Sample records for scientific computing complex

  1. Introduction to the LaRC central scientific computing complex

    NASA Technical Reports Server (NTRS)

    Shoosmith, John N.

    1993-01-01

    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.

  2. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less

  3. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    DOE PAGES

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; ...

    2015-07-14

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less

  4. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers, and Automation Technology, Number 27

    DTIC Science & Technology

    1977-05-10

    apply this method of forecast- ing in the solution of all major scientific-technical problems of the na- tional economy. Citing the slow...the future, however, computers will "mature" and learn to recognize patterns in what amounts to a much more complex language—the language of visual...images. Photoelectronic tracking devices or "eyes" will allow the computer to take in information in a much more complex form and to perform opera

  5. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1995-01-01

    The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.

  6. Building Cognition: The Construction of Computational Representations for Scientific Discovery

    ERIC Educational Resources Information Center

    Chandrasekharan, Sanjay; Nersessian, Nancy J.

    2015-01-01

    Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a…

  7. Computational science: shifting the focus from tools to models

    PubMed Central

    Hinsen, Konrad

    2014-01-01

    Computational techniques have revolutionized many aspects of scientific research over the last few decades. Experimentalists use computation for data analysis, processing ever bigger data sets. Theoreticians compute predictions from ever more complex models. However, traditional articles do not permit the publication of big data sets or complex models. As a consequence, these crucial pieces of information no longer enter the scientific record. Moreover, they have become prisoners of scientific software: many models exist only as software implementations, and the data are often stored in proprietary formats defined by the software. In this article, I argue that this emphasis on software tools over models and data is detrimental to science in the long term, and I propose a means by which this can be reversed. PMID:25309728

  8. Equation-free and variable free modeling for complex/multiscale systems. Coarse-grained computation in science and engineering using fine-grained models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevrekidis, Ioannis G.

    The work explored the linking of modern developing machine learning techniques (manifold learning and in particular diffusion maps) with traditional PDE modeling/discretization/scientific computation techniques via the equation-free methodology developed by the PI. The result (in addition to several PhD degrees, two of them by CSGF Fellows) was a sequence of strong developments - in part on the algorithmic side, linking data mining with scientific computing, and in part on applications, ranging from PDE discretizations to molecular dynamics and complex network dynamics.

  9. Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing

    PubMed Central

    Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong

    2014-01-01

    This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931

  10. A Systematic Approach for Obtaining Performance on Matrix-Like Operations

    NASA Astrophysics Data System (ADS)

    Veras, Richard Michael

    Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.

  11. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    NASA Astrophysics Data System (ADS)

    Pallant, Amy; Lee, Hee-Sun

    2015-04-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.

  12. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers, and Automation Technology, Number 26

    DTIC Science & Technology

    1977-01-26

    Sisteme Matematicheskogo Obespecheniya YeS EVM [ Applied Programs in the Software System for the Unified System of Computers], by A. Ye. Fateyev, A. I...computerized systems are most effective in large production complexes , in which the level of utilization of computers can be as high as 500,000...performance of these tasks could be furthered by the complex introduction of electronic computers in automated control systems. The creation of ASU

  13. From the desktop to the grid: scalable bioinformatics via workflow conversion.

    PubMed

    de la Garza, Luis; Veit, Johannes; Szolek, Andras; Röttig, Marc; Aiche, Stephan; Gesing, Sandra; Reinert, Knut; Kohlbacher, Oliver

    2016-03-12

    Reproducibility is one of the tenets of the scientific method. Scientific experiments often comprise complex data flows, selection of adequate parameters, and analysis and visualization of intermediate and end results. Breaking down the complexity of such experiments into the joint collaboration of small, repeatable, well defined tasks, each with well defined inputs, parameters, and outputs, offers the immediate benefit of identifying bottlenecks, pinpoint sections which could benefit from parallelization, among others. Workflows rest upon the notion of splitting complex work into the joint effort of several manageable tasks. There are several engines that give users the ability to design and execute workflows. Each engine was created to address certain problems of a specific community, therefore each one has its advantages and shortcomings. Furthermore, not all features of all workflow engines are royalty-free -an aspect that could potentially drive away members of the scientific community. We have developed a set of tools that enables the scientific community to benefit from workflow interoperability. We developed a platform-free structured representation of parameters, inputs, outputs of command-line tools in so-called Common Tool Descriptor documents. We have also overcome the shortcomings and combined the features of two royalty-free workflow engines with a substantial user community: the Konstanz Information Miner, an engine which we see as a formidable workflow editor, and the Grid and User Support Environment, a web-based framework able to interact with several high-performance computing resources. We have thus created a free and highly accessible way to design workflows on a desktop computer and execute them on high-performance computing resources. Our work will not only reduce time spent on designing scientific workflows, but also make executing workflows on remote high-performance computing resources more accessible to technically inexperienced users. We strongly believe that our efforts not only decrease the turnaround time to obtain scientific results but also have a positive impact on reproducibility, thus elevating the quality of obtained scientific results.

  14. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    NASA Astrophysics Data System (ADS)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  15. Teaching Reductive Thinking

    ERIC Educational Resources Information Center

    Armoni, Michal; Gal-Ezer, Judith

    2005-01-01

    When dealing with a complex problem, solving it by reduction to simpler problems, or problems for which the solution is already known, is a common method in mathematics and other scientific disciplines, as in computer science and, specifically, in the field of computability. However, when teaching computational models (as part of computability)…

  16. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  17. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  18. The Difficult Process of Scientific Modelling: An Analysis Of Novices' Reasoning During Computer-Based Modelling

    ERIC Educational Resources Information Center

    Sins, Patrick H. M.; Savelsbergh, Elwin R.; van Joolingen, Wouter R.

    2005-01-01

    Although computer modelling is widely advocated as a way to offer students a deeper understanding of complex phenomena, the process of modelling is rather complex itself and needs scaffolding. In order to offer adequate support, a thorough understanding of the reasoning processes students employ and of difficulties they encounter during a…

  19. Artificial intelligence support for scientific model-building

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  20. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-06-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  1. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared overmore » the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.« less

  2. Whole earth modeling: developing and disseminating scientific software for computational geophysics.

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    Historically, a great deal of specialized scientific software for modeling and data analysis has been developed by individual researchers or small groups of scientists working on their own specific research problems. As the magnitude of available data and computer power has increased, so has the complexity of scientific problems addressed by computational methods, creating both a need to sustain existing scientific software, and expand its development to take advantage of new algorithms, new software approaches, and new computational hardware. To that end, communities like the Computational Infrastructure for Geodynamics (CIG) have been established to support the use of best practices in scientific computing for solid earth geophysics research and teaching. Working as a scientific community enables computational geophysicists to take advantage of technological developments, improve the accuracy and performance of software, build on prior software development, and collaborate more readily. The CIG community, and others, have adopted an open-source development model, in which code is developed and disseminated by the community in an open fashion, using version control and software repositories like Git. One emerging issue is how to adequately identify and credit the intellectual contributions involved in creating open source scientific software. The traditional method of disseminating scientific ideas, peer reviewed publication, was not designed for review or crediting scientific software, although emerging publication strategies such software journals are attempting to address the need. We are piloting an integrated approach in which authors are identified and credited as scientific software is developed and run. Successful software citation requires integration with the scholarly publication and indexing mechanisms as well, to assign credit, ensure discoverability, and provide provenance for software.

  3. Reproducible research in vadose zone sciences

    USDA-ARS?s Scientific Manuscript database

    A significant portion of present-day soil and Earth science research is computational, involving complex data analysis pipelines, advanced mathematical and statistical models, and sophisticated computer codes. Opportunities for scientific progress are greatly diminished if reproducing and building o...

  4. Letter regarding 'Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics' by Patrizi et al. and research reproducibility.

    PubMed

    2017-04-01

    The reporting of research in a manner that allows reproduction in subsequent investigations is important for scientific progress. Several details of the recent study by Patrizi et al., 'Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics', are absent from the published manuscript and make reproduction of findings impossible. As new and complex technologies with great promise for ergonomics develop, new but surmountable challenges for reporting investigations using these technologies in a reproducible manner arise. Practitioner Summary: As with traditional methods, scientific reporting of new and complex ergonomics technologies should be performed in a manner that allows reproduction in subsequent investigations and supports scientific advancement.

  5. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers and Automation Technology, Number 29.

    DTIC Science & Technology

    1978-01-17

    approach to designing computers: Formal mathematical methods were applied and computers themselves began to be widely used in designing other...capital, labor resources and the funds of consumers. Analysis of the model indicates that at the present time the average complexity of production of...ALGORITHMIC COMPLETENESS AND COMPLEXITY OF MICROPROGRAMS Kiev KIBERNETIKA in Russian No 3, May/Jun 77 pp 1-15 manuscript received 22 Dec 76 G0LUNK0V

  6. Examination of the Computational Thinking Skills of Students

    ERIC Educational Resources Information Center

    Korucu, Agah Tugrul; Gencturk, Abdullah Tarik; Gundogdu, Mustafa Mucahit

    2017-01-01

    Computational thinking is generally considered as a kind of analytical way of thinking. According to Wings (2008) it shares with mathematical thinking, engineering thinking and scientific thinking in the general ways in which we may use for solving a problem, designing and evaluating complex systems or understanding computability and intelligence…

  7. Computational Science in Armenia (Invited Talk)

    NASA Astrophysics Data System (ADS)

    Marandjian, H.; Shoukourian, Yu.

    This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.

  8. 5 CFR 551.210 - Computer employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Computer employees. 551.210 Section 551.210 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY... solve complex business, scientific or engineering problems of the organization or the organization's...

  9. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  10. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  11. The nature of the (visualization) game: Challenges and opportunities from computational geophysics

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    As the geosciences enters the era of big data, modeling and visualization become increasingly vital tools for discovery, understanding, education, and communication. Here, we focus on modeling and visualization of the structure and dynamics of the Earth's surface and interior. The past decade has seen accelerated data acquisition, including higher resolution imaging and modeling of Earth's deep interior, complex models of geodynamics, and high resolution topographic imaging of the changing surface, with an associated acceleration of computational modeling through better scientific software, increased computing capability, and the use of innovative methods of scientific visualization. The role of modeling is to describe a system, answer scientific questions, and test hypotheses; the term "model" encompasses mathematical models, computational models, physical models, conceptual models, statistical models, and visual models of a structure or process. These different uses of the term require thoughtful communication to avoid confusion. Scientific visualization is integral to every aspect of modeling. Not merely a means of communicating results, the best uses of visualization enable scientists to interact with their data, revealing the characteristics of the data and models to enable better interpretation and inform the direction of future investigation. Innovative immersive technologies like virtual reality, augmented reality, and remote collaboration techniques, are being adapted more widely and are a magnet for students. Time-varying or transient phenomena are especially challenging to model and to visualize; researchers and students may need to investigate the role of initial conditions in driving phenomena, while nonlinearities in the governing equations of many Earth systems make the computations and resulting visualization especially challenging. Training students how to use, design, build, and interpret scientific modeling and visualization tools prepares them to better understand the nature of complex, multiscale geoscience data.

  12. An Ethnomethodological Perspective on How Middle School Students Addressed a Water Quality Problem

    ERIC Educational Resources Information Center

    Belland, Brian R.; Gu, Jiangyue; Kim, Nam Ju; Turner, David J.

    2016-01-01

    Science educators increasingly call for students to address authentic scientific problems in science class. One form of authentic science problem--socioscientific issue--requires that students engage in complex reasoning by considering both scientific and social implications of problems. Computer-based scaffolding can support this process by…

  13. Translations on USSR Science and Technology, Physical Sciences and Technology, Number 24

    DTIC Science & Technology

    1977-11-30

    8217 UPMVLYAYUSHCHIYE SISTEM I MA.SHIWY’ No 3, 1977 (UPMVLYAYUSHCHIYE SISTEMI I MA.SHIEY, May/jun 77)... 6k CYBERNETICS, COMPUTERS MD AUTOMATION TECHNOLOGY...insert pp 5-8) [Five articles from the insert] [Text] The organizing of the scientific and production complexes in the "Svetlana" association has...documentation and issuing copies to the corresponding subdivisions of the NPK [scientific and produc- tion complex ], work got underway on a broad

  14. Reconfigurable Computing for Computational Science: A New Focus in High Performance Computing

    DTIC Science & Technology

    2006-11-01

    in the past decade. Researchers are regularly employing the power of large computing systems and parallel processing to tackle larger and more...complex problems in all of the physical sciences. For the past decade or so, most of this growth in computing power has been “free” with increased...the scientific computing community as a means to continued growth in computing capability. This paper offers a glimpse of the hardware and

  15. Combinatorial computational chemistry approach for materials design: applications in deNOx catalysis, Fischer-Tropsch synthesis, lanthanoid complex, and lithium ion secondary battery.

    PubMed

    Koyama, Michihisa; Tsuboi, Hideyuki; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A; Miyamoto, Akira

    2007-02-01

    Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry. This combinatorial computational chemistry approach enables theoretical high-throughput screening for materials design. In this manuscript, we review the successful applications of combinatorial computational chemistry to deNO(x) catalysts, Fischer-Tropsch catalysts, lanthanoid complex catalysts, and cathodes of the lithium ion secondary battery.

  16. 76 FR 64330 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... talks on HPC Reliability, Diffusion on Complex Networks, and Reversible Software Execution Systems Report from Applied Math Workshop on Mathematics for the Analysis, Simulation, and Optimization of Complex Systems Report from ASCR-BES Workshop on Data Challenges from Next Generation Facilities Public...

  17. Idea Paper: The Lifecycle of Software for Scientific Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; McInnes, Lois C.

    The software lifecycle is a well researched topic that has produced many models to meet the needs of different types of software projects. However, one class of projects, software development for scientific computing, has received relatively little attention from lifecycle researchers. In particular, software for end-to-end computations for obtaining scientific results has received few lifecycle proposals and no formalization of a development model. An examination of development approaches employed by the teams implementing large multicomponent codes reveals a great deal of similarity in their strategies. This idea paper formalizes these related approaches into a lifecycle model for end-to-end scientific applicationmore » software, featuring loose coupling between submodels for development of infrastructure and scientific capability. We also invite input from stakeholders to converge on a model that captures the complexity of this development processes and provides needed lifecycle guidance to the scientific software community.« less

  18. Scientific Discovery through Advanced Computing in Plasma Science

    NASA Astrophysics Data System (ADS)

    Tang, William

    2005-03-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.

  19. The Representation of Anatomical Structures through Computer Animation for Scientific, Educational and Artistic Applications.

    ERIC Educational Resources Information Center

    Stredney, Donald Larry

    An overview of computer animation and the techniques involved in its creation is provided in the introduction to this masters thesis, which focuses on the problems encountered by students in learning the forms and functions of complex anatomical structures and ways in which computer animation can address these problems. The objectives for,…

  20. The Computational Infrastructure for Geodynamics as a Community of Practice

    NASA Astrophysics Data System (ADS)

    Hwang, L.; Kellogg, L. H.

    2016-12-01

    Computational Infrastructure for Geodynamics (CIG), geodynamics.org, originated in 2005 out of community recognition that the efforts of individual or small groups of researchers to develop scientifically-sound software is impossible to sustain, duplicates effort, and makes it difficult for scientists to adopt state-of-the art computational methods that promote new discovery. As a community of practice, participants in CIG share an interest in computational modeling in geodynamics and work together on open source software to build the capacity to support complex, extensible, scalable, interoperable, reliable, and reusable software in an effort to increase the return on investment in scientific software development and increase the quality of the resulting software. The group interacts regularly to learn from each other and better their practices formally through webinar series, workshops, and tutorials and informally through listservs and hackathons. Over the past decade, we have learned that successful scientific software development requires at a minimum: collaboration between domain-expert researchers, software developers and computational scientists; clearly identified and committed lead developer(s); well-defined scientific and computational goals that are regularly evaluated and updated; well-defined benchmarks and testing throughout development; attention throughout development to usability and extensibility; understanding and evaluation of the complexity of dependent libraries; and managed user expectations through education, training, and support. CIG's code donation standards provide the basis for recently formalized best practices in software development (geodynamics.org/cig/dev/best-practices/). Best practices include use of version control; widely used, open source software libraries; extensive test suites; portable configuration and build systems; extensive documentation internal and external to the code; and structured, human readable input formats.

  1. Development and Validation of a Multimedia-Based Assessment of Scientific Inquiry Abilities

    ERIC Educational Resources Information Center

    Kuo, Che-Yu; Wu, Hsin-Kai; Jen, Tsung-Hau; Hsu, Ying-Shao

    2015-01-01

    The potential of computer-based assessments for capturing complex learning outcomes has been discussed; however, relatively little is understood about how to leverage such potential for summative and accountability purposes. The aim of this study is to develop and validate a multimedia-based assessment of scientific inquiry abilities (MASIA) to…

  2. Mechanisation and Automation of Information Library Procedures in the USSR.

    ERIC Educational Resources Information Center

    Batenko, A. I.

    Scientific and technical libraries represent a fundamental link in a complex information storage and retrieval system. The handling of a large volume of scientific and technical data and provision of information library services requires the utilization of computing facilities and automation equipment, and was started in the Soviet Union on a…

  3. Intricacies of modern supercomputing illustrated with recent advances in simulations of strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Schulthess, Thomas C.

    2013-03-01

    The continued thousand-fold improvement in sustained application performance per decade on modern supercomputers keeps opening new opportunities for scientific simulations. But supercomputers have become very complex machines, built with thousands or tens of thousands of complex nodes consisting of multiple CPU cores or, most recently, a combination of CPU and GPU processors. Efficient simulations on such high-end computing systems require tailored algorithms that optimally map numerical methods to particular architectures. These intricacies will be illustrated with simulations of strongly correlated electron systems, where the development of quantum cluster methods, Monte Carlo techniques, as well as their optimal implementation by means of algorithms with improved data locality and high arithmetic density have gone hand in hand with evolving computer architectures. The present work would not have been possible without continued access to computing resources at the National Center for Computational Science of Oak Ridge National Laboratory, which is funded by the Facilities Division of the Office of Advanced Scientific Computing Research, and the Swiss National Supercomputing Center (CSCS) that is funded by ETH Zurich.

  4. Neuromorphic Computing, Architectures, Models, and Applications. A Beyond-CMOS Approach to Future Computing, June 29-July 1, 2016, Oak Ridge, TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potok, Thomas; Schuman, Catherine; Patton, Robert

    The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshopmore » we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.« less

  5. Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds

    NASA Astrophysics Data System (ADS)

    Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.

    In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.

  6. Proposal for constructing an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Sims, Michael H.; Podolak, Esther; Mckay, Christopher P.; Thompson, David E.

    1990-01-01

    Scientific model building can be a time intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing and using models. The proposed tool will include an interactive intelligent graphical interface and a high level, domain specific, modeling language. As a testbed for this research, we propose development of a software prototype in the domain of planetary atmospheric modeling.

  7. A characterization of workflow management systems for extreme-scale applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia

    We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less

  8. A characterization of workflow management systems for extreme-scale applications

    DOE PAGES

    Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia; ...

    2017-02-16

    We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less

  9. SNS programming environment user's guide

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.; Humes, D. Creig; Cronin, Catherine K.; Bowen, John T.; Drozdowski, Joseph M.; Utley, Judith A.; Flynn, Theresa M.; Austin, Brenda A.

    1992-01-01

    The computing environment is briefly described for the Supercomputing Network Subsystem (SNS) of the Central Scientific Computing Complex of NASA Langley. The major SNS computers are a CRAY-2, a CRAY Y-MP, a CONVEX C-210, and a CONVEX C-220. The software is described that is common to all of these computers, including: the UNIX operating system, computer graphics, networking utilities, mass storage, and mathematical libraries. Also described is file management, validation, SNS configuration, documentation, and customer services.

  10. High throughput computing: a solution for scientific analysis

    USGS Publications Warehouse

    O'Donnell, M.

    2011-01-01

    handle job failures due to hardware, software, or network interruptions (obviating the need to manually resubmit the job after each stoppage); be affordable; and most importantly, allow us to complete very large, complex analyses that otherwise would not even be possible. In short, we envisioned a job-management system that would take advantage of unused FORT CPUs within a local area network (LAN) to effectively distribute and run highly complex analytical processes. What we found was a solution that uses High Throughput Computing (HTC) and High Performance Computing (HPC) systems to do exactly that (Figure 1).

  11. 29 CFR 541.402 - Executive and administrative computer employees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... planning, scheduling, and coordinating activities required to develop systems to solve complex business, scientific or engineering problems of the employer or the employer's customers. Similarly, a senior or lead...

  12. Metadata Management on the SCEC PetaSHA Project: Helping Users Describe, Discover, Understand, and Use Simulation Data in a Large-Scale Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.

    2007-12-01

    Large scientific collaborations, such as the SCEC Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA) Project, involve interactions between many scientists who exchange ideas and research results. These groups must organize, manage, and make accessible their community materials of observational data, derivative (research) results, computational products, and community software. The integration of scientific workflows as a paradigm to solve complex computations provides advantages of efficiency, reliability, repeatability, choices, and ease of use. The underlying resource needed for a scientific workflow to function and create discoverable and exchangeable products is the construction, tracking, and preservation of metadata. In the scientific workflow environment there is a two-tier structure of metadata. Workflow-level metadata and provenance describe operational steps, identity of resources, execution status, and product locations and names. Domain-level metadata essentially define the scientific meaning of data, codes and products. To a large degree the metadata at these two levels are separate. However, between these two levels is a subset of metadata produced at one level but is needed by the other. This crossover metadata suggests that some commonality in metadata handling is needed. SCEC researchers are collaborating with computer scientists at SDSC, the USC Information Sciences Institute, and Carnegie Mellon Univ. in order to perform earthquake science using high-performance computational resources. A primary objective of the "PetaSHA" collaboration is to perform physics-based estimations of strong ground motion associated with real and hypothetical earthquakes located within Southern California. Construction of 3D earth models, earthquake representations, and numerical simulation of seismic waves are key components of these estimations. Scientific workflows are used to orchestrate the sequences of scientific tasks and to access distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.

  13. Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH 3 Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Papri; Heiden, Zachariah M.; Wiedner, Eric S.

    We report ammonia oxidation by homolytic cleavage of all three H atoms from a Mo-15NH3 complex using the 2,4,6-tri-tert-butylphenoxyl radical to afford a Mo-alkylimido (Mo=15NR) complex (R = 2,4,6-tri-t-butylcyclohexa-2,5-dien-1-one). Reductive cleavage of Mo=15NR generates a terminal Mo≡N nitride, and a [Mo-15NH]+ complex is formed by protonation. Computational analysis describes the energetic profile for the stepwise removal of three H atoms from the Mo-15NH3 complex and the formation of Mo=15NR. Acknowledgment. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Re-search Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Officemore » of Basic Energy Sciences. EPR and mass spectrometry experiments were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. The authors thank Dr. Eric D. Walter and Dr. Rosalie Chu for assistance in performing EPR and mass spectroscopy analysis, respectively. Computational resources provided by the National Energy Re-search Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific North-west National Laboratory is operated by Battelle for the U.S. DOE.« less

  14. JPRS Report, Science & Technology, USSR: Computers

    DTIC Science & Technology

    1987-07-15

    Algebras and Multilevel Program Planning (G. Ye.. Tseytlin; PROGRAMMIROVANIYE, No 3, May-Jun 86) 36 Linguistic Facilities for Programming...scientific production associations which, jointly with the USSR Academy of Sciences, will solve basic and applied problems in the informatics industry...especially the establishment of complex , interdisciplinary problems and directions), the change in the style of the scientific thought of the epoch, and

  15. Parallel, distributed and GPU computing technologies in single-particle electron microscopy

    PubMed Central

    Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-01-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined. PMID:19564686

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less

  17. Parallel, distributed and GPU computing technologies in single-particle electron microscopy.

    PubMed

    Schmeisser, Martin; Heisen, Burkhard C; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-07-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today's technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.

  18. Auspice: Automatic Service Planning in Cloud/Grid Environments

    NASA Astrophysics Data System (ADS)

    Chiu, David; Agrawal, Gagan

    Recent scientific advances have fostered a mounting number of services and data sets available for utilization. These resources, though scattered across disparate locations, are often loosely coupled both semantically and operationally. This loosely coupled relationship implies the possibility of linking together operations and data sets to answer queries. This task, generally known as automatic service composition, therefore abstracts the process of complex scientific workflow planning from the user. We have been exploring a metadata-driven approach toward automatic service workflow composition, among other enabling mechanisms, in our system, Auspice: Automatic Service Planning in Cloud/Grid Environments. In this paper, we present a complete overview of our system's unique features and outlooks for future deployment as the Cloud computing paradigm becomes increasingly eminent in enabling scientific computing.

  19. An atom is known by the company it keeps: Content, representation and pedagogy within the epistemic revolution of the complexity sciences

    NASA Astrophysics Data System (ADS)

    Blikstein, Paulo

    The goal of this dissertation is to explore relations between content, representation, and pedagogy, so as to understand the impact of the nascent field of complexity sciences on science, technology, engineering and mathematics (STEM) learning. Wilensky & Papert coined the term "structurations" to express the relationship between knowledge and its representational infrastructure. A change from one representational infrastructure to another they call a "restructuration." The complexity sciences have introduced a novel and powerful structuration: agent-based modeling. In contradistinction to traditional mathematical modeling, which relies on equational descriptions of macroscopic properties of systems, agent-based modeling focuses on a few archetypical micro-behaviors of "agents" to explain emergent macro-behaviors of the agent collective. Specifically, this dissertation is about a series of studies of undergraduate students' learning of materials science, in which two structurations are compared (equational and agent-based), consisting of both design research and empirical evaluation. I have designed MaterialSim, a constructionist suite of computer models, supporting materials and learning activities designed within the approach of agent-based modeling, and over four years conducted an empirical inves3 tigation of an undergraduate materials science course. The dissertation is comprised of three studies: Study 1 - diagnosis . I investigate current representational and pedagogical practices in engineering classrooms. Study 2 - laboratory studies. I investigate the cognition of students engaging in scientific inquiry through programming their own scientific models. Study 3 - classroom implementation. I investigate the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to complexity sciences, as well as the feasibility of the integration of constructionist, agent-based learning environments in engineering classrooms. Data sources include classroom observations, interviews, videotaped sessions of model-building, questionnaires, analysis of computer-generated logfiles, and quantitative and qualitative analysis of artifacts. Results shows that (1) current representational and pedagogical practices in engineering classrooms were not up to the challenge of the complex content being taught, (2) by building their own scientific models, students developed a deeper understanding of core scientific concepts, and learned how to better identify unifying principles and behaviors in materials science, and (3) programming computer models was feasible within a regular engineering classroom.

  20. Data sonification and sound visualization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaper, H. G.; Tipei, S.; Wiebel, E.

    1999-07-01

    Sound can help us explore and analyze complex data sets in scientific computing. The authors describe a digital instrument for additive sound synthesis (Diass) and a program to visualize sounds in a virtual reality environment (M4Cave). Both are part of a comprehensive music composition environment that includes additional software for computer-assisted composition and automatic music notation.

  1. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  2. Scaffolding a Complex Task of Experimental Design in Chemistry with a Computer Environment

    ERIC Educational Resources Information Center

    Girault, Isabelle; d'Ham, Cédric

    2014-01-01

    When solving a scientific problem through experimentation, students may have the responsibility to design the experiment. When students work in a conventional condition, with paper and pencil, the designed procedures stay at a very general level. There is a need for additional scaffolds to help the students perform this complex task. We propose a…

  3. Snowflake: A Lightweight Portable Stencil DSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Nathan; Driscoll, Michael; Markley, Charles

    Stencil computations are not well optimized by general-purpose production compilers and the increased use of multicore, manycore, and accelerator-based systems makes the optimization problem even more challenging. In this paper we present Snowflake, a Domain Specific Language (DSL) for stencils that uses a 'micro-compiler' approach, i.e., small, focused, domain-specific code generators. The approach is similar to that used in image processing stencils, but Snowflake handles the much more complex stencils that arise in scientific computing, including complex boundary conditions, higher-order operators (larger stencils), higher dimensions, variable coefficients, non-unit-stride iteration spaces, and multiple input or output meshes. Snowflake is embedded inmore » the Python language, allowing it to interoperate with popular scientific tools like SciPy and iPython; it also takes advantage of built-in Python libraries for powerful dependence analysis as part of a just-in-time compiler. We demonstrate the power of the Snowflake language and the micro-compiler approach with a complex scientific benchmark, HPGMG, that exercises the generality of stencil support in Snowflake. By generating OpenMP comparable to, and OpenCL within a factor of 2x of hand-optimized HPGMG, Snowflake demonstrates that a micro-compiler can support diverse processor architectures and is performance-competitive whilst preserving a high-level Python implementation.« less

  4. Snowflake: A Lightweight Portable Stencil DSL

    DOE PAGES

    Zhang, Nathan; Driscoll, Michael; Markley, Charles; ...

    2017-05-01

    Stencil computations are not well optimized by general-purpose production compilers and the increased use of multicore, manycore, and accelerator-based systems makes the optimization problem even more challenging. In this paper we present Snowflake, a Domain Specific Language (DSL) for stencils that uses a 'micro-compiler' approach, i.e., small, focused, domain-specific code generators. The approach is similar to that used in image processing stencils, but Snowflake handles the much more complex stencils that arise in scientific computing, including complex boundary conditions, higher-order operators (larger stencils), higher dimensions, variable coefficients, non-unit-stride iteration spaces, and multiple input or output meshes. Snowflake is embedded inmore » the Python language, allowing it to interoperate with popular scientific tools like SciPy and iPython; it also takes advantage of built-in Python libraries for powerful dependence analysis as part of a just-in-time compiler. We demonstrate the power of the Snowflake language and the micro-compiler approach with a complex scientific benchmark, HPGMG, that exercises the generality of stencil support in Snowflake. By generating OpenMP comparable to, and OpenCL within a factor of 2x of hand-optimized HPGMG, Snowflake demonstrates that a micro-compiler can support diverse processor architectures and is performance-competitive whilst preserving a high-level Python implementation.« less

  5. U.S. Geological Survey Groundwater Modeling Software: Making Sense of a Complex Natural Resource

    USGS Publications Warehouse

    Provost, Alden M.; Reilly, Thomas E.; Harbaugh, Arlen W.; Pollock, David W.

    2009-01-01

    Computer models of groundwater systems simulate the flow of groundwater, including water levels, and the transport of chemical constituents and thermal energy. Groundwater models afford hydrologists a framework on which to organize their knowledge and understanding of groundwater systems, and they provide insights water-resources managers need to plan effectively for future water demands. Building on decades of experience, the U.S. Geological Survey (USGS) continues to lead in the development and application of computer software that allows groundwater models to address scientific and management questions of increasing complexity.

  6. Northwest Trajectory Analysis Capability: A Platform for Enhancing Computational Biophysics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Elena S.; Stephan, Eric G.; Corrigan, Abigail L.

    2008-07-30

    As computational resources continue to increase, the ability of computational simulations to effectively complement, and in some cases replace, experimentation in scientific exploration also increases. Today, large-scale simulations are recognized as an effective tool for scientific exploration in many disciplines including chemistry and biology. A natural side effect of this trend has been the need for an increasingly complex analytical environment. In this paper, we describe Northwest Trajectory Analysis Capability (NTRAC), an analytical software suite developed to enhance the efficiency of computational biophysics analyses. Our strategy is to layer higher-level services and introduce improved tools within the user’s familiar environmentmore » without preventing researchers from using traditional tools and methods. Our desire is to share these experiences to serve as an example for effectively analyzing data intensive large scale simulation data.« less

  7. Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Papri; Prokopchuk, Demyan E.; Mock, Michael T.

    2017-03-01

    This review examines the synthesis and acid reactivity of transition metal dinitrogen complexes bearing diphosphine ligands containing pendant amine groups in the second coordination sphere. This manuscript is a review of the work performed in the Center for Molecular Electrocatalysis. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences. EPR studies on Fe were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located atmore » PNNL. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. DOE.« less

  8. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers and Automation Technology, Number 35

    DTIC Science & Technology

    1978-09-12

    the population. Only a socialist, planned economy can cope with such problems. However, the in- creasing complexity of the tasks faced’ by...the development of systems allowing man-machine dialogue does not decrease, but rather increase the complexity of the systems involved, simply...shifting the complexity to another sphere, where it is invisible to the human utilizing the system. Figures 5; refer- ences 3: 2 Russian, 1 Western

  9. Hyper-Spectral Synthesis of Active OB Stars Using GLaDoS

    NASA Astrophysics Data System (ADS)

    Hill, N. R.; Townsend, R. H. D.

    2016-11-01

    In recent years there has been considerable interest in using graphics processing units (GPUs) to perform scientific computations that have traditionally been handled by central processing units (CPUs). However, there is one area where the scientific potential of GPUs has been overlooked - computer graphics, the task they were originally designed for. Here we introduce GLaDoS, a hyper-spectral code which leverages the graphics capabilities of GPUs to synthesize spatially and spectrally resolved images of complex stellar systems. We demonstrate how GLaDoS can be applied to calculate observables for various classes of stars including systems with inhomogenous surface temperatures and contact binaries.

  10. Aeropropulsion 1987. Session 2: Aeropropulsion Structures Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Aeropropulsion systems present unique problems to the structural engineer. The extremes in operating temperatures, rotational effects, and behaviors of advanced material systems combine into complexities that require advances in many scientific disciplines involved in structural analysis and design procedures. This session provides an overview of the complexities of aeropropulsion structures and the theoretical, computational, and experimental research conducted to achieve the needed advances.

  11. Multicore Architecture-aware Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasa, Avinash

    Modern high performance systems are becoming increasingly complex and powerful due to advancements in processor and memory architecture. In order to keep up with this increasing complexity, applications have to be augmented with certain capabilities to fully exploit such systems. These may be at the application level, such as static or dynamic adaptations or at the system level, like having strategies in place to override some of the default operating system polices, the main objective being to improve computational performance of the application. The current work proposes two such capabilites with respect to multi-threaded scientific applications, in particular a largemore » scale physics application computing ab-initio nuclear structure. The first involves using a middleware tool to invoke dynamic adaptations in the application, so as to be able to adjust to the changing computational resource availability at run-time. The second involves a strategy for effective placement of data in main memory, to optimize memory access latencies and bandwidth. These capabilties when included were found to have a significant impact on the application performance, resulting in average speedups of as much as two to four times.« less

  12. Coupling of a continuum ice sheet model and a discrete element calving model using a scientific workflow system

    NASA Astrophysics Data System (ADS)

    Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut

    2017-04-01

    Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high-level scientific workflow middleware enables reproducibility of results more convenient and also provides a reusable and portable workflow template that can be deployed across different computing infrastructures. Acknowledgements This work was kindly supported by NordForsk as part of the Nordic Center of Excellence (NCoE) eSTICC (eScience Tools for Investigating Climate Change at High Northern Latitudes) and the Top-level Research Initiative NCoE SVALI (Stability and Variation of Arctic Land Ice).

  13. White paper: A plan for cooperation between NASA and DARPA to establish a center for advanced architectures

    NASA Technical Reports Server (NTRS)

    Denning, P. J.; Adams, G. B., III; Brown, R. L.; Kanerva, P.; Leiner, B. M.; Raugh, M. R.

    1986-01-01

    Large, complex computer systems require many years of development. It is recognized that large scale systems are unlikely to be delivered in useful condition unless users are intimately involved throughout the design process. A mechanism is described that will involve users in the design of advanced computing systems and will accelerate the insertion of new systems into scientific research. This mechanism is embodied in a facility called the Center for Advanced Architectures (CAA). CAA would be a division of RIACS (Research Institute for Advanced Computer Science) and would receive its technical direction from a Scientific Advisory Board established by RIACS. The CAA described here is a possible implementation of a center envisaged in a proposed cooperation between NASA and DARPA.

  14. Performance analysis of a dual-tree algorithm for computing spatial distance histograms

    PubMed Central

    Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni

    2011-01-01

    Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753

  15. Some Thoughts Regarding Practical Quantum Computing

    NASA Astrophysics Data System (ADS)

    Ghoshal, Debabrata; Gomez, Richard; Lanzagorta, Marco; Uhlmann, Jeffrey

    2006-03-01

    Quantum computing has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing. The ability of performing parallel operations over an exponentially large computational space has proved to be the main advantage of the quantum computing model. In this regard, we are particularly interested in the potential applications of quantum computers to enhance real software systems of interest to the defense, industrial, scientific and financial communities. However, while much has been written in popular and scientific literature about the benefits of the quantum computational model, several of the problems associated to the practical implementation of real-life complex software systems in quantum computers are often ignored. In this presentation we will argue that practical quantum computation is not as straightforward as commonly advertised, even if the technological problems associated to the manufacturing and engineering of large-scale quantum registers were solved overnight. We will discuss some of the frequently overlooked difficulties that plague quantum computing in the areas of memories, I/O, addressing schemes, compilers, oracles, approximate information copying, logical debugging, error correction and fault-tolerant computing protocols.

  16. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes.

    PubMed

    de Visser, Sam P; Quesne, Matthew G; Martin, Bodo; Comba, Peter; Ryde, Ulf

    2014-01-11

    With computational resources becoming more efficient and more powerful and at the same time cheaper, computational methods have become more and more popular for studies on biochemical and biomimetic systems. Although large efforts from the scientific community have gone into exploring the possibilities of computational methods for studies on large biochemical systems, such studies are not without pitfalls and often cannot be routinely done but require expert execution. In this review we summarize and highlight advances in computational methodology and its application to enzymatic and biomimetic model complexes. In particular, we emphasize on topical and state-of-the-art methodologies that are able to either reproduce experimental findings, e.g., spectroscopic parameters and rate constants, accurately or make predictions of short-lived intermediates and fast reaction processes in nature. Moreover, we give examples of processes where certain computational methods dramatically fail.

  17. I/O-Efficient Scientific Computation Using TPIE

    NASA Technical Reports Server (NTRS)

    Vengroff, Darren Erik; Vitter, Jeffrey Scott

    1996-01-01

    In recent years, input/output (I/O)-efficient algorithms for a wide variety of problems have appeared in the literature. However, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to support I/O-efficient paradigms for problems from a variety of domains, including computational geometry, graph algorithms, and scientific computation. The TPIE interface frees programmers from having to deal not only with explicit read and write calls, but also the complex memory management that must be performed for I/O-efficient computation. In this paper we discuss applications of TPIE to problems in scientific computation. We discuss algorithmic issues underlying the design and implementation of the relevant components of TPIE and present performance results of programs written to solve a series of benchmark problems using our current TPIE prototype. Some of the benchmarks we present are based on the NAS parallel benchmarks while others are of our own creation. We demonstrate that the central processing unit (CPU) overhead required to manage I/O is small and that even with just a single disk, the I/O overhead of I/O-efficient computation ranges from negligible to the same order of magnitude as CPU time. We conjecture that if we use a number of disks in parallel this overhead can be all but eliminated.

  18. Translations on Eastern Europe, Scientific Affairs, Number 542.

    DTIC Science & Technology

    1977-04-18

    transplanting human tissue has not as yet been given a final juridical approval like euthanasia, artificial insemination , abortion, birth control, and others...and data teleprocessing. This computer may also be used as a satellite computer for complex systems. The IZOT 310 has a large instruction...a well-known truth that modern science is using the most modern and leading technical facilities—from bathyscaphes to satellites , from gigantic

  19. Reduced-Order Modeling for Optimization and Control of Complex Flows

    DTIC Science & Technology

    2010-11-30

    Statistics Colloquium, Auburn, AL, (January 2009). 16. University of Pittsburgh, Mathematics Colloquium, Pittsburgh, PA, (February 2009). 17. Goethe ...Center for Scientific Computing, Goethe University Frankfurt am Main, Ger- many, (June 2009). 18. Air Force Institute of Technology, Wright-Patterson

  20. Accelerating scientific discovery : 2007 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, P.; Dave, P.; Drugan, C.

