses of behavior were performed. The 10 mice from RR-1 Validation (16wk old, female C57Bl6/J) ambulated freely and actively throughout the Habitat, relying heavily on their forelimbs for locomotion. The first on-orbit dissections of mice were performed successfully, and high quality RNA (RIN values>9) and liver enzyme activities were obtained, validating the quality of sample recovery. Post-flight sample analysis revealed that body weights of FLT animals did not differ from ground controls (GC) housed in the same hardware, or vivarium controls (VIV) housed in standard cages. Organ weights analyzed post-flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-12-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory. 2012 Oct 06 - Astronaut Sunita Williams operating a Fluid Mixing Enclosure during SSEP Mission 2 on the International Space Station.
NASA Technical Reports Server (NTRS)
Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.
2017-01-01
The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.
Testing Microgravity Flight Hardware Concepts on the NASA KC-135
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.
2001-01-01
This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.
Earth Adventure: Virtual Globe-based Suborbital Atmospheric Greenhouse Gases Exploration
NASA Astrophysics Data System (ADS)
Wei, Y.; Landolt, K.; Boyer, A.; Santhana Vannan, S. K.; Wei, Z.; Wang, E.
2016-12-01
The Earth Venture Suborbital (EVS) mission is an important component of NASA's Earth System Science Pathfinder program that aims at making substantial advances in Earth system science through measurements from suborbital platforms and modeling researches. For example, the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) project of EVS-1 collected measurements of greenhouse gases (GHG) on local to regional scales in the Alaskan Arctic. The Atmospheric Carbon and Transport - America (ACT-America) project of EVS-2 will provide advanced, high-resolution measurements of atmospheric profiles and horizontal gradients of CO2 and CH4.As the long-term archival center for CARVE and the future ACT-America data, the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) has been developing a versatile data management system for CARVE data to maximize their usability. One of these efforts is the virtual globe-based Suborbital Atmospheric GHG Exploration application. It leverages Google Earth to simulate the 185 flights flew by the C-23 Sherpa aircraft in 2012-2015 for the CARVE project. Based on Google Earth's 3D modeling capability and the precise coordinates, altitude, pitch, roll, and heading info of the aircraft recorded in every second during each flight, the application provides users accurate and vivid simulation of flight experiences, with an active 3D visualization of a C-23 Sherpa aircraft in view. This application provides dynamic visualization of GHG, including CO2, CO, H2O, and CH4 captured during the flights, at the same pace of the flight simulation in Google Earth. Photos taken during those flights are also properly displayed along the flight paths. In the future, this application will be extended to incorporate more complicated GHG measurements (e.g. vertical profiles) from the ACT-America project. This application leverages virtual globe technology to provide users an integrated framework to interactively explore information about GHG measurements and to link scientific measurements to the rich virtual planet environment provided by Google Earth. Positive feedbacks have been received from users. It provides a good example of extending basic data visualization into a knowledge discovery experience and maximizing the usability of Earth science observations.
National Report on the NASA Sounding Rocket and Balloon Programs
NASA Technical Reports Server (NTRS)
Eberspeaker, Philip; Fairbrother, Debora
2013-01-01
The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to conduct supersonic decelerator tests. An overview of NASA's Sounding Rockets and Balloon Operations, Technology Development and Science support activities will be presented.
NASA Technical Reports Server (NTRS)
Davies, A. G.; Chien, S.; Baker, V.; Castano, R.; Cichy, B.; Doggett, T.; Dohm, J. M.; Greeley, R.; Ip, F.; Rabideau, G.
2005-01-01
ASE has successfully demonstrated that a spacecraft can be driven by science analysis and autonomously controlled. ASE is available for flight on other missions. Mission hardware design should consider ASE requirements for available onboard data storage, onboard memory size and processor speed.
2009-08-01
ISS020-E-026859 (1 Aug. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) experiment in the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
1973-01-01
W. Brian Dunlap of Youngstown, Ohio, proposed Skylab student experiment ED-78, Liquid Motion in Zero-G, a study of wave motion in a liquid. He was particularly interested in comparing surface waves over a liquid in zero-gravity with those occurring on Earth. In space, with the absence of gravity, a liquid does not necessarily take the shape of its container as it does on Earth. Adhesion forces may hold the liquid in contact with its container, but the liquid can also assume a free-floating condition. It was in this latter state that Dunlap wished to examine the behavior of surface waves. Data were recorded on videotape and subsequently converted to 16-mm film. Dunlap analyzed these data to determine periods of oscillation of free-floating globules and found agreement with the theory to be much better than expected. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
NASA Technical Reports Server (NTRS)
Cameron, Winifred Sawtell (Editor); Vostreys, Robert W. (Editor)
1988-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also included.
The Electron Spectrum above 20 GeV Measured by ATIC-2
NASA Technical Reports Server (NTRS)
Chang, J.; Schmidt, W. K. H.; Adams, James H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasigha, R. M.
2005-01-01
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment has been flown from McMurdo, Antarctica in 2000-01 (test flight) and 2002-03 (science flight). ATIC is composed of a segmented BGO calorimeter following a carbon target with scintillator tracking layers and a Silicon matrix detector at the entrance. ATIC measures the composition and energy spectra of the nuclei plus electrons. We present the electron spectrum derived from the ATIC-2 science flight, from 20 GeV to 1.5 TeV, and compare it to existing very high energy measurements from emulsion chambers and to the results of galactic propagation calculations. The good energy resolution and high statistics in the ATIC data allow detailed astrophysical interpretation of the results.
Preparation for microgravity: The role of the microgravity materials science laboratory
NASA Technical Reports Server (NTRS)
Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.
1988-01-01
A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.
CM-1 - MS Thomas and PS Linteris in Spacelab
2012-09-18
STS083-302-005 (4-8 April 1997) --- Payload specialist Gregory T. Linteris enters data on the progress of a Microgravity Sciences Laboratory (MSL-1) experiment on a lap top computer aboard the Spacelab Science Module while astronaut Donald A. Thomas, mission specialist, checks an experiment in the background. Linteris and Thomas, along with four other NASA astronauts and a second payload specialist supporting the Microgravity Sciences Laboratory (MSL-1) mission were less than a fourth of the way through a scheduled 16-day flight when a power problem cut short their planned stay.
2003-01-22
Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.
2001-12-19
KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, Cape Canaveral, Fla., Commander Rick Husband works with an experiment that will be part of the mission. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
NASA Technical Reports Server (NTRS)
Klein, H. P. (Editor); Horneck, G. (Editor)
1984-01-01
Space research in biology is presented with emphasis on flight experiment results and radiation risks. Topics discussed include microorganisms and biomolecules in the space-environment experiment ES 029 on Spacelab-1, the preliminary characterization of persisting circadian rhythms during space flight; plant growth, development, and embryogenesis during the Salyut-7 flight, and the influence of space-flight factors on viability and mutability of plants. Consideration is also given to radiation-risk estimation and its application to human beings in space, the radiation situation in space and its modification by the geomagnetic field and shielding, the quantitative interpretation of cellular heavy-ion action, and the effects of heavy-ion radiation on the brain vascular system and embryonic development.
Microgravity Science Glovebox Aboard the International Space Station
NASA Technical Reports Server (NTRS)
2003-01-01
In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).
1990-12-12
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of WUPPE data review at the Science Operations Area during the mission.
1990-12-02
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of BBKRT data review in the Science Operations Area during the mission.
Deep-Space Ka-Band Flight Experience
NASA Astrophysics Data System (ADS)
Morabito, D. D.
2017-11-01
Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.
2003-07-23
The Space Experiment Research and Processing Laboratory (SERPL) is a major new research facility under construction at the International Space Research Park located on KSC. Being developed as a partnership between KSC and the State of Florida, it will serve as the primary gateway to the International Space Station for science experiments and as a world-class home to ground-based investigations in fundamental and applied biological science. NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
2002-05-24
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-107 Payload Commander Michael Anderson (left) and 107 Payload Specialist Ilan Ramon, with the Israeli Space Agency, look at one of the main engines on Columbia. A research mission, STS-107 will carry as the primary payload the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. Another payload is FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) comprising Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. STS-107 is scheduled to launch July 11, 2002
2002-05-24
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon (left), with the Israeli Space Agency, and Payload Commander Michael Anderson pause during a payload check in the Orbiter Processing Facility. A research mission, STS-107 will carry as the primary payload the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. Another payload is FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) comprising Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. STS-107 is scheduled to launch July 11, 2002
Life sciences payloads for Shuttle
NASA Technical Reports Server (NTRS)
Dunning, R. W.
1974-01-01
The Life Sciences Program for utilization of the Shuttle in the 1980's is presented. Requirements for life sciences research experiments in space flight are discussed along with study results of designs to meet these requirements. The span of life sciences interests in biomedicine, biology, man system integration, bioinstrumentation and life support/protective systems is described with a listing of the research areas encompassed in these descriptions. This is followed by a description of the approach used to derive from the life sciences disciplines, the research functions and instrumentation required for an orbital research program. Space Shuttle design options for life sciences experiments are identified and described. Details are presented for Spacelab laboratories for dedicated missions, mini-labs with carry on characteristics and carry on experiments for shared payload missions and free flying satellites to be deployed and retrieved by the Shuttle.
2013-06-19
ISS036-E-009550 (19 June 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, installs the Fundamental and Applied Studies of Emulsion Stability (FASES) experiment container into the Central Experiment Module (CEM) Lower of Fluid Science Laboratory (FSL) in the Columbus laboratory of the International Space Station.
