Weak Interactions Group UC Berkeley UC Berkeley Physics Lawrence Berkeley Lab Nuclear Science Division at LBL Physics Division at LBL Phonebook A-Z Index Navigation Home Members Research Projects CUORE Design Concept Berkeley Projects People Publications Contact Links KamLAND Physics Impact Neutrino
Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)
Rokhsar, Daniel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)
2018-05-24
Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.
Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhsar, Daniel
2008-02-11
Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.
Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiationmore » biophysics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Sabin; Schlegel, David
Lawrence Berkeley National Laboratory physicist and dark energy hunter David Schlegel chats with Sabin Russell, former San Francisco Chronicle reporter turned Berkeley Lab science writer, June 22, 2011. Their conversation is the first installment of "Sit Down With Sabin," a weekly conversation hosted by Russell. Over the course of five conversations with Berkeley Lab staff this summer, Russell will explore the ups and downs of innovative science — all without the aid of PowerPoint slides. Brought to you by Berkeley Lab Public Affairs.
Molecular Foundry Workshop draws overflow crowd to BerkeleyLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Art
2002-11-27
Nanoscale science and technology is now one of the top research priorities in the United States. With this background, it is no surprise that an overflow crowd or more than 350 registrants filled two auditoriums to hear about and contribute ideas for the new Molecular Foundry during a two-day workshop at the Lawrence Berkeley National Laboratory (Berkeley Lab). Scheduled to open for business at Berkeley Labin early 2006, the Molecular Foundry is one of three Nanoscale Science Research Centers (NSRCs) put forward for funding by the DOE's Office of Basic Energy Sciences (BES).
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Eric Cornell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornell, Eric
2008-08-30
Eric Cornell presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Kurt Gibble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibble, Kurt
2008-08-30
Kurt Gibble presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keasling, Jay
2008-08-30
Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman
Wieman, Carl
2017-12-09
Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Eric Cornell
Cornell, Eric
2018-02-05
Eric Cornell presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling
Keasling, Jay
2018-02-14
Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieman, Carl
Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Kurt Gibble
Gibble, Kurt
2018-02-05
Kurt Gibble presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Materials and Chemical Sciences Division annual report, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-01
Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steve
2008-08-30
Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize, presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium in his honor. The symposium was held August 30, 2008 in Berkeley.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holberg, Leo; Mills, Allen
2008-08-30
Leo Holberg and Allen Mills present a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Holberg, Leo; Mills, Allen
2018-05-07
Leo Holberg and Allen Mills present a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Laboratory Directed Research and Development Program FY 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen
2007-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less
Gerson Goldhaber: A Life in Science
NASA Astrophysics Data System (ADS)
Pavlish, Ursula
2011-06-01
I draw on my interviews in 2005-2007 with Gerson Goldhaber (1924-2010), his wife Judith, and his colleagues at Lawrence Berkeley National Laboratory. I discuss his childhood, early education, marriage to his first wife Sulamith (1923-1965), and his further education at the Hebrew University in Jerusalem (1942-1947) and his doctoral research at University of Wisconsin at Madison (1947-1950). He then was appointed to an instructorship in physics at Columbia University (1950-1953) before accepting a position in the physics department at the University of California at Berkeley and the Radiation Laboratory (later the Lawrence Berkeley Laboratory, today the Lawrence Berkeley National Laboratory), where he remained for the rest of his life. He made fundamental contributions to physics, including to the discovery of the antiproton in 1955, the GGLP effect in 1960, the psi particle in 1974, and charmed mesons in 1977, and to cosmology, including the discovery of the accelerating universe and dark energy in 1998. Beginning in the late 1960s, he also took up art, and he and his second wife Judith, whom he married in 1969, later collaborated in illustrating and writing two popular books. Goldhaber died in Berkeley, California, on July 19, 2010, at the age of 86.
Laboratory directed research and development program FY 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Todd; Levy, Karin
2000-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Sabin; Torn, Margaret
2011-07-06
Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.
Water and organics in interplanetary dust particles
NASA Astrophysics Data System (ADS)
Bradley, John P.
2015-08-01
Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at ~90 km altitude and settle to the Earth’s surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earth’s surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend ~104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.Affiliations:a University of Hawaii at Manoa, Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, Honolulu, HI 96822, USA.b National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.d Department of Materials Science & Engineering, University of California, Berkeley, CA 94720, USA.e Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Space Radiation and Cataracts (LBNL Summer Lecture Series)
Blakely, Eleanor [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division
2018-01-23
Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab
Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Curtis, S. B.
1989-01-01
The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.
Issue-Oriented Science Using CEPUP.
ERIC Educational Resources Information Center
California Univ., Berkeley. Lawrence Hall of Science.
CEPUP in the Schools is a project of the Chemical Education for Public Understanding Program (CEPUP) at the Lawrence Hall of Science, University of California-Berkeley. CEPUP is a diverse educational program highlighting chemicals and their uses in the context of societal issues, so that learners experience the reality of science. This booklet…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Carl
Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"
NASA Technical Reports Server (NTRS)
Cheng, Robert K.
2001-01-01
The Combustion Technologies Group at Lawrence Berkeley National Laboratory has developed simple, low-cost, yet robust combustion technologies that may change the fundamental design concept of burners for boilers and furnaces, and injectors for gas turbine combustors. The new technologies utilize lean premixed combustion and could bring about significant pollution reductions from commercial and industrial combustion processes and may also improve efficiency. The technologies are spinoffs of two fundamental research projects: An inner-ring burner insert for lean flame stabilization developed for NASA- sponsored reduced-gravity combustion experiments. A low-swirl burner developed for Department of Energy Basic Energy Sciences research on turbulent combustion.
Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to sharemore » its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.« less
Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartock, Mike; Hansen, Todd
1999-08-01
The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less
Lawrence Berkeley National Laboratory 2015 Annual Financial Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kim, P
FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritizedmore » and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.« less
Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)
DOE R&D Accomplishments Database
Budinger, T. F. (ed.)
1987-01-01
This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.
joined the UC Berkeley Physics Department in 2004. He is also an astrophysicist at Lawrence Berkeley Perlmutter won the Department of Energy's E. O. Lawrence Award in Physics. In 2003 he was awarded the
Physical, chemical, biological, and biotechnological sciences are incomplete without each other
USDA-ARS?s Scientific Manuscript database
Chemical analysis and chromatographic techniques could not separate plasma lipoproteins which are now known as cholesterol- containing, heart-disease related macromolecules in human blood. Scientists at the Lawrence Berkeley Laboratory successfully separated plasma lipoproteins using equilibrium den...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Robert K.
Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less
Haber, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-01-23
Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"
NASA Technical Reports Server (NTRS)
MacElroy, R. D.; Smernoff, D. T.
1996-01-01
A Workshop on "Nitrogen Dynamics in Controlled Systems" was held September 26-28, 1995 at the Lawrence Berkeley National Laboratory. The meetings were sponsored by the NASA Advanced Life Support program and the Lawrence Berkeley National Laboratory, and hosted by Prof. Lester Packer of the University of California at Berkeley, and of the Lawrence Berkeley National Laboratory. The Workshop participants were asked to: 1. summarize current knowledge on the cycling of nitrogen in closed systems; 2. identify the needs that closed systems may have for specific forms of nitrogen; 3. identify possible ways of generating and maintaining (or avoiding) specific forms and concentrations of nitrogen; 4. compare biological and physical/chemical methods of transforming nitrogen.
Second user workshop on high-power lasers at the Linac Coherent Light Source
Heimann, Phil; Glenzer, Siegfried
2015-05-28
The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less
Art in Science Promoting Interest in Research and Exploration (ASPIRE)
NASA Astrophysics Data System (ADS)
Fillingim, M.; Zevin, D.; Thrall, L.; Croft, S.; Raftery, C.; Shackelford, R.
2015-11-01
Led by U.C. Berkeley's Center for Science Education at the Space Sciences Laboratory in partnership with U.C. Berkeley Astronomy, the Lawrence Hall of Science, and the YMCA of the Central Bay Area, Art in Science Promoting Interest in Research and Exploration (ASPIRE) is a NASA EPOESS-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. ASPIRE's aim is to motivate more diverse young people (especially African Americans) to learn about Science, Technology, Engineering, and Mathematics (STEM) topics and careers, via 1) Intensive summer workshops; 2) Drop-in after school workshops; 3) Astronomy visualization-focused outreach programming at public venues including a series of free star parties where the students help run the events; and 5) A website and a number of social networking strategies that highlight our youth's artwork.
Site Environmental Report for 2006. Volume I, Environment, Health, and Safety Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2007-09-30
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2006 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2006. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters thatmore » contain an overview of the Laboratory, a discussion of the Laboratory’s environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from surveillance and monitoring activities.« less
, contact: Saul Perlmutter (saul(at)lbl(dot)gov) University of California Berkeley, CA 94720 A. Spadafora (alspadafora(at)lbl(dot)gov) Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley, CA 94720
Edwin M. McMillan, Neptunium, Phase Stability, and the Synchrotron
Elements) * McMillan in LBNL History Edwin M. McMillan Courtesy of Lawrence Berkeley National Laboratory Elements: Early History (Nobel Lecture), DOE Technical Report Download Adobe PDF Reader , December 1951 1907 - 1991, National Academy of Sciences Oral History Transcript -- Dr. Edwin McMillan, American
Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory
NASA Astrophysics Data System (ADS)
Friedman, Alex
2007-07-01
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.
Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2005-09-30
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.« less
Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhsar, Daniel
2008-02-11
Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.
NASA Technical Reports Server (NTRS)
Murray, S.
1999-01-01
In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calhoon, E.C.; Starring, P.W. eds.
1959-08-01
Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less
Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center our response, please check the specific website or page in question for the name of the appropriate
Exploratory Research and Development Fund, FY 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicinemore » and radiation biophysics.« less
2011-02-01
worldwide. Lawrence Berkeley National Laboratory Peer Reviewed Title: Investigation of anti-Relaxation coatings for alkali-metal vapor cells using ...2010 Abstract: Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to...preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an
Visitors How to get to Lawrence Berkeley Lab Site Access New and Current Members Page For Visiting Scholars Who Will Use Computers Or Networks Procedures for visiting scholars Opportunities Mail: Lawrence
Berkeley Lab - Lawrence Berkeley National Laboratory
nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into of Methane's Increasing Greenhouse Effect A Berkeley Lab research team tracked a rise in the warming effect of methane - one of the most important greenhouse gases for the Earth's atmosphere - over a 10
Index (this page) 2. Use search.lbl.gov powered by Google. 3. Use DS The Directory of both People and Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlmutter, Saul
2012-01-13
The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: Howmore » DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter]« less
Professional Conduct: What can we learn from recent events?
NASA Astrophysics Data System (ADS)
2003-03-01
Recent evidence of professional misconduct in two different areas of physics has caused the community to think deeply about such issues. In November, the APS Council approved two new statements on professional ethics and a revised ``Guidelines for Professional Conduct." The panelists have all been involved in dealing with these issues; in particular, one served on the Berkeley review committee and another on the Lucent review committee. APS leadership is anxious to hear the views of the physics community and there will be considerable time for discussion. Moderator: Miriam Sarachik, CCNY-CUNY, APS President Panelists: Pierre Hohenberg, Yale University (2003 Lars Onsager Prize Recipient) ``What can we learn from other sciences?" Arthur Bienenstock, Stanford University ``APS response to recent events" George Trilling, Lawrence Berkeley National Laboratory ``What can we learn from the Berkeley experience?" Malcolm Beasley, Stanford University ``What can we learn from the Lucent experience?"
NASA Technical Reports Server (NTRS)
Soli, George A.; Nichols, Donald K.
1989-01-01
An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.
Laboratory directed research and development program, FY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less
PUB-3000 | BERKELEY LAB HEALTH AND SAFETY MANUAL
ES&H MANUAL (PUB-3000) Berkeley Lab Table of Contents Guide to Using the ES&H Manual Responsible Authors Log of ES&H Manual Changes Requesting a Change to the ES&H Manual Search the ES &H Manual Questions & Comments Lawrence Berkeley National Laboratory University of California
Joint SSRTNet/ALS-MES Workshop report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuh, David; Van Hove, Michel
2001-11-30
This joint workshop brought together experimentalists and theorists interested in synchrotron radiation and highlighted subjects relevant to molecular environmental science (MES). The strong mutual interest between the participants resulted in joint sessions on the first day, followed by more specialized parallel sessions on the second day. Held in conjunction with the Advanced Light Source (ALS) Users' Association Annual Meeting at the Lawrence Berkeley National Laboratory (Berkeley Lab), the Synchrotron Radiation Research Theory Network (SRRTNet) workshop was co-organized by Michel Van Hove (Berkeley Lab and University of California, Davis) and Andrew Canning (Berkeley Lab), while David Shuh (Berkeley Lab) organized themore » ALS-MES workshop. SRRTNet is a global network that promotes the interaction of theory and experiment (http://www.cse.clrc.ac.uk/Activity/SRRTnet). The ALS-MES project is constructing Beamline 11.0.2.1-2, a new soft x-ray beamline for MES investigations at photon energies from 75 eV to 2 keV, to provide photons for wet spectroscopy end stations and an upgraded scanning transmission x-ray microscope (STXM). The ALS-MES beamline and end stations will be available for users in the late fall of 2002.« less
Office of the Chief Financial Officer Strategic Plan2008-2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Various
2007-11-19
This is an update to the Office of the Chief Financial Officer's (OCFO's) multi-year strategy to continue to build a highly effective, efficient and compliant financial and business approach to support the scientific mission of Lawrence Berkeley National Laboratory (LBNL). The guiding principles of this strategy are to provide the greatest capability for the least cost while continually raising the standards of professional financial management in service to the LBNL science mission.
Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less
Site Environmental Report for 2002, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauer, Ron
2003-07-01
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less
Site Environmental Report for 2002, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauer, Ron
2003-07-01
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less
77 FR 75639 - National Cancer Institute Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute... Proposed Frederick National Laboratory for Cancer Research Strategic Plan. Place: The Lawrence Berkeley..., Berkeley, CA 94720. Contact Person: Thomas M. Vollberg, Sr., Ph.D., Executive Secretary, National Cancer...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 basemore » pairs per year, while still retaining its efficiency.« less
Dark Secrets: What Science Tells Us About the Hidden Universe (LBNL Science at the Theater)
Permutter, Saul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:0000000244364661); Schlegel, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leauthaud, Alexie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-06-12
No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenon known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.
Life sciences and environmental sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less
Perlmutter, Saul; Chu, Steven
2018-05-31
The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Departmentâs Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics âfor the discovery of the accelerating expansion of the Universe through observations of distant supernovae.â DOEâs Office of Science has supported Dr. Perlmutterâs research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter
Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, William T.
On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''Themore » motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80,000 volts using less than 1,000 volts on a semi-circular accelerating electrode, now called the ''dee''. Following the discovery by J. D. Cockcroft and E. T. S. Walton of how to produce larger currents at higher voltages, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. The 27-Inch Cyclotron was used extensively in early investigations of nuclear reactions involving neutrons and artificial radioactivity. In 1939, working with William Brobeck, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. It was housed in the Crocker Laboratory, where scientists first made transmutations of some elements, discovered several transuranic elements, and created hundreds of radioisotopes of known elements. At the Crocker Laboratory the new medical modality called nuclear medicine was born, which used radioisotopes for diagnosis and treatment of human diseases. In 1939 Lawrence was awarded the Nobel Prize in Physics, and later element 103 was named ''Lawrencium'' in his honor.« less
Annual environmental monitoring report of the Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schleimer, G.E.
1989-06-01
The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.
Next Generation Lighting Technologies (LBNL Summer Lecture Series)
Siminovittch, Micheal
2018-04-27
For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.
Laboratory Directed Research and Development Program FY 2008 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
editor, Todd C Hansen
2009-02-23
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less
Conference Committees: Conference Committees
NASA Astrophysics Data System (ADS)
2009-09-01
International Programm Committee (IPC) Harald Ade NCSU Sadao Aoki University Tsukuba David Attwood Lawrence Berkeley National Laboratory/CXRO Christian David Paul Scherrer Institut Peter Fischer Lawrence Berkeley National Laboratory Adam Hitchcock McMaster University Chris Jacobsen SUNY, Stony Brook Denis Joyeux Lab Charles Fabry de l'Institut d'Optique Yasushi Kagoshima University of Hyogo Hiroshi Kihara Kansai Medical University Janos Kirz SUNY Stony Brook Maya Kiskinova ELETTRA Ian McNulty Argonne National Lab/APS Alan Michette Kings College London Graeme Morrison Kings College London Keith Nugent University of Melbourne Zhu Peiping BSRF Institute of High Energy Physics Francois Polack Soleil Christoph Quitmann Paul Scherrer Institut Günther Schmahl University Göttingen Gerd Schneider Bessy Hyun-Joon Shin Pohang Accelerator Lab Jean Susini ESRF Mau-Tsu Tang NSRRC Tony Warwick Lawrence Berkeley Lab/ALS Local Organizing Committee Christoph Quitmann Chair, Scientific Program Charlotte Heer Secretary Christian David Scientific Program Frithjof Nolting Scientific Program Franz Pfeiffer Scientific Program Marco Stampanoni Scientific Program Robert Rudolph Sponsoring, Financials Alfred Waser Industry Exhibition Robert Keller Public Relation Markus Knecht Computing and WWW Annick Cavedon Proceedings and Excursions and Accompanying Persons Program Margrit Eichler Excursions and Accompanying Persons Program Kathy Eikenberry Excursions and Accompanying Persons Program Marlies Locher Excursions and Accompanying Persons Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Lee D.
2009-05-11
This project provided travel awards for scientists engaged in research relevant to the DOE mission to participate in the American Geophysical Union (AGU) Chapman Conference on Biogeophysics held October 13-16, 2008, in Portland, Maine (http://www.agu.org/meetings/chapman/2008/fcall/). The objective of this Chapman Conference was to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists that are leaders in their field and have a personal interest in exploring this new interdisciplinary field or are conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community and to generate amore » roadmap for establishing biogeophysics as a critical subdiscipline of earth science research. The sixty participants were an international group of academics, graduate students and scientists at government laboratories engaged in biogeophysics related research. Scientists from Europe, Israel and China traveled to engage North American colleagues in this highly focused 3.5 day meeting. The group included an approximately equal mix of microbiologists, biogeochemists and near surface geophysicists. The recipients of the DOE travel awards were [1] Dennis Bazylinski (University of Nevada, Las Vegas), [2] Yuri Gorby (Craig Venter Institute), [3] Carlos Santamarina (Georgia Tech), [4] Susan Hubbard (Lawrence Berkeley Laboratory), [5] Roelof Versteeg (Idaho National Laboratory), [6] Eric Roden (University of Wisconsin), [7] George Luther (University of Delaware), and [8] Jinsong Chen (Lawrence Berkeley Laboratory)« less
Electron Microscope Center Opens at Berkeley.
ERIC Educational Resources Information Center
Robinson, Arthur L.
1981-01-01
A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)
Overview of Heavy Ion Fusion Accelerator Research in the U. S.
NASA Astrophysics Data System (ADS)
Friedman, Alex
2002-12-01
This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.
Site Environmental Report for 2005 Volume I and Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggieri, Michael
2006-07-07
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the prefixes used with SI units of measurement, and the second provides conversions to non-SI units.« less
Public census data on CD-ROM at Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrill, D.W.
The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the formmore » of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s).« less
Public census data on CD-ROM at Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrill, D.W.
The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the formmore » of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s).« less
Editorial: Special issue dedicated to Gabor Somorjai's 80th birthday
NASA Astrophysics Data System (ADS)
2016-06-01
This special issue of Surface Science has been prepared to honor Professor Gabor A. Somorjai on the occasion of his 80th birthday. Professor Somorjai was born on May 4, 1935 in Budapest, Hungary. In 1953 he enrolled as a chemical engineering student at the Technical University of Budapest. Gabor was an active participant in the Hungarian Revolution of 1956. When the Soviet military crushed the revolution, he had to leave the country by walking across the border with his sister and his future wife. After immigrating to the USA in 1957, he applied to begin graduate studies and was accepted at the University of California, Berkeley. Gabor received a PhD in Chemistry in 1960, only three years later. Following a short sojourn at IBM, he returned to Berkeley in 1964 to take up a faculty position in the Department of Chemistry and the Lawrence Berkeley National Laboratory, which he still holds today. For the interested reader, more can be learned about Gabor's fascinating life in his autobiography, ;An American Scientist: The Autobiography of Gabor A. Somorjai.
The principle of phase stability and the accelerator program at Berkeley, 1945--1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lofgren, E.J.
1994-07-01
The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954.
Berkeley Lab Scientist Co-Leads Breast Cancer Dream Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Joe
2009-05-19
An $16.5 million, three-year grant to develop new and more effective therapies to fight breast cancer was awarded today to a multi-institutional Dream Team of scientists and clinicians that is co-led by Joe Gray, a renowned cancer researcher with the U.S. Department of Energys Lawrence Berkeley National Laboratory. http://newscenter.lbl.gov/
Berkeley Lab Scientist Co-Leads Breast Cancer Dream Team
Gray, Joe
2017-12-27
An $16.5 million, three-year grant to develop new and more effective therapies to fight breast cancer was awarded today to a multi-institutional Dream Team of scientists and clinicians that is co-led by Joe Gray, a renowned cancer researcher with the U.S. Department of Energys Lawrence Berkeley National Laboratory. http://newscenter.lbl.gov/
Reduced Chemical Kinetic Mechanisms for Hydrocarbon Fuels
2006-01-01
Technologies Reaction Engineering International 77 West 200 South, Suite # 210 Salt Lake City, UT 84101 3Professor Department of Mechanical ... Engineering University of California, Berkeley Berkeley, CA 94720 4Program Leader for Computational Chemistry Lawrence Livermore National Laboratory...species by the error introduced by assuming they are in quasi-steady state. The reduced mechanisms have been compared to detailed chemistry calculations
BEARS: Radioactive Ion Beams at Berkeley
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.; Joosten, R.; Donahue, C.A.
2000-03-14
A light-isotope radioactive ion beam capability has been added to the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory by coupling to the production cyclotron of the Berkeley Isotope Facility. The connection required the development and construction of a 350 m gas transport system between the two accelerators as well as automated cryogenic separation of the produced activity. The first beam developed, {sup 11}C, has been successfully accelerated with an on-target intensity of 1 x 10{sup 8} ions/sec at energies of around 10 MeV/u.
Links We bring the universe to you! University of California Berkeley Cosmology Group Lawrence Computational Cosmology Center Institute for Nuclear & Particle Astrophysics Supernova Acceleration Probe
The Lawrence Berkeley Laboratory geothermal program in northern Nevada
NASA Technical Reports Server (NTRS)
Mirk, K. F.; Wollenberg, H. A.
1974-01-01
The Lawrence Berkeley Laboratory's geothermal program began with consideration of regions where fluids in the temperature range of 150 to 230 C may be economically accessible. Three valleys, located in an area of high regional heat flow in north central Nevada, were selected for geological, geophysical, and geochemical field studies. The objective of these ongoing field activities is to select a site for a 10-MW demonstration plant. Field activities (which started in September 1973) are described. A parallel effort has been directed toward the conceptual design of a 10-MW isobutane binary plant which is planned for construction at the selected site. Design details of the plant are described. Project schedule with milestones is shown together with a cost summary of the project.
Rethinking Big Science. Modest, mezzo, grand science and the development of the Bevalac, 1971-1993.
Westfall, Catherine
2003-03-01
Historians of science have tended to focus exclusively on scale in investigations of largescale research, perhaps because it has been easy to assume that comprehending a phenomenon dubbed "Big Science" hinges on an understanding of bigness. A close look at Lawrence Berkeley Laboratory's Bevalac, a medium-scale "mezzo science" project formed by uniting two preexisting machines--the modest SuperHILAC and the grand Bevatron--shows what can be gained by overcoming this preoccupation with bigness. The Bevalac story reveals how interconnections, connections, and disconnections ultimately led to the development of a new kind of science that transformed the landscape of large-scale research in the United States. Important lessons in historiography also emerge: the value of framing discussions in terms of networks, the necessity of constantly expanding and refining methodology, and the importance of avoiding the rhetoric of participants and instead finding words to tell our own stories.
Map showing bottom topography of the Pacific Continental Margin, Cape Mendocino to Point Conception
Chase, T.E.; Wilde, Pat; Normark, W.R.; Evenden, G.I.; Miller, C.P.; Seekins, B.A.; Young, J. D.; Grim, M.S.; Lief, C.J.
1992-01-01
Wilde, Pat, Chase, T.E., Holmes, M.L., Normark, W.R., Thomas, J.A., McCulloch, D.S., and Kulm, L.D., 1978, Oceanographic data off northern California-southern Oregon 40° to 43° North including the Gorda Deep Sea Fan: Berkeley, University of California, Lawrence Berkeley Laboratory Publication 251, scale 1:815,482 at 42° latitude.
Expert Meeting Report. Windows Options for New and Existing Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyck, C.; Carmody, J.; Haglund, K.
2013-05-01
The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011, at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.
Expert Meeting Report: Windows Options for New and Existing Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyk, C.; Carmody, J.; Haglund, K.
2013-05-01
The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.
Material Modeling for Terminal Ballistic Simulation
1992-09-01
DYNA-3D-a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics- user manual. Technical Report UCRL -MA...Rep. UCRL -50108, Rev. 1, Lawrence Livermore Laboratory, 1977. [34] S. P. Marsh. LASL Shock Hugoniot Data. University of California Press, Berkeley, CA...Steinberg. Equation of state and strength properties of selected ma- teriaJs. Tech. Rep. UCRL -MA-106439, Lawrence Livermore National Labo- ratory, 1991. [371
Grim, M.S.; Chase, T.E.; Evenden, G.I.; Holmes, M.L.; Normark, W.R.; Wilde, Pat; Fox, C.J.; Lief, C.J.; Seekins, B.A.
1992-01-01
Wilde, Pat, Chase, T.E., Holmes, M.L., Normark, W.R., Thomas, J.A., McCulloch, D.S., and Kulm, L.D., 1978, Oceanographic data off northern California-southern Oregon 40° to 43° North including the Gorda Deep Sea Fan: Berkeley, University of California, Lawrence Berkeley Laboratory Publication 251, scale 1:815,482 at 42° latitude.
LBL's Pollution Instrumentation Comparability Program.
ERIC Educational Resources Information Center
McLaughlin, R. D.; And Others
1979-01-01
Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)
Laboratory Directed Research and Development Program FY98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T.; Chartock, M.
1999-02-05
The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less
Applied environmental fluid mechanics: what's the weather in your backyard?
NASA Astrophysics Data System (ADS)
Chow, F. K.
2011-12-01
The microclimates of the San Francisco Bay Area can lead to 30-40F differences in temperature from the coast to just 30 miles inland. The reasons for this include local topography which affects development of the atmospheric boundary layer. A Bay Area resident's experience of fog, air pollution, and weather events therefore differs greatly depending on exactly where they live. Such local weather phenomena provide a natural topic for introduction to boundary layer processes and are the basis of a new course developed at the University of California, Berkeley. This course complements the PI's research focus on numerical methods applied to atmospheric boundary layer flow over complex terrain. This new outreach and research-based course was created to teach students about the boundary layer and teach them how to use a community weather prediction model, WRF, to simulate conditions in the local area, while at the same time being actively involved in public outreach. The course was offered in the Civil and Environmental Engineering department with the collaboration and support of the Lawrence Hall of Science, Berkeley's public science museum. The students chose topics such as air quality, wind energy, climate change, and plume dispersion, all applied to the local San Francisco Bay Area. The students conducted independent research on their team projects, involving literature reviews, numerical model setup, and analysis of model results through comparison with field observations. The outreach component of the course included website design and culminated in demonstrations at the Lawrence Hall of Science. The seven student teams presented hands-on demos to 300-400 visitors, mostly kids 4-9 years old and their parents. Involving students directly in outreach efforts is hoped to encourage continued integration of research and education in their own careers. Early exposure to numerical modeling also improves student technical skills for future career experiences . Given positive feedback from students, the course will now be offered regularly as a senior design class which will also fulfill engineering graduation requirements.
Melvin Calvin and Carbon in Photosynthesis
Report Download Adobe PDF Reader , April 1950 Top Melvin Calvin and photosynthesis apparatus Courtesy Lawrence Berkeley National Laboratory Calvin in the old Radiation Laboratory with the apparatus used in his
Overview of Light-Ion Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, William T.
2006-03-16
In 1930, Ernest Orlando Lawrence at the University of California at Berkeley invented the cyclotron. One of his students, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80 keV using less than 1 kV on a semi-circular accelerating electrode, now called the ''dee''. Soon after, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. In 1939, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. Just before WWII, Lawrence designed a 184-inch cyclotron, but the war prevented the buildingmore » of this machine. Immediately after the war ended, the Veksler-McMillan principle of phase stability was put forward, which enabled the transformation of conventional cyclotrons to successful synchrocyclotrons. When completed, the 184-Inch Synchrocyclotron produced 340-MeV protons. Following it, more modern synchrocyclotrons were built around the globe, and the synchrocyclotrons in Berkeley and Uppsala, together with the Harvard cyclotron, would perform pioneering work in treatment of human cancer using accelerated hadrons (protons and light ions). When the 184-Inch Synchrocyclotron was built, Lawrence asked Robert Wilson, one of his former graduate students, to look into the shielding requirements for of the new accelerator. Wilson soon realized that the 184-Inch would produce a copious number of protons and other light ions that had enough energy to penetrate human body, and could be used for treatment of deep-seated diseases. Realizing the advantages of delivering a larger dose in the Bragg peak when placed inside deep-seated tumors, he published in a medical journal a seminal paper on the rationale to use accelerated protons and light ions for treatment of human cancer. The precise dose localization provided by protons and light ions means lower doses to normal tissues adjacent to the treatment volume compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at energies that permitted the initiation of several biological studies. It is worth noting that when the Bevatron was converted to accelerate light ions, the main push came from biomedical users who wanted to use high-LET radiation for treating human cancer.« less
Terragenome: International Soil Metagenome Sequencing Consortium (GSC8 Meeting)
Jansson, Janet
2018-01-04
The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding Research Coordination Network from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Janet Jansson of the Lawrence Berkeley National Laboratory discusses the Terragenome Initiative at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, CA on Sept. 9, 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel inmore » a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.« less
None
2018-05-30
A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel in a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.
Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier
NASA Technical Reports Server (NTRS)
Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward
2016-01-01
The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).
Final report: Prototyping a combustion corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.; Leach, Joshua
2001-12-15
The Combustion Corridor is a concept in which researchers in combustion and thermal sciences have unimpeded access to large volumes of remote computational results. This will enable remote, collaborative analysis and visualization of state-of-the-art combustion science results. The Engine Research Center (ERC) at the University of Wisconsin - Madison partnered with Lawrence Berkeley National Laboratory, Argonne National Laboratory, Sandia National Laboratory, and several other universities to build and test the first stages of a combustion corridor. The ERC served two important functions in this partnership. First, we work extensively with combustion simulations so we were able to provide real worldmore » research data sets for testing the Corridor concepts. Second, the ERC was part of an extension of the high bandwidth based DOE National Laboratory connections to universities.« less
ERIC Educational Resources Information Center
Physics Teacher, 1971
1971-01-01
New research topics have been brought about by the acceleration of nitrogen nuclei to the energy of 36 billion electron volts. Describes experiments on tumor cells, cosmic rays, and nuclear fission performed with the Bevatron at the Lawrence Berkeley Laboratory. (TS)
Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion
NASA Astrophysics Data System (ADS)
Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.
2003-10-01
The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.
Image Processing for Educators in Global Hands-On Universe
NASA Astrophysics Data System (ADS)
Miller, J. P.; Pennypacker, C. R.; White, G. L.
2006-08-01
A method of image processing to find time-varying objects is being developed for the National Virtual Observatory as part of Global Hands-On Universe(tm) (Lawrence Hall of Science; University of California, Berkeley). Objects that vary in space or time are of prime importance in modern astronomy and astrophysics. Such objects include active galactic nuclei, variable stars, supernovae, or moving objects across a field of view such as an asteroid, comet, or extrasolar planet transiting its parent star. The search for these objects is undertaken by acquiring an image of the region of the sky where they occur followed by a second image taken at a later time. Ideally, both images are taken with the same telescope using the same filter and charge-coupled device. The two images are aligned and subtracted with the subtracted image revealing any changes in light during the time period between the two images. We have used a method of Christophe Alard using the image processing software IDL Version 6.2 (Research Systems, Inc.) with the exception of the background correction, which is done on the two images prior to the subtraction. Testing has been extensive, using images provided by a number of National Virtual Observatory and collaborating projects. They include the Supernovae Trace Cosmic Expansion (Cerro Tololo Inter-American Observatory), Supernovae/ Acceleration Program (Lawrence Berkeley National Laboratory), Lowell Observatory Near-Earth Object Search (Lowell Observatory), and the Centre National de la Recherche Scientifique (Paris, France). Further testing has been done with students, including a May 2006 two week program at the Lawrence Berkeley National Laboratory. Students from Hardin-Simmons University (Abilene, TX) and Jackson State University (Jackson, MS) used the subtraction method to analyze images from the Cerro Tololo Inter-American Observatory (CTIO) searching for new asteroids and Kuiper Belt objects. In October 2006 students from five U.S. high schools will use the subtraction method in an asteroid search campaign using CTIO images with 7-day follow-up images to be provided by the Las Cumbres Observatory (Santa Barbara, CA). During the Spring 2006 semester, students from Cape Fear High School used the method to search for near-Earth objects and supernovae. Using images from the Astronomical Research Institute (Charleston, IL) the method contributed to the original discovery of two supernovae, SN 2006al and SN 2006bi.
NASA Astrophysics Data System (ADS)
Schultz, G.; Granger, E.; Catz, K. N.; Wierman, T.
2010-08-01
The newly-developed Space Science Sequence (SSS) is the product of a collaboration between NASA forums/missions and the Lawrence Hall of Science (LHS) Great Explorations in Math and Science (GEMS) program, based at UC Berkeley. At the ASP 2007 conference, keynote speaker George (Pinky) Nelson made special mention of partners involved and the curriculum produced. From the proceedings: "I want to recognize Jacqueline Barber, Isabel Hawkins, Greg Schultz and their colleagues. . . for setting an example of effective partnershipldots We would do well to become familiar with [the SSS] and promote them to teachers and schoolsldots At the same time, we can learn from teachers and students using [the SSS]\\. . . " (2008; p. 3). It is specifically such professional learning, from practicing teachers and grade school students, which motivated this panel session focusing on research and evaluation studies on teacher and student gains using the Space Science Sequence for Grades 3-5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-18
The Department of Energy's (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department's interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department's contract administration of its interest in those pension plans.
Pension fund activities at Department laboratories managed by the University of California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-18
The Department of Energy`s (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department`s interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department`s contract administration of its interest in those pension plans.
Beyond The Human Genome: What's Next? (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhsar, Daniel
2003-06-18
UC Berkeley's Daniel Rokhsar and his colleagues were instrumental in contributing the sequences for three of the human body's chromosomes in the effort to decipher the blueprint of life- the completion of the DNA sequencing of the human genome. Now he is turning to the structure and function of genes in other organisms, some of them no less important to the planet's future than the human map. Hear the latest in this lecture from Lawrence Berkeley National Laboratory.
Beyond The Human Genome: What's Next? (LBNL Summer Lecture Series)
Rokhsar, Daniel
2018-04-27
UC Berkeley's Daniel Rokhsar and his colleagues were instrumental in contributing the sequences for three of the human body's chromosomes in the effort to decipher the blueprint of life- the completion of the DNA sequencing of the human genome. Now he is turning to the structure and function of genes in other organisms, some of them no less important to the planet's future than the human map. Hear the latest in this lecture from Lawrence Berkeley National Laboratory.
Popular Berkeley Lab X-ray Data Booklet reissued
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Art
2001-03-02
X-ray scientists and synchrotron-radiation users who have been patiently waiting for an updated version of the popular X-Ray Data Booklet last published in 1986 by the Center for X-Ray Optics at the Lawrence Berkeley National Laboratory can breathe a sigh of relief. The venerable ''little orange book'' has now been reissued under the auspices of CXRO and the Advanced Light Source (ALS) with an April printing of 10,000 paper copies and the posting of a Web edition at http://xdb.lbl.gov.
IAQ Scientific Findings Resource Bank
This effort is being conducted under an interagency agreement between the US EPA and the US Department of Energy- the Lawrence Berkeley National Laboratory (LBNL). Under this project, LBNL will conduct literature reviews and analyses which quantify the health and productivity be...
Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M. S.; University of Nevada Reno, Reno, NV 89557; Van Tilborg, J.
The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
The germanium detector in the gamma-ray spectrometer (GRS) aboard the MESSENGER spacecraft is only the size and weight of a can of peaches but will play a critical role in investigating Mercury, the planet closest to the Sun. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft travels at about 38 kilometers per second and is named after the scientific goals of the mission. It is the first spacecraft to visit Mercury since 1975. MESSENGER must take an oblique route to approach Mercury so that it does not fly past the planet and fall directly into the Sun. Themore » spacecraft will travel 7.9 billion kilometers, flying by Earth once, Venus twice, and Mercury three times before settling into orbit around this mysterious planet. Of all the terrestrial planets, which include Venus, Earth, and Mars, Mercury is the smallest and the densest; its days are 176 Earth days long, two complete orbits of the planet around the Sun. Temperatures range from a high of 450 C on the Sun side during its long day to a low of -185 C on its night side. By studying this extreme planet, scientists hope to better understand how Earth formed and evolved. The GRS, one of the seven lightweight scientific instruments on MESSENGER, will be used to help scientists determine the abundance of elements in Mercury's crust, including the materials that might be ice at its poles. Livermore engineer Norman Madden led the West Coast team effort to design and build the GRS in a collaboration led by Johns Hopkins University Applied Physics Laboratory (JHUAPL). The team included Lawrence Berkeley and Lawrence Livermore national laboratories as well as University of California at Berkeley (UCB) Space Sciences Laboratory (SSL). The JHUAPL MESSENGER project is a National Aeronautics and Space Administration (NASA) Discovery Mission. Because the detector needs to operate at very low temperatures and MESSENGER is close to the Sun, the thermal design to protect the detector was critical. The detector is kept cool by an electromechanical cryocooler attached to the outside of the device. However, the cryocooler has a limited cooling capacity because of size and weight constraints. To ensure the cryocooler would sufficiently cool the detector, Livermore scientists used SINDA/FLUINT, a commercial program originally developed by NASA, to model the thermal environments that the spectrometer was expected to encounter--during liftoff, in space while en route to Mercury, and in orbit around the planet. Using the data from the model, scientists from Lawrence Livermore and Lawrence Berkeley developed a design that included three closely spaced and highly reflective thermal shields held in place with DuPont KEVLAR{reg_sign} fiber.« less
The Berkeley Instrumental Neutron Generator (BINGE) for 40Ar/39Ar geochronology
NASA Astrophysics Data System (ADS)
Renne, P. R.; Becker, T. A.; Bernstein, L.; Firestone, R. B.; Kirsch, L.; Leung, K. N.; Rogers, A.; Van Bibber, K.; Waltz, C.
2014-12-01
The Berkeley Instrumental Neutron Generator (BINGE) facility is the product of a consortium involving the Berkeley Geochronology Center (BGC), the U.C. Berkeley Nuclear Engineering Dept. (UCB/NE), and Lawrence Berkeley (LBNL) and Lawrence Livermore (LLNL) National Labs. BINGE was initially designed (and funded by NSF) for 40Ar/39Ar geochronology. BINGE uses a plasma-based deuteron ion source and a self-loading Ti-surfaced target to induce deuteron-deuterium (DD) fusion via the reaction 2H(d,n)3He, producing 2.45 MeV neutrons. The limited neutron energy spectrum is aimed at reducing recoil effects, interfering nuclear reactions, and unwanted radioactive byproducts, all of which are undesirable consequences of conventional irradiation with 235U fission spectrum neutrons. Minimization of interfering reactions such as 40Ca(n,na)36Ar greatly reduces penalties for over-irradiation, enabling improved signal/background measurement of e.g. 39Ar. BINGE will also be used for a variety of nuclear physics and engineering experiments that require a high flux of monoenergetic neutrons. Neutron energies lower than 2.45 MeV can be obtained via irradiation ports within and external to polyethylene shielding. Initial commissioning produced a neutron flux of 108 n/sec/cm2 at 1 mA source current and 100 kV anode voltage, as expected. When scaled up to the 1 A source current as planned, this indicates that BINGE will achieve the design objective neutron flux of 1011 n/sec/cm2. Further progress towards this goal will be reported. Supported by NSF (grant #EAR-0960138), BGC, UCB/NE, University of California Office of the President, and DOE through LLNL under contract #DE-AC52-07NA27344 and LBNL under contract #DE-AC02-05CH11231.
High peak current acceleration of narrow divergence ions beams with the BELLA-PW laser
NASA Astrophysics Data System (ADS)
Steinke, Sven; Ji, Qing; Treffert, Franziska; Bulanov, Stepan; Bin, Jianhui; Nakamura, Kei; Gonsalves, Anthony; Toth, Csaba; Park, Jaehong; Roth, Markus; Esarey, Eric; Schenkel, Thomas; Leemans, Wim
2017-10-01
We present a parameter study of ion acceleration driven by the BELLA-PW laser. The laser repetition rate of 1Hz allowed for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 petawatt. Further, the long focal length geometry of the experiment (f\\65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory.
Terragenome: International Soil Metagenome Sequencing Consortium (GSC8 Meeting)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansson, Janet
2009-09-09
The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding Research Coordination Network from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Janet Jansson of the Lawrence Berkeley National Laboratory discusses the Terragenome Initiative at the Genomic Standards Consortium's 8th meeting at the DOE JGI inmore » Walnut Creek, CA on Sept. 9, 2009.« less
Health benefits of particle filtration
This product was developed under an interagency agreement between the U.S. EPA and the U.S. Department of Energy - Lawrence Berkeley National Laboratory (LBNL). The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews o...
The Global Systems Science High School Curriculum
NASA Astrophysics Data System (ADS)
Gould, A. D.; Sneider, C.; Farmer, E.; Erickson, J.
2015-12-01
Global Systems Science (GSS), a high school integrated interdisciplinary science project based at Lawrence Hall of Science at UC Berkeley, began in the early 1990s as a single book "Planet at Risk" which was only about climate change. Federal grants enabled the project to enlist about 150 teachers to field test materials in their classes and then meeting in summer institutes to share results and effect changes. The result was a series of smaller modules dealing not only with climate change, but other related topics including energy flow, energy use, ozone, loss of biodiversity, and ecosystem change. Other relevant societal issues have also been incorporated including economics, psychology and sociology. The course has many investigations/activities for student to pursue, interviews with scientists working in specific areas of research, and historical contexts. The interconnectedness of a myriad of small and large systems became an overarching theme of the resulting course materials which are now available to teachers for free online at http://www.globalsystemsscience.org/
How can the curation of hands-on STEM activities power successful mobile apps and websites?
NASA Astrophysics Data System (ADS)
Porcello, D.; Peticolas, L. M.; Schwerin, T. G.
2015-12-01
The Lawrence Hall of Science (LHS) is University of California, Berkeley's public science center. Over the last decade, the Center for Technology Innovation at LHS has partnered with many institutions to establish a strong track record of developing successful technology solutions to support STEM teaching and learning within informal environments. Curation by subject-matter experts has been at the heart of many educational technology products from LHS and its partners that are directed at educators and families. This work includes: (1) popular digital libraries for inquiry-based activities at Howtosmile.org (NSF DRL #0735007) and NASA Earth and Space science education resources at NASAwavelength.org; and novel mobile apps like DIY Sun Science (NASA NNX10AE05G) and DIY Human Body (NIH 5R25OD010543) designed to scaffold exploration of STEM phenomena at home. Both NASA Wavelength and DIY Sun Science arose out of long-term collaborations with the Space Sciences Laboratory at UC Berkeley, Institute for Global Environmental Strategies (IGES), and other NASA-funded organizations, in partnership with NASA through cooperative agreements. This session will review the development, formative evaluation, and usage metrics for these two Earth and Space science-themed educational technology products directly relevant to the AGU community. Questions reviewed by presenters will include: What makes a good hands-on activity, and what essential information do educators depend on when searching for programming additions? What content and connections do families need to explore hands-on activities? How can technology help incorporate educational standards into the discovery process for learning experiences online? How do all these components drive the design and user experience of websites and apps that showcase STEM content?
Analysis, tuning and comparison of two general sparse solvers for distributed memory computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amestoy, P.R.; Duff, I.S.; L'Excellent, J.-Y.
2000-06-30
We describe the work performed in the context of a Franco-Berkeley funded project between NERSC-LBNL located in Berkeley (USA) and CERFACS-ENSEEIHT located in Toulouse (France). We discuss both the tuning and performance analysis of two distributed memory sparse solvers (superlu from Berkeley and mumps from Toulouse) on the 512 processor Cray T3E from NERSC (Lawrence Berkeley National Laboratory). This project gave us the opportunity to improve the algorithms and add new features to the codes. We then quite extensively analyze and compare the two approaches on a set of large problems from real applications. We further explain the main differencesmore » in the behavior of the approaches on artificial regular grid problems. As a conclusion to this activity report, we mention a set of parallel sparse solvers on which this type of study should be extended.« less
Site Environmental Report for 2011, Volumes 1& 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskin, David; Bauters, Tim; Borglin, Ned
2012-09-12
The Site Environmental Report for 2011 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2011. Throughout this report, “Berkeley Lab” or “LBNL” refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in the hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that includemore » an overview of LBNL, a discussion of its Environmental Management System (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities.« less
Energy Analytics Campaign > 2014-2018 Assessment of Automated M&V Methods > 2012-2018 Better Assessment of automated measurement and verification methods. Granderson, J. et al. Lawrence Berkeley . PDF, 726 KB Performance Metrics and Objective Testing Methods for Energy Baseline Modeling Software
Subsurface Scenarios: What are We Trying to Model?
In collaboration with the Lawrence Berkeley National Lab (George Moridis and team),and after a thorough review of the scientific literature and data and interviews with a selection of experts on the topic, a finite number of plausible scenarios were selected for more quantitative...
Adaptation of a commercial robot for genome library replication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uber, D.C.; Searles, W.L.
1994-01-01
This report describes tools and fixtures developed at the Human Genome Center at Lawrence Berkeley Laboratory for the Hewlett-Packard ORCA{trademark} (Optimized Robot for Chemical Analysis) to replicate large genome libraries. Photographs and engineering drawings of the various custom-designed components are included.
75 FR 71737 - Energy Employees Occupational Illness Compensation Program Act of 2000, as Amended
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... 1984-1997. Laboratory for Energy-Related Health Davis 1958-1989; 1991-Present.[dagger] Research.... Environmental Health, University of California (San Francisco). Lawrence Berkeley National Laboratory... Physics Laboratory, James Princeton 1951-Present. Forrestal Campus of Princeton University. New Mexico DOE...
Building Wealth Through Internal Financing of Energy Savings Performance Contracts
2005-12-01
for reducing this burden, to Washington headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway...16 2. The Ernest Orlando Lawrence Berkeley National Laboratory ESCO Service Study...19 1. Ritter and Silber .................................................................................19 2. Prather’s View in Money and
76 FR 4892 - Notice Inviting Comments on Report
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... Report January 20, 2011. Frequency Response Metrics to Assess Docket No. AD11-8-000 Requirements for..., a report prepared by the Lawrence Berkeley National Laboratory, ``Use of Frequency Response Metrics... Generation'' and its five supporting papers (collectively, ``the Report''). Frequency response measures how...
Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, P.L.
1995-03-01
This report presents an examination of the geometry of the Hayward fault adjacent to the Lawrence Berkeley Laboratory and University of California campuses in central Berkeley. The fault crosses inside the eastern border of the UC campus. Most subtle geomorphic (landform) expressions of the fault have been removed by development and by the natural processes of landsliding and erosion. Some clear expressions of the fault remain however, and these are key to mapping the main trace through the campus area. In addition, original geomorphic evidence of the fault`s location was recovered from large scale mapping of the site dating frommore » 1873 to 1897. Before construction obscured and removed natural landforms, the fault was expressed by a linear, northwest-tending zone of fault-related geomorphic features. There existed well-defined and subtle stream offsets and beheaded channels, fault scarps, and a prominent ``shutter ridge``. To improve our confidence in fault locations interpreted from landforms, we referred to clear fault exposures revealed in trenching, revealed during the construction of the Foothill Housing Complex, and revealed along the length of the Lawson Adit mining tunnel. Also utilized were the locations of offset cultural features. At several locations across the study area, distress features in buildings and streets have been used to precisely locate the fault. Recent published mapping of the fault (Lienkaemper, 1992) was principally used for reference to evidence of the fault`s location to the northwest and southeast of Lawrence Berkeley Laboratory.« less
Hope or Hype? What is Next for Biofuels? (LBNL Science at the Theater)
Keasling, Jay; Bristow, Jim; Tringe, Susannah Green
2017-12-09
Science at the Theater: From the sun to your gas tank: A new breed of biofuels may help solve the global energy challenge and reduce the impact of fossil fuels on global warming. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who are developing ways to convert the solar energy stored in plants into liquid fuels. Jay Keasling is one of the foremost authorities in the field of synthetic biology. He is applying this research toward the production of advanced carbon-neutral biofuels that can replace gasoline on a gallon-for-gallon basis. Keasling is Berkeley Labs Acting Deputy Director and the Chief Executive Officer of the U.S. Department of Energys Joint BioEnergy Institute. Jim Bristow is deputy director of programs for the U.S. Department of Energy Joint Genome Institute (JGI), a national user facility in Walnut Creek, CA. He developed and implemented JGIs Community Sequencing Program, which provides large-scale DNA sequencing and analysis to advance genomics related to bioenergy and environmental characterization and cleanup. Susanna Green Tringe is a computational biologist with the U.S. Department of Energy Joint Genome Institute (JGI). She helped pioneer the field of metagenomics, a new strategy for isolating, sequencing, and characterizing DNA extracted directly from environmental samples, such as the contents of the termite gut, which yielded enzymes responsible for breakdown of wood into fuel.
The LBNL High School Student Research Participation Program (HSSRPP)
NASA Astrophysics Data System (ADS)
McMahan, M. A.
2007-04-01
The HSSRPP, which has been in operation at LBNL since 2001, places 25-35 students each year in summer research internships at Lawrence Berkeley National Laboratory, a multi-purpose Department of Energy laboratory. The paid six-week internships, which are restricted to students who have completed their junior or senior year of high school, are highly sought over, with nearly 300 applications in 2006. With funding from Bechtel, the success of the program has been assessed through surveys and tracking of the student participants. In addition, as part of the application process, the students are asked the essay question, ``If you were in charge of the Science Department at your High School, what changes would you make to motivate more students to pursue careers in science and why?'' The responses of all applicants for 2004-2006 have been analyzed by gender and school district. The results will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Papri; Prokopchuk, Demyan E.; Mock, Michael T.
2017-03-01
This review examines the synthesis and acid reactivity of transition metal dinitrogen complexes bearing diphosphine ligands containing pendant amine groups in the second coordination sphere. This manuscript is a review of the work performed in the Center for Molecular Electrocatalysis. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences. EPR studies on Fe were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located atmore » PNNL. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. DOE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
"Electricity: the Energy of Tomorrow" was submitted by the Energy Materials Center at Cornell (emc2) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs)more » in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Abruna, Hector D. (Director, Energy Materials Center at Cornell); emc2 Staff
2017-12-09
'Electricity: the Energy of Tomorrow' was submitted by the Energy Materials Center at Cornell (emc2) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
2017-03-31
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englemann, P.; Roth, K.; Tiefenbeck, V.
2013-01-01
This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).
Nuclear Data Needs and Capabilities for Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.
2015-05-27
In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applicationsmore » (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).« less
INDC International Nuclear Data Committee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, A.; McCutchan, E.; Dimitriou, P.
The 22nd meeting of the International Network of Nuclear Structure and Decay Data Evaluators was convened at the Lawrence Berkeley National Laboratory, Berkeley, USA, from 22 to 26 May 2017 under the auspices of the IAEA Nuclear Data Section. This meeting was attended by 38 scientists from 12 Member States and the IAEA, all of whom are concerned primarily with the measurement, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, data centre reports, various proposals considered, technical discussions, actions agreed by the participants, and the resulting recommendations/conclusions are presented within this document.
Interaction Potentials for Br(2P) + Ar, Kr, Xe (1S) by the Crossed Molecular Beams Method.
1981-03-01
recombination was significantly affected by eBr-RG" In their study, the interaction potential between Br and RG was assumed to be of the Lennard ... Jones (L-J) form with the following parameters: RG=Ar, c=1.0 kcal/mole, a=3.0 A; RG=Xe, e-1.0 kcal/mole, a=3.5 A. A slightly shallower Br-Ar potential ...AOA-A00 002 CALIFORNIA UNIV BERKELEY LAWRENCE BERKELEY LAB F/6 20/7 INTERACTION POTENTIALS FOR BR2P) + AR. KR. XE (IS) BY THE CROS--ETCfIU MAR 81 P
Scientists in Gray Flannel Suits: Ernest Lawrence and the Development of Color Television
NASA Astrophysics Data System (ADS)
Roebke, Joshua
Physicists and historians typically remember Ernest Lawrence for one of two activities, his development of the cyclotron or his advocacy for atomic weapons. The two labs that he established in support of such endeavors are still named after him in California: Lawrence Berkeley and Lawrence Livermore. But there was a third accomplishment for which Lawrence believed he would always be remembered: the development of color television. In 1950, he sold a half stake of his company, Chromatic Television Laboratories, to Paramount Pictures for 1 million. That decade, Lawrence and his employees, especially Luis Alvarez and Edwin McMillan, designed cathode-ray tubes for color televisions while they championed hydrogen bombs. Although their commitment to the second was attributed to patriotism and their interest in the first was dismissed as a hobby, it is not so easy to disentangle their motives. Color screens were needed for more than variety shows and sitcoms; they displayed incoming missiles in vivid color. No company has ever been led by three future Nobel Laureates, yet Chromatic Television Laboratories was a failure. Even so, Lawrence had a profound influence on the development of color television, and I will tell this story for the first time.
4. Photocopy of photograph (original print located in LBNL Photo ...
4. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August, 1955. XBB 689-5508. BEVATRON MODEL (L. TO R.) WITH L. SMITH, McMILLAN, E.O. LAWRENCE, LOFGREN, BROBECK, AND SEWELL - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Site Environmental Report for 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauer, Ron O.; Baskin, David A.; Borglin, Ned K.
The annual Site Environmental Report documents Lawrence Berkeley National Laboratory’s performance in reducing its environmental impacts, progress toward cleaning up groundwater contamination, and compliance with applicable Department of Energy, federal, state, and local environmental regulations. The report is required by DOE Order 231.1B, Environment, Safety, and Health Reporting.
Precision Measurement of The Most Distant Spectroscopically Confirmed
Supernova SAO/NASA ADS Astronomy Abstract Service Title: Precision Measurement of The Most Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309, USA), AI(Hamilton College Astronomy, Vanderbilt University, Nashville, TN 37240, USA), AO(E. O. Lawrence Berkeley National Lab, 1
Power Begins at Home: DoD’s Facilities Energy Strategy
2011-10-31
lighting control strategies: 1) OccuSwitch Wireless: room-based control 2) Wired PNLCS : distributed control 3) Hybrid ILDC: wireless area based...control Three Buildings at Ft. Irwin • Philips Research North America • Lawrence Berkeley National Laboratory PNLC S Net 29 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisielowski, Christian
Christian Kisielowski, an expert in electron microscopy at Lawrence Berkeley National Laboratory, investigates ways to allow studies of single atoms using sophisticated microscopes and imaginative techniques. His goal is to account for every atom in the interior of both simple and complex materials. Find out how he and his colleagues are breaking the barriers to account for every atom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirruccello, M.C.; Tobias, C.A.
1980-11-01
Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)
Physics Meets Biology (LBNL Summer Lecture Series)
Chu, Steven
2018-05-09
Summer Lecture Series 2006: If scientists could take advantage of the awesomely complex and beautiful functioning of biology's natural molecular machines, their potential for application in many disciplines would be incalculable. Nobel Laureate and Director of the Lawrence Berkeley National Laboratory Steve Chu explores Possible solutions to global warming and its consequences.
OpenADR Specification to Ease Saving Power in Buildings
None
2017-12-09
A new data model developed by researchers at the Department of Energys Lawrence Berkeley National Laboratory and their colleagues at other universities and in the private sector will help facilities and buildings save power through automated demand response technology, and advance the development of the Smart Grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EHS Staff
2003-04-01
To ensure efficient and effective management of LBNL facilities, LBNL shall assign line managers to perform appropriate work functions. LBNL divisions that are delegated responsibility for the management of buildings shall designate division personnel to serve as --''Building Managers.''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom
2009-10-27
Tom Wenzel of Lawrence Berkeley National Laboratory comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicle, specifically on the relationship between vehicle weight and vehicle safety.
Light-ion therapy in the U.S.: From the Bevalac to ??
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Jose R.; Castro, Joseph R.
2002-09-24
While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joinedmore » by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less
Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)
Gadgil, Ashok; Booker, Kayje; Rausch, Adam
2018-06-08
Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmental engineering. He helps to design and test stove designs in Ethiopia and elsewhere.
Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadgil, Ashok; Booker, Kayje; Rausch, Adam
2010-09-20
Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmentalmore » engineering. He helps to design and test stove designs in Ethiopia and elsewhere.« less
History of the Universe Poster
History of the Universe Poster You are free to use these images if you give credit to: Particle Data Group at Lawrence Berkeley National Lab. New Version (2014) History of the Universe Poster Download: JPEG version PDF version Old Version (2013) History of the Universe Poster Download: JPEG version
Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011
Sanii, Babak
2017-12-11
Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.
Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanii, Babak
Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitner, M.; Bieniosek, F.; Kwan, J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30more » nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.« less
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and
Alien Earths: A Traveling Science Exhibit and Education Program
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.; Morrow, C. A.; Harold, J.