    2008-11-14

    As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis ofmore » Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.« less

  1. Java Performance for Scientific Applications on LLNL Computer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapfer, C; Wissink, A

    2002-05-10

    Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part ofmore » the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.« less

  2. Parallel algorithms for mapping pipelined and parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1988-01-01

    Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.

  3. Drawing the PDB: Protein-Ligand Complexes in Two Dimensions.

    PubMed

    Stierand, Katrin; Rarey, Matthias

    2010-12-09

    The two-dimensional representation of molecules is a popular communication medium in chemistry and the associated scientific fields. Computational methods for drawing small molecules with and without manual investigation are well-established and widely spread in terms of numerous software tools. Concerning the planar depiction of molecular complexes, there is considerably less choice. We developed the software PoseView, which automatically generates two-dimensional diagrams of macromolecular complexes, showing the ligand, the interactions, and the interacting residues. All depicted molecules are drawn on an atomic level as structure diagrams; thus, the output plots are clearly structured and easily readable for the scientist. We tested the performance of PoseView in a large-scale application on nearly all druglike complexes of the PDB (approximately 200000 complexes); for more than 92% of the complexes considered for drawing, a layout could be computed. In the following, we will present the results of this application study.

  4. Building the Scientific Modeling Assistant: An interactive environment for specialized software design

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.

  5. pFlogger: The Parallel Fortran Logging Utility

    NASA Technical Reports Server (NTRS)

    Clune, Tom; Cruz, Carlos A.

    2017-01-01

    In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or 'logger)' similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger - a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.

  6. QMC Goes BOINC: Using Public Resource Computing to Perform Quantum Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Rainey, Cameron; Engelhardt, Larry; Schröder, Christian; Hilbig, Thomas

    2008-10-01

    Theoretical modeling of magnetic molecules traditionally involves the diagonalization of quantum Hamiltonian matrices. However, as the complexity of these molecules increases, the matrices become so large that this process becomes unusable. An additional challenge to this modeling is that many repetitive calculations must be performed, further increasing the need for computing power. Both of these obstacles can be overcome by using a quantum Monte Carlo (QMC) method and a distributed computing project. We have recently implemented a QMC method within the Spinhenge@home project, which is a Public Resource Computing (PRC) project where private citizens allow part-time usage of their PCs for scientific computing. The use of PRC for scientific computing will be described in detail, as well as how you can contribute to the project. See, e.g., L. Engelhardt, et. al., Angew. Chem. Int. Ed. 47, 924 (2008). C. Schröoder, in Distributed & Grid Computing - Science Made Transparent for Everyone. Principles, Applications and Supporting Communities. (Weber, M.H.W., ed., 2008). Project URL: http://spin.fh-bielefeld.de

  7. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D L; Bell, J; Estep, D

    2008-02-15

    Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as themore » high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the mathematical developments required to meet the future science and engineering needs of the DOE. It is important to emphasize that the panelists were not asked to speculate only on advances that might be made in their own research specialties. Instead, the guidance this panel was given was to consider the broad science and engineering challenges that the DOE faces and identify the corresponding advances that must occur across the field of mathematics for these challenges to be successfully addressed. As preparation for the meeting, each panelist was asked to review strategic planning and other informational documents available for one or more of the DOE Program Offices, including the Offices of Science, Nuclear Energy, Fossil Energy, Environmental Management, Legacy Management, Energy Efficiency & Renewable Energy, Electricity Delivery & Energy Reliability and Civilian Radioactive Waste Management as well as the National Nuclear Security Administration. The panelists reported on science and engineering needs for each of these offices, and then discussed and identified mathematical advances that will be required if these challenges are to be met. A review of DOE challenges in energy, the environment and national security brings to light a broad and varied array of questions that the DOE must answer in the coming years. A representative subset of such questions includes: (1) Can we predict the operating characteristics of a clean coal power plant? (2) How stable is the plasma containment in a tokamak? (3) How quickly is climate change occurring and what are the uncertainties in the predicted time scales? (4) How quickly can an introduced bio-weapon contaminate the agricultural environment in the US? (5) How do we modify models of the atmosphere and clouds to incorporate newly collected data of possibly of new types? (6) How quickly can the United States recover if part of the power grid became inoperable? (7) What are optimal locations and communication protocols for sensing devices in a remote-sensing network? (8) How can new materials be designed with a specified desirable set of properties? In comparing and contrasting these and other questions of importance to DOE, the panel found that while the scientific breadth of the requirements is enormous, a central theme emerges: Scientists are being asked to identify or provide technology, or to give expert analysis to inform policy-makers that requires the scientific understanding of increasingly complex physical and engineered systems. In addition, as the complexity of the systems of interest increases, neither experimental observation nor mathematical and computational modeling alone can access all components of the system over the entire range of scales or conditions needed to provide the required scientific understanding.« less

  8. An automated and reproducible workflow for running and analyzing neural simulations using Lancet and IPython Notebook

    PubMed Central

    Stevens, Jean-Luc R.; Elver, Marco; Bednar, James A.

    2013-01-01

    Lancet is a new, simulator-independent Python utility for succinctly specifying, launching, and collating results from large batches of interrelated computationally demanding program runs. This paper demonstrates how to combine Lancet with IPython Notebook to provide a flexible, lightweight, and agile workflow for fully reproducible scientific research. This informal and pragmatic approach uses IPython Notebook to capture the steps in a scientific computation as it is gradually automated and made ready for publication, without mandating the use of any separate application that can constrain scientific exploration and innovation. The resulting notebook concisely records each step involved in even very complex computational processes that led to a particular figure or numerical result, allowing the complete chain of events to be replicated automatically. Lancet was originally designed to help solve problems in computational neuroscience, such as analyzing the sensitivity of a complex simulation to various parameters, or collecting the results from multiple runs with different random starting points. However, because it is never possible to know in advance what tools might be required in future tasks, Lancet has been designed to be completely general, supporting any type of program as long as it can be launched as a process and can return output in the form of files. For instance, Lancet is also heavily used by one of the authors in a separate research group for launching batches of microprocessor simulations. This general design will allow Lancet to continue supporting a given research project even as the underlying approaches and tools change. PMID:24416014

  9. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  10. Construction of an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.

    1993-01-01

    Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a testbed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.

  11. Construction of an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.

    1992-01-01

    Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a test bed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.

  12. Computational complexity of Boolean functions

    NASA Astrophysics Data System (ADS)

    Korshunov, Aleksei D.

    2012-02-01

    Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.

  13. Computational intelligence in bioinformatics: SNP/haplotype data in genetic association study for common diseases.

    PubMed

    Kelemen, Arpad; Vasilakos, Athanasios V; Liang, Yulan

    2009-09-01

    Comprehensive evaluation of common genetic variations through association of single-nucleotide polymorphism (SNP) structure with common complex disease in the genome-wide scale is currently a hot area in human genome research due to the recent development of the Human Genome Project and HapMap Project. Computational science, which includes computational intelligence (CI), has recently become the third method of scientific enquiry besides theory and experimentation. There have been fast growing interests in developing and applying CI in disease mapping using SNP and haplotype data. Some of the recent studies have demonstrated the promise and importance of CI for common complex diseases in genomic association study using SNP/haplotype data, especially for tackling challenges, such as gene-gene and gene-environment interactions, and the notorious "curse of dimensionality" problem. This review provides coverage of recent developments of CI approaches for complex diseases in genetic association study with SNP/haplotype data.

  14. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  15. Opal web services for biomedical applications.

    PubMed

    Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W

    2010-07-01

    Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.

  16. Elucidating Reaction Mechanisms on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Wiebe, Nathan; Reiher, Markus; Svore, Krysta; Wecker, Dave; Troyer, Matthias

    We show how a quantum computer can be employed to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical-computer simulations for such problems, to significantly increase their accuracy and enable hitherto intractable simulations. Detailed resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. This demonstrates that quantum computers will realistically be able to tackle important problems in chemistry that are both scientifically and economically significant.

  17. New Trends in E-Science: Machine Learning and Knowledge Discovery in Databases

    NASA Astrophysics Data System (ADS)

    Brescia, Massimo

    2012-11-01

    Data mining, or Knowledge Discovery in Databases (KDD), while being the main methodology to extract the scientific information contained in Massive Data Sets (MDS), needs to tackle crucial problems since it has to orchestrate complex challenges posed by transparent access to different computing environments, scalability of algorithms, reusability of resources. To achieve a leap forward for the progress of e-science in the data avalanche era, the community needs to implement an infrastructure capable of performing data access, processing and mining in a distributed but integrated context. The increasing complexity of modern technologies carried out a huge production of data, whose related warehouse management and the need to optimize analysis and mining procedures lead to a change in concept on modern science. Classical data exploration, based on local user own data storage and limited computing infrastructures, is no more efficient in the case of MDS, worldwide spread over inhomogeneous data centres and requiring teraflop processing power. In this context modern experimental and observational science requires a good understanding of computer science, network infrastructures, Data Mining, etc. i.e. of all those techniques which fall into the domain of the so called e-science (recently assessed also by the Fourth Paradigm of Science). Such understanding is almost completely absent in the older generations of scientists and this reflects in the inadequacy of most academic and research programs. A paradigm shift is needed: statistical pattern recognition, object oriented programming, distributed computing, parallel programming need to become an essential part of scientific background. A possible practical solution is to provide the research community with easy-to understand, easy-to-use tools, based on the Web 2.0 technologies and Machine Learning methodology. Tools where almost all the complexity is hidden to the final user, but which are still flexible and able to produce efficient and reliable scientific results. All these considerations will be described in the detail in the chapter. Moreover, examples of modern applications offering to a wide variety of e-science communities a large spectrum of computational facilities to exploit the wealth of available massive data sets and powerful machine learning and statistical algorithms will be also introduced.

  18. The scaling issue: scientific opportunities

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2009-07-01

    A brief history of the Leadership Computing Facility (LCF) initiative is presented, along with the importance of SciDAC to the initiative. The initiative led to the initiation of the Innovative and Novel Computational Impact on Theory and Experiment program (INCITE), open to all researchers in the US and abroad, and based solely on scientific merit through peer review, awarding sizeable allocations (typically millions of processor-hours per project). The development of the nation's LCFs has enabled available INCITE processor-hours to double roughly every eight months since its inception in 2004. The 'top ten' LCF accomplishments in 2009 illustrate the breadth of the scientific program, while the 75 million processor hours allocated to American business since 2006 highlight INCITE contributions to US competitiveness. The extrapolation of INCITE processor hours into the future brings new possibilities for many 'classic' scaling problems. Complex systems and atomic displacements to cracks are but two examples. However, even with increasing computational speeds, the development of theory, numerical representations, algorithms, and efficient implementation are required for substantial success, exhibiting the crucial role that SciDAC will play.

  19. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, Alan

    2014-10-21

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  20. Nektar++: An open-source spectral/ hp element framework

    NASA Astrophysics Data System (ADS)

    Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R. M.; Sherwin, S. J.

    2015-07-01

    Nektar++ is an open-source software framework designed to support the development of high-performance scalable solvers for partial differential equations using the spectral/ hp element method. High-order methods are gaining prominence in several engineering and biomedical applications due to their improved accuracy over low-order techniques at reduced computational cost for a given number of degrees of freedom. However, their proliferation is often limited by their complexity, which makes these methods challenging to implement and use. Nektar++ is an initiative to overcome this limitation by encapsulating the mathematical complexities of the underlying method within an efficient C++ framework, making the techniques more accessible to the broader scientific and industrial communities. The software supports a variety of discretisation techniques and implementation strategies, supporting methods research as well as application-focused computation, and the multi-layered structure of the framework allows the user to embrace as much or as little of the complexity as they need. The libraries capture the mathematical constructs of spectral/ hp element methods, while the associated collection of pre-written PDE solvers provides out-of-the-box application-level functionality and a template for users who wish to develop solutions for addressing questions in their own scientific domains.

  1. Image processing mini manual

    NASA Technical Reports Server (NTRS)

    Matthews, Christine G.; Posenau, Mary-Anne; Leonard, Desiree M.; Avis, Elizabeth L.; Debure, Kelly R.; Stacy, Kathryn; Vonofenheim, Bill

    1992-01-01

    The intent is to provide an introduction to the image processing capabilities available at the Langley Research Center (LaRC) Central Scientific Computing Complex (CSCC). Various image processing software components are described. Information is given concerning the use of these components in the Data Visualization and Animation Laboratory at LaRC.

  2. Optimized Materials From First Principles Simulations: Are We There Yet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, G; Gygi, F

    2005-07-26

    In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less

  3. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Allcock, William; Beggio, Chris

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at themore » DOE national laboratories. The report contains findings from that review.« less

  4. Generating Textures for Arbitrary Surfaces Using Reaction-Diffusion

    DTIC Science & Technology

    1990-01-01

    Review and Classification," Computer Aided Design, Vol. 20, No. 1, pp. 27-38 (January/February 1988). [ Hubel and Wiesel 79] Hubel , David H. and...columns found in mammals [ Hubel and Wiesel 791. Complex Patterns This section shows how we can generate more complex patterns using reaction-diffusion by... Torsten N. Wiesel , "Brain Mechanisms of Vision," Scientific American, Vol. 241, No. 3, pp. 150-162 (September 1979). [Hunding 90] Hunding, Axel, Stuart A

  5. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; Song, Y T; Chao, Y

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less

  6. Building a Data Science capability for USGS water research and communication

    NASA Astrophysics Data System (ADS)

    Appling, A.; Read, E. K.

    2015-12-01

    Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.

  7. Developing science gateways for drug discovery in a grid environment.

    PubMed

    Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra

    2016-01-01

    Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.

  8. Position Paper - pFLogger: The Parallel Fortran Logging framework for HPC Applications

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Cruz, Carlos A.

    2017-01-01

    In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or logger) similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.

  9. POSITION PAPER - pFLogger: The Parallel Fortran Logging Framework for HPC Applications

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Cruz, Carlos A.

    2017-01-01

    In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or 'logger') similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger - a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.

  10. CFD and ventilation research.

    PubMed

    Li, Y; Nielsen, P V

    2011-12-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000-10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize the growing need for CFD verification and validation, suggest ongoing needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical analysis in ventilation research, rather it has become an increasingly important partner. We believe that an effective scientific approach for ventilation studies is still to combine experiments, theory, and CFD. We argue that CFD verification and validation are becoming more crucial than ever as more complex ventilation problems are solved. It is anticipated that ventilation problems at the city scale will be tackled by CFD in the next 10 years. © 2011 John Wiley & Sons A/S.

  11. Remote control system for high-perfomance computer simulation of crystal growth by the PFC method

    NASA Astrophysics Data System (ADS)

    Pavlyuk, Evgeny; Starodumov, Ilya; Osipov, Sergei

    2017-04-01

    Modeling of crystallization process by the phase field crystal method (PFC) - one of the important directions of modern computational materials science. In this paper, the practical side of the computer simulation of the crystallization process by the PFC method is investigated. To solve problems using this method, it is necessary to use high-performance computing clusters, data storage systems and other often expensive complex computer systems. Access to such resources is often limited, unstable and accompanied by various administrative problems. In addition, the variety of software and settings of different computing clusters sometimes does not allow researchers to use unified program code. There is a need to adapt the program code for each configuration of the computer complex. The practical experience of the authors has shown that the creation of a special control system for computing with the possibility of remote use can greatly simplify the implementation of simulations and increase the performance of scientific research. In current paper we show the principal idea of such a system and justify its efficiency.

  12. The computational challenges of Earth-system science.

    PubMed

    O'Neill, Alan; Steenman-Clark, Lois

    2002-06-15

    The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.

  13. Scientific Programming Using Java: A Remote Sensing Example

    NASA Technical Reports Server (NTRS)

    Prados, Don; Mohamed, Mohamed A.; Johnson, Michael; Cao, Changyong; Gasser, Jerry

    1999-01-01

    This paper presents results of a project to port remote sensing code from the C programming language to Java. The advantages and disadvantages of using Java versus C as a scientific programming language in remote sensing applications are discussed. Remote sensing applications deal with voluminous data that require effective memory management, such as buffering operations, when processed. Some of these applications also implement complex computational algorithms, such as Fast Fourier Transformation analysis, that are very performance intensive. Factors considered include performance, precision, complexity, rapidity of development, ease of code reuse, ease of maintenance, memory management, and platform independence. Performance of radiometric calibration code written in Java for the graphical user interface and of using C for the domain model are also presented.

  14. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These solutions are encompassed in SciSpark, an open-source software framework for distributed computing on scientific data.

  15. Science in the cloud (SIC): A use case in MRI connectomics

    PubMed Central

    Gorgolewski, Krzysztof J.; Kleissas, Dean; Roncal, William Gray; Litt, Brian; Wandell, Brian; Poldrack, Russel A.; Wiener, Martin; Vogelstein, R. Jacob; Burns, Randal

    2017-01-01

    Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud’ (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended. PMID:28327935

  16. Science in the cloud (SIC): A use case in MRI connectomics.

    PubMed

    Kiar, Gregory; Gorgolewski, Krzysztof J; Kleissas, Dean; Roncal, William Gray; Litt, Brian; Wandell, Brian; Poldrack, Russel A; Wiener, Martin; Vogelstein, R Jacob; Burns, Randal; Vogelstein, Joshua T

    2017-05-01

    Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called 'science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended. © The Author 2017. Published by Oxford University Press.

  17. Performance Analysis Tool for HPC and Big Data Applications on Scientific Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Koo, Michelle; Cao, Yu

    Big data is prevalent in HPC computing. Many HPC projects rely on complex workflows to analyze terabytes or petabytes of data. These workflows often require running over thousands of CPU cores and performing simultaneous data accesses, data movements, and computation. It is challenging to analyze the performance involving terabytes or petabytes of workflow data or measurement data of the executions, from complex workflows over a large number of nodes and multiple parallel task executions. To help identify performance bottlenecks or debug the performance issues in large-scale scientific applications and scientific clusters, we have developed a performance analysis framework, using state-ofthe-more » art open-source big data processing tools. Our tool can ingest system logs and application performance measurements to extract key performance features, and apply the most sophisticated statistical tools and data mining methods on the performance data. It utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of the big data analysis framework, we conduct case studies on the workflows from an astronomy project known as the Palomar Transient Factory (PTF) and the job logs from the genome analysis scientific cluster. Our study processed many terabytes of system logs and application performance measurements collected on the HPC systems at NERSC. The implementation of our tool is generic enough to be used for analyzing the performance of other HPC systems and Big Data workows.« less

  18. Community detection in complex networks using proximate support vector clustering

    NASA Astrophysics Data System (ADS)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-03-01

    Community structure, one of the most attention attracting properties in complex networks, has been a cornerstone in advances of various scientific branches. A number of tools have been involved in recent studies concentrating on the community detection algorithms. In this paper, we propose a support vector clustering method based on a proximity graph, owing to which the introduced algorithm surpasses the traditional support vector approach both in accuracy and complexity. Results of extensive experiments undertaken on computer generated networks and real world data sets illustrate competent performances in comparison with the other counterparts.

  19. Trends in Social Science: The Impact of Computational and Simulative Models

    NASA Astrophysics Data System (ADS)

    Conte, Rosaria; Paolucci, Mario; Cecconi, Federico

    This paper discusses current progress in the computational social sciences. Specifically, it examines the following questions: Are the computational social sciences exhibiting positive or negative developments? What are the roles of agent-based models and simulation (ABM), network analysis, and other "computational" methods within this dynamic? (Conte, The necessity of intelligent agents in social simulation, Advances in Complex Systems, 3(01n04), 19-38, 2000; Conte 2010; Macy, Annual Review of Sociology, 143-166, 2002). Are there objective indicators of scientific growth that can be applied to different scientific areas, allowing for comparison among them? In this paper, some answers to these questions are presented and discussed. In particular, comparisons among different disciplines in the social and computational sciences are shown, taking into account their respective growth trends in the number of publication citations over the last few decades (culled from Google Scholar). After a short discussion of the methodology adopted, results of keyword-based queries are presented, unveiling some unexpected local impacts of simulation on the takeoff of traditionally poorly productive disciplines.

  20. Planetary Data Workshop, Part 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Technical aspects of the Planetary Data System (PDS) are addressed. Methods and tools for maintaining and accessing large, complex sets of data are discussed. The specific software and applications needed for processing imaging and non-imaging science data are reviewed. The need for specific software that provides users with information on the location and geometry of scientific observations is discussed. Computer networks and user interface to the PDS are covered along with Computer hardware available to this data system.

  1. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    NASA Astrophysics Data System (ADS)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.

  2. Building Cognition: The Construction of Computational Representations for Scientific Discovery.

    PubMed

    Chandrasekharan, Sanjay; Nersessian, Nancy J

    2015-11-01

    Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a theoretical analysis of the cognitive roles such representations play, based on an ethnographic study of the building of computational models in a systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that led to a remarkable discovery in basic bioscience. Accounting for such discoveries requires a distributed cognition (DC) analysis, as DC focuses on the roles played by external representations in cognitive processes. However, DC analyses by and large have not examined scientific discovery, and they mostly focus on memory offloading, particularly how the use of existing external representations changes the nature of cognitive tasks. In contrast, we study discovery processes and argue that discoveries emerge from the processes of building the computational representation. The building process integrates manipulations in imagination and in the representation, creating a coupled cognitive system of model and modeler, where the model is incorporated into the modeler's imagination. This account extends DC significantly, and we present some of the theoretical and application implications of this extended account. Copyright © 2014 Cognitive Science Society, Inc.

  3. Scientific visualization of volumetric radar cross section data

    NASA Astrophysics Data System (ADS)

    Wojszynski, Thomas G.

    1992-12-01

    For aircraft design and mission planning, designers, threat analysts, mission planners, and pilots require a Radar Cross Section (RCS) central tendency with its associated distribution about a specified aspect and its relation to a known threat, Historically, RCS data sets have been statically analyzed to evaluate a d profile. However, Scientific Visualization, the application of computer graphics techniques to produce pictures of complex physical phenomena appears to be a more promising tool to interpret this data. This work describes data reduction techniques and a surface rendering algorithm to construct and display a complex polyhedron from adjacent contours of RCS data. Data reduction is accomplished by sectorizing the data and characterizing the statistical properties of the data. Color, lighting, and orientation cues are added to complete the visualization system. The tool may be useful for synthesis, design, and analysis of complex, low observable air vehicles.

  4. Debating complexity in modeling

    USGS Publications Warehouse

    Hunt, Randall J.; Zheng, Chunmiao

    1999-01-01

    As scientists trying to understand the natural world, how should our effort be apportioned? We know that the natural world is characterized by complex and interrelated processes. Yet do we need to explicitly incorporate these intricacies to perform the tasks we are charged with? In this era of expanding computer power and development of sophisticated preprocessors and postprocessors, are bigger machines making better models? Put another way, do we understand the natural world better now with all these advancements in our simulation ability? Today the public's patience for long-term projects producing indeterminate results is wearing thin. This increases pressure on the investigator to use the appropriate technology efficiently. On the other hand, bringing scientific results into the legal arena opens up a new dimension to the issue: to the layperson, a tool that includes more of the complexity known to exist in the real world is expected to provide the more scientifically valid answer.

  5. Numerical information processing under the global rule expressed by the Euler-Riemann ζ function defined in the complex plane

    NASA Astrophysics Data System (ADS)

    Chatelin, Françoise

    2010-09-01

    When nonzero, the ζ function is intimately connected with numerical information processing. Two other functions play a key role, namely, η(s )=∑n ≥1(-1)n +1/ns and λ(s )=∑n ≥01/(2n+1)s. The paper opens on a survey of some of the seminal work of Euler [Mémoires Acad. Sci., Berlin 1768, 83 (1749)] and of the amazing theorem by Voronin [Math. USSR, Izv. 9, 443 (1975)] Then, as a follow-up of Chatelin [Qualitative Computing. A Computational Journey into Nonlinearity (World Scientific, Singapore, in press)], we present a fresh look at the triple (η ,ζ,λ) which suggests an elementary analysis based on the distances of the three complex numbers z, z /2, and 2/z to 0 and 1. This metric approach is used to contextualize any nonlinear computation when it is observed at a point describing a complex plane. The results applied to ζ, η, and λ shed a new epistemological light about the critical line. The suggested interpretation related to ζ carries computational significance.

  6. Manifesto of computational social science

    NASA Astrophysics Data System (ADS)

    Conte, R.; Gilbert, N.; Bonelli, G.; Cioffi-Revilla, C.; Deffuant, G.; Kertesz, J.; Loreto, V.; Moat, S.; Nadal, J.-P.; Sanchez, A.; Nowak, A.; Flache, A.; San Miguel, M.; Helbing, D.

    2012-11-01

    The increasing integration of technology into our lives has created unprecedented volumes of data on society's everyday behaviour. Such data opens up exciting new opportunities to work towards a quantitative understanding of our complex social systems, within the realms of a new discipline known as Computational Social Science. Against a background of financial crises, riots and international epidemics, the urgent need for a greater comprehension of the complexity of our interconnected global society and an ability to apply such insights in policy decisions is clear. This manifesto outlines the objectives of this new scientific direction, considering the challenges involved in it, and the extensive impact on science, technology and society that the success of this endeavour is likely to bring about.

  7. Basic mathematical function libraries for scientific computation

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1989-01-01

    Ada packages implementing selected mathematical functions for the support of scientific and engineering applications were written. The packages provide the Ada programmer with the mathematical function support found in the languages Pascal and FORTRAN as well as an extended precision arithmetic and a complete complex arithmetic. The algorithms used are fully described and analyzed. Implementation assumes that the Ada type FLOAT objects fully conform to the IEEE 754-1985 standard for single binary floating-point arithmetic, and that INTEGER objects are 32-bit entities. Codes for the Ada packages are included as appendixes.

  8. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Hack, James; Riley, Katherine

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less

  9. Big Data Ecosystems Enable Scientific Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critchlow, Terence J.; Kleese van Dam, Kerstin

    Over the past 5 years, advances in experimental, sensor and computational technologies have driven the exponential growth in the volumes, acquisition rates, variety and complexity of scientific data. As noted by Hey et al in their 2009 e-book The Fourth Paradigm, this availability of large-quantities of scientifically meaningful data has given rise to a new scientific methodology - data intensive science. Data intensive science is the ability to formulate and evaluate hypotheses using data and analysis to extend, complement and, at times, replace experimentation, theory, or simulation. This new approach to science no longer requires scientists to interact directly withmore » the objects of their research; instead they can utilize digitally captured, reduced, calibrated, analyzed, synthesized and visualized results - allowing them carry out 'experiments' in data.« less

  10. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  11. FAST: A multi-processed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.

  12. Self-Directed Cooperative Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo; Morris, Robert (Technical Monitor)

    2003-01-01

    The project is concerned with the development of decision-theoretic techniques to optimize the scientific return of planetary rovers. Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We have developed a comprehensive solution to this problem that involves high-level tools to describe a mission; a compiler that maps a mission description and additional probabilistic models of the components of the rover into a Markov decision problem; and algorithms for solving the rover control problem that are sensitive to the limited computational resources and high-level of uncertainty in this domain.

  13. Using Scenarios to Design Complex Technology-Enhanced Learning Environments

    ERIC Educational Resources Information Center

    de Jong, Ton; Weinberger, Armin; Girault, Isabelle; Kluge, Anders; Lazonder, Ard W.; Pedaste, Margus; Ludvigsen, Sten; Ney, Muriel; Wasson, Barbara; Wichmann, Astrid; Geraedts, Caspar; Giemza, Adam; Hovardas, Tasos; Julien, Rachel; van Joolingen, Wouter R.; Lejeune, Anne; Manoli, Constantinos C.; Matteman, Yuri; Sarapuu, Tago; Verkade, Alex; Vold, Vibeke; Zacharia, Zacharias C.

    2012-01-01

    Science Created by You (SCY) learning environments are computer-based environments in which students learn about science topics in the context of addressing a socio-scientific problem. Along their way to a solution for this problem students produce many types of intermediate products or learning objects. SCY learning environments center the entire…

  14. EASI: An electronic assistant for scientific investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schur, A.; Feller, D.; DeVaney, M.

    1991-09-01

    Although many automated tools support the productivity of professionals (engineers, managers, architects, secretaries, etc.), none specifically address the needs of the scientific researcher. The scientist's needs are complex and the primary activities are cognitive rather than physical. The individual scientist collects and manipulates large data sets, integrates, synthesizes, generates, and records information. The means to access and manipulate information are a critical determinant of the performance of the system as a whole. One hindrance in this process is the scientist's computer environment, which has changed little in the last two decades. Extensive time and effort is demanded from the scientistmore » to learn to use the computer system. This paper describes how chemists' activities and interactions with information were abstracted into a common paradigm that meets the critical requirement of facilitating information access and retrieval. This paradigm was embodied in EASI, a working prototype that increased the productivity of the individual scientific researcher. 4 refs., 2 figs., 1 tab.« less

  15. 76 FR 41234 - Advanced Scientific Computing Advisory Committee Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Secretariat, General Services Administration, notice is hereby given that the Advanced Scientific Computing... advice and recommendations concerning the Advanced Scientific Computing program in response only to... Advanced Scientific Computing Research program and recommendations based thereon; --Advice on the computing...

  16. Using the Eclipse Parallel Tools Platform to Assist Earth Science Model Development and Optimization on High Performance Computers

    NASA Astrophysics Data System (ADS)

    Alameda, J. C.

    2011-12-01

    Development and optimization of computational science models, particularly on high performance computers, and with the advent of ubiquitous multicore processor systems, practically on every system, has been accomplished with basic software tools, typically, command-line based compilers, debuggers, performance tools that have not changed substantially from the days of serial and early vector computers. However, model complexity, including the complexity added by modern message passing libraries such as MPI, and the need for hybrid code models (such as openMP and MPI) to be able to take full advantage of high performance computers with an increasing core count per shared memory node, has made development and optimization of such codes an increasingly arduous task. Additional architectural developments, such as many-core processors, only complicate the situation further. In this paper, we describe how our NSF-funded project, "SI2-SSI: A Productive and Accessible Development Workbench for HPC Applications Using the Eclipse Parallel Tools Platform" (WHPC) seeks to improve the Eclipse Parallel Tools Platform, an environment designed to support scientific code development targeted at a diverse set of high performance computing systems. Our WHPC project to improve Eclipse PTP takes an application-centric view to improve PTP. We are using a set of scientific applications, each with a variety of challenges, and using PTP to drive further improvements to both the scientific application, as well as to understand shortcomings in Eclipse PTP from an application developer perspective, to drive our list of improvements we seek to make. We are also partnering with performance tool providers, to drive higher quality performance tool integration. We have partnered with the Cactus group at Louisiana State University to improve Eclipse's ability to work with computational frameworks and extremely complex build systems, as well as to develop educational materials to incorporate into computational science and engineering codes. Finally, we are partnering with the lead PTP developers at IBM, to ensure we are as effective as possible within the Eclipse community development. We are also conducting training and outreach to our user community, including conference BOF sessions, monthly user calls, and an annual user meeting, so that we can best inform the improvements we make to Eclipse PTP. With these activities we endeavor to encourage use of modern software engineering practices, as enabled through the Eclipse IDE, with computational science and engineering applications. These practices include proper use of source code repositories, tracking and rectifying issues, measuring and monitoring code performance changes against both optimizations as well as ever-changing software stacks and configurations on HPC systems, as well as ultimately encouraging development and maintenance of testing suites -- things that have become commonplace in many software endeavors, but have lagged in the development of science applications. We view that the challenge with the increased complexity of both HPC systems and science applications demands the use of better software engineering methods, preferably enabled by modern tools such as Eclipse PTP, to help the computational science community thrive as we evolve the HPC landscape.

  17. Build It: Will They Come?

    NASA Astrophysics Data System (ADS)

    Corrie, Brian; Zimmerman, Todd

    Scientific research is fundamentally collaborative in nature, and many of today's complex scientific problems require domain expertise in a wide range of disciplines. In order to create research groups that can effectively explore such problems, research collaborations are often formed that involve colleagues at many institutions, sometimes spanning a country and often spanning the world. An increasingly common manifestation of such a collaboration is the collaboratory (Bos et al., 2007), a “…center without walls in which the nation's researchers can perform research without regard to geographical location — interacting with colleagues, accessing instrumentation, sharing data and computational resources, and accessing information from digital libraries.” In order to bring groups together on such a scale, a wide range of components need to be available to researchers, including distributed computer systems, remote instrumentation, data storage, collaboration tools, and the financial and human resources to operate and run such a system (National Research Council, 1993). Media Spaces, as both a technology and a social facilitator, have the potential to meet many of these needs. In this chapter, we focus on the use of scientific media spaces (SMS) as a tool for supporting collaboration in scientific research. In particular, we discuss the design, deployment, and use of a set of SMS environments deployed by WestGrid and one of its collaborating organizations, the Centre for Interdisciplinary Research in the Mathematical and Computational Sciences (IRMACS) over a 5-year period.

  18. Integrating Computational Science Tools into a Thermodynamics Course

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  19. Loci-STREAM Version 0.9

    NASA Technical Reports Server (NTRS)

    Wright, Jeffrey; Thakur, Siddharth

    2006-01-01

    Loci-STREAM is an evolving computational fluid dynamics (CFD) software tool for simulating possibly chemically reacting, possibly unsteady flows in diverse settings, including rocket engines, turbomachines, oil refineries, etc. Loci-STREAM implements a pressure- based flow-solving algorithm that utilizes unstructured grids. (The benefit of low memory usage by pressure-based algorithms is well recognized by experts in the field.) The algorithm is robust for flows at all speeds from zero to hypersonic. The flexibility of arbitrary polyhedral grids enables accurate, efficient simulation of flows in complex geometries, including those of plume-impingement problems. The present version - Loci-STREAM version 0.9 - includes an interface with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library for access to enhanced linear-equation-solving programs therein that accelerate convergence toward a solution. The name "Loci" reflects the creation of this software within the Loci computational framework, which was developed at Mississippi State University for the primary purpose of simplifying the writing of complex multidisciplinary application programs to run in distributed-memory computing environments including clusters of personal computers. Loci has been designed to relieve application programmers of the details of programming for distributed-memory computers.

  20. Predicting protein structures with a multiplayer online game.

    PubMed

    Cooper, Seth; Khatib, Firas; Treuille, Adrien; Barbero, Janos; Lee, Jeehyung; Beenen, Michael; Leaver-Fay, Andrew; Baker, David; Popović, Zoran; Players, Foldit

    2010-08-05

    People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully 'crowd-sourced' through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.

  1. 76 FR 31945 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... teleconference meeting of the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal [email protected] . FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing...

  2. Towards a Scalable and Adaptive Application Support Platform for Large-Scale Distributed E-Sciences in High-Performance Network Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase Qishi; Zhu, Michelle Mengxia

    The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models featuremore » diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific workflows with the convenience of a few mouse clicks while hiding the implementation and technical details from end users. Particularly, we will consider two types of applications with distinct performance requirements: data-centric and service-centric applications. For data-centric applications, the main workflow task involves large-volume data generation, catalog, storage, and movement typically from supercomputers or experimental facilities to a team of geographically distributed users; while for service-centric applications, the main focus of workflow is on data archiving, preprocessing, filtering, synthesis, visualization, and other application-specific analysis. We will conduct a comprehensive comparison of existing workflow systems and choose the best suited one with open-source code, a flexible system structure, and a large user base as the starting point for our development. Based on the chosen system, we will develop and integrate new components including a black box design of computing modules, performance monitoring and prediction, and workflow optimization and reconfiguration, which are missing from existing workflow systems. A modular design for separating specification, execution, and monitoring aspects will be adopted to establish a common generic infrastructure suited for a wide spectrum of science applications. We will further design and develop efficient workflow mapping and scheduling algorithms to optimize the workflow performance in terms of minimum end-to-end delay, maximum frame rate, and highest reliability. We will develop and demonstrate the SWAMP system in a local environment, the grid network, and the 100Gpbs Advanced Network Initiative (ANI) testbed. The demonstration will target scientific applications in climate modeling and high energy physics and the functions to be demonstrated include workflow deployment, execution, steering, and reconfiguration. Throughout the project period, we will work closely with the science communities in the fields of climate modeling and high energy physics including Spallation Neutron Source (SNS) and Large Hadron Collider (LHC) projects to mature the system for production use.« less

  3. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  4. CONVEX mini manual

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.

    1993-01-01

    The use of the CONVEX computers that are an integral part of the Supercomputing Network Subsystems (SNS) of the Central Scientific Computing Complex of LaRC is briefly described. Features of the CONVEX computers that are significantly different than the CRAY supercomputers are covered, including: FORTRAN, C, architecture of the CONVEX computers, the CONVEX environment, batch job submittal, debugging, performance analysis, utilities unique to CONVEX, and documentation. This revision reflects the addition of the Applications Compiler and X-based debugger, CXdb. The document id intended for all CONVEX users as a ready reference to frequently asked questions and to more detailed information contained with the vendor manuals. It is appropriate for both the novice and the experienced user.

  5. 26 CFR 53.4942(a)-2 - Computation of undistributed income.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... is within a larger complex of endeavors which makes available to the scientific community and the... shares of the stock of M Corporation. M stock is regularly traded on the New York Stock Exchange. U consistently follows a practice of valuing its 1,000 shares of M stock on the last trading day of each month...

  6. 26 CFR 53.4942(a)-2 - Computation of undistributed income.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... is within a larger complex of endeavors which makes available to the scientific community and the... shares of the stock of M Corporation. M stock is regularly traded on the New York Stock Exchange. U consistently follows a practice of valuing its 1,000 shares of M stock on the last trading day of each month...

  7. 26 CFR 53.4942(a)-2 - Computation of undistributed income.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... is within a larger complex of endeavors which makes available to the scientific community and the... shares of the stock of M Corporation. M stock is regularly traded on the New York Stock Exchange. U consistently follows a practice of valuing its 1,000 shares of M stock on the last trading day of each month...

  8. Adventures in Modeling: Exploring Complex, Dynamic Systems with StarLogo.

    ERIC Educational Resources Information Center

    Colella, Vanessa Stevens; Klopfer, Eric; Resnick, Mitchel

    For thousands of years people from da Vinci to Einstein have created models to help them better understand patterns and processes in the world around them. Computers make it easier for novices to build and explore their own models and learn new scientific ideas in the process. This book introduces teachers and students to designing, creating, and…

  9. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  10. A Secure Web Application Providing Public Access to High-Performance Data Intensive Scientific Resources - ScalaBLAST Web Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Darren S.; Peterson, Elena S.; Oehmen, Chris S.

    2008-05-04

    This work presents the ScalaBLAST Web Application (SWA), a web based application implemented using the PHP script language, MySQL DBMS, and Apache web server under a GNU/Linux platform. SWA is an application built as part of the Data Intensive Computer for Complex Biological Systems (DICCBS) project at the Pacific Northwest National Laboratory (PNNL). SWA delivers accelerated throughput of bioinformatics analysis via high-performance computing through a convenient, easy-to-use web interface. This approach greatly enhances emerging fields of study in biology such as ontology-based homology, and multiple whole genome comparisons which, in the absence of a tool like SWA, require a heroicmore » effort to overcome the computational bottleneck associated with genome analysis. The current version of SWA includes a user account management system, a web based user interface, and a backend process that generates the files necessary for the Internet scientific community to submit a ScalaBLAST parallel processing job on a dedicated cluster.« less

  11. Data Provenance Hybridization Supporting Extreme-Scale Scientific WorkflowApplications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsethagen, Todd O.; Stephan, Eric G.; Raju, Bibi

    As high performance computing (HPC) infrastructures continue to grow in capability and complexity, so do the applications that they serve. HPC and distributed-area computing (DAC) (e.g. grid and cloud) users are looking increasingly toward workflow solutions to orchestrate their complex application coupling, pre- and post-processing needs To gain insight and a more quantitative understanding of a workflow’s performance our method includes not only the capture of traditional provenance information, but also the capture and integration of system environment metrics helping to give context and explanation for a workflow’s execution. In this paper, we describe IPPD’s provenance management solution (ProvEn) andmore » its hybrid data store combining both of these data provenance perspectives.« less

  12. Managing Scientific Software Complexity with Bocca and CCA

    DOE PAGES

    Allan, Benjamin A.; Norris, Boyana; Elwasif, Wael R.; ...