1970-09-01
This photograph shows Skylab's Nuclear Emulsion experiment, a Skylab science facility that was mounted inside the Multiple Docking Adapter used to record the relative abundance of primary, high-energy heavy nuclei outside the Earth's atmosphere. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
NASA Technical Reports Server (NTRS)
Biggs, Pat (Editor); Huetter, Ted (Editor)
1998-01-01
Welcome to the exciting world of aeronautics. The term aeronautics originated in France, and was derived from the Greek words for "air" and "to sail." It is the study of flight and the operation of aircraft. This educator guide explains basic aeronautical concepts, provides a background in the history of aviation, and sets them within the context of the flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They have been developed by NASA Aerospace Education Services Program specialists, who have successfully used them in countless workshops and student programs around the United States. The activities encourage students to explore the nature of flight, and experience some real-life applications of mathematics, science, and technology. The subject of flight has a wonderful power to inspire learning.
Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Level 1B2 V006 Announcement
Atmospheric Science Data Center
2018-05-22
The NASA Langley Atmospheric Science Data Center (ASDC) and Jet Propulsion Laboratory (JPL) announce the public ... SpectroPolarimetric Imager (AirMSPI) Level 1B2 V006 data for all targets acquired for flight campaigns: Radar Definition ... Experiment (RADEX) flight campaign was based out of Joint Base Lewis-McChord, Washington. The campaign focused on characterizing new ...
2008-08-29
CAPE CANAVERAL, Fla. – Technicians in the Life Science Building at NASA's Kennedy Space Center work on the FASTRACK Space Experiment Platform. The rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – Technicians in the Life Science Building at NASA's Kennedy Space Center work on the FASTRACK Space Experiment Platform. The rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. – A technician in the Life Science Building at NASA's Kennedy Space Center works on the FASTRACK Space Experiment Platform. The rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
STS-107 Payload Specialist Ilan Ramon at SPACEHAB during training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, trains on equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla looks over equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2001-12-19
KENNEDY SPACE CENTER, FLA. -- STS-107 Commander Rick Husband and Mission Specialist Laurel Clark learn to work with mission-related equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2002-01-10
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, trains on equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2002-01-10
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla scans paperwork for equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
1997-03-11
An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
NASA Bioculture System: From Experiment Definition to Flight Payload
NASA Technical Reports Server (NTRS)
Sato, Kevin Y.; Almeida, Eduardo; Austin, Edward M.
2014-01-01
Starting in 2015, the NASA Bioculture System will be available to the science community to conduct cell biology and microbiology experiments on ISS. The Bioculture System carries ten environmentally independent Cassettes, which house the experiments. The closed loop fluids flow path subsystem in each Cassette provides a perfusion-based method for maintain specimen cultures in a shear-free environment by using a biochamber based on porous hollow fiber bioreactor technology. Each Cassette contains an incubator and separate insulated refrigerator compartment for storage of media, samples, nutrients and additives. The hardware is capable of fully automated or manual specimen culturing and processing, including in-flight experiment initiation, sampling and fixation, up to BSL-2 specimen culturing, and the ability to up to 10 independent cultures in parallel for statistical analysis. The incubation and culturing of specimens in the Bioculture System is a departure from standard laboratory culturing methods. Therefore, it is critical that the PI has an understanding the pre-flight test required for successfully using the Bioculture System to conduct an on-orbit experiment. Overall, the PI will conduct a series of ground tests to define flight experiment and on-orbit implementation requirements, verify biocompatibility, and determine base bioreactor conditions. The ground test processes for the utilization of the Bioculture System, from experiment selection to flight, will be reviewed. Also, pre-flight test schedules and use of COTS ground test equipment (CellMax and FiberCell systems) and the Bioculture System will be discussed.
2012-05-19
CAPE CANAVERAL, Fla. – Student investigators Cameron Zandstra, Jack Barth and JP Peerbolte are interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. The team members are seventh- and eighth-grade students at Highland Christian School in Lake County, Ind. Their experiment, “The Effect of Microgravity on the Quality and Nutritional Value of the Seed Sprout of Germinated 92M72 Genetically-Modified Soy Bean,” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods
The National Space Science Data Center guide to international rocket data
NASA Technical Reports Server (NTRS)
Dubach, L. L.
1972-01-01
Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. One of the payload elements on the mission is the SPACEHAB Double Module in its first research flight into space. Checking equipment and paperwork inside the SPACEHAB Double Module are (left to right) Mission Specialist David M. Brown, Pilot William C. “Willie” McCool, Commander Rick D. Husband and Payload Specialist Ilan Ramon of Israel. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-05
KENNEDY SPACE CENTER, Fla. -- Taking part in In-Flight Maintenance training, the STS-107 crew poses in front of the SPACEHAB Double Module. In back are Mission Specialist Laurel Clark, Payload Specialist Ilan Ramon of Israel, and Mission Specialist Kalpana Chawla; in front are Mission Specialist David M. Brown, Commander Rick D. Husband, Pilot William C. “Willie” McCool (behind) and Mission Specialist Michael Anderson. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-05
KENNEDY SPACE CENTER, Fla. -- Taking part in In-Flight Maintenance training, the STS-107 crew poses in front of the SPACEHAB Double Module. In back are Mission Specialist Laurel Clark, Payload Specialist Ilan Ramon of Israel, and Mission Specialist Kalpana Chawla; in front are Mission Specialist David M. Brown, Commander Rick D. Husband, Pilot William C. “Willie” McCool (behind) and Mission Specialist Michael Anderson. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-06
KENNEDY SPACE CENTER, FLA. -- Members of the STS-107 crew take part in In-Flight Maintenance training for their mission. One of the payload elements on the mission is the SPACEHAB Double Module in its first research flight into space. Checking equipment and paperwork inside the SPACEHAB Double Module are (left to right) Mission Specialist David M. Brown, Pilot William C. “Willie” McCool, Commander Rick D. Husband and Payload Specialist Ilan Ramon of Israel. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-05
KENNEDY SPACE CENTER, Fla. -- Taking part in In-Flight Maintenance training, the STS-107 crew poses in front of the SPACEHAB Double Module. In back are Mission Specialist Laurel Clark, Payload Specialist Ilan Ramon of Israel and Mission Specialist Kalpana Chawla; in front are Mission Specialist David M. Brown, Commander Rick D. Husband, Pilot William C. “Willie” McCool (behind) and Mission Specialist Michael Anderson. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-05
KENNEDY SPACE CENTER, Fla. -- Taking part in In-Flight Maintenance training, the STS-107 crew poses in front of the SPACEHAB Double Module. In back are Mission Specialist Laurel Clark, Payload Specialist Ilan Ramon of Israel and Mission Specialist Kalpana Chawla; in front are Mission Specialist David M. Brown, Commander Rick D. Husband, Pilot William C. “Willie” McCool (behind) and Mission Specialist Michael Anderson. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
NASA Technical Reports Server (NTRS)
Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.
2000-01-01
The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.
1967-08-28
Marshall Space Flight Center’s (MSFC) director, Dr. Wernher von Braun (right), inspects a component of a laser experiment being conducted in MSFC’s Space Sciences Laboratory during a tour on August 28, 1967.
STS-35 Mission Manager Actions Room at the Marshall Space Flight Center Spacelab Payload Operations
NASA Technical Reports Server (NTRS)
1990-01-01
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activities at the Mission Manager Actions Room during the mission.
HUT Data Inspected at Marshall Space Flight Center During the STS-35 Mission
NASA Technical Reports Server (NTRS)
1990-01-01
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of viewing HUT data in the Mission Manager Actions Room during the mission.
TROPIX: A solar electric propulsion flight experiment
NASA Technical Reports Server (NTRS)
Hickman, J. Mark; Hillard, G. Barry; Oleson, Steven R.
1993-01-01
The Transfer Orbit Plasma Interaction Experiment (TROPIX) is a proposed scientific experiment and flight demonstration of a solar electric propulsion vehicle. Its mission goals are to significantly increase our knowledge of Earth's magnetosphere and its associated plasma environment and to demonstrate an operational solar electric upper stage (SEUS) for small launch vehicles. The scientific investigations and flight demonstration technology experiments are uniquely interrelated because of the spacecraft's interaction with the surrounding environment. The data obtained will complement previous studies of the Earth's magnetosphere and space plasma environment by supplying the knowledge necessary to attain the strategic objectives of the NASA Office of Space Science. This first operational use of a primary ion propulsion vehicle, designed to withstand the harsh environments from low Earth orbit to geosynchronous Earth orbit, may lead to the development of a new class of electric propulsion upper stages or space-based transfer vehicles and may improve future spacecraft design and safety.
[Activities of Goddard Earth Sciences and Technology Center, Maryland University
NASA Technical Reports Server (NTRS)
2003-01-01
The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.
NASA Technical Reports Server (NTRS)
Garrett, David
1972-01-01
This is the Press Kit that was given to the various media outlets that were interested in covering the Apollo 17 mission. It includes information about the moon, lunar science, concentrating on the planned mission. The kit includes information about the flight, and the trajectory, planned orbit insertion maneuvers, the extravehicular mission events, a comparison with the Apollo 16, a map of the lunar surface, and the surface activity, information about the Taurus-Littrow landing site, the planned science experiments, the power source for the experiment package and diagrams of some of the instrumentation that was used to perform the experiments.
International Space Station Medical Projects - Full Services to Mars
NASA Technical Reports Server (NTRS)
Pietrzyk, R. A.; Primeaux, L. L.; Wood, S. J.; Vessay, W. B.; Platts, S. H.