2004-05-01
Where did we come from? Are we alone? These age-old questions form the basis of NASA's Origins Program, a series of missions spanning the next twenty years that will use a host of space- and ground-based observatories to understand the origin and development of galaxies, stars, planets, and the conditions necessary to support life. The Space Science Institute in Boulder, CO, is developing a 3,000 square-foot traveling exhibition, called Alien Earths, which will bring origins-related research and discoveries to students and the American public. Alien Earths will have four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. The exhibit's size will permit it to visit medium sized museums in all regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005 at the Lawrence Hall of Science in Berkeley, California. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. In addition to the exhibit, the project includes workshops for educators and docents at host sites, as well as a public website that will use exhibit content to delve deeper into origins research. Current partners in the Alien Earths project include ASTC, Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (Navigator, SIRTF, and Kepler), the SETI Institute, and the Space Telescope Science Institute. (Supported by grants from NSF and NASA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia Needham
2008-06-30
The primary objective of this project was to engage members of the public in an active and balanced deliberative discussion about the social, ethical, legal, environmental, and policy issues arising from nanotechnologies. A second but equally important objective was to interest members of the public in learning more about science and technology and nanotechnology specifically by understanding how it will affect their lives. The objectives were met through a series of electronic and face-to-face citizen forums conducted in conjunction with three Fred Friendly Seminars being taped on the University of California, Berkeley campus in partnership with Lawrence Hall of Sciencemore » (this forum was conducted in partnership with the St. Louis Science Center); the Boston Museum of Science in Boston, MA; and the State Museum of South Carolina in Columbia, South Carolina. The topical area for each forum paralleled the content of the Fred Friendly Seminars series being taped at each location, but specific topics/issues were drawn from the concerns and interests of the communities. The three topical areas included Environmental Impact (St. Louis), Privacy vs. Security (Boston), and Health and Enhancement (Columbia). The PI and project leader worked with the local science centers to identify stakeholder groups, such as academic, corporate and government scientists; environmental advocates; business leaders; science and technology journalists; and public policy makers within each community. Representatives from each group along with members of the general public were invited to participate in a series of on line and in person deliberations that were designed to provide basic information about the science, its potential benefits and risks, and avenues for public participation in policy formulation. On line resources were designed and managed by ScienceVIEW at Lawrence Hall of Science and Earth & Sky, Inc. The activities at each site were evaluated by Inverness Research Associates to assess whether they have achieved the objectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchstetter, Thomas; Preble, Chelsea; Hadley, Odelle
2010-11-05
Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions.more » This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.« less
Conference Comments by the Editors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Daniel E
2009-01-01
The Symposium on Radiation Measurements and Applications (SORMA) met for the first time on the West Coast June 2-5, 2008, in Berkeley, CA. With radiation detectors increasing in number, variety, and societal importance, we plan to alternate between SORMA East (in Ann Arbor, MI) and SORMA West so that the forum will be available every two years. The topic areas for SORMA West 2008 were much the same as those of recent Ann Arbor programs, and were meant to encompass the full breadth of ionizing radiation measurement applications and technologies, with both oral and poster presentations. The technical program ofmore » SORMA 2008 included 342 scientific presentations, 116 oral presentations plus eight invited keynote lectures in plenary sessions, as well as 218 presentations in poster sessions. The SORMA 2008 meetings were attended by 439 registered participants from 25 different countries. Topics of interest at the meeting ranged from room temperature semiconductor detectors, cryogenic detectors, photodetectors, neutron detectors, novel scintillators, nonproportionality and characterization of scintillators, simulation and analysis of radiation interactions, novel radiation sources, imaging technologies and homeland security and medical applications. This was the first conference of the SORMA series to be technically cosponsored by the Institute of Electrical and Electronic Engineers (IEEE), specifically by the Nuclear and Plasma Sciences Society (NPSS) of IEEE. The co-sponsorship has been important for visibility of SORMA and for attracting a record number of new participants. This special issue of IEEE TRANSACTIONS ON NUCLEAR SCIENCE comprises the refereed proceedings of SORMA 2008, containing 128 papers on the research presentations. The Chairs of the SORMA 2008 conference would like to acknowledge partial financial support from the NNSA, DNDO, and DTRA, and organizational support from Lawrence Berkeley National Laboratory and Lawrence Livermore National Laboratory. We acknowledge our corporate supporters: Caen Nuclear, Eljen Technology, Hilger Crystals and GE Global Research. Finally, we thank the members of the local organizing committee: Diana Attila, Thomas Budinger, Joe Chew, Daniel Chivers, Rob Johnson, Laurie O'Brien, Donna Raziano, Emily Sause, and Brian Wirth for doing all the work that actually made this conference happen.« less
Middle and high school students shine
NASA Astrophysics Data System (ADS)
Asher, Pranoti; Saltzman, Jennifer
2012-02-01
Middle and high school students participating in after-school and summer research experiences in the Earth and space sciences are invited to participate in AGU's Bright Students Training as Research Scientists (Bright STaRS) program. The Bright STaRS program provides a dedicated forum for these students to present their research results to the scientific community at AGU's Fall Meeting, where they can also learn about exciting research, education, and career opportunities in the Earth and space sciences. Last year's program included 33 abstracts from middle and high school students involved with the Stanford University School of Earth Sciences; Raising Interest in Science and Engineering summer internship program sponsored by the Office of Science Outreach at Stanford; Lawrence Hall of Science at the University of California, Berkeley; the University of California, Santa Cruz; California Academy of Science; San Francisco State University; the University of Arizona; and the National Oceanic and Atmospheric Administration's Gulf of the Farallones National Marine Sanctuary. Their work spanned a variety of topics ranging from structural geology and paleontology to environmental geology and polar science. Nearly 100 Bright STaRS students presented their research posters on Thursday morning (8 December) of the Fall Meeting and had a chance to interact with scientists, AGU staff, and other meeting attendees.
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley National Laboratory 1 Cyclotron Road MS 66R0200 Berkeley CA 94720 510-486-4957 A U.S. Department
An Intensive Hubble Space Telescope Survey for z>1 Type Ia Supernovae by
Targ SAO/NASA ADS Astronomy Abstract Service Title: An Intensive Hubble Space Telescope Survey Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; E. O. Lawrence Berkeley National , Clinton, NY 13323, USA), AH(National Optical Astronomy Observatory, Tucson, AZ 85726-6732, USA), AI
The Lawrence Berkeley National Laboratory Population Impact Assessment Modeling Framework (PIAMF) was expanded to enable determination of indoor PM2.5 concentrations and exposures in a set of 50,000 homes representing the US housing stock. A mass-balance model is used to calculat...
John C. Mather, the Big Bang, and the COBE
Additional Information * Videos John C. Mather Courtesy of NASA "Dr. John C. Mather of NASA's Goddard excerpt from NASA Scientist Shares Nobel Prize for Physics 2Edited excerpt from John Mather: The Path to a Spacecraft Courtesy of Lawrence Berkeley National Laboratory Additional Web Pages: Dr. John C Mather, NASA
OpenADR Specification to Ease Saving Power in Buildings
Piette, Mary Ann
2017-12-09
A new data model developed by researchers at the Department of Energys Lawrence Berkeley National Laboratory and their colleagues at other universities and in the private sector will help facilities and buildings save power through automated demand response technology, and advance the development of the Smart Grid. http://newscenter.lbl.gov/press-releases/2009/04/27/openadr-specification/
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the decision to designate a class of employees at the Lawrence Berkeley...
Symposium Commemorating the 25th Anniversary of the Discovery of Mendelevium
DOE R&D Accomplishments Database
Seaborg, G. T. (ed.)
1980-03-28
The Symposium honoring the 25th Anniversary of the discovery of mendelevium was held at the Lawrence Berkeley Laboratory on March 28, 1980. The following three papers were presented: Chemical Properties of Mendelevium; Nuclear Properties of Mendelevium; and Radioactive Decay of Md Isotopes. Besides these papers there were introductory remarks, reminiscences, and concluding remarks.
Study Shows India Can Integrate 175 GW of Renewable Energy into Its
Electricity Grid | News | News | NREL Study Shows India Can Integrate 175 GW of Renewable Energy into Its Electricity Grid News Release: Study Shows India Can Integrate 175 GW of Renewable Energy Corporation, Ltd. (POSOCO); and Lawrence Berkeley National Laboratory (LBNL) produced the study Greening the
Visualizing Coolant Flow in Sodium Reactor Subassemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Uniformity of temperature controls peak power output. Interchannel cross-flow is the principal cross-assembly energy transport mechanism. The areas of fastest flow all occur at the exterior of the assembly. Further, the fast moving region winds around the assembly in a continuous swath. This Nek5000 simulation uses an unstructured mesh with over one billion grid points, resulting in five billion degrees of freedom per time slice. High speed patches of turbulence due to vertex shedding downstream of the wires persist for about a quarter of the wire-wrap periodic length. Credits: Science: Paul Fisher and Aleks Obabko, Argonne National Laboratory. Visualization: Hankmore » Childs and Janet Jacobsen, Lawrence Berkeley National Laboratory. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy under contract DE-AC02-06CH11357. This research was sponsored by the Department of Energy's Office of Nuclear Energy's NEAMS program.« less
A Radiation Homeland Security Workshop Presented to the City of Berkeley Fire Department
NASA Astrophysics Data System (ADS)
Matis, Howard
2005-04-01
A radiation incident in a community, ranging from a transportation accident to a dirty bomb, is expected to be rare, but still can occur. First responders to such an incident must be prepared. City of Berkeley officials met with members of the Lawrence Berkeley National Laboratory staff and agreed that the laboratory participants would create material and teach it to all of their fire fighting staff. To design such a course, nuclear physicists, biologists and health physicists merged some of their existing teaching material together with previous homeland security efforts to produce a course that lasted one full day. The material was designed to help alleviate the myths and fear of radiation experienced by many first responders. It included basic nuclear physics information, biological effects, and methods that health physicists use to detect and handle radiation. The curriculum included several hands on activities which involved working directly with the meters the Berkeley Fire Department possessed. In addition, I will discuss some observations from teaching this course material plus some unusual problems that we encountered, such as suddenly the whole class responding to a fire.
Hydrogen Technology and Energy Curriculum (HyTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Barbara
The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three daysmore » of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.« less
The Swift MIDEX Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Feigelson, E. D.; Cominsky, L. R.; Whitlock, L. A.
1999-12-01
The Swift satellite is dedicated to an understanding of gamma-ray bursts, the most powerful explosions in the Universe since the Big Bang. A multifaceted E/PO program associated with Swift is planned. Web sites will be constructed, including sophisticated interactive learning environments for combining science concepts with with exploration and critical thinking for high school students. The award-winning instructional television program "What's in the News?", produced by Penn State Public Broadcasting and reaching several million 4th-7th graders, will create a series of broadcasts on Swift and space astronomy. A teachers' curricular guide on space astronomy will be produced by UC-Berkeley's Lawrence Hall of Science as part of their highly successful GEMS guides promoting inquiry-based science education. Teacher workshops will be conducted in the Appalachian region and nationwide to testbed and disseminate these products. We may also assist the production of gamma-ray burst museum exhibits. All aspects of the program will be overseen by a Swift Education Committee and assessed by a professional educational evaluation firm. This effort will be supported by the NASA Swift MIDEX contract to Penn State.
NASA Astrophysics Data System (ADS)
Cuff, K. E.; Molinaro, M.
2004-12-01
The Environmental Science Information Technology Activities (ESITA) program provides grades 9 and 10 students with under-represented minority backgrounds in the East San Francisco Bay Area with real-world opportunities to learn about and apply information technologies through a series of project-based activities related to environmental science. Supported by the NSF Information Technology Experiences for Students and Teachers (ITEST) program, ESITA activities engage students in the use of newly acquired information technology (IT) skills and understandings while performing air and water quality research investigations. One project that ESITA students have become involved in relates to the currently relevant issue of elevated levels of lead found in drinking waters in Washington, D.C. Students based in the Bay Area have initiated and maintained E-mail correspondence with children who attend elementary schools in the D.C. area. After receiving a thorough explanation of required sampling procedures devised by the Bay Area students, the elementary school children have sent 500 ml water samples from their homes and schools to Berkeley along with information about the locations from which the water samples were collected. These samples were then prepared for lead analysis at Lawrence Hall of Science by ESITA students, who used resulting data to perform a preliminary assessment of the geospatial distribution of lead trouble spots throughout Washington, DC. Later, ESITA student scientists will work with students from the UC Berkeley School of Public Health to develop surveys and questionnaires that generate high quality information useful with regard to assessing the impact of the current lead crisis on younger children in the Washington, D.C. area. Through the application of new understandings to current, real-world environmental problems and issues such as that related to lead, positive changes in students' attitudes towards IT and science have occurred, which accompany increases in their content learning and skills acquisition abilities.
NASA Astrophysics Data System (ADS)
Poderoso, Charie
Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.
Cool Cities, Cool Planet (LBNL Science at the Theater)
Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen
2018-06-14
Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.
First-Principles Study of Superconductivity in Ultra- thin Pb Films
NASA Astrophysics Data System (ADS)
Noffsinger, Jesse; Cohen, Marvin L.
2010-03-01
Recently, superconductivity in ultrathin layered Pb has been confirmed in samples with as few as two atomic layers [S. Qin, J. Kim, Q. Niu, and C.-K. Shih, Science 2009]. Interestingly, the prototypical strong-coupling superconductor exhibits different Tc's for differing surface reconstructions in samples with only two monolayers. Additionally, Tc is seen to oscillate as the number of atomic layers is increased. Using first principles techniques based on Wannier functions, we analyze the electronic structure, lattice dynamics and electron-phonon coupling for varying thicknesses and surface reconstructions of layered Pb. We discuss results as they relate to superconductivity in the bulk, for which accurate calculations of superconducting properties can be compared to experiment [W. L. McMillan and J.M. Rowell, PRL 1965]. This work was supported by National Science Foundation Grant No. DMR07-05941, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory (Supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231)
If Only We Could Account For Every Atom (LBNL Summer Lecture Series)
Kisielowski, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
2018-02-16
Christian Kisielowski, an expert in electron microscopy at Lawrence Berkeley National Laboratory, investigates ways to allow studies of single atoms using sophisticated microscopes and imaginative techniques. His goal is to account for every atom in the interior of both simple and complex materials. Find out how he and his colleagues are breaking the barriers to account for every atom.
X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X
Improving Data Mobility & Management for International Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borrill, Julian; Dart, Eli; Gore, Brooklin
In February 2015 the third workshop in the CrossConnects series, with a focus on Improving Data Mobility & Management for International Cosmology, was held at Lawrence Berkeley National Laboratory. Scientists from fields including astrophysics, cosmology, and astronomy collaborated with experts in computing and networking to outline strategic opportunities for enhancing scientific productivity and effectively managing the ever-increasing scale of scientific data.
Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress inmore » increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.« less
Tradeoffs Between Synchronization, Communication, and Work in Parallel Linear Algebra Computations
2014-01-25
Demmel Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014- 8 http...www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014- 8 .html January 25, 2014 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...University of California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8 . PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, B.
1999-02-01
This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. Themore » technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, andmore » Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.« less
DePaolo, Donald J. (Director, Center for Nanoscale Control of Geologic CO2); NCGC Staff
2017-12-09
'Carbon in Underland' was submitted by the Center for Nanoscale Control of Geologic CO2 (NCGC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'entertaining animation and engaging explanations of carbon sequestration'. NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from seven institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO{sub 2} is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO{sub 2}. Research topics are: bio-inspired, CO{sub 2} (store), greenhouse gas, and interfacial characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Jeff
"Carbon in Underland" was submitted by the Center for Nanoscale Controls on Geologic CO2 (NCGC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its "entertaining animation and engaging explanations of carbon sequestration". NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from sevenmore » institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO2 is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO2. Research topics are: bio-inspired, CO2 (store), greenhouse gas, and interfacial characterization.« less
The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.
In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiationmore » testing of carbon nanotube field effect transistor will be discussed.« less
Methodology for National Water Savings Model and Spreadsheet Tool—Outdoor Water Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Alison, A; Chen, Yuting; Dunham, Camilla
This report describes the method Lawrence Berkeley National Laboratory (LBNL) developed to estimate national impacts of the U.S. Environmental Protection Agency’s (EPA’s) WaterSense labeling program for weather-based irrigation controllers (WBIC). Estimated impacts include the national water savings attributable to the program and the net present value of the lifetime water savings for consumers of irrigation controllers.
SNS Extraction Fast Kicker System Development
2003-06-01
SNS EXTRACTION FAST KICKER SYSTEM DEVELOPMENT * W. Zhang ξ, J. Sandberg, R. Lambiase, Y.Y. Lee, R. Lockey, J. Mi, T. Nehring, C. Pai, N. Tsoupas...Oak Ridge, TN 37831 * SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for...the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, T.; Ke, J.; Sathaye, J.
2011-04-20
This User's Manual summarizes the background information of the Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2, 2011), including'Read Me' portion of the tool, the sections of Introduction, and Instructions for the BEST-Dairy tool that is developed and distributed by Lawrence Berkeley National Laboratory (LBNL).
CXRO - Mi-Young Im, Staff Scientist
X-Ray Database Zone Plate Education Nanomagnetism X-Ray Microscopy LDJIM EUV Lithography EUV Mask Publications Contact The Center for X-Ray Optics is a multi-disciplined research group within Lawrence Berkeley -Ray Optics X-Ray Database Nanomagnetism X-Ray Microscopy EUV Lithography EUV Mask Imaging
SB6.0: The 6th International meeting on Synthetic Biology, July 9-11, 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahl, Linda J.
The Synthetic Biology conference series (SBx.0) is the preeminent academic meeting in synthetic biology. Organized by the BioBricks Foundation, the SBx.0 conference series brings together leading researchers, students, industry executives, and policy makers from around the world to share, consider, debate, and plan efforts to make biology easier to engineer. Historically held every two years, the SBx.0 conferences are held in alternating locations in the United States, Europe, and Asia to encourage global participation and collaboration so that the ramifications of synthetic biology research and development are most likely to be safe ethical, and beneficial. On 9-11 July 2013, themore » 6th installment of the synthetic biology conference series (SB6.0) was held on the campus of Imperial College London (http://sb6.biobricks.org). The SB6.0 conference was attended by over 700 people, and many more were able to participate via video digital conference (http://sb6.biobricks.org/digital-conference/). Over the course of three days, the SB6.0 conference agenda included plenary sessions, workshops, and poster presentations covering topics ranging from the infrastructure needs arising when “Systematic Engineering Meets Biological Complexity” and design-led considerations for “Connecting People and Technologies” to discussions on “Engineering Biology for New Materials,” “Assessing Risk and Managing Biocontainment,” and “New Directions for Energy and Sustainability.” The $10,150 grant awarded by the U.S. Department of Energy (DE-SC0010233) to the BioBricks Foundation was used to provide partial reimbursement for the travel expenses of leading researchers from the United States to speak at the SB6.0 conference. A total of $9,450 was used to reimburse U.S. speakers for actual expenses related to the SB6.0 conference, including airfare (economy or coach only), ground transportation, hotel, and registration fees. In addition, $700 of the grant was used to offset direct administrative costs associated with selecting speakers (preparing announcements, evaluating abstract submissions) and handling travel arrangements. Leading U.S. researchers selected to speak at the SB6.0 conference included: Adam Arkin, Ph.D. Division Director of the Physical Biosciences Division at the Lawrence Berkeley National Laboratory and Professor in the Department of Bioengineering at UC Berkeley Jay Keasling, Ph.D. Professor in the Department of Bioengineering at Berkeley, Senior Faculty Scientist and Associate Laboratory Director of the Lawrence Berkeley National Laboratory, and Chief Executive Officer of the Joint BioEnergy Institute. Debra Mathews, Ph.D. Assistant Director for Science Programs for the Johns Hopkins Berman Institute of Bioethics, Assistant Professor in the Department of Pediatrics, and Affiliate Faculty in the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine. Richard Murray, Ph.D. Thomas E. and Doris Everhart Professor of Control & Dynamical Systems and Bioengineering at Caltech. Sarah Richardson, Ph.D. Distinguished Postdoctoral Fellow in Genomics at the Lawrence Berkeley National Laboratory and the Department of Energy Joint Genome Institute. and others (for a complete listing of speakers presenting at the SB6.0 conference see http://sb6.biobricks.org/speakers/) The SB6.0 conference was the largest synthetic biology conference to date, and highlights of the SB6.0 conference have been published in a special issue of ACS Synthetic Biology (http://pubs.acs.org/toc/asbcd6/3/3). The BioBricks Foundation appreciates the support of the U.S. Department of Energy in helping to make this most influential and important conference in the field of synthetic biology a success.« less
Physics and Advanced Technologies 2003 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A; Sketchley, J
2005-01-20
The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the bestmore » science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as part of the NIF Early Light program.« less
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials
Toward a benchmark material in aerogel development
NASA Astrophysics Data System (ADS)
Sibille, Laurent; Cronise, Raymond J.; Noever, David A.; Hunt, Arlon J.
1996-03-01
Discovered in the thirties, aerogels constitute today the lightest solids known while exhibiting outstanding thermal and noise insulation properties in air and vacuum. In a far-reaching collaboration, the Space Science Laboratory at NASA Marshall Space Flight Center and the Microstructured Materials Group at Lawrence Berkeley National Laboratory are engaged in a two-fold research effort aiming at characterizing the microstructure of silica aerogels and the development of benchmark samples through the use of in-orbit microgravity environment. Absence of density-driven convection flows and sedimentation is sought to produce aerogel samples with narrow distribution of pore sizes, thus largely improving transparency of the material in the visible range. Furthermore, highly isotropic distribution of doping materials are attainable even in large gels grown in microgravity. Aerospace companies (cryogenic tanks insulation and high temperature insulation of space vehicles), insulation manufacturers (household and industrial applications) as well as pharmaceutical companies (biosensors) are potential end-users of this rapidly developing technology.
Impact relevance and usability of high resolution climate modeling and data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnott, James C.
2016-10-30
The Aspen Global Change Institute hosted a technical science workshop entitled, “Impact Relevance and Usability of High-Resolution Climate Modeling and Datasets,” on August 2-7, 2015 in Aspen, CO. Kate Calvin (Pacific Northwest National Laboratory), Andrew Jones (Lawrence Berkeley National Laboratory) and Jean-François Lamarque (NCAR) served as co-chairs for the workshop. The meeting included the participation of 29 scientists for a total of 145 participant days. Following the workshop, workshop co-chairs authored a meeting report published in Eos on April 27, 2016. Insights from the workshop directly contributed to the formation of a new DOE-supported project co-led by workshop co-chair Andymore » Jones. A subset of meeting participants continue to work on a publication on institutional innovations that can support the usability of high resolution modeling, among other sources of climate information.« less
Stocks, G. Malcolm (Director, Center for Defect Physics in Structural Materials); CDP Staff
2017-12-09
'Center for Defect Physics - Energy Frontier Research Center' was submitted by the Center for Defect Physics (CDP) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; Brown University; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Lawrence Livermore National Laboratory; Ohio State University; and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Industry Initiatives for Science and Math Education (IISME) in the San Francisco Bay Area planned and convened the second national conference for representatives of scientific work experience programs for K-12 teachers (SWEPs) at Lawrence Hall of Science, University of California at Berkeley October 13-14, 1994. The goal of this conference was to further strengthen the growing community of SWEP managers and teacher participants by providing an opportunity for sharing expertise and strategies about the following: (1) How SWEPs can complement and stimulate systemic education reform efforts; (2) Assessment strategies piloted by the ambitious multi-site evaluation project funded by the U.S.more » Department of Energy (DOE) as well as smaller evaluation projects piloted by other SWEPs; (3) Expanding and strengthening the base of teachers served by SWEPs; (4) Ensuring that SWEPs adequately support teachers in affecting classroom transfer and offer {open_quotes}more than just a summerjob{close_quotes}; (5) Sustaining and expanding new programs. A special teacher strand focused on leadership development supporting teachers to become effective change agents in their classrooms and schools, and developing strong teacher communities.« less
Dominguez, Luis A.; Yildirim, Battalgazi; Husker, Allen L.; Cochran, Elizabeth S.; Christensen, Carl; Cruz-Atienza, Victor M.
2015-01-01
Each volunteer computer monitors ground motion and communicates using the Berkeley Open Infrastructure for Network Computing (BOINC, Anderson, 2004). Using a standard short‐term average, long‐term average (STLA) algorithm (Earle and Shearer, 1994; Cochran, Lawrence, Christensen, Chung, 2009; Cochran, Lawrence, Christensen, and Jakka, 2009), volunteer computer and sensor systems detect abrupt changes in the acceleration recordings. Each time a possible trigger signal is declared, a small package of information containing sensor and ground‐motion information is streamed to one of the QCN servers (Chung et al., 2011). Trigger signals, correlated in space and time, are then processed by the QCN server to look for potential earthquakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
An interview with Dick Fish of the Lawrence Berkeley Laboratory is presented. Mr. Fish's current research interests are discussed. These interests include the identification of trace metal non-porphyrin compounds in heavy crude petroleums. In particular, these interests include the identification of a class of nickel and vanadium compounds in the heavy crude petroleum from various geographical locations, e.g., the Boscan in Cerro Negro in Venezuela, Wilmington in California, and Prudhoe Bay in Alaska.
Ultrafast High Harmonic, Soft X-Ray Probing of Molecular Dynamics
2013-04-30
590 L/s scroll pump and a titanium sublimation pump . A TOF-PES has been designed and constructed to analyze the energy of the photoelectrons...are studied using the quasi-continuous vacuum ultraviolet light of the Advanced Light Source at Lawrence Berkeley National Laboratory. The molecular...34), the method of high order harmonic generation of ultrashort vacuum ultraviolet pulses was used to investigate molecular photodissociation, ultrafast
Automated Demand Response for Energy Sustainability Cost and Performance Report
2015-09-01
Install solar thermal system for pool heating in fitness Bldg 325 2022 $ 21,359 $ 7,199 3.6 yrs Renewable energy project p. 124- 126 Note: All data...and R. Bienert, 2011. Smart Grid Standards and Systems Interoperability: A Precedent with OpenADR, Lawrence Berkeley National Laboratory, LBNL...response (DR) system at Fort Irwin, CA. This demonstration employed industry-standard OpenADR (Open Automated Demand Response) technology to perform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Preston D.; Javandel, Iraj
This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow.more » Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.« less
Participatory Classification in a System for Assessing Multimodal Transportation Patterns
2015-02-17
Culler Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-8 http...California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...confirmation screen This section sketches the characteristics of the data that was collected, computes the accuracy of the auto- mated inference algorithm
Characterizing Scintillation and Cherenkov Light in Water-Based Liquid Scintillators
NASA Astrophysics Data System (ADS)
Land, Benjamin; Caravaca, Javier; Descamps, Freija; Orebi Gann, Gabriel
2016-09-01
The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light which lends itself well to a broad program of neutrino physics. Here we explore the light yields and time profiles of WbLS materials in development for Theia (formerly ASDC) as measured in CheSS: our bench-top Cherenkov and scintillation separation R&D project at Berkeley Lab. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.
Berkeley Lab - Materials Sciences Division
Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of
World Materials Summit (3rd). Held in Washington, DC on 9-12 October, 2011
2012-05-23
It focused on the critical links among materials research, energy, and sustainable development on a global scale. Abundant clean energy supplies and...reliable energy storage systems are needed to address many critical societal issues in development and developed countries. On a broader scale, access...Houle of the Lawrence Berkeley National Laboratory spoke next about "Energy Critical Elements," focusing on the well-known shortage of rare earth (RE
Distinguishing fissions of 232Th, 237Np and 238U with beta-delayed gamma rays
Iyengar, A.; Norman, E. B.; Howard, C.; ...
2013-04-08
Measurements of beta-delayed gamma-ray spectra following 14-MeV neutron-induced fissions of 232Th, 238U, and 237Np were conducted at Lawrence Berkeley National Laboratory’s 88-Inch Cyclotron. Spectra were collected for times ranging from 1 minute to 14 hours after irradiation. Lastly, intensity ratios of gamma-ray lines were extracted from the data that allow identification of the fissioning isotope.
An Internet-style Approach to Managing Wireless Link Errors
2002-05-01
implementation I used. Jamshid Mahdavi and Matt Mathis, then at the Pittsburgh Super- computer Center, and Vern Paxson of the Lawrence Berkeley National...Exposition. IEEE CS Press, 2002. [19] P. Bhagwat, P. Bhattacharya, A. Krishna , and S. Tripathi. Enhancing throughput over wireless LANs using channel...performance over wireless networks at the link layer. ACM Mobile Networks and Applications, 5(1):57– 71, March 2000. [97] Vern Paxson and Mark Allman
Renewable Energy and Storage Implementation in Naval Station Pearl Harbor
2015-06-01
less costly than GOCO in higherthan GOGO in higherthan COC in lowerthan GOGO (thi rd JBPHH example) JBPHH exampl e) JBPHHexample; 21% party) in J BPHH...Analysis of Project Cost, Perfomance, and Pricing Trends in the United States. Berkely , CA: Lawrence Berkeley National Laboratory. Bullis, K. (2013, May...Energy Method for Analyzing Renewable Energy Systems. IEEE Systems Journal, Vol 9 #1, 3. Czumak, C. J ., & Woodside, J . C. (2014). Energy Resiliency for
Segue: A Spectroscopic Survey of 240,000 Stars With g = 14-20
2009-05-01
24 Research School of Astronomy and Astrophysics, Australian National University, Weston, ACT 2611, Australia 25 Lawrence Berkeley National...main-sequence and evolved objects, with the goal of studying the kinematics and populations of our Galaxy and its halo. The spectra are clustered in 212...SEGUE Survey is the subject of this paper . The pro- cessed, searchable data archive from SEGUE was made publicly available in the Fall of 2008 as part
Hot Technology, Cool Science (LBNL Science at the Theater)
Fowler, John
2018-06-08
Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion moderated by KTVU's John Fowler on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.
Also a Centennial Year for Ernest Orlando Lawrence
research with multidisciplinary teams of scientists and engineers-the team-based approach to modern science should be remembered as the inventor of the modern way of doing science," said Lawrence team member Revolutionary Idea that Changed Modern Physics A Few Important Events in Lawrence's Life E.O. Lawrence
Machine learning for micro-tomography
NASA Astrophysics Data System (ADS)
Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James
2017-09-01
Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.
2013-12-10
Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-200...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...movement. PHYSICAL TARGET ACQUISITION STUDY To understand the accuracy and performance of head- orientation-based selection through our device, we car - ried
2013-11-04
Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-182...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...accuracy and performance of head- orientation-based selection through our device, we car - ried out a comparative target acquisition study, where
Lawrence Berkeley National Laboratory 2016 Annual Financial Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kim, P.; Williams, Kim, P.