    2008-01-01

    In high-performance scientific software development, the emphasis is often on short time to first solution. Even when the development of new components mostly reuses existing components or libraries and only small amounts of new code must be created, dealing with the component glue code and software build processes to obtain complete applications is still tedious and error-prone. Component-based software meant to reduce complexity at the application level increases complexity to the extent that the user must learn and remember the interfaces and conventions of the component model itself. To address these needs, we introduce Bocca, the first tool to enablemore » application developers to perform rapid component prototyping while maintaining robust software-engineering practices suitable to HPC environments. Bocca provides project management and a comprehensive build environment for creating and managing applications composed of Common Component Architecture components. Of critical importance for high-performance computing (HPC) applications, Bocca is designed to operate in a language-agnostic way, simultaneously handling components written in any of the languages commonly used in scientific applications: C, C++, Fortran, Python and Java. Bocca automates the tasks related to the component glue code, freeing the user to focus on the scientific aspects of the application. Bocca embraces the philosophy pioneered by Ruby on Rails for web applications: start with something that works, and evolve it to the user's purpose.« less

  13. 75 FR 9887 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building...

  14. 76 FR 9765 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Office of Science... Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub. L. 92... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research, SC-21/Germantown Building...

  15. 77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Recompetition results for Scientific Discovery through Advanced Computing (SciDAC) applications Co-design Public... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Office of... the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub...

  16. 75 FR 64720 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Department of... the Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L.... FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21...

  17. Computing through Scientific Abstractions in SysBioPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Stephan, Eric G.; Gracio, Deborah K.

    2004-10-13

    Today, biologists and bioinformaticists have a tremendous amount of computational power at their disposal. With the availability of supercomputers, burgeoning scientific databases and digital libraries such as GenBank and PubMed, and pervasive computational environments such as the Grid, biologists have access to a wealth of computational capabilities and scientific data at hand. Yet, the rapid development of computational technologies has far exceeded the typical biologist’s ability to effectively apply the technology in their research. Computational sciences research and development efforts such as the Biology Workbench, BioSPICE (Biological Simulation Program for Intra-Cellular Evaluation), and BioCoRE (Biological Collaborative Research Environment) are importantmore » in connecting biologists and their scientific problems to computational infrastructures. On the Computational Cell Environment and Heuristic Entity-Relationship Building Environment projects at the Pacific Northwest National Laboratory, we are jointly developing a new breed of scientific problem solving environment called SysBioPSE that will allow biologists to access and apply computational resources in the scientific research context. In contrast to other computational science environments, SysBioPSE operates as an abstraction layer above a computational infrastructure. The goal of SysBioPSE is to allow biologists to apply computational resources in the context of the scientific problems they are addressing and the scientific perspectives from which they conduct their research. More specifically, SysBioPSE allows biologists to capture and represent scientific concepts and theories and experimental processes, and to link these views to scientific applications, data repositories, and computer systems.« less

  18. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.

    2014-06-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  19. A suite of exercises for verifying dynamic earthquake rupture codes

    USGS Publications Warehouse

    Harris, Ruth A.; Barall, Michael; Aagaard, Brad T.; Ma, Shuo; Roten, Daniel; Olsen, Kim B.; Duan, Benchun; Liu, Dunyu; Luo, Bin; Bai, Kangchen; Ampuero, Jean-Paul; Kaneko, Yoshihiro; Gabriel, Alice-Agnes; Duru, Kenneth; Ulrich, Thomas; Wollherr, Stephanie; Shi, Zheqiang; Dunham, Eric; Bydlon, Sam; Zhang, Zhenguo; Chen, Xiaofei; Somala, Surendra N.; Pelties, Christian; Tago, Josue; Cruz-Atienza, Victor Manuel; Kozdon, Jeremy; Daub, Eric; Aslam, Khurram; Kase, Yuko; Withers, Kyle; Dalguer, Luis

    2018-01-01

    We describe a set of benchmark exercises that are designed to test if computer codes that simulate dynamic earthquake rupture are working as intended. These types of computer codes are often used to understand how earthquakes operate, and they produce simulation results that include earthquake size, amounts of fault slip, and the patterns of ground shaking and crustal deformation. The benchmark exercises examine a range of features that scientists incorporate in their dynamic earthquake rupture simulations. These include implementations of simple or complex fault geometry, off‐fault rock response to an earthquake, stress conditions, and a variety of formulations for fault friction. Many of the benchmarks were designed to investigate scientific problems at the forefronts of earthquake physics and strong ground motions research. The exercises are freely available on our website for use by the scientific community.

  20. 75 FR 43518 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of... Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S...

  1. An automated and integrated framework for dust storm detection based on ogc web processing services

    NASA Astrophysics Data System (ADS)

    Xiao, F.; Shea, G. Y. K.; Wong, M. S.; Campbell, J.

    2014-11-01

    Dust storms are known to have adverse effects on public health. Atmospheric dust loading is also one of the major uncertainties in global climatic modelling as it is known to have a significant impact on the radiation budget and atmospheric stability. The complexity of building scientific dust storm models is coupled with the scientific computation advancement, ongoing computing platform development, and the development of heterogeneous Earth Observation (EO) networks. It is a challenging task to develop an integrated and automated scheme for dust storm detection that combines Geo-Processing frameworks, scientific models and EO data together to enable the dust storm detection and tracking processes in a dynamic and timely manner. This study develops an automated and integrated framework for dust storm detection and tracking based on the Web Processing Services (WPS) initiated by Open Geospatial Consortium (OGC). The presented WPS framework consists of EO data retrieval components, dust storm detecting and tracking component, and service chain orchestration engine. The EO data processing component is implemented based on OPeNDAP standard. The dust storm detecting and tracking component combines three earth scientific models, which are SBDART model (for computing aerosol optical depth (AOT) of dust particles), WRF model (for simulating meteorological parameters) and HYSPLIT model (for simulating the dust storm transport processes). The service chain orchestration engine is implemented based on Business Process Execution Language for Web Service (BPEL4WS) using open-source software. The output results, including horizontal and vertical AOT distribution of dust particles as well as their transport paths, were represented using KML/XML and displayed in Google Earth. A serious dust storm, which occurred over East Asia from 26 to 28 Apr 2012, is used to test the applicability of the proposed WPS framework. Our aim here is to solve a specific instance of a complex EO data and scientific model integration problem by using a framework and scientific workflow approach together. The experimental result shows that this newly automated and integrated framework can be used to give advance near real-time warning of dust storms, for both environmental authorities and public. The methods presented in this paper might be also generalized to other types of Earth system models, leading to improved ease of use and flexibility.

  2. An Open-Source Sandbox for Increasing the Accessibility of Functional Programming to the Bioinformatics and Scientific Communities

    PubMed Central

    Fenwick, Matthew; Sesanker, Colbert; Schiller, Martin R.; Ellis, Heidi JC; Hinman, M. Lee; Vyas, Jay; Gryk, Michael R.

    2012-01-01

    Scientists are continually faced with the need to express complex mathematical notions in code. The renaissance of functional languages such as LISP and Haskell is often credited to their ability to implement complex data operations and mathematical constructs in an expressive and natural idiom. The slow adoption of functional computing in the scientific community does not, however, reflect the congeniality of these fields. Unfortunately, the learning curve for adoption of functional programming techniques is steeper than that for more traditional languages in the scientific community, such as Python and Java, and this is partially due to the relative sparseness of available learning resources. To fill this gap, we demonstrate and provide applied, scientifically substantial examples of functional programming, We present a multi-language source-code repository for software integration and algorithm development, which generally focuses on the fields of machine learning, data processing, bioinformatics. We encourage scientists who are interested in learning the basics of functional programming to adopt, reuse, and learn from these examples. The source code is available at: https://github.com/CONNJUR/CONNJUR-Sandbox (see also http://www.connjur.org). PMID:25328913

  3. An Open-Source Sandbox for Increasing the Accessibility of Functional Programming to the Bioinformatics and Scientific Communities.

    PubMed

    Fenwick, Matthew; Sesanker, Colbert; Schiller, Martin R; Ellis, Heidi Jc; Hinman, M Lee; Vyas, Jay; Gryk, Michael R

    2012-01-01

    Scientists are continually faced with the need to express complex mathematical notions in code. The renaissance of functional languages such as LISP and Haskell is often credited to their ability to implement complex data operations and mathematical constructs in an expressive and natural idiom. The slow adoption of functional computing in the scientific community does not, however, reflect the congeniality of these fields. Unfortunately, the learning curve for adoption of functional programming techniques is steeper than that for more traditional languages in the scientific community, such as Python and Java, and this is partially due to the relative sparseness of available learning resources. To fill this gap, we demonstrate and provide applied, scientifically substantial examples of functional programming, We present a multi-language source-code repository for software integration and algorithm development, which generally focuses on the fields of machine learning, data processing, bioinformatics. We encourage scientists who are interested in learning the basics of functional programming to adopt, reuse, and learn from these examples. The source code is available at: https://github.com/CONNJUR/CONNJUR-Sandbox (see also http://www.connjur.org).

  4. Technical editing and the effective communication of scientific results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, G.W.; Picologlou, S.M.

    1996-05-01

    Communication of scientific results--whether for professional journals, poster sessions, oral presentations, or the popular press--is an essential part of any scientific investigation. The technical editor plays an important rolein ensuring that scientists express their results correctly and effectively. Technical editing comprises far more than simple proofreading. The editor`s tasks may range from restructuring whole parpagrphs and suggesting improved graphical aids to writing abstracts and preparing first drafts of proposals. The technical editor works closely with scientists to present complex ideas to differentaudiences, including fellow scentists, funding agencies, and the general public. New computer technologyhas also involved the technical editor notmore » only with on-line editing but also with preparing CD ROMs and World Wide Web pages.« less

  5. Visualizing Parallel Computer System Performance

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.

    1988-01-01

    Parallel computer systems are among the most complex of man's creations, making satisfactory performance characterization difficult. Despite this complexity, there are strong, indeed, almost irresistible, incentives to quantify parallel system performance using a single metric. The fallacy lies in succumbing to such temptations. A complete performance characterization requires not only an analysis of the system's constituent levels, it also requires both static and dynamic characterizations. Static or average behavior analysis may mask transients that dramatically alter system performance. Although the human visual system is remarkedly adept at interpreting and identifying anomalies in false color data, the importance of dynamic, visual scientific data presentation has only recently been recognized Large, complex parallel system pose equally vexing performance interpretation problems. Data from hardware and software performance monitors must be presented in ways that emphasize important events while eluding irrelevant details. Design approaches and tools for performance visualization are the subject of this paper.

  6. High performance computing and communications: Advancing the frontiers of information technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.« less

  7. The Methods of Cognitive Visualization for the Astronomical Databases Analyzing Tools Development

    NASA Astrophysics Data System (ADS)

    Vitkovskiy, V.; Gorohov, V.

    2008-08-01

    There are two kinds of computer graphics: the illustrative one and the cognitive one. Appropriate the cognitive pictures not only make evident and clear the sense of complex and difficult scientific concepts, but promote, --- and not so very rarely, --- a birth of a new knowledge. On the basis of the cognitive graphics concept, we worked out the SW-system for visualization and analysis. It allows to train and to aggravate intuition of researcher, to raise his interest and motivation to the creative, scientific cognition, to realize process of dialogue with the very problems simultaneously.

  8. Genetic Design Automation: engineering fantasy or scientific renewal?

    PubMed Central

    Lux, Matthew W.; Bramlett, Brian W.; Ball, David A.; Peccoud, Jean

    2013-01-01

    Synthetic biology aims to make genetic systems more amenable to engineering, which has naturally led to the development of Computer-Aided Design (CAD) tools. Experimentalists still primarily rely on project-specific ad-hoc workflows instead of domain-specific tools, suggesting that CAD tools are lagging behind the front line of the field. Here, we discuss the scientific hurdles that have limited the productivity gains anticipated from existing tools. We argue that the real value of efforts to develop CAD tools is the formalization of genetic design rules that determine the complex relationships between genotype and phenotype. PMID:22001068

  9. The impact of supercomputers on experimentation: A view from a national laboratory

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Arnold, J. O.

    1985-01-01

    The relative roles of large scale scientific computers and physical experiments in several science and engineering disciplines are discussed. Increasing dependence on computers is shown to be motivated both by the rapid growth in computer speed and memory, which permits accurate numerical simulation of complex physical phenomena, and by the rapid reduction in the cost of performing a calculation, which makes computation an increasingly attractive complement to experimentation. Computer speed and memory requirements are presented for selected areas of such disciplines as fluid dynamics, aerodynamics, aerothermodynamics, chemistry, atmospheric sciences, astronomy, and astrophysics, together with some examples of the complementary nature of computation and experiment. Finally, the impact of the emerging role of computers in the technical disciplines is discussed in terms of both the requirements for experimentation and the attainment of previously inaccessible information on physical processes.

  10. From computer-assisted intervention research to clinical impact: The need for a holistic approach.

    PubMed

    Ourselin, Sébastien; Emberton, Mark; Vercauteren, Tom

    2016-10-01

    The early days of the field of medical image computing (MIC) and computer-assisted intervention (CAI), when publishing a strong self-contained methodological algorithm was enough to produce impact, are over. As a community, we now have substantial responsibility to translate our scientific progresses into improved patient care. In the field of computer-assisted interventions, the emphasis is also shifting from the mere use of well-known established imaging modalities and position trackers to the design and combination of innovative sensing, elaborate computational models and fine-grained clinical workflow analysis to create devices with unprecedented capabilities. The barriers to translating such devices in the complex and understandably heavily regulated surgical and interventional environment can seem daunting. Whether we leave the translation task mostly to our industrial partners or welcome, as researchers, an important share of it is up to us. We argue that embracing the complexity of surgical and interventional sciences is mandatory to the evolution of the field. Being able to do so requires large-scale infrastructure and a critical mass of expertise that very few research centres have. In this paper, we emphasise the need for a holistic approach to computer-assisted interventions where clinical, scientific, engineering and regulatory expertise are combined as a means of moving towards clinical impact. To ensure that the breadth of infrastructure and expertise required for translational computer-assisted intervention research does not lead to a situation where the field advances only thanks to a handful of exceptionally large research centres, we also advocate that solutions need to be designed to lower the barriers to entry. Inspired by fields such as particle physics and astronomy, we claim that centralised very large innovation centres with state of the art technology and health technology assessment capabilities backed by core support staff and open interoperability standards need to be accessible to the wider computer-assisted intervention research community. Copyright © 2016. Published by Elsevier B.V.

  11. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    DOE PAGES

    Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...

    2008-01-01

    Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less

  12. Climate Modeling with a Million CPUs

    NASA Astrophysics Data System (ADS)

    Tobis, M.; Jackson, C. S.

    2010-12-01

    Michael Tobis, Ph.D. Research Scientist Associate University of Texas Institute for Geophysics Charles S. Jackson Research Scientist University of Texas Institute for Geophysics Meteorological, oceanographic, and climatological applications have been at the forefront of scientific computing since its inception. The trend toward ever larger and more capable computing installations is unabated. However, much of the increase in capacity is accompanied by an increase in parallelism and a concomitant increase in complexity. An increase of at least four additional orders of magnitude in the computational power of scientific platforms is anticipated. It is unclear how individual climate simulations can continue to make effective use of the largest platforms. Conversion of existing community codes to higher resolution, or to more complex phenomenology, or both, presents daunting design and validation challenges. Our alternative approach is to use the expected resources to run very large ensembles of simulations of modest size, rather than to await the emergence of very large simulations. We are already doing this in exploring the parameter space of existing models using the Multiple Very Fast Simulated Annealing algorithm, which was developed for seismic imaging. Our experiments have the dual intentions of tuning the model and identifying ranges of parameter uncertainty. Our approach is less strongly constrained by the dimensionality of the parameter space than are competing methods. Nevertheless, scaling up remains costly. Much could be achieved by increasing the dimensionality of the search and adding complexity to the search algorithms. Such ensemble approaches scale naturally to very large platforms. Extensions of the approach are anticipated. For example, structurally different models can be tuned to comparable effectiveness. This can provide an objective test for which there is no realistic precedent with smaller computations. We find ourselves inventing new code to manage our ensembles. Component computations involve tens to hundreds of CPUs and tens to hundreds of hours. The results of these moderately large parallel jobs influence the scheduling of subsequent jobs, and complex algorithms may be easily contemplated for this. The operating system concept of a "thread" re-emerges at a very coarse level, where each thread manages atomic computations of thousands of CPU-hours. That is, rather than multiple threads operating on a processor, at this level, multiple processors operate within a single thread. In collaboration with the Texas Advanced Computing Center, we are developing a software library at the system level, which should facilitate the development of computations involving complex strategies which invoke large numbers of moderately large multi-processor jobs. While this may have applications in other sciences, our key intent is to better characterize the coupled behavior of a very large set of climate model configurations.

  13. The 1980-81 AFOSR (Air Force Office of Scientific Research)-HTTM (Heat Transfer and Turbulence Mechanics)-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiment. Volume 3. Comparison of Computation with Experiment, and Computors’ Summary Report.

    DTIC Science & Technology

    1981-09-01

    organized the paperwork system , including finances, travel, k, , f iling, and programs in a highly independent and responsible fashion. Thanks are also due...three-dimensional transformation procedure for arbitrary non-orthogonal coordinate systems , for the purpose of the three-dimensional turbulent...transformation procedure for arbitrary non-orthogonal coordinate systems so as to acquire the generality in the application for elliptic flows (for the square

  14. Grid computing technology for hydrological applications

    NASA Astrophysics Data System (ADS)

    Lecca, G.; Petitdidier, M.; Hluchy, L.; Ivanovic, M.; Kussul, N.; Ray, N.; Thieron, V.

    2011-06-01

    SummaryAdvances in e-Infrastructure promise to revolutionize sensing systems and the way in which data are collected and assimilated, and complex water systems are simulated and visualized. According to the EU Infrastructure 2010 work-programme, data and compute infrastructures and their underlying technologies, either oriented to tackle scientific challenges or complex problem solving in engineering, are expected to converge together into the so-called knowledge infrastructures, leading to a more effective research, education and innovation in the next decade and beyond. Grid technology is recognized as a fundamental component of e-Infrastructures. Nevertheless, this emerging paradigm highlights several topics, including data management, algorithm optimization, security, performance (speed, throughput, bandwidth, etc.), and scientific cooperation and collaboration issues that require further examination to fully exploit it and to better inform future research policies. The paper illustrates the results of six different surface and subsurface hydrology applications that have been deployed on the Grid. All the applications aim to answer to strong requirements from the Civil Society at large, relatively to natural and anthropogenic risks. Grid technology has been successfully tested to improve flood prediction, groundwater resources management and Black Sea hydrological survey, by providing large computing resources. It is also shown that Grid technology facilitates e-cooperation among partners by means of services for authentication and authorization, seamless access to distributed data sources, data protection and access right, and standardization.

  15. Using Java for distributed computing in the Gaia satellite data processing

    NASA Astrophysics Data System (ADS)

    O'Mullane, William; Luri, Xavier; Parsons, Paul; Lammers, Uwe; Hoar, John; Hernandez, Jose

    2011-10-01

    In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications around 1999 they were the first of their kind in astronomy. Now a great deal of astronomy software is written in Java as are many business applications. We discuss the current environment and trends concerning the language and present an actual example of scientific use of Java for high-performance distributed computing: ESA's mission Gaia. The Gaia scanning satellite will perform a galactic census of about 1,000 million objects in our galaxy. The Gaia community has chosen to write its processing software in Java. We explore the manifold reasons for choosing Java for this large science collaboration. Gaia processing is numerically complex but highly distributable, some parts being embarrassingly parallel. We describe the Gaia processing architecture and its realisation in Java. We delve into the astrometric solution which is the most advanced and most complex part of the processing. The Gaia simulator is also written in Java and is the most mature code in the system. This has been successfully running since about 2005 on the supercomputer "Marenostrum" in Barcelona. We relate experiences of using Java on a large shared machine. Finally we discuss Java, including some of its problems, for scientific computing.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less

  17. Software and the Scientist: Coding and Citation Practices in Geodynamics

    NASA Astrophysics Data System (ADS)

    Hwang, Lorraine; Fish, Allison; Soito, Laura; Smith, MacKenzie; Kellogg, Louise H.

    2017-11-01

    In geodynamics as in other scientific areas, computation has become a core component of research, complementing field observation, laboratory analysis, experiment, and theory. Computational tools for data analysis, mapping, visualization, modeling, and simulation are essential for all aspects of the scientific workflow. Specialized scientific software is often developed by geodynamicists for their own use, and this effort represents a distinctive intellectual contribution. Drawing on a geodynamics community that focuses on developing and disseminating scientific software, we assess the current practices of software development and attribution, as well as attitudes about the need and best practices for software citation. We analyzed publications by participants in the Computational Infrastructure for Geodynamics and conducted mixed method surveys of the solid earth geophysics community. From this we learned that coding skills are typically learned informally. Participants considered good code as trusted, reusable, readable, and not overly complex and considered a good coder as one that participates in the community in an open and reasonable manor contributing to both long- and short-term community projects. Participants strongly supported citing software reflected by the high rate a software package was named in the literature and the high rate of citations in the references. However, lacking are clear instructions from developers on how to cite and education of users on what to cite. In addition, citations did not always lead to discoverability of the resource. A unique identifier to the software package itself, community education, and citation tools would contribute to better attribution practices.

  18. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  19. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    DOE PAGES

    Christensen, A. J.; Srinivasan, V.; Hart, J. C.; ...

    2018-03-17

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less

  20. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, A. J.; Srinivasan, V.; Hart, J. C.

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less

  1. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security.

    PubMed

    Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy

    2018-05-01

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in "big data" analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.

  2. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    PubMed Central

    Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy

    2018-01-01

    Abstract Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields. PMID:29562368

  3. Job Superscheduler Architecture and Performance in Computational Grid Environments

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Oliker, Leonid; Biswas, Rupak

    2003-01-01

    Computational grids hold great promise in utilizing geographically separated heterogeneous resources to solve large-scale complex scientific problems. However, a number of major technical hurdles, including distributed resource management and effective job scheduling, stand in the way of realizing these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job migration algorithms. We also model the critical interaction between the superscheduler and autonomous local schedulers. Extensive performance comparisons with ideal, central, and local schemes using real workloads from leading computational centers are conducted in a simulation environment. Additionally, synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling in distributed computational grids.

  4. Molecular dynamics simulations through GPU video games technologies

    PubMed Central

    Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia

    2016-01-01

    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251

  5. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    NASA Astrophysics Data System (ADS)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  6. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  7. Visual analytics as a translational cognitive science.

    PubMed

    Fisher, Brian; Green, Tera Marie; Arias-Hernández, Richard

    2011-07-01

    Visual analytics is a new interdisciplinary field of study that calls for a more structured scientific approach to understanding the effects of interaction with complex graphical displays on human cognitive processes. Its primary goal is to support the design and evaluation of graphical information systems that better support cognitive processes in areas as diverse as scientific research and emergency management. The methodologies that make up this new field are as yet ill defined. This paper proposes a pathway for development of visual analytics as a translational cognitive science that bridges fundamental research in human/computer cognitive systems and design and evaluation of information systems in situ. Achieving this goal will require the development of enhanced field methods for conceptual decomposition of human/computer cognitive systems that maps onto laboratory studies, and improved methods for conducting laboratory investigations that might better map onto real-world cognitive processes in technology-rich environments. Copyright © 2011 Cognitive Science Society, Inc.

  8. Management, Analysis, and Visualization of Experimental and Observational Data – The Convergence of Data and Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kerstin

    Scientific user facilities—particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more—operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less

  9. Management, Analysis, and Visualization of Experimental and Observational Data -- The Convergence of Data and Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kersten

    Scientific user facilities---particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more---operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less

  10. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  11. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  12. SEE: structured representation of scientific evidence in the biomedical domain using Semantic Web techniques

    PubMed Central

    2014-01-01

    Background Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge. Results We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase. Conclusions SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats. PMID:25093070

  13. SEE: structured representation of scientific evidence in the biomedical domain using Semantic Web techniques.

    PubMed

    Bölling, Christian; Weidlich, Michael; Holzhütter, Hermann-Georg

    2014-01-01

    Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge. We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase. SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats.

  14. Virtual Observatory and Distributed Data Mining

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.

    2012-03-01

    New modes of discovery are enabled by the growth of data and computational resources (i.e., cyberinfrastructure) in the sciences. This cyberinfrastructure includes structured databases, virtual observatories (distributed data, as described in Section 20.2.1 of this chapter), high-performance computing (petascale machines), distributed computing (e.g., the Grid, the Cloud, and peer-to-peer networks), intelligent search and discovery tools, and innovative visualization environments. Data streams from experiments, sensors, and simulations are increasingly complex and growing in volume. This is true in most sciences, including astronomy, climate simulations, Earth observing systems, remote sensing data collections, and sensor networks. At the same time, we see an emerging confluence of new technologies and approaches to science, most clearly visible in the growing synergism of the four modes of scientific discovery: sensors-modeling-computing-data (Eastman et al. 2005). This has been driven by numerous developments, including the information explosion, development of large-array sensors, acceleration in high-performance computing (HPC) power, advances in algorithms, and efficient modeling techniques. Among these, the most extreme is the growth in new data. Specifically, the acquisition of data in all scientific disciplines is rapidly accelerating and causing a data glut (Bell et al. 2007). It has been estimated that data volumes double every year—for example, the NCSA (National Center for Supercomputing Applications) reported that their users cumulatively generated one petabyte of data over the first 19 years of NCSA operation, but they then generated their next one petabyte in the next year alone, and the data production has been growing by almost 100% each year after that (Butler 2008). The NCSA example is just one of many demonstrations of the exponential (annual data-doubling) growth in scientific data collections. In general, this putative data-doubling is an inevitable result of several compounding factors: the proliferation of data-generating devices, sensors, projects, and enterprises; the 18-month doubling of the digital capacity of these microprocessor-based sensors and devices (commonly referred to as "Moore’s law"); the move to digital for nearly all forms of information; the increase in human-generated data (both unstructured information on the web and structured data from experiments, models, and simulation); and the ever-expanding capability of higher density media to hold greater volumes of data (i.e., data production expands to fill the available storage space). These factors are consequently producing an exponential data growth rate, which will soon (if not already) become an insurmountable technical challenge even with the great advances in computation and algorithms. This technical challenge is compounded by the ever-increasing geographic dispersion of important data sources—the data collections are not stored uniformly at a single location, or with a single data model, or in uniform formats and modalities (e.g., images, databases, structured and unstructured files, and XML data sets)—the data are in fact large, distributed, heterogeneous, and complex. The greatest scientific research challenge with these massive distributed data collections is consequently extracting all of the rich information and knowledge content contained therein, thus requiring new approaches to scientific research. This emerging data-intensive and data-oriented approach to scientific research is sometimes called discovery informatics or X-informatics (where X can be any science, such as bio, geo, astro, chem, eco, or anything; Agresti 2003; Gray 2003; Borne 2010). This data-oriented approach to science is now recognized by some (e.g., Mahootian and Eastman 2009; Hey et al. 2009) as the fourth paradigm of research, following (historically) experiment/observation, modeling/analysis, and computational science.

  15. Managing a tier-2 computer centre with a private cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-06-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.

  16. The promise and challenge of personalized medicine: aging populations, complex diseases, and unmet medical need

    PubMed Central

    Henney, Adriano M

    2012-01-01

    Abstract The concept of personalized medicine is not new. It is being discussed with increasing interest in the medical, scientific, and general media because of the availability of advanced scientific and computational technologies, and the promise of the potential to improve the targeting and delivery of novel medicines. It is also being seen as one approach that may have a beneficial impact on reducing health care budgets. But what are the challenges that need to be addressed in its implementation in the clinic? This article poses some provocative questions and suggests some things that need to be considered. PMID:22661132

  17. Genetic design automation: engineering fantasy or scientific renewal?

    PubMed

    Lux, Matthew W; Bramlett, Brian W; Ball, David A; Peccoud, Jean

    2012-02-01

    The aim of synthetic biology is to make genetic systems more amenable to engineering, which has naturally led to the development of computer-aided design (CAD) tools. Experimentalists still primarily rely on project-specific ad hoc workflows instead of domain-specific tools, which suggests that CAD tools are lagging behind the front line of the field. Here, we discuss the scientific hurdles that have limited the productivity gains anticipated from existing tools. We argue that the real value of efforts to develop CAD tools is the formalization of genetic design rules that determine the complex relationships between genotype and phenotype. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Manifold compositions, music visualization, and scientific sonification in an immersive virtual-reality environment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaper, H. G.

    1998-01-05

    An interdisciplinary project encompassing sound synthesis, music composition, sonification, and visualization of music is facilitated by the high-performance computing capabilities and the virtual-reality environments available at Argonne National Laboratory. The paper describes the main features of the project's centerpiece, DIASS (Digital Instrument for Additive Sound Synthesis); ''A.N.L.-folds'', an equivalence class of compositions produced with DIASS; and application of DIASS in two experiments in the sonification of complex scientific data. Some of the larger issues connected with this project, such as the changing ways in which both scientists and composers perform their tasks, are briefly discussed.

  19. Format Guide for Scientific and Technical Reports.

    DTIC Science & Technology

    1984-01-01

    supported by the discussion. Graphkic Services The Graphic Services Section (Code 2632) provides a variety of layout and design services. Camera-ready artwork...complex typography , elaborate graphic elements, extensive computer printouts, and other unusual materials that explain the project. With few exceptions...2630 Publications Branch Office 222/253 72379 S Publications Control Center 222/253 73508 Editorial 222/253 72782 Graphic Services 222/234 72756 73989

  20. Making it Easy to Construct Accurate Hydrological Models that Exploit High Performance Computers (Invited)

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M. W.; Terrel, A.; Certik, O.; Seljebotn, D.

    2013-12-01

    This presentation will focus on two barriers to progress in the hydrological modeling community, and research and development conducted to lessen or eliminate them. The first is a barrier to sharing hydrological models among specialized scientists that is caused by intertwining the implementation of numerical methods with the implementation of abstract numerical modeling information. In the Proteus toolkit for computational methods and simulation, we have decoupled these two important parts of computational model through separate "physics" and "numerics" interfaces. More recently we have begun developing the Strong Form Language for easy and direct representation of the mathematical model formulation in a domain specific language embedded in Python. The second major barrier is sharing ANY scientific software tools that have complex library or module dependencies, as most parallel, multi-physics hydrological models must have. In this setting, users and developer are dependent on an entire distribution, possibly depending on multiple compilers and special instructions depending on the environment of the target machine. To solve these problem we have developed, hashdist, a stateless package management tool and a resulting portable, open source scientific software distribution.

  1. On improving the algorithm efficiency in the particle-particle force calculations

    NASA Astrophysics Data System (ADS)

    Kozynchenko, Alexander I.; Kozynchenko, Sergey A.

    2016-09-01

    The problem of calculating inter-particle forces in the particle-particle (PP) simulation models takes an important place in scientific computing. Such simulation models are used in diverse scientific applications arising in astrophysics, plasma physics, particle accelerators, etc., where the long-range forces are considered. The inverse-square laws such as Coulomb's law of electrostatic forces and Newton's law of universal gravitation are the examples of laws pertaining to the long-range forces. The standard naïve PP method outlined, for example, by Hockney and Eastwood [1] is straightforward, processing all pairs of particles in a double nested loop. The PP algorithm provides the best accuracy of all possible methods, but its computational complexity is O (Np2), where Np is a total number of particles involved. Too low efficiency of the PP algorithm seems to be the challenging issue in some cases where the high accuracy is required. An example can be taken from the charged particle beam dynamics where, under computing the own space charge of the beam, so-called macro-particles are used (see e.g., Humphries Jr. [2], Kozynchenko and Svistunov [3]).

  2. A heterogeneous computing accelerated SCE-UA global optimization method using OpenMP, OpenCL, CUDA, and OpenACC.

    PubMed

    Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Liang, Ke; Hong, Yang

    2017-10-01

    The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has been successfully applied in various kinds of scientific and engineering optimization applications, such as hydrological model parameter calibration, for many years. The algorithm possesses good global optimality, convergence stability and robustness. However, benchmark and real-world applications reveal the poor computational efficiency of the SCE-UA. This research aims at the parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results indicate the parallel SCE-UA significantly improves computational efficiency compared to the original serial version. The OpenCL implementation obtains the best overall acceleration results however, with the most complex source code. The parallel SCE-UA has bright prospects to be applied in real-world applications.

  3. Updated Panel-Method Computer Program

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1995-01-01

    Panel code PMARC_12 (Panel Method Ames Research Center, version 12) computes potential-flow fields around complex three-dimensional bodies such as complete aircraft models. Contains several advanced features, including internal mathematical modeling of flow, time-stepping wake model for simulating either steady or unsteady motions, capability for Trefftz computation of drag induced by plane, and capability for computation of off-body and on-body streamlines, and capability of computation of boundary-layer parameters by use of two-dimensional integral boundary-layer method along surface streamlines. Investigators interested in visual representations of phenomena, may want to consider obtaining program GVS (ARC-13361), General visualization System. GVS is Silicon Graphics IRIS program created to support scientific-visualization needs of PMARC_12. GVS available separately from COSMIC. PMARC_12 written in standard FORTRAN 77, with exception of NAMELIST extension used for input.

  4. From cosmos to connectomes: the evolution of data-intensive science.

    PubMed

    Burns, Randal; Vogelstein, Joshua T; Szalay, Alexander S

    2014-09-17

    The analysis of data requires computation: originally by hand and more recently by computers. Different models of computing are designed and optimized for different kinds of data. In data-intensive science, the scale and complexity of data exceeds the comfort zone of local data stores on scientific workstations. Thus, cloud computing emerges as the preeminent model, utilizing data centers and high-performance clusters, enabling remote users to access and query subsets of the data efficiently. We examine how data-intensive computational systems originally built for cosmology, the Sloan Digital Sky Survey (SDSS), are now being used in connectomics, at the Open Connectome Project. We list lessons learned and outline the top challenges we expect to face. Success in computational connectomics would drastically reduce the time between idea and discovery, as SDSS did in cosmology. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Towards reversible basic linear algebra subprograms: A performance study

    DOE PAGES

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less

  6. Climatic response variability and machine learning: development of a modular technology framework for predicting bio-climatic change in pacific northwest ecosystems"

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.

    2015-12-01

    The creation and use of large amounts of data in scientific investigations has become common practice. Data collection and analysis for large scientific computing efforts are not only increasing in volume as well as number, the methods and analysis procedures are evolving toward greater complexity (Bell, 2009, Clarke, 2009, Maimon, 2010). In addition, the growth of diverse data-intensive scientific computing efforts (Soni, 2011, Turner, 2014, Wu, 2008) has demonstrated the value of supporting scientific data integration. Efforts to bridge this gap between the above perspectives have been attempted, in varying degrees, with modular scientific computing analysis regimes implemented with a modest amount of success (Perez, 2009). This constellation of effects - 1) an increasing growth in the volume and amount of data, 2) a growing data-intensive science base that has challenging needs, and 3) disparate data organization and integration efforts - has created a critical gap. Namely, systems of scientific data organization and management typically do not effectively enable integrated data collaboration or data-intensive science-based communications. Our research efforts attempt to address this gap by developing a modular technology framework for data science integration efforts - with climate variation as the focus. The intention is that this model, if successful, could be generalized to other application areas. Our research aim focused on the design and implementation of a modular, deployable technology architecture for data integration. Developed using aspects of R, interactive python, SciDB, THREDDS, Javascript, and varied data mining and machine learning techniques, the Modular Data Response Framework (MDRF) was implemented to explore case scenarios for bio-climatic variation as they relate to pacific northwest ecosystem regions. Our preliminary results, using historical NETCDF climate data for calibration purposes across the inland pacific northwest region (Abatzoglou, Brown, 2011), show clear ecosystems shifting over a ten-year period (2001-2011), based on multiple supervised classifier methods for bioclimatic indicators.

  7. Instrumentino: An Open-Source Software for Scientific Instruments.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C

    2015-01-01

    Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.

  8. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less

  9. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less

  10. Calculations of resonances parameters for the ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) doubly excited states of helium-like ions with Z≤10 using a complex rotation method implemented in Scilab

    NASA Astrophysics Data System (ADS)

    Gning, Youssou; Sow, Malick; Traoré, Alassane; Dieng, Matabara; Diakhate, Babacar; Biaye, Mamadi; Wagué, Ahmadou

    2015-01-01

    In the present work a special computational program Scilab (Scientific Laboratory) in the complex rotation method has been used to calculate resonance parameters of ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) states of helium-like ions with Z≤10. The purpose of this study required a mathematical development of the Hamiltonian applied to Hylleraas wave function for intrashell states, leading to analytical expressions which are carried out under Scilab computational program. Results are in compliance with recent theoretical calculations.

  11. On the impact of communication complexity in the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  12. Applying computation biology and "big data" to develop multiplex diagnostics for complex chronic diseases such as osteoarthritis.

    PubMed

    Ren, Guomin; Krawetz, Roman

    2015-01-01

    The data explosion in the last decade is revolutionizing diagnostics research and the healthcare industry, offering both opportunities and challenges. These high-throughput "omics" techniques have generated more scientific data in the last few years than in the entire history of mankind. Here we present a brief summary of how "big data" have influenced early diagnosis of complex diseases. We will also review some of the most commonly used "omics" techniques and their applications in diagnostics. Finally, we will discuss the issues brought by these new techniques when translating laboratory discoveries to clinical practice.

  13. On the impact of communication complexity on the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D. B.; Van Rosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical alorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In this second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm-independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  14. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Pugmire, David; Rogers, David

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  15. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Pugmire, David; Rogers, David

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  16. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  17. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  18. Oceans of Data: In what ways can learning research inform the development of electronic interfaces and tools for use by students accessing large scientific databases?

    NASA Astrophysics Data System (ADS)

    Krumhansl, R. A.; Foster, J.; Peach, C. L.; Busey, A.; Baker, I.

    2012-12-01

    The practice of science and engineering is being revolutionized by the development of cyberinfrastructure for accessing near real-time and archived observatory data. Large cyberinfrastructure projects have the potential to transform the way science is taught in high school classrooms, making enormous quantities of scientific data available, giving students opportunities to analyze and draw conclusions from many kinds of complex data, and providing students with experiences using state-of-the-art resources and techniques for scientific investigations. However, online interfaces to scientific data are built by scientists for scientists, and their design can significantly impede broad use by novices. Knowledge relevant to the design of student interfaces to complex scientific databases is broadly dispersed among disciplines ranging from cognitive science to computer science and cartography and is not easily accessible to designers of educational interfaces. To inform efforts at bridging scientific cyberinfrastructure to the high school classroom, Education Development Center, Inc. and the Scripps Institution of Oceanography conducted an NSF-funded 2-year interdisciplinary review of literature and expert opinion pertinent to making interfaces to large scientific databases accessible to and usable by precollege learners and their teachers. Project findings are grounded in the fundamentals of Cognitive Load Theory, Visual Perception, Schemata formation and Universal Design for Learning. The Knowledge Status Report (KSR) presents cross-cutting and visualization-specific guidelines that highlight how interface design features can address/ ameliorate challenges novice high school students face as they navigate complex databases to find data, and construct and look for patterns in maps, graphs, animations and other data visualizations. The guidelines present ways to make scientific databases more broadly accessible by: 1) adjusting the cognitive load imposed by the user interface and visualizations so that it doesn't exceed the amount of information the learner can actively process; 2) drawing attention to important features and patterns; and 3) enabling customization of visualizations and tools to meet the needs of diverse learners.