2018-01-01
The International Space Station Medical Projects (ISSMP) Element provides planning, integration, and implementation services for HRP research studies for both spaceflight and flight analog research. Through the implementation of these two efforts, ISSMP offers an innovative way of guiding research decisions to meet the unique challenges of understanding the human risks to space exploration. Flight services provided by ISSMP include leading informed consent briefings, developing and validating in-flight crew procedures, providing ISS crew and ground-controller training, real-time experiment monitoring, on-orbit experiment and hardware operations and facilitating data transfer to investigators. For analog studies at the NASA Human Exploration Research Analog (HERA), the ISSMP team provides subject recruitment and screening, science requirements integration, data collection schedules, data sharing agreements, mission scenarios and facilities to support investigators. The ISSMP also serves as the HRP interface to external analog providers including the :envihab bed rest facility (Cologne, Germany), NEK isolation chamber (Moscow, Russia) and the Antarctica research stations. Investigators working in either spaceflight or analog environments requires a coordinated effort between NASA and the investigators. The interdisciplinary nature of both flight and analog research requires investigators to be aware of concurrent research studies and take into account potential confounding factors that may impact their research objectives. Investigators must define clear research requirements, participate in Investigator Working Group meetings, obtain human use approvals, and provide study-specific training, sample and data collection and procedures all while adhering to schedule deadlines. These science requirements define the technical, functional and performance operations to meet the research objectives. The ISSMP maintains an expert team of professionals with the knowledge and experience to guide investigators science through all aspects of mission planning, crew operations, and research integration. During this session, the ISSMP team will discuss best-practices approaches for successfully preparing and conducting studies in both the flight and analog environments. Critical tips and tricks will be shown to greatly improve your chances of successfully completing your research aboard the International Space Station and in Spaceflight Analogs.
Duque works at the MSG for PromISS 2 in the Lab during Expedition Seven / 8 OPS
2003-10-27
ISS008-E-05026 (27 October 2003) --- European Space Agency (ESA) astronaut Pedro Duque (left) of Spain works with the Cervantes mission experiment PROMISS in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS). This experiment will investigate the growth processes of proteins in weightless conditions. Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, is visible at right.
Antares Orbital-2 Mission Launch
2014-07-13
NASA Administrator Charles Bolden (left), speaks with Gina Burgin, Deputy Secretary of Administration, Commonwealth of Virginia, prior to the launch of the Orbital Sciences Corporation Antares rocket, with the Cygnus cargo spacecraft aboard, Sunday, July 13, 2014, at NASA’s Wallops Flight Facility in Virginia. Cygnus will deliver over 3,000 pounds of cargo to the Expedition 40 crew at the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. Photo Credit: (NASA/Aubrey Gemignani)
NASA Astrophysics Data System (ADS)
Tóth, Balázs; Development; Operations Teams, ESA's Science Management, Payload; Teams, Science; Industry, Space
2012-06-01
The article presents the approach of the European Space Agency to promote research in weightlessness and in particular onboard the International Space Station. In order to maximize the return on investments, a strong international scientific collaboration is encouraged. These Science Teams support the preparation and utilisation of the flight hardware and exploit the measurement data. In the domain of physical sciences the topics dealt with at the time of writing the present paper cover fundamental physics, fluid physics, material sciences research and specific preparatory studies in anticipation of space exploration missions. The present article focuses on two-phase (liquid-gas phase change) heat transfer related experiments. These activities cover evaporation driven thermocapillary convection, pool- and flow boiling, evaporation and condensation of films together with wettability realted issues on both reference and structured surfaces, and heat pipe systems. Some hardware are in an advanced state of development, the feasibility of some was studied or is under definition at the time of the preparation of this paper. The objectives of the experiments are described together with their expected capabilities. Beyond the understanding of mostly fundamental physical processes, the data of all the described experiments are intended to be used to validate theoretical approaches and numerical tools, which are often developed by the Science Teams in parallel with the the flight hardware design activities of space industry.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
Perspectives future space on robotics
NASA Technical Reports Server (NTRS)
Lavery, Dave
1994-01-01
Last year's flight of the German ROTEX robot flight experiment heralded the start of a new era for space robotics. ROTEX is the first of at least 10 new robotic systems and experiments that will fly before 2000. These robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces. The robotic systems to be flown in the next five years fall into three categories: extravehicular robotic (EVR) servicers, science payload servicers, and planetary surface rovers. A description of the work on these systems is presented.
A comparison of low-gravity measurements on-board Columbia during STS-40
NASA Technical Reports Server (NTRS)
Rogers, M. J. B.; Baugher, C. R.; Blanchard, R. C.; Delombard, R.; Durgin, W. W.; Matthiesen, D. H.; Neupert, W.; Roussel, P.
1993-01-01
The first NASA Spacelab Life Sciences mission (SLS-1) flew 5 June to 14 June 1991 on the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's adaptation to the low-gravity conditions of space flight and the body's readjustment after the mission to the 1g environment of earth. In addition to the life sciences experiments manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several principal investigators designed and flew specialized accelerometer systems to better assess the results of their experiments by means of a low-gravity environment characterization. This was also the first flight of the NASA Microgravity Science and Applications Division (MSAD) sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment accelerometer (OARE). We present a brief introduction to seven STS-40 accelerometer systems and discuss and compare the resulting data. During crew sleep periods, acceleration magnitudes in the 10(exp -6) to 10(exp -5)g range were recorded in the Spacelab module and on the GAS Bridge Assembly. Magnitudes increased to the 10(exp -4) level during periods of nominal crew activity. Vernier thruster firings caused acceleration shifts on the order of 10(exp -4)g and primary thruster firings caused accelerations as great as 10(exp -2) g. Frequency domain analysis revealed typical excitation of Orbiter and Spacelab structural modes at 3.5, 4.7, 5.2, 6.2, 7, and 17 Hz.
A comparison of low-gravity measurements on-board Columbia during STS-40
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Baugher, C. R.; Blanchard, R. C.; Delombard, R.; Durgin, W. W.; Matthiesen, D. H.; Neupert, W.; Roussel, P.
1993-01-01
The first NASA Spacelab Life Sciences mission (SLS-1) flew 5 Jun. to 14 Jun. 1991 on the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's adaptation to the low-gravity conditions of space flight and the body's readjustment after the mission to the 1 g environment of earth. In addition to the life sciences experiments manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several principal investigators designed and flew specialized accelerometer systems to better assess the results of their experiments by means of a low-gravity environment characterization. This was also the first flight of the NASA Microgravity Science and Applications Division (MSAD) sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment accelerometer (OARE). A brief introduction to seven STS-40 accelerometer systems are presented and the resulting data are discussed and compared. During crew sleep periods, acceleration magnitudes in the 10(exp -6) to 10(exp -5) g range were recorded in the Spacelab module and on the GAS Bridge Assembly. Magnitudes increased to the 10(exp -4) g level during periods of nominal crew activity. Vernier thruster firings caused acceleration shifts on the order of 10(exp -4) g and primary thruster firings caused accelerations as great as 10(exp -2) g. Frequency domain analysis revealed typical excitation of Orbiter and Spacelab structural modes at 3.5, 4.7, 5.2, 6.2, 7, and 17 Hz.
2001-12-19
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, pauses during an experiment at SPACEHAB, Cape Canaveral, Fla., to talk with Mission Specialist Laurel Clark. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002.
2001-12-19
KENNEDY SPACE CENTER, FLA. - At SPACEHAB, Cape Canaveral, Fla., members of the STS-107 crew familiarize themselves with experiments and equipment for the mission. Pointing at a piece of equipment (center) is Mission Specialist Laurel Clark . At right is Mission Specialist Kalpana Chawla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2001-12-19
KENNEDY SPACE CENTER, FLA. - - STS-107 Payload Specialist Ilan Ramon, from Israel, works on an experiment at SPACEHAB, Cape Canaveral, Fla. With him is Mission Specialist Laurel Clark. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
NASA Technical Reports Server (NTRS)
Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)
1987-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
2010-08-16
A researcher with the Genesis and Rapid Intensification Processes (GRIP) experiment works aboard the NASA DC-8 during a flight over the Gulf of Mexico, Tuesday, Aug. 17, 2010. GRIP is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
Science Opportunity Analyzer (SOA): Science Planning Made Simple
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Polanskey, Carol A.
2004-01-01
.For the first time at JPL, the Cassini mission to Saturn is using distributed science operations for developing their experiments. Remote scientists needed the ability to: a) Identify observation opportunities; b) Create accurate, detailed designs for their observations; c) Verify that their designs meet their objectives; d) Check their observations against project flight rules and constraints; e) Communicate their observations to other scientists. Many existing tools provide one or more of these functions, but Science Opportunity Analyzer (SOA) has been built to unify these tasks into a single application. Accurate: Utilizes JPL Navigation and Ancillary Information Facility (NAIF) SPICE* software tool kit - Provides high fidelity modeling. - Facilitates rapid adaptation to other flight projects. Portable: Available in Unix, Windows and Linux. Adaptable: Designed to be a multi-mission tool so it can be readily adapted to other flight projects. Implemented in Java, Java 3D and other innovative technologies. Conclusion: SOA is easy to use. It only requires 6 simple steps. SOA's ability to show the same accurate information in multiple ways (multiple visualization formats, data plots, listings and file output) is essential to meet the needs of a diverse, distributed science operations environment.