FY2016 was a year of significant change and progress at Berkeley Lab. In March, Laboratory Director Michael Witherell assumed his new role when former Lab Director Paul Alivisatos became Vice Chancellor for Research at UC Berkeley. Dr. Witherell has solidified the Lab’s strategy, with a focus on long term science and technology priorities. Large-scale science efforts continued to expand at the Lab, including the Dark Energy Spectroscopic Instrument now heading towards construction, and the LUX-ZEPLIN dark matter detector to be built underground in South Dakota. Another proposed project, the Advanced Light Source-Upgrade, was given preliminary approval and will be themore » Lab’s largest scientific investment in years. Construction of the Integrative Genomics Building began, and will bring together researchers from the Lab’s Joint Genome Institute, now based in Walnut Creek, and the Systems Biology Knowledgebase (K-Base) under one roof. Investment in the Lab’s infrastructure also continues, informed by the Lab’s Infrastructure Strategic Plan. Another important focus is on developing the next generation of scientists with the talent and diversity needed to sustain Berkeley Lab’s scientific leadership and mission contributions to DOE and the Nation. Berkeley Lab received $897.5M in new FY2016 funding, a 12.5% increase over FY2015, for both programmatic and infrastructure activities. While the Laboratory experienced a substantial increase in funding, it was accompanied by only a modest increase in spending, as areas of growth were partially offset by the completion of several major efforts in FY2015. FY2016 costs were $826.9M, an increase of 1.9% over FY2015. Similar to the prior year, the indirect-funded Operations units worked with generally flat budgets to yield more funding for strategic needs. A key challenge for Berkeley Lab continues to be achieving the best balance to fund essential investments, deliver highly effective operational mission support and remain cost-competitive. Through a comprehensive approach to prioritize competing needs, the Lab ended the year in a favorable financial position. The Office of the Chief Financial Officer (OCFO) played a key role in providing analysis and decision support to Executive Leadership, enabling the Lab to enhance its financial management strategies. In FY2016, the OCFO updated its analytic approaches and models to enhance long term financial projections under various funding and investment scenarios, and to assess total cost of ownership for major proposed investments. These improvements provided the new Lab Director and Senior Leadership with more comprehensive information and analytic support for planning and prioritization efforts. Within the OCFO, we focused on core operations and key initiatives defined in our OCFO Strategic Roadmap. The Lab’s Financial System transitioned from stabilization to optimization, with a focus on expanding the financial reporting capabilities considerably. We completed implementation of the eCommerce platform, achieving a notable outcome for the Lab in close partnership with DOE’s Office of Science. In other accomplishments, we launched a financial literacy program to enable Lab managers and staff to understand and execute their financial management and stewardship responsibilities more effectively; made substantial progress in enhancing our Field Finance model that provides financial support to client divisions and areas; developed a business process governance model to define OCFO business processes, clarify roles, and strengthen service delivery; and implemented a Partners in Leadership training program to build leadership capacity among our staff. We completed a ‘refresh’ of our Strategic Roadmap, which now defines our priorities for FY2017-FY2019. As a part of this effort, we made a subtle but important change to the OCFO mission statement to call out the Lab’s research and stewardship mission to sustain the Lab’s science and technology capabilities now and into the future. Berkeley Lab’s FY2016 progress on all fronts - scientific, operations, and financial management – position the Lab to continue bringing science solutions to the world as we charge into the 21st Century.« less
W.E. Henry Symposium Compendium, Lawrence Berkeley National Laboratory, September 19, 1997
1997-09-19
that should aspects of what I call "supersym- metrical pion physics" actually be found in the laboratory, this will necessarily lead to a new constant...we should have arrived almost to the saturation point for the critical temperature. One may wonder about future developments. What about our dream of...superconductors, the most interest- ing magnetic systems, as well as the best ferroelectric materials. What makes the oxides so special? I hope we
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.; Barbose, G.; Margolis, R.
2014-09-01
This presentation, based on research at Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory, provides a high-level overview of historical, recent, and projected near-term PV pricing trends in the United States focusing on the installed price of PV systems. It also attempts to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices. This PowerPoint is the third edition from this series.
Photovoltaic System Pricing Trends. Historical, Recent, and Near-Term Projections, 2015 Edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, David; Barbose, Galen; Margolis, Robert
2015-08-25
This presentation, based on research at Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory, provides a high-level overview of historical, recent, and projected near-term PV pricing trends in the United States focusing on the installed price of PV systems. It also attempts to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices. This PowerPoint is the fourth edition from this series.
Q and A with Nobelist George Smoot - 2009 BCCP Cosmology Workshop
Smoot, George
2018-01-24
July 2009: What happens when dark matter and anti-dark mattter collide? If you were in a gravity free environment, what would happen to time? At the annual Cosmology Workshop at Lawrence Berkeley Lab, Nobelist George Smoot answers these questions and more from high school students and teachers. Dr. Smoot was co-awarded the 2006 Nobel Prize in Physics for the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.
Q&A with Nobelist George Smoot - 2009 BCCP Cosmology Workshop
George Smoot
2017-12-09
July 2009: What happens when dark matter and anti-dark mattter collide? If you were in a gravity free environment, what would happen to time? At the annual Cosmology Workshop at Lawrence Berkeley Lab, Nobelist George Smoot answers these questions and more from high school students and teachers. Dr. Smoot was co-awarded the 2006 Nobel Prize in Physics for the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.
Nanofiber-Based Bulk-Heterojunction Organic Solar Cells Using Coaxial Electrospinning
2012-01-01
chains are likely oriented with the [010] direction, perpendicular to the substrate, in the fi lm device. Glancing incidence X - ray diffraction (GIXD...Electron and X - ray diffraction measurements were per- formed in order to study the structural order in annealed fi bers and devices. For reference... angle X - ray scattering (SAXS/WAXS) beamline 7.3.3 of the Advanced Light Source at Lawrence Berkeley National Laboratory at 10 keV (1.24 Å) from a bend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Zolotorev, Max S.; Filippetto, Daniele
2007-06-22
By analysing the pulse to pulse intensity fluctuations ofthe radiation emitted by a charge particle in the incoherent part of thespectrum, it is possible to extract information about the spatialdistribution of the beam. At the Advanced Light Source (ALS) of theLawrence Berkeley National Laboratory, we have developed and tested asimple scheme based on this principle that allows for the absolutemeasurement of the bunch length. A description of the method and theexperimental results are presented.
Q&A with Nobelist George Smoot - 2009 BCCP Cosmology Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Smoot
2010-06-02
July 2009: What happens when dark matter and anti-dark mattter collide? If you were in a gravity free environment, what would happen to time? At the annual Cosmology Workshop at Lawrence Berkeley Lab, Nobelist George Smoot answers these questions and more from high school students and teachers. Dr. Smoot was co-awarded the 2006 Nobel Prize in Physics for the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.
Q and A with Nobelist George Smoot - 2009 BCCP Cosmology Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smoot, George
2010-01-01
July 2009: What happens when dark matter and anti-dark mattter collide? If you were in a gravity free environment, what would happen to time? At the annual Cosmology Workshop at Lawrence Berkeley Lab, Nobelist George Smoot answers these questions and more from high school students and teachers. Dr. Smoot was co-awarded the 2006 Nobel Prize in Physics for the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawislanski, P.T.; McGrath, A.E.; Benson, S.M.
1995-11-01
Research aimed at gaining a better understanding of selenium cycling in marshes and mudflats of the Carquinez Strait is being performed by scientists from Lawrence Berkeley National Laboratory and collaborators from the University of California at Davis. This work was initiated in the Fall of 1994 and is scheduled to continue through the Fall of 1996. This report summarizes the results of the effort to date.
W.E. Henry Symposium compendium: The importance of magnetism in physics and material science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carwell, H.
This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance ofmore » magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.« less
A New Campus Built on Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Ari; Mercado, Andrea; Regnier, Cindy
2015-08-01
The University of California (UC), Merced partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce energy consumption by as part of DOE’s Commercial Buildings Partnerships (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. This case study reports on the process and outcome of this project including the achieved savings from design improvements for the campus. The intent of the project was to retrofit the Science & Engineering (S&E) building and the central plant at UC Merced to achieve up to 30% energy reduction. The anticipated savingsmore » from these retrofits represented about 17% of whole-campus energy use. If achieved, the savings contribution from the CBP project would have brought overall campus performance to 56% of the 1999 UC/CSU benchmark performance for their portfolio of buildings. However, the final design that moved forward as part of the CBP program only included the retrofit measures for the S&E building.« less
Precise charge measurement for laser plasma accelerators
NASA Astrophysics Data System (ADS)
Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; van Tilborg, Jeroen; Smith, Alan; Rodgers, Dave; Donahue, Rick; Byrne, Warren; Leemans, Wim
2011-10-01
A comprehensive study of charge diagnostics was conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. Using an integrating current transformer as a calibration reference, the sensitivity of the Lanex Fast was found to decrease by 1% per 100 MeV increase of the energy. By using electron beams from LPA, cross calibrations of the charge were carried out with an integrating current transformer, scintillating screen (Lanex from Kodak), and activation based measurement. The diagnostics agreed within ~8%, showing that they all can provide accurate charge measurements for LPAs provided necessary cares. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Hydrological and geochemical investigations of selenium behavior at Kesterson Reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawislanski, P.T.; Tokunaga, T.K.; Benson, S.M.
1995-05-01
This report describes research relevant to selenium specification, fractionation, physical redistribution, reduction and oxidation, and spatial distribution as related to Kesterson Reservoir. The work was carried out by scientists and engineers from the Earth Sciences Division of the Lawrence Berkeley Laboratory over a two year period from October 1992 to September 1994. Much of the focus of these efforts was on the effects of two above-average rainfall years (1991/1992 and 1992/1993). These events marked a departure from the previous six years of drought conditions, under which oxidation of Se in the soil profile led to a marked increase in solublemore » Se. Evidence from the last two years show that much of the re-oxidized Se was once more reduced due to increased soil moisture content. Also, in areas of high hydraulic conductivity, major vertical displacement of selenium and other solutes due to rainfall infiltration was observed. Such observations underscore the dependence of the future of Se speciation and distribution on environmental conditions.« less
LDRD Final Report - In Operando Liquid Cell TEM Characterization of Nickel-Based Electrocatalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, M. H.
2016-11-07
A commercial electrochemistry stage for transmission electron microscopy (TEM) was tested to determine whether to purchase one for the microscopes at Lawrence Livermore National Lab (LLNL). Deposition of a nickel-based electrocatalyst was pursued as a material system for the purpose of testing the stage. The stage was found to be problematic with recurring issues in the electrical connections and vacuum sealing, which has thus far precluded a systematic investigation of the original material system. However, the electrochemical cells purchased through this FS will allow the Lawrence Fellow (Nielsen) to continue testing the stage. Furthermore, discussions with a second vendor, whichmore » released a similar electrochemical TEM stage during the course of this FS, have resulted in an upcoming longterm loan of their stage at Lawrence Berkeley National Lab (LBNL) for testing. In addition, low-loss electron energy-loss spectroscopy (EELS) measurements on nickel-bearing electrolyte solutions led to a broader EELS investigation of solvents and salt solutions. These measurements form the basis of a manuscript in preparation on EELS measurements of the liquid phase.« less
Discrimination Report ESTCP Project #MM-0437
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperikova, Erika
2008-10-01
The FY06 Defense Appropriation contains funding for the 'Development of Advanced, Sophisticated, and Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program. In 2003, the Defense Science Board observed: 'The...problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed. The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing andmore » advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs'. Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at UXO sites under real world conditions. FE Warren Air Force Base (AFB) in Cheyenne, WY is one such site. The demonstration objective was to determine the discrimination capabilities, cost and reliability of the Berkeley UXO Discriminator (BUD) in discrimination of UXO from scrap metal in real life conditions. Lawrence Berkeley National Laboratory performed a detection and discrimination survey of the Priority 1 area ({approx}5 acres) of the FE Warren AFB. The data included a system characterization with the emplaced calibration items and targets in the Geophysical Prove Out (GPO) area.« less
Isochoric heating of solid gold targets with the PW-laser-driven ion beams
NASA Astrophysics Data System (ADS)
Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim
2016-10-01
We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Efficient Windows Collaborative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petermann, Nils
2006-03-31
The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.
Andrei Sakharov: A man of our times
NASA Astrophysics Data System (ADS)
Sessler, Andrew M.; Howell, Yvonne
1984-05-01
The following is based upon a talk given at the American Physical Society Meeting in Baltimore, 18-21 April 1983 entitled, ``Sakharov and Society'' by Andrew M. Sessler. The occasion was the presentation by the Forum on Physics and Society of the 1982 Leo Szilard Award to Andrei Sakharov who was, of course, unable to attend. Dr. Sessler, former Director of the Lawrence Berkeley Laboratory, was Chairman, during 1982, of the American Physical Society Committee on the International Freedom of Scientists. Yvonne Howell is a freelance writer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi
In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.
Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours
Andy Nonaka
2017-12-09
The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe.
Commissioning of BL 7.2, the new diagnostic beam line at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Baum, Dennis; Biocca, Alan
2004-06-29
BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippetto, D.; /Frascati; Sannibale, F.
2008-01-24
By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and tested a simple scheme based on this principle that allows for the absolute measurement of the bunch length. A description of the method and the experimental results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawislanski, P.T.; McGrath, A.E.; Benson, S.M.
1997-10-01
Selenium geochemistry in tidal wetlands is a topic of continuing study at Lawrence Berkeley National Laboratory. The program of studies described in this report was initiated in the fall of 1994 in response to concerns about elevated Se concentrations in waters, sediments, and biota in the Carquinez Strait. Processes by which selenium is introduced and potentially released from the sediment system have been the focus of research in 1996.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrach, Robert J.; Peterson, S. Ring
1999-05-05
Two instances of research facilities responding to public scrutiny will be discussed. The first concerns emissions from a "tritium labeling facility" operated at Lawrence Berkeley National Laboratory (LBNL); the second deals with releases of plutonium from Lawrence Livermore National Laboratory (LLNL). There are many parallels between these two cases, both of which are still ongoing. In both, the national laboratory is the acknowledged source of low-level (by regulatory standards) radioactive contamination in the community. A major purpose of both investigations is to determine the degree of the contamination and the threat it poses to public health and the environment. Themore » examining panel or committee is similarly constituted in the two cases, including representatives from all four categories of stakeholders: decision makers; scientists and other professionals doing the analysis/assessment; environmental activist or public interest groups; and "ordinary" citizens (nearly everyone else not in one or more of the first three camps). Both involved community participation from the beginning. The levels of outrage over the events triggering the assessment are comparable; though "discovered" or "appreciated" only a few years ago, the release of radiation in both cases occurred or began occurring more than a decade ago. The meetings have been conducted in a similar manner, with comparable frequency, often utilizing the services of professional facilitators. In both cases, the sharply contrasting perceptions of risk commonly seen between scientists and activists were present from the beginning, though the contrast was sharper and more problematical in the Berkeley case. Yet, the Livermore case seems to be progressing towards a satisfactory resolution, while the Berkeley case remains mired in ill-will, with few tangible results after two years of effort. We perceive a wide gap in negotiation skills (at the very least), and a considerable difference in willingness to compromise, between the environmental activist groups participating in the two cases. A degree of contentiousness existed from the start among the participants in the Berkeley case particularly between the environmental activists and the scientists/regulators that was not approached in the Livermore case, and which was and still is severe enough to stifle meaningful progress. The Berkeley activists are considerably more aggressive, we believe, in arguing their points of view, making demands about what should be done, and verbally assailing the scientists and government regulators. We offer the following comments on the barriers to communication and cooperation that distinguish the Berkeley and Livermore cases. In no particular order, they are (a) the presence of a higher degree of polarization between the Berkeley activists and the "establishment," as represented by government scientists and regulators, (b) the absence, in the Berkeley case, of an activist leader with skills and effectiveness comparable to a well-known leader in Livermore, (c) frequent displays by several of the Berkeley activists of incivility, distrust, and disrespect for the regulators and scientists, (d) extraordinary difficulties in reaching consensus in the Tritium Issues Work Group meetings, perhaps because goals diverged among the factions, (e) a considerable degree of resentment by the Berkeley activists over the imbalance in conditions of participation, pitting well-paid, tax-supported professionals against "citizen volunteers," (f) the brick wall that divides the perspectives of "no safe dose" and "levels below regulatory concern" when trying to reach conclusions about radiation dangers to the community, and (g) unwillingness to consider both sides of the risk-reward coin: benefits to the community and society at large of the tritium labeling activity, vs. the health risk from small quantities of tritium released to the environment.« less
Site Environmental Report for 2009, Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lackner, Regina
2010-08-17
Each year, the University of California (UC), as the managing and operating contractor of the Ernest Orlando Lawrence Berkeley National Laboratory, prepares an integrated report regarding its environmental programs to satisfy the requirements of United States Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2009 summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2009. Throughout this report, 'Berkeley Lab' or 'LBNL' refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in themore » hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that contain an overview of LBNL, a discussion of its environmental management system (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities. The Site Environmental Report is distributed by releasing it on the World Wide Web (Web) from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. Links to documents available on the Web are given with the citations in the References section. CD and printed copies of this Site Environmental Report are available upon request. The report follows Berkeley Lab's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: Table G-1 defines the prefixes used with SI units of measurement, and Table G-2 provides conversions to non-SI units. Years mentioned in this report refer to calendar years unless specified as fiscal year(s). Berkeley Lab's fiscal year (FY) is October 1 to September 30, and begins in the year previous to its name, i.e., FY 2009 was from October 1, 2008, to September 30, 2009. For ease of reference, a key to acronyms and abbreviations used in this report can be found directly after the text, at the end of Chapter 6. Following that is also a glossary for readers who may be unfamiliar with some of the terms used in this report. This report was prepared under the direction of Ron Pauer of ESG. Please address any questions regarding this report to him by telephone at 510-486-7614, or by e-mail at ropauer@lbl.gov. The primary contributors were David Baskin, Tim Bauters, Ned Borglin, Robert Fox, John Jelinski, Ginny Lackner, Patrick Thorson, Linnea Wahl, and Suying Xu (Volume II). Readers are encouraged to comment on this report by completing the survey form found at the ESG Web page where this report is available.« less
Winfough, Matthew; Meloni, Giovanni
2017-12-01
Absolute photoionization cross sections for 2 potential propargylic fuels (propargylamine and dipropargyl ether) along with the partial ionization cross sections for their dissociative fragments are measured and presented for the first time via synchrotron photoionization mass spectrometry. The experimental setup consists of a multiplexed orthogonal time-of-flight mass spectrometer and is located at the Advanced Light Source facility of the Lawrence Berkeley National Laboratory in Berkeley, California. Data for a third propargylic compound (propargyl alcohol) were taken; however, because of its low signal, due to its weakly bound cation, only the dissociative ionization fragment from the H-loss channel is observed and presented. Suggested pathways leading to formation of dissociative photoionization fragments along with CBS-QB3 calculated adiabatic ionization energies and appearance energies for the dissociative fragments are also presented. Copyright © 2017 John Wiley & Sons, Ltd.
Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy
Bluhm, Hendrik; Crumlin, Ethan J.
2016-05-03
The Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS) was held at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA, from December 7-9, 2015. It brought together more than 100 participants from 17 countries. The workshop followed the inaugural meeting at the French synchrotron SOLEIL in December 2014, which was organized by François Rochet. The strong interest in these workshops reflects the growth of the APXPS community over the last decade, with instruments now operational at more than 12 synchrotrons around the world (see SRN, Vol. 27, No. 2, pp. 14–23 (2014)), and a steady increase in themore » number of laboratory instruments. Finally, APXPS has established itself as an important method for the investigation of surfaces and interfaces under in situ and operando conditions, including liquid/vapor and liquid/solid interfaces.« less
NASA Astrophysics Data System (ADS)
Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Water quality issues associated with agricultural drainage in semiarid regions
NASA Astrophysics Data System (ADS)
Sylvester, Marc A.
High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.
Putting Carbon in its Place: What You Can Do (LBNL Science at the Theater)
Walker, Iain; Regnier, Cindy [LBNL, Environmental Energy Technologies Division; Miller, Jeff; Masanet, Eric
2018-06-28
Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineering design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.
Seeing the Light (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunger, Axel; Segalman, Rachel; Westphal, Andrew
2011-09-12
Berkeley Lab's Science at the Theater event "Seeing the Light" took place on Sept 12, 2011, at Berkeley Repertory's Roda Theatre. Learn how the Advanced Light Source is improving medicine, paving the way for clean energy, changing the future of computers, and much more. Featured speakers are Berkeley Lab's Roger Falcone, Rachel Segalman, Andrew Westphal, and Stanford University's Axel Brunger. Rachel Segalman: The future of clean energy technology relies on a better understanding of materials at the nanoscale. Berkeley Lab's Rachel Segalman uses the ALS to conduct this research, which could lead to improved photovoltaics and fuel cells. Axel Brunger:more » Improved treatment for human diseases hinges on understanding molecular-scale processes. Stanford University's Axel Brunger will discuss a new melanoma drug that was developed by a local company, Plexxikon, using the ALS for X-ray data collection. Andrew Westphal: What's comet dust made of? Andrew Westphal of UC Berkeley's Space Sciences Laboratory uses the ALS to study comet dust and interplanetary space dust collected by a NASA spacecraft. Moderated by Roger Falcone, Division Director of the Advanced Light Source« less
NASA Astrophysics Data System (ADS)
2011-03-01
ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Neaton
Jan. 22, 2010: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's MIke Crommie.
The structure of a cholesterol-trapping protein
Date February 28, 2003 Date Berkeley Lab Science Beat Berkeley Lab Science Beat The structure of a Institute researchers determined the three-dimensional structure of a protein that controls cholesterol level in the bloodstream. Knowing the structure of the protein, a cellular receptor that ensnares
Earth Sciences Division Research Summaries 2002-2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodvarsson, G.S.
2003-11-01
Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climatemore » change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental Remediation Technology; and (5) Climate Variability and Carbon Management. These programs draw from each of ESD's disciplinary departments: Microbial Ecology and Environmental Engineering, Geophysics and Geomechanics, Geochemistry, and Hydrogeology and Reservoir Dynamics. Short descriptions of these departments are provided as introductory material. A list of publications for the period from January 2002 to June 2003, along with a listing of our personnel, are appended to the end of this report.« less
Sharing values, sharing a vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
Teamwork, partnership and shared values emerged as recurring themes at the Third Technology Transfer/Communications Conference. The program drew about 100 participants who sat through a packed two days to find ways for their laboratories and facilities to better help American business and the economy. Co-hosts were the Lawrence Livermore National Laboratory and the Lawrence Berkeley Laboratory, where most meetings took place. The conference followed traditions established at the First Technology Transfer/Communications Conference, conceived of and hosted by the Pacific Northwest Laboratory in May 1992 in Richmond, Washington, and the second conference, hosted by the National Renewable Energy Laboratory in Januarymore » 1993 in Golden, Colorado. As at the other conferences, participants at the third session represented the fields of technology transfer, public affairs and communications. They came from Department of Energy headquarters and DOE offices, laboratories and production facilities. Continued in this report are keynote address; panel discussion; workshops; and presentations in technology transfer.« less
Nanoscience at Work: Creating Energy from Sunlight (LBNL Science at the Theater)
Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-02-26
Paul Alivisatos, co-leader of Berkeley Lab's Helios Project, is the Associate Director for Physical Sciences and director of the Materials Sciences Division at Berkeley Lab. In the Helios Project, Alivisatos will use nanotechnology in the efficient capture of sunlight and its conversion to electricity to drive economical fuel production processes. He is an authority on artificial nanostructure synthesis and inventor of the quantum dot technology.
In Conversation with Jeff Neaton
Jeff Neaton
2017-12-09
Jan. 22, 2010: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's MIke Crommie.
In Conversation with Mike Crommie
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Crommie
2010-02-16
Dec. 9 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest is Berkeley Lab's Mike Crommie.
In Conversation with Mike Crommie
Mike Crommie
2017-12-09
Dec. 9 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest is Berkeley Lab's Mike Crommie.
Sneak Preview of April 25 Science at the Theater
Ho, Shirley
2017-12-12
Berkeley Lab astrophysicist Shirley Ho offers a sneak preview of the Science at the Theatre event at the Berkeley Repertory Theatre on April 25. Three Berkeley Lab cosmologists and Bay Area astronomer Andrew Fraiknoi will gather at the Berkeley Rep on Monday, April 25, from 7 to 9 p.m. to shed light on the mystery of the accelerating universe. Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe. If you have questions for the scientists, post them below, send them to friendsofberkeleylab@lbl.gov, or catch us on facebook: http://www.facebook.com/video/video.php?v=10150215592292354&oid=593833429...Your question might be answered at the April 25 talk if there's time.
The impact of SciDAC on US climate change research and the IPCCAR4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Michael
2005-07-08
SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change. As a result of the direct importance of climate change to society, climate change research is highly coordinated at the international level. The Intergovernmental Panel on Climate Change (IPCC) is charged with providing regular reports on the state of climate change research to government policymakers. These reports are the product of thousands of scientists efforts. A series of reviews involving both scientists and policymakersmore » make them among the most reviewed documents produced in any scientific field. The high profile of these reports acts a driver to many researchers in the climate sciences. The Fourth Assessment Report (AR4) is scheduled to be released in 2007. SciDAC sponsored research has enabled the United States climate modeling community to make significant contributions to this report. Two large multi-Laboratory SciDAC projects are directly relevant to the activities of the IPCC. The first, entitled ''Collaborative Design and Development of the Community Climate System Model for Terascale Computers'', has made important software contributions to the recently released third version of the Community Climate System Model (CCSM3.0) developed at the National Center for Atmospheric Research. This is a multi-institutional project involving Los Alamos National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The original principal investigators were Robert Malone and John B. Drake. The current principal investigators are Phil Jones and John B. Drake. The second project, entitled ''Earth System Grid II: Turning Climate Datasets into Community Resources'' aims to facilitate the distribution of the copious amounts of data produced by coupled climate model integrations to the general scientific community. This is also a multi-institutional project involving Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The principal investigators are Ian Foster, Don Middleton and Dean Williams. Perhaps most significant among the activities of the ''Collaborative Design'', project was the development of an efficient multi-processor coupling package. CCSM3.0 is an extraordinarily complicated physics code. The fully coupled model consists of separate submodels of the atmosphere, ocean, sea ice and land. In addition, comprehensive biogeochemistry and atmospheric chemistry submodels are under intensive current development. Each of these submodels is a large and sophisticated program in its own right. Furthermore, in the coupled model, each of the submodels, including the coupler, is a separate multiprocessor executable program. The coupler package must efficiently coordinate the communication as well as interpolate or aggregate information between these programs. This regridding function is necessary because each major subsystem (air, water or surface) is allowed to have its own independent grid.« less
LBNL Computational ResearchTheory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012
Yelick, Kathy
2018-01-24
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy
2012-02-02
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
Yelick, Kathy
2017-12-09
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
The University of California at Berkeley: An Emerging Global Research University
ERIC Educational Resources Information Center
Ma, Wanhua
2008-01-01
Federal government science policy and R&D investment are two major factors for the success of research universities in the United States. This case analysis examines how the University of California at Berkeley shifted from a regional to a globally oriented research university by the influence of federal government science policy and R&D…
Berkeley Lab's Cool Your School Program
Brady, Susan; Gilbert, Haley; McCarthy, Robert
2018-02-02
Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.
NASA Astrophysics Data System (ADS)
Schwab, Josiah; Roth, Nathaniel; Berkeley Compass Project
2015-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. Graduate students, together with upper-level undergraduates, design and run all Compass programs. We strive to create a community of educators that incorporates best practices from the science education literature. Along the way, we develop experience in curriculum development, fundraising, grant writing, interfacing with university administration, and other aspects of running an effective organization. Our experience in Compass leaves us better poised to be successful researchers, teachers, and mentors.
Integrated EPA Science for Decision-Making: Lawrence, MA Water Strategy
Powerpoint presentation on the Lawrence MA Making a Visible Difference in Communities project’s comprehensive water quality strategy, demonstrating a systems approach applying integrated EPA science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Iain; Regnier, Cindy
Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineeringmore » design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.« less
Genome Science and Personalized Cancer Treatment
Gray, Joe
2017-12-09
August 4, 2009 Berkeley Lab lecture: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks â particularly with regard to breast cancer.
High Performance Building Mockup in FLEXLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeil, Andrew; Kohler, Christian; Lee, Eleanor S.
Genentech has ambitious energy and indoor environmental quality performance goals for Building 35 (B35) being constructed by Webcor at the South San Francisco campus. Genentech and Webcor contracted with the Lawrence Berkeley National Laboratory (LBNL) to test building systems including lighting, lighting controls, shade fabric, and automated shading controls in LBNL’s new FLEXLAB facility. The goal of the testing is to ensure that the systems installed in the new office building will function in a way that reduces energy consumption and provides a comfortable work environment for employees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor; Glass, N. Louise; Martin, Francis
The U.S. Department of Energy (DOE) Joint Genome Institute (JGI) managed by Lawrence Berkeley National Laboratory, is the only user facility in the world devoted to problems of energy and environment. With over one million species, fungi—which include mushrooms—represent one of the largest under-explored branches of the Tree of Life. Together with its community of more than 1,000 scientific collaborators, JGI helping to unlock the secrets encoded in the genomes of fungi to advance a better understanding of the global carbon cycle and to develop new biotechnology products, next-generation biofuels, and medicines.
Preliminary Ionization Efficiencies of {sup 11}C and {sup 14}O with the LBNL ECR Ion Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Z.Q.; Cerny, J.; Guo, F.Q.
1998-10-05
High charge states, up to fully stripped {sup 11}C and {sup 14}O ion, beams have been produced with the electron cyclotron resonance ion sources (LBNL, ECR and AECR-U) at Lawrence Berkeley National Laboratory. The radioactive atoms of {sup 11}C and {sup 14}O were collected in batch mode with an LN{sub 2} trap and then bled into the ECR ion sources. Ionization efficiency as high as 11% for {sup 11}C{sup 4+} was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Ian M.
With rising interest in lowering energy costs for low- and moderate-income households, the U.S. Department of Energy (DOE) asked Lawrence Berkeley National Laboratory (LBNL) to assess the implications of pursuing energy efficiency neighborhood-by-neighborhood where those households are most prevalent. DOE provided certain scenarios for qualifying geographic areas as “low- and moderate-income communities,” and LBNL used data on demographics, housing types and recent savings from low-income retrofits or weatherization to provide rough electricity savings estimates under those scenarios.
Neon-20 depth-dose relations in water
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Townsend, L. W.; Bidasaria, H. B.; Schimmerling, W.; Wong, M.; Howard, J.
1984-01-01
The dose from heavy ion beams has been calculated using a one-dimensional transport theory and evaluated for 670 MeV/amu 20 Ne beams in water. The result is presented so as to be applicable to arbitrary ions for which the necessary interaction data are known. The present evaluation is based on thar Silberg-Tsao fragmentation parameters augmented with light fragment production from intranuclear cascades, recently calculated nuclear absorption cross sections, and evaluated stopping power data. Comparison with recent experimental data obtained at the Lawrence Berkeley Laboratory reveals the need for more accurate fragmentation data.