  19. MEMOPS: data modelling and automatic code generation.

    PubMed

    Fogh, Rasmus H; Boucher, Wayne; Ionides, John M C; Vranken, Wim F; Stevens, Tim J; Laue, Ernest D

    2010-03-25

    In recent years the amount of biological data has exploded to the point where much useful information can only be extracted by complex computational analyses. Such analyses are greatly facilitated by metadata standards, both in terms of the ability to compare data originating from different sources, and in terms of exchanging data in standard forms, e.g. when running processes on a distributed computing infrastructure. However, standards thrive on stability whereas science tends to constantly move, with new methods being developed and old ones modified. Therefore maintaining both metadata standards, and all the code that is required to make them useful, is a non-trivial problem. Memops is a framework that uses an abstract definition of the metadata (described in UML) to generate internal data structures and subroutine libraries for data access (application programming interfaces--APIs--currently in Python, C and Java) and data storage (in XML files or databases). For the individual project these libraries obviate the need for writing code for input parsing, validity checking or output. Memops also ensures that the code is always internally consistent, massively reducing the need for code reorganisation. Across a scientific domain a Memops-supported data model makes it easier to support complex standards that can capture all the data produced in a scientific area, share them among all programs in a complex software pipeline, and carry them forward to deposition in an archive. The principles behind the Memops generation code will be presented, along with example applications in Nuclear Magnetic Resonance (NMR) spectroscopy and structural biology.

  20. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  1. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    PubMed

    Brown, David K; Penkler, David L; Musyoka, Thommas M; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.

  2. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing

    PubMed Central

    Brown, David K.; Penkler, David L.; Musyoka, Thommas M.; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450

  3. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires large quantity of memory as well as large and fast parallel storage systems. The entire system temperature is controlled by an energy and space efficient cooling solution, based on large rear door liquid cooled heat exchangers. This state-of-the-art infrastructure will boost research activities in the region, offer a powerful scientific tool for teaching at undergraduate and graduate levels, and enhance association and cooperation with business-oriented organizations.

  4. European Scientific Notes. Volume 35, Number 12,

    DTIC Science & Technology

    1981-12-31

    been redesigned to work A. Osorio, which was organized some 3 with the Intel 8085 microprocessor, it years ago and contains about half of the has the...operational set. attempt to derive a set of invariants MOISE is based on the Intel 8085A upon which virtually speaker-invariant microprocessor, and...FACILITY software interface; a Research Signal Processor (RSP) using reduced computational It has been IBM International’s complexity algorithms for

  5. Magnetic tape user guide

    NASA Technical Reports Server (NTRS)

    Evans, A. B.; Lee, L. L.

    1985-01-01

    This User Guide provides a general introduction to the structure, use, and handling of magnetic tapes at Langley Research Center (LaRC). The topics covered are tape terminology, physical characteristics, error prevention and detection, and creating, using, and maintaining tapes. Supplementary documentation is referenced where it might be helpful. The documentation is included for the tape utility programs, BLOCK, UNBLOCK, and TAPEDMP, which are available at the Central Scientific Computing Complex at LaRC.

  6. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  7. Representation of Serendipitous Scientific Data

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program defines and implements an innovative kind of data structure than can be used for representing information derived from serendipitous discoveries made via collection of scientific data on long exploratory spacecraft missions. Data structures capable of collecting any kind of data can easily be implemented in advance, but the task of designing a fixed and efficient data structure suitable for processing raw data into useful information and taking advantage of serendipitous scientific discovery is becoming increasingly difficult as missions go deeper into space. The present software eases the task by enabling definition of arbitrarily complex data structures that can adapt at run time as raw data are transformed into other types of information. This software runs on a variety of computers, and can be distributed in either source code or binary code form. It must be run in conjunction with any one of a number of Lisp compilers that are available commercially or as shareware. It has no specific memory requirements and depends upon the other software with which it is used. This program is implemented as a library that is called by, and becomes folded into, the other software with which it is used.

  8. Advancing Science through Mining Libraries, Ontologies, and Communities*

    PubMed Central

    Evans, James A.; Rzhetsky, Andrey

    2011-01-01

    Life scientists today cannot hope to read everything relevant to their research. Emerging text-mining tools can help by identifying topics and distilling statements from books and articles with increased accuracy. Researchers often organize these statements into ontologies, consistent systems of reality claims. Like scientific thinking and interchange, however, text-mined information (even when accurately captured) is complex, redundant, sometimes incoherent, and often contradictory: it is rooted in a mixture of only partially consistent ontologies. We review work that models scientific reason and suggest how computational reasoning across ontologies and the broader distribution of textual statements can assess the certainty of statements and the process by which statements become certain. With the emergence of digitized data regarding networks of scientific authorship, institutions, and resources, we explore the possibility of accounting for social dependences and cultural biases in reasoning models. Computational reasoning is starting to fill out ontologies and flag internal inconsistencies in several areas of bioscience. In the not too distant future, scientists may be able to use statements and rich models of the processes that produced them to identify underexplored areas, resurrect forgotten findings and ideas, deconvolute the spaghetti of underlying ontologies, and synthesize novel knowledge and hypotheses. PMID:21566119

  9. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  10. PREFACE: 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015)

    NASA Astrophysics Data System (ADS)

    Vlachos, Dimitrios; Vagenas, Elias C.

    2015-09-01

    The 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place in Mykonos, Greece, from Friday 5th June to Monday 8th June 2015. The Conference was attended by more than 150 participants and hosted about 200 oral, poster, and virtual presentations. There were more than 600 pre-registered authors. The 4th IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather intense as after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with a high quality of talks creating an innovative and productive scientific environment for all attendees. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  11. Preface: SciDAC 2005

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2005-01-01

    On 26-30 June 2005 at the Grand Hyatt on Union Square in San Francisco several hundred computational scientists from around the world came together for what can certainly be described as a celebration of computational science. Scientists from the SciDAC Program and scientists from other agencies and nations were joined by applied mathematicians and computer scientists to highlight the many successes in the past year where computation has led to scientific discovery in a variety of fields: lattice quantum chromodynamics, accelerator modeling, chemistry, biology, materials science, Earth and climate science, astrophysics, and combustion and fusion energy science. Also highlighted were the advances in numerical methods and computer science, and the multidisciplinary collaboration cutting across science, mathematics, and computer science that enabled these discoveries. The SciDAC Program was conceived and funded by the US Department of Energy Office of Science. It is the Office of Science's premier computational science program founded on what is arguably the perfect formula: the priority and focus is science and scientific discovery, with the understanding that the full arsenal of `enabling technologies' in applied mathematics and computer science must be brought to bear if we are to have any hope of attacking and ultimately solving today's computational Grand Challenge problems. The SciDAC Program has been in existence for four years, and many of the computational scientists funded by this program will tell you that the program has given them the hope of addressing their scientific problems in full realism for the very first time. Many of these scientists will also tell you that SciDAC has also fundamentally changed the way they do computational science. We begin this volume with one of DOE's great traditions, and core missions: energy research. As we will see, computation has been seminal to the critical advances that have been made in this arena. Of course, to understand our world, whether it is to understand its very nature or to understand it so as to control it for practical application, will require explorations on all of its scales. Computational science has been no less an important tool in this arena than it has been in the arena of energy research. From explorations of quantum chromodynamics, the fundamental theory that describes how quarks make up the protons and neutrons of which we are composed, to explorations of the complex biomolecules that are the building blocks of life, to explorations of some of the most violent phenomena in our universe and of the Universe itself, computation has provided not only significant insight, but often the only means by which we have been able to explore these complex, multicomponent systems and by which we have been able to achieve scientific discovery and understanding. While our ultimate target remains scientific discovery, it certainly can be said that at a fundamental level the world is mathematical. Equations ultimately govern the evolution of the systems of interest to us, be they physical, chemical, or biological systems. The development and choice of discretizations of these underlying equations is often a critical deciding factor in whether or not one is able to model such systems stably, faithfully, and practically, and in turn, the algorithms to solve the resultant discrete equations are the complementary, critical ingredient in the recipe to model the natural world. The use of parallel computing platforms, especially at the TeraScale, and the trend toward even larger numbers of processors, continue to present significant challenges in the development and implementation of these algorithms. Computational scientists often speak of their `workflows'. A workflow, as the name suggests, is the sum total of all complex and interlocking tasks, from simulation set up, execution, and I/O, to visualization and scientific discovery, through which the advancement in our understanding of the natural world is realized. For the computational scientist, enabling such workflows presents myriad, signiflcant challenges, and it is computer scientists that are called upon at such times to address these challenges. Simulations are currently generating data at the staggering rate of tens of TeraBytes per simulation, over the course of days. In the next few years, these data generation rates are expected to climb exponentially to hundreds of TeraBytes per simulation, performed over the course of months. The output, management, movement, analysis, and visualization of these data will be our key to unlocking the scientific discoveries buried within the data. And there is no hope of generating such data to begin with, or of scientific discovery, without stable computing platforms and a sufficiently high and sustained performance of scientific applications codes on them. Thus, scientific discovery in the realm of computational science at the TeraScale and beyond will occur at the intersection of science, applied mathematics, and computer science. The SciDAC Program was constructed to mirror this reality, and the pages that follow are a testament to the efficacy of such an approach. We would like to acknowledge the individuals on whose talents and efforts the success of SciDAC 2005 was based. Special thanks go to Betsy Riley for her work on the SciDAC 2005 Web site and meeting agenda, for lining up our corporate sponsors, for coordinating all media communications, and for her efforts in processing the proceedings contributions, to Sherry Hempfling for coordinating the overall SciDAC 2005 meeting planning, for handling a significant share of its associated communications, and for coordinating with the ORNL Conference Center and Grand Hyatt, to Angela Harris for producing many of the documents and records on which our meeting planning was based and for her efforts in coordinating with ORNL Graphics Services, to Angie Beach of the ORNL Conference Center for her efforts in procurement and setting up and executing the contracts with the hotel, and to John Bui and John Smith for their superb wireless networking and A/V set up and support. We are grateful for the relentless efforts of all of these individuals, their remarkable talents, and for the joy of working with them during this past year. They were the cornerstones of SciDAC 2005. Thanks also go to Kymba A'Hearn and Patty Boyd for on-site registration, Brittany Hagen for administrative support, Bruce Johnston for netcast support, Tim Jones for help with the proceedings and Web site, Sherry Lamb for housing and registration, Cindy Lathum for Web site design, Carolyn Peters for on-site registration, and Dami Rich for graphic design. And we would like to express our appreciation to the Oak Ridge National Laboratory, especially Jeff Nichols, the Argonne National Laboratory, the Lawrence Berkeley National Laboratory, and to our corporate sponsors, Cray, IBM, Intel, and SGI, for their support. We would like to extend special thanks also to our plenary speakers, technical speakers, poster presenters, and panelists for all of their efforts on behalf of SciDAC 2005 and for their remarkable achievements and contributions. We would like to express our deep appreciation to Lali Chatterjee, Graham Douglas and Margaret Smith of Institute of Physics Publishing, who worked tirelessly in order to provide us with this finished volume within two months, which is nothing short of miraculous. Finally, we wish to express our heartfelt thanks to Michael Strayer, SciDAC Director, whose vision it was to focus SciDAC 2005 on scientific discovery, around which all of the excitement we experienced revolved, and to our DOE SciDAC program managers, especially Fred Johnson, for their support, input, and help throughout.

  12. Crossing the chasm: how to develop weather and climate models for next generation computers?

    NASA Astrophysics Data System (ADS)

    Lawrence, Bryan N.; Rezny, Michael; Budich, Reinhard; Bauer, Peter; Behrens, Jörg; Carter, Mick; Deconinck, Willem; Ford, Rupert; Maynard, Christopher; Mullerworth, Steven; Osuna, Carlos; Porter, Andrew; Serradell, Kim; Valcke, Sophie; Wedi, Nils; Wilson, Simon

    2018-05-01

    Weather and climate models are complex pieces of software which include many individual components, each of which is evolving under pressure to exploit advances in computing to enhance some combination of a range of possible improvements (higher spatio-temporal resolution, increased fidelity in terms of resolved processes, more quantification of uncertainty, etc.). However, after many years of a relatively stable computing environment with little choice in processing architecture or programming paradigm (basically X86 processors using MPI for parallelism), the existing menu of processor choices includes significant diversity, and more is on the horizon. This computational diversity, coupled with ever increasing software complexity, leads to the very real possibility that weather and climate modelling will arrive at a chasm which will separate scientific aspiration from our ability to develop and/or rapidly adapt codes to the available hardware. In this paper we review the hardware and software trends which are leading us towards this chasm, before describing current progress in addressing some of the tools which we may be able to use to bridge the chasm. This brief introduction to current tools and plans is followed by a discussion outlining the scientific requirements for quality model codes which have satisfactory performance and portability, while simultaneously supporting productive scientific evolution. We assert that the existing method of incremental model improvements employing small steps which adjust to the changing hardware environment is likely to be inadequate for crossing the chasm between aspiration and hardware at a satisfactory pace, in part because institutions cannot have all the relevant expertise in house. Instead, we outline a methodology based on large community efforts in engineering and standardisation, which will depend on identifying a taxonomy of key activities - perhaps based on existing efforts to develop domain-specific languages, identify common patterns in weather and climate codes, and develop community approaches to commonly needed tools and libraries - and then collaboratively building up those key components. Such a collaborative approach will depend on institutions, projects, and individuals adopting new interdependencies and ways of working.

  13. Symbolic-numeric interface: A review

    NASA Technical Reports Server (NTRS)

    Ng, E. W.

    1980-01-01

    A survey of the use of a combination of symbolic and numerical calculations is presented. Symbolic calculations primarily refer to the computer processing of procedures from classical algebra, analysis, and calculus. Numerical calculations refer to both numerical mathematics research and scientific computation. This survey is intended to point out a large number of problem areas where a cooperation of symbolic and numerical methods is likely to bear many fruits. These areas include such classical operations as differentiation and integration, such diverse activities as function approximations and qualitative analysis, and such contemporary topics as finite element calculations and computation complexity. It is contended that other less obvious topics such as the fast Fourier transform, linear algebra, nonlinear analysis and error analysis would also benefit from a synergistic approach.

  14. On Establishing Big Data Wave Breakwaters with Analytics (Invited)

    NASA Astrophysics Data System (ADS)

    Riedel, M.

    2013-12-01

    The Research Data Alliance Big Data Analytics (RDA-BDA) Interest Group seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. RDA-BDA seeks to analyze different scientific domain applications and their potential use of various big data analytics techniques. A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. These combinations are complex since a wide variety of different data analysis algorithms exist (e.g. specific algorithms using GPUs of analyzing brain images) that need to work together with multiple analytical tools reaching from simple (iterative) map-reduce methods (e.g. with Apache Hadoop or Twister) to sophisticated higher level frameworks that leverage machine learning algorithms (e.g. Apache Mahout). These computational analysis techniques are often augmented with visual analytics techniques (e.g. computational steering on large-scale high performance computing platforms) to put the human judgement into the analysis loop or new approaches with databases that are designed to support new forms of unstructured or semi-structured data as opposed to the rather tradtional structural databases (e.g. relational databases). More recently, data analysis and underpinned analytics frameworks also have to consider energy footprints of underlying resources. To sum up, the aim of this talk is to provide pieces of information to understand big data analytics in the context of science and engineering using the aforementioned classification as the lighthouse and as the frame of reference for a systematic approach. This talk will provide insights about big data analytics methods in context of science within varios communities and offers different views of how approaches of correlation and causality offer complementary methods to advance in science and engineering today. The RDA Big Data Analytics Group seeks to understand what approaches are not only technically feasible, but also scientifically feasible. The lighthouse Goal of the RDA Big Data Analytics Group is a classification of clever combinations of various Technologies and scientific applications in order to provide clear recommendations to the scientific community what approaches are technicalla and scientifically feasible.

  15. Computational ecology as an emerging science

    PubMed Central

    Petrovskii, Sergei; Petrovskaya, Natalia

    2012-01-01

    It has long been recognized that numerical modelling and computer simulations can be used as a powerful research tool to understand, and sometimes to predict, the tendencies and peculiarities in the dynamics of populations and ecosystems. It has been, however, much less appreciated that the context of modelling and simulations in ecology is essentially different from those that normally exist in other natural sciences. In our paper, we review the computational challenges arising in modern ecology in the spirit of computational mathematics, i.e. with our main focus on the choice and use of adequate numerical methods. Somewhat paradoxically, the complexity of ecological problems does not always require the use of complex computational methods. This paradox, however, can be easily resolved if we recall that application of sophisticated computational methods usually requires clear and unambiguous mathematical problem statement as well as clearly defined benchmark information for model validation. At the same time, many ecological problems still do not have mathematically accurate and unambiguous description, and available field data are often very noisy, and hence it can be hard to understand how the results of computations should be interpreted from the ecological viewpoint. In this scientific context, computational ecology has to deal with a new paradigm: conventional issues of numerical modelling such as convergence and stability become less important than the qualitative analysis that can be provided with the help of computational techniques. We discuss this paradigm by considering computational challenges arising in several specific ecological applications. PMID:23565336

  16. Component-based integration of chemistry and optimization software.

    PubMed

    Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L

    2004-11-15

    Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.

  17. Scientific Services on the Cloud

    NASA Astrophysics Data System (ADS)

    Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong

    Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.

  18. Recent Advances in X-ray Cone-beam Computed Laminography.

    PubMed

    O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas

    2016-10-06

    X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.

  19. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  20. Education through the prism of computation

    NASA Astrophysics Data System (ADS)

    Kaurov, Vitaliy

    2014-03-01

    With the rapid development of technology, computation claims its irrevocable place among research components of modern science. Thus to foster a successful future scientist, engineer or educator we need to add computation to the foundations of scientific education. We will discuss what type of paradigm shifts it brings to these foundations on the example of Wolfram Science Summer School. It is one of the most advanced computational outreach programs run by Wolfram Foundation, welcoming participants of almost all ages and backgrounds. Centered on complexity science and physics, it also covers numerous adjacent and interdisciplinary fields such as finance, biology, medicine and even music. We will talk about educational and research experiences in this program during the 12 years of its existence. We will review statistics and outputs the program has produced. Among these are interactive electronic publications at the Wolfram Demonstrations Project and contributions to the computational knowledge engine Wolfram|Alpa.

  1. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostadin, Damevski

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less

  2. Data Processing Center of Radioastron Project: 3 years of operation.

    NASA Astrophysics Data System (ADS)

    Shatskaya, Marina

    ASC DATA PROCESSING CENTER (DPC) of Radioastron Project is a fail-safe complex centralized system of interconnected software/ hardware components along with organizational procedures. Tasks facing of the scientific data processing center are organization of service information exchange, collection of scientific data, storage of all of scientific data, data science oriented processing. DPC takes part in the informational exchange with two tracking stations in Pushchino (Russia) and Green Bank (USA), about 30 ground telescopes, ballistic center, tracking headquarters and session scheduling center. Enormous flows of information go to Astro Space Center. For the inquiring of enormous data volumes we develop specialized network infrastructure, Internet channels and storage. The computer complex has been designed at the Astro Space Center (ASC) of Lebedev Physical Institute and includes: - 800 TB on-line storage, - 2000 TB hard drive archive, - backup system on magnetic tapes (2000 TB); - 24 TB redundant storage at Pushchino Radio Astronomy Observatory; - Web and FTP servers, - DPC management and data transmission networks. The structure and functions of ASC Data Processing Center are fully adequate to the data processing requirements of the Radioastron Mission and has been successfully confirmed during Fringe Search, Early Science Program and first year of Key Science Program.

  3. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.

    2013-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband Platform facilitates the addition of new scientific methods, which are written by earth scientists in a number of languages such as C, C++, Fortran, and Python. The Broadband Platform's modular design also supports the reuse of existing software modules as building blocks to create new scientific methods. Additionally, the Platform implements a wrapper around each scientific module, converting input and output files to and from the specific formats required (or produced) by individual scientific codes. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes the addition of 3 new simulation methods and several new data products, such as map and distance-based goodness of fit plots. Finally, as the number and complexity of scenarios simulated using the Broadband Platform increase, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  4. Computational Science: A Research Methodology for the 21st Century

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2004-03-01

    Computational simulation - a means of scientific discovery that employs computer systems to simulate a physical system according to laws derived from theory and experiment - has attained peer status with theory and experiment. Important advances in basic science are accomplished by a new "sociology" for ultrascale scientific computing capability (USSCC), a fusion of sustained advances in scientific models, mathematical algorithms, computer architecture, and scientific software engineering. Expansion of current capabilities by factors of 100 - 1000 open up new vistas for scientific discovery: long term climatic variability and change, macroscopic material design from correlated behavior at the nanoscale, design and optimization of magnetic confinement fusion reactors, strong interactions on a computational lattice through quantum chromodynamics, and stellar explosions and element production. The "virtual prototype," made possible by this expansion, can markedly reduce time-to-market for industrial applications such as jet engines and safer, more fuel efficient cleaner cars. In order to develop USSCC, the National Energy Research Scientific Computing Center (NERSC) announced the competition "Innovative and Novel Computational Impact on Theory and Experiment" (INCITE), with no requirement for current DOE sponsorship. Fifty nine proposals for grand challenge scientific problems were submitted for a small number of awards. The successful grants, and their preliminary progress, will be described.

  5. Computational Aspects of Data Assimilation and the ESMF

    NASA Technical Reports Server (NTRS)

    daSilva, A.

    2003-01-01

    The scientific challenge of developing advanced data assimilation applications is a daunting task. Independently developed components may have incompatible interfaces or may be written in different computer languages. The high-performance computer (HPC) platforms required by numerically intensive Earth system applications are complex, varied, rapidly evolving and multi-part systems themselves. Since the market for high-end platforms is relatively small, there is little robust middleware available to buffer the modeler from the difficulties of HPC programming. To complicate matters further, the collaborations required to develop large Earth system applications often span initiatives, institutions and agencies, involve geoscience, software engineering, and computer science communities, and cross national borders.The Earth System Modeling Framework (ESMF) project is a concerted response to these challenges. Its goal is to increase software reuse, interoperability, ease of use and performance in Earth system models through the use of a common software framework, developed in an open manner by leaders in the modeling community. The ESMF addresses the technical and to some extent the cultural - aspects of Earth system modeling, laying the groundwork for addressing the more difficult scientific aspects, such as the physical compatibility of components, in the future. In this talk we will discuss the general philosophy and architecture of the ESMF, focussing on those capabilities useful for developing advanced data assimilation applications.

  6. XVIS: Visualization for the Extreme-Scale Scientific-Computation Ecosystem Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geveci, Berk; Maynard, Robert

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respectivemore » features into a new visualization toolkit called VTK-m.« less

  7. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    PubMed

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  8. Assessing the role of mini-applications in predicting key performance characteristics of scientific and engineering applications

    DOE PAGES

    Barrett, R. F.; Crozier, P. S.; Doerfler, D. W.; ...

    2014-09-28

    Computational science and engineering application programs are typically large, complex, and dynamic, and are often constrained by distribution limitations. As a means of making tractable rapid explorations of scientific and engineering application programs in the context of new, emerging, and future computing architectures, a suite of miniapps has been created to serve as proxies for full scale applications. Each miniapp is designed to represent a key performance characteristic that does or is expected to significantly impact the runtime performance of an application program. In this paper we introduce a methodology for assessing the ability of these miniapps to effectively representmore » these performance issues. We applied this methodology to four miniapps, examining the linkage between them and an application they are intended to represent. Herein we evaluate the fidelity of that linkage. This work represents the initial steps required to begin to answer the question, ''Under what conditions does a miniapp represent a key performance characteristic in a full app?''« less

  9. dREL: a relational expression language for dictionary methods.

    PubMed

    Spadaccini, Nick; Castleden, Ian R; du Boulay, Doug; Hall, Sydney R

    2012-08-27

    The provision of precise metadata is an important but a largely underrated challenge for modern science [Nature 2009, 461, 145]. We describe here a dictionary methods language dREL that has been designed to enable complex data relationships to be expressed as formulaic scripts in data dictionaries written in DDLm [Spadaccini and Hall J. Chem. Inf. Model.2012 doi:10.1021/ci300075z]. dREL describes data relationships in a simple but powerful canonical form that is easy to read and understand and can be executed computationally to evaluate or validate data. The execution of dREL expressions is not a substitute for traditional scientific computation; it is to provide precise data dependency information to domain-specific definitions and a means for cross-validating data. Some scientific fields apply conventional programming languages to methods scripts but these tend to inhibit both dictionary development and accessibility. dREL removes the programming barrier and encourages the production of the metadata needed for seamless data archiving and exchange in science.

  10. hctsa: A Computational Framework for Automated Time-Series Phenotyping Using Massive Feature Extraction.

    PubMed

    Fulcher, Ben D; Jones, Nick S

    2017-11-22

    Phenotype measurements frequently take the form of time series, but we currently lack a systematic method for relating these complex data streams to scientifically meaningful outcomes, such as relating the movement dynamics of organisms to their genotype or measurements of brain dynamics of a patient to their disease diagnosis. Previous work addressed this problem by comparing implementations of thousands of diverse scientific time-series analysis methods in an approach termed highly comparative time-series analysis. Here, we introduce hctsa, a software tool for applying this methodological approach to data. hctsa includes an architecture for computing over 7,700 time-series features and a suite of analysis and visualization algorithms to automatically select useful and interpretable time-series features for a given application. Using exemplar applications to high-throughput phenotyping experiments, we show how hctsa allows researchers to leverage decades of time-series research to quantify and understand informative structure in time-series data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Protein Modelling: What Happened to the “Protein Structure Gap”?

    PubMed Central

    Schwede, Torsten

    2013-01-01

    Computational modeling and prediction of three-dimensional macromolecular structures and complexes from their sequence has been a long standing vision in structural biology as it holds the promise to bypass part of the laborious process of experimental structure solution. Over the last two decades, a paradigm shift has occurred: starting from a situation where the “structure knowledge gap” between the huge number of protein sequences and small number of known structures has hampered the widespread use of structure-based approaches in life science research, today some form of structural information – either experimental or computational – is available for the majority of amino acids encoded by common model organism genomes. Template based homology modeling techniques have matured to a point where they are now routinely used to complement experimental techniques. With the scientific focus of interest moving towards larger macromolecular complexes and dynamic networks of interactions, the integration of computational modeling methods with low-resolution experimental techniques allows studying large and complex molecular machines. Computational modeling and prediction techniques are still facing a number of challenges which hamper the more widespread use by the non-expert scientist. For example, it is often difficult to convey the underlying assumptions of a computational technique, as well as the expected accuracy and structural variability of a specific model. However, these aspects are crucial to understand the limitations of a model, and to decide which interpretations and conclusions can be supported. PMID:24010712

  12. Combining high performance simulation, data acquisition, and graphics display computers

    NASA Technical Reports Server (NTRS)

    Hickman, Robert J.

    1989-01-01

    Issues involved in the continuing development of an advanced simulation complex are discussed. This approach provides the capability to perform the majority of tests on advanced systems, non-destructively. The controlled test environments can be replicated to examine the response of the systems under test to alternative treatments of the system control design, or test the function and qualification of specific hardware. Field tests verify that the elements simulated in the laboratories are sufficient. The digital computer is hosted by a Digital Equipment Corp. MicroVAX computer with an Aptec Computer Systems Model 24 I/O computer performing the communication function. An Applied Dynamics International AD100 performs the high speed simulation computing and an Evans and Sutherland PS350 performs on-line graphics display. A Scientific Computer Systems SCS40 acts as a high performance FORTRAN program processor to support the complex, by generating numerous large files from programs coded in FORTRAN that are required for the real time processing. Four programming languages are involved in the process, FORTRAN, ADSIM, ADRIO, and STAPLE. FORTRAN is employed on the MicroVAX host to initialize and terminate the simulation runs on the system. The generation of the data files on the SCS40 also is performed with FORTRAN programs. ADSIM and ADIRO are used to program the processing elements of the AD100 and its IOCP processor. STAPLE is used to program the Aptec DIP and DIA processors.

  13. Joint the Center for Applied Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamblin, Todd; Bremer, Timo; Van Essen, Brian

    The Center for Applied Scientific Computing serves as Livermore Lab’s window to the broader computer science, computational physics, applied mathematics, and data science research communities. In collaboration with academic, industrial, and other government laboratory partners, we conduct world-class scientific research and development on problems critical to national security. CASC applies the power of high-performance computing and the efficiency of modern computational methods to the realms of stockpile stewardship, cyber and energy security, and knowledge discovery for intelligence applications.

  14. The neurotechnological revolution: unlocking the brain's secrets to develop innovative technologies as well as treatments for neurological diseases.

    PubMed

    Banks, Jim

    2015-01-01

    The brain contains all that makes us human, but its complexity is the source of both inspiration and frailty. Aging population is increasingly in need of effective care and therapies for brain diseases, including stroke, Parkinson's disease and Alzheimer's disease. The world's scientific community working hard to unravel the secrets of the brain's computing power and to devise technologies that can heal it when it fails and restore critical functions to patients with neurological conditions. Neurotechnology is the emerging field that brings together the development of technologies to study the brain and devices that improve and repair brain function. What is certain is the momentum behind neurotechnological research is building, and whether through implants, BCIs, or innovative computational systems inspired by the human brain, more light will be shed on our most complex and most precious organ, which will no doubt lead to effective treatment for many neurological conditions.

  15. The fuzzy cube and causal efficacy: representation of concomitant mechanisms in stroke.

    PubMed

    Jobe, Thomas H.; Helgason, Cathy M.

    1998-04-01

    Twentieth century medical science has embraced nineteenth century Boolean probability theory based upon two-valued Aristotelian logic. With the later addition of bit-based, von Neumann structured computational architectures, an epistemology based on randomness has led to a bivalent epidemiological methodology that dominates medical decision making. In contrast, fuzzy logic, based on twentieth century multi-valued logic, and computational structures that are content addressed and adaptively modified, has advanced a new scientific paradigm for the twenty-first century. Diseases such as stroke involve multiple concomitant causal factors that are difficult to represent using conventional statistical methods. We tested which paradigm best represented this complex multi-causal clinical phenomenon-stroke. We show that the fuzzy logic paradigm better represented clinical complexity in cerebrovascular disease than current probability theory based methodology. We believe this finding is generalizable to all of clinical science since multiple concomitant causal factors are involved in nearly all known pathological processes.

  16. Managing large-scale workflow execution from resource provisioning to provenance tracking: The CyberShake example

    USGS Publications Warehouse

    Deelman, E.; Callaghan, S.; Field, E.; Francoeur, H.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T.H.; Kesselman, C.; Maechling, P.; Mehringer, J.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.

    2006-01-01

    This paper discusses the process of building an environment where large-scale, complex, scientific analysis can be scheduled onto a heterogeneous collection of computational and storage resources. The example application is the Southern California Earthquake Center (SCEC) CyberShake project, an analysis designed to compute probabilistic seismic hazard curves for sites in the Los Angeles area. We explain which software tools were used to build to the system, describe their functionality and interactions. We show the results of running the CyberShake analysis that included over 250,000 jobs using resources available through SCEC and the TeraGrid. ?? 2006 IEEE.

  17. Role of Remotely Sensed Observations and Computational Systems in Support of Decision-Making in Developing and Fragile States

    NASA Technical Reports Server (NTRS)

    Khan, Maudood; Rickman, Doug; Limaye, Ashutosh; Crosson, Bill; Layman, Charles; Hemmings, Sarah

    2010-01-01

    The topics covered in this slide presentation are: (1) Post-war growth of U.S scientific enterprise, (2) Success of air quality regulations, (3) Complexity and coupled systems, (4) Advances in remote sensing technology, (5) Development planning in the 21stcentury, (5a) The challenge for policy maker and scientist, (5b) Decision-making science, (5c) Role of public-private partnerships.

  18. 78 FR 41046 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Services Administration, notice is hereby given that the Advanced Scientific Computing Advisory Committee will be renewed for a two-year period beginning on July 1, 2013. The Committee will provide advice to the Director, Office of Science (DOE), on the Advanced Scientific Computing Research Program managed...

  19. Science preparedness and science response: perspectives on the dynamics of preparedness conference.

    PubMed

    Lant, Timothy; Lurie, Nicole

    2013-01-01

    The ability of the scientific modeling community to meaningfully contribute to postevent response activities during public health emergencies was the direct result of a discrete set of preparedness activities as well as advances in theory and technology. Scientists and decision-makers have recognized the value of developing scientific tools (e.g. models, data sets, communities of practice) to prepare them to be able to respond quickly--in a manner similar to preparedness activities by first-responders and emergency managers. Computational models have matured in their ability to better inform response plans by modeling human behaviors and complex systems. We advocate for further development of science preparedness activities as deliberate actions taken in advance of an unpredicted event (or an event with unknown consequences) to increase the scientific tools and evidence-base available to decision makers and the whole-of-community to limit adverse outcomes.

  20. Explore the virtual side of earth science

    USGS Publications Warehouse

    ,

    1998-01-01

    Scientists have always struggled to find an appropriate technology that could represent three-dimensional (3-D) data, facilitate dynamic analysis, and encourage on-the-fly interactivity. In the recent past, scientific visualization has increased the scientist's ability to visualize information, but it has not provided the interactive environment necessary for rapidly changing the model or for viewing the model in ways not predetermined by the visualization specialist. Virtual Reality Modeling Language (VRML 2.0) is a new environment for visualizing 3-D information spaces and is accessible through the Internet with current browser technologies. Researchers from the U.S. Geological Survey (USGS) are using VRML as a scientific visualization tool to help convey complex scientific concepts to various audiences. Kevin W. Laurent, computer scientist, and Maura J. Hogan, technical information specialist, have created a collection of VRML models available through the Internet at Virtual Earth Science (virtual.er.usgs.gov).

  1. High-throughput neuroimaging-genetics computational infrastructure

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D.; Franco, Joseph; Toga, Arthur W.

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize diverse suites of software tools and web-services. These pipeline workflows are represented as portable XML objects which transfer the execution instructions and user specifications from the client user machine to remote pipeline servers for distributed computing. Using Alzheimer's and Parkinson's data, we provide several examples of translational applications using this infrastructure1. PMID:24795619

  2. Making Advanced Scientific Algorithms and Big Scientific Data Management More Accessible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatakrishnan, S. V.; Mohan, K. Aditya; Beattie, Keith

    2016-02-14

    Synchrotrons such as the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory are known as user facilities. They are sources of extremely bright X-ray beams, and scientists come from all over the world to perform experiments that require these beams. As the complexity of experiments has increased, and the size and rates of data sets has exploded, managing, analyzing and presenting the data collected at synchrotrons has been an increasing challenge. The ALS has partnered with high performance computing, fast networking, and applied mathematics groups to create a"super-facility", giving users simultaneous access to the experimental, computational, and algorithmic resourcesmore » to overcome this challenge. This combination forms an efficient closed loop, where data despite its high rate and volume is transferred and processed, in many cases immediately and automatically, on appropriate compute resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beam-time. In this paper, We will present work done on advanced tomographic reconstruction algorithms to support users of the 3D micron-scale imaging instrument (Beamline 8.3.2, hard X-ray micro-tomography).« less

  3. Transmedia Storytelling in Science Communication: One Subject, Multiple Media, Multiple Stories

    NASA Astrophysics Data System (ADS)

    Unger, M.; Moloney, K.

    2012-12-01

    Each communication medium has particular storytelling strengths. For example, video is particularly good at illustrating a progression of events, text at background and context, and games at describing systems. In what USC's Prof. Henry Jenkins described as "transmedia storytelling," multiple media are used simultaneously, in an expansive rather than repetitive way, to better tell a single, complex story. The audience is given multiple entry points to the story, and the story is exposed to diverse and dispersed audiences, ultimately engaging a broader public. We will examine the effectiveness of a transmedia approach to communicating scientific and other complex concepts to a broad and diverse audience. Using the recently developed Educational Visitor Center at the NCAR-Wyoming Supercomputing Center as a case study, we will evaluate the reach of various means of presenting information about the geosciences, climate change and computational science. These will include an assessment of video, mechanical and digital interactive elements, animated movie segments, web-based content, photography, scientific visualizations, printed material and docent-led activities.

  4. Measuring the Level of Complexity of Scientific Inquiries: The LCSI Index

    ERIC Educational Resources Information Center

    Eilam, Efrat

    2015-01-01

    The study developed and applied an index for measuring the level of complexity of full authentic scientific inquiry. Complexity is a fundamental attribute of real life scientific research. The level of complexity is an overall reflection of complex cognitive and metacognitive processes which are required for navigating the authentic inquiry…

  5. Object-oriented design and implementation of CFDLab: a computer-assisted learning tool for fluid dynamics using dual reciprocity boundary element methodology

    NASA Astrophysics Data System (ADS)

    Friedrich, J.

    1999-08-01

    As lecturers, our main concern and goal is to develop more attractive and efficient ways of communicating up-to-date scientific knowledge to our students and facilitate an in-depth understanding of physical phenomena. Computer-based instruction is very promising to help both teachers and learners in their difficult task, which involves complex cognitive psychological processes. This complexity is reflected in high demands on the design and implementation methods used to create computer-assisted learning (CAL) programs. Due to their concepts, flexibility, maintainability and extended library resources, object-oriented modeling techniques are very suitable to produce this type of pedagogical tool. Computational fluid dynamics (CFD) enjoys not only a growing importance in today's research, but is also very powerful for teaching and learning fluid dynamics. For this purpose, an educational PC program for university level called 'CFDLab 1.1' for Windows™ was developed with an interactive graphical user interface (GUI) for multitasking and point-and-click operations. It uses the dual reciprocity boundary element method as a versatile numerical scheme, allowing to handle a variety of relevant governing equations in two dimensions on personal computers due to its simple pre- and postprocessing including 2D Laplace, Poisson, diffusion, transient convection-diffusion.

  6. Complexity, information loss, and model building: from neuro- to cognitive dynamics

    NASA Astrophysics Data System (ADS)

    Arecchi, F. Tito

    2007-06-01

    A scientific problem described within a given code is mapped by a corresponding computational problem, We call complexity (algorithmic) the bit length of the shortest instruction which solves the problem. Deterministic chaos in general affects a dynamical systems making the corresponding problem experimentally and computationally heavy, since one must reset the initial conditions at a rate higher than that of information loss (Kolmogorov entropy). One can control chaos by adding to the system new degrees of freedom (information swapping: information lost by chaos is replaced by that arising from the new degrees of freedom). This implies a change of code, or a new augmented model. Within a single code, changing hypotheses is equivalent to fixing different sets of control parameters, each with a different a-priori probability, to be then confirmed and transformed to an a-posteriori probability via Bayes theorem. Sequential application of Bayes rule is nothing else than the Darwinian strategy in evolutionary biology. The sequence is a steepest ascent algorithm, which stops once maximum probability has been reached. At this point the hypothesis exploration stops. By changing code (and hence the set of relevant variables) one can start again to formulate new classes of hypotheses . We call semantic complexity the number of accessible scientific codes, or models, that describe a situation. It is however a fuzzy concept, in so far as this number changes due to interaction of the operator with the system under investigation. These considerations are illustrated with reference to a cognitive task, starting from synchronization of neuron arrays in a perceptual area and tracing the putative path toward a model building.

  7. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert; Gerber, Richard

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greatermore » — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, (5) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less

  8. Enabling Big Geoscience Data Analytics with a Cloud-Based, MapReduce-Enabled and Service-Oriented Workflow Framework

    PubMed Central

    Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew

    2015-01-01

    Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists. PMID:25742012

  9. Stream Processors

    NASA Astrophysics Data System (ADS)

    Erez, Mattan; Dally, William J.

    Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.

  10. Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework.

    PubMed

    Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew

    2015-01-01

    Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists.