Expedition 6 Crew Interviews: Nikolai Budarin FEI (Flight Engineer 1)
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition 6 Flight Engineer Nikolai Budarin is seen during a prelaunch interview. He provides details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew activities will be like (docking of a Progress unpiloted supply vehicle, maintaining the space station, conducting science experiments and performing one spacewalk), the day-to-day life on an extended stay mission, and the experiments he will be conducting on board. Budarin also discusses how his previous experiences on mir space missions will help him and ends his thoughts on how valuable the International Space Station has proven.
Science in orbit: The shuttle and spacelab experience, 1981-1986
NASA Technical Reports Server (NTRS)
1988-01-01
Significant achievements across all scientific disciplines and missions for the first six years of Shuttle flights are presented. Topics covered include science on the Space Shuttle and Spacelab, living and working in space, studying materials and processes in microgravity, observing the sun and earth, space plasma physics, atmospheric science, astronony and astrophysics, and testing new technology in space. Future research aboard the Shuttle/Spacelab is also briefly mentioned.
NASA Astrophysics Data System (ADS)
2012-05-01
Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events
DC-8 being pushed out of the Arena Arctica hangar in Kiruna, Sweden for the second flight of the SAG
NASA Technical Reports Server (NTRS)
2000-01-01
This photo shows NASA's DC-8 being pushed out of the Arena Arctica hangar in Kiruna, Sweden for the second flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE). One of Dryden's high-flying ER-2 Airborne Science aircraft, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, 'Arena Arctica' housed the instrumented aircraft and the scientists. Scientists observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew science collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. 'The collaborative campaign will provide an immense new body of information about the Arctic stratosphere,' said program scientist Dr. Michael Kurylo, NASA Headquarters. 'Our understanding of the Earth's ozone will be greatly enhanced by this research.' NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.
Aviation Science Activities for Elementary Grades. Revised.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC.
This guide contains the procedures and lists of materials needed for 105 aviation activities, demonstrations, and experiments. These activities, demonstrations, and experiments (suitable for students in all elementary grades) are organized into three sections by major topic area: (1) properties of air; (2) factors related to airplane flight; and…
DeWinne of ESA works with experiments housed in the MSG in the U.S. Laboratory
2002-11-01
ISS005-E-19073 (1 November 2002) --- Belgian Soyuz 5 Flight Engineer Frank DeWinne, of the European Space Agency (ESA), works with experiments housed in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
Pegasus Mated under Wing of B-52 Mothership - Close-up
NASA Technical Reports Server (NTRS)
1994-01-01
A close-up view of the Pegasus space-booster attached to the wing pylon of NASA's B-52 launch aircraft at NASA's Dryden Flight Research Center, Edwards, California. The Pegasus rocket booster was designed as a way to get small payloads into space orbit more easily and cost-effectively. It has also been used to gather data on hypersonic flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)
Spacelab Science Results Study
NASA Technical Reports Server (NTRS)
Naumann, R. J.; Lundquist, C. A.; Tandberg-Hanssen, E.; Horwitz, J. L.; Germany, G. A.; Cruise, J. F.; Lewis, M. L.; Murphy, K. L.
2009-01-01
Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied.
FASTSAT-HSV01 Thermal Math Model Correlation
NASA Technical Reports Server (NTRS)
McKelvey, Callie
2011-01-01
This paper summarizes the thermal math model correlation effort for the Fast Affordable Science and Technology SATellite (FASTSAT-HSV01), which was designed, built and tested by NASA's Marshall Space Flight Center (MSFC) and multiple partners. The satellite launched in November 2010 on a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska. It carried three Earth science experiments and two technology demonstrations into a low Earth circular orbit with an inclination of 72deg and an altitude of 650 kilometers. The mission has been successful to date with science experiment activities still taking place daily. The thermal control system on this spacecraft was a passive design relying on thermo-optical properties and six heaters placed on specific components. Flight temperature data is being recorded every minute from the 48 Resistance Temperature Devices (RTDs) onboard the satellite structure and many of its avionics boxes. An effort has been made to correlate the thermal math model to the flight temperature data using Cullimore and Ring's Thermal Desktop and by obtaining Earth and Sun vector data from the Attitude Control System (ACS) team to create an "as-flown" orbit. Several model parameters were studied during this task to understand the spacecraft's sensitivity to these changes. Many "lessons learned" have been noted from this activity that will be directly applicable to future small satellite programs.
STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla scans paperwork for equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
Science Data Report for the Optical Properties Monitor (OPM) Experiment
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Zwiener, James M.
1999-01-01
Long term stability of spacecraft materials when exposed to the space environment continues to be a major area of investigation. The natural and induced environment surrounding a spacecraft can decrease material performance and limit useful lifetimes. The Optical Properties Monitor (OPM) experiment provided the capability to perform the important flight testing of materials and was flown on the Russian Mir Station to study the long term effects of the natural and induced space environment on materials. The core of the OPM in-flight analysis was three independent optical instruments. These instruments included an integrating sphere spectral reflectometer, a vacuum ultraviolet spectrometer, and a Total Integrated Scatter instrument. The OPM also monitored selected components of the environment including molecular contamination. The OPM was exposed on the exterior of the Mir Docking Module for approximately 8-1/2 months. This report describes the OPM experiment, a brief background of its development, program organization, experiment description, mission overview including space environment definition, performance overview, materials data including flight and ground data, in-depth post flight analysis including ground analysis measurements and a summary discussion of the findings and results.
2009-08-28
ISS020-E-035022 (27 Aug. 2009) --- Russian cosmonaut Roman Romanenko, Expedition 20 flight engineer, uses the Russian BAR/EXPERT science payload to take various environmental measurements in the Zvezda Service Module of the International Space Station.
2013-11-10
ISS037-E-028590 (10 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 37/38 flight engineer, enters data into a computer near the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
Craig, Roger A.; Davy, William C.; Whiting, Ellis E.
1994-01-01
This paper describes the techniques developed for measuring stagnation-point radiation in NASA's cancelled Aeroassist Flight Experiment (AFE). It specifies the need for such a measurement; the types and requirements for the needed instruments; the Radiative Heating Experiment (RHE) developed for the AFE; the requirements, design parameters, and performance of the window developed for the RHE; the procedures and summary of the technique; and results of the arc-jet wind tunnel experiment conducted to demonstrate the overall concept. Subjects emphasized are the commercial implications of the knowledge to be gained by this experiment in connection with the Aeroassisted Space Transfer Vehicle (ASTV), the nonequilibrium nature of the radiation, concerns over the contribution of vacuum-ultraviolet radiation to the overall radiation, and the limit on the flight environment of the vehicle imposed by the limitations on the window material. Results show that a technique exists with which the stagnation-point radiation can be measured in flight in an environment of interest to commercial ASTV applications.
A New Direction for the NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.
2000-12-07
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialists David M. Brown (center) and Michael Anderson (right) get information about one of the Biological Research in Canisters (BRIC) experiments that will be on their mission. At left is Payload Specialist Ilan Ramon of Israel. The crew has been taking part in In-Flight Maintenance training at SPACEHAB, in Cape Canaveral, Fla., for their mission. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-07
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialists David M. Brown (center) and Michael Anderson (right) get information about one of the Biological Research in Canisters (BRIC) experiments that will be on their mission. At left is Payload Specialist Ilan Ramon of Israel. The crew has been taking part in In-Flight Maintenance training at SPACEHAB, in Cape Canaveral, Fla., for their mission. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2001-12-10
KENNEDY SPACE CENTER, FLA. -- At SPACEHAB in Cape Canaveral, Fla., STS-107 Mission Specialists Ilan Ramon of Israel and Laurel Clark check out the equipment for the mission. STS-107 is a research mission, and the primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Among the experiments is a Hitchhiker carrier system, modular and expandable in accordance with payload requirements. STS-107 is scheduled to launch in June 2002
Microgravity Science Glovebox - Airlock
NASA Technical Reports Server (NTRS)
1997-01-01
Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door removed. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Working Volume
NASA Technical Reports Server (NTRS)
1997-01-01
Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (silver disk) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Airlock
NASA Technical Reports Server (NTRS)
1997-01-01
Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
NASA Technical Reports Server (NTRS)
Cassanto, John M.; Cassanto, Valerie A.
1988-01-01
Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Cushman, Paula P.
1997-01-01
Preliminary definition of all of the necessary materials, labor, services, and facilities necessary to provide science requirement definition, initiate hardware development activities, and provide an update flight program proposal consistent with the NRA selection letter. The major tasks identified in this SOW are in the general category of science requirements determination, instrument definition, and updated flight program proposal. The Contractor shall define preliminary management, technical and integration requirements for the program, including improved cost/schedule estimates. The Contractor shall identify new technology requirements, define experiment accommodations and operational requirements and negotiate procurement of any long lead items, if required, with the government.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua
1997-01-01
Preliminary definition of all of the necessary materials, labor, services, and facilities necessary to provide science requirement definition, initiate hardware development activities, and provide an updated flight program proposal consistent with the NRA selection letter. The major tasks identified in this SOW are in the general category of science requirements determination, instrument definition, and updated flight program proposal. The Contractor shall define preliminary management, technical and integration requirements for the program, including improved cost/schedule estimates. The Contractor shall identify new technology requirements, define experiment accommodations and operational requirements and negotiate procurement of any long lead items, if required, with the government.
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Maki, Justin N.; Cucullu, Gordon C.