Neon-20 depth-dose relations in water
NASA Astrophysics Data System (ADS)
Wilson, J. W.; Townsend, L. W.; Bidasaria, H. B.; Schimmerling, W.; Wong, M.; Howard, J.
1984-05-01
The dose from heavy ion beams has been calculated using a one-dimensional transport theory and evaluated for 670 MeV/amu 20 Ne beams in water. The result is presented so as to be applicable to arbitrary ions for which the necessary interaction data are known. The present evaluation is based on thar Silberg-Tsao fragmentation parameters augmented with light fragment production from intranuclear cascades, recently calculated nuclear absorption cross sections, and evaluated stopping power data. Comparison with recent experimental data obtained at the Lawrence Berkeley Laboratory reveals the need for more accurate fragmentation data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuel Cell Technologies Office
The quest to develop a low cost material that efficiently stores hydrogen onboard fuel cell electric vehicles at low pressures and near room temperature has been pursued by U.S. Department of Energy since the early 2000s. This success story describes a recent early stage scientific breakthrough by researchers at Lawrence Berkeley National Laboratory that could open the door to achieving a material that offers a 300+ mile driving range with 5 minute refuels, while still only emitting water vapor at the tail pipe.
Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours
Applin, Bradford; Almgren, Ann S.; Nonaka, Andy
2018-05-11
The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe. http://www.lbl.gov/cs/Archive/news091509.html
Numerical modeling of aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Tsang, C. F.; Doughty, C.; Kincaid, C. T.
1982-12-01
During 1981 and 1982, Auburn University has been performing a three cycle ATES field experiment in Mobile County, Alabama. Details of the experiment are described elsewhere in this volume. Concurrent with the first two cycles (59 C and 82 C), Lawrence Berkeley Laboratory (LBL) did numerical simulations based on field operating conditions to predict the outcome of each cycle before its conclusion. Prior to the third cycle, a series of numerical simulations were made to aid in the design of an experiment that would yield the highest recovery factor possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macaluso, D. A.; Bogolub, K.; Johnson, A.
Absolute single photoionization cross-section measurements of Rb 2+ ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using synchrotron radiation and the photo-ion, merged-beams technique. Measurements were made at a photon energy resolution of 13.5 2.5 meV from 37.31 to 44.08 eV spanning the 2 P ground state and 2 P metastable state ionization thresholds. Multiple autoionizing resonance series arising from each initial state are identified using quantum defect theory. The measurements are compared to Breit-Pauli R-matrix calculations with excellent agreement between theory and experiment.
Global Systems Science and Hands-On Universe Course Materials for High School
NASA Astrophysics Data System (ADS)
Gould, A.
2011-09-01
The University of California Berkeley's Lawrence Hall of Science has a project called Global Systems Science (GSS). GSS produced a set of course materials for high school science education that includes reading materials, investigations, and software for analyzing satellite images of Earth focusing on Earth systems as well as societal issues that require interdisciplinary science for full understanding. The software has general application in analysis of any digital images for a variety of purposes. NSF and NASA funding have contributed to the development of GSS. The current NASA-funded project of GSS is Lifelines for High School Climate Change Education (LHSCCE), which aims to establish professional learning communities (PLCs) to share curriculum resources and best practices for teaching about climate change in grades 9-12. The project explores ideal ways for teachers to meet either in-person or using simple yet effective distance-communication techniques (tele-meetings), depending on local preferences. Skills promoted include: how to set up a website to share resources; initiating tele-meetings with any available mechanism (webinars, Skype, telecons, moodles, social network tools, etc.); and easy ways of documenting and archiving presentations made at meetings. Twenty teacher leaders are forming the PLCs in their regions or districts. This is a national effort in which teachers share ideas, strategies, and resources aimed at making science education relevant to societal issues, improve students' understanding of climate change issues, and contribute to possible solutions. Although the binding theme is climate change, the application is to a wide variety of courses: Earth science, environmental science, biology, physics, and chemistry. Moreover, the PLCs formed can last as long as the members find it useful and can deal with any topics of interest, even if they are only distantly related to climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leventis, Greg; Schiller, Steve; Kramer, Chris
The city of Dubuque, Iowa, aimed for a twofer — lower energy costs for public facilities and reduced air emissions. To achieve that goal, the city partnered with the Iowa Economic Development Authority to establish a revolving loan fund to finance energy efficiency and other energy projects at city facilities. But the city needed to understand approaches for financing energy projects to achieve both of their goals in a manner that would not be considered debt — in this case, obligations booked as a liability on the city’s balance sheet. With funding from the U.S. Department of Energy’s Climate Actionmore » Champions Initiative, Lawrence Berkeley National Laboratory (Berkeley Lab) provided technical assistance to the city to identify strategies to achieve these goals. Revolving loans use a source of money to fund initial cost-saving projects, such as energy efficiency investments, then use the repayments and interest from these loans to support subsequent projects. Berkeley Lab and the city examined two approaches to explore whether revolving loans could potentially be treated as non-debt: 1) financing arrangements containing a non-appropriation clause and 2) shared savings agreements. This fact sheet discusses both, including considerations that may factor into their treatment as debt from an accounting perspective.« less
Sneak Preview of April 25 Science at the Theater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Shirley
Berkeley Lab astrophysicist Shirley Ho offers a sneak preview of the Science at the Theatre event at the Berkeley Repertory Theatre on April 25. Three Berkeley Lab cosmologists and Bay Area astronomer Andrew Fraiknoi will gather at the Berkeley Rep on Monday, April 25, from 7 to 9 p.m. to shed light on the mystery of the accelerating universe. Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe. If you have questions for the scientists, post them below, send them to friendsofberkeleylab@lbl.gov, or catchmore » us on facebook: http://www.facebook.com/video/video.php?v=10150215592292354&oid=593833429...Your question might be answered at the April 25 talk if there's time.« less
Short Intense Ion Pulses for Materials and Warm Dense Matter Research
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Secrets of the Soil (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodie, Eoin; Northen, Trent; Jansson, Janet
2011-11-07
Four Berkeley Lab scientists unveil the "Secrets of the Soil"at this Nov. 7, 2011 Science at the Theater event. Eoin Brodie, Janet Jansson, Margaret Torn and Trent Northen talk about their research and how soil could hold the key to our climate and energy future.The discussion was moderated by John Harte, who holds a joint professorship in the Energy and Resources Group and the Ecosystem Sciences Division of UC Berkeley's College of Natural Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2003-03-07
Lawrence Berkeley National Laboratory (LBNL) proposes to build a six-story, approximately 86,500 gross square foot (gsf) Molecular Foundry building; and an adjacent 8,000 gsf, partly below-grade Central Utility Plant building (for a combined 94,500 gsf), to be funded and operated by the U.S. Department of Energy's Office of Basic Energy Sciences. The buildings would be located on an approximately 2 1/2-acre site in the southeastern portion of the LBNL facility in the Oakland-Berkeley hills. The site is on mostly undeveloped slopes between Building 72, which is the National Center for Electron Microscopy (NCEM), and Building 66, which is the Surfacemore » Science and Catalysis Laboratory (SSCL). The Molecular Foundry building would include laboratories, offices, and conference and seminar rooms; the Central Utility Plant would also serve as the foundation for 16 surface parking spaces. A new plaza and pedestrian bridges would connect or provide ready access between the proposed Molecular Foundry building and adjacent scientific buildings. The Proposed Action would extend Lee Road approximately 350 feet, and widen a portion of the road to accommodate two-way traffic. The Molecular Foundry would be staffed and/or used by an estimated 137 persons, of whom an estimated 59 would be staff persons, 36 would be students, and 42 would be visitors (i.e., visiting scientists) to the Center. The Proposed Action would require removal of an existing paved 18-space parking lot and retaining walls, as well as excavation into an undeveloped hillside. Approximately two-dozen mature trees would be removed along with approximately one-dozen saplings. The Proposed Action would replant or replace trees, generally in-kind and in or around the site. LBNL anticipates it would reuse all soil excavated for the Molecular Foundry to construct the new Lee Road extension and widen the existing roadway. This Proposed Action would be a resource for the Department of Energy's participation in the National Nanotechnology Initiative (NNI). Nanotechnology is the design, fabrication, characterization, and use of materials, devices, and systems through the control of matter at the nanometer-length scale. Nanoscience will develop the understanding of building blocks at the nanometer-length scale and the methods by which they are assembled into multi-component devices. Alternatives to the Proposed Action include a reduced size building configuration, location of the building on a different on-site location, and a No Action alternative. Several off-site alternatives were considered but were not found to reasonably meet the purpose and need for the Proposed Action. Of the reasonable alternatives analyzed, the Proposed Action is found to best meet DOE's purpose and need for action. Although the Proposed Action would take place on a partially developed site that is generally surrounded by existing buildings and roads, the site is near to designated Critical Habitat of the Federally-listed Alameda Whipsnake. To minimize any potential but unexpected impact to the Alameda whipsnake, several mitigation measures are proposed. In addition, the Proposed Action would result in minor increases in stormwater runoff, air pollutant emissions, visual quality impacts, noise impacts, and the potential to disturb unanticipated archaeological resources. It would produce marginal increases in traffic and parking demand, as well as incremental demand increases for water, energy, wastewater treatment, waste disposal, and public services. The following impact is found to be potentially significant without mitigation in this Environmental Assessment: Although the site is not located in USFWS-designated critical habitat, due to the potential for Alameda whipsnake movement into the project area, mitigation measures would be implemented to ensure that whipsnakes are protected to the greatest extent possible during project construction.« less
NASA Astrophysics Data System (ADS)
Molins, S.; Cappuccio, J. A.; Berry, I.; Miller, J.; Bourg, I. C.; Kelly, L. M.
2011-12-01
As part of the 'Science for Our Nation's Energy Future, Summit and Forum', each of the 46 Energy Frontier Research Centers (EFRCs) created in 2009 by the US Department of Energy was invited to design a short, engaging film with the central goal to educate, inspire, and entertain an intelligent but not expert audience about the extraordinary science, innovation and people in their center. The Center for Nanoscale Control of Geological CO2 (NCGC) is an EFRC that is building a next generation understanding of molecular-to-pore-scale processes critical to controlling the flow,transport, and ultimate mineralization in porous rock media, in particular as applied to geologic sequestration of CO2. In response to the invitation, the NCGC assembled a team that included several young scientists, the Center project manager, and members from the Public Affairs and Creative Services Office of the Lawrence Berkeley National Laboratory with the objective of preparing a submission. A videographer from the Creative Services Office was responsible for overall management including production, art direction, and editing, while scientists from the Center were responsible for scientific content and original storyline concept. The Center project manager facilitated the communication between team members. A group of scientists together with the project manager developed the original idea, which was refined and given shape as a script in dialogue form by a science writer from Public Affairs. The objective was to communicate scientific content in an entertaining manner with a simple storyline. In a second phase, the script was revised further by scientists for content. Clips from experiments and modeling simulations were requested from the Center's scientists to illustrate the scientific content. Video production and animation were done by the videographer and an animator in an iterative process that involve feedback from the Center team. The final cut was edited to meet the maximum length requirements set in the submission rules. The video was posted on Berkeley Lab's YouTube channel and was one of five winning entries in the Life at the Frontiers of Energy Research video contest.
Genes and the Microenvironment: Two Faces of Breast Cancer (LBNL Science at the Theater)
Gray, Joe; Love, Susan M.; Bissell, Min; Barcellos-Hoff, Mary Helen
2018-05-24
In this April 21, 2008 Berkeley Lab event, a dynamic panel of Berkeley Lab scientists highlight breast cancer research advances related to susceptibility, early detection, prevention, and therapy - a biological systems approach to tackling the disease from the molecular and cellular levels, to tissues and organs, and ultimately the whole individual. Joe Gray, Berkeley Lab Life Sciences Division Director, explores how chromosomal abnormalities contribute to cancer and respond to gene-targeted therapies. Mina Bissell, former Life Sciences Division Director, approaches the challenge of breast cancer from the breast's three dimensional tissue microenvironment and how the intracellular ''conversation'' triggers malignancies. Mary Helen Barcellos-Hoff, Deputy Director, Life Sciences Division, identifies what exposure to ionizing radiation can tell us about how normal tissues suppress carcinogenesis. The panel is moderated by Susan M. Love, breast cancer research pioneer, author, President and Medical Director of the Dr. Susan Love Research Foundation.
Genes and the Microenvironment: Two Faces of Breast Cancer (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Joe; Love, Susan M.; Bissell, Min
In this April 21, 2008 Berkeley Lab event, a dynamic panel of Berkeley Lab scientists highlight breast cancer research advances related to susceptibility, early detection, prevention, and therapy - a biological systems approach to tackling the disease from the molecular and cellular levels, to tissues and organs, and ultimately the whole individual. Joe Gray, Berkeley Lab Life Sciences Division Director, explores how chromosomal abnormalities contribute to cancer and respond to gene-targeted therapies. Mina Bissell, former Life Sciences Division Director, approaches the challenge of breast cancer from the breast's three dimensional tissue microenvironment and how the intracellular ''conversation'' triggers malignancies. Marymore » Helen Barcellos-Hoff, Deputy Director, Life Sciences Division, identifies what exposure to ionizing radiation can tell us about how normal tissues suppress carcinogenesis. The panel is moderated by Susan M. Love, breast cancer research pioneer, author, President and Medical Director of the Dr. Susan Love Research Foundation.« less
A Community of Scientists and Educators: The Compass Project at UC Berkeley
NASA Astrophysics Data System (ADS)
Roth, Nathaniel; Schwab, Josiah
2016-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.
Where do California's greenhouse gases come from?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Marc
2009-12-11
Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaborationmore » between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.« less
NASA Astrophysics Data System (ADS)
Bunker, K.; Casuccio, G.; Lersch, T.; Ogle, R.; Wahl, L.
2009-12-01
Nanotechnology and the use of unbound engineered nanoparticles (UNP) is a rapidly developing area of materials science. UNP are defined as engineered nanoparticles that are not contained within a matrix that would prevent the nanoparticles from being mobile and a potential source of exposure. At this time there are no regulatory environmental release limits or worker exposure limits for UNP. The Lawrence Berkeley National Laboratory (LBNL) has initiated a study to evaluate worker exposure and potential environmental release of UNP related to various research activities at LBNL. The study is being performed to help identify and manage potential health and safety hazards as well as environmental impacts related to UNP. A key component of the study is the characterization of starting (source) UNP materials to assist in the determination of worker exposure and environmental release. Analysis of the starting materials is being used to establish source signatures. The source signatures will then be used in the evaluation of worker exposure and environmental release. This presentation will provide an overview of the LBNL study with a focus on the methodologies being used to analyze the samples.
Accelerating Science with the NERSC Burst Buffer Early User Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhimji, Wahid; Bard, Debbie; Romanus, Melissa
NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory recently installed one of the first Burst Buffer systems as part of its new Cori supercomputer, collaborating with Cray on the development of the DataWarp software. NERSC has a diverse user base comprised of over 6500 users in 700 different projects spanning a wide variety of scientific computing applications. The use-cases of the Burst Buffer at NERSC are therefore also considerable and diverse. We describe here performance measurements and lessons learned from the Burstmore » Buffer Early User Program at NERSC, which selected a number of research projects to gain early access to the Burst Buffer and exercise its capability to enable new scientific advancements. To the best of our knowledge this is the first time a Burst Buffer has been stressed at scale by diverse, real user workloads and therefore these lessons will be of considerable benefit to shaping the developing use of Burst Buffers at HPC centers.« less
Kepler Mission IYA Teacher Professional Development Workshops
NASA Astrophysics Data System (ADS)
Devore, E. K.; Harman, P.; Gould, A. D.; Koch, D.
2009-12-01
NASA's Kepler Mission conducted six teacher professional development workshops on the search for Earth-size in the habitable zone of Sun-like stars. The Kepler Mission launched in March, 2009. As a part of International Year of Astronomy 2009, this series of one-day workshops were designed and presented for middle and high school teachers, and science center and planetarium educators prior to and after the launch. The professional development workshops were designed using the best practices and principals from the National Science Education Standards and similar documents. Sharing the outcome of our plans, strategies and formative evaluation results can be of use to other Education and Public Outreach practitioners who plan similar trainings. Each event was supported by a Kepler team scientist, two Education & Public Outreach staff and local hosts. The workshops combined a science content lecture and discussion, making models, kinesthetic activities, and interpretation of transit data. The emphasis was on inquiry-based instruction and supported science education standards in grades 7-12. Participants’ kit included an orrery, optical sensor and software to demonstrate transit detection. The workshop plan, teaching strategies, and lessons learned from evaluation will be discussed. Future events are planned. Kepler's Education and Public Outreach program is jointly conducted by the SETI Institute and Lawrence Hall of Science at UC Berkeley in close coordination with the Kepler Mission at NASA Ames Research Center. The IYA Kepler Teacher Professional Development workshops were supported by NASA Grants to the E. DeVore, SETI Institute NAG2-6066 Kepler Education and Public Outreach and NNX08BA74G, IYA Kepler Mission Pre-launch Workshops. Teachers participate in human orrery.
Berkeley Lab - Materials Sciences Division
Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Ager, Joel W » Alivisatos, A Paul » Altman, Ehud » Analytis, James » Anderson, Christopher  , Naomi » Gullikson, Eric M » Harris, Stephen J » Hasan, M. Zahid » Hellman, Frances » Helms, Brett A
Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizesmore » current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.« less
Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-10-01
The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.« less
Summer Series 2012 - Conversation with Kathy Yelick
Yelick, Kathy, Miller, Jeff
2018-05-11
Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.
Summer Series 2012 - Conversation with Kathy Yelick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy, Miller, Jeff
2012-07-23
Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.
From Relational Interfaces to Assume-Guarantee Contracts
2014-03-18
Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-21 http://www.eecs.berkeley.edu/Pubs...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering...design,” in EMSOFT’01. Springer, LNCS 2211, 2001. [2] A. Sangiovanni-Vincentelli et al., “Taming Dr. Frankenstein : Contract-Based Design for Cyber
In Conversation With Materials Scientist Ron Zuckermann
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ron Zuckerman
2009-11-18
Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.
In Conversation With Materials Scientist Ron Zuckermann
Ron Zuckerman
2017-12-09
Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.
NASA Astrophysics Data System (ADS)
Aceves, Ana V.; Berkeley Compass Project
2015-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.
Warp-X: A new exascale computing platform for beam–plasma simulations
Vay, J. -L.; Almgren, A.; Bell, J.; ...
2018-01-31
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
Warp-X: A new exascale computing platform for beam–plasma simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vay, J. -L.; Almgren, A.; Bell, J.
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains the proceedings of the fourth Contractor-Grantee Workshop for the Department of Energy (DOE) Human Genome Program. Of the 204 abstracts in this book, some 200 describe the genome research of DOE-funded grantees and contractors located at the multidisciplinary centers at Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory; other DOE-supported laboratories; and more than 54 universities, research organizations, and companies in the United States and abroad. Included are 16 abstracts from ongoing projects in the Ethical, Legal, and Social Issues (ELSI) component, an area that continues to attract considerable attention from a widemore » variety of interested parties. Three abstracts summarize work in the new Microbial Genome Initiative launched this year by the Office of Health and Environmental Research (OHER) to provide genome sequence and mapping data on industrially important microorganisms and those that live under extreme conditions. Many of the projects will be discussed at plenary sessions held throughout the workshop, and all are represented in the poster sessions.« less
Project Final Report: The Institute for Sustained Performance, Energy, and Resilience (SUPER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollingsworth, Jeffrey K.
This project concentrated on various aspects of creating and applying tool infrastructure to make it easier to effectively use large-scale parallel computers. This project was collaborative with Argonne National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, U.C. San Diego, University of Maryland, University of North Carolina, University of Oregon, University Southern California, University of Tennessee, and University of Utah. The research conducted during this project at the University of Maryland is summarized in this report. The complete details of the work are available in the publications listed at the end of the report. Manymore » of the concepts created during this project have been incorporated into tools and made available as freely downloadable software (www.dyninst.org/harmony). It also supported the studies of six graduate students, one undergraduate student, and two post-docs. The funding also provided summer support for the PI and part of the salary of a research staff member.« less
NASA Astrophysics Data System (ADS)
Erickson, John; van der Veen, W.; Moody, T.; O'Dea, T.
2008-05-01
This workshop links the goals of IYA to needs in science education. Lack of understanding of how science is practiced exists at all levels of society and is perpetuated by the way science is presented in classrooms and informal settings, often illustrated by the scientific method as a rigid multi-step process. This workshop presents an alternative to misleading scientific method lessons by highlighting some of Galileo's work. Looking through his telescope at four moons orbiting the planet Jupiter, Galileo gave priority to evidence over popular belief, completely changing the existing world view. We have adapted an activity developed by UC Berkeley's Lawrence Hall of Science in which students simulate observations of Jupiter's moons over several nights. The activity emphasizes the nature of science in regard to observations, evidence, predictions, models, hypotheses, and theories. A direct link is made between Galileo's work and the Five Essential Features of Inquiry as outlined in the National Science Education Standards. Participants will "observe” the Galilean moons of Jupiter, record data, make predictions, and analyze and model the data to determine orbital periods and distances for each moon. Extensions of this activity will be presented, including comparisons of the Jupiter system to the Earth-Moon system. Participants will also learn about Slooh, a robotic telescope that can be used by students to obtain their own images of Jupiter and its moons. As one way to have a multitude of learners in a variety of settings participate in IYA, this activity will be made available to many audiences for presentation in the fall of 2009. Participants in this workshop will discuss adaptations suitable for different groups and mechanisms for encouraging and enabling the presentation of this activity. Participants will receive a preliminary version of the adapted Jupiter activity and the BSCS publication: "Why Does Inquiry Matter?"
Andy Sessler: The Full Life of an Accelerator Physicist
NASA Astrophysics Data System (ADS)
Kim, Kwang-Je; Budnitz, Robert J.; Winick, Herman
2015-02-01
This article describes the distinguished career of Andrew M. Sessler, the visionary former director of the Lawrence Berkeley National Laboratory (LBNL), one of the most influential accelerator physicists, and a strong, dedicated human-rights activist. Andy died on 17 April 2014 from cancer at age 85. He grew up in New York City, and attended Harvard (BA in Mathematics, 1949) and then Columbia (PhD in Physics, 1953.) After an NSF postdoc at Cornell with Hans Bethe and a stint on the faculty at the Ohio State University in 1954-59, he joined the Lawrence Radiation Laboratory (now LBNL) in 1959, and spent the remainder of his career there. Although Andy l his mark on several areas of physics, including nuclear structure theory, elementary-particle physics, and many-body problems, his lasting and most important contributions came from his efforts in accelerator physics and engineering, to which he devoted most of his life's work. In collaboration with his colleagues of the legendary Midwestern Universities Research Association, he developed theories for the RF acceleration process and the collective instability phenomena, helping to realize the colliding-beam accelerators with which most of the high-energy-physics discoveries of the last few decades have been made. His work in connection with the free-electron-laser (FEL) amplifier for high-power microwave generation constructed at the Lawrence Livermore National Laboratory anticipated the optical-guiding and the self-amplified spontaneous-emission principles, upon which the success of the X-ray FELs as the fourth-generation light sources is based. Throughout his career Andy made major contributions to issues related to the impact of science and technology on society. He helped usher in a new era of research on energy efficiency and sustainable-energy technology and was instrumental in building the research agendas in those areas for the Atomic Energy Commission (AEC) and later the Department of Energy. With a lifelong interest in promoting the human rights of scientists, Andy was instrumental in initiating the American Physical Society's Committee on International Freedom of Scientists and in raising funds to endow the APS Andrei Sakharov Prize. He and Moishe Pripstein cofounded Scientists for Sakharov, Orlov, and Sharansky; the group's protests along with those of other groups led to the release of the three Soviet dissidents. More importantly, Andy's voice and example became a major force in helping call the world's attention to the plight of scientists trapped in places where their human rights and their ability to do science were severely compromised. Andy received many honors, including the AEC's Ernest Orlando Lawrence Award in 1970, the APS's Dwight Nicholson Medal in 1994, and the Enrico Fermi Award from the US Department of Energy in 2014.
Andy Sessler: The Full Life of an Accelerator Physicist
NASA Astrophysics Data System (ADS)
Kim, Kwang-Je; Budnitz, Robert J.; Winick, Herman
2014-04-01
This article describes the distinguished career of Andrew M. Sessler, the visionary former director of the Lawrence Berkeley National Laboratory (LBNL), one of the most influential accelerator physicists, and a strong, dedicated human-rights activist. Andy died on 17 April 2014 from cancer at age 85. He grew up in New York City, and attended Harvard (BA in Mathematics, 1949) and then Columbia (PhD in Physics, 1953.) After an NSF postdoc at Cornell with Hans Bethe and a stint on the faculty at the Ohio State University in 1954-59, he joined the Lawrence Radiation Laboratory (now LBNL) in 1959, and spent the remainder of his career there. Although Andy l his mark on several areas of physics, including nuclear structure theory, elementary-particle physics, and many-body problems, his lasting and most important contributions came from his efforts in accelerator physics and engineering, to which he devoted most of his life's work. In collaboration with his colleagues of the legendary Midwestern Universities Research Association, he developed theories for the RF acceleration process and the collective instability phenomena, helping to realize the colliding-beam accelerators with which most of the high-energy-physics discoveries of the last few decades have been made. His work in connection with the free-electron-laser (FEL) amplifier for high-power microwave generation constructed at the Lawrence Livermore National Laboratory anticipated the optical-guiding and the self-amplified spontaneous-emission principles, upon which the success of the X-ray FELs as the fourth-generation light sources is based. Throughout his career Andy made major contributions to issues related to the impact of science and technology on society. He helped usher in a new era of research on energy efficiency and sustainable-energy technology and was instrumental in building the research agendas in those areas for the Atomic Energy Commission (AEC) and later the Department of Energy. With a lifelong interest in promoting the human rights of scientists, Andy was instrumental in initiating the American Physical Society's Committee on International Freedom of Scientists and in raising funds to endow the APS Andrei Sakharov Prize. He and Moishe Pripstein cofounded Scientists for Sakharov, Orlov, and Sharansky; the group's protests along with those of other groups led to the release of the three Soviet dissidents. More importantly, Andy's voice and example became a major force in helping call the world's attention to the plight of scientists trapped in places where their human rights and their ability to do science were severely compromised. Andy received many honors, including the AEC's Ernest Orlando Lawrence Award in 1970, the APS's Dwight Nicholson Medal in 1994, and the Enrico Fermi Award from the US Department of Energy in 2014.
Andy Sessler: The Full Life of an Accelerator Physicist
NASA Astrophysics Data System (ADS)
Kim, Kwang-Je; Budnitz, Robert J.; Winick, Herman
This article describes the distinguished career of Andrew M. Sessler, the visionary former director of the Lawrence Berkeley National Laboratory (LBNL), one of the most influential accelerator physicists, and a strong, dedicated human-rights activist. Andy died on 17 April 2014 from cancer at age 85. He grew up in New York City, and attended Harvard (BA in Mathematics, 1949) and then Columbia (PhD in Physics, 1953.) After an NSF postdoc at Cornell with Hans Bethe and a stint on the faculty at the Ohio State University in 1954-59, he joined the Lawrence Radiation Laboratory (now LBNL) in 1959, and spent the remainder of his career there. Although Andy left his mark on several areas of physics, including nuclear structure theory, elementary-particle physics, and many-body problems, his lasting and most important contributions came from his efforts in accelerator physics and engineering, to which he devoted most of his life's work. In collaboration with his colleagues of the legendary Midwestern Universities Research Association, he developed theories for the RF acceleration process and the collective instability phenomena, helping to realize the colliding-beam accelerators with which most of the high-energy-physics discoveries of the last few decades have been made. His work in connection with the free-electron-laser (FEL) amplifier for high-power microwave generation constructed at the Lawrence Livermore National Laboratory anticipated the optical-guiding and the self-amplified spontaneous-emission principles, upon which the success of the X-ray FELs as the fourth-generation light sources is based. Throughout his career Andy made major contributions to issues related to the impact of science and technology on society. He helped usher in a new era of research on energy efficiency and sustainable-energy technology and was instrumental in building the research agendas in those areas for the Atomic Energy Commission (AEC) and later the Department of Energy. With a lifelong interest in promoting the human rights of scientists, Andy was instrumental in initiating the American Physical Society's Committee on International Freedom of Scientists and in raising funds to endow the APS Andrei Sakharov Prize. He and Moishe Pripstein cofounded Scientists for Sakharov, Orlov, and Sharansky; the group's protests along with those of other groups led to the release of the three Soviet dissidents. More importantly, Andy's voice and example became a major force in helping call the world's attention to the plight of scientists trapped in places where their human rights and their ability to do science were severely compromised. Andy received many honors, including the AEC's Ernest Orlando Lawrence Award in 1970, the APS's Dwight Nicholson Medal in 1994, and the Enrico Fermi Award from the US Department of Energy in 2014.
NASA Astrophysics Data System (ADS)
Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.
2006-12-01
Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course (http://www.cacosee.net/collegecourse) from COSEE California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project will leverage these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort will be one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course derived from COS that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach to informal institutions and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting ISEI. COSIA partners include: Hampton University Virginia Aquarium; Oregon State University Hatfield Marine Science Visitor's Center; Rutgers University Liberty Science Center; University of California, Berkeley Lawrence Hall of Science; and University of Southern California Aquarium of the Pacific. COS has been or will soon be taught at Rutgers University, UC Berkeley, Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), Scripps Institution of Oceanography, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. For example, there was a decrease in agreement with statements describing traditional didactic teaching strategies suggesting that students who took the course developed a more sophisticated, inquiry-based philosophy of learning. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.
A tandem-based compact dual-energy gamma generator.
Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T
2010-02-01
A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.
quantifying and Predicting Reactive Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter C. Burns, Department of Civil Engineering and Geological Sciences, University of Notre Dame
2009-12-04
This project was led by Dr. Jiamin Wan at Lawrence Berkeley National Laboratory. Peter Burns provided expertise in uranium mineralogy and in identification of uranium minerals in test materials. Dr. Wan conducted column tests regarding uranium transport at LBNL, and samples of the resulting columns were sent to Dr. Burns for analysis. Samples were analyzed for uranium mineralogy by X-ray powder diffraction and by scanning electron microscopy, and results were provided to Dr. Wan for inclusion in the modeling effort. Full details of the project can be found in Dr. Wan's final reports for the associated effort at LBNL.
Prospects of A and Z identification experiments at LBNL
NASA Astrophysics Data System (ADS)
Gates, Jacklyn M.
2016-12-01
The identification of six new elements within the last 15 years and with proton numbers, Z = 113-118 has transformed the heavy element field. However, one key piece of information on these nuclei remains unmeasured: their proton and mass numbers, A. At Lawrence Berkeley National Laboratory, the heavy element group has undertaken a program to study these new elements to perform experiments aimed at measuring the Z and A.Here, an overview of recent experiments aimed towards identifying the Z of SHE, and the prospects for Z and A identification experiments at LBNL are presented.
Synchrotron Photoionization Investigation of the Oxidation of Ethyl tert-Butyl Ether.
Winfough, Matthew; Yao, Rong; Ng, Martin; Catani, Katherine; Meloni, Giovanni
2017-02-23
The oxidation of ethyl tert-butyl ether (ETBE), a widely used fuel oxygenated additive, is investigated using Cl atoms as initiators in the presence of oxygen. The reaction is carried out at 293, 550, and 700 K. Reaction products are probed by a multiplexed chemical kinetics photoionization mass spectrometer coupled with the synchrotron radiation produced at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. Products are identified on the basis of mass-to-charge ratio, ionization energies, and shape of photoionization spectra. Reaction pathways are proposed together with detected primary products.
Alternatives to argon for gas stopping volumes in the B194 neutron imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleuel, D. L.; Anderson, S.; Caggiano, J. A.
2017-05-17
In a recent experiment at Lawrence Berkeley National Laboratory, the 40Ar(d,p)41Ar excitation function between 3-7 MeV was measured, confirming a previous estimation that there may be an intolerable radiation dose from 41Ar production by slowing to rest 6.74 MeV deuterons in the gas cell of the neutron imaging facility being constructed in B194. Gas alternatives to argon are considered, including helium, nitrogen (N2), neon, sulfur hexafluoride (SF6), krypton, and xenon, as well as high atomic number solid backings such as tantalum.
What is Supercomputing? A Conversation with Kathy Yelick
Yelick, Kathy
2017-12-11
In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.
What is Supercomputing? A Conversation with Kathy Yelick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy
2012-07-23
In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.
NASA Astrophysics Data System (ADS)
Teige, V. E.; Havel, E.; Patt, C.; Heber, E.; Cohen, R. C.
2011-12-01
The University of California at Berkeley in collaboration with the Chabot Space and Science Center describe a set of educational programs, workshops, and exhibits based on a multi-node greenhouse gas and air quality monitoring network being deployed over Oakland, California. Examining raw numerical data using highly engaging and effective geo-data visualization tools like Google Earth can make the science come alive for students, and provide a hook for drawing them into deeper investigations. The Climate Science Investigations teacher workshop at the Chabot Space and Science Center will make use of Google Earth, Excel, and other geo-data visualization tools to step students through the process from data acquisition to discovery. Using multiple data sources, including output from the BErkeley Atmospheric CO2 Network (BEACON) project, participants will be encouraged to explore a variety of different modes of data display toward producing a unique, and ideally insightful, illumination of the data.
Berkeley Lab Sheds Light on Improving Solar Cell Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence Berkeley National Laboratory
2007-07-20
Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developingmore » nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material at the dislocations. He was purportedly the first to show that they were 'decorated' with iron.« less
NASA Opportunities in Visualization, Art, and Science (NOVAS)
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III
2014-12-01
Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garabedian, G.
This document details the decontamination and decommissioning (D&D) process of Rooms 248 and 250 of Building 62 at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL). The document describes the D&D efforts for the rooms, their contents, and adjacent areas containing ancillary equipment. The rooms and equipment, before being released, were required to meet the unrestricted release criteria and requirements set forth in DOE orders 5400.5 and 5480.11, LBNL`s internal release-criteria procedure (EH&S Procedure 708), and the LBNL Radiological Control Manual. The radioactive material and items not meeting the release criteria were either sent to the Hazardous Waste Handling Facilitymore » (HWHF) for disposal or transferred to other locations approved for radioactive material. The D&D was undertaken by the Radiation Protection Group of LBNL`s Environment, Health and Safety (EH&S) Division at the request of the Materials Sciences Division. Current and past use of radioactive material in both Rooms 248 and 250 necessitated the D&D in order to release both rooms for nonradioactive work. (1) Room 248 was designated a {open_quotes}controlled area.{close_quotes} There was contained radioactive material in some of the equipment. The previous occupants of Room 248 had worked with radioactive materials. (2) Room 250 was designated a {open_quotes}Radioactive Materials Management Area{close_quotes} (RMMA) because the current occupants used potentially dispersible radioisotopes. Both laboratories, during the occupancy of U.C. Berkeley Professor Leo Brewer and Ms. Karen Krushwitz, were kept in excellent condition. There was a detailed inventory of all radioactive materials and chemicals. All work and self surveys were documented. The labs were kept extremely orderly, clean, and in compliance. In October 1993 Ms. Krushwitz received an award in recognition of her efforts in Environmental Protection, Health, and Safety at LBNL.« less
Development of a biophotonics technician-training program: directions for the 21st Century
NASA Astrophysics Data System (ADS)
Shackelford, James F.; Gellman, Joel; Vasan, Srini; Hall, Robert A.; Goodwin, Don E.; Molinaro, Marco; Matthews, Dennis
2005-06-01
Albuquerque Technical Vocational Institute (TVI) is collaborating with the National Science Foundation (NSF) funded Center for Biophotonics Science and Technology (CBST) headquartered at the University of California, Davis in order to develop a biophotonics curriculum for community colleges nationwide. TVI began the formal collaboration to bring about critically needed training and education that will ultimately create new jobs and employment opportunities in the field of biophotonics. "Biophotonics" is the science of generating and harnessing light to detect, image and manipulate biological materials. CBST chose TVI as a partner because of the Institute's current high-level photonics and biotechnology programs. In addition, TVI is a part of the "Albuquerque Model" that involves exposure to photonics education from the middle school level through graduate education at the University of New Mexico. Three middle schools feed into the West Mesa High School Photonics Academy, whose students then move on to TVI for advanced training. CBST brings together scientists, industry, educators and the community to research and develop applications for biophotonics. Roughly 100 researchers-including physical scientists, life scientists, physicians and engineers from UC Davis, Lawrence Livermore National Laboratory, UC Berkeley, UC San Francisco, Alabama A&M University, Stanford University, University of Texas at San Antonio, Fisk University and Mills College-are collaborating in this rapidly developing area of research. Applications of biophotonics range from using light to image or selectively treat tumors, to sequencing DNA and identifying single biomolecules within cells.
FY2014 LBNL LDRD Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Darren
2015-06-01
Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less
Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)
Milliron, Delia; Selkowitz, Stephen
2017-12-09
August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.
Berkeley Lab's Saul Perlmutter Wins the Einstein Medal | Berkeley Lab
TAGS: awards, cosmology and astrophysics, physics Connect twitter instagram LinkedIn facebook youtube Physics + Cosmology Chemistry + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S Privacy & Security Notice twitter instagram LinkedIn facebook youtube
Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.
1992-10-01
The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.« less
Communicating Ocean Science at the Lower-Division Level
NASA Astrophysics Data System (ADS)
Coopersmith, A.
2011-12-01
Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their activities and presentations with the advice of local practitioners who share their experiences for incorporating both Hawaiian ways of learning and environmental practices.
Alivisatos, Paul; Crabtree, George; Dresselhaus, Mildred; Ratner, Mark
2018-05-14
A distinguished panel of speakers at the 2011 EFRC Summit looks at the EFRC Program and how it serves as a response to "Five Challenges for Science and the Imaginationâ, the culminating report that arose from a series of Basic Research Needs workshops. The panel members are Paul Alivisatos, the Director of Lawrence Berkeley National Laboratory, George Crabtree, Distinguished Fellow at Argonne National Laboratory, Mildred Dresselhause, Institute Professor at the Massachusetts Institute of Technology, and Mark Ratner, Professor at Northwestern University. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH 3 Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Papri; Heiden, Zachariah M.; Wiedner, Eric S.
We report ammonia oxidation by homolytic cleavage of all three H atoms from a Mo-15NH3 complex using the 2,4,6-tri-tert-butylphenoxyl radical to afford a Mo-alkylimido (Mo=15NR) complex (R = 2,4,6-tri-t-butylcyclohexa-2,5-dien-1-one). Reductive cleavage of Mo=15NR generates a terminal Mo≡N nitride, and a [Mo-15NH]+ complex is formed by protonation. Computational analysis describes the energetic profile for the stepwise removal of three H atoms from the Mo-15NH3 complex and the formation of Mo=15NR. Acknowledgment. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Re-search Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Officemore » of Basic Energy Sciences. EPR and mass spectrometry experiments were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. The authors thank Dr. Eric D. Walter and Dr. Rosalie Chu for assistance in performing EPR and mass spectroscopy analysis, respectively. Computational resources provided by the National Energy Re-search Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific North-west National Laboratory is operated by Battelle for the U.S. DOE.« less
Ultra-high Resolution Coherent X-ray Imaging of Nano-Materials
NASA Astrophysics Data System (ADS)
Shapiro, David
A revolution is underway in the field of x-ray microscopy driven by the develop of experimental, theoretical and computational means of producing a complete description of coherent imaging systems from x-ray diffraction data. The methods being developed not only allow for full quantification and removal of all optical aberrations but also extension of the numerical aperture to the diffraction limit. One such method under intensive development is x-ray ptychography. This is a scanned probe method that reconstructs a scattering object and its illumination from coherent diffraction data. Within the first few years of development at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, this method has already achieved the highest resolution x-ray images ever recorded in two, three and four dimensions. With the ability of x-rays to penetrate significantly more matter than electrons, their short wavelength and their sensitivity to chemical and magnetic states of matter, x-ray ptychography is set to revolutionize how we see the nano-scale world. In this presentation I will briefly describe the technical framework for how various methods work and will give a detailed account of a practical implementation at the ALS along with various scientific applications. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
BEARS: Radioactive ion beams at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.; Guo, F.Q.; Haustein, P.E.
1998-07-01
BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C andmore » 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabrielle N. Pecora; Francine C. Reid; Lauren M. Tom
2016-05-01
Collecting field samples from remote or geographically distant areas can be a financially and logistically challenging. With participation of a local organization where the samples are originated from, gDNA samples can be extracted from the field and shipped to a research institution for further processing and analysis. The ability to set up gDNA extraction capabilities in the field can drastically reduce cost and time when running long-term microbial studies with a large sample set. The method outlined here has developed a compact and affordable method for setting up a “laboratory” and extracting and shipping gDNA samples from anywhere in themore » world. This white paper explains the process of setting up the “laboratory”, choosing and training individuals with no prior scientific experience how to perform gDNA extractions and safe methods for shipping extracts to any research institution. All methods have been validated by the Andersen group at Lawrence Berkeley National Laboratory using the Berkeley Lab PhyloChip.« less
Careers in Data Science: A Berkeley Perspective
NASA Astrophysics Data System (ADS)
Koy, K.
2015-12-01
Last year, I took on an amazing opportunity to serve as the Executive Director of the new Berkeley Institute for Data Science (BIDS). After a 15-year career working with geospatial data to advance our understanding of the environment, I have been presented with a unique opportunity through BIDS to work with talented researchers from a wide variety of backgrounds. Founded in 2013, BIDS is a central hub of research and education at UC Berkeley designed to facilitate and nurture data-intensive science. We are building a community centered on a cohort of talented data science fellows and senior fellows who are representative of the world-class researchers from across our campus and are leading the data science revolution within their disciplines. Our initiatives are designed to bring together broad constituents of the data science community, including domain experts from the life, social, and physical sciences and methodological experts from computer science, statistics, and applied mathematics. While many of these individuals rarely cross professional paths, BIDS actively seeks new and creative ways to engage and foster collaboration across these different research fields. In this presentation, I will share my own story, along with some insights into how BIDS is supporting the careers of data scientists, including graduate students, postdocs, faculty, and research staff. I will also describe how these individuals we are helping support are working to address a number of data science-related challenges in scientific research.
Physics 101: What Our Next President Needs to Know (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Rich
2008-10-13
Rich Muller, author of Physics for Future Presidents, argues that the next president can't afford to be ignorant about the science behind terrorism, nuclear dangers, energy, space, and global warming. Muller, a MacArthur Fellow, Berkeley Lab physicist, and one of the most popular lecturers at UC Berkeley, discusses what it takes to survive in today's increasingly dangerous world -- information essential to the next commander-in-chief. He presented his talk Oct. 13, 2008.
Physics 101: What Our Next President Needs to Know (LBNL Science at the Theater)
Muller, Rich
2018-06-12
Rich Muller, author of Physics for Future Presidents, argues that the next president can't afford to be ignorant about the science behind terrorism, nuclear dangers, energy, space, and global warming. Muller, a MacArthur Fellow, Berkeley Lab physicist, and one of the most popular lecturers at UC Berkeley, discusses what it takes to survive in today's increasingly dangerous world -- information essential to the next commander-in-chief. He presented his talk Oct. 13, 2008.
NASA Technical Reports Server (NTRS)
Lauenstein, J.-M.; Casey, M. C.; Campola, M. A.; Phan, A. M.; Wilcox, E. P.; Topper, A. D.; Ladbury, R. L.
2017-01-01
This study was being undertaken to determine the single event effect susceptibility of the commercial Vishay 60-V TrenchFET power MOSFET. Heavy-ion testing was conducted at the Texas AM University Cyclotron Single Event Effects Test Facility (TAMU) and the Lawrence Berkeley National Laboratory BASE Cyclotron Facility (LBNL). In addition, initial 200-MeV proton testing was conducted at Massachusetts General Hospital (MGH) Francis H. Burr Proton Beam Therapy Center. Testing was performed to evaluate this device for single-event effects from lower-LET, lighter ions relevant to higher risk tolerant space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asay-Davis, Xylar Storm
The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently beingmore » incorporated into two manuscripts in preparation.« less
Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup
NASA Technical Reports Server (NTRS)
Fisher, J. W.; Pisharody, S.; Moran, M. J.; Wignarajah, K.; Shi, Y.
2002-01-01
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO(sub x) and SO(sub 2) contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO(sub x) and SO(sub 2) in activated carbon made from biomass. Conversion of adsorbed NO(sub x) to nitrogen has also been observed.
The NDCX-II engineering design
NASA Astrophysics Data System (ADS)
Waldron, W. L.; Abraham, W. J.; Arbelaez, D.; Friedman, A.; Galvin, J. E.; Gilson, E. P.; Greenway, W. G.; Grote, D. P.; Jung, J.-Y.; Kwan, J. W.; Leitner, M.; Lidia, S. M.; Lipton, T. M.; Reginato, L. L.; Regis, M. J.; Roy, P. K.; Sharp, W. M.; Stettler, M. W.; Takakuwa, J. H.; Volmering, J.; Vytla, V. K.
2014-01-01
The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.
Harnessing the Flow of Data from Fungi at JGI
Grigoriev, Igor; Glass, N. Louise; Martin, Francis; Turgeon, Gillian; Spatafora, Joey; Berka, Randy
2018-06-12
The U.S. Department of Energy (DOE) Joint Genome Institute (JGI) managed by Lawrence Berkeley National Laboratory, is the only user facility in the world devoted to problems of energy and environment. With over one million species, fungiâwhich include mushroomsârepresent one of the largest under-explored branches of the Tree of Life. Together with its community of more than 1,000 scientific collaborators, JGI helping to unlock the secrets encoded in the genomes of fungi to advance a better understanding of the global carbon cycle and to develop new biotechnology products, next-generation biofuels, and medicines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-09-01
To gain an understanding of the long-term county-level impacts from a large sample of wind power projects and to understand the potential significance of methodological criticisms, the U.S. Department of Agriculture, the Lawrence Berkeley National Laboratory, and NREL recently joined efforts to complete a first-of-its-kind study that quantifies the annual impact on county-level personal income resulting from wind power installations in nearly 130 counties across 12 states. The results of this study, as well as a comparison with the prior county-level estimates generated from input-output models, are summarized here.
Consensus on Intermediate Scale Salt Field Test Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlman, Kristopher L.; Mills, Melissa Marie; Matteo, Edward N.
This report summarizes the first stage in a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to design a small-diameter borehole heater test in salt at the Waste Isolation Pilot Plant (WIPP) for the US Department of Energy Office of Nuclear Energy (DOE-NE). The intention is to complete test design during the remainder of fiscal year 2017 (FY17), and the implementation of the test will begin in FY18. This document is the result of regular meetings between the three national labs and the DOE-NE, and is intended to represent a consensus of these meetings and discussions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, Cindy; Settlemyre, Kevin
The University of South Carolina (USC), a public university in Columbia, South Carolina, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy educational building. The new Darla Moore School of Business (DMSB) will consume at least 50% less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE's Commerical Building Partnerships (CBP) program. 4 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise inmore » support of this DOE program.« less
Affirmative Action Compliance Program for Fiscal Year 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Eleven chapters are used to delineate Lawrence Berkeley Lab's compliance, namely: (1) a description of LBL's facility, history, staff, mission, etc; (2) Affirmative Action policy statement; (3) dissemination (internal and external) per the implementation regulations; (4) identification of Affirmative Action responsibilities; (5) personnel policies; (6) past goal-setting process and accomplishment; (7) work-force array, job groups, availability determinations, identification of underutilization, and goals and timetables; (8) identification of problem areas and action-oriented programs; (9) listing and brief description of specific LBL Affirmative Action programs; (10) compliance with sex-discrimination guidelines; and (11) compliance with guidelines on discrimination because of religion or nationalmore » origin.« less
Ernest O. Lawrence and the Cyclotron
Speed Protons Without the Use of High Voltages; Physical Review, Vol. 38, [Issue 4: 834, August 15, 1931 Report Download Adobe PDF Reader , August 27, 1952 Top Lawrence Honored: 1957 Enrico Fermi Award Science World to Think Big," Newsline, August 3, 2001. E. O. Lawrence Remembered, LBNL Conversation
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Personnel Resources Committees In Case of Emergency Looking for MSD0010 Officer Mary Gross MCGross@lbl.gov Research Group Representatives Group Rep Ager Rachel Woods-Robinson Somorjai (see Salmeron Group) Yaghi Xiaokun Pei xiaokun_pei@berkeley.edu Zhang Sui Yang SuiYang@lbl.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Jim
Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.
Bishop, Jim
2018-06-12
Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.
Alternative oxidation technologies for organic mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development ormore » are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Bob Wilson and The Birth of Fermilab
Edwin L. Goldwasser
2018-04-17
In the 1960âs the Lawrence Berkeley Laboratory (then The Lawrence Radiation Laboratory) submitted two proposals to build the next high energy physics research laboratory. The first included a 200 GeV accelerator and associated experimental facilities. The cost was $350 million. The Bureau of the Budget rejected that proposal as a âbudget busterâ. It ruled that $250 million was the maximum that could be accepted. The second proposal was for a reduced scope laboratory that met the Bureau of the Budgetâs cost limitation, but it was for a lower energy accelerator and somewhat smaller and fewer experimental facilities. The powerful Congressional Joint Committee on Atomic Energy rejected the reduced scope proposal as inadequate to provide physics results of sufficient interest to justify the cost. It was then that Bob Wilson came forth with a third proposal, coping with that âCatch 22â and leading to the creation of Fermilab. How he did it will be the subject of this colloquium.
2010-03-01
Carina Nebula Details: The Caterpillar Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html
Extreme Science (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew
On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could helpmore » transform sunlight into fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Richard; Hack, James; Riley, Katherine
The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less
NASA Opportunities in Visualization, Art, and Science (NOVAS)
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III
2015-12-01
Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.
The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)
Chu, Steven
2018-06-15
The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.
Secrets of the Soil: Promotion of the Nov. 7 Science at the Theater Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodie, Eoin
2011-01-01
There are billions of microbes in a handful of soil, some of which could hold the key to our climate and energy future. Find out how at Secrets of the Soil, our next Science at the Theater Nov. 7 at the Berkeley Repertory Theatre. At the event, four Berkeley Lab scientists will reveal how our scientists travel the globe -- to deserts, rainforests, and the Arctic tundra -- to explore the secret world of soil microbes -- and what they mean to you. More info: http://www.lbl.gov/LBL-PID/fobl/
Secrets of the Soil: Promotion of the Nov. 7 Science at the Theater Event
Brodie, Eoin
2017-12-11
There are billions of microbes in a handful of soil, some of which could hold the key to our climate and energy future. Find out how at Secrets of the Soil, our next Science at the Theater Nov. 7 at the Berkeley Repertory Theatre. At the event, four Berkeley Lab scientists will reveal how our scientists travel the globe -- to deserts, rainforests, and the Arctic tundra -- to explore the secret world of soil microbes -- and what they mean to you. More info: http://www.lbl.gov/LBL-PID/fobl/
ERIC Educational Resources Information Center
Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter
2011-01-01
The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…
Berkeley Pact with a Swiss Company Takes Technology Transfer to a New Level.
ERIC Educational Resources Information Center
Blumenstyk, Goldie
1998-01-01
In search of increased support for graduate students in plant science and upgraded laboratories, the College of Plant and Microbial Biology, University of California Berkeley, offered the college's expertise in exchange for major financial backing from the single company making the best offer. The resulting five-year, $25-million alliance with one…
What the World Needs Now: More Women in Mathematics and Science.
ERIC Educational Resources Information Center
Wallace, Joy
1989-01-01
"Expanding Your Horizons in Science and Mathematics" conferences in Berkeley, California, are designed to nurture girls' interest in science and math courses and encourage them to consider nontraditional career options. (TE)
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Latest News Postdoc Forum Research Highlights Awards Publications
Photoionization Efficiencies of Five Polycyclic Aromatic Hydrocarbons.
Johansson, K Olof; Campbell, Matthew F; Elvati, Paolo; Schrader, Paul E; Zádor, Judit; Richards-Henderson, Nicole K; Wilson, Kevin R; Violi, Angela; Michelsen, Hope A
2017-06-15
We have measured photoionization-efficiency curves for pyrene, fluoranthene, chrysene, perylene, and coronene in the photon energy range of 7.5-10.2 eV and derived their photoionization cross-section curves in this energy range. All measurements were performed using tunable vacuum ultraviolet (VUV) radiation generated at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory. The VUV radiation was used for photoionization, and detection was performed using a time-of-flight mass spectrometer. We measured the photoionization efficiency of 2,5-dimethylfuran simultaneously with those of pyrene, fluoranthene, chrysene, perylene, and coronene to obtain references of the photon flux during each measurement from the known photoionization cross-section curve of 2,5-dimethylfuran.
Absolute photoionization cross sections of two cyclic ketones: cyclopentanone and cyclohexanone.
Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni
2017-05-01
Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing vacuum ultraviolet (VUV) synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values, and the identification of possible dissociative fragments is discussed for both systems. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
ARPA-E: Engineering Innovative New Biofuels
Burbaum, Jonathan; Peter, Gary; Kirby, Jim; Lemaux
2018-05-30
ARPA-E's PETRO program was created to supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and don't affect U.S. food supply. This video highlights the role that ARPA-E has played in connecting traditionally distinct research areas to inform the research and development efforts of PETRO project teams. Specifically, it highlights how the University of Florida leveraged lessons learned from the Joint BioEnergy Institute's work with E. coli to directly influence their work in harvesting fuel molecules from pine trees, as well as how the same genes tested in pine are now being tested in tobacco at Lawrence Berkeley National Laboratory. This transfer of knowledge facilitates new discovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Lantz
2012-09-21
To gain an understanding of the long-term county-level impacts from a large sample of wind power projects and to understand the potential significance of methodological criticisms, the U.S. Department of Agriculture, the Lawrence Berkeley National Laboratory, and the National Renewable Energy Laboratory recently joined efforts to complete a first-of-its-kind study that quantifies the annual impact on county-level personal income resulting from wind power installations in nearly 130 counties across 12 states. The results of this study as well as a comparison with the prior county-level estimates generated from input-output models, are summarized in the fact sheet.
Institutional Conservation Program evaluation project: Results of higher education survey pretest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, M.J. III; Collins, N.E.; Ettinger, G.
Teams from Argonne National Laboratory, Lawrence Berkeley Laboratory, and the US Department of Energy visited 14 colleges and universities to pretest a survey instrument that will be mailed to all US colleges and universities to solicit information about energy conservation activities and decision-making processes. The results of the pretest, the final higher education questionnaire, and implications for an elementary and secondary education questionnaire are the primary subjects of this report. Because interviewees offered anecdotes and advice about equipment, management, finances, and maintenance that may be useful to others, narrative summaries of each visit are included. The report also contains themore » interviewees' responses to the pretest questions.« less
High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software
NASA Astrophysics Data System (ADS)
Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.; Finkelstein, Gregory J.; Grubor-Urosevic, Ognjen; Tschauner, Oliver; Clark, Simon M.; Downs, Robert T.
2013-08-01
GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCμXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCμXRD easier and more reliable.
Improving Data Mobility & Management for International Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borrill, Julian; Dart, Eli; Gore, Brooklin
In February 2015 the third workshop in the CrossConnects series, with a focus on Improving Data Mobility & Management for International Cosmology, was held at Lawrence Berkeley National Laboratory. Scientists from fields including astrophysics, cosmology, and astronomy collaborated with experts in computing and networking to outline strategic opportunities for enhancing scientific productivity and effectively managing the ever-increasing scale of scientific data. While each field has unique details which depend on the instruments employed, the type and scale of the data, and the structure of scientific collaborations, several important themes emerged from the workshop discussions. Findings, as well as a setmore » of recommendations, are contained in their respective sections in this report.« less
Office of the Chief Financial Officer 2012 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kim
2013-01-31
Fiscal Year 2012 was a year of progress and change in the Office of the Chief Financial Officer (OCFO) organization. The notable accomplishments outlined below strengthened the quality of the OCFO’s stewardship and services in support of the scientific mission of Lawrence Berkeley National Laboratory (LBNL). Three strategies were key to this progress: organizational transformation aligned with our goals; process redesign and effective use of technology to improve efficiency, and innovative solutions to meet new challenges. Over the next year we will continue to apply these strategies to further enhance our contributions to the Lab’s scientific mission. What follows ismore » the budget, funding and costs for the office for FY 2012.« less
NASA Technical Reports Server (NTRS)
Finley, D.; Malina, R. F.; Bowyer, S.
1985-01-01
The four flight Wolter-Schwarzschild mirrors currently under fabrication for the Extreme Ultraviolet Explorer (EUVE) satellite are described. The principal figuring operation of these grazing incidence metal mirrors (gold over nickel on an aluminum substrate) is carried out by diamond turning at the Lawrence Livermore National Laboratories. Turning has been accomplished and optical testing results analyzed for three of the mirrors. As-turned values of 1.7 arc sec full width at half maximum (FWHM) and half energy width (HEW) of 5 arc seconds in the visible have been achieved. These results illustrate the great potential of precision fabrication technology for the production of large grazing incidence optics.
A Multicusp Ion Source for Radioactive Ion Beams
NASA Astrophysics Data System (ADS)
Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.
1997-05-01
In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, Cindy; Harding, Ari; Robinson, Alastair
The University of Hawai’i at Mānoa (UHM) partnered with the US Department of Energy (DOE) and the Hawai`i Clean Energy Initiative to develop and implement solutions to retrofit exiting buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program1. Kuykendall Hall, located on the UHM campus in Honolulu, was the focus of a CBP analysis and design collaboration among the University of Hawai’i, their consultants, and Lawrence Berkeley National Laboratory (LBNL). Kuykendall Hall consists of two 1960s-era wings – a four-story wing containing classrooms, and a seven-story tower containing offices – withmore » a total floor area of approximately 76,000 square feet (ft²).« less
The Physics of Beams: The Andrew Sessler Symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barletta, W.A.
1996-03-01
These proceedings represent papers presented at the Andrew Sessler Symposium held at the Lawrence Berkeley National Laboratory in honor of Andrew Sessler{close_quote}s over forty years of major scientific contributions to accelerator and beam physics as well as in celebration of his 65th birthday. The symposium was sponsored by the United States Department of Energy. The topics discussed include linear colliders, past history and future speculations, ELOISATRON at 100 TeV beam, manipulating charged particle beams by means of plasma and collective instabilities in accelerator and storage rings. There were 10 papers presented and 8 have been abstracted for the Energy Sciencemore » and Technology database.(AIP)« less
Multi-Year Analysis Examines Costs, Benefits, and Impacts of Renewable Portfolio Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
As states consider revising renewable portfolio standard (RPS) programs or developing new ones, careful assessments of the costs, benefits, and other impacts of existing policies will be critical. RPS programs currently exist in 29 states and Washington, D.C. Many of these policies, which were enacted largely during the late 1990s and 2000s, will reach their terminal targets by the end of this decade. The National Renewable Energy Laboratory (NREL) and Lawrence Berkeley National Laboratory (LBNL) are engaged in a multi-year project to examine the costs, benefits, and other impacts of state RPS polices both retrospectively and prospectively. This fact sheetmore » overviews this work.« less
Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.
2008-03-21
Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of researchmore » needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.« less
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Core Programs Materials Discovery, Design and Synthesis Condensed Matter
Science at the Theatre - Extreme Science - Promo Video
Klein, Spencer
2017-12-12
On Feb. 27 at 7 pm at the Berkeley Repertory Theatre, join four Berkeley Lab scientists as they discuss extreme science -- and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel. Go here for more information and to view videos of previous Science at the Theater events: http://www.lbl.gov/LBL-PID/fobl/
Science at the Theatre - Extreme Science - Promo Video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Spencer
On Feb. 27 at 7 pm at the Berkeley Repertory Theatre, join four Berkeley Lab scientists as they discuss extreme science -- and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections thatmore » could help transform sunlight into fuel. Go here for more information and to view videos of previous Science at the Theater events: http://www.lbl.gov/LBL-PID/fobl/« less
Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baktash, C.; Lee, I.Y.; Rehm, K.E.