  11. The adaption and use of research codes for performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebetrau, A.M.

    1987-05-01

    Models of real-world phenomena are developed for many reasons. The models are usually, if not always, implemented in the form of a computer code. The characteristics of a code are determined largely by its intended use. Realizations or implementations of detailed mathematical models of complex physical and/or chemical processes are often referred to as research or scientific (RS) codes. Research codes typically require large amounts of computing time. One example of an RS code is a finite-element code for solving complex systems of differential equations that describe mass transfer through some geologic medium. Considerable computing time is required because computationsmore » are done at many points in time and/or space. Codes used to evaluate the overall performance of real-world physical systems are called performance assessment (PA) codes. Performance assessment codes are used to conduct simulated experiments involving systems that cannot be directly observed. Thus, PA codes usually involve repeated simulations of system performance in situations that preclude the use of conventional experimental and statistical methods. 3 figs.« less

  12. Decision support methods for the detection of adverse events in post-marketing data.

    PubMed

    Hauben, M; Bate, A

    2009-04-01

    Spontaneous reporting is a crucial component of post-marketing drug safety surveillance despite its significant limitations. The size and complexity of some spontaneous reporting system databases represent a challenge for drug safety professionals who traditionally have relied heavily on the scientific and clinical acumen of the prepared mind. Computer algorithms that calculate statistical measures of reporting frequency for huge numbers of drug-event combinations are increasingly used to support pharamcovigilance analysts screening large spontaneous reporting system databases. After an overview of pharmacovigilance and spontaneous reporting systems, we discuss the theory and application of contemporary computer algorithms in regular use, those under development, and the practical considerations involved in the implementation of computer algorithms within a comprehensive and holistic drug safety signal detection program.

  13. Processing of meteorological data with ultrasonic thermoanemometers

    NASA Astrophysics Data System (ADS)

    Telminov, A. E.; Bogushevich, A. Ya.; Korolkov, V. A.; Botygin, I. A.

    2017-11-01

    The article describes a software system intended for supporting scientific researches of the atmosphere during the processing of data gathered by multi-level ultrasonic complexes for automated monitoring of meteorological and turbulent parameters in the ground layer of the atmosphere. The system allows to process files containing data sets of temperature instantaneous values, three orthogonal components of wind speed, humidity and pressure. The processing task execution is done in multiple stages. During the first stage, the system executes researcher's query for meteorological parameters. At the second stage, the system computes series of standard statistical meteorological field properties, such as averages, dispersion, standard deviation, asymmetry coefficients, excess, correlation etc. The third stage is necessary to prepare for computing the parameters of atmospheric turbulence. The computation results are displayed to user and stored at hard drive.

  14. Integrating Data Base into the Elementary School Science Program.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document describes seven science activities that combine scientific principles and computers. The objectives for the activities are to show students how the computer can be used as a tool to store and arrange scientific data, provide students with experience using the computer as a tool to manage scientific data, and provide students with…

  15. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  16. USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment. Number 25.

    DTIC Science & Technology

    1976-10-29

    is necessary to consider the problem of diffraction at a_cylindrical cavity. Some methods of solving this problem become very un- wieldy, when...applied to such a cavity of large wave dimensions, even with the aid of a digital computer. In the simpler Watson method , the series represent- ing the...potential of cylindrical waves is transformed to an integral in the complex plane and evaluated as the sum of residues. A difficulty in this method

  17. Orchestrating Distributed Resource Ensembles for Petascale Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldin, Ilya; Mandal, Anirban; Ruth, Paul

    2014-04-24

    Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstractmore » API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.« less

  18. Gpu Implementation of a Viscous Flow Solver on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Xu, Tianhao; Chen, Long

    2016-06-01

    Graphics processing units have gained popularities in scientific computing over past several years due to their outstanding parallel computing capability. Computational fluid dynamics applications involve large amounts of calculations, therefore a latest GPU card is preferable of which the peak computing performance and memory bandwidth are much better than a contemporary high-end CPU. We herein focus on the detailed implementation of our GPU targeting Reynolds-averaged Navier-Stokes equations solver based on finite-volume method. The solver employs a vertex-centered scheme on unstructured grids for the sake of being capable of handling complex topologies. Multiple optimizations are carried out to improve the memory accessing performance and kernel utilization. Both steady and unsteady flow simulation cases are carried out using explicit Runge-Kutta scheme. The solver with GPU acceleration in this paper is demonstrated to have competitive advantages over the CPU targeting one.

  19. Understanding Islamist political violence through computational social simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Jennifer H; Mackerrow, Edward P; Patelli, Paolo G

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates themore » computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.« less

  20. PREFACE: 2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013. The Conference was attended by more than 280 participants and hosted about 400 oral, poster, and virtual presentations while counted more than 600 pre-registered authors. The second IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel sessions were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. Further information on the editors, speakers and committees is available in the attached pdf.

  1. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun

    2015-01-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students (N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation…

  2. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebel, Oliver

    2009-11-20

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research coveredmore » in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle acceleration, physicists model LWFAs computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and knowledge discovery from complex LWFA simulation data a challenging task. To address these challenges this thesis describes the integration of the visualization system VisIt and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of extremely large three-dimensional particle datasets. Researchers are especially interested in beams of high-energy particles formed during the course of a simulation. This thesis describes novel methods for automatic detection and analysis of particle beams enabling a more accurate and efficient data analysis process. By integrating these automated analysis methods with visualization, this research enables more accurate, efficient, and effective analysis of LWFA simulation data than previously possible.« less

  3. Simulating and mapping spatial complexity using multi-scale techniques

    USGS Publications Warehouse

    De Cola, L.

    1994-01-01

    A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author

  4. A Parallel Numerical Micromagnetic Code Using FEniCS

    NASA Astrophysics Data System (ADS)

    Nagy, L.; Williams, W.; Mitchell, L.

    2013-12-01

    Many problems in the geosciences depend on understanding the ability of magnetic minerals to provide stable paleomagnetic recordings. Numerical micromagnetic modelling allows us to calculate the domain structures found in naturally occurring magnetic materials. However the computational cost rises exceedingly quickly with respect to the size and complexity of the geometries that we wish to model. This problem is compounded by the fact that the modern processor design no longer focuses on the speed at which calculations are performed, but rather on the number of computational units amongst which we may distribute our calculations. Consequently to better exploit modern computational resources our micromagnetic simulations must "go parallel". We present a parallel and scalable micromagnetics code written using FEniCS. FEniCS is a multinational collaboration involving several institutions (University of Cambridge, University of Chicago, The Simula Research Laboratory, etc.) that aims to provide a set of tools for writing scientific software; in particular software that employs the finite element method. The advantages of this approach are the leveraging of pre-existing projects from the world of scientific computing (PETSc, Trilinos, Metis/Parmetis, etc.) and exposing these so that researchers may pose problems in a manner closer to the mathematical language of their domain. Our code provides a scriptable interface (in Python) that allows users to not only run micromagnetic models in parallel, but also to perform pre/post processing of data.

  5. Visualization Techniques in Space and Atmospheric Sciences

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)

    1995-01-01

    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.

  6. OMPC: an Open-Source MATLAB®-to-Python Compiler

    PubMed Central

    Jurica, Peter; van Leeuwen, Cees

    2008-01-01

    Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB®, the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB®-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB® functions into Python programs. The imported MATLAB® modules will run independently of MATLAB®, relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB®. OMPC is available at http://ompc.juricap.com. PMID:19225577

  7. Supporting Scientific Experimentation and Reasoning in Young Elementary School Students

    NASA Astrophysics Data System (ADS)

    Varma, Keisha

    2014-06-01

    Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.

  8. ROSE Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, D.; Yi, Q.; Buduc, R.

    2005-02-17

    ROSE is an object-oriented software infrastructure for source-to-source translation that provides an interface for programmers to write their own specialized translators for optimizing scientific applications. ROSE is a part of current research on telescoping languages, which provides optimizations of the use of libraries in scientific applications. ROSE defines approaches to extend the optimization techniques, common in well defined languages, to the optimization of scientific applications using well defined libraries. ROSE includes a rich set of tools for generating customized transformations to support optimization of applications codes. We currently support full C and C++ (including template instantiation etc.), with Fortran 90more » support under development as part of a collaboration and contract with Rice to use their version of the open source Open64 F90 front-end. ROSE represents an attempt to define an open compiler infrastructure to handle the full complexity of full scale DOE applications codes using the languages common to scientific computing within DOE. We expect that such an infrastructure will also be useful for the development of numerous tools that may then realistically expect to work on DOE full scale applications.« less

  9. CHEMICAL REACTIONS AS PETITE RENDEZVOUS: THE USE OF METAPHOR IN MATERIALS SCIENCE EDUCATION

    PubMed Central

    Uskoković, Vuk

    2015-01-01

    Every time we communicate our science, we are involuntarily involved in an educational activity, affecting the listeners’ methodology and motivation. In a beautiful metaphor, late Nobel Laureate, Richard E. Smalley compared interacting atoms and molecules to boys and girls falling in love. Elaborated and exemplified with a couple of entertaining analogies in this discourse is the effectiveness of the use of metaphors in illustrating scientific concepts to both scientific novices and peers. Human brain has been considered to be a complex neural circuitry for the computation of metaphors, which explains the naturalness of their usage, especially when solid arguments could be given in support of the thesis that scientific imagery in general presents a collection of mathematically operable metaphors. On top of this, knowledge could be enriched through logic alone, but new concepts could be learned only through analogies. The greater pervasion of metaphors in scientific presentations could boost their inspirational potential, make the audience more attentive and receptive to their contents, and, finally, expand their educational prospect and enable their outreach to a far broader audience than it has been generally accomplished. PMID:26448680

  10. Scientific Computing Paradigm

    NASA Technical Reports Server (NTRS)

    VanZandt, John

    1994-01-01

    The usage model of supercomputers for scientific applications, such as computational fluid dynamics (CFD), has changed over the years. Scientific visualization has moved scientists away from looking at numbers to looking at three-dimensional images, which capture the meaning of the data. This change has impacted the system models for computing. This report details the model which is used by scientists at NASA's research centers.

  11. Commentary: Considerations in Pedagogy and Assessment in the Use of Computers to Promote Learning about Scientific Models

    ERIC Educational Resources Information Center

    Adams, Stephen T.

    2004-01-01

    Although one role of computers in science education is to help students learn specific science concepts, computers are especially intriguing as a vehicle for fostering the development of epistemological knowledge about the nature of scientific knowledge--what it means to "know" in a scientific sense (diSessa, 1985). In this vein, the…

  12. High-End Scientific Computing

    EPA Pesticide Factsheets

    EPA uses high-end scientific computing, geospatial services and remote sensing/imagery analysis to support EPA's mission. The Center for Environmental Computing (CEC) assists the Agency's program offices and regions to meet staff needs in these areas.

  13. Working Group on Virtual Data Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D. N.; Palanisamy, G.; van Dam, K. K.

    2016-02-04

    This report is the outcome of a workshop commissioned by the U.S. Department of Energy’s (DOE) Climate and Environmental Sciences Division (CESD) to examine current and future data infrastructure requirements foundational for achieving CESD scientific mission goals in advancing a robust, predictive understanding of Earth’s climate and environmental systems. Over the past several years, data volumes in CESD disciplines have risen sharply to unprecedented levels (tens of petabytes). Moreover, the complexity and diversity of this research data— including simulations, observations, and reanalysis— have grown significantly, posing new challenges for data capture, storage, verification, analysis, and integration. With the trends ofmore » increased data volume (in the hundreds of petabytes), more complex analysis processes, and growing cross-disciplinary collaborations, it is timely to investigate whether the CESD community has the computational and data support needed to fully realize the scientific potential of its data collections. In recognition of the challenges, a partnership is forming across CESD and among national and international agencies to examine the viability of creating an integrated, collaborative data infrastructure: a Virtual Laboratory. The overarching goal of this report is to identify the community’s key data technology requirements and high-priority development needs for sustaining and growing its scientific discovery potential. The report also aims to map these requirements to existing solutions and to identify gaps in current services, tools, and infrastructure that will need to be addressed in the short, medium, and long term to advance scientific progress.« less

  14. Data And Informatics Working Group On Virtual Data Integration Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D. N.; Palanisamy, G.; Dam, K. K.

    2015-10-13

    This report is the outcome of a workshop that was commissioned by the Department of Energy’s Climate and Environmental Sciences Division (CESD) to examine current and future data infrastructure requirements that would be foundational to achieving CESD’s scientific mission goals. Over the past several years, data volumes in CESD disciplines have risen sharply to unprecedented levels (tens of petabytes). So too has the complexity and diversity of the research data (simulation, observation, and reanalysis) needing to be captured, stored, verified, analyzed, and integrated. With the trends of increased data volume (in the hundreds of petabytes), more complex analysis processes, andmore » growing crossdisciplinary collaborations, it is timely to investigate whether the CESD community has the right computational and data support to realize the full scientific potential from its data collections. In recognition of the challenges, a partnership is forming across CESD and with national and international agencies to investigate the viability of creating an integrated, collaborative data infrastructure: a virtual laboratory. The overarching goal of this report is to identify the community’s key data technology requirements and high-priority development needs for sustaining and growing their scientific discovery potential. The report also aims to map these requirements to existing solutions and to identify gaps in current services, tools, and infrastructure that will need to be addressed in the short, medium, and long term so as not to impede scientific progress« less

  15. [AERA. Dream machines and computing practices at the Mathematical Center].

    PubMed

    Alberts, Gerard; De Beer, Huub T

    2008-01-01

    Dream machines may be just as effective as the ones materialised. Their symbolic thrust can be quite powerful. The Amsterdam 'Mathematisch Centrum' (Mathematical Center), founded February 11, 1946, created a Computing Department in an effort to realise its goal of serving society. When Aad van Wijngaarden was appointed as head of the Computing Department, however, he claimed space for scientific research and computer construction, next to computing as a service. Still, the computing service following the five stage style of Hartree's numerical analysis remained a dominant characteristic of the work of the Computing Department. The high level of ambition held by Aad van Wijngaarden lead to ever renewed projections of big automatic computers, symbolised by the never-built AERA. Even a machine that was actually constructed, the ARRA which followed A.D. Booth's design of the ARC, never made it into real operation. It did serve Van Wijngaarden to bluff his way into the computer age by midsummer 1952. Not until January 1954 did the computing department have a working stored program computer, which for reasons of policy went under the same name: ARRA. After just one other machine, the ARMAC, had been produced, a separate company, Electrologica, was set up for the manufacture of computers, which produced the rather successful X1 computer. The combination of ambition and absence of a working machine lead to a high level of work on programming, way beyond the usual ideas of libraries of subroutines. Edsger W. Dijkstra in particular led the way to an emphasis on the duties of the programmer within the pattern of numerical analysis. Programs generating programs, known elsewhere as autocoding systems, were at the 'Mathematisch Centrum' called 'superprograms'. Practical examples were usually called a 'complex', in Dutch, where in English one might say 'system'. Historically, this is where software begins. Dekker's matrix complex, Dijkstra's interrupt system, Dijkstra and Zonneveld's ALGOL compiler--which for housekeeping contained 'the complex'--were actual examples of such super programs. In 1960 this compiler gave the Mathematical Center a leading edge in the early development of software.

  16. A Complexity Approach to Evaluating National Scientific Systems through International Scientific Collaborations

    ERIC Educational Resources Information Center

    Zelnio, Ryan J.

    2013-01-01

    This dissertation seeks to contribute to a fuller understanding of how international scientific collaboration has affected national scientific systems. It does this by developing three methodological approaches grounded in social complexity theory and applying them to the evaluation of national scientific systems. The first methodology identifies…

  17. On the Relevancy of Efficient, Integrated Computer and Network Monitoring in HEP Distributed Online Environment

    NASA Astrophysics Data System (ADS)

    Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.

    Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.

  18. Data management and its role in delivering science at DOE BES user facilities - Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.; Jemian, Pete R.; Luitz, Steffen; Salnikov, Andrei A.; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Green, Mark L.

    2009-07-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research [1]. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need [2]. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve better diagnoses [3] - similarly, data fusion across BES facilities will lead to new scientific discoveries.

  19. The challenges of developing computational physics: the case of South Africa

    NASA Astrophysics Data System (ADS)

    Salagaram, T.; Chetty, N.

    2013-08-01

    Most modern scientific research problems are complex and interdisciplinary in nature. It is impossible to study such problems in detail without the use of computation in addition to theory and experiment. Although it is widely agreed that students should be introduced to computational methods at the undergraduate level, it remains a challenge to do this in a full traditional undergraduate curriculum. In this paper, we report on a survey that we conducted of undergraduate physics curricula in South Africa to determine the content and the approach taken in the teaching of computational physics. We also considered the pedagogy of computational physics at the postgraduate and research levels at various South African universities, research facilities and institutions. We conclude that the state of computational physics training in South Africa, especially at the undergraduate teaching level, is generally weak and needs to be given more attention at all universities. Failure to do so will impact negatively on the countrys capacity to grow its endeavours generally in the field of computational sciences, with negative impacts on research, and in commerce and industry.

  20. Fourier transform spectrometer controller for partitioned architectures

    NASA Astrophysics Data System (ADS)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  1. HERCULES: A Pattern Driven Code Transformation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartsaklis, Christos; Hernandez, Oscar R; Hsu, Chung-Hsing

    2012-01-01

    New parallel computers are emerging, but developing efficient scientific code for them remains difficult. A scientist must manage not only the science-domain complexity but also the performance-optimization complexity. HERCULES is a code transformation system designed to help the scientist to separate the two concerns, which improves code maintenance, and facilitates performance optimization. The system combines three technologies, code patterns, transformation scripts and compiler plugins, to provide the scientist with an environment to quickly implement code transformations that suit his needs. Unlike existing code optimization tools, HERCULES is unique in its focus on user-level accessibility. In this paper we discuss themore » design, implementation and an initial evaluation of HERCULES.« less

  2. Costa - Introduction to 2015 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, James E.

    In parallel with Sandia National Laboratories having two major locations (NM and CA), along with a number of smaller facilities across the nation, so too is the distribution of scientific, engineering and computing resources. As a part of Sandia’s Institutional Computing Program, CA site-based Sandia computer scientists and engineers have been providing mission and research staff with local CA resident expertise on computing options while also focusing on two growing high performance computing research problems. The first is how to increase system resilience to failure, as machines grow larger, more complex and heterogeneous. The second is how to ensure thatmore » computer hardware and configurations are optimized for specialized data analytical mission needs within the overall Sandia computing environment, including the HPC subenvironment. All of these activities support the larger Sandia effort in accelerating development and integration of high performance computing into national security missions. Sandia continues to both promote national R&D objectives, including the recent Presidential Executive Order establishing the National Strategic Computing Initiative and work to ensure that the full range of computing services and capabilities are available for all mission responsibilities, from national security to energy to homeland defense.« less

  3. USSR and Eastern Europe Scientifics Abstracts cybernetics, Computers, and Automation Technology No. 25

    DTIC Science & Technology

    1976-12-01

    considerably. A milk cow , for example, was previously evaluated chiefly according to its milk yield and the content of fat in its milk. Now to this have...been added qualitative evaluations such as its suitability for mechanical milking, the albumin content in its milk, its resistance to mastitis , and...head of cows and 30 to 50 sows. Now on large farms there are a thousand and more cows and pigbreeding complexes number several hundreds of sows

  4. Advanced computations in plasma physics

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2002-05-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.

  5. Software Carpentry and the Hydrological Sciences

    NASA Astrophysics Data System (ADS)

    Ahmadia, A. J.; Kees, C. E.; Farthing, M. W.

    2013-12-01

    Scientists are spending an increasing amount of time building and using hydrology software. However, most scientists are never taught how to do this efficiently. As a result, many are unaware of tools and practices that would allow them to write more reliable and maintainable code with less effort. As hydrology models increase in capability and enter use by a growing number of scientists and their communities, it is important that the scientific software development practices scale up to meet the challenges posed by increasing software complexity, lengthening software lifecycles, a growing number of stakeholders and contributers, and a broadened developer base that extends from application domains to high performance computing centers. Many of these challenges in complexity, lifecycles, and developer base have been successfully met by the open source community, and there are many lessons to be learned from their experiences and practices. Additionally, there is much wisdom to be found in the results of research studies conducted on software engineering itself. Software Carpentry aims to bridge the gap between the current state of software development and these known best practices for scientific software development, with a focus on hands-on exercises and practical advice based on the following principles: 1. Write programs for people, not computers. 2. Automate repetitive tasks 3. Use the computer to record history 4. Make incremental changes 5. Use version control 6. Don't repeat yourself (or others) 7. Plan for mistakes 8. Optimize software only after it works 9. Document design and purpose, not mechanics 10. Collaborate We discuss how these best practices, arising from solid foundations in research and experience, have been shown to help improve scientist's productivity and the reliability of their software.

  6. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    NASA Astrophysics Data System (ADS)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  7. Defining Computational Thinking for Mathematics and Science Classrooms

    ERIC Educational Resources Information Center

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  8. Ermittlung von Wortstaemmen in russischen wissenschaftlichen Fachsprachen mit Hilfe des Computers (Establishing Word Stems in Scientific Russian With the Aid of a Computer)

    ERIC Educational Resources Information Center

    Halbauer, Siegfried

    1976-01-01

    It was considered that students of intensive scientific Russian courses could learn vocabulary more efficiently if they were taught word stems and how to combine them with prefixes and suffixes to form scientific words. The computer programs developed to identify the most important stems is discussed. (Text is in German.) (FB)

  9. Scientific Visualization: The Modern Oscilloscope for "Seeing the Unseeable" (LBNL Summer Lecture Series)

    ScienceCinema

    Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division and Scientific Visualization Group

    2018-05-07

    Summer Lecture Series 2008: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  10. Instruction-Level Characterization of Scientific Computing Applications Using Hardware Performance Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y.; Cameron, K.W.

    1998-11-24

    Workload characterization has been proven an essential tool to architecture design and performance evaluation in both scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate, cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately demonstrating the potential performance benefit of any architectural or functional improvement in a new processor design. To solve these problems, many people rely on simulators,more » which have substantial constraints especially on large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the instruction level using hardware performance counters. It has the advantage of collecting instruction-level characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some insight to the problem that only a small percentage of processor peak performance can be achieved even for many very cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of an analytical microprocessor pipeline model and memory hierarchy model.« less

  11. Scientific Visualization, Seeing the Unseeable

    ScienceCinema

    LBNL

    2017-12-09

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  12. Web-based hydrodynamics computing

    NASA Astrophysics Data System (ADS)

    Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.

    2005-01-01

    Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.

  13. Web-based hydrodynamics computing

    NASA Astrophysics Data System (ADS)

    Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.

    2004-12-01

    Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.

  14. Development of an object-oriented finite element program: application to metal-forming and impact simulations

    NASA Astrophysics Data System (ADS)

    Pantale, O.; Caperaa, S.; Rakotomalala, R.

    2004-07-01

    During the last 50 years, the development of better numerical methods and more powerful computers has been a major enterprise for the scientific community. In the same time, the finite element method has become a widely used tool for researchers and engineers. Recent advances in computational software have made possible to solve more physical and complex problems such as coupled problems, nonlinearities, high strain and high-strain rate problems. In this field, an accurate analysis of large deformation inelastic problems occurring in metal-forming or impact simulations is extremely important as a consequence of high amount of plastic flow. In this presentation, the object-oriented implementation, using the C++ language, of an explicit finite element code called DynELA is presented. The object-oriented programming (OOP) leads to better-structured codes for the finite element method and facilitates the development, the maintainability and the expandability of such codes. The most significant advantage of OOP is in the modeling of complex physical systems such as deformation processing where the overall complex problem is partitioned in individual sub-problems based on physical, mathematical or geometric reasoning. We first focus on the advantages of OOP for the development of scientific programs. Specific aspects of OOP, such as the inheritance mechanism, the operators overload procedure or the use of template classes are detailed. Then we present the approach used for the development of our finite element code through the presentation of the kinematics, conservative and constitutive laws and their respective implementation in C++. Finally, the efficiency and accuracy of our finite element program are investigated using a number of benchmark tests relative to metal forming and impact simulations.

  15. Code Modernization of VPIC

    NASA Astrophysics Data System (ADS)

    Bird, Robert; Nystrom, David; Albright, Brian

    2017-10-01

    The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.

  16. Streaming simplification of tetrahedral meshes.

    PubMed

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  17. A Performance Evaluation of the Cray X1 for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, M. Jahed; Shan, Hongzhang; Skinner, David

    2003-01-01

    The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and capacity computers because of their generality, scalability, and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently-released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.

  18. Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.

    PubMed

    Anzt, H; Quintana-Ortí, E S

    2014-06-28

    While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  20. Volume and Value of Big Healthcare Data.

    PubMed

    Dinov, Ivo D

    Modern scientific inquiries require significant data-driven evidence and trans-disciplinary expertise to extract valuable information and gain actionable knowledge about natural processes. Effective evidence-based decisions require collection, processing and interpretation of vast amounts of complex data. The Moore's and Kryder's laws of exponential increase of computational power and information storage, respectively, dictate the need rapid trans-disciplinary advances, technological innovation and effective mechanisms for managing and interrogating Big Healthcare Data. In this article, we review important aspects of Big Data analytics and discuss important questions like: What are the challenges and opportunities associated with this biomedical, social, and healthcare data avalanche? Are there innovative statistical computing strategies to represent, model, analyze and interpret Big heterogeneous data? We present the foundation of a new compressive big data analytics (CBDA) framework for representation, modeling and inference of large, complex and heterogeneous datasets. Finally, we consider specific directions likely to impact the process of extracting information from Big healthcare data, translating that information to knowledge, and deriving appropriate actions.

  1. A Novel Interdisciplinary Approach to Socio-Technical Complexity

    NASA Astrophysics Data System (ADS)

    Bassetti, Chiara

    The chapter presents a novel interdisciplinary approach that integrates micro-sociological analysis into computer-vision and pattern-recognition modeling and algorithms, the purpose being to tackle socio-technical complexity at a systemic yet micro-grounded level. The approach is empirically-grounded and both theoretically- and analytically-driven, yet systemic and multidimensional, semi-supervised and computable, and oriented towards large scale applications. The chapter describes the proposed approach especially as for its sociological foundations, and as applied to the analysis of a particular setting --i.e. sport-spectator crowds. Crowds, better defined as large gatherings, are almost ever-present in our societies, and capturing their dynamics is crucial. From social sciences to public safety management and emergency response, modeling and predicting large gatherings' presence and dynamics, thus possibly preventing critical situations and being able to properly react to them, is fundamental. This is where semi/automated technologies can make the difference. The work presented in this chapter is intended as a scientific step towards such an objective.

  2. Volume and Value of Big Healthcare Data

    PubMed Central

    Dinov, Ivo D.

    2016-01-01

    Modern scientific inquiries require significant data-driven evidence and trans-disciplinary expertise to extract valuable information and gain actionable knowledge about natural processes. Effective evidence-based decisions require collection, processing and interpretation of vast amounts of complex data. The Moore's and Kryder's laws of exponential increase of computational power and information storage, respectively, dictate the need rapid trans-disciplinary advances, technological innovation and effective mechanisms for managing and interrogating Big Healthcare Data. In this article, we review important aspects of Big Data analytics and discuss important questions like: What are the challenges and opportunities associated with this biomedical, social, and healthcare data avalanche? Are there innovative statistical computing strategies to represent, model, analyze and interpret Big heterogeneous data? We present the foundation of a new compressive big data analytics (CBDA) framework for representation, modeling and inference of large, complex and heterogeneous datasets. Finally, we consider specific directions likely to impact the process of extracting information from Big healthcare data, translating that information to knowledge, and deriving appropriate actions. PMID:26998309

  3. An auto-adaptive optimization approach for targeting nonpoint source pollution control practices.

    PubMed

    Chen, Lei; Wei, Guoyuan; Shen, Zhenyao

    2015-10-21

    To solve computationally intensive and technically complex control of nonpoint source pollution, the traditional genetic algorithm was modified into an auto-adaptive pattern, and a new framework was proposed by integrating this new algorithm with a watershed model and an economic module. Although conceptually simple and comprehensive, the proposed algorithm would search automatically for those Pareto-optimality solutions without a complex calibration of optimization parameters. The model was applied in a case study in a typical watershed of the Three Gorges Reservoir area, China. The results indicated that the evolutionary process of optimization was improved due to the incorporation of auto-adaptive parameters. In addition, the proposed algorithm outperformed the state-of-the-art existing algorithms in terms of convergence ability and computational efficiency. At the same cost level, solutions with greater pollutant reductions could be identified. From a scientific viewpoint, the proposed algorithm could be extended to other watersheds to provide cost-effective configurations of BMPs.

  4. OMPC: an Open-Source MATLAB-to-Python Compiler.

    PubMed

    Jurica, Peter; van Leeuwen, Cees

    2009-01-01

    Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB((R)), the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB((R))-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB((R)) functions into Python programs. The imported MATLAB((R)) modules will run independently of MATLAB((R)), relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB((R)). OMPC is available at http://ompc.juricap.com.

  5. Parallel computing works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less

  6. Exploring Cloud Computing for Large-scale Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Han, Binh; Yin, Jian

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less

  7. Machine learning based job status prediction in scientific clusters

    DOE PAGES

    Yoo, Wucherl; Sim, Alex; Wu, Kesheng

    2016-09-01

    Large high-performance computing systems are built with increasing number of components with more CPU cores, more memory, and more storage space. At the same time, scientific applications have been growing in complexity. Together, they are leading to more frequent unsuccessful job statuses on HPC systems. From measured job statuses, 23.4% of CPU time was spent to the unsuccessful jobs. Here, we set out to study whether these unsuccessful job statuses could be anticipated from known job characteristics. To explore this possibility, we have developed a job status prediction method for the execution of jobs on scientific clusters. The Random Forestsmore » algorithm was applied to extract and characterize the patterns of unsuccessful job statuses. Experimental results show that our method can predict the unsuccessful job statuses from the monitored ongoing job executions in 99.8% the cases with 83.6% recall and 94.8% precision. Lastly, this prediction accuracy can be sufficiently high that it can be used to mitigation procedures of predicted failures.« less

  8. Machine learning based job status prediction in scientific clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex; Wu, Kesheng

    Large high-performance computing systems are built with increasing number of components with more CPU cores, more memory, and more storage space. At the same time, scientific applications have been growing in complexity. Together, they are leading to more frequent unsuccessful job statuses on HPC systems. From measured job statuses, 23.4% of CPU time was spent to the unsuccessful jobs. Here, we set out to study whether these unsuccessful job statuses could be anticipated from known job characteristics. To explore this possibility, we have developed a job status prediction method for the execution of jobs on scientific clusters. The Random Forestsmore » algorithm was applied to extract and characterize the patterns of unsuccessful job statuses. Experimental results show that our method can predict the unsuccessful job statuses from the monitored ongoing job executions in 99.8% the cases with 83.6% recall and 94.8% precision. Lastly, this prediction accuracy can be sufficiently high that it can be used to mitigation procedures of predicted failures.« less

  9. Enabling scientific workflows in virtual reality

    USGS Publications Warehouse

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  10. Interactive Visualization of Large-Scale Hydrological Data using Emerging Technologies in Web Systems and Parallel Programming

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2013-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools developed within the light of these challenges.

  11. Managing bioengineering complexity with AI techniques.

    PubMed

    Beal, Jacob; Adler, Aaron; Yaman, Fusun

    2016-10-01

    Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less

  13. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  14. A brief historical introduction to Euler's formula for polyhedra, topology, graph theory and networks

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2010-09-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.

  15. Combined UMC- DFT prediction of electron-hole coupling in unit cells of pentacene crystals.

    PubMed

    Leal, Luciano Almeida; de Souza Júnior, Rafael Timóteo; de Almeida Fonseca, Antonio Luciano; Ribeiro Junior, Luiz Antonio; Blawid, Stefan; da Silva Filho, Demetrio Antonio; da Cunha, Wiliam Ferreira

    2017-05-01

    Pentacene is an organic semiconductor that draws special attention from the scientific community due to the high mobility of its charge carriers. As electron-hole interactions are important aspects in the regard of such property, a computationally inexpensive method to predict the coupling between these quasi-particles is highly desired. In this work, we propose a hybrid methodology of combining Uncoupled Monte Carlo Simulations (UMC) and Density functional Theory (DFT) methodologies to obtain a good compromise between computational feasibility and accuracy. As a first step in considering a Pentacene crystal, we describe its unit cell: the Pentacene Dimer. Because many conformations can be encountered for the dimer and considering the complexity of the system, we make use of UMC in order to find the most probable structures and relative orientations for the Pentacene-Pentacene complex. Following, we carry out electronic structure calculations in the scope of DFT with the goal of describing the electron-hole coupling on the most probable configurations obtained by UMC. The comparison of our results with previously reported data on the literature suggests that the methodology is well suited for describing transfer integrals of organic semiconductors. The observed accuracy together with the smaller computational cost required by our approach allows us to conclude that such methodology might be an important tool towards the description of systems with higher complexity.

  16. On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.

    Dynamical systems described by real and complex variables are currently one of the most popular areas of scientific research. These systems play an important role in several fields of physics, engineering, and computer sciences, for example, laser systems, control (or chaos suppression), secure communications, and information science. Dynamical basic properties, chaos (hyperchaos) synchronization, chaos control, and generating hyperchaotic behavior of these systems are briefly summarized. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. They are also used to describe and simulate the physics of detuned laser and thermal convection of liquid flows, where the electric field and the atomic polarization amplitudes are both complex. Clearly, if the variables of the system are complex the equations involve twice as many variables and control parameters, thus making it that much harder for a hostile agent to intercept and decipher the coded message. Chaotic and hyperchaotic complex systems are stated as examples. Finally there are many open problems in the study of chaotic and hyperchaotic complex nonlinear dynamical systems, which need further investigations. Some of these open problems are given.

  17. Wavelet-Smoothed Interpolation of Masked Scientific Data for JPEG 2000 Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, Christopher M.

    2012-08-13

    How should we manage scientific data with 'holes'? Some applications, like JPEG 2000, expect logically rectangular data, but some sources, like the Parallel Ocean Program (POP), generate data that isn't defined on certain subsets. We refer to grid points that lack well-defined, scientifically meaningful sample values as 'masked' samples. Wavelet-smoothing is a highly scalable interpolation scheme for regions with complex boundaries on logically rectangular grids. Computation is based on forward/inverse discrete wavelet transforms, so runtime complexity and memory scale linearly with respect to sample count. Efficient state-of-the-art minimal realizations yield small constants (O(10)) for arithmetic complexity scaling, and in-situ implementationmore » techniques make optimal use of memory. Implementation in two dimensions using tensor product filter banks is straighsorward and should generalize routinely to higher dimensions. No hand-tuning required when the interpolation mask changes, making the method aeractive for problems with time-varying masks. Well-suited for interpolating undefined samples prior to JPEG 2000 encoding. The method outperforms global mean interpolation, as judged by both SNR rate-distortion performance and low-rate artifact mitigation, for data distributions whose histograms do not take the form of sharply peaked, symmetric, unimodal probability density functions. These performance advantages can hold even for data whose distribution differs only moderately from the peaked unimodal case, as demonstrated by POP salinity data. The interpolation method is very general and is not tied to any particular class of applications, could be used for more generic smooth interpolation.« less

  18. Computers and Computation. Readings from Scientific American.

    ERIC Educational Resources Information Center

    Fenichel, Robert R.; Weizenbaum, Joseph

    A collection of articles from "Scientific American" magazine has been put together at this time because the current period in computer science is one of consolidation rather than innovation. A few years ago, computer science was moving so swiftly that even the professional journals were more archival than informative; but today it is…

  19. The Cell Collective: Toward an open and collaborative approach to systems biology

    PubMed Central

    2012-01-01

    Background Despite decades of new discoveries in biomedical research, the overwhelming complexity of cells has been a significant barrier to a fundamental understanding of how cells work as a whole. As such, the holistic study of biochemical pathways requires computer modeling. Due to the complexity of cells, it is not feasible for one person or group to model the cell in its entirety. Results The Cell Collective is a platform that allows the world-wide scientific community to create these models collectively. Its interface enables users to build and use models without specifying any mathematical equations or computer code - addressing one of the major hurdles with computational research. In addition, this platform allows scientists to simulate and analyze the models in real-time on the web, including the ability to simulate loss/gain of function and test what-if scenarios in real time. Conclusions The Cell Collective is a web-based platform that enables laboratory scientists from across the globe to collaboratively build large-scale models of various biological processes, and simulate/analyze them in real time. In this manuscript, we show examples of its application to a large-scale model of signal transduction. PMID:22871178

  20. The State of Software for Evolutionary Biology.

    PubMed

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-05-01

    With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development.

  1. Cosmic Concepts: A Video Series for Scaffolded Learning

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Summers, Frank; Maple, John

    2016-01-01

    Scaffolding is widely considered to be an essential element of effective teaching and is used to help bridge knowledge gaps for learners. Scaffolding is especially important for distance-learning programs and computer-based learning environments. Preliminary studies are showing that when students learn about complex topics within computer-based learning environments without scaffolding, they fail to gain a conceptual understanding of the topic. As a result, researchers have begun to emphasize the importance of scaffolding for web-based as well as in-person instruction.To support scaffolded teaching practices and techniques, while addressing the needs of life-long learners, we have created the Cosmic Concepts video series. The series consists of short, one-topic videos that address scientific concepts with a special emphasis on those that traditionally cause confusion or are layered with misconceptions. Each video focuses on one idea at a time and provides a clear explanation of phenomena that is succinct enough for on-demand reference usage by all types of learners. Likewise, the videos can be used by educators to scaffold the scientific concepts behind astronomical images, or can be sequenced together to create well-structured pathways for presenting deeper and more layered ideas. This approach is critical for communicating information about astronomical discoveries that are often dense with unfamiliar concepts, complex ideas, and highly technical details. Additionally, learning tools in video formats support multi-sensory presentation approaches that can make astronomy more accessible to a variety of learners.

  2. Multi-level meta-workflows: new concept for regularly occurring tasks in quantum chemistry.

    PubMed

    Arshad, Junaid; Hoffmann, Alexander; Gesing, Sandra; Grunzke, Richard; Krüger, Jens; Kiss, Tamas; Herres-Pawlis, Sonja; Terstyanszky, Gabor

    2016-01-01

    In Quantum Chemistry, many tasks are reoccurring frequently, e.g. geometry optimizations, benchmarking series etc. Here, workflows can help to reduce the time of manual job definition and output extraction. These workflows are executed on computing infrastructures and may require large computing and data resources. Scientific workflows hide these infrastructures and the resources needed to run them. It requires significant efforts and specific expertise to design, implement and test these workflows. Many of these workflows are complex and monolithic entities that can be used for particular scientific experiments. Hence, their modification is not straightforward and it makes almost impossible to share them. To address these issues we propose developing atomic workflows and embedding them in meta-workflows. Atomic workflows deliver a well-defined research domain specific function. Publishing workflows in repositories enables workflow sharing inside and/or among scientific communities. We formally specify atomic and meta-workflows in order to define data structures to be used in repositories for uploading and sharing them. Additionally, we present a formal description focused at orchestration of atomic workflows into meta-workflows. We investigated the operations that represent basic functionalities in Quantum Chemistry, developed the relevant atomic workflows and combined them into meta-workflows. Having these workflows we defined the structure of the Quantum Chemistry workflow library and uploaded these workflows in the SHIWA Workflow Repository.Graphical AbstractMeta-workflows and embedded workflows in the template representation.

  3. JACOB: an enterprise framework for computational chemistry.

    PubMed

    Waller, Mark P; Dresselhaus, Thomas; Yang, Jack

    2013-06-15

    Here, we present just a collection of beans (JACOB): an integrated batch-based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user-specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application-programming interface provides a set of generic tools for processing large-scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob. Copyright © 2013 Wiley Periodicals, Inc.

  4. Mouse Genome Informatics (MGI): Resources for Mining Mouse Genetic, Genomic, and Biological Data in Support of Primary and Translational Research.

    PubMed

    Eppig, Janan T; Smith, Cynthia L; Blake, Judith A; Ringwald, Martin; Kadin, James A; Richardson, Joel E; Bult, Carol J

    2017-01-01

    The Mouse Genome Informatics (MGI), resource ( www.informatics.jax.org ) has existed for over 25 years, and over this time its data content, informatics infrastructure, and user interfaces and tools have undergone dramatic changes (Eppig et al., Mamm Genome 26:272-284, 2015). Change has been driven by scientific methodological advances, rapid improvements in computational software, growth in computer hardware capacity, and the ongoing collaborative nature of the mouse genomics community in building resources and sharing data. Here we present an overview of the current data content of MGI, describe its general organization, and provide examples using simple and complex searches, and tools for mining and retrieving sets of data.