2008-01-01
Package Qualification and Verification (PQV) of advanced electronic packaging and interconnect technologies and various other types of qualification hardware for the Mars Exploration Rover/Mars Science Laboratory flight projects has been performed to enhance the mission assurance. The qualification of hardware (Engineering Camera and Platinum Resistance Thermometer, PRT) under extreme cold temperatures has been performed with reference to various project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times (3x) the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations and mission phases. Qualification has been performed by subjecting above flight-like qual hardware to the environmental temperature extremes and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experiments of flight like hardware qualification test results have been described in this paper.
Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.
1998-01-01
The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.
Space Processing Applications Rocket (SPAR) project SPAR 7
NASA Technical Reports Server (NTRS)
Poorman, R. M.
1983-01-01
The postflight reports of each of the Principal Investigators of three selected science payloads are presented in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). Pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition are described including design, fabrication and testing. Containerless processing technology, containerless processing bubble dynamics, and comparative alloy solidification are the experiments discussed.
Creamer works with IVGEN Experiment Payload in Columbus MSG
2010-05-03
ISS023-E-033108 (6 May 2010) --- NASA astronaut T.J. Creamer, Expedition 23 flight engineer, is pictured near the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.
Creamer works with IVGEN Experiment Payload in Columbus MSG
2010-05-03
ISS023-E-033107 (6 May 2010) --- NASA astronaut T.J. Creamer, Expedition 23 flight engineer, is pictured near the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.
STS-58 crewmembers participate in baseline data collection
1993-09-29
S93-45364 (29 Sept 1993) --- Astronaut David A. Wolf, mission specialist, participates in pre-flight data collection for the cardiovascular experiments scheduled to fly aboard Columbia for the Spacelab Life Sciences (SLS-2) mission.
Lockheed L-1011 TriStar to support Adaptive Performance Optimization study with NASA F-18 chase plan
NASA Technical Reports Server (NTRS)
1995-01-01
This Lockheed L-1011 Tristar, seen here June 1995, is currently the subject of a new flight research experiment developed by NASA's Dryden Flight Research Center, Edwards, California, to improve the effiecency of large transport aircraft. Shown with a NASA F-18 chase plane over California's Sierra Nevada mountains during an earlier baseline flight, the jetliner operated by Oribtal Sciences Corp., recently flew its first data-gathering mission in the Adaptive Performance Optimization project. The experiment seeks to reduce fuel comsumption of large jetliners by improving the aerodynamic efficiency of their wings at cruise conditions. A research computer employing a sophisticated software program adapts to changing flight conditions by commanding small movements of the L-1011's outboard ailerons to give its wings the most efficient - or optimal - airfoil. Up to a dozen research flights will be flown in the current and follow-on phases of the project over the next couple years.
1997-01-14
The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.
1998-12-02
Richard G. (Dick) Ewers became a pilot in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, California, in May 1998. His flying duties focus on operation of the Airborne Science DC-8 and Systems Research F/A-18 aircraft, but he also maintains qualifications in the King Air and T-34C. He has more than 32 years and nearly 9,000 hours of military and civilian flight experience in all types of aircraft from jet fighters to blimps. Ewers came to NASA Dryden from a position as an engineering test pilot with Northrop Grumman's Electronic Sensors and Systems Division (formerly Westinghouse's Electronic Systems Group). He spent eight and a half years with Westinghouse flight testing radar and forward looking infrared systems under development for military and civilian use. Before going to work for Westinghouse, Ewers served for more than 21 years as a U.S. Marine Corps fighter and test pilot, flying F-4, A-4, and F/A-18 aircraft. He underwent flight training at Naval Air Station Pensacola, Fla., in 1969-70. He was subsequently assigned to both fighter/attack and reconnaissance squadrons before ultimately commanding an F-4S squadron for two years. Additionally, his flying included combat service in Vietnam and operational exchange tours with both U.S. Navy and U.S. Air Force squadrons flying F-4s around the world, including off aircraft carriers. Ewers graduated from the U.S. Naval Test Pilot School in 1981 and subsequently served two tours as a test pilot at the Naval Air Test Center, Patuxent River, Md. Most of his flight test experience was with the F/A-18 Hornet. He retired from the Marine Corps in 1989 with the rank of lieutenant colonel. Ewers graduated from the U.S. Air Force Academy in 1968 with a bachelor of science degree in engineering mechanics. He earned a master of science degree in aeronautical systems from the University of West Florida in 1970.
Goddard Space Flight Center solar array missions, requirements and directions
NASA Technical Reports Server (NTRS)
Gaddy, Edward; Day, John
1994-01-01
The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.
STO-2: Support for 4th Year Operations, Recovery, and Science ASU Co-I
NASA Astrophysics Data System (ADS)
Groppi, Christopher
This is a Co-Investigator proposal for "STO-2: Support for 4th Year Operations, Recovery, and Science" with Prof. Christopher K. Walker (University of Arizona) as PI. As a participant in the STO-2 mission, ASU will participate in instrument design and construction, mission I&T, flight operations and data analysis. ASU has unique capabilities in the field of direct metal micromachining, which it will bring to bear on the STO-2 cold optical assembly, flight mixers and LO hardware. In addition, our extensive experience with receiver integration and test will supplement the capabilities of the PI institution during the I&T phase at the University of Arizona, CSBF (Palestine, TX) and in Antarctica. Both the ASU PI and student will also participate in data analysis and publication after the flight.
2012-05-19
CAPE CANAVERAL, Fla. – Dr. Freya Shephard is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Shephard is a researcher from the University of Nottingham in the United Kingdom and mentor to Paul Warren, an eleventh-grade student investigator from Henry E. Lackey High School in Charles County, Md. Warren’s experiment “Physiological Effects of Microgravity and Increased Levels of Radiation on Wild Type and Genetically Engineered Caenorhabditis elegans,” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods
Flight- and ground-test correlation study of BMDO SDS materials: Phase 1 report
NASA Technical Reports Server (NTRS)
Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Stiegman, Albert E.; Kenny, James T.; Liang, Ranty H.
1993-01-01
The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a test bed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground exposure evaluation was conducted using the FAST atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 2) atoms/sq. cm. The ground-exposed materials' fluence of 2.0 - 2.5 x 10(exp 2) atoms/sq. cm permits direct comparison of ground-exposed materials' performance with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground exposure are presented in this publication.
NASA Airborne Astronomy Ambassadors (AAA)
NASA Astrophysics Data System (ADS)
Backman, D. E.; Harman, P. K.; Clark, C.
2016-12-01
NASA's Airborne Astronomy Ambassadors (AAA) is a three-part professional development (PD) program for high school physics and astronomy teachers. The AAA experience consists of: (1) blended-learning professional development composed of webinars, asynchronous content learning, and a series of hands-on workshops (2) a STEM immersion experience at NASA Armstrong Flight Research Center's B703 science research aircraft facility in Palmdale, California, and (3) ongoing participation in the AAA community of practice (CoP) connecting participants with astrophysics and planetary science Subject Matter Experts (SMEs). The SETI Institute (SI) is partnering with school districts in Santa Clara and Los Angeles Counties during the AAA program's "incubation" period, calendar years 2016 through 2018. AAAs will be selected by the school districts based on criteria developed during spring 2016 focus group meetings led by the program's external evaluator, WestEd.. Teachers with 3+ years teaching experience who are assigned to teach at least 2 sections in any combination of the high school courses Physics (non-AP), Physics of the Universe (California integrated model), Astronomy, or Earth & Space Sciences are eligible. Partner districts will select at least 48 eligible applicants with SI oversight. WestEd will randomly assign selected AAAs to group A or group B. Group A will complete PD in January - June of 2017 and then participate in SOFIA science flights during fall 2017 (SOFIA Cycle 5). Group B will act as a control during the 2017-18 school year. Group B will then complete PD in January - June of 2018 and participate in SOFIA science flights in fall 2018 (Cycle 6). Under the current plan, opportunities for additional districts to seek AAA partnerships with SI will be offered in 2018 or 2019. A nominal two-week AAA curriculum component will be developed by SI for classroom delivery that will be aligned with selected California Draft Science Framework Disciplinary Core Ideas, Crosscutting Concepts, and Science and Engineering Practices. (The California Draft Framework in turn is aligned with NGSS). The AAA program will demonstrate student gains in standards-based student learning, measure changes in student attitudes towards STEM, and observe & record Ambassadors' implementation of curricular changes.
2011-08-15
ISS028-E-025736 (15 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses a computer to activate the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. Furukawa was preparing to conduct experiments with the Shear History Extensional Rheology Experiment (SHERE) hardware inside the MSG.
2011-08-15
ISS028-E-025737 (15 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses a computer to activate the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. Furukawa was preparing to conduct experiments with the Shear History Extensional Rheology Experiment (SHERE) hardware inside the MSG.
Apollo 14: Science at Fra Mauro.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The many scientific activities and experiments performed during the Apollo 14 Mission are presented in a descriptive, non-technical format. Content relates to experiments on the lunar surface and to those performed while traveling in space, and provides a great deal of information about the flight. Many photographs from the journey, a map of the…
STS-66 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.
STS-66 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W., Jr.
1995-02-01
The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.
Phase 1 research program overview
NASA Technical Reports Server (NTRS)
Uri, J. J.; Lebedev, O. N.
2001-01-01
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.
Phase 1 research program overview.
Uri, J J; Lebedev, O N
2001-01-01
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.
Advanced Colloids Experiment-1 (ACE-1)
2013-07-22
ISS036-E-023770 (22 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts science work with the ongoing experiment Advanced Colloids Experiment-1 (ACE-1) inside the Fluids Integrated Rack. The experiment observes colloids, microscopic particles evenly dispersed throughout materials, with the potential for manufacturing improved materials and products on Earth. Cassidy is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.