This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less
Exploring Demand Charge Savings from Commercial Solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naim; Barbose, Galen; Mills, Andrew
Commercial retail electricity rates commonly include a demand charge component, based on some measure of the customer’s peak demand. Customer-sited solar PV can potentially reduce demand charges, but the magnitude of these savings can be difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Moreover, depending on the circumstances, demand charges from solar may or may not align well with associated utility cost savings. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating in a series of studies to understand how solar PV can reduce demand charge levelsmore » for a variety of customer types and demand charges designs. Previous work focused on residential customs with solar. This study, instead, focuses on commercial customers and seeks to understand the extent and conditions under which rooftop can solar reduce commercial demand charges. To answer these questions, we simulate demand charge savings for a broad range of commercial customer types, demand charge designs, locations, and PV system characteristics. This particular analysis does not include storage, but a subsequent analysis in this series will evaluate demand charge savings for commercial customers with solar and storage.« less
Solar + Storage Synergies for Managing Commercial-Customer Demand Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, P.; Govindarajan, A.; Bird, L.
Demand charges, which are based on a customer’s maximum demand in kilowatts (kW), are a common element of electricity rate structures for commercial customers. Customer-sited solar photovoltaic (PV) systems can potentially reduce demand charges, but the level of savings is difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating on a series of studies to understand how solar PV can impact demand charges. Prior studies in the series examined demand charge reductions from solar on a stand-alone basis formore » residential and commercial customers. Those earlier analyses found that solar, alone, has limited ability to reduce demand charges depending on the specific design of the demand charge and on the shape of the customer’s load profile. This latest analysis estimates demand charge savings from solar in commercial buildings when co-deployed with behind-the-meter storage, highlighting the complementary roles of the two technologies. The analysis is based on simulated loads, solar generation, and storage dispatch across a wide variety of building types, locations, system configurations, and demand charge designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluswar, Shashi; Gadgil, Ashok
At this November 26, 2012 Science at the Theater, scientists discussed the recently launched LBNL Institute for Globally Transformative Technologies (LIGTT) at Berkeley Lab. LIGTT is an ambitious mandate to discover and develop breakthrough technologies for combating global poverty. It was created with the belief that solutions will require more advanced R&D and a deep understanding of market needs in the developing world. Berkeley Lab's Ashok Gadgil, Shashi Buluswar and seven other LIGTT scientists discussed what it takes to develop technologies that will impact millions of people. These include: 1) Fuel efficient stoves for clean cooking: Our scientists are improvingmore » the Berkeley Darfur Stove, a high efficiency stove used by over 20,000 households in Darfur; 2) The ultra-low energy refrigerator: A lightweight, low-energy refrigerator that can be mounted on a bike so crops can survive the trip from the farm to the market; 3) The solar OB suitcase: A low-cost package of the five most critical biomedical devices for maternal and neonatal clinics; 4) UV Waterworks: A device for quickly, safely and inexpensively disinfecting water of harmful microorganisms.« less
Earth Sciences Division Research Summaries 2006-2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePaolo, Donald; DePaolo, Donald
2008-07-21
Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energymore » and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from January 2006 to June 2007, along with a listing of our personnel, are also appended. Any comments on our research are appreciated and can be sent to me personally.« less
EUV microexposures at the ALS using the 0.3-NA MET projectionoptics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik
2005-09-01
The recent development of high numerical aperture (NA) EUV optics such as the 0.3-NA Micro Exposure Tool (MET) optic has given rise to a new class of ultra-high resolution microexposure stations. Once such printing station has been developed and implemented at Lawrence Berkeley National Laboratory's Advanced Light Source. This flexible printing station utilizes a programmable coherence illuminator providing real-time pupil-fill control for advanced EUV resist and mask development. The Berkeley exposure system programmable illuminator enables several unique capabilities. Using dipole illumination out to {sigma}=1, the Berkeley tool supports equal-line-space printing down to 12 nm, well beyond the capabilities of similarmore » tools. Using small-sigma illumination combined with the central obscuration of the MET optic enables the system to print feature sizes that are twice as small as those coded on the mask. In this configuration, the effective 10x-demagnification for equal lines and spaces reduces the mask fabrication burden for ultra-high-resolution printing. The illuminator facilitates coherence studies such as the impact of coherence on line-edge roughness (LER) and flare. Finally the illuminator enables novel print-based aberration monitoring techniques as described elsewhere in these proceedings. Here we describe the capabilities of the new MET printing station and present system characterization results. Moreover, we present the latest printing results obtained in experimental resists. Limited by the availability of high-resolution photoresists, equal line-space printing down to 25 nm has been demonstrated as well as isolated line printing down to 29 nm with an LER of approaching 3 nm.« less
Electronic Structure and Morphology of Graphene Layers on SiC
NASA Astrophysics Data System (ADS)
Ohta, Taisuke
2008-03-01
Recent years have witnessed the discovery and the unique electronic properties of graphene, a sheet of carbon atoms arranged in a honeycomb lattice. The unique linear dispersion relation of charge carriers near the Fermi level (``Dirac Fermions'') lead to exciting transport properties, such as an unusual quantum Hall effect, and have aroused scientific and technological interests. On the way towards graphene-based electronics, a knowledge of the electronic band structure and the morphology of epitaxial graphene films on silicon carbide substrates is imperative. We have studied the evolution of the occupied band structure and the morphology of graphene layers on silicon carbide by systematically increasing the layer thickness. Using angle-resolved photoemission spectroscopy (ARPES), we examine this unique 2D system in its development from single layer to multilayers, by characteristic changes in the π band, the highest occupied state, and the dispersion relation in the out-of-plane electron wave vector in particular. The evolution of the film morphology is evaluated by the combination of low-energy electron microscopy and ARPES. By exploiting the sensitivity of graphene's electronic states to the charge carrier concentration, changes in the on-site Coulomb potential leading to a change of π and π* bands can be examined using ARPES. We demonstrate that, in a graphene bilayer, the gap between π and π* bands can be controlled by selectively adjusting relative carrier concentrations, which suggests a possible application of the graphene bilayer for switching functions in electronic devices. This work was done in collaboration with A. Bostwick, J. L. McChesney, and E. Rotenberg at Advanced Light Source, Lawrence Berkeley National Laboratory, K. Horn at Fritz-Haber-Institut, K. V. Emtsev and Th. Seyller at Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, and F. El Gabaly and A. K. Schmid at National Center for Electron Microscopy, Lawrence Berkeley National Laboratory.
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Issue 3, March Issue 2, February Issue 1, January A U.S. Department of Energy National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Marnay, Chris; Donadee, Jon
2011-02-06
Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization Fund (TCF) grant from the U.S. Department of Energy. The goal of the project is to commercialize Berkeley Lab's optimizing program, the Distributed Energy Resources Customer Adoption Model (DER-CAM) using a software as a service (SaaS) model with OSIsoft as its first non-scientific user. OSIsoft could in turn provide optimization capability to its software clients. In this way, energy efficiency and/or carbon minimizing strategies could be made readily available to commercial and industrial facilities. Specialized versionsmore » of DER-CAM dedicated to solving OSIsoft's customer problems have been set up on a server at Berkeley Lab. The objective of DER-CAM is to minimize the cost of technology adoption and operation or carbon emissions, or combinations thereof. DER-CAM determines which technologies should be installed and operated based on specific site load, price information, and performance data for available equipment options. An established user of OSIsoft's PI software suite, the University of California, Davis (UCD), was selected as a demonstration site for this project. UCD's participation in the project is driven by its motivation to reduce its carbon emissions. The campus currently buys electricity economically through the Western Area Power Administration (WAPA). The campus does not therefore face compelling cost incentives to improve the efficiency of its operations, but is nonetheless motivated to lower the carbon footprint of its buildings. Berkeley Lab attempted to demonstrate a scenario wherein UCD is forced to purchase electricity on a standard time-of-use tariff from Pacific Gas and Electric (PG&E), which is a concern to Facilities staff. Additionally, DER-CAM has been set up to consider the variability of carbon emissions throughout the day and seasons. Two distinct analyses of value to UCD are possible using this approach. First, optimal investment choices for buildings under the two alternative objectives can be derived. Second, a week-ahead building operations forecaster has been written that executes DER-CAM to find an optimal operating schedule for buildings given their expected building energy services requirements, electricity prices, and local weather. As part of its matching contribution, OSIsoft provided a full implementation of PI and a server to install it on at Berkeley Lab. Using the PItoPI protocol, this gives Berkeley Lab researchers direct access to UCD's PI data base. However, this arrangement is in itself inadequate for performing optimizations. Additional data not included in UCD's PI database would be needed and the campus was not able to provide this information. This report details the process, results, and lessons learned of this commercialization project.« less
Fast Surface Reconstruction and Segmentation with Terrestrial LiDAR Range Data
2009-05-18
UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California at Berkeley,Department of Electrical Engineering and Computer...Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13
What's Right with Kansas? (LBNL Science at the Theater)
Fuller, Merrian; Jackson, Nancy
2018-06-20
On Monday, Oct. 3 at 7 p.m. in Berkeley's Repertory Theater, the Lab presented "What's Right with Kansas," an evening of conversation with the Kansas-based Climate and Energy Project's founder and board chair, Nancy Jackson, and Berkeley Lab scientist Merrian Fuller, an electricity-market, policy and consumer behavior expert. Berkeley Lab will also debut its video "Common Ground," which showcases how CEP has become a Kansas mainstay and an inspiration to environmental organizations across the country. In a state rife with climate-change skepticism, CEP has changed behavior, and some minds, by employing rural values of thrift, independence, conservation, and friendly competition to promote energy efficiency.
A Window into Longer Lasting Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-11-29
There’s a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Berkeley Lab has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them. The method was developed at Berkeley Lab’s Advanced Light Source, a DOE Office of Science User Facility, by a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Berkeley Lab, Stanford University, and other institutions.
Energy Conversion and Storage Program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1993-06-01
This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.
Isochoric heating of solid gold targets with the PW-laser-driven ion beams (Conference Presentation)
NASA Astrophysics Data System (ADS)
Steinke, Sven; Ji, Qing; Bulanov, Stepan S.; Barnard, John; Vincenti, Henri; Schenkel, Thomas; Esarey, Eric H.; Leemans, Wim P.
2017-05-01
We present first results on ion acceleration with the BELLA PW laser as well as end-to-end simulation for isochoric heating of solid gold targets using PW-laser generated ion beams: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/65) beamline at laser intensities of ˜[5×10]^19 Wcm-2 at spot size of 0=53 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled [1] by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes taking the source parameters obtained from the PIC simulation. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. Reference: J. van Tilborg et al, Phys. Rev. Lett. 115, 184802 (2015). This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica
NASA Astrophysics Data System (ADS)
Haukwa, C.; Bodvarsson, G. S.; Lippmann, M. J.; Mainieri, A.
1992-01-01
The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model, a two-dimensional exploitation model was developed. The field has a production area of about 10 km(exp 2), with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.
Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.
1992-01-01
The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260{degrees}C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220{degrees}C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less
Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haukwa, C.; Bodvarsson, G.S.; Lippmann, M.J.
1992-01-01
The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150more » MWt. On the basis of the natural-state model a two-dimensional exploitation model was developed. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less
Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.
1992-01-01
The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260[degrees]C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km[sup 2], with temperatures exceeding 220[degrees]C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less
Technology base research project for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, Kim
1988-07-01
The progress made by the technology base research (TBR) project for electrochemical energy storage during calendar year 1987 was summarized. The primary objective of the TBR Project, which is sponsored by the Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance and economic requirements for electric vehicles and stationary energy storage applications. The ultimate goal is to transfer the most promising electrochemical technologies to the private sector or to another DOE project (e.g., Sandia National Laboratories' Exploratory Technology Development and Testing Project) for further development and scale-up. Besides LBL, which has overall responsibility for the TBR Project, Los Alamos National Laboratory (LANL), Brookhaven National Laboratory (BNL) and Argonne National Laboratory (ANL) participate in the TBR Project by providing key research support in several of the project elements. The TBR Project consists of three major project elements: exploratory research; applied science research; and air systems research. The objectives and the specific battery and electrochemical systems addressed by each project element are discussed in the following sections, which also include technical summaries that relate to the individual projects. Financial information that relates to the various projects and a description of the management activities for the TBR Project are described in the Executive Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William M.
2000-02-01
HIBEAM is a 2 1/2D particle-in-cell (PIC) simulation code developed in the late 1990's in the Heavy-Ion Fusion research program at Lawrence Berkeley National Laboratory. The major purpose of HIBEAM is to simulate the transverse (i.e., X-Y) dynamics of a space-charge-dominated, non-relativistic heavy-ion beam being transported in a static accelerator focusing lattice. HIBEAM has been used to study beam combining systems, effective dynamic apertures in electrostatic quadrupole lattices, and emittance growth due to transverse misalignments. At present, HIBEAM runs on the CRAY vector machines (C90 and J90's) at NERSC, although it would be relatively simple to port the code tomore » UNIX workstations so long as IMSL math routines were available.« less
Radio frequency multicusp ion source development (invited)
NASA Astrophysics Data System (ADS)
Leung, K. N.
1996-03-01
The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.
Electricity end use demand study for Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turiel, I.; Lebot, B.; Nadel, S.
1990-12-01
This report describes the results of a study undertaken by Lawrence Berkeley Laboratory (LBL) to develop an approach for reducing electricity demand in the residential sector in Egypt. A team with expertise in appliance energy usage, appliance manufacturing, appliance testing, and energy analysis was assembled to work on this project. The team visited Egypt during the month of March 1990. They met with the Egyptian Organization for Energy Planning (OEP) and with many other parties. They also visited eleven appliance manufacturing facilities. The project tasks are: data gathering and analysis; assessment of appliance manufacturing plants; demonstration of microcomputer programs; gatheringmore » of data on appliance standards and test procedures; and impact of programs to foster energy efficiency of electricity use.« less
Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural.
Smith, Audrey R; Meloni, Giovanni
2015-11-01
Absolute photoionization cross sections of the molecules 2-ethylfuran, 2-acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time-of-flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS-QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented. Copyright © 2015 John Wiley & Sons, Ltd.
The multiple Coulomb scattering of very heavy charged particles.
Wong, M; Schimmerling, W; Phillips, M H; Ludewigt, B A; Landis, D A; Walton, J T; Curtis, S B
1990-01-01
An experiment was performed at the Lawrence Berkeley Laboratory BEVALAC to measure the multiple Coulomb scattering of 650-MeV/A uranium nuclei in 0.19 radiation lengths of a Cu target. Differential distributions in the projected multiple scattering angle were measured in the vertical and horizontal planes using silicon position-sensitive detectors to determine particle trajectories before and after target scattering. The results were compared with the multiple Coulomb scattering theories of Fermi and Molière, and with a modification of the Fermi theory, using a Monte Carlo simulation. These theories were in excellent agreement with experiment at the 2 sigma level. The best quantitative agreement is obtained with the Gaussian distribution predicted by the modified Fermi theory.
Development status of a next generation ECRIS: MARS-D at LBNL
Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; ...
2015-09-29
To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb 3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. Lastly, in-progress test winding has achieved a milestone demonstrating the fabrication feasibilitymore » of a MARS closed-loop coil.« less
Development status of a next generation ECRIS: MARS-D at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.
To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb 3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. Lastly, in-progress test winding has achieved a milestone demonstrating the fabrication feasibilitymore » of a MARS closed-loop coil.« less
Biology and Medicine Division annual report, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-04-01
This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirelymore » new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report.« less
Development of a compact, rf-driven, pulsed ion source for neutron generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-02-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.
ALS superbend magnet performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Steve; Zbasnik, John; Byrne, Warren
2001-12-10
The Lawrence Berkeley National Laboratory has been engaged in the design, construction and testing of four superconducting dipoles (Superbends) that are installed in three arcs of the Advanced Light Source (ALS), with the fourth magnet as a spare. This represents a major upgrade to the ALS providing an enhanced flux and brightness at photon energies above 10 keV. In preparation for installation, an extensive set of tests and measurements have been conducted to characterize the magnetic and cryogenic performance of the Superbends and to fiducialize them for accurate placement in the ALS storage ring. The magnets are currently installed, andmore » the storage ring is undergoing final commissioning. This paper will present the results of magnetic and cryogenic testing.« less
Planning Electric Transmission Lines: A Review of Recent Regional Transmission Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Joseph H.
The first Quadrennial Energy Review (QER) recommends that the U.S. Department of Energy (DOE) conduct a national review of transmission plans and assess the barriers and incentives to their implementation. DOE tasked Lawrence Berkeley National Laboratory (LBNL) to prepare two reports to support the agency’s response to this recommendation. This report reviews regional transmission plans and regional transmission planning processes that have been directed by Federal Energy Regulatory Commission (FERC) Order Nos. 890 and 1000. We focus on the most recent regional transmission plans (those issued in 2015 and through approximately mid-year 2016) and current regional transmission planning processes. Amore » companion report focuses on non-plan-related factors that affect transmission projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie E.; Bojda, Nicholas; Ke, Jing
2012-07-01
This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programsmore » while still saving consumers money?« less
Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas
NASA Technical Reports Server (NTRS)
Smith, Alan R.; Hurley, Donna L.
1992-01-01
Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Background Facilities. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit, and radionuclides present initially as 'contaminants' in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment-related monitor foils and tomato seeds, and such spacecraft materials as aluminum, stainless steel, and titanium. In the second category are aluminum, beryllium, titanium, vanadium, and some special glasses.
Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Suprotim; Raje, Sanyukta; Kumar, Satish
This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – Septembermore » 2015) and Phase 2 (October 2015 – September 2016).« less
Photoionization Efficiencies of Five Polycyclic Aromatic Hydrocarbons
Johansson, K. Olof; Campbell, Matthew F.; Elvati, Paolo; ...
2017-05-18
We have measured photoionization-efficiency curves for pyrene, fluoranthene, chrysene, perylene, and coronene in the photon energy range of 7.5-10.2 eV and derived their photoionization cross-section curves in this energy range. All measurements were performed using tunable vacuum ultraviolet (VUV) radiation generated at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory. The VUV radiation was used for photoionization, and detection was performed using a time-of-flight mass spectrometer. We measured the photoionization efficiency of 2,5-dimethylfuran simultaneously with those of pyrene, fluoranthene, chrysene, perylene, and coronene to obtain references of the photon flux during each measurement from the known photoionization cross-sectionmore » curve of 2,5- dimethylfuran.« less
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
Two new books about intrusions and computer viruses remind us that attacks against our computers on networks are the actions of human beings. Cliff Stoll's book about the hacker who spent a year, beginning in Aug. 1986, attempting to use the Lawrence Berkeley Computer as a stepping-stone for access to military secrets is a spy thriller that illustrates the weaknesses of our password systems and the difficulties in compiling evidence against a hacker engaged in espionage. Pamela Kane's book about viruses that attack IBM PC's shows that viruses are the modern version of the old problem of a Trojan horse attack. It discusses the most famous viruses and their countermeasures, and it comes with a floppy disk of utility programs that will disinfect your PC and thwart future attack.
NASA Astrophysics Data System (ADS)
kurosu, T. P.; Miller, C. E.; Dinardo, S.
2013-12-01
The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is an aircraft-based Earth Venture 1 mission to study the carbon balance of the Alaskan Arctic ecosystem, with a particular focus on carbon release from melting permafrost. Operating from its base in Fairbanks, AK, the CARVE aircraft covers a range of principle flight paths in the Alaskan interior, the Yukon River valley, and northern Alaska coast around Barrow and Dead Horse. Flight paths are chosen to maximize ecosystem variability and and cover burn-recovery/regrowth sequences. CARVE observations cover the Arctic Spring/Summer/Fall seasons, with multiple flights per season and principle flight paths. Science operations started in 05/2012 and are currently envisaged to continue until 2015. The CARVE suite of instruments includes flask measurements and in situ gas analyzers for CO2, CH4 and CO observations, an active/passive L-band radar for surface conditions (freeze/thaw state), and a three-band polarizing Fourier Transform Spectrometer (FTS) for column measurements of CO2, CH4, CO, and interfering species (e.g., H2O). The FTS covers the spectral regions of 4,200-4,900 cm-1 (CH4, CO), 5,800-6,400 cm-1 (CO2), and 12,900-13,200 cm-1 (O2), with a spectral resolution of 0.2 cm-1. Aircraft-based FTS science observations in Alaska have been performed since 23-05-2012. First-version data products from all CARVE instruments derived from observations during the 2012 campaign were publicly released earlier in 2013. The FTS has performed well during flight conditions, particularly with respect to vibration damping. Outstanding challenges include the need for improved spectral and radiometric calibration, as well as compensating for low signal-to-noise spectra acquired under Alaskan flight conditions. We present results from FTS column observations of CO2, CH4, and CO, observed during the 2012 and 2013 campaigns, including preliminary comparisons of CARVE FTS measurements with satellite observations of CO2 from TANSO/GOSAT as well as results from CARVE in situ measurements. CARVE Science Team: L. Bruhwiler, NOAA ESRL I. Fung, UC Berkeley C. Koven, Lawrence Berkeley Laboratory I. Leifer, UC Santa Barbara K. McDonald, CCNY J. Miller, NOAA ESRL W. Oechel, San Diego State University E. Podest, JPL J. Randerson, UC Irvine P. Rayner, Melbourne University D. Rider, JPL C. Sweeney, NOAA ESRL P. Wennberg, Caltech S. Wofsy, Harvard University R. Chang, Harvard University A. Karion, NOAA ESRL T. P. Kurosu, JPL N. Steiner, CCNY J. Henderson, AER J. Fisher, JPL
Berkeley Lab - Science Video Glossary
source neutrino astronomy protein crystallography quantum dot supercomputing supernova synchrotron universe neutrino astronomy supernova Earth Science atmospheric aerosols bioremediation carbon cycle nanotechnology neutrino neutrino astronomy O, P petabytes petaflop computing photon plasma plasmon protein
Competing for phosphors under changing redox conditions: biological versus geochemical sinks
NASA Astrophysics Data System (ADS)
Gross, A.; Pett-Ridge, J.; Silver, W. L.
2016-12-01
Competing for phosphorus under changing redox conditions: biological versus geochemical sinksAvner Gross1, Jennifer Pett-Ridge2 and Whendee L Silver1 University of California Berkeley, Department of Environmental Science, Policy, & Management, Berkeley, CA, USA. Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. The cycling of phosphorous (P) in highly weathered, humid tropical forest soils is tightly regulated by P sorption dynamics to the surfaces of Fe(III) (hydr)oxides and root and microbial demands for P. Periods of anoxic soil conditions, which are common in humid environments, induce the reduction of Fe (III) to Fe (II) and may release sorbed P into the soil solution. The microbial demand for P is influenced by the C and nutrient composition of their available substrates. Therefore, we hypothesize that soil redox conditions and substrate quality and availability will control the partitioning of P between microbial biomass and the soil mineral phase. The aim of this study was to examine how fluctuations in soil redox conditions and changes in microbial P demand affect the fate of new P that enters the soil solution. To achieve this aim we conducted a series of soil incubation experiments using a wet tropical soil from Puerto Rico (where redox conditions and P availability naturally oscillate) with a single pulse of phosphate (PO4), altering both the microbial activity and redox conditions. To follow the fate the added P, the added phosphate was labeled with 18O. As the exchange of oxygen between phosphate and water only occurs during biological processes, P-18O labeling can be used as an indicator of microbial use. To quantify sizes of the microbial and mineral P pools we used traditional chemical extractions in the bulk scale. We used NanoSIMS isotopic imaging to map the distribution of P-16O and P-18O and co-localization with Fe minerals at the nano scale. Our results show that the amount of the added P fixed by the mineral phase was inversely correlated to the amount of P assimilated by the microbial biomass. In addition, we discovered the iron redox state did not affect the microbial or mineral P pool sizes. Overall, our results indicate the partition of the added P between the biological and mineral pools is regulated by the microbial biomass demands for P.
1988-06-01
Cortex of the Cat John G. Robson Craik Physiological Laboratory Cambridge University Cambridge, England When tested with spatially-localized stimuli...University, New York, NY Stanley Klein - School of Optometry, University Berkeley, Berkeley, CA Jennifer Knight - Neurobiology & Behavior, Cornell University...Village, Poughkeepsie, NY Jeffrcy Lubin - Psychology Department, University of PA, Philadelphia, PA Jennifer S. Lund - University of Pittsburgh
Joint Services Electronics Program
1982-09-30
and angle both within the wafer and in the backscattered signal have been published by Y. C. Lin (Ph.D. thesis ). As an extension of that work, Albert...zositive photoresist," Ř.S. thesis , Department of Flectrical Engineering and Computer Sciences, University of California, Berkeley. Kim, W. 3. Oldham and A...Mehotra, "’Tnaracteriza :on of ?ositive Phcoresist," .!. S Thesis University of California, Berkeley, 1980. [31 d. 3. Oldham, "In Situ Characterization of
Hybrid Memory Management for Parallel Execution of Prolog on Shared Memory Multiprocessors
1990-06-01
organizing data to increase locality. The stack structure exhibits greater locality than the heap structure. Tradeoff decisions can also be made on...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...University of California at Berkeley,Department of Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT
Feyerabend on Science and Education
ERIC Educational Resources Information Center
Kidd, Ian James
2013-01-01
This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X
Using synchrotron light to accelerate EUV resist and mask materials learning
NASA Astrophysics Data System (ADS)
Naulleau, Patrick; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Jones, Gideon; McClinton, Brittany; Miyakawa, Ryan; Mochi, Iacopo; Montgomery, Warren; Rekawa, Seno; Wallow, Tom
2011-03-01
As commercialization of extreme ultraviolet lithography (EUVL) progresses, direct industry activities are being focused on near term concerns. The question of long term extendibility of EUVL, however, remains crucial given the magnitude of the investments yet required to make EUVL a reality. Extendibility questions are best addressed using advanced research tools such as the SEMATECH Berkeley microfield exposure tool (MET) and actinic inspection tool (AIT). Utilizing Lawrence Berkeley National Laboratory's Advanced Light Source facility as the light source, these tools benefit from the unique properties of synchrotron light enabling research at nodes generations ahead of what is possible with commercial tools. The MET for example uses extremely bright undulator radiation to enable a lossless fully programmable coherence illuminator. Using such a system, resolution enhancing illuminations achieving k1 factors of 0.25 can readily be attained. Given the MET numerical aperture of 0.3, this translates to an ultimate resolution capability of 12 nm. Using such methods, the SEMATECH Berkeley MET has demonstrated resolution in resist to 16-nm half pitch and below in an imageable spin-on hard mask. At a half pitch of 16 nm, this material achieves a line-edge roughness of 2 nm with a correlation length of 6 nm. These new results demonstrate that the observed stall in ultimate resolution progress in chemically amplified resists is a materials issue rather than a tool limitation. With a resolution limit of 20-22 nm, the CAR champion from 2008 remains as the highest performing CAR tested to date. To enable continued advanced learning in EUV resists, SEMATECH has initiated a plan to implement a 0.5 NA microfield tool at the Advanced Light Source synchrotron facility. This tool will be capable of printing down to 8-nm half pitch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, Luis W.
1967-02-01
In his relatively short life of 57 years, Ernest Orlando Lawrence accomplished more than one might believe possible in a life twice as long. The important ingredients of his success were native ingenuity and basic good judgement in science, great stamina, an enthusiastic and outgoing personality, and a sense of integrity that was overwhelming. Many articles on the life and accomplishments of Ernest Lawrence have been published, and George Herbert Childs has written a book-length biography. This biographical memoir, however, has not made use of any sources other than the author's memory of Ernest Lawrence and of things learned frommore » him. A more balanced picture will emerge when Herbert Childs biography is published; this sketch simply shows how Ernest Lawrence looked to one of his many friends.« less
Low Background Counting at LBNL
Smith, A. R.; Thomas, K. J.; Norman, E. B.; ...
2015-03-24
The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background cave and remotely at an underground location that historically has operated underground in Oroville, CA, but has recently been relocated to the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K)more » or common cosmogenic/anthropogenic products, as well as active screening via Neutron Activation Analysis for specific applications. The LBF also provides hosting services for general R&D testing in low background environments on the surface or underground for background testing of detector systems or similar prototyping. A general overview of the facilities, services, and sensitivities is presented. Recent activities and upgrades will also be presented, such as the completion of a 3π anticoincidence shield at the surface station and environmental monitoring of Fukushima fallout. The LBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.« less
Reducing ultrafine particle emissions using air injection in wood-burning cookstoves
Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.; ...
2016-06-27
In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less
Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, Kayje; Han, Tae Won; Granderson, Jessica
2011-06-01
In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified formmore » of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.« less
Visualizing Rhizosphere Soil Structure Around Living Roots
NASA Astrophysics Data System (ADS)
Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.
2008-12-01
The rhizosphere, a thin layer of soil (0 to 2 mm) surrounding a living root, is an important interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 ìm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.
Visualizing the impact of living roots on rhizosphere soil structure using X-ray microtomography
NASA Astrophysics Data System (ADS)
Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.
2009-04-01
The rhizosphere is an interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 μm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.
Reducing ultrafine particle emissions using air injection in wood-burning cookstoves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.
In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less
Hydraulic Conductivity Measurements Barrow 2014
Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller
2015-02-22
Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.