  5. NETTAB 2012 on "Integrated Bio-Search"

    PubMed Central

    2014-01-01

    The NETTAB 2012 workshop, held in Como on November 14-16, 2012, was devoted to "Integrated Bio-Search", that is to technologies, methods, architectures, systems and applications for searching, retrieving, integrating and analyzing data, information, and knowledge with the aim of answering complex bio-medical-molecular questions, i.e. some of the most challenging issues in bioinformatics today. It brought together about 80 researchers working in the field of Bioinformatics, Computational Biology, Biology, Computer Science and Engineering. More than 50 scientific contributions, including keynote and tutorial talks, oral communications, posters and software demonstrations, were presented at the workshop. This preface provides a brief overview of the workshop and shortly introduces the peer-reviewed manuscripts that were accepted for publication in this Supplement. PMID:24564635

  6. Numerical studies of unsteady two dimensional subsonic flows using the ICE method. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Wieber, P. R.

    1973-01-01

    A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.

  7. The Virtual Geophysics Laboratory (VGL): Scientific Workflows Operating Across Organizations and Across Infrastructures

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.

    2012-12-01

    The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models, code, data, processing) are shared in the one virtual laboratory. VGL provides end users with access to an intuitive, user-centered interface that leverages cloud storage and cloud and cluster processing from both the research communities and commercial suppliers (e.g. Amazon). As the underlying data and information services are agnostic of the scientific domain, they can support many other data types. This fundamental characteristic results in a highly reusable virtual laboratory infrastructure that could also be used for example natural hazards, satellite processing, soil geochemistry, climate modeling, agriculture crop modeling.

  8. PREFACE: IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences

    NASA Astrophysics Data System (ADS)

    Kosmas, Theocharis; Vagenas, Elias; Vlachos, Dimitrios

    2013-02-01

    The first International Conference on Mathematical Modelling in Physical Sciences (IC-MSQUARE) took place in Budapest, Hungary, from Monday 3 to Friday 7 September 2012. The conference was attended by more than 130 participants, and hosted about 290 oral, poster and virtual papers by more than 460 pre-registered authors. The first IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields in which mathematical modelling is used, such as theoretical/mathematical physics, neutrino physics, non-integrable systems, dynamical systems, computational nanoscience, biological physics, computational biomechanics, complex networks, stochastic modelling, fractional statistics, DNA dynamics, and macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, two parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The mounting question is whether this occurred accidentally, or whether IC-MSQUARE is a necessity in the field of physical and mathematical modelling. For all of us working in the field, the existing and established conferences in this particular field suffer from two distinguished and recognized drawbacks: the first is the increasing orientation, while the second refers to the extreme specialization of the meetings. Therefore, a conference which aims to promote the knowledge and development of high-quality research in mathematical fields concerned with applications of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology, environmental sciences etc., appears to be a necessity. This is the key role that IC-MSQUARE will play. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contributions to IC-MSQUARE. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. Conference Chairmen Theocharis Kosmas Department of Physics, University of Ioannina Elias Vagenas RCAAM, Academy of Athens Dimitrios Vlachos Department of Computer Science and Technology, University of Peloponnese The PDF also contains a list of members of the International Scientific Committes and details of the Keynote and Invited Speakers.

  9. Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data.

    PubMed

    Dinov, Ivo D

    2016-01-01

    Managing, processing and understanding big healthcare data is challenging, costly and demanding. Without a robust fundamental theory for representation, analysis and inference, a roadmap for uniform handling and analyzing of such complex data remains elusive. In this article, we outline various big data challenges, opportunities, modeling methods and software techniques for blending complex healthcare data, advanced analytic tools, and distributed scientific computing. Using imaging, genetic and healthcare data we provide examples of processing heterogeneous datasets using distributed cloud services, automated and semi-automated classification techniques, and open-science protocols. Despite substantial advances, new innovative technologies need to be developed that enhance, scale and optimize the management and processing of large, complex and heterogeneous data. Stakeholder investments in data acquisition, research and development, computational infrastructure and education will be critical to realize the huge potential of big data, to reap the expected information benefits and to build lasting knowledge assets. Multi-faceted proprietary, open-source, and community developments will be essential to enable broad, reliable, sustainable and efficient data-driven discovery and analytics. Big data will affect every sector of the economy and their hallmark will be 'team science'.

  10. Software Testing and Verification in Climate Model Development

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Rood, RIchard B.

    2011-01-01

    Over the past 30 years most climate models have grown from relatively simple representations of a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure over that period has gone from punch card mainframes to modem parallel clusters. Model implementations have become complex, brittle, and increasingly difficult to extend and maintain. Existing verification processes for model implementations rely almost exclusively upon some combination of detailed analysis of output from full climate simulations and system-level regression tests. In additional to being quite costly in terms of developer time and computing resources, these testing methodologies are limited in terms of the types of defects that can be detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the commercial software sector, recent advances in tools and methodology have led to a renaissance for systematic fine-grained testing. We discuss the availability of analogous tools for scientific software and examine benefits that similar testing methodologies could bring to climate modeling software. We describe the unique challenges faced when testing complex numerical algorithms and suggest techniques to minimize and/or eliminate the difficulties.

  11. TOPICAL REVIEW: Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Chan, V. S.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.

  12. Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.

  13. Advanced Computation in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Tang, William

    2001-10-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.

  14. The Practical Obstacles of Data Transfer: Why researchers still love scp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Hai Ah; Hill, Jason J; Parete-Koon, Suzanne T

    The importance of computing facilities is heralded every six months with the announcement of the new Top500 list, showcasing the world s fastest supercomputers. Unfortu- nately, with great computing capability does not come great long-term data storage capacity, which often means users must move their data to their local site archive, to remote sites where they may be doing future computation or anal- ysis, or back to their home institution, else face the dreaded data purge that most HPC centers employ to keep utiliza- tion of large parallel filesystems low to manage performance and capacity. At HPC centers, data transfermore » is crucial to the scientific workflow and will increase in importance as computing systems grow in size. The Energy Sciences Net- work (ESnet) recently launched its fifth generation network, a 100 Gbps high-performance, unclassified national network connecting more than 40 DOE research sites to support scientific research and collaboration. Despite the tenfold increase in bandwidth to DOE research sites amenable to multiple data transfer streams and high throughput, in prac- tice, researchers often under-utilize the network and resort to painfully-slow single stream transfer methods such as scp to avoid the complexity of using multiple stream tools such as GridFTP and bbcp, and contend with frustration from the lack of consistency of available tools between sites. In this study we survey and assess the data transfer methods pro- vided at several DOE supported computing facilities, includ- ing both leadership-computing facilities, connected through ESnet. We present observed transfer rates, suggested opti- mizations, and discuss the obstacles the tools must overcome to receive wide-spread adoption over scp.« less

  15. Application of infrared thermography in computer aided diagnosis

    NASA Astrophysics Data System (ADS)

    Faust, Oliver; Rajendra Acharya, U.; Ng, E. Y. K.; Hong, Tan Jen; Yu, Wenwei

    2014-09-01

    The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care.

  16. Active Flash: Out-of-core Data Analytics on Flash Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S

    2012-01-01

    Next generation science will increasingly come to rely on the ability to perform efficient, on-the-fly analytics of data generated by high-performance computing (HPC) simulations, modeling complex physical phenomena. Scientific computing workflows are stymied by the traditional chaining of simulation and data analysis, creating multiple rounds of redundant reads and writes to the storage system, which grows in cost with the ever-increasing gap between compute and storage speeds in HPC clusters. Recent HPC acquisitions have introduced compute node-local flash storage as a means to alleviate this I/O bottleneck. We propose a novel approach, Active Flash, to expedite data analysis pipelines bymore » migrating to the location of the data, the flash device itself. We argue that Active Flash has the potential to enable true out-of-core data analytics by freeing up both the compute core and the associated main memory. By performing analysis locally, dependence on limited bandwidth to a central storage system is reduced, while allowing this analysis to proceed in parallel with the main application. In addition, offloading work from the host to the more power-efficient controller reduces peak system power usage, which is already in the megawatt range and poses a major barrier to HPC system scalability. We propose an architecture for Active Flash, explore energy and performance trade-offs in moving computation from host to storage, demonstrate the ability of appropriate embedded controllers to perform data analysis and reduction tasks at speeds sufficient for this application, and present a simulation study of Active Flash scheduling policies. These results show the viability of the Active Flash model, and its capability to potentially have a transformative impact on scientific data analysis.« less

  17. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    NASA Astrophysics Data System (ADS)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-10-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game self-efficacy, including whether gender differences were observed. We examined 407 middle school students' scientific inquiry self-efficacy and computer game self-efficacy before and after completing a computer game-like assessment about a science mystery. Results from path analyses indicated that prior scientific inquiry self-efficacy predicted achievement on end-of-module questions, which in turn predicted change in scientific inquiry self-efficacy. By contrast, computer game self-efficacy was neither predictive of nor predicted by performance on the science assessment. While boys had higher computer game self-efficacy compared to girls, multi-group analyses suggested only minor gender differences in how efficacy beliefs related to performance. Implications for assessments with virtual environments and future design and research are discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hules, John

    This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.

  19. The Caltech Concurrent Computation Program - Project description

    NASA Technical Reports Server (NTRS)

    Fox, G.; Otto, S.; Lyzenga, G.; Rogstad, D.

    1985-01-01

    The Caltech Concurrent Computation Program wwhich studies basic issues in computational science is described. The research builds on initial work where novel concurrent hardware, the necessary systems software to use it and twenty significant scientific implementations running on the initial 32, 64, and 128 node hypercube machines have been constructed. A major goal of the program will be to extend this work into new disciplines and more complex algorithms including general packages that decompose arbitrary problems in major application areas. New high-performance concurrent processors with up to 1024-nodes, over a gigabyte of memory and multigigaflop performance are being constructed. The implementations cover a wide range of problems in areas such as high energy and astrophysics, condensed matter, chemical reactions, plasma physics, applied mathematics, geophysics, simulation, CAD for VLSI, graphics and image processing. The products of the research program include the concurrent algorithms, hardware, systems software, and complete program implementations.

  20. Need for evaluative methodologies in land use, regional resource and waste management planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croke, E. J.

    The transfer of planning methodology from the research community to the practitioner very frequently takes the form of analytical and evaluative techniques and procedures. In the end, these become operational in the form of data acquisition, management and display systems, computational schemes that are codified in the form of manuals and handbooks, and computer simulation models. The complexity of the socioeconomic and physical processes that govern environmental resource and waste management have reinforced the need for computer assisted, scientifically sophisticated planning models that are fully operational, dependent on an attainable data base and accessible in terms of the resources normallymore » available to practitioners of regional resource management, waste management, and land use planning. A variety of models and procedures that attempt to meet one or more of the needs of these practitioners are discussed.« less

  1. Enabling large-scale viscoelastic calculations via neural network acceleration

    NASA Astrophysics Data System (ADS)

    Robinson DeVries, P.; Thompson, T. B.; Meade, B. J.

    2017-12-01

    One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity are the computational costs of large-scale viscoelastic earthquake cycle models. Deep artificial neural networks (ANNs) can be used to discover new, compact, and accurate computational representations of viscoelastic physics. Once found, these efficient ANN representations may replace computationally intensive viscoelastic codes and accelerate large-scale viscoelastic calculations by more than 50,000%. This magnitude of acceleration enables the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible. Perhaps most interestingly from a scientific perspective, ANN representations of viscoelastic physics may lead to basic advances in the understanding of the underlying model phenomenology. We demonstrate the potential of artificial neural networks to illuminate fundamental physical insights with specific examples.

  2. Use of CFD modelling for analysing air parameters in auditorium halls

    NASA Astrophysics Data System (ADS)

    Cichowicz, Robert

    2017-11-01

    Modelling with the use of numerical methods is currently the most popular method of solving scientific as well as engineering problems. Thanks to the use of computer methods it is possible for example to comprehensively describe the conditions in a given room and to determine thermal comfort, which is a complex issue including subjective sensations of the persons in a given room. The article presents the results of measurements and numerical computing that enabled carrying out the assessment of environment parameters, taking into consideration microclimate, temperature comfort, speeds in the zone of human presence and dustiness in auditory halls. For this purpose measurements of temperature, relative humidity and dustiness were made with the use of a digital microclimate meter and a laser dust particles counter. Thanks to the above by using the application DesignBuilder numerical computing was performed and the obtained results enabled determining PMV comfort indicator in selected rooms.

  3. Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication

    ERIC Educational Resources Information Center

    Wolf, Michael Maclean

    2009-01-01

    Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…

  4. The Versatile Terminal.

    ERIC Educational Resources Information Center

    Evans, C. D.

    This paper describes the experiences of the industrial research laboratory of Kodak Ltd. in finding and providing a computer terminal most suited to its very varied requirements. These requirements include bibliographic and scientific data searching and access to a number of worldwide computing services for scientific computing work. The provision…

  5. Statistical methods and computing for big data.

    PubMed

    Wang, Chun; Chen, Ming-Hui; Schifano, Elizabeth; Wu, Jing; Yan, Jun

    2016-01-01

    Big data are data on a massive scale in terms of volume, intensity, and complexity that exceed the capacity of standard analytic tools. They present opportunities as well as challenges to statisticians. The role of computational statisticians in scientific discovery from big data analyses has been under-recognized even by peer statisticians. This article summarizes recent methodological and software developments in statistics that address the big data challenges. Methodologies are grouped into three classes: subsampling-based, divide and conquer, and online updating for stream data. As a new contribution, the online updating approach is extended to variable selection with commonly used criteria, and their performances are assessed in a simulation study with stream data. Software packages are summarized with focuses on the open source R and R packages, covering recent tools that help break the barriers of computer memory and computing power. Some of the tools are illustrated in a case study with a logistic regression for the chance of airline delay.

  6. Scout: high-performance heterogeneous computing made simple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablin, James; Mc Cormick, Patrick; Herlihy, Maurice

    2011-01-26

    Researchers must often write their own simulation and analysis software. During this process they simultaneously confront both computational and scientific problems. Current strategies for aiding the generation of performance-oriented programs do not abstract the software development from the science. Furthermore, the problem is becoming increasingly complex and pressing with the continued development of many-core and heterogeneous (CPU-GPU) architectures. To acbieve high performance, scientists must expertly navigate both software and hardware. Co-design between computer scientists and research scientists can alleviate but not solve this problem. The science community requires better tools for developing, optimizing, and future-proofing codes, allowing scientists to focusmore » on their research while still achieving high computational performance. Scout is a parallel programming language and extensible compiler framework targeting heterogeneous architectures. It provides the abstraction required to buffer scientists from the constantly-shifting details of hardware while still realizing higb-performance by encapsulating software and hardware optimization within a compiler framework.« less

  7. Statistical methods and computing for big data

    PubMed Central

    Wang, Chun; Chen, Ming-Hui; Schifano, Elizabeth; Wu, Jing

    2016-01-01

    Big data are data on a massive scale in terms of volume, intensity, and complexity that exceed the capacity of standard analytic tools. They present opportunities as well as challenges to statisticians. The role of computational statisticians in scientific discovery from big data analyses has been under-recognized even by peer statisticians. This article summarizes recent methodological and software developments in statistics that address the big data challenges. Methodologies are grouped into three classes: subsampling-based, divide and conquer, and online updating for stream data. As a new contribution, the online updating approach is extended to variable selection with commonly used criteria, and their performances are assessed in a simulation study with stream data. Software packages are summarized with focuses on the open source R and R packages, covering recent tools that help break the barriers of computer memory and computing power. Some of the tools are illustrated in a case study with a logistic regression for the chance of airline delay. PMID:27695593

  8. Models and Simulations as a Service: Exploring the Use of Galaxy for Delivering Computational Models

    PubMed Central

    Walker, Mark A.; Madduri, Ravi; Rodriguez, Alex; Greenstein, Joseph L.; Winslow, Raimond L.

    2016-01-01

    We describe the ways in which Galaxy, a web-based reproducible research platform, can be used for web-based sharing of complex computational models. Galaxy allows users to seamlessly customize and run simulations on cloud computing resources, a concept we refer to as Models and Simulations as a Service (MaSS). To illustrate this application of Galaxy, we have developed a tool suite for simulating a high spatial-resolution model of the cardiac Ca2+ spark that requires supercomputing resources for execution. We also present tools for simulating models encoded in the SBML and CellML model description languages, thus demonstrating how Galaxy’s reproducible research features can be leveraged by existing technologies. Finally, we demonstrate how the Galaxy workflow editor can be used to compose integrative models from constituent submodules. This work represents an important novel approach, to our knowledge, to making computational simulations more accessible to the broader scientific community. PMID:26958881

  9. 3-D surface reconstruction of patient specific anatomic data using a pre-specified number of polygons.

    PubMed

    Aharon, S; Robb, R A

    1997-01-01

    Virtual reality environments provide highly interactive, natural control of the visualization process, significantly enhancing the scientific value of the data produced by medical imaging systems. Due to the computational and real time display update requirements of virtual reality interfaces, however, the complexity of organ and tissue surfaces which can be displayed is limited. In this paper, we present a new algorithm for the production of a polygonal surface containing a pre-specified number of polygons from patient or subject specific volumetric image data. The advantage of this new algorithm is that it effectively tiles complex structures with a specified number of polygons selected to optimize the trade-off between surface detail and real-time display rates.

  10. Amplify scientific discovery with artificial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automatedmore » language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.« less

  11. A distributed computing environment with support for constraint-based task scheduling and scientific experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, J.P.; Shapiro, L.G.; Tanimoto, S.L.

    1997-04-01

    This paper describes a computing environment which supports computer-based scientific research work. Key features include support for automatic distributed scheduling and execution and computer-based scientific experimentation. A new flexible and extensible scheduling technique that is responsive to a user`s scheduling constraints, such as the ordering of program results and the specification of task assignments and processor utilization levels, is presented. An easy-to-use constraint language for specifying scheduling constraints, based on the relational database query language SQL, is described along with a search-based algorithm for fulfilling these constraints. A set of performance studies show that the environment can schedule and executemore » program graphs on a network of workstations as the user requests. A method for automatically generating computer-based scientific experiments is described. Experiments provide a concise method of specifying a large collection of parameterized program executions. The environment achieved significant speedups when executing experiments; for a large collection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled processors was obtained.« less

  12. Computer-Supported Aids to Making Sense of Scientific Articles: Cognitive, Motivational, and Attitudinal Effects

    ERIC Educational Resources Information Center

    Gegner, Julie A.; Mackay, Donald H. J.; Mayer, Richard E.

    2009-01-01

    High school students can access original scientific research articles on the Internet, but may have trouble understanding them. To address this problem of online literacy, the authors developed a computer-based prototype for guiding students' comprehension of scientific articles. High school students were asked to read an original scientific…

  13. Scientific Computing for Chemists: An Undergraduate Course in Simulations, Data Processing, and Visualization

    ERIC Educational Resources Information Center

    Weiss, Charles J.

    2017-01-01

    The Scientific Computing for Chemists course taught at Wabash College teaches chemistry students to use the Python programming language, Jupyter notebooks, and a number of common Python scientific libraries to process, analyze, and visualize data. Assuming no prior programming experience, the course introduces students to basic programming and…

  14. Computational chemistry in pharmaceutical research: at the crossroads.

    PubMed

    Bajorath, Jürgen

    2012-01-01

    Computational approaches are an integral part of pharmaceutical research. However, there are many of unsolved key questions that limit the scientific progress in the still evolving computational field and its impact on drug discovery. Importantly, a number of these questions are not new but date back many years. Hence, it might be difficult to conclusively answer them in the foreseeable future. Moreover, the computational field as a whole is characterized by a high degree of heterogeneity and so is, unfortunately, the quality of its scientific output. In light of this situation, it is proposed that changes in scientific standards and culture should be seriously considered now in order to lay a foundation for future progress in computational research.

  15. [Earth and Space Sciences Project Services for NASA HPCC

    NASA Technical Reports Server (NTRS)

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  16. Scholarly literature and the press: scientific impact and social perception of physics computing

    NASA Astrophysics Data System (ADS)

    Pia, M. G.; Basaglia, T.; Bell, Z. W.; Dressendorfer, P. V.

    2014-06-01

    The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the relationship between the scientific impact and the social perception of HEP physics research versus that of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing via press releases from the major HEP laboratories would be beneficial to the high energy physics community.

  17. Software Reuse Methods to Improve Technological Infrastructure for e-Science

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.

    2011-01-01

    Social computing has the potential to contribute to scientific research. Ongoing developments in information and communications technology improve capabilities for enabling scientific research, including research fostered by social computing capabilities. The recent emergence of e-Science practices has demonstrated the benefits from improvements in the technological infrastructure, or cyber-infrastructure, that has been developed to support science. Cloud computing is one example of this e-Science trend. Our own work in the area of software reuse offers methods that can be used to improve new technological development, including cloud computing capabilities, to support scientific research practices. In this paper, we focus on software reuse and its potential to contribute to the development and evaluation of information systems and related services designed to support new capabilities for conducting scientific research.

  18. INSA Scientific Activities in the Space Astronomy Area

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Ricardo; Sánchez Portal, Miguel

    Support to astronomy operations is an important and long-lived activity within INSA. Probably the best known (and traditional) INSA activities are those related with real-time spacecraft operations: ground station maintenance and operation (ground station engineers and operators); spacecraft and payload real-time operation (spacecraft and instruments controllers); computing infrastructure maintenance (operators, analysts), and general site services. In this paper, we’ll show a different perspective, probably not so well-known, presenting some INSA recent activities at the European Space Astronomy Centre (ESAC) and NASA Madrid Deep Space Communication Complex (MDSCC) directly related to scientific operations. Basic lines of activity involved include: operations support for science operations; system and software support for real time systems; technical administration and IT support; R&D activities, radioastronomy (at MDSCC and ESAC), and scientific research projects. This paper is structured as follows: first, INSA activities in two ESA cornerstone astrophysics missions, XMM-Newton and Herschel, will be outlined. Then, our activities related to scientific infrastructure services, represented by the Virtual Observatory (VO) framework and the Science Archives development facilities, are briefly shown. Radio astronomy activities will be described afterwards, and, finally, a few research topics in which INSA scientists are involved will also be described.

  19. A Framework for the Design of Effective Graphics for Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Miceli, Kristina D.

    1992-01-01

    This proposal presents a visualization framework, based on a data model, that supports the production of effective graphics for scientific visualization. Visual representations are effective only if they augment comprehension of the increasing amounts of data being generated by modern computer simulations. These representations are created by taking into account the goals and capabilities of the scientist, the type of data to be displayed, and software and hardware considerations. This framework is embodied in an assistant-based visualization system to guide the scientist in the visualization process. This will improve the quality of the visualizations and decrease the time the scientist is required to spend in generating the visualizations. I intend to prove that such a framework will create a more productive environment for tile analysis and interpretation of large, complex data sets.

  20. Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds

    NASA Astrophysics Data System (ADS)

    Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano

    Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.

  1. 78 FR 6087 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building... Theory and Experiment (INCITE) Public Comment (10-minute rule) Public Participation: The meeting is open...

  2. Provenance Challenges for Earth Science Dataset Publication

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2011-01-01

    Modern science is increasingly dependent on computational analysis of very large data sets. Organizing, referencing, publishing those data has become a complex problem. Published research that depends on such data often fails to cite the data in sufficient detail to allow an independent scientist to reproduce the original experiments and analyses. This paper explores some of the challenges related to data identification, equivalence and reproducibility in the domain of data intensive scientific processing. It will use the example of Earth Science satellite data, but the challenges also apply to other domains.

  3. The role of NASA for aerospace information

    NASA Technical Reports Server (NTRS)

    Chandler, G. P., Jr.

    1980-01-01

    The NASA Scientific and Technical Information Program operations are performed by two contractor operated facilities. The NASA STI Facility, located near Baltimore, Maryland, employs about 210 people who process report literature, operate the computer complex, and provide support for software maintenance and developments. A second contractor, the Technical Information Services of the American Institute of Aeronautics and Astronautics, employs approximately 80 people in New York City and processes the open literature such as journals, magazines, and books. Features of these programs include online access via RECON, announcement services, and international document exchange.

  4. Current Scientific Approaches to Decision Making in Complex Systems: 3. Volume 1. Conference Proceedings. Third Conference, Richmond, Surrey, England, 6-8 August 1978

    DTIC Science & Technology

    1980-01-01

    filter and select out. You use your nose - or heuristics. That is just maturity. The only thing we can do is help people discuss possible models of their...Decision models / Conversation Theory Decision training Team decisions Man-computer interaction Learning strategies 2& ANTAACT (Cme1 revere le N nneesmod...paper by Maria Novakowska on a new model of decision under risk. , /V TI I~ 4 A SECURITY CLASSIFICATION OF TIS PAOUI(Ves Date EntetQ ii ,ln 1 to hi

  5. Lobachevsky Year at Kazan University: Center of Science, Education, Intellectual-Cognitive Tourism "Kazan - GeoNa - 2020+" and "Kazan-Moon-2020+" projects

    NASA Astrophysics Data System (ADS)

    Gusev, A.; Trudkova, N.

    2017-09-01

    Center "GeoNa" will enable scientists and teachers of the Russian universities to join to advanced achievements of a science, information technologies; to establish scientific communications with foreign colleagues in sphere of the high technology, educational projects and Intellectual-Cognitive Tourism. The Project "Kazan - Moon - 2020+" is directed on the decision of fundamental problems of celestial mechanics, selenodesy and geophysics of the Moon(s) connected to carrying out of complex theoretical researches and computer modelling.

  6. Container-Based Clinical Solutions for Portable and Reproducible Image Analysis.

    PubMed

    Matelsky, Jordan; Kiar, Gregory; Johnson, Erik; Rivera, Corban; Toma, Michael; Gray-Roncal, William

    2018-05-08

    Medical imaging analysis depends on the reproducibility of complex computation. Linux containers enable the abstraction, installation, and configuration of environments so that software can be both distributed in self-contained images and used repeatably by tool consumers. While several initiatives in neuroimaging have adopted approaches for creating and sharing more reliable scientific methods and findings, Linux containers are not yet mainstream in clinical settings. We explore related technologies and their efficacy in this setting, highlight important shortcomings, demonstrate a simple use-case, and endorse the use of Linux containers for medical image analysis.

  7. Highly parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.; Tichy, Walter F.

    1990-01-01

    Highly parallel computing architectures are the only means to achieve the computation rates demanded by advanced scientific problems. A decade of research has demonstrated the feasibility of such machines and current research focuses on which architectures designated as multiple instruction multiple datastream (MIMD) and single instruction multiple datastream (SIMD) have produced the best results to date; neither shows a decisive advantage for most near-homogeneous scientific problems. For scientific problems with many dissimilar parts, more speculative architectures such as neural networks or data flow may be needed.

  8. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues includedmore » research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three topics and a representative of each of the four major DOE Office of Science Advanced Scientific Computing Research Facilities: the Argonne Leadership Computing Facility (ALCF), the Energy Sciences Network (ESnet), the National Energy Research Scientific Computing Center (NERSC), and the Oak Ridge Leadership Computing Facility (OLCF). The rest of the workshop consisted of topical breakout discussions and focused writing periods that produced much of this report.« less

  9. Complex Behavior of Contaminant Flux and the Ecology of the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    Barton, C. C.; Manheim, F. T.; De Cola, L.; Bollinger, J. E.; Jenkins, J. A.

    2001-12-01

    This presentation is an overview of a collaborative NSF/USGS/Tulane funded multi-scale study of the Lower Mississippi River system. The study examines the system in three major dimensional realms: space, time, and complexity (systems and their hierarchies). Researchers at Tulane University and the U.S. Geological Survey have initiated a collaborative effort to undertake the study of interacting elements which directly or indirectly affect the water quality, ecology and physical condition of the Mississippi River. These researchers include experts in the fields of water quality chemistry, geochemistry, hydrologic modeling, bioengineering, biology, fish ecology, statistics, complexity analysis, epidemiology, and computer science. Underlying this research are large databases that permit quantitative analysis of the system over the past 40 years. Results to date show that the variation in discharge and the contaminant flux scale independently both exhibit fractal scaling, the signature geometry of nonlinear dynamical and complex systems. Public perception is that the Lower Mississippi River is a health hazard, but for the past decade, traditional water quality measurements show that contaminants are within current regulatory guidelines for human consumption. This difference between public perception and scientific reality represents a complex scientific and social issue. The connections and feedback within the ecological system and the Mississippi River are few because engineering structures isolate the lower Mississippi River from its surroundings. Investigation of the connections and feedback between human health and the ecological health of the River and the surrounding region as well as perceptions of these states of health - holds promise for explaining epidemiological patterns of human disease.

  10. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri

    2014-01-01

    This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.

  11. Graphics processing units in bioinformatics, computational biology and systems biology.

    PubMed

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  12. Automatic Blocking Of QR and LU Factorizations for Locality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Q; Kennedy, K; You, H

    2004-03-26

    QR and LU factorizations for dense matrices are important linear algebra computations that are widely used in scientific applications. To efficiently perform these computations on modern computers, the factorization algorithms need to be blocked when operating on large matrices to effectively exploit the deep cache hierarchy prevalent in today's computer memory systems. Because both QR (based on Householder transformations) and LU factorization algorithms contain complex loop structures, few compilers can fully automate the blocking of these algorithms. Though linear algebra libraries such as LAPACK provides manually blocked implementations of these algorithms, by automatically generating blocked versions of the computations, moremore » benefit can be gained such as automatic adaptation of different blocking strategies. This paper demonstrates how to apply an aggressive loop transformation technique, dependence hoisting, to produce efficient blockings for both QR and LU with partial pivoting. We present different blocking strategies that can be generated by our optimizer and compare the performance of auto-blocked versions with manually tuned versions in LAPACK, both using reference BLAS, ATLAS BLAS and native BLAS specially tuned for the underlying machine architectures.« less

  13. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hey, Tony; Agarwal, Deborah; Borgman, Christine

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  14. Efficient Use of Distributed Systems for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Valerie; Chen, Jian; Canfield, Thomas; Richard, Jacques

    2000-01-01

    Distributed computing has been regarded as the future of high performance computing. Nationwide high speed networks such as vBNS are becoming widely available to interconnect high-speed computers, virtual environments, scientific instruments and large data sets. One of the major issues to be addressed with distributed systems is the development of computational tools that facilitate the efficient execution of parallel applications on such systems. These tools must exploit the heterogeneous resources (networks and compute nodes) in distributed systems. This paper presents a tool, called PART, which addresses this issue for mesh partitioning. PART takes advantage of the following heterogeneous system features: (1) processor speed; (2) number of processors; (3) local network performance; and (4) wide area network performance. Further, different finite element applications under consideration may have different computational complexities, different communication patterns, and different element types, which also must be taken into consideration when partitioning. PART uses parallel simulated annealing to partition the domain, taking into consideration network and processor heterogeneity. The results of using PART for an explicit finite element application executing on two IBM SPs (located at Argonne National Laboratory and the San Diego Supercomputer Center) indicate an increase in efficiency by up to 36% as compared to METIS, a widely used mesh partitioning tool. The input to METIS was modified to take into consideration heterogeneous processor performance; METIS does not take into consideration heterogeneous networks. The execution times for these applications were reduced by up to 30% as compared to METIS. These results are given in Figure 1 for four irregular meshes with number of elements ranging from 30,269 elements for the Barth5 mesh to 11,451 elements for the Barth4 mesh. Future work with PART entails using the tool with an integrated application requiring distributed systems. In particular this application, illustrated in the document entails an integration of finite element and fluid dynamic simulations to address the cooling of turbine blades of a gas turbine engine design. It is not uncommon to encounter high-temperature, film-cooled turbine airfoils with 1,000,000s of degrees of freedom. This results because of the complexity of the various components of the airfoils, requiring fine-grain meshing for accuracy. Additional information is contained in the original.

  15. Low Latency Workflow Scheduling and an Application of Hyperspectral Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Nguyen, P. T.; Chapman, D. R.; Halem, M.

    2012-12-01

    New system analytics for Big Data computing holds the promise of major scientific breakthroughs and discoveries from the exploration and mining of the massive data sets becoming available to the science community. However, such data intensive scientific applications face severe challenges in accessing, managing and analyzing petabytes of data. While the Hadoop MapReduce environment has been successfully applied to data intensive problems arising in business, there are still many scientific problem domains where limitations in the functionality of MapReduce systems prevent its wide adoption by those communities. This is mainly because MapReduce does not readily support the unique science discipline needs such as special science data formats, graphic and computational data analysis tools, maintaining high degrees of computational accuracies, and interfacing with application's existing components across heterogeneous computing processors. We address some of these limitations by exploiting the MapReduce programming model for satellite data intensive scientific problems and address scalability, reliability, scheduling, and data management issues when dealing with climate data records and their complex observational challenges. In addition, we will present techniques to support the unique Earth science discipline needs such as dealing with special science data formats (HDF and NetCDF). We have developed a Hadoop task scheduling algorithm that improves latency by 2x for a scientific workflow including the gridding of the EOS AIRS hyperspectral Brightness Temperatures (BT). This workflow processing algorithm has been tested at the Multicore Computing Center private Hadoop based Intel Nehalem cluster, as well as in a virtual mode under the Open Source Eucalyptus cloud. The 55TB AIRS hyperspectral L1b Brightness Temperature record has been gridded at the resolution of 0.5x1.0 degrees, and we have computed a 0.9 annual anti-correlation to the El Nino Southern oscillation in the Nino 4 region, as well as a 1.9 Kelvin decadal Arctic warming in the 4u and 12u spectral regions. Additionally, we will present the frequency of extreme global warming events by the use of a normalized maximum BT in a grid cell relative to its local standard deviation. A low-latency Hadoop scheduling environment maintains data integrity and fault tolerance in a MapReduce data intensive Cloud environment while improving the "time to solution" metric by 35% when compared to a more traditional parallel processing system for the same dataset. Our next step will be to improve the usability of our Hadoop task scheduling system, to enable rapid prototyping of data intensive experiments by means of processing "kernels". We will report on the performance and experience of implementing these experiments on the NEX testbed, and propose the use of a graphical directed acyclic graph (DAG) interface to help us develop on-demand scientific experiments. Our workflow system works within Hadoop infrastructure as a replacement for the FIFO or FairScheduler, thus the use of Apache "Pig" latin or other Apache tools may also be worth investigating on the NEX system to improve the usability of our workflow scheduling infrastructure for rapid experimentation.

  16. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  17. Using Just-in-Time Information to Support Scientific Discovery Learning in a Computer-Based Simulation

    ERIC Educational Resources Information Center

    Hulshof, Casper D.; de Jong, Ton

    2006-01-01

    Students encounter many obstacles during scientific discovery learning with computer-based simulations. It is hypothesized that an effective type of support, that does not interfere with the scientific discovery learning process, should be delivered on a "just-in-time" base. This study explores the effect of facilitating access to…

  18. Enabling Grid Computing resources within the KM3NeT computing model

    NASA Astrophysics Data System (ADS)

    Filippidis, Christos

    2016-04-01

    KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  19. A Survey of Collectives

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Wolpert, David

    2004-01-01

    Due to the increasing sophistication and miniaturization of computational components, complex, distributed systems of interacting agents are becoming ubiquitous. Such systems, where each agent aims to optimize its own performance, but where there is a well-defined set of system-level performance criteria, are called collectives. The fundamental problem in analyzing/designing such systems is in determining how the combined actions of self-interested agents leads to 'coordinated' behavior on a iarge scale. Examples of artificial systems which exhibit such behavior include packet routing across a data network, control of an array of communication satellites, coordination of multiple deployables, and dynamic job scheduling across a distributed computer grid. Examples of natural systems include ecosystems, economies, and the organelles within a living cell. No current scientific discipline provides a thorough understanding of the relation between the structure of collectives and how well they meet their overall performance criteria. Although still very young, research on collectives has resulted in successes both in understanding and designing such systems. It is eqected that as it matures and draws upon other disciplines related to collectives, this field will greatly expand the range of computationally addressable tasks. Moreover, in addition to drawing on them, such a fully developed field of collective intelligence may provide insight into already established scientific fields, such as mechanism design, economics, game theory, and population biology. This chapter provides a survey to the emerging science of collectives.

  20. Scientific and technical complex for modeling, researching and testing of rocket-space vehicles’ electric power installations

    NASA Astrophysics Data System (ADS)

    Bezruchko, Konstantin; Davidov, Albert

    2009-01-01

    In the given article scientific and technical complex for modeling, researching and testing of rocket-space vehicles' power installations which was created in Power Source Laboratory of National Aerospace University "KhAI" is described. This scientific and technical complex gives the opportunity to replace the full-sized tests on model tests and to reduce financial and temporary inputs at modeling, researching and testing of rocket-space vehicles' power installations. Using the given complex it is possible to solve the problems of designing and researching of rocket-space vehicles' power installations efficiently, and also to provide experimental researches of physical processes and tests of solar and chemical batteries of rocket-space complexes and space vehicles. Scientific and technical complex also allows providing accelerated tests, diagnostics, life-time control and restoring of chemical accumulators for rocket-space vehicles' power supply systems.

  1. The JINR Tier1 Site Simulation for Research and Development Purposes

    NASA Astrophysics Data System (ADS)

    Korenkov, V.; Nechaevskiy, A.; Ososkov, G.; Pryahina, D.; Trofimov, V.; Uzhinskiy, A.; Voytishin, N.

    2016-02-01

    Distributed complex computing systems for data storage and processing are in common use in the majority of modern scientific centers. The design of such systems is usually based on recommendations obtained via a preliminary simulated model used and executed only once. However big experiments last for years and decades, and the development of their computing system is going on, not only quantitatively but also qualitatively. Even with the substantial efforts invested in the design phase to understand the systems configuration, it would be hard enough to develop a system without additional research of its future evolution. The developers and operators face the problem of the system behaviour predicting after the planned modifications. A system for grid and cloud services simulation is developed at LIT (JINR, Dubna). This simulation system is focused on improving the effciency of the grid/cloud structures development by using the work quality indicators of some real system. The development of such kind of software is very important for making a new grid/cloud infrastructure for such big scientific experiments like the JINR Tier1 site for WLCG. The simulation of some processes of the Tier1 site is considered as an example of our application approach.

  2. The NSF ITR Project: Framework for the National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Szalay, A. S.; Williams, R. D.; NVO Collaboration

    2002-05-01

    Technological advances in telescope and instrument design during the last ten years, coupled with the exponential increase in computer and communications capability, have caused a dramatic and irreversible change in the character of astronomical research. Large-scale surveys of the sky from space and ground are being initiated at wavelengths from radio to x-ray, thereby generating vast amounts of high quality irreplaceable data. The potential for scientific discovery afforded by these new surveys is enormous. Entirely new and unexpected scientific results of major significance will emerge from the combined use of the resulting datasets, science that would not be possible from such sets used singly. However, their large size and complexity require tools and structures to discover the complex phenomena encoded within them. We plan to build the NVO framework both through coordinating diverse efforts already in existence and providing a focus for the development of capabilities that do not yet exist. The NVO we envisage will act as an enabling and coordinating entity to foster the development of further tools, protocols, and collaborations necessary to realize the full scientific potential of large astronomical datasets in the coming decade. The NVO must be able to change and respond to the rapidly evolving world of IT technology. In spite of its underlying complex software, the NVO should be no harder to use for the average astronomer, than today's brick-and-mortar observatories and telescopes. Development of these capabilities will require close interaction and collaboration with the information technology community and other disciplines facing similar challenges. We need to ensure that the tools that we need exist or are built, but we do not duplicate efforts, and rely on relevant experience of others.