Science Officer Whitson installs SUBSA in MSG
2002-07-05
ISS005-E-06787 (5 July 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works near the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS). Whitson spent much of the morning installing the Solidification Using a Baffle in Sealed Ampoules (SUBSA) experiment in the MSG. The SUBSA installation will be completed once the MSG is activated.
Research and technology activities at Ames Research Center's Biomedical Research Division
NASA Technical Reports Server (NTRS)
Martello, N.
1985-01-01
Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.
Using Spacelab as a precursor of science operations for the Space Station
NASA Technical Reports Server (NTRS)
Marmann, R. A.
1997-01-01
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.
GeneLab: A Systems Biology Platform for Spaceflight Omics Data
NASA Technical Reports Server (NTRS)
Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph
2015-01-01
NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and deep curation of metadata for integrative analysis, allowing researchers to uncover cellular networks as observed in systems biology platforms. Consequently, the scientific community will have access to a more complete picture of functional and regulatory networks responsive to the spaceflight environment.. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and enable emerging terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space. As a result, open access to the data will foster new hypothesis-driven research for future spaceflight studies spanning basic science to translational science.
Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lee, M. G.
1995-01-01
The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.
Zero Gravity Research Facility User's Guide
NASA Technical Reports Server (NTRS)
Thompson, Dennis M.
1999-01-01
The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.
The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stagg, Elizabeth
2004-01-01
In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.
NASA Technical Reports Server (NTRS)
Stodieck, Louis S.; Robinson, M. C.; Luttges, M. W.
1994-01-01
The Generic Bioprocessing Apparatus (BPA) payload was developed by BioServe to support the commercial flight development needs of our specialized consortia comprised of business, academic, and government entities. The consortia have commitments to explore commercial opportunities in bioprocessing, biomedical models, and closed agricultural systems. In addition, some members of BioServe have interests in the development and/or qualification of enabling flight hardware used in life sciences space flight testing. Some business and academic entities have interests in more than one of these consortia. To aid in payload development, flight, and analysis, each consortium member contributes resources ranging from proprietary expertise and materials, to hardware and cash. Professionals from business, academia, and government often interact with each other via graduate research assistants who do much of the 'hands-on' payload preparation and subsequent data analyses. The GBA supported research, testing, and development activities for each different BioServe consortium. It produced an environment in which professionals from diverse backgrounds came together with a single focus. And, it provided a truly novel learning environment for a youthful new cadre of space professionals committed to the exploration of commercial opportunities presented by space. Since the GBA supported a large number of different experiments, this paper briefly describes the payload characteristics and the essential operations of the payload. A summary of the experiments is presented. Finally, a few of the experiments are described in detail highlighting some novel effects of space flight on life science systems. Portions of the reported work have or will appear in appropriate archival journals as cited in the bibliography. In several instances, data collected from USML-1 have been supplemented with related data collected on more recent STS missions.
Space shuttle and life sciences
NASA Technical Reports Server (NTRS)
Mason, J. A.
1977-01-01
During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.
Applied aerodynamics experience for secondary science teachers and students
NASA Technical Reports Server (NTRS)
Abbitt, John D., III; Carroll, Bruce F.
1992-01-01
The Department of Aerospace Engineering, Mechanics & Engineering Science at the University of Florida in conjunction with the Alachua County, Florida School Board has embarked on a four-year project of university-secondary school collaboration designed to enhance mathematics and science instruction in secondary school classrooms. The goals are to provide teachers with a fundamental knowledge of flight sciences, and to stimulate interest among students, particularly women and minorities, toward careers in engineering, mathematics, and science. In the first year of the project, all thirteen of the eighth grade physical science teachers and all 1200 of the eighth grade physical science students in the county participated. The activities consisted of a three-day seminar taught at the college level for the teachers, several weeks of classroom instruction for all the students, and an airport field trip for a subgroup of about 430 students that included an orientation flight in a Cessna 172 aircraft. The project brought together large numbers of middle school students, teachers, undergraduate and graduate engineering students, school board administrators, and university engineering faculty.
2003-07-23
The Space Experiment Research and Processing Laboratory (SERPL) is a major new research facility under construction at the International Space Research Park located on KSC. At right is S.R. 3, which leads into the Center from Merritt Island. Being developed as a partnership between KSC and the State of Florida, SERPL will serve as the primary gateway to the International Space Station for science experiments and as a world-class home to ground-based investigations in fundamental and applied biological science. NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
NASA Technical Reports Server (NTRS)
Craig, Roger A.; Davy, William C.; Whiting, Ellis E.
1994-01-01
The Radiative Heating Experiment, RHE, aboard the Aeroassist Flight Experiment, AFE, (now cancelled) was to make in-situ measurements of the stagnation region shock layer radiation during an aerobraking maneuver from geosynchronous to low earth orbit. The measurements were to provide a data base to help develop and validate aerothermodynamic computational models. Although cancelled, much work was done to develop the science requirements and to successfully meet RHE technical challenges. This paper discusses the RHE scientific objectives and expected science performance of a small sapphire window for the RHE radiometers. The spectral range required was from 170 to 900 nm. The window size was based on radiometer sensitivity requirements including capability of on-orbit solar calibration.
Solar array module plasma interactions experiment (SAMPIE) - Science and technology objectives
NASA Technical Reports Server (NTRS)
Hillard, G. B.; Ferguson, Dale C.
1993-01-01
The solar array module plasma interactions experiment (SAMPIE) is an approved NASA flight experiment manifested for Shuttle deployment in early 1994. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of solar cell coupons (representing design technologies of current interest) will be biased to high voltages to measure both arcing and current collection. Various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of arcing and current collection. This paper describes the rationale for a space flight experiment, the measurements to be made, and the significance of the expected results. A future paper will present a detailed discussion of the engineering design.
Spacelab Science Results Study. Volume 2; Microgravity Science
NASA Technical Reports Server (NTRS)
Naumann, Robert J. (Editor); Lundquist, C. A. (Editor); Tandberg-Hanssen, E. (Editor); Horwitz, J. L. (Editor); Germany, G. A. (Editor); Cruise, J. F. (Editor); Lewis, M. L. (Editor); Murphy, K. L. (Editor)
1999-01-01
Beginning with OSTA-1 in November 1981, and ending with Neurolab n March 1998, thirty-six shuttle missions are considered Spacelab missions because they carried various Spacelab components such as the Spacelab module, the pallet, the Instrument Pointing System (IPS), or the MPESS (Mission Peculiar Experiment Support Structure). The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the United States, Europe, and Japan. These experiments resulted in several thousand papers published in refereed journals, and thousands more in conference proceedings, chapters in books, and other publications. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and, if appropriate, where the knowledge they produced has been applied.
2016-04-01
International Space Station Resource Reel. This video describes shows the International Space Station components, such as the Destiny laboratory and the Quest Airlock, being manufactured at NASA's Marshall Space Flight Center in Huntsville, Ala. It provides manufacturing and ground testing video and in-flight video of key space station components: the Microgravity Science Glovebox, the Materials Science Research Facility, the Window Observational Research Facility, the Environmental Control Life Support System, and basic research racks. There is video of people working in Marshall's Payload Operations Integration Center where controllers operate experiments 24/7, 365 days a week. Various crews are shown conducting experiments on board the station. PAO Name:Jennifer Stanfield Phone Number:256-544-0034 Email Address: JENNIFER.STANFIELD@NASA.GOV Name/Title of Video: ISS Resource Reel Description: ISS Resource Reel Graphic Information: NASA PAO Name:Tracy McMahan Phone Number:256-544-1634 Email Address: tracy.mcmahan@nasa.gov
Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.
2015-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.
The Future of New Discoveries on the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian
2000-01-01
The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.
The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe
2016-12-01
Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.
2010-08-16
Cloud formations are seen through the window of NASA DC-8 aircraft during a flight, Tuesday, Aug. 17, 2010, over the Gulf of Mexico where researchers were studying weather patterns as part of trhe Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
Wiseman during BASS experiment
2014-07-02
ISS040-E-031397 (2 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, works with a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
1997-03-11
Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
NASA Technical Reports Server (NTRS)
Garshnek, V.; Davies, P.; Ballard, R.
1992-01-01
Current international capabilities in the space life sciences/technology areas are reviewed focusing on the cooperative potential of the international community as applied to advanced Shuttle/Spacelab flights. The review of the international experience base and mutual cooperative benefits of the United States and international partners presented in the paper provides a guide to the young professional in planning for a space life sciences career.
Postnatal development under conditions of simulated weightlessness and space flight
NASA Technical Reports Server (NTRS)
Walton, K.
1998-01-01
The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.
1992-01-01
The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. In this photograph, Commander Ronald J. Grabe works with the Mental Workload and Performance Evaluation Experiment (MWPE) in the IML-1 module. This experiment was designed as a result of difficulty experienced by crewmembers working at a computer station on a previous Space Shuttle mission. The problem was due to the workstation's design being based on Earthbound conditions with the operator in a typical one-G standing position. Information gained from this experiment was used to design workstations for future Spacelab missions and the International Space Station. Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).
NASA Technical Reports Server (NTRS)
Bartram, Peter N.