Preface to the Special Issue on TOUGH Symposium 2015
NASA Astrophysics Data System (ADS)
Blanco-Martín, Laura
2017-11-01
The TOUGH Symposium 2015 was held in Berkeley, California, September 28-30, 2015. The TOUGH family of codes, developed at the Energy Geosciences Division of Lawrence Berkeley National Laboratory (LBNL), is a suite of computer programs for the simulation of multiphase and multicomponent fluid and heat flows in porous and fractured media with applications in many geosciences fields, such as geothermal reservoir engineering, nuclear waste disposal, geological carbon sequestration, oil and gas reservoirs, gas hydrate research, vadose zone hydrology and environmental remediation. Since the first release in the 1980s, many modifications and enhancements have been continuously made to TOUGH and its various descendants (iTOUGH2, TOUGH+, TOUGH-MP, TOUGHREACT, TOUGH+HYDRATE, TMVOC...), at LBNL and elsewhere. Today, these codes are used worldwide in academia, government organizations and private companies in problems involving coupled hydrological, thermal, biogeochemical and geomechanical processes. The Symposia, organized every 2-3 years, bring together developers and users for an open exchange on recent code enhancements and applications. In 2015, the Symposium was attended by one hundred participants, representing thirty-four nationalities. This Special Issue in Computers & Geosciences gathers extended versions of selected Symposium proceedings related to (i) recent enhancements to the TOUGH family of codes and (ii) coupled flow and geomechanics processes modeling.
X-ray Micro-Tomography of Ablative Heat Shield Materials
NASA Technical Reports Server (NTRS)
Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.
2016-01-01
X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation
Practical Applications of Math and Science in Junior High Schools
1984-04-01
APPLICATIONS OF MATH AND SCIENCE IN JUNIOR HIGH SCHOOLS AUTHOR(S) MAJOR LAWRENCE N. HYLAND, USAF FACULTY ADVISOR mAJoR JAMM WILSON, ACSC/EDDP SPONSOR LT COL...JUNIOR HIGH SCHOOLS 6 PERFORMING O1G. REPORT NUMBER "ś, Au THORrs) 8. CON’RACT OR GRANT NUMBER(.,) Lawrence N. Hyland, Major, USAF 9. PERFORMING...materials aimed at the jumior high school level. Material exposes target group to the mathematical and scientific skills required of Air Force
Clark Receives Ocean Sciences Award
NASA Astrophysics Data System (ADS)
Roman, Michael R.; Clark, H. Lawrence
2008-09-01
H. Lawrence Clark received the 2008 Ocean Sciences Award at the 2008 Ocean Sciences Meeting, held 2-7 March 2008 in Orlando, Fla. The award is given in recognition of outstanding and long-standing service to the ocean sciences.
Fast Surface Reconstruction and Segmentation with Ground-Based and Airborne LIDAR Range Data
2009-01-14
to perform a union find on the ground mesh vertices to calculate the sizes of ground mesh segments, 462 seconds to read the airborne data in to a...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of...California at Berkeley,Department of Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9
Carbon Cycle 2.0: Paul Alivisatos: Introduction
Paul Alivisatos
2017-12-09
Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Access Point Selection for Multi-Rate IEEE 802.11 Wireless LANs
2014-05-16
Mobile Systems, Applications and Services, 2006. [2] S . Vasudevan, K. Papagiannaki, C . Diot, J. Kurose, and D. Towsley, “Facilitating Access Point...LANs 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) University of California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8
Multicore: Fallout from a Computing Evolution
Yelick, Kathy [Director, NERSC
2017-12-09
July 22, 2008 Berkeley Lab lecture: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.
Queries and Views of Programs Using a Relational Database System
1983-12-01
look different but you have changed. I’m looking through you, you’re not the same! - from the song I’m looking through you by the Beatles Seeing...Berkeley, CA 94720 December 1983 Submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science...in the Graduate Division of the University of California, Berkeley. Copyright© 1983 by Mark A. Linton Research supported by NSF grant MCS-8010686
Carbon Cycle 2.0: Paul Alivisatos: Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Alivisatos
2010-02-09
Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.
2014-07-03
Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinitiesmore » and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.« less
Diamond, Rick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-14
How well can we assess and improve building energy performance in California homes? How much energy-and carbon-do homes use in other parts of the world? Rick Diamond, deputy group leader of the Berkeley Lab Energy Performance of Buildings Group, discusses change, global solutions, and the stories of three houses in Berkeley, Kabul (Afghanistan), and Washington, D.C. Diamond, who is also a senior advisor at the California Institute for Energy and Environment, investigates user interactions with the built environment for improved building energy performance. The group has studied a wide range of issues related to energy use in housing, including duct system efficiency, user behavior, and infiltration and ventilation measurements.
Chien-Shiung Wu: An Icon of Physicist and Woman Scientist in China
NASA Astrophysics Data System (ADS)
Zhu, Yuelin
2014-03-01
Chien-Shiung Wu, the first female president of APS, is a well-known figure in China, a figure who serves as an inspiration for youths, especially young women, to study science and particularly physics. In this presentation, a historical perspective will be used to show how such an icon was formed. Born in 1912, the year of the Republic Revolution, Wu was in the first generation of physicists in China and her college mentor was a student of Marie Curie. When Wu came to the U.S. for graduate studies in the 1930s, it was a ``golden age'' for nuclear physics, and the invention of the cyclotron by E. O. Lawrence put UC Berkeley at the frontier. Wu was trained there, with Lawrence as her advisor, and later became an expert in Beta-decay. In 1956, Wu conceived and initiated the experiment of Cobalt-60, which, together with other two experiments, eventually proved the asymmetry of parity in weak-interactions, a hypothesis proposed by T. D. Lee and C. N. Yang. The importance of the experiment gained Wu an enormous reputation which spread even to China, when this was a period of hostility in Sino-American relations, and near total isolation due to the Cold-War. Wu was the daughter of a revolutionary, and an activist in college in patriotic student movements, and she combined this background with her scientific career as the way of ``Saving China with Science,'' a common belief reflecting the Zeitgeist of her time. Although she spent most of her life in the U.S., Wu never wavered in her love for or loyalty to her motherland. Her patriotism, as well as her scientific achievement, made Wu a legend in China, being called ``the Chinese Madam Curie.'' Even during the Cultural Revolution, a novel supposedly taking Wu as the original model was very popular in underground circles, widely spread by hand-written-copies. From 1979-1988, the CUSPEA program enrolled hundreds of China's best graduate students into physics departments in American universities. Although Wu herself was not the initiator of it, many participates of the program were inspired by her. From this perspective, Wu's story may also help to understand the cultural characteristics of the Chinese born American physicists which have been a phenomenon in the American physics community since the 1940s till today.
Berkeley Lab - Materials Sciences Division
Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Commitment to Safety at MSD In the Materials Sciences Division, our mission is to do world -class science in a safe environment. We proudly support a strong safety culture in which all staff and
From Data to Policy: An Undergraduate Program in Research and Communication
ERIC Educational Resources Information Center
Fuoco, Rebecca; Blum, Arlene; Peaslee, Graham F.
2012-01-01
To bridge the gap between science and policy, future scientists should receive training that incorporates policy implications into the design, analysis, and communication of research. We present a student Science and Policy course for undergraduate science majors piloted at the University of California, Berkeley in the summer of 2011. During this…
Common Ground - Kansas Climate and Energy Project Connects with the Heartland
None
2018-01-11
In 2010, Lawrence Berkeley National Laboratory (LBNL) electricity-market, policy and consumer behavior expert Merrian Fuller singled out a small environmental organization in Kansas-- the Climate and Energy Project (CEP)-- as an outstanding example of how you change behavior on energy efficiency and reduce carbon emissions through an apolitical emphasis on heartland values. In the summer of 2011, a team from LBNL, seeking to capture what Fuller had featured in her report Driving Demand for Home Energy Improvement, visited Kansas. Speaking with CEP's Nancy Jackson and Dorothy Barnett, as well as farmers, small business owners, politicians and others, the team produced this video, which shows how and why CEP has become an inspiration to other environmental organizations that are seeking to change behavior where climate-change skepticism abounds.
Helium-ion-induced human cataractogenesis
NASA Technical Reports Server (NTRS)
Blakely, E. A.; Daftari, I. K.; Meecham, W. J.; Alonso, L. C.; Collier, J. M.; Kroll, S. M.; Gillette, E. L.; Lee, A. C.; Lett, J. T.; Cox, A. B.
1994-01-01
Retrospective and ongoing analyses of clinical records from 347 primary intraocular melanoman patients treated with helium ions at Lawrence Berkeley Laboratory (LBL) will allow examination of the exposure-response data for human cataract; which is a complication of the therapy from incidental exposure of the lens. Direct particle beam traversal of at least a portion of the lens usually is unavoidable in treatment of posterior intraocular tumors. The precise treatment planned for each patient permits quantitative assessment of the lenticular dose and its radiation quality. We are reporting our preliminary results on the development of helium-ion-induced lens opacifications and cataracts in 54 of these patients who had 10% or less of their lens in the treatment field. We believe these studies will be relevant to estimating the human risk for cataract in space flight.
Accessing defect dynamics using intense, nanosecond pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persaud, A.; Barnard, J. J.; Guo, H.
2015-06-18
Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less
Resources for National Water Savings for Outdoor Water Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melody, Moya; Stratton, Hannah; Williams, Alison
2014-05-01
In support of efforts by the U.S. Environmental Agency's (EPA's) WaterSense program to develop a spreadsheet model for calculating the national water and financial savings attributable to WaterSense certification and labeling of weather-based irrigation controllers, Lawrence Berkeley National Laboratory reviewed reports, technical data, and other information related to outdoor water use and irrigation controllers. In this document we categorize and describe the reviewed references, highlighting pertinent data. We relied on these references when developing model parameters and calculating controller savings. We grouped resources into three major categories: landscapes (section 1); irrigation devices (section 2); and analytical and modeling efforts (sectionmore » 3). Each category is subdivided further as described in its section. References are listed in order of date of publication, most recent first.« less
Stopping of relativistic heavy ions in various media
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Fixsen, D. J.; Crawford, H. J.; Lindstrom, P. J.; Heckman, H. H.
1986-01-01
The residual ranges of (900 + or - 3)-MeV/amu gold nuclei accelerated at the Lawrence Berkeley Laboratory Bevalac have been measured in several different media. The energy of the beam of nuclei was measured directly using a new time-of-flight system. The ranges were measured by absorption in linear wedges of polyethylene, carbon, aluminum, copper, tin, and lead and in circular wedges of polystyrene, aluminum, and gold, and by total absorption in nuclear emulsion. The measured ranges were significantly different from those calculated from the best available theoretical estimates of the energy loss of highly charged nuclei. It is concluded that at present energy losses and residual ranges of relativistic heavy ions in an arbitrary medium cannot be predicted with better than an approximately 2 percent accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Albergo, S.; Caccia, Z.
A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, [sup 22]Ne to [sup 58]Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, butmore » within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.« less
Intermediate energy heavy ions: An emerging multi-disciplinary research tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, J.R.
1988-10-01
In the ten years that beams of intermediate energy ({approx}50 MeV/amu{le}E{le}{approx}2 GeV/amu) heavy ions (Z{le}92) have been available, an increasing number of new research areas have been opened up. Pioneering work at the Bevalac at the Lawrence Berkeley Laboratory, still the world's only source of the heaviest beams in this energy range, has led to the establishment of active programs in nuclear physics, atomic physics, cosmic ray physics, as well as biology and medicine, and industrial applications. The great promise for growth of these research areas has led to serious planning for new facilities capable of delivering such beams; severalmore » such facilities are now in construction around the world. 20 refs., 5 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, R.P.; Fabrikant, J.I.; Phillips, M.H.
1989-12-01
Angiographically occult vascular malformations (AOVMs) of the brain have been recognized for many years to cause neurologic morbidity and mortality. They generally become symptomatic due to intracranial hemorrhage, focal mass effect, seizures or headaches. The true incidence of AOVMs is unknown, but autopsy studies suggest that they are more common than high-flow angiographically demonstrable arteriovenous malformations (AVMs). We have developed stereotactic heavy-charged-particle Bragg peak radiosurgery for the treatment of inoperable intracranial vascular malformations, using the helium ion beams at the Lawrence Berkeley Laboratory 184-inch Synchrocyclotron and Bevatron. This report describes the protocol for patient selection, radiosurgical treatment planning method, clinicalmore » and neuroradiologic results and complications encountered, and discusses the strengths and limitations of the method. 10 refs., 1 fig.« less
Population of Nuclei Via 7Li-Induced Binary Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R M; Phair, L W; Descovich, M
2005-08-09
The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less
NASA Technical Reports Server (NTRS)
Young, Erick T.; Rieke, G. H.; Low, Frank J.; Haller, E. E.; Beeman, J. W.
1989-01-01
Work at the University of Arizona and at Lawrence Berkeley Laboratory on the development of a far infrared array camera for the Multiband Imaging Photometer on the Space Infrared Telescope Facility (SIRTF) is discussed. The camera design uses stacked linear arrays of Ge:Ga photoconductors to make a full two-dimensional array. Initial results from a 1 x 16 array using a thermally isolated J-FET readout are presented. Dark currents below 300 electrons s(exp -1) and readout noises of 60 electrons were attained. Operation of these types of detectors in an ionizing radiation environment are discussed. Results of radiation testing using both low energy gamma rays and protons are given. Work on advanced C-MOS cascode readouts that promise lower temperature operation and higher levels of performance than the current J-FET based devices is described.
Design of an epithermal column for BNCT based on D D fusion neutron facility
NASA Astrophysics Data System (ADS)
Durisi, E.; Zanini, A.; Manfredotti, C.; Palamara, F.; Sarotto, M.; Visca, L.; Nastasi, U.
2007-05-01
Boron Neutron Capture Therapy (BNCT) is currently performed on patients at nuclear reactors. At the same time the international BNCT community is engaged in the development of alternative facilities for in-hospital treatments. This paper investigates the potential of a novel high-output D-D neutron generator, developed at Lawrence Berkeley National Laboratory (CA, USA), for BNCT. The simulation code MCNP-4C is used to realize an accurate study of the epithermal column in view of the treatment of deep tumours. Different materials and Beam Shaping Assemblies (BSA) are investigated and an optimized configuration is proposed. The neutron beam quality is defined by the standard free beam parameters, calculated averaging over the collimator aperture. The results are discussed and compared with the performances of other facilities.
A program to measure new energetic particle nuclear interaction cross sections
NASA Astrophysics Data System (ADS)
Guzik, T. G.; Albergo, S.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Engelage, J.; Ferrando, P.; Flores, I.; Greiner, L.; Jones, F. C.; Knott, C. N.; Ko, S.; Lindstrom, P. J.; Mazotta, J.; Mitchell, J. W.; Romanski, J.; Potenza, R.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuve, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.; Zhang, X.
1994-10-01
The Transport Collaboration, consisting of researchers from institutions in France, Germany, Italy, and the USA, has established a program to make new measurements of nuclear interaction cross sections for heavy projectiles (Z greater than or equal to 2) in targets of liquid H2, He and heavier materials. Such cross sections directly affect calculations of galactic and solar cosmic ray transport through matter and are needed for accurate radiation hazard assessment. To date, the collaboration has obtained data using the Lawrence Berkeley Laboratory Bevalac HISS facility with 20 projectiles from He-4 to Ni-58 in the energy range 393-910 MeV/nucleon. Preliminary results from the analysis of these data are presented here and compared to other measurements and to cross section prediction formulae.
A program to measure new energetic particle nuclear interaction cross sections
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Albergo, S.; Chen, C. X.; Costa, S.; Crawford, H. J.; Engelage, J.; Ferrando, P.; Flores, I.; Greiner, L.; Jones, F. C.
1994-01-01
The Transport Collaboration, consisting of researchers from institutions in France, Germany, Italy, and the USA, has established a program to make new measurements of nuclear interaction cross sections for heavy projectiles (Z greater than or equal to 2) in targets of liquid H2, He and heavier materials. Such cross sections directly affect calculations of galactic and solar cosmic ray transport through matter and are needed for accurate radiation hazard assessment. To date, the collaboration has obtained data using the Lawrence Berkeley Laboratory Bevalac HISS facility with 20 projectiles from He-4 to Ni-58 in the energy range 393-910 MeV/nucleon. Preliminary results from the analysis of these data are presented here and compared to other measurements and to cross section prediction formulae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine
Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Scientists are quite familiar with what a supernova looks like — when these stars are destroyed in the most massive explosions in the universe, they leave their mark as one of the brightest objects in space, at least for several weeks. While the supernova can be seen, it cant be heard, as sound waves cannot travel through space. But what if the light waves emitted by the exploding star and other cosmological phenomena could be translated into sound? That's the idea behind a Rhythms of the Universe, a musical project to sonify the universe by Grateful Dead percussionist and Grammymore » award-winning artist Mickey Hart that caught the attention of Nobel Prize-winning astrophysicist George Smoot of Lawrence Berkeley National Laboratory. Sounds courtesy of Keith Jackson. Images courtesy of NASA.« less
CfAO Fall Science Retreat 2017
: Mark Chun, Astronomy Dept., U. Hawaii) Point Spread Function Reconstruction for AO Science (Organizer : Jessica Lu, Astronomy Dept., UC Berkeley) High Contrast Exoplanet Instrumentation Program for TMT (Organizer: Michael Fitzgerald, Astronomy Dept., UCLA) Special Plenary Session: TMT international training
Chancellor for Research Professor & Samsung Distinguished Chair in Nanoscience and Nanotechnology Research Department of Chemistry and Materials Science and Engineering University of California, Berkeley
Illumina Production Sequencing at the DOE Joint Genome Institute - Workflow and Optimizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarver, Angela; Fern, Alison; Diego, Matthew San
2010-06-18
The U.S. Department of Energy (DOE) Joint Genome Institute?s (JGI) Production Sequencing group is committed to the generation of high-quality genomic DNA sequence to support the DOE mission areas of renewable energy generation, global carbon management, and environmental characterization and clean-up. Within the JGI?s Production Sequencing group, the Illumina Genome Analyzer pipeline has been established as one of three sequencing platforms, along with Roche/454 and ABI/Sanger. Optimization of the Illumina pipeline has been ongoing with the aim of continual process improvement of the laboratory workflow. These process improvement projects are being led by the JGI?s Process Optimization, Sequencing Technologies, Instrumentation&more » Engineering, and the New Technology Production groups. Primary focus has been on improving the procedural ergonomics and the technicians? operating environment, reducing manually intensive technician operations with different tools, reducing associated production costs, and improving the overall process and generated sequence quality. The U.S. DOE JGI was established in 1997 in Walnut Creek, CA, to unite the expertise and resources of five national laboratories? Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest ? along with HudsonAlpha Institute for Biotechnology. JGI is operated by the University of California for the U.S. DOE.« less
Science Careers and Disabled Students.
ERIC Educational Resources Information Center
Jagoda, Sue; Cremer, Bob
1981-01-01
Summarizes proceedings and student experiences at the 1980 Science Career Workshop for Physically Disabled Students at the Lawrence Hall of Science (University of California). Includes a description of the key-note speaker's topics, and other workshop activities. (DS)
A Call to Action: Carbon Cycle 2.0 (Carbon Cycle 2.0)
Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-21
Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Global Impacts (Carbon Cycle 2.0)
Gadgil, Ashok
2018-05-04
Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Facilities & Space Planning
Berkeley Lab - Materials Sciences Division
sponsors. Distinguish by scope/specific aspects of research; or by institution; or by individual. Example Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People
Effects of snowmelt on watershed transit time distributions
NASA Astrophysics Data System (ADS)
Fang, Z.; Carroll, R. W. H.; Harman, C. J.; Wilusz, D. C.; Schumer, R.
2017-12-01
Snowmelt is the principal control of the timing and magnitude of water flow through alpine watersheds, but the streamflow generated may be displaced groundwater. To quantify this effect, we use a rank StorAge Selection (rSAS) model to estimate time-dependent travel time distributions (TTDs) for the East River Catchment (ERC, 84 km2) - a headwater basin of the Colorado River, and newly designated as the Lawrence Berkeley National Laboratory's Watershed Function Science Focus Area (SFA). Through the SFA, observational networks related to precipitation and stream fluxes have been established with a focus on environmental tracers and stable isotopes. The United Stated Geological Survey Precipitation Runoff Modeling System (PRMS) was used to estimate spatially- and temporally-variable boundary fluxes of effective precipitation (snowmelt & rain), evapotranspiration, and subsurface storage. The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm was used to calibrate the rSAS model to observed stream isotopic concentration data and quantify uncertainty. The sensitivity of the simulated TTDs to systematic changes in the boundary fluxes was explored. Different PRMS and rSAS model parameters setup were tested to explore how they affect the relationship between input precipitation, especially snowmelt, and the estimated TTDs. Wavelet Coherence Analysis (WCA) was applied to investigate the seasonality of TTD simulations. Our ultimate goal is insight into how the Colorado River headwater catchments store and route water, and how sensitive flow paths and transit times are to climatic changes.
Test results of a Nb 3Al/Nb 3Sn subscale magnet for accelerator application
Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...
2015-01-28
The High Energy Accelerator Research Organization (KEK) has been developing a Nb 3Al and Nb 3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb 3Al cable and the technology acquisition of magnet fabrication with Nb 3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb 3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in amore » minimum-gap common-coil configuration with two Nb 3Al coils sandwiched between two Nb 3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb 3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb 3Sn coil and 8.2 T in the Nb 3Al coil. The quench characteristics of the magnet were studied.« less
The patterning center of excellence (CoE): an evolving lithographic enablement model
NASA Astrophysics Data System (ADS)
Montgomery, Warren; Chun, Jun Sung; Liehr, Michael; Tittnich, Michael
2015-03-01
As EUV lithography moves toward high-volume manufacturing (HVM), a key need for the lithography materials makers is access to EUV photons and imaging. The SEMATECH Resist Materials Development Center (RMDC) provided a solution path by enabling the Resist and Materials companies to work together (using SUNY Polytechnic Institute's Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE) -based exposure systems), in a consortium fashion, in order to address the need for EUV photons. Thousands of wafers have been processed by the RMDC (leveraging the SUNY Poly CNSE/SEMATECH MET, SUNY Poly CNSE Alpha Demo Tool (ADT) and the SEMATECH Lawrence Berkeley MET) allowing many of the questions associated with EUV materials development to be answered. In this regard the activities associated with the RMDC are continuing. As the major Integrated Device Manufacturers (IDMs) have continued to purchase EUV scanners, Materials companies must now provide scanner based test data that characterizes the lithography materials they are producing. SUNY Poly CNSE and SEMATECH have partnered to evolve the RMDC into "The Patterning Center of Excellence (CoE)". The new CoE leverages the capability of the SUNY Poly CNSE-based full field ASML 3300 EUV scanner and combines that capability with EUV Microexposure (MET) systems resident in the SEMATECH RMDC to create an integrated lithography model which will allow materials companies to advance materials development in ways not previously possible.
National resource for computation in chemistry, phase I: evaluation and recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
The National Resource for Computation in Chemistry (NRCC) was inaugurated at the Lawrence Berkeley Laboratory (LBL) in October 1977, with joint funding by the Department of Energy (DOE) and the National Science Foundation (NSF). The chief activities of the NRCC include: assembling a staff of eight postdoctoral computational chemists, establishing an office complex at LBL, purchasing a midi-computer and graphics display system, administering grants of computer time, conducting nine workshops in selected areas of computational chemistry, compiling a library of computer programs with adaptations and improvements, initiating a software distribution system, providing user assistance and consultation on request. This reportmore » presents assessments and recommendations of an Ad Hoc Review Committee appointed by the DOE and NSF in January 1980. The recommendations are that NRCC should: (1) not fund grants for computing time or research but leave that to the relevant agencies, (2) continue the Workshop Program in a mode similar to Phase I, (3) abandon in-house program development and establish instead a competitive external postdoctoral program in chemistry software development administered by the Policy Board and Director, and (4) not attempt a software distribution system (leaving that function to the QCPE). Furthermore, (5) DOE should continue to make its computational facilities available to outside users (at normal cost rates) and should find some way to allow the chemical community to gain occasional access to a CRAY-level computer.« less
Biological and chemical terrorism scenarios and implications for detection systems needs
NASA Astrophysics Data System (ADS)
Gordon, Susanna P.; Chumfong, Isabelle; Edwards, Donna M.; Gleason, Nathaniel J.; West, Todd; Yang, Lynn
2007-04-01
Terrorists intent on causing many deaths and severe disruption to our society could, in theory, cause hundreds to tens of thousands of deaths and significant contamination of key urban facilities by using chemical or biological (CB) agents. The attacks that have occurred to date, such as the 1995 Aum Shinrikyo CB attacks and the 2001 anthrax letters, have been very small on the scale of what is possible. In order to defend against and mitigate the impacts of large-scale terrorist attacks, defensive systems for protection of urban areas and high-value facilities from biological and chemical threats have been deployed. This paper reviews analyses of such scenarios and of the efficacy of potential response options, discusses defensive systems that have been deployed and detectors that are being developed, and finally outlines the detection systems that will be needed for improved CB defense in the future. Sandia's collaboration with San Francisco International Airport on CB defense will also be briefly reviewed, including an overview of airport facility defense guidelines produced in collaboration with Lawrence Berkeley National Laboratory. The analyses that will be discussed were conducted by Sandia National Laboratories' Systems Studies Department in support of the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, and include quantitative analyses utilizing simulation models developed through close collaboration with subject matter experts, such as public health officials in urban areas and biological defense experts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawislanski, P.; Tokunaga, T.; Benson, S.M.
1997-10-01
This report describes research relevant to selenium (Se) speciation, fractionation, physical redistribution, reduction and oxidation, and spatial distribution as related to Kesterson Reservoir. The work was carried out by scientists and engineers from the Earth Sciences Division of the Lawrence Berkeley Laboratory over a two year period from October 1994 to September 1996. Much of the focus of this research was on long-term, Reservoir-wide changes in Se concentrations and distribution; estimation and prediction of the physical extent ephemeral pools; and the quantification and prediction of Se levels in ephemeral pools waters and underlying sediments. Chapter 2 contains descriptions of fieldmore » monitoring of soil processes. In Section 2.1, elevated Se concentrations observed in groundwater in the northern part of Pond 9 are investigated. The past removal of the original surface soil in the northern Pond 9 area resulted in the enhancement of Se transport into the shallow groundwater in this area. Removal of the most organic-rich surface soil horizon left the remaining profile with a lower capacity to generate and sustain reducing conditions needed to immobilize Se. Furthermore, removal of the lower permeability surface soil left the remaining profile more hydraulically conductive since sands are encountered at fairly shallow depths. These conditions result in Se remaining oxidized down to the 2.00 m depth throughout the year.« less
2017-12-08
Carina Nebula Details: Great Clouds Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Do Babies Matter? The Effect of Family Formation on Men and Women in Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary Ann Mason
2007-10-30
Mary Ann Mason, Professor of Social Welfare and Law at the University of California, Berkeley, presents "Do Babies Matter? The Effect of Family Formation on Men and Women in Science." In her talk, she discusses the difficulties of women who have a career in science or in other male-dominated professions.
Do Babies Matter? The Effect of Family Formation on Men and Women in Science
Mary Ann Mason
2017-12-09
Mary Ann Mason, Professor of Social Welfare and Law at the University of California, Berkeley, presents "Do Babies Matter? The Effect of Family Formation on Men and Women in Science." In her talk, she discusses the difficulties of women who have a career in science or in other male-dominated professions.
NASA Astrophysics Data System (ADS)
Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.
2015-12-01
The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.
Communicating Ocean Sciences to Informal Audiences (COSIA): Interim Evaluation Report
ERIC Educational Resources Information Center
St. John, Mark; Phillips, Michelle; Smith, Anita; Castori, Pam
2009-01-01
Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of seven long-term three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the…
Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report
ERIC Educational Resources Information Center
Phillips, Michelle; St. John, Mark
2010-01-01
Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…
Berkeley Lab - Materials Sciences Division
Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People Database Events Calendar Newsletter Archive Send us your research highlights. Reserch Highlight Template
ERIC Educational Resources Information Center
Wang, Jia; Baker, Eva L.
2006-01-01
This project was initiated in order to evaluate two literacy and science integrated instruction units, "Shoreline Science" and "Terrarium Investigations," designed by the Lawrence Hall of Science "Seeds of Science/Roots of Reading" Project ("Seeds/Roots"). We examined how the integrated units affect student…
NASA Astrophysics Data System (ADS)
Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.
2007-12-01
Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting informal institutions. The following COSIA partners have taught the course: Hampton University - Virginia Aquarium; Oregon State University - Hatfield Marine Science Visitor's Center; Rutgers University - Liberty Science Center; University of California, Berkeley - Lawrence Hall of Science; University of Southern California - Aquarium of the Pacific; and Scripps Institution of Oceanography - Birch Aquarium. Communicating Ocean Sciences has also been taught at Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), University of Washington, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Planning Procurement and Property Proposals & Finance Templates Travel Procurement and Property This
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Travel This page has been moved
Laboratory directed research and development program FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.
A New Direction in Psychology and Politics
ERIC Educational Resources Information Center
Goldstein, Evan R.
2008-01-01
Jonathan Haidt remembers reading "Metaphors We Live By", the influential book that George P. Lakoff, a professor of linguistics and cognitive science at the University of California at Berkeley, wrote with Mark L. Johnson, a professor of philosophy at the University of Oregon. The book drew on cognitive science, psychology, linguistics, and…
Berkeley Lab - Materials Sciences Division
Ramamoorthy Ramesh The Metals Society Bardeen Prize in Electronic Materials Rob Ritchie Elected as a Foreign into the earth Rob Ritchie Elected Foreign Member of the Royal Swedish Academy of Engineering Sciences PECASE (Presidential Early Career Award for Scientists and Engineers) Eli Yablonovitch Elected as Foreign
Theoretical Comparison Between Candidates for Dark Matter
NASA Astrophysics Data System (ADS)
McKeough, James; Hira, Ajit; Valdez, Alexandra
2017-01-01
Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.
Berkeley Lab - Materials Sciences Division
Emergency Diversity and Inclusion Committee Members Lab Contacts Resources & Operations Acknowledging ; Finance Templates Travel One-Stop Personnel Resources Committees In Case of Emergency Looking for MSD0010
Phase measurements of EUV mask defects
Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; ...
2015-02-22
Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less
Annual environmental monitoring report of the Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schleimer, G.E.
1983-04-01
In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations duringmore » 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population.« less