  3. Reducing the Requirements and Cost of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, W. Scott; Whitakter, Ann F. (Technical Monitor)

    2002-01-01

    Limits on astronomical telescope apertures are being rapidly approached. These limits result from logistics, increasing complexity, and finally budgetary constraints. In an historical perspective, great strides have been made in the area of aperture, adaptive optics, wavefront sensors, detectors, stellar interferometers and image reconstruction. What will be the next advances? Emerging data analysis techniques based on communication theory holds the promise of yielding more information from observational data based on significant computer post-processing. This paper explores some of the current telescope limitations and ponders the possibilities increasing the yield of scientific data based on the migration computer post-processing techniques to higher dimensions. Some of these processes hold the promise of reducing the requirements on the basic telescope hardware making the next generation of instruments more affordable.

  4. Comparing Emerging XML Based Formats from a Multi-discipline Perspective

    NASA Astrophysics Data System (ADS)

    Sawyer, D. M.; Reich, L. I.; Nikhinson, S.

    2002-12-01

    This paper analyzes the similarity and differences among several examples of an emerging generation of Scientific Data Formats that are based on XML technologies. Some of the factors evaluated include the goals of these efforts, the data models, and XML technologies used, and the maturity of currently available software. This paper then investigates the practicality of developing a single set of structural data objects and basic scientific concepts, such as units, that could be used across discipline boundaries and extended by disciplines and missions to create Scientific Data Formats for their communities. This analysis is partly based on an effort sponsored by the ESDIS office at GSFC to compare the Earth Science Markup Language (ESML) and the eXtensible Data Format( XDF), two members of this new generation of XML based Data Description Languages that have been developed by NASA funded efforts in recent years. This paper adds FITSML and potentially CDFML to the list of XML based Scientific Data Formats discussed. This paper draws heavily a Formats Evolution Process Committee (http://ssdoo.gsfc.nasa.gov/nost/fep/) draft white paper primarily developed by Lou Reich, Mike Folk and Don Sawyer to assist the Space Science community in understanding Scientific Data Formats. One of primary conclusions of that paper is that a scientific data format object model should be examined along two basic axes. The first is the complexity of the computer/mathematical data types supported and the second is the level of scientific domain specialization incorporated. This paper also discusses several of the issues that affect the decision on whether to implement a discipline or project specific Scientific Data Format as a formal extension of a general purpose Scientific Data Format or to implement the APIs independently.

  5. An Interdisciplinary Guided Inquiry on Estuarine Transport Using a Computer Model in High School Classrooms

    ERIC Educational Resources Information Center

    Chan, Kit Yu Karen; Yang, Sylvia; Maliska, Max E.; Grunbaum, Daniel

    2012-01-01

    The National Science Education Standards have highlighted the importance of active learning and reflection for contemporary scientific methods in K-12 classrooms, including the use of models. Computer modeling and visualization are tools that researchers employ in their scientific inquiry process, and often computer models are used in…

  6. Architectural Principles and Experimentation of Distributed High Performance Virtual Clusters

    ERIC Educational Resources Information Center

    Younge, Andrew J.

    2016-01-01

    With the advent of virtualization and Infrastructure-as-a-Service (IaaS), the broader scientific computing community is considering the use of clouds for their scientific computing needs. This is due to the relative scalability, ease of use, advanced user environment customization abilities, and the many novel computing paradigms available for…

  7. An Analysis on the Effect of Computer Self-Efficacy over Scientific Research Self-Efficacy and Information Literacy Self-Efficacy

    ERIC Educational Resources Information Center

    Tuncer, Murat

    2013-01-01

    Present research investigates reciprocal relations amidst computer self-efficacy, scientific research and information literacy self-efficacy. Research findings have demonstrated that according to standardized regression coefficients, computer self-efficacy has a positive effect on information literacy self-efficacy. Likewise it has been detected…

  8. The Impact of Three-Dimensional Computational Modeling on Student Understanding of Astronomical Concepts: A Quantitative Analysis

    ERIC Educational Resources Information Center

    Hansen, John; Barnett, Michael; MaKinster, James; Keating, Thomas

    2004-01-01

    The increased availability of computational modeling software has created opportunities for students to engage in scientific inquiry through constructing computer-based models of scientific phenomena. However, despite the growing trend of integrating technology into science curricula, educators need to understand what aspects of these technologies…

  9. Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; VanderWijngaart, Rob

    2003-01-01

    The growing gap between sustained and peak performance for scientific applications has become a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor- mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6 achieves high performance on a large fraction of our application suite and in many cases significantly outperforms the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.

  10. EdGCM: Research Tools for Training the Climate Change Generation

    NASA Astrophysics Data System (ADS)

    Chandler, M. A.; Sohl, L. E.; Zhou, J.; Sieber, R.

    2011-12-01

    Climate scientists employ complex computer simulations of the Earth's physical systems to prepare climate change forecasts, study the physical mechanisms of climate, and to test scientific hypotheses and computer parameterizations. The Intergovernmental Panel on Climate Change 4th Assessment Report (2007) demonstrates unequivocally that policy makers rely heavily on such Global Climate Models (GCMs) to assess the impacts of potential economic and emissions scenarios. However, true climate modeling capabilities are not disseminated to the majority of world governments or U.S. researchers - let alone to the educators who will be training the students who are about to be presented with a world full of climate change stakeholders. The goal is not entirely quixotic; in fact, by the mid-1990's prominent climate scientists were predicting with certainty that schools and politicians would "soon" be running GCMs on laptops [Randall, 1996]. For a variety of reasons this goal was never achieved (nor even really attempted). However, around the same time NASA and the National Science Foundation supported a small pilot project at Columbia University to show the potential of putting sophisticated computer climate models - not just "demos" or "toy models" - into the hands of non-specialists. The Educational Global Climate Modeling Project (EdGCM) gave users access to a real global climate model and provided them with the opportunity to experience the details of climate model setup, model operation, post-processing and scientific visualization. EdGCM was designed for use in both research and education - it is a full-blown research GCM, but the ultimate goal is to develop a capability to embed these crucial technologies across disciplines, networks, platforms, and even across academia and industry. With this capability in place we can begin training the skilled workforce that is necessary to deal with the multitude of climate impacts that will occur over the coming decades. To further increase the educational potential of climate models, the EdGCM project has also created "EZgcm". Through a joint venture of NASA, Columbia University and McGill University EZgcm moves the focus toward a greater use of Web 1.0 and Web 2.0-based technologies. It shifts the educational objectives towards a greater emphasis on teaching students how science is conducted and what role science plays in assessing climate change. That is, students learn about the steps of the scientific process as conveyed by climate modeling research: constructing a hypothesis, designing an experiment, running a computer model, using scientific visualization to support analysis, communicating the results of that analysis, and role playing the scientific peer review process. This is in stark contrast to what they learn from the political debate over climate change, which they often confuse with a scientific debate.

  11. USRA/RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1992-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under a cooperative agreement with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing; Advanced Methods for Scientific Computing; Learning Systems; High Performance Networks and Technology; Graphics, Visualization, and Virtual Environments.

  12. Using Computer Simulations for Promoting Model-based Reasoning. Epistemological and Educational Dimensions

    NASA Astrophysics Data System (ADS)

    Develaki, Maria

    2017-11-01

    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.

  13. On-demand Simulation of Atmospheric Transport Processes on the AlpEnDAC Cloud

    NASA Astrophysics Data System (ADS)

    Hachinger, S.; Harsch, C.; Meyer-Arnek, J.; Frank, A.; Heller, H.; Giemsa, E.

    2016-12-01

    The "Alpine Environmental Data Analysis Centre" (AlpEnDAC) develops a data-analysis platform for high-altitude research facilities within the "Virtual Alpine Observatory" project (VAO). This platform, with its web portal, will support use cases going much beyond data management: On user request, the data are augmented with "on-demand" simulation results, such as air-parcel trajectories for tracing down the source of pollutants when they appear in high concentration. The respective back-end mechanism uses the Compute Cloud of the Leibniz Supercomputing Centre (LRZ) to transparently calculate results requested by the user, as far as they have not yet been stored in AlpEnDAC. The queuing-system operation model common in supercomputing is replaced by a model in which Virtual Machines (VMs) on the cloud are automatically created/destroyed, providing the necessary computing power immediately on demand. From a security point of view, this allows to perform simulations in a sandbox defined by the VM configuration, without direct access to a computing cluster. Within few minutes, the user receives conveniently visualized results. The AlpEnDAC infrastructure is distributed among two participating institutes [front-end at German Aerospace Centre (DLR), simulation back-end at LRZ], requiring an efficient mechanism for synchronization of measured and augmented data. We discuss our iRODS-based solution for these data-management tasks as well as the general AlpEnDAC framework. Our cloud-based offerings aim at making scientific computing for our users much more convenient and flexible than it has been, and to allow scientists without a broad background in scientific computing to benefit from complex numerical simulations.

  14. A toolbox and a record for scientific model development

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1994-01-01

    Scientific computation can benefit from software tools that facilitate construction of computational models, control the application of models, and aid in revising models to handle new situations. Existing environments for scientific programming provide only limited means of handling these tasks. This paper describes a two pronged approach for handling these tasks: (1) designing a 'Model Development Toolbox' that includes a basic set of model constructing operations; and (2) designing a 'Model Development Record' that is automatically generated during model construction. The record is subsequently exploited by tools that control the application of scientific models and revise models to handle new situations. Our two pronged approach is motivated by our belief that the model development toolbox and record should be highly interdependent. In particular, a suitable model development record can be constructed only when models are developed using a well defined set of operations. We expect this research to facilitate rapid development of new scientific computational models, to help ensure appropriate use of such models and to facilitate sharing of such models among working computational scientists. We are testing this approach by extending SIGMA, and existing knowledge-based scientific software design tool.

  15. Manycore Performance-Portability: Kokkos Multidimensional Array Library

    DOE PAGES

    Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...

    2012-01-01

    Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less

  16. The Petascale Data Storage Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Garth; Long, Darrell; Honeyman, Peter

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  17. The State of Software for Evolutionary Biology

    PubMed Central

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-01-01

    Abstract With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development. PMID:29385525

  18. The need for scientific software engineering in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Luty, Brock; Rose, Peter W.

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  19. The need for scientific software engineering in the pharmaceutical industry.

    PubMed

    Luty, Brock; Rose, Peter W

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  20. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Gregory Francis; Zhang, Jinghe

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuitiesmore » caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.« less

  1. Computer-assisted learning and simulation systems in dentistry--a challenge to society.

    PubMed

    Welk, A; Splieth, Ch; Wierinck, E; Gilpatrick, R O; Meyer, G

    2006-07-01

    Computer technology is increasingly used in practical training at universities. However, in spite of their potential, computer-assisted learning (CAL) and computer-assisted simulation (CAS) systems still appear to be underutilized in dental education. Advantages, challenges, problems, and solutions of computer-assisted learning and simulation in dentistry are discussed by means of MEDLINE, open Internet platform searches, and key results of a study among German dental schools. The advantages of computer-assisted learning are seen for example in self-paced and self-directed learning and increased motivation. It is useful for both objective theoretical and practical tests and for training students to handle complex cases. CAL can lead to more structured learning and can support training in evidence-based decision-making. The reasons for the still relatively rare implementation of CAL/CAS systems in dental education include an inability to finance, lack of studies of CAL/CAS, and too much effort required to integrate CAL/CAS systems into the curriculum. To overcome the reasons for the relative low degree of computer technology use, we should strive for multicenter research and development projects monitored by the appropriate national and international scientific societies, so that the potential of computer technology can be fully realized in graduate, postgraduate, and continuing dental education.

  2. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps,more » then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.« less

  3. Automated metadata, provenance cataloging and navigable interfaces: ensuring the usefulness of extreme-scale data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schissel, David; Greenwald, Martin

    The MPO (Metadata, Provenance, Ontology) Project successfully addressed the goal of improving the usefulness and traceability of scientific data by building a system that could capture and display all steps in the process of creating, analyzing and disseminating that data. Throughout history, scientists have generated handwritten logbooks to keep track of data, their hypotheses, assumptions, experimental setup, and computational processes as well as reflections on observations and issues encountered. Over the last several decades, with the growth of personal computers, handheld devices, and the World Wide Web, the handwritten logbook has begun to be replaced by electronic logbooks. This transitionmore » has brought increased capability such as supporting multi-media, hypertext, and fast searching. However, content creation and metadata (a set of data that describes and gives information about other data) capturing has for the most part remained a manual activity just as it was with handwritten logbooks. This has led to a fragmentation of data, processing, and annotation that has only accelerated as scientific workflows continue to increase in complexity. From a scientific perspective, it is very important to be able to understand the lineage of any piece of data: who, what, when, how, and why. This is typically referred to as data provenance. The fragmentation discussed previously often means that data provenance is lost. As scientific workflows move to powerful computers and become more complex, the ability to track all of the steps involved in creating a piece of data become even more difficult. It was the goal of the MPO (Metadata, Provenance, Ontology) Project to create a system (the MPO System) that allows for automatic provenance and metadata capturing in such a way to allow easy searching and browsing. This goal needed to be accomplished in a general way so that it may be used across a broad range of scientific domains, yet allow the addition of vocabulary (Ontology) that is domain specific as is required for intelligent searching and browsing in the scientific context. Through the creation and deployment of the MPO system, the goals of the project were achieved. An enhanced metadata, provenance, and ontology storage system was created. This was combined with innovative methodologies for navigating and exploring these data using a web browser for both experimental and simulation-based scientific research. In addition, a system to allow scientists to instrument their existing workflows for automatic metadata and provenance is part of the MPO system. In that way, a scientist can continue to use their existing methodology yet easily document their work. Workflows and data provenance can be displayed either graphically or in an electronic notebook format and support advanced search features including via ontology. The MPO system was successfully used in both Climate and Magnetic Fusion Energy Research. The software for the MPO system is located at https://github.com/MPO-Group/MPO and is open source distributed under the Revised BSD License. A demonstration site of the MPO system is open to the public and is available at https://mpo.psfc.mit.edu/. A Docker container release of the command line client is available for public download using the command docker pull jcwright/mpo-cli at https://hub.docker.com/r/jcwright/mpo-cli.« less

  4. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE PAGES

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...

    2015-02-19

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  5. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  6. Application of Mathematical and Three-Dimensional Computer Modeling Tools in the Planning of Processes of Fuel and Energy Complexes

    NASA Astrophysics Data System (ADS)

    Aksenova, Olesya; Nikolaeva, Evgenia; Cehlár, Michal

    2017-11-01

    This work aims to investigate the effectiveness of mathematical and three-dimensional computer modeling tools in the planning of processes of fuel and energy complexes at the planning and design phase of a thermal power plant (TPP). A solution for purification of gas emissions at the design development phase of waste treatment systems is proposed employing mathematical and three-dimensional computer modeling - using the E-nets apparatus and the development of a 3D model of the future gas emission purification system. Which allows to visualize the designed result, to select and scientifically prove economically feasible technology, as well as to ensure the high environmental and social effect of the developed waste treatment system. The authors present results of a treatment of planned technological processes and the system for purifying gas emissions in terms of E-nets. using mathematical modeling in the Simulink application. What allowed to create a model of a device from the library of standard blocks and to perform calculations. A three-dimensional model of a system for purifying gas emissions has been constructed. It allows to visualize technological processes and compare them with the theoretical calculations at the design phase of a TPP and. if necessary, make adjustments.

  7. Remote Earth Sciences data collection using ACTS

    NASA Technical Reports Server (NTRS)

    Evans, Robert H.

    1992-01-01

    Given the focus on global change and the attendant scope of such research, we anticipate significant growth of requirements for investigator interaction, processing system capabilities, and availability of data sets. The increased complexity of global processes requires interdisciplinary teams to address them; the investigators will need to interact on a regular basis; however, it is unlikely that a single institution will house sufficient investigators with the required breadth of skills. The complexity of the computations may also require resources beyond those located within a single institution; this lack of sufficient computational resources leads to a distributed system located at geographically dispersed institutions. Finally the combination of long term data sets like the Pathfinder datasets and the data to be gathered by new generations of satellites such as SeaWiFS and MODIS-N yield extra-ordinarily large amounts of data. All of these factors combine to increase demands on the communications facilities available; the demands are generating requirements for highly flexible, high capacity networks. We have been examining the applicability of the Advanced Communications Technology Satellite (ACTS) to address the scientific, computational, and, primarily, communications questions resulting from global change research. As part of this effort three scenarios for oceanographic use of ACTS have been developed; a full discussion of this is contained in Appendix B.

  8. 75 FR 65639 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ...: Computational Biology Special Emphasis Panel A. Date: October 29, 2010. Time: 2 p.m. to 3:30 p.m. Agenda: To.... Name of Committee: Center for Scientific Review Special Emphasis Panel; Member Conflict: Computational...

  9. The Individual Virtual Eye: a Computer Model for Advanced Intraocular Lens Calculation

    PubMed Central

    Einighammer, Jens; Oltrup, Theo; Bende, Thomas; Jean, Benedikt

    2010-01-01

    Purpose To describe the individual virtual eye, a computer model of a human eye with respect to its optical properties. It is based on measurements of an individual person and one of its major application is calculating intraocular lenses (IOLs) for cataract surgery. Methods The model is constructed from an eye's geometry, including axial length and topographic measurements of the anterior corneal surface. All optical components of a pseudophakic eye are modeled with computer scientific methods. A spline-based interpolation method efficiently includes data from corneal topographic measurements. The geometrical optical properties, such as the wavefront aberration, are simulated with real ray-tracing using Snell's law. Optical components can be calculated using computer scientific optimization procedures. The geometry of customized aspheric IOLs was calculated for 32 eyes and the resulting wavefront aberration was investigated. Results The more complex the calculated IOL is, the lower the residual wavefront error is. Spherical IOLs are only able to correct for the defocus, while toric IOLs also eliminate astigmatism. Spherical aberration is additionally reduced by aspheric and toric aspheric IOLs. The efficient implementation of time-critical numerical ray-tracing and optimization procedures allows for short calculation times, which may lead to a practicable method integrated in some device. Conclusions The individual virtual eye allows for simulations and calculations regarding geometrical optics for individual persons. This leads to clinical applications like IOL calculation, with the potential to overcome the limitations of those current calculation methods that are based on paraxial optics, exemplary shown by calculating customized aspheric IOLs.

  10. Towards Test Driven Development for Computational Science with pFUnit

    NASA Technical Reports Server (NTRS)

    Rilee, Michael L.; Clune, Thomas L.

    2014-01-01

    Developers working in Computational Science & Engineering (CSE)/High Performance Computing (HPC) must contend with constant change due to advances in computing technology and science. Test Driven Development (TDD) is a methodology that mitigates software development risks due to change at the cost of adding comprehensive and continuous testing to the development process. Testing frameworks tailored for CSE/HPC, like pFUnit, can lower the barriers to such testing, yet CSE software faces unique constraints foreign to the broader software engineering community. Effective testing of numerical software requires a comprehensive suite of oracles, i.e., use cases with known answers, as well as robust estimates for the unavoidable numerical errors associated with implementation with finite-precision arithmetic. At first glance these concerns often seem exceedingly challenging or even insurmountable for real-world scientific applications. However, we argue that this common perception is incorrect and driven by (1) a conflation between model validation and software verification and (2) the general tendency in the scientific community to develop relatively coarse-grained, large procedures that compound numerous algorithmic steps.We believe TDD can be applied routinely to numerical software if developers pursue fine-grained implementations that permit testing, neatly side-stepping concerns about needing nontrivial oracles as well as the accumulation of errors. We present an example of a successful, complex legacy CSE/HPC code whose development process shares some aspects with TDD, which we contrast with current and potential capabilities. A mix of our proposed methodology and framework support should enable everyday use of TDD by CSE-expert developers.

  11. TerraFERMA: The Transparent Finite Element Rapid Model Assembler for multiphysics problems in Earth sciences

    NASA Astrophysics Data System (ADS)

    Wilson, Cian R.; Spiegelman, Marc; van Keken, Peter E.

    2017-02-01

    We introduce and describe a new software infrastructure TerraFERMA, the Transparent Finite Element Rapid Model Assembler, for the rapid and reproducible description and solution of coupled multiphysics problems. The design of TerraFERMA is driven by two computational needs in Earth sciences. The first is the need for increased flexibility in both problem description and solution strategies for coupled problems where small changes in model assumptions can lead to dramatic changes in physical behavior. The second is the need for software and models that are more transparent so that results can be verified, reproduced, and modified in a manner such that the best ideas in computation and Earth science can be more easily shared and reused. TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high-level problem description (FEniCS), composable solvers for coupled multiphysics problems (PETSc), and an options handling system (SPuD) that allows the hierarchical management of all model options. TerraFERMA integrates these libraries into an interface that organizes the scientific and computational choices required in a model into a single options file from which a custom compiled application is generated and run. Because all models share the same infrastructure, models become more reusable and reproducible, while still permitting the individual researcher considerable latitude in model construction. TerraFERMA solves partial differential equations using the finite element method. It is particularly well suited for nonlinear problems with complex coupling between components. TerraFERMA is open-source and available at http://terraferma.github.io, which includes links to documentation and example input files.

  12. Tackling some of the most intricate geophysical challenges via high-performance computing

    NASA Astrophysics Data System (ADS)

    Khosronejad, A.

    2016-12-01

    Recently, world has been witnessing significant enhancements in computing power of supercomputers. Computer clusters in conjunction with the advanced mathematical algorithms has set the stage for developing and applying powerful numerical tools to tackle some of the most intricate geophysical challenges that today`s engineers face. One such challenge is to understand how turbulent flows, in real-world settings, interact with (a) rigid and/or mobile complex bed bathymetry of waterways and sea-beds in the coastal areas; (b) objects with complex geometry that are fully or partially immersed; and (c) free-surface of waterways and water surface waves in the coastal area. This understanding is especially important because the turbulent flows in real-world environments are often bounded by geometrically complex boundaries, which dynamically deform and give rise to multi-scale and multi-physics transport phenomena, and characterized by multi-lateral interactions among various phases (e.g. air/water/sediment phases). Herein, I present some of the multi-scale and multi-physics geophysical fluid mechanics processes that I have attempted to study using an in-house high-performance computational model, the so-called VFS-Geophysics. More specifically, I will present the simulation results of turbulence/sediment/solute/turbine interactions in real-world settings. Parts of the simulations I present are performed to gain scientific insights into the processes such as sand wave formation (A. Khosronejad, and F. Sotiropoulos, (2014), Numerical simulation of sand waves in a turbulent open channel flow, Journal of Fluid Mechanics, 753:150-216), while others are carried out to predict the effects of climate change and large flood events on societal infrastructures ( A. Khosronejad, et al., (2016), Large eddy simulation of turbulence and solute transport in a forested headwater stream, Journal of Geophysical Research:, doi: 10.1002/2014JF003423).

  13. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  14. Astro Data Science: The Next Generation

    NASA Astrophysics Data System (ADS)

    Mentzel, Chris

    2018-01-01

    Astronomers have been at the forefront of data-driven discovery since before the days of Kepler. Using data in the scientific inquiry into the workings of the the universe is the lifeblood of the field. This said, data science is considered a new thing, and researchers from every discipline are rushing to learn data science techniques, train themselves on data science tools, and even leaving academia to become data scientists. It is undeniable that our ability to harness new computational and statistical methods to make sense of today’s unprecedented size, complexity, and fast streaming data is helping scientists make new discoveries. The question now is how to ensure that researchers can employ these tools and use them appropriately. This talk will cover the state of data science as it relates to scientific research and the role astronomers play in its development, use, and training the next generation of astro-data scientists.

  15. What can the programming language Rust do for astrophysics?

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, Sergi; Bolmont, Emeline

    2017-06-01

    The astrophysics community uses different tools for computational tasks such as complex systems simulations, radiative transfer calculations or big data. Programming languages like Fortran, C or C++ are commonly present in these tools and, generally, the language choice was made based on the need for performance. However, this comes at a cost: safety. For instance, a common source of error is the access to invalid memory regions, which produces random execution behaviors and affects the scientific interpretation of the results. In 2015, Mozilla Research released the first stable version of a new programming language named Rust. Many features make this new language attractive for the scientific community, it is open source and it guarantees memory safety while offering zero-cost abstraction. We explore the advantages and drawbacks of Rust for astrophysics by re-implementing the fundamental parts of Mercury-T, a Fortran code that simulates the dynamical and tidal evolution of multi-planet systems.

  16. The impact of network medicine in gastroenterology and hepatology.

    PubMed

    Baffy, György

    2013-10-01

    In the footsteps of groundbreaking achievements made by biomedical research, another scientific revolution is unfolding. Systems biology draws from the chaos and complexity theory and applies computational models to predict emerging behavior of the interactions between genes, gene products, and environmental factors. Adaptation of systems biology to translational and clinical sciences has been termed network medicine, and is likely to change the way we think about preventing, predicting, diagnosing, and treating complex human diseases. Network medicine finds gene-disease associations by analyzing the unparalleled digital information discovered and created by high-throughput technologies (dubbed as "omics" science) and links genetic variance to clinical disease phenotypes through intermediate organizational levels of life such as the epigenome, transcriptome, proteome, and metabolome. Supported by large reference databases, unprecedented data storage capacity, and innovative computational analysis, network medicine is poised to find links between conditions that were thought to be distinct, uncover shared disease mechanisms and key drivers of the pathogenesis, predict individual disease outcomes and trajectories, identify novel therapeutic applications, and help avoid off-target and undesirable drug effects. Recent advances indicate that these perspectives are increasingly within our reach for understanding and managing complex diseases of the digestive system. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. RIACS/USRA

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1993-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing, Advanced Methods for Scientific Computing, High Performance Networks and Technology, and Learning Systems. Parallel compiler techniques, adaptive numerical methods for flows in complicated geometries, and optimization were identified as important problems to investigate for ARC's involvement in the Computational Grand Challenges of the next decade.

  18. JPRS Report, Science & Technology, USSR: Science and Technology Policy.

    DTIC Science & Technology

    1988-03-03

    accordance with the Kazakhstan Regional Scientific Research Program, which is called upon to unite scientific development of a basic and applied nature...Resources for 1986-1990 and the Period to 2000." The institute is a part of the union Avtogennyye protsessy Scientific Technical Complex and the...republic Tsvetnaya metallurgiya Scientific Technical Complex and is participating in the work of the creative youth collective for the automation of

  19. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  20. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  1. Evolution of the Virtualized HPC Infrastructure of Novosibirsk Scientific Center

    NASA Astrophysics Data System (ADS)

    Adakin, A.; Anisenkov, A.; Belov, S.; Chubarov, D.; Kalyuzhny, V.; Kaplin, V.; Korol, A.; Kuchin, N.; Lomakin, S.; Nikultsev, V.; Skovpen, K.; Sukharev, A.; Zaytsev, A.

    2012-12-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies, and Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG). Since each institute has specific requirements on the architecture of computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for a particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM&MG), and a Grid Computing Facility of BINP. A dedicated optical network with the initial bandwidth of 10 Gb/s connecting these three facilities was built in order to make it possible to share the computing resources among the research communities, thus increasing the efficiency of operating the existing computing facilities and offering a common platform for building the computing infrastructure for future scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technology based on XEN and KVM platforms. This contribution gives a thorough review of the present status and future development prospects for the NSC virtualized computing infrastructure and the experience gained while using it for running production data analysis jobs related to HEP experiments being carried out at BINP, especially the KEDR detector experiment at the VEPP-4M electron-positron collider.

  2. Position Paper: Applying Machine Learning to Software Analysis to Achieve Trusted, Repeatable Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prowell, Stacy J; Symons, Christopher T

    2015-01-01

    Producing trusted results from high-performance codes is essential for policy and has significant economic impact. We propose combining rigorous analytical methods with machine learning techniques to achieve the goal of repeatable, trustworthy scientific computing.

  3. Catalytic N 2 Reduction to Silylamines and Thermodynamics of N 2 Binding at Square Planar Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopchuk, Demyan E.; Wiedner, Eric S.; Walter, Eric D.

    The geometric constraints imposed by a tetradentate P 4N 2 ligand play an essential role in stabilizing square planar Fe complexes with changes in metal oxidation state. A combination of high-pressure electrochemistry and variable temperature UV-vis spectroscopy were used to obtain these thermodynamic measurements, while X-ray crystallography, 57Fe Mössbauer spectroscopy, and EPR spectroscopy were used to fully characterize these new compounds. Analysis of Fe 0, FeI, and FeII complexes reveals that the free energy of N 2 binding across three oxidation states spans more than 37 kcal mol -1. The square pyramidal Fe0(N 2)(P 4N 2) complex catalyzes the conversionmore » of N 2 to N(SiR 3) 3 (R = Me, Et) at room temperature, representing the highest turnover number (TON) of any Fe-based N 2 silylation catalyst to date (up to 65 equiv N(SiMe 3) 3 per Fe center). Elevated N 2 pressures (> 1 atm) have a dramatic effect on catalysis, increasing N 2 solubility and the thermodynamic N 2 binding affinity at Fe0(N 2)(P 4N 2). Acknowledgment. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. EPR experiments were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. The authors thank Prof. Yisong Alex Guo at Carnegie Mellon University for recording Mössbauer data for some complexes and Emma Wellington and Kaye Kuphal for their assistance with the collection of Mössbauer data at Colgate University, Dr. Katarzyna Grubel for X-ray assistance, and Dr. Rosalie Chu for mass spectrometry assistance. The authors also thank Dr. Aaron Appel and Dr. Alex Kendall for helpful discussions.« less

  4. Advanced Scientific Computing Research Exascale Requirements Review. An Office of Science review sponsored by Advanced Scientific Computing Research, September 27-29, 2016, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almgren, Ann; DeMar, Phil; Vetter, Jeffrey

    The widespread use of computing in the American economy would not be possible without a thoughtful, exploratory research and development (R&D) community pushing the performance edge of operating systems, computer languages, and software libraries. These are the tools and building blocks — the hammers, chisels, bricks, and mortar — of the smartphone, the cloud, and the computing services on which we rely. Engineers and scientists need ever-more specialized computing tools to discover new material properties for manufacturing, make energy generation safer and more efficient, and provide insight into the fundamentals of the universe, for example. The research division of themore » U.S. Department of Energy’s (DOE’s) Office of Advanced Scientific Computing and Research (ASCR Research) ensures that these tools and building blocks are being developed and honed to meet the extreme needs of modern science. See also http://exascaleage.org/ascr/ for additional information.« less

  5. Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.

    PubMed

    Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei

    2013-04-01

    The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.

  6. CRAY mini manual. Revision D

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.

    1993-01-01

    This document briefly describes the use of the CRAY supercomputers that are an integral part of the Supercomputing Network Subsystem of the Central Scientific Computing Complex at LaRC. Features of the CRAY supercomputers are covered, including: FORTRAN, C, PASCAL, architectures of the CRAY-2 and CRAY Y-MP, the CRAY UNICOS environment, batch job submittal, debugging, performance analysis, parallel processing, utilities unique to CRAY, and documentation. The document is intended for all CRAY users as a ready reference to frequently asked questions and to more detailed information contained in the vendor manuals. It is appropriate for both the novice and the experienced user.

  7. MODIS algorithm development and data visualization using ACTS

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.

    1992-01-01

    The study of the Earth as a system will require the merger of scientific and data resources on a much larger scale than has been done in the past. New methods of scientific research, particularly in the development of geographically dispersed, interdisciplinary teams, are necessary if we are to understand the complexity of the Earth system. Even the planned satellite missions themselves, such as the Earth Observing System, will require much more interaction between researchers and engineers if they are to produce scientifically useful data products. A key component in these activities is the development of flexible, high bandwidth data networks that can be used to move large amounts of data as well as allow researchers to communicate in new ways, such as through video. The capabilities of the Advanced Communications Technology Satellite (ACTS) will allow the development of such networks. The Pathfinder global AVHRR data set and the upcoming SeaWiFS Earthprobe mission would serve as a testbed in which to develop the tools to share data and information among geographically distributed researchers. Our goal is to develop a 'Distributed Research Environment' that can be used as a model for scientific collaboration in the EOS era. The challenge is to unite the advances in telecommunications with the parallel advances in computing and networking.

  8. Parallel Multivariate Spatio-Temporal Clustering of Large Ecological Datasets on Hybrid Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreepathi, Sarat; Kumar, Jitendra; Mills, Richard T.

    A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like themore » Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.« less

  9. Climate Analytics as a Service. Chapter 11

    NASA Technical Reports Server (NTRS)

    Schnase, John L.

    2016-01-01

    Exascale computing, big data, and cloud computing are driving the evolution of large-scale information systems toward a model of data-proximal analysis. In response, we are developing a concept of climate analytics as a service (CAaaS) that represents a convergence of data analytics and archive management. With this approach, high-performance compute-storage implemented as an analytic system is part of a dynamic archive comprising both static and computationally realized objects. It is a system whose capabilities are framed as behaviors over a static data collection, but where queries cause results to be created, not found and retrieved. Those results can be the product of a complex analysis, but, importantly, they also can be tailored responses to the simplest of requests. NASA's MERRA Analytic Service and associated Climate Data Services API provide a real-world example of climate analytics delivered as a service in this way. Our experiences reveal several advantages to this approach, not the least of which is orders-of-magnitude time reduction in the data assembly task common to many scientific workflows.

  10. Near Real-Time Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Denker, C.; Yang, G.; Wang, H.

    2001-08-01

    In recent years, post-facto image-processing algorithms have been developed to achieve diffraction-limited observations of the solar surface. We present a combination of frame selection, speckle-masking imaging, and parallel computing which provides real-time, diffraction-limited, 256×256 pixel images at a 1-minute cadence. Our approach to achieve diffraction limited observations is complementary to adaptive optics (AO). At the moment, AO is limited by the fact that it corrects wavefront abberations only for a field of view comparable to the isoplanatic patch. This limitation does not apply to speckle-masking imaging. However, speckle-masking imaging relies on short-exposure images which limits its spectroscopic applications. The parallel processing of the data is performed on a Beowulf-class computer which utilizes off-the-shelf, mass-market technologies to provide high computational performance for scientific calculations and applications at low cost. Beowulf computers have a great potential, not only for image reconstruction, but for any kind of complex data reduction. Immediate access to high-level data products and direct visualization of dynamic processes on the Sun are two of the advantages to be gained.

  11. Quantum Testbeds Stakeholder Workshop (QTSW) Report meeting purpose and agenda.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebner, Gregory A.

    Quantum computing (QC) is a promising early-stage technology with the potential to provide scientific computing capabilities far beyond what is possible with even an Exascale computer in specific problems of relevance to the Office of Science. These include (but are not limited to) materials modeling, molecular dynamics, and quantum chromodynamics. However, commercial QC systems are not yet available and the technical maturity of current QC hardware, software, algorithms, and systems integration is woefully incomplete. Thus, there is a significant opportunity for DOE to define the technology building blocks, and solve the system integration issues to enable a revolutionary tool. Oncemore » realized, QC will have world changing impact on economic competitiveness, the scientific enterprise, and citizen well-being. Prior to this workshop, DOE / Office of Advanced Scientific Computing Research (ASCR) hosted a workshop in 2015 to explore QC scientific applications. The goal of that workshop was to assess the viability of QC technologies to meet the computational requirements in support of DOE’s science and energy mission and to identify the potential impact of these technologies.« less

  12. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE PAGES

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil; ...

    2018-03-22

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  13. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  14. A Computing Environment to Support Repeatable Scientific Big Data Experimentation of World-Wide Scientific Literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlicher, Bob G; Kulesz, James J; Abercrombie, Robert K

    A principal tenant of the scientific method is that experiments must be repeatable and relies on ceteris paribus (i.e., all other things being equal). As a scientific community, involved in data sciences, we must investigate ways to establish an environment where experiments can be repeated. We can no longer allude to where the data comes from, we must add rigor to the data collection and management process from which our analysis is conducted. This paper describes a computing environment to support repeatable scientific big data experimentation of world-wide scientific literature, and recommends a system that is housed at the Oakmore » Ridge National Laboratory in order to provide value to investigators from government agencies, academic institutions, and industry entities. The described computing environment also adheres to the recently instituted digital data management plan mandated by multiple US government agencies, which involves all stages of the digital data life cycle including capture, analysis, sharing, and preservation. It particularly focuses on the sharing and preservation of digital research data. The details of this computing environment are explained within the context of cloud services by the three layer classification of Software as a Service , Platform as a Service , and Infrastructure as a Service .« less

  15. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    PubMed Central

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  16. Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.

    PubMed

    Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  17. Automated Software Acceleration in Programmable Logic for an Efficient NFFT Algorithm Implementation: A Case Study.

    PubMed

    Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian

    2017-03-28

    Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation.

  18. Automated Software Acceleration in Programmable Logic for an Efficient NFFT Algorithm Implementation: A Case Study

    PubMed Central

    Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian

    2017-01-01

    Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation. PMID:28350358

  19. A computational model of cerebral cortex folding.

    PubMed

    Nie, Jingxin; Guo, Lei; Li, Gang; Faraco, Carlos; Stephen Miller, L; Liu, Tianming

    2010-05-21

    The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Investigating a holobiont: Microbiota perturbations and transkingdom networks.

    PubMed

    Greer, Renee; Dong, Xiaoxi; Morgun, Andrey; Shulzhenko, Natalia

    2016-01-01

    The scientific community has recently come to appreciate that, rather than existing as independent organisms, multicellular hosts and their microbiota comprise a complex evolving superorganism or metaorganism, termed a holobiont. This point of view leads to a re-evaluation of our understanding of different physiological processes and diseases. In this paper we focus on experimental and computational approaches which, when combined in one study, allowed us to dissect mechanisms (traditionally named host-microbiota interactions) regulating holobiont physiology. Specifically, we discuss several approaches for microbiota perturbation, such as use of antibiotics and germ-free animals, including advantages and potential caveats of their usage. We briefly review computational approaches to characterize the microbiota and, more importantly, methods to infer specific components of microbiota (such as microbes or their genes) affecting host functions. One such approach called transkingdom network analysis has been recently developed and applied in our study. (1) Finally, we also discuss common methods used to validate the computational predictions of host-microbiota interactions using in vitro and in vivo experimental systems.

  1. 'Towers in the Tempest' Computer Animation Submission

    NASA Technical Reports Server (NTRS)

    Shirah, Greg

    2008-01-01

    The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.

  2. Artificial Intelligence in Medical Practice: The Question to the Answer?

    PubMed

    Miller, D Douglas; Brown, Eric W

    2018-02-01

    Computer science advances and ultra-fast computing speeds find artificial intelligence (AI) broadly benefitting modern society-forecasting weather, recognizing faces, detecting fraud, and deciphering genomics. AI's future role in medical practice remains an unanswered question. Machines (computers) learn to detect patterns not decipherable using biostatistics by processing massive datasets (big data) through layered mathematical models (algorithms). Correcting algorithm mistakes (training) adds to AI predictive model confidence. AI is being successfully applied for image analysis in radiology, pathology, and dermatology, with diagnostic speed exceeding, and accuracy paralleling, medical experts. While diagnostic confidence never reaches 100%, combining machines plus physicians reliably enhances system performance. Cognitive programs are impacting medical practice by applying natural language processing to read the rapidly expanding scientific literature and collate years of diverse electronic medical records. In this and other ways, AI may optimize the care trajectory of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical errors, and improve subject enrollment into clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. A 3D bioprinting exemplar of the consequences of the regulatory requirements on customized processes.

    PubMed

    Hourd, Paul; Medcalf, Nicholas; Segal, Joel; Williams, David J

    2015-01-01

    Computer-aided 3D printing approaches to the industrial production of customized 3D functional living constructs for restoration of tissue and organ function face significant regulatory challenges. Using the manufacture of a customized, 3D-bioprinted nasal implant as a well-informed but hypothetical exemplar, we examine how these products might be regulated. Existing EU and USA regulatory frameworks do not account for the differences between 3D printing and conventional manufacturing methods or the ability to create individual customized products using mechanized rather than craft approaches. Already subject to extensive regulatory control, issues related to control of the computer-aided design to manufacture process and the associated software system chain present additional scientific and regulatory challenges for manufacturers of these complex 3D-bioprinted advanced combination products.