1989-01-01
The current Life Sciences Laboratory Equipment (LSLE) microcomputer for life sciences experiment data acquisition is now obsolete. Among the weaknesses of the current microcomputer are small memory size, relatively slow analog data sampling rates, and the lack of a bulk data storage device. While life science investigators normally prefer data to be transmitted to Earth as it is taken, this is not always possible. No down-link exists for experiments performed in the Shuttle middeck region. One important aspect of a replacement microcomputer is provision for in-flight storage of experimental data. The Write Once, Read Many (WORM) optical disk was studied because of its high storage density, data integrity, and the availability of a space-qualified unit. In keeping with the goals for a replacement microcomputer based upon commercially available components and standard interfaces, the system studied includes a Small Computer System Interface (SCSI) for interfacing the WORM drive. The system itself is designed around the STD bus, using readily available boards. Configurations examined were: (1) master processor board and slave processor board with the SCSI interface; (2) master processor with SCSI interface; (3) master processor with SCSI and Direct Memory Access (DMA); (4) master processor controlling a separate STD bus SCSI board; and (5) master processor controlling a separate STD bus SCSI board with DMA.
Parabolic aircraft solidification experiments
NASA Technical Reports Server (NTRS)
Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan
1996-01-01
A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.
CCSDS telemetry systems experience at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Carper, Richard D.; Stallings, William H., III
1990-01-01
NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.
Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing
NASA Technical Reports Server (NTRS)
1997-01-01
The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)
DC-8 during takeoff in Kiruna, Sweden for the second flight of the SAGE III Ozone Loss and Validatio
NASA Technical Reports Server (NTRS)
2000-01-01
NASA's DC-8 taking off from the Kiruna, Sweden, runway in January 2000. The weather at this town of 25,000, located north of the Arctic Circle, can be severe. Temperatures drop as low as 50 degrees below zero Fahrenheit. In December 1999, when the SAGE III Ozone Loss and Validation Experiment (SOLVE) deployment began, there were 20 days of darkness. By mid-January 2000, there was 5 hours of daylight, while in mid-February this increased to nine hours per day. The population of Kiruna extended its hospitality to the SOLVE personnel. On January 22, 2000, the town hosted a dinner for the participants and media attending an open house at the Arena Arctica hangar. At the end of the SOLVE deployment, the airborne science team held an open house for the townspeople at the facility. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.
Microgravity Active Vibration Isolation System on Parabolic Flights
NASA Astrophysics Data System (ADS)
Dong, Wenbo; Pletser, Vladimir; Yang, Yang
2016-07-01
The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the parabolic flight campaign.
Space Station Biological Research Project: Reference Experiment Book
NASA Technical Reports Server (NTRS)
Johnson, Catherine (Editor); Wade, Charles (Editor)
1996-01-01
The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.
Airborne Research Experience for Educators
NASA Astrophysics Data System (ADS)
Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.
2009-12-01
The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data collection, and subsequent data analysis. Their pedagogical skills in teaching STEM content were enhanced through the collaborative development of curriculum units, critique of curriculum plans by education faculty experts, and exploration of NASA educational resources. AREE also engaged educators in the NASA-sponsored Classroom of the Future's Virtual Design Center (http://vdc.cet.edu/overview.htm), which provides curriculum designers with research-based guidelines to help them design inquiry-based learning activities. The AREE Master Teachers are currently in process of a pilot implementation of their developed curricula, with results due at the end of October 2009. This session will report on program evaluation data and identify best practices for replication of the model. Three perspectives will be provided, including views from the NASA Flight Operations Director, AREE Project Manager, and University Science Education Faculty Mentor. Three AREE Master Educators will present examples of their curriculum materials.
2013-08-01
NASA astronaut Karen Nyberg,Expedition 36 flight engineer,works with the InSPACE-3 experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. InSPACE-3 applies different magnetic fields to vials of colloids,or liquids with microscopic particles,and observes how fluids can behave like a solid. Also sent as Twitter message.
Hayabusa—Its technology and science accomplishment summary and Hayabusa-2
NASA Astrophysics Data System (ADS)
Kawaguchi, Jun'ichiro; Fujiwara, Akira; Uesugi, Tono
2008-05-01
Hayabusa performed five descents last November, among which two touching-down flights were included. Actually Hayabusa made three touching-downs and one long landing on the surface of Itokawa during those two flights. This paper summarizes how series of descents were planned and operated. The contents focus their attention on the correction maneuvers planning as well as what kind of terminals with what kind of software tools were actually built and used. The project team had distilled and accumulated their experiences through the rehearsal flights and accomplished this difficult mission. This paper presents the entire story about it.
NASA Technical Reports Server (NTRS)
1979-01-01
Needs and requirements for a free flying space science and applications platform to host groupings of compatible, extended mission experiments in earth orbit are discussed. A payload model which serves to define a typical set of mission requirements in the form of a descriptive data base is presented along with experiment leval and group level data summarizations and flight schedules. The payload descriptions are grouped by technology into the following categories: communications, materials (long term effect upon), materials technology development, power, sensors, and thermal control.
Pore Formation and Mobility Furnace within the MSG
NASA Technical Reports Server (NTRS)
2003-01-01
Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.
2000-12-07
KENNEDY SPACE CENTER, FLA. -- As part of In-Flight Maintenance training at SPACEHAB, in Cape Canaveral, Fla., members of the STS-107 crew learn about Biological Research in Canisters (BRIC) experiments that will be on their mission. From left Commander Rick D. Husband and Payload Specialist Ilan Ramon of Israel look over paperwork. Mission Specialists David M. Brown and Michael Anderson (center) look at the way Debbie Wells of Bionetics manipulates part of the equipment. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-07
KENNEDY SPACE CENTER, FLA. -- As part of In-Flight Maintenance training at SPACEHAB, in Cape Canaveral, Fla., members of the STS-107 crew learn about Biological Research in Canisters (BRIC) experiments that will be on their mission. From left Commander Rick D. Husband and Payload Specialist Ilan Ramon of Israel look over paperwork. Mission Specialists David M. Brown and Michael Anderson (center) look at the way Debbie Wells of Bionetics manipulates part of the equipment. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2009-01-30
ISS018-E-024515 (30 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
Microgravity Experiments On Animals
NASA Technical Reports Server (NTRS)
Dalton, B. P.; Leon, H.; Hogan, R.; Clarke, B.; Tollinger, D.
1991-01-01
Paper describes experiments on animal subjects planned for Spacelab Life Sciences 1 mission. Laboratory equipment evaluated, and physiological experiments performed. Represents first step in establishing technology for maintaining and manipulating rodents, nonhuman primates, amphibians, and plants during space flight without jeopardizing crew's environment. In addition, experiments focus on effects of microgravity on cardiopulmonary, cardiovascular, and musculoskeletal systems; on regulation of volume of blood and production of red blood cells; and on calcium metabolism and gravity receptors.
Commerce Lab - An enabling facility and test bed for commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, Jack; Atkins, Harry L.; Williams, John R.
1986-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
SpeedyTime-4_Microgravity_Science_Glovebox
2017-08-03
Doing groundbreaking science can mean working with dangerous materials; how do the astronauts on the International Space Station protect themselves and their ship in those cases? They use the Microgravity Science Glovebox: in this “SpeedyTime” segment Expedition 52 flight engineer Peggy Whitson pulls a rack out of the wall of the Destiny Laboratory to show us how astronauts access a sealed environment for science and technology experiments that involve potentially hazardous materials. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
The NASA Materials Science Research Program - It's New Strategic Goals and Plans
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.
2003-01-01
In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.
NASA Technical Reports Server (NTRS)
Carsey, F.
1982-01-01
A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.
2000-12-05
KENNEDY SPACE CENTER, Fla. -- Members of the STS-107 crew look over equipment inside the SPACEHAB Double Module, which will be making its first research flight into space on STS-107. Seen are (left to right) Payload Specialists Ilan Ramon and Mission Specialist David M. Brown. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
2000-12-05
KENNEDY SPACE CENTER, Fla. -- Members of the STS-107 crew look over equipment inside the SPACEHAB Double Module, which will be making its first research flight into space on STS-107. Seen are (left to right) Payload Specialists Ilan Ramon and Mission Specialist David M. Brown. STS-107 will carry a broad collection of experiments ranging from material science to life science. It is scheduled to launch July 19, 2001
Modification of the Electromagnetic Levitator (EML) Hardware
NASA Technical Reports Server (NTRS)
Frost, R. T.
1985-01-01
The goals of this project are: (1) to study the upgrade requirements and approaches needed for incorporation of an Electromagnetic Levitator (EML) into the shuttle orbiter, (2) to work with members of the Electromagnetic Containerless Processing science working group (SWG) to define future experiments for the EML, and (3) to assist these investigators in further development of ground-based experiment techniques to the limits possible in the terrestrial gravitational environment. Present work is directed toward: (1) upgrading the EML flight apparatus to meet requirements of safety and integration interfaces with the MSL orbiter carrier, (2) development of new experiment components required to carry out approved experiments in undercooled solidification and associated fluid flow studies directed by MIT, and (3) construction, test, qualification and integration assistance for the EML MSL flight package.
On the attitude control and flight result of winged reentry test vehicle
NASA Astrophysics Data System (ADS)
Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hinada, Motoki
The Institute of Space and Astronautical Science (ISAS) has been studying the unmanned winged space vehicle HIMES (HIghly Maneuverable Engineering Space vehicle) for a decade and successfully carried out sub-sonic Gliding Flight Experiments several years ago, which was followed by Reentry Flight Experiment, utilizing so called 'Rockoon' method, in September of 1988, which failed due to the unexpected burst of the balloon. ISAS conducted it again making use of refined 'Rockoon' scheme in February of 1992. In spite of its small bulk property, it was equipped with not only a reaction control system (RCS) but a surface control system (SCS) capability as well, which enabled it to make a successful flight under both vacuum and atmospheric circumstances. The highest Mach number exceeded 3.5 and the highest altitude was a bit lower to 67 km. Switching from reaction control to surface control was one of the essential engineering interests in the flight like this. Supersonic autonomous flight control with high angle of attack was also what should be established through this, since in general it inevitably carries inherent lateral instability. A flight test this time revealed those features and characteristics quite well. This paper deals with the attitude control strategy with three-axis Motion Simulation Test as well as the flight results.
Gregory Merkel Tours Marshall Space Flight Center (MSFC)
NASA Technical Reports Server (NTRS)
1972-01-01
Gregory A. Merkel (left), high school student from Springfield, Massachusetts, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.
Brian Dunlap Tours Marshall Space Flight Center (MSFC)
NASA Technical Reports Server (NTRS)
1972-01-01
W. Brain Dunlap (left), high school student from Youngstown, Ohio, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Dunlap was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Spacelab Science Results Study. Volume 3; Microgravity Science
NASA Technical Reports Server (NTRS)
Naumann, Robert J. (Editor); Lewis, Marian L. (Editor); Murphy, Karen L. (Compiler)
1999-01-01
Beginning with OSTA-1 in November 1981, and ending with Neurolab in March 1998, thirty-six shuttle missions are considered Spacelab missions because they carried various Spacelab components such as the Spacelab module, the pallet, the Instrument Pointing System (IPS), or the MPESS. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the United States, Europe, and Japan. These experiments resulted in several thousand papers published in refereed journals, and thousands more in conference proceedings, chapters in books, and other publications. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and, if appropriate, where the knowledge they produced has been applied.
Lockheed L-1011 TriStar first flight to support Adaptive Performance Optimization study
NASA Technical Reports Server (NTRS)
1997-01-01
Bearing the logos of the National Aeronautics and Space Administration and Orbital Sciences Corporation, Orbital's L-1011 Tristar lifts off the Meadows Field Runway at Bakersfield, California, on its first flight May 21, 1997, in NASA's Adaptive Performance Optimization project. Developed by engineers at NASA's Dryden Flight Research Center, Edwards, California, the experiment seeks to reduce fuel consumption of large jetliners by improving the aerodynamic efficency of their wings at cruise conditions. A research computer employing a sophisticated software program adapts to changing flight conditions by commanding small movements of the L-1011's outboard ailerons to give the wings the most efficient - or optimal - airfoil. Up to a dozen research flights will be flown in the current and follow-on phases of the project over the next couple years.
STS-40 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1991-01-01
The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.
STS-40 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1991-07-01
The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.
1997-03-11
Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (silver disk) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (dark circle) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
NASA Technical Reports Server (NTRS)
1989-01-01
Activity of the Earth Science and Application Division in 1989 is reported. On overview of the work of Division is presented, and the main changes in previously announced flight schedules are noted. The following subject areas are covered: the Earth Observing System; studies of the stratospheric ozone; U.S.-U.S.S.R. collaboration in Earth sciences; cloud climatology and the radiation budget; studies of ocean color; global tropospheric chemistry studies; first ISLSCP (International Satellite Cloud Climatology Project) field experiment; and solid Earth science research plan.
NASA Technical Reports Server (NTRS)
Dalton, Bonnie P.; Jahns, Gary; Meylor, John; Hawes, Nikki; Fast, Tom N.; Zarow, Greg
1995-01-01
This report provides an historical overview of the Spacelab Life Sciences-1 (SLS-1) mission along with the resultant biomaintenance data and investigators' findings. Only the nonhuman elements, developed by Ames Research Center (ARC) researchers, are addressed herein. The STS-40 flight of SLS-1, in June 1991, was the first spacelab flown after 'return to orbit', it was also the first spacelab mission specifically designated as a Life Sciences Spacelab. The experiments performed provided baseline data for both hardware and rodents used in succeeding missions.
Autonomous operations through onboard artificial intelligence
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2002-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
Lidar Past, Present, and Future in NASA's Earth and Space Science Programs
NASA Technical Reports Server (NTRS)
Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.
2004-01-01
Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.
NASA Space Biology Plant Research for 2010-2020
NASA Technical Reports Server (NTRS)
Levine, H. G.; Tomko, D. L.; Porterfield, D. M.
2012-01-01
The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA's Space Biology research will optimize ISS research utilization, develop and demonstrate technology and hardware that will enable new science, and contribute to the base of fundamental knowledge that will facilitate development of new tools for human space exploration and Earth applications. By taking these steps, NASA will energize the Space Biology user community and advance our knowledge of the effect of the space flight environment on living systems.
Gerst during BASS-II experiment
2014-07-30
ISS040-E-083576 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
Gerst during BASS-II experiment
2014-07-30
ISS040-E-083578 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
WOLF REXUS EXPERIMENT - European Planetary Science Congress
NASA Astrophysics Data System (ADS)
Buzdugan, A.
2017-09-01
WOLF experiment is developing a reaction wheel-based control system, effectively functioning as active nutation damper. One reaction wheel is used to reduce the undesirable lateral rates of spinning cylindrically symmetric free falling units, ejected from a sounding rocket. Once validated in REXUS flight, the concept and the design developed during WOLF experiment can be used for other application which require a flat spin of the free falling units.
NASA Technical Reports Server (NTRS)
1997-01-01
On this eighth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk take time out from their duties to be interviewed by CNN. As they reach the one week mark in their 16-day flight, the STS-87 crew shift the focus of their efforts towards the variety of science experiments flying on this mission.
The deep space network, volume 6
NASA Technical Reports Server (NTRS)
1971-01-01
Progress on Deep Space Network (DSN) supporting research and technology is presented, together with advanced development and engineering, implementation, and DSN operations of flight projects. The DSN is described. Interplanetary and planetary flight projects and radio science experiments are discussed. Tracking and navigational accuracy analysis, communications systems and elements research, and supporting research are considered. Development of the ground communications and deep space instrumentation facilities is also presented. Network allocation schedules and angle tracking and test development are included.
Shuttle Student Involvement Project for Secondary Schools
NASA Technical Reports Server (NTRS)
Wilson, G. P.; Ladwig, A.
1981-01-01
The National Aeronautics and Space Administration (NASA) has initiated the Shuttle Student Involvement Project for Secondary Schools (SSIP-S), an annual nationwide competition to select student proposals for experiments suitable for flight aboard the Space Shuttle. The objective of the project is to stimulate the study of science and technology in grades 9 through 12 by directly relating students to a space research program. This paper will analyze the first year of the project from a standpoint of how the competition was administered; the number and types of proposals that were submitted; and will discuss the process involved in preparing the winning experiments for eventual flight.
1997-01-12
STS-81 Mission Commander Michael A. Baker is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. Baker is on his fourth space flight and will have responsibility for the 10-day mission, including the intricate docking and undocking maneuvers with the Russian Mir space station. He will also be in charge of two in-flight Risk Mitigation experiments and be the subject of a Human Life Sciences experiment. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12
Key and Driving Requirements for the Juno Payload of Instruments
NASA Technical Reports Server (NTRS)
Dodge, Randy; Boyles, Mark A.; Rasbach, Chuck E.
2007-01-01
The Juno Mission was selected in the summer of 2005 via NASA's New Frontiers competitive AO process (refer to http://www.nasa.gov/home/hqnews/2005/jun/HQ_05138_New_Frontiers_2.html). The Juno project is led by a Principle Investigator based at Southwest Research Institute [SwRI] in San Antonio, Texas, with project management based at the Jet Propulsion Laboratory [JPL] in Pasadena, California, while the Spacecraft design and Flight System Integration are under contract to Lockheed Martin Space Systems Company [LM-SSC] in Denver, Colorado. the payload suite consists of a large number of instruments covering a wide spectrum of experimentation. The science team includes a lead Co-investigator for each one of the following experiments: A Magnetometer experiment (consisting of both a FluxGate Magnetometer (FGM) built at Goddard Space Flight Center GSFC] and a Scalar Helium Magnetometer (SHM) built at JPL, a MicroWave Radiometer (MWR) also built at JPL, a Gravity Science experiment (GS) implemented via the telecom subsystem, two complementary particle instruments (Jovian Auroral Distribution Experiment, JADE developed by SwRI and Juno Energetic-particle Detector Instrument, JEDI from the Applied Physics Lab (APL)--JEDI and JADE both measure electrons and ions), an Ultraviolet Spectrometer (UVS) also developed at SwRI, and a radio and plasma (WAVES) experiment (from the University of Iowa). In addition, a visible camera (JunoCam) is included in the payload to facilitate education and public outreach (designed & fabricated by Malin Space Science Systems [MSSS]).
NASA Astrophysics Data System (ADS)
Merritt, Donald R.; Cardesin Moinelo, Alejandro; Marin Yaseli de la Parra, Julia; Breitfellner, Michel; Blake, Rick; Castillo Fraile, Manuel; Grotheer, Emmanuel; Martin, Patrick; Titov, Dmitri
2018-05-01
This paper summarizes the changes required to the science planning of the Mars Express spacecraft to deal with the second-half of 2017, a very restrictive period that combined low power, low data rate and deep eclipses, imposing very limiting constraints for science operations. With this difficult operational constraint imposed, the ESAC Mars Express science planning team worked very hard with the ESOC flight control team and all science experiment teams to maintain a minimal level of science operations during this difficult operational period. This maintained the integrity and continuity of the long term science observations, which is a hallmark and highlight of such long-lived missions.