  4. Convolution- and Fourier-transform-based reconstructors for pyramid wavefront sensor.

    PubMed

    Shatokhina, Iuliia; Ramlau, Ronny

    2017-08-01

    In this paper, we present two novel algorithms for wavefront reconstruction from pyramid-type wavefront sensor data. An overview of the current state-of-the-art in the application of pyramid-type wavefront sensors shows that the novel algorithms can be applied in various scientific fields such as astronomy, ophthalmology, and microscopy. Assuming a computationally very challenging setting corresponding to the extreme adaptive optics (XAO) on the European Extremely Large Telescope, we present the results of the performed end-to-end simulations and compare the achieved AO correction quality (in terms of the long-exposure Strehl ratio) to other methods, such as matrix-vector multiplication and preprocessed cumulative reconstructor with domain decomposition. Also, we provide a comparison in terms of applicability and computational complexity and closed-loop performance of our novel algorithms to other methods existing for this type of sensor.

  5. Statistical processing of large image sequences.

    PubMed

    Khellah, F; Fieguth, P; Murray, M J; Allen, M

    2005-01-01

    The dynamic estimation of large-scale stochastic image sequences, as frequently encountered in remote sensing, is important in a variety of scientific applications. However, the size of such images makes conventional dynamic estimation methods, for example, the Kalman and related filters, impractical. In this paper, we present an approach that emulates the Kalman filter, but with considerably reduced computational and storage requirements. Our approach is illustrated in the context of a 512 x 512 image sequence of ocean surface temperature. The static estimation step, the primary contribution here, uses a mixture of stationary models to accurately mimic the effect of a nonstationary prior, simplifying both computational complexity and modeling. Our approach provides an efficient, stable, positive-definite model which is consistent with the given correlation structure. Thus, the methods of this paper may find application in modeling and single-frame estimation.

  6. Idle waves in high-performance computing

    NASA Astrophysics Data System (ADS)

    Markidis, Stefano; Vencels, Juris; Peng, Ivy Bo; Akhmetova, Dana; Laure, Erwin; Henri, Pierre

    2015-01-01

    The vast majority of parallel scientific applications distributes computation among processes that are in a busy state when computing and in an idle state when waiting for information from other processes. We identify the propagation of idle waves through processes in scientific applications with a local information exchange between the two processes. Idle waves are nondispersive and have a phase velocity inversely proportional to the average busy time. The physical mechanism enabling the propagation of idle waves is the local synchronization between two processes due to remote data dependency. This study provides a description of the large number of processes in parallel scientific applications as a continuous medium. This work also is a step towards an understanding of how localized idle periods can affect remote processes, leading to the degradation of global performance in parallel scientific applications.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P; Walter, K

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory'smore » significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer simulations performed on NNSA's Advanced Simulation and Computing (ASC) Program supercomputers at Livermore. ASC Purple and BlueGene/L, the world's fastest computer, together provide nearly a half petaflop (500 trillion operations per second) of computer power for use by the three NNSA national laboratories. Livermore-led teams were awarded the Gordon Bell Prize for Peak Performance in both 2005 and 2006. The winning simulations, run on BlueGene/L, investigated the properties of materials at the length and time scales of atomic interactions. The computing power that makes possible such detailed simulations provides unprecedented opportunities for scientific discovery. Laboratory scientists are meeting the extraordinary challenge of creating experimental capabilities to match the resolution of supercomputer simulations. Working with a wide range of collaborators, we are developing experimental tools that gather better data at the nanometer and subnanosecond scales. Applications range from imaging biomolecules to studying matter at extreme conditions of pressure and temperature. The premier high-energy-density experimental physics facility in the world will be the National Ignition Facility (NIF) when construction is completed in 2009. We are leading the national effort to perform the first fusion ignition experiments using NIF's 192-beam laser and prepare to explore some of the remaining important issues in weapons physics. With scientific colleagues from throughout the nation, we are also designing revolutionary experiments on NIF to advance the fields of astrophysics, planetary physics, and materials science. Mission-directed, multidisciplinary science and technology at Livermore is also focused on reducing the threat posed by the proliferation of weapons of mass destruction as well as their acquisition and use by terrorists. The Laboratory helps this important national effort by providing its unique expertise, integration analyses, and operational support to the Department of Homeland Security. For this vital facet of the Laboratory's national security mission, we are developing advanced technologies, such as a pocket-size explosives detector and an airborne persistent surveillance system, both of which earned R&D 100 Awards. Altogether, Livermore won seven R&D 100 Awards in 2006, the most for any organization. Emerging threats to national and global security go beyond defense and homeland security. Livermore pursues major scientific and technical advances to meet the need for a clean environment; clean, abundant energy; better water management; and improved human health. Our annual report highlights the link between human activities and the warming of tropical oceans, as well as techniques for imaging biological molecules and detecting bone cancer in its earliest stages. In addition, we showcase many scientific discoveries: distant planets, the composition of comets, a new superheavy element.« less

  8. Software for Managing Parametric Studies

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; DeVivo, Adrian

    2003-01-01

    The Information Power Grid Virtual Laboratory (ILab) is a Practical Extraction and Reporting Language (PERL) graphical-user-interface computer program that generates shell scripts to facilitate parametric studies performed on the Grid. (The Grid denotes a worldwide network of supercomputers used for scientific and engineering computations involving data sets too large to fit on desktop computers.) Heretofore, parametric studies on the Grid have been impeded by the need to create control language scripts and edit input data files painstaking tasks that are necessary for managing multiple jobs on multiple computers. ILab reflects an object-oriented approach to automation of these tasks: All data and operations are organized into packages in order to accelerate development and debugging. A container or document object in ILab, called an experiment, contains all the information (data and file paths) necessary to define a complex series of repeated, sequenced, and/or branching processes. For convenience and to enable reuse, this object is serialized to and from disk storage. At run time, the current ILab experiment is used to generate required input files and shell scripts, create directories, copy data files, and then both initiate and monitor the execution of all computational processes.

  9. Tools and techniques for computational reproducibility.

    PubMed

    Piccolo, Stephen R; Frampton, Michael B

    2016-07-11

    When reporting research findings, scientists document the steps they followed so that others can verify and build upon the research. When those steps have been described in sufficient detail that others can retrace the steps and obtain similar results, the research is said to be reproducible. Computers play a vital role in many research disciplines and present both opportunities and challenges for reproducibility. Computers can be programmed to execute analysis tasks, and those programs can be repeated and shared with others. The deterministic nature of most computer programs means that the same analysis tasks, applied to the same data, will often produce the same outputs. However, in practice, computational findings often cannot be reproduced because of complexities in how software is packaged, installed, and executed-and because of limitations associated with how scientists document analysis steps. Many tools and techniques are available to help overcome these challenges; here we describe seven such strategies. With a broad scientific audience in mind, we describe the strengths and limitations of each approach, as well as the circumstances under which each might be applied. No single strategy is sufficient for every scenario; thus we emphasize that it is often useful to combine approaches.

  10. Comparisons of some large scientific computers

    NASA Technical Reports Server (NTRS)

    Credeur, K. R.

    1981-01-01

    In 1975, the National Aeronautics and Space Administration (NASA) began studies to assess the technical and economic feasibility of developing a computer having sustained computational speed of one billion floating point operations per second and a working memory of at least 240 million words. Such a powerful computer would allow computational aerodynamics to play a major role in aeronautical design and advanced fluid dynamics research. Based on favorable results from these studies, NASA proceeded with developmental plans. The computer was named the Numerical Aerodynamic Simulator (NAS). To help insure that the estimated cost, schedule, and technical scope were realistic, a brief study was made of past large scientific computers. Large discrepancies between inception and operation in scope, cost, or schedule were studied so that they could be minimized with NASA's proposed new compter. The main computers studied were the ILLIAC IV, STAR 100, Parallel Element Processor Ensemble (PEPE), and Shuttle Mission Simulator (SMS) computer. Comparison data on memory and speed were also obtained on the IBM 650, 704, 7090, 360-50, 360-67, 360-91, and 370-195; the CDC 6400, 6600, 7600, CYBER 203, and CYBER 205; CRAY 1; and the Advanced Scientific Computer (ASC). A few lessons learned conclude the report.

  11. Interactive visualization of Earth and Space Science computations

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.; Paul, Brian E.; Santek, David A.; Dyer, Charles R.; Battaiola, Andre L.; Voidrot-Martinez, Marie-Francoise

    1994-01-01

    Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.

  12. USSR Report: Cybernetics, Computers and Automation Technology. No. 69.

    DTIC Science & Technology

    1983-05-06

    computers in multiprocessor and multistation design , control and scientific research automation systems. The results of comparing the efficiency of...Podvizhnaya, Scientific Research Institute of Control Computers, Severodonetsk] [Text] The most significant change in the design of the SM-2M compared to...UPRAVLYAYUSHCHIYE SISTEMY I MASHINY, Nov-Dec 82) 95 APPLICATIONS Kiev Automated Control System, Design Features and Prospects for Development (V. A

  13. An Easy & Fun Way to Teach about How Science "Works": Popularizing Haack's Crossword-Puzzle Analogy

    ERIC Educational Resources Information Center

    Pavlova, Iglika V.; Lewis, Kayla C.

    2013-01-01

    Science is a complex process, and we must not teach our students overly simplified versions of "the" scientific method. We propose that students can uncover the complex realities of scientific thinking by exploring the similarities and differences between solving the familiar crossword puzzles and scientific "puzzles."…

  14. Echoes That Never Were: American Mobile Intercontinental Ballistic Missiles, 1956-1983

    DTIC Science & Technology

    2006-05-11

    research, develop, operate, maintain, and sustain complex technological systems , ICBMs were--and remain--a system blending technical matters, scientific ...maintain, and sustain complex technological systems , ICBMs were--and remain--a system blending technical matters, scientific laws, economic...technological system that blended scientific laws, economic realities, political forces, and social concerns that included environmentalism and

  15. Preface: SciDAC 2007

    NASA Astrophysics Data System (ADS)

    Keyes, David E.

    2007-09-01

    It takes a village to perform a petascale computation—domain scientists, applied mathematicians, computer scientists, computer system vendors, program managers, and support staff—and the village was assembled during 24-28 June 2007 in Boston's Westin Copley Place for the third annual Scientific Discovery through Advanced Computing (SciDAC) 2007 Conference. Over 300 registered participants networked around 76 posters, focused on achievements and challenges in 36 plenary talks, and brainstormed in two panels. In addition, with an eye to spreading the vision for simulation at the petascale and to growing the workforce, 115 participants—mostly doctoral students and post-docs complementary to the conferees—were gathered on 29 June 2007 in classrooms of the Massachusetts Institute of Technology for a full day of tutorials on the use of SciDAC software. Eleven SciDAC-sponsored research groups presented their software at an introductory level, in both lecture and hands-on formats that included live runs on a local BlueGene/L. Computation has always been about garnering insight into the behavior of systems too complex to explore satisfactorily by theoretical means alone. Today, however, computation is about much more: scientists and decision makers expect quantitatively reliable predictions from simulations ranging in scale from that of the Earth's climate, down to quarks, and out to colliding black holes. Predictive simulation lies at the heart of policy choices in energy and environment affecting billions of lives and expenditures of trillions of dollars. It is also at the heart of scientific debates on the nature of matter and the origin of the universe. The petascale is barely adequate for such demands and we are barely established at the levels of resolution and throughput that this new scale of computation affords. However, no scientific agenda worldwide is pushing the petascale frontier on all its fronts as vigorously as SciDAC. The breadth of this conference archive reflects the philosophy of the SciDAC program, which was introduced as a collaboration of all of the program offices in the Office of Science of the U.S. Department of Energy (DOE) in Fall 2001 and was renewed for a second period of five years in Fall 2006, with additional support in certain areas from the DOE's National Nuclear Security Administration (NNSA) and the U.S. National Science Foundation (NSF). All of the projects in the SciDAC portfolio were represented at the conference and most are captured in this volume. In addition, the Organizing Committee incorporated into the technical program a number of computational science highlights from outside of SciDAC, and, indeed, from outside of the United States. As implied by the title, scientific discovery is the driving deliverable of the SciDAC program, spanning the full range of the DOE Office of Science: accelerator design, astrophysics, chemistry and materials science, climate science, combustion, life science, nuclear physics, plasma physics, and subsurface physics. As articulated in the eponymous report that launched SciDAC, the computational challenges of these diverse areas are remarkably common. Each is profoundly multiscale in space and time and therefore continues to benefit at any margin from access to the largest and fastest computers available. Optimality of representation and execution requires adaptive, scalable mathematical algorithms in both continuous (geometrically complex domain) and discrete (mesh and graph) aspects. Programmability and performance optimality require software environments that both manage the intricate details of the underlying hardware and abstract them for scientific users. Running effectively on remote specialized hardware requires transparent workflow systems. Comprehending the petascale data sets generated in such simulations requires automated tools for data exploration and visualization. Archiving and sharing access to this data within the inevitably distributed community of leading scientists requires networked collaborative environments. Each of these elements is a research and development project in its own right. SciDAC does not replace theoretical programs oriented towards long-term basic research, but harvests them for contemporary, complementary state-of-the-art computational campaigns. By clustering researchers from applications and enabling technologies into coordinated, mission-driven projects, SciDAC accomplishes two ends with remarkable effectiveness: (1) it enriches the scientific perspective of both applications and enabling communities through mutual interaction and (2) it leverages between applications solutions and effort encapsulated in software. Though SciDAC is unique, its objective of multiscale science at extreme computational scale is shared and approached through different programmatic mechanisms, notably NNSA's ASC program, NSF's Cyberinfrastructure program, and DoD's CREATE program in the U.S., and RIKEN's computational simulation programs in Japan. Representatives of each of these programs were given the podium at SciDAC 2007 and communication occurred that will be valuable towards the ends of complementarity, leverage, and promulgation of best practices. The 2007 conference was graced with additional welcome program announcements. Michael Strayer announced a new program of postdoctoral research fellowships in the enabling technologies. (The computer science post-docs will be named after the late Professor Ken Kennedy, who briefly led the SciDAC project Center for Scalable Application Development Software (CScADS) until his untimely death in February 2007.) IBM announced its petascale BlueGene/P system on June 26. Meanwhile, at ISC07 in Dresden, the semi-annual posting of a revised Top 500 list on June 27 showed several new Top 10 systems accessible to various SciDAC participants. While SciDAC is dominated in 2007 by the classical scientific pursuit of understanding through reduction to components and isolation of causes and effects, simulation at scale is beginning to offer something even more tantalizing: synthesis and integration of multiple interacting phenomena in complex systems. Indeed, the design-oriented elements of SciDAC, such as accelerator and tokamak modeling, area already emphasizing multiphysics coupling, and climate science has been doing so for years in the coupling of models of the ocean, atmosphere, ice, and land. In one of the panels at SciDAC 2007, leaders of a three-stage `progressive workshop' on exascale simulation for energy and environment (E3), considered prospects for whole-system modeling in a variety of scientific areas within the domain of DOE related to energy, environmental, and global security. Computer vendors were invited to comment on the prospects for delivering exascale computing systems in another panel. The daunting nature of this challenge is summarized with the observation that the peak processing power of the entire Top 500 list of June 2007 is only 0.0052 exaflop/s. It takes the combined power of most of the computers on the internet today worldwide to reach 1 exaflop/s or 1018 floating point operations per second. The program of SciDAC 2007 followed a template honed by its predecessor meetings in San Francisco in 2005 and Denver in 2006. The Boston venue permitted outreach to a number of universities in the immediate region and throughout southern New England, including SciDAC campuses of Boston University, Harvard, and MIT, and a dozen others including most of the Ivy League. Altogether 55 universities, 20 laboratories, 14 private companies, 5 agencies, and 4 countries were represented among the conference and tutorial workshop participants. Approximately 47% of the conference participants were from government laboratories, 37% from universities, 9% from federal program offices, and 7% from industry. Keys to the success of SciDAC 2007 were the informal poster receptions, coffee breaks, working breakfasts and lunches, and even the `Right-brain Night' featuring artistic statements, both reverent and irreverent, by computational scientists, inspired by their work. The organizers thank the sponsors for their generosity in attracting participants to these informal occasions with sumptuous snacks and beverages: AMD, Cray, DataDirect, IBM, SGI, SiCortex, and the Institute of Physics. A conference as logistically complex as SciDAC 2007 cannot possibly and should not be executed primarily by the scientists, themselves. It is a great pleasure to acknowledge the many talented staff that contributed to a productive time for all participants and nearperfect adherence to schedule. Chief among them is Betsy Riley, currently detailed from ORNL to the program office in Germantown, with degrees in mathematics and computer science, but a passion for organizing interdisciplinary scientific programs. Betsy staffed the organizing committee during the year of telecon meetings leading up to the conference and masterminded sponsorship, invitations, and the compilation of the proceedings. Assisting her from ORNL in managing the program were Daniel Pack, Angela Beach, and Angela Fincher. Cynthia Latham of ORNL performed admirably in website and graphic design for all aspects of the online and printed materials of the meeting. John Bui, John Smith, and Missy Smith of ORNL ran their customary tight ship with respect to audio-visual execution and capture, assisted by Eric Ecklund and Keith Quinn of the Westin. Pamelia Nixon-Hartje of Ambassador Services was personally invaluable in getting the most out of the hotel and its staff. We thank Jeff Nichols of ORNL for managing the primary subcontract for the meeting. The SciDAC tutorial program was a joint effort of Professor John Negele of MIT, David Skinner, PI of the SciDAC Outreach Center, and the SciDAC 2007 Chair. Sponsorship from the Outreach Center in the form of travel scholarships for students, and of the local area SciDAC university delegation of BU, Harvard, and MIT for food and facilities is gratefully acknowledged. Of course, the archival success of a scientific meeting rests with the willingness of the presenters to make the extra effort to package their field-leading science in a form suitable for interaction with colleagues from other disciplines rather than fellow specialists. This goal, oft-stated in the run up to the meeting, was achieved to an admirable degree, both in the live presentations and in these proceedings. This effort is its own reward, since it leads to enhanced communication and accelerated scientific progress. Our greatest thanks are reserved for Michael Strayer, Associate Director for OASCR and the Director of SciDAC, for envisioning this celebratory meeting three years ago, and sustaining it with his own enthusiasm, in order to provide a highly visible manifestation of the fruits of SciDAC. He and the other Office of Science program managers in attendance and working in Washington, DC to communicate the opportunities afforded by SciDAC deserve the gratitude of a new virtual scientific village created and cemented under the vision of scientific discovery through advanced computing. David E Keyes Fu Foundation Professor of Applied Mathematics

  16. Nature-Inspired Cognitive Evolution to Play MS. Pac-Man

    NASA Astrophysics Data System (ADS)

    Tan, Tse Guan; Teo, Jason; Anthony, Patricia

    Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.

  17. Objects and processes: Two notions for understanding biological information.

    PubMed

    Mercado-Reyes, Agustín; Padilla-Longoria, Pablo; Arroyo-Santos, Alfonso

    2015-09-07

    In spite of being ubiquitous in life sciences, the concept of information is harshly criticized. Uses of the concept other than those derived from Shannon׳s theory are denounced as metaphoric. We perform a computational experiment to explore whether Shannon׳s information is adequate to describe the uses of said concept in commonplace scientific practice. Our results show that semantic sequences do not have unique complexity values different from the value of meaningless sequences. This result suggests that quantitative theoretical frameworks do not account fully for the complex phenomenon that the term "information" refers to. We propose a restructuring of the concept into two related, but independent notions, and conclude that a complete theory of biological information must account completely not only for both notions, but also for the relationship between them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Discovering Network Structure Beyond Communities

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2011-11-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

  19. RAPPORT: running scientific high-performance computing applications on the cloud.

    PubMed

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  20. High-performance scientific computing in the cloud

    NASA Astrophysics Data System (ADS)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  1. Exploring the use of I/O nodes for computation in a MIMD multiprocessor

    NASA Technical Reports Server (NTRS)

    Kotz, David; Cai, Ting

    1995-01-01

    As parallel systems move into the production scientific-computing world, the emphasis will be on cost-effective solutions that provide high throughput for a mix of applications. Cost effective solutions demand that a system make effective use of all of its resources. Many MIMD multiprocessors today, however, distinguish between 'compute' and 'I/O' nodes, the latter having attached disks and being dedicated to running the file-system server. This static division of responsibilities simplifies system management but does not necessarily lead to the best performance in workloads that need a different balance of computation and I/O. Of course, computational processes sharing a node with a file-system service may receive less CPU time, network bandwidth, and memory bandwidth than they would on a computation-only node. In this paper we begin to examine this issue experimentally. We found that high performance I/O does not necessarily require substantial CPU time, leaving plenty of time for application computation. There were some complex file-system requests, however, which left little CPU time available to the application. (The impact on network and memory bandwidth still needs to be determined.) For applications (or users) that cannot tolerate an occasional interruption, we recommend that they continue to use only compute nodes. For tolerant applications needing more cycles than those provided by the compute nodes, we recommend that they take full advantage of both compute and I/O nodes for computation, and that operating systems should make this possible.

  2. The methodology of multi-viewpoint clustering analysis

    NASA Technical Reports Server (NTRS)

    Mehrotra, Mala; Wild, Chris

    1993-01-01

    One of the greatest challenges facing the software engineering community is the ability to produce large and complex computer systems, such as ground support systems for unmanned scientific missions, that are reliable and cost effective. In order to build and maintain these systems, it is important that the knowledge in the system be suitably abstracted, structured, and otherwise clustered in a manner which facilitates its understanding, manipulation, testing, and utilization. Development of complex mission-critical systems will require the ability to abstract overall concepts in the system at various levels of detail and to consider the system from different points of view. Multi-ViewPoint - Clustering Analysis MVP-CA methodology has been developed to provide multiple views of large, complicated systems. MVP-CA provides an ability to discover significant structures by providing an automated mechanism to structure both hierarchically (from detail to abstract) and orthogonally (from different perspectives). We propose to integrate MVP/CA into an overall software engineering life cycle to support the development and evolution of complex mission critical systems.

  3. An Overview of the Future Development of Climate and Earth System Models for Scientific and Policy Use (Invited)

    NASA Astrophysics Data System (ADS)

    Washington, W. M.

    2010-12-01

    The development of climate and earth system models has been regarded primarily as the making of scientific tools to study the complex nature of the Earth’s climate. These models have a long history starting with very simple physical models based on fundamental physics in the 1960s and over time they have become much more complex with atmospheric, ocean, sea ice, land/vegetation, biogeochemical, glacial and ecological components. The policy use aspects of these models did not start in the 1960s and 1970s as decision making tools but were used to answer fundamental scientific questions such as what happens when the atmospheric carbon dioxide concentration increases or is doubled. They gave insights into the various interactions and were extensively compared with observations. It was realized that models of the earlier time periods could only give first order answers to many of the fundamental policy questions. As societal concerns about climate change rose, the policy questions of anthropogenic climate change became better defined; they were mostly concerned with the climate impacts of increasing greenhouse gases, aerosols, and land cover change. In the late 1980s, the United Nations set up the Intergovernmental Panel on Climate Change to perform assessments of the published literature. Thus, the development of climate and Earth system models became intimately linked to the need to not only improve our scientific understanding but also answering fundamental policy questions. In order to meet this challenge, the models became more complex and realistic so that they could address these policy oriented science questions such as rising sea level. The presentation will discuss the past and future development of global climate and earth system models for science and policy purposes. Also to be discussed is their interactions with economic integrated assessment models, regional and specialized models such as river transport or ecological components. As an example of one development pathway, the NSF/Department of Energy supported Community Climate System and Earth System Models will be featured in the presentation. Computational challenges will also part of the discussion.

  4. Identifying Key Features, Cutting Edge Cloud Resources, and Artificial Intelligence Tools to Achieve User-Friendly Water Science in the Cloud

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2017-12-01

    Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.

  5. Activities of the Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  6. The future of scientific workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deelman, Ewa; Peterka, Tom; Altintas, Ilkay

    Today’s computational, experimental, and observational sciences rely on computations that involve many related tasks. The success of a scientific mission often hinges on the computer automation of these workflows. In April 2015, the US Department of Energy (DOE) invited a diverse group of domain and computer scientists from national laboratories supported by the Office of Science, the National Nuclear Security Administration, from industry, and from academia to review the workflow requirements of DOE’s science and national security missions, to assess the current state of the art in science workflows, to understand the impact of emerging extreme-scale computing systems on thosemore » workflows, and to develop requirements for automated workflow management in future and existing environments. This article is a summary of the opinions of over 50 leading researchers attending this workshop. We highlight use cases, computing systems, workflow needs and conclude by summarizing the remaining challenges this community sees that inhibit large-scale scientific workflows from becoming a mainstream tool for extreme-scale science.« less

  7. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  8. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  9. Active Storage with Analytics Capabilities and I/O Runtime System for Petascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Alok

    Computational scientists must understand results from experimental, observational and computational simulation generated data to gain insights and perform knowledge discovery. As systems approach the petascale range, problems that were unimaginable a few years ago are within reach. With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive I/O, storage, acceleration of data manipulation, analysis, and mining tools. Scientists require techniques, tools and infrastructure to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis, statistical analysis and knowledgemore » discovery. The goal of this work is to enable more effective analysis of scientific datasets through the integration of enhancements in the I/O stack, from active storage support at the file system layer to MPI-IO and high-level I/O library layers. We propose to provide software components to accelerate data analytics, mining, I/O, and knowledge discovery for large-scale scientific applications, thereby increasing productivity of both scientists and the systems. Our approaches include 1) design the interfaces in high-level I/O libraries, such as parallel netCDF, for applications to activate data mining operations at the lower I/O layers; 2) Enhance MPI-IO runtime systems to incorporate the functionality developed as a part of the runtime system design; 3) Develop parallel data mining programs as part of runtime library for server-side file system in PVFS file system; and 4) Prototype an active storage cluster, which will utilize multicore CPUs, GPUs, and FPGAs to carry out the data mining workload.« less

  10. Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.

    2016-12-01

    Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.

  11. Ground data systems resource allocation process

    NASA Technical Reports Server (NTRS)

    Berner, Carol A.; Durham, Ralph; Reilly, Norman B.

    1989-01-01

    The Ground Data Systems Resource Allocation Process at the Jet Propulsion Laboratory provides medium- and long-range planning for the use of Deep Space Network and Mission Control and Computing Center resources in support of NASA's deep space missions and Earth-based science. Resources consist of radio antenna complexes and associated data processing and control computer networks. A semi-automated system was developed that allows operations personnel to interactively generate, edit, and revise allocation plans spanning periods of up to ten years (as opposed to only two or three weeks under the manual system) based on the relative merit of mission events. It also enhances scientific data return. A software system known as the Resource Allocation and Planning Helper (RALPH) merges the conventional methods of operations research, rule-based knowledge engineering, and advanced data base structures. RALPH employs a generic, highly modular architecture capable of solving a wide variety of scheduling and resource sequencing problems. The rule-based RALPH system has saved significant labor in resource allocation. Its successful use affirms the importance of establishing and applying event priorities based on scientific merit, and the benefit of continuity in planning provided by knowledge-based engineering. The RALPH system exhibits a strong potential for minimizing development cycles of resource and payload planning systems throughout NASA and the private sector.

  12. UMAMI: A Recipe for Generating Meaningful Metrics through Holistic I/O Performance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, Glenn K.; Yoo, Wucherl; Byna, Suren

    I/O efficiency is essential to productivity in scientific computing, especially as many scientific domains become more data-intensive. Many characterization tools have been used to elucidate specific aspects of parallel I/O performance, but analyzing components of complex I/O subsystems in isolation fails to provide insight into critical questions: how do the I/O components interact, what are reasonable expectations for application performance, and what are the underlying causes of I/O performance problems? To address these questions while capitalizing on existing component-level characterization tools, we propose an approach that combines on-demand, modular synthesis of I/O characterization data into a unified monitoring and metricsmore » interface (UMAMI) to provide a normalized, holistic view of I/O behavior. We evaluate the feasibility of this approach by applying it to a month-long benchmarking study on two distinct largescale computing platforms. We present three case studies that highlight the importance of analyzing application I/O performance in context with both contemporaneous and historical component metrics, and we provide new insights into the factors affecting I/O performance. By demonstrating the generality of our approach, we lay the groundwork for a production-grade framework for holistic I/O analysis.« less

  13. Preface: SciDAC 2006

    NASA Astrophysics Data System (ADS)

    Tang, William M., Dr.

    2006-01-01

    The second annual Scientific Discovery through Advanced Computing (SciDAC) Conference was held from June 25-29, 2006 at the new Hyatt Regency Hotel in Denver, Colorado. This conference showcased outstanding SciDAC-sponsored computational science results achieved during the past year across many scientific domains, with an emphasis on science at scale. Exciting computational science that has been accomplished outside of the SciDAC program both nationally and internationally was also featured to help foster communication between SciDAC computational scientists and those funded by other agencies. This was illustrated by many compelling examples of how domain scientists collaborated productively with applied mathematicians and computer scientists to effectively take advantage of terascale computers (capable of performing trillions of calculations per second) not only to accelerate progress in scientific discovery in a variety of fields but also to show great promise for being able to utilize the exciting petascale capabilities in the near future. The SciDAC program was originally conceived as an interdisciplinary computational science program based on the guiding principle that strong collaborative alliances between domain scientists, applied mathematicians, and computer scientists are vital to accelerated progress and associated discovery on the world's most challenging scientific problems. Associated verification and validation are essential in this successful program, which was funded by the US Department of Energy Office of Science (DOE OS) five years ago. As is made clear in many of the papers in these proceedings, SciDAC has fundamentally changed the way that computational science is now carried out in response to the exciting challenge of making the best use of the rapid progress in the emergence of more and more powerful computational platforms. In this regard, Dr. Raymond Orbach, Energy Undersecretary for Science at the DOE and Director of the OS has stated: `SciDAC has strengthened the role of high-end computing in furthering science. It is defining whole new fields for discovery.' (SciDAC Review, Spring 2006, p8). Application domains within the SciDAC 2006 conference agenda encompassed a broad range of science including: (i) the DOE core mission of energy research involving combustion studies relevant to fuel efficiency and pollution issues faced today and magnetic fusion investigations impacting prospects for future energy sources; (ii) fundamental explorations into the building blocks of matter, ranging from quantum chromodynamics - the basic theory that describes how quarks make up the protons and neutrons of all matter - to the design of modern high-energy accelerators; (iii) the formidable challenges of predicting and controlling the behavior of molecules in quantum chemistry and the complex biomolecules determining the evolution of biological systems; (iv) studies of exploding stars for insights into the nature of the universe; and (v) integrated climate modeling to enable realistic analysis of earth's changing climate. Associated research has made it quite clear that advanced computation is often the only means by which timely progress is feasible when dealing with these complex, multi-component physical, chemical, and biological systems operating over huge ranges of temporal and spatial scales. Working with the domain scientists, applied mathematicians and computer scientists have continued to develop the discretizations of the underlying equations and the complementary algorithms to enable improvements in solutions on modern parallel computing platforms as they evolve from the terascale toward the petascale regime. Moreover, the associated tremendous growth of data generated from the terabyte to the petabyte range demands not only the advanced data analysis and visualization methods to harvest the scientific information but also the development of efficient workflow strategies which can deal with the data input/output, management, movement, and storage challenges. If scientific discovery is expected to keep apace with the continuing progression from tera- to petascale platforms, the vital alliance between domain scientists, applied mathematicians, and computer scientists will be even more crucial. During the SciDAC 2006 Conference, some of the future challenges and opportunities in interdisciplinary computational science were emphasized in the Advanced Architectures Panel and by Dr. Victor Reis, Senior Advisor to the Secretary of Energy, who gave a featured presentation on `Simulation, Computation, and the Global Nuclear Energy Partnership.' Overall, the conference provided an excellent opportunity to highlight the rising importance of computational science in the scientific enterprise and to motivate future investment in this area. As Michael Strayer, SciDAC Program Director, has noted: `While SciDAC may have started out as a specific program, Scientific Discovery through Advanced Computing has become a powerful concept for addressing some of the biggest challenges facing our nation and our world.' Looking forward to next year, the SciDAC 2007 Conference will be held from June 24-28 at the Westin Copley Plaza in Boston, Massachusetts. Chairman: David Keyes, Columbia University. The Organizing Committee for the SciDAC 2006 Conference would like to acknowledge the individuals whose talents and efforts were essential to the success of the meeting. Special thanks go to Betsy Riley for her leadership in building the infrastructure support for the conference, for identifying and then obtaining contributions from our corporate sponsors, for coordinating all media communications, and for her efforts in organizing and preparing the conference proceedings for publication; to Tim Jones for handling the hotel scouting, subcontracts, and exhibits and stage production; to Angela Harris for handling supplies, shipping, and tracking, poster sessions set-up, and for her efforts in coordinating and scheduling the promotional activities that took place during the conference; to John Bui and John Smith for their superb wireless networking and A/V set-up and support; to Cindy Latham for Web site design, graphic design, and quality control of proceedings submissions; and to Pamelia Nixon-Hartje of Ambassador for budget and quality control of catering. We are grateful for the highly professional dedicated efforts of all of these individuals, who were the cornerstones of the SciDAC 2006 Conference. Thanks also go to Angela Beach of the ORNL Conference Center for her efforts in executing the contracts with the hotel, Carolyn James of Colorado State for on-site registration supervision, Lora Wolfe and Brittany Hagen for administrative support at ORNL, and Dami Rich and Andrew Sproles for graphic design and production. We are also most grateful to the Oak Ridge National Laboratory, especially Jeff Nichols, and to our corporate sponsors, Data Direct Networks, Cray, IBM, SGI, and Institute of Physics Publishing for their support. We especially express our gratitude to the featured speakers, invited oral speakers, invited poster presenters, session chairs, and advanced architecture panelists and chair for their excellent contributions on behalf of SciDAC 2006. We would like to express our deep appreciation to Lali Chatterjee, Graham Douglas, Margaret Smith, and the production team of Institute of Physics Publishing, who worked tirelessly to publish the final conference proceedings in a timely manner. Finally, heartfelt thanks are extended to Michael Strayer, Associate Director for OASCR and SciDAC Director, and to the DOE program managers associated with SciDAC for their continuing enthusiasm and strong support for the annual SciDAC Conferences as a special venue to showcase the exciting scientific discovery achievements enabled by the interdisciplinary collaborations championed by the SciDAC program.

  14. The International Conference on Vector and Parallel Computing (2nd)

    DTIC Science & Technology

    1989-01-17

    Computation of the SVD of Bidiagonal Matrices" ...................................... 11 " Lattice QCD -As a Large Scale Scientific Computation...vectorizcd for the IBM 3090 Vector Facility. In addition, elapsed times " Lattice QCD -As a Large Scale Scientific have been reduced by using 3090...benchmarked Lattice QCD on a large number ofcompu- come from the wavefront solver routine. This was exten- ters: CrayX-MP and Cray 2 (vector

  15. Multi-threading: A new dimension to massively parallel scientific computation

    NASA Astrophysics Data System (ADS)

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2000-06-01

    Multi-threading is becoming widely available for Unix-like operating systems, and the application of multi-threading opens new ways for performing parallel computations with greater efficiency. We here briefly discuss the principles of multi-threading and illustrate the application of multi-threading for a massively parallel direct four-index transformation of electron repulsion integrals. Finally, other potential applications of multi-threading in scientific computing are outlined.

  16. Comment on "Most computational hydrology is not reproducible, so is it really science?" by Christopher Hutton et al.

    NASA Astrophysics Data System (ADS)

    Añel, Juan A.

    2017-03-01

    Nowadays, the majority of the scientific community is not aware of the risks and problems associated with an inadequate use of computer systems for research, mostly for reproducibility of scientific results. Such reproducibility can be compromised by the lack of clear standards and insufficient methodological description of the computational details involved in an experiment. In addition, the inappropriate application or ignorance of copyright laws can have undesirable effects on access to aspects of great importance of the design of experiments and therefore to the interpretation of results.Plain Language SummaryThis article highlights several important issues to ensure the scientific reproducibility of results within the current scientific framework, going beyond simple documentation. Several specific examples are discussed in the field of hydrological modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..APR.V5002G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..APR.V5002G"><span>National Fusion Collaboratory: Grid Computing for Simulations and Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenwald, Martin</p> <p>2004-05-01</p> <p>The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMIN43B1738C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMIN43B1738C"><span>Using CyberShake Workflows to Manage Big Seismic Hazard Data on Large-Scale Open-Science HPC Resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.</p> <p>2015-12-01</p> <p>The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and migrating from file-based communication to MPI messaging, to greatly reduce the I/O demands and node-hour requirements of CyberShake. We will also present performance metrics from CyberShake Study 15.4, and discuss challenges that producers of Big Data on open-science HPC resources face moving forward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21694973','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21694973"><span>From data processing to mental organs: an interdisciplinary path to cognitive neuroscience.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patharkar, Manoj</p> <p>2011-01-01</p> <p>Human brain is a highly evolved coordinating mechanism in the species Homo sapiens. It is only in the last 100 years that extensive knowledge of the intricate structure and complex functioning of the human brain has been acquired, though a lot is yet to be known. However, from the beginning of civilisation, people have been conscious of a 'mind' which has been considered the origin of all scientific and cultural development. Philosophers have discussed at length the various attributes of consciousness. At the same time, most of the philosophical or scientific frameworks have directly or indirectly implied mind-body duality. It is now imperative that we develop an integrated approach to understand the interconnection between mind and consciousness on one hand and brain on the other. This paper begins with the proposition that the structure of the brain is analogous, at least to certain extent, to that of the computer system. Of course, it is much more sophisticated and complex. The second proposition is that the Chomskyean concept of 'mental organs' is a good working hypothesis that tries to characterise this complexity in terms of an innate cognitive framework. By following this dual approach, brain as a data processing system and brain as a superstructure of intricately linked mental organs, we can move toward a better understanding of 'mind' within the framework of empirical science. The one 'mental organ' studied extensively in Chomskyean terms is 'language faculty' which is unique in its relation to brain, mind and consciousness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1208742-electronic-steric-influences-pendant-amine-groups-protonation-molybdenum-bis-dinitrogen-complexes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1208742-electronic-steric-influences-pendant-amine-groups-protonation-molybdenum-bis-dinitrogen-complexes"><span>Electronic and steric influences of pendant amine groups on the protonation of molybdenum bis (dinitrogen) complexes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Labios, Liezel A.; Heiden, Zachariah M.; Mock, Michael T.</p> <p>2015-05-04</p> <p>The synthesis of a series of P EtP NRR' (P EtP NRR' = Et₂PCH₂CH₂P(CH₂NRR')₂, R = H, R' = Ph or 2,4-difluorophenyl; R = R' = Ph or iPr) diphosphine ligands containing mono- and disubstituted pendant amine groups, and the preparation of their corresponding molybdenum bis(dinitrogen) complexes trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') is described. In situ IR and multinuclear NMR spectroscopic studies monitoring the stepwise addition of (HOTf) to trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') complexes in THF at -40 °C show that the electronic and steric properties of the R and R' groups of the pendant amines influence whether the complexes are protonated atmore » Mo, a pendant amine, a coordinated N2 ligand, or a combination of these sites. For example, complexes containing mono-aryl substituted pendant amines are protonated at Mo and pendant amine to generate mono- and dicationic Mo–H species. Protonation of the complex containing less basic diphenyl-substituted pendant amines exclusively generates a monocationic hydrazido (Mo(NNH₂)) product, indicating preferential protonation of an N₂ ligand. Addition of HOTf to the complex featuring more basic diisopropyl amines primarily produces a monocationic product protonated at a pendant amine site, as well as a trace amount of dicationic Mo(NNH₂) product that contain protonated pendant amines. In addition, trans-Mo(N₂)₂(PMePh₂)₂(depe) (depe = Et₂PCH₂CH₂PEt₂) without a pendant amine was synthesized and treated with HOTf, generating a monocationic Mo(NNH₂) product. Protonolysis experiments conducted on select complexes in the series afforded trace amounts of NH₄⁺. Computational analysis of the series of trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') complexes provides further insight into the proton affinity values of the metal center, N₂ ligand, and pendant amine sites to rationalize the differing reactivity profiles. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>