Sample records for scientific computing environment

  1. Computing through Scientific Abstractions in SysBioPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Stephan, Eric G.; Gracio, Deborah K.

    2004-10-13

    Today, biologists and bioinformaticists have a tremendous amount of computational power at their disposal. With the availability of supercomputers, burgeoning scientific databases and digital libraries such as GenBank and PubMed, and pervasive computational environments such as the Grid, biologists have access to a wealth of computational capabilities and scientific data at hand. Yet, the rapid development of computational technologies has far exceeded the typical biologist’s ability to effectively apply the technology in their research. Computational sciences research and development efforts such as the Biology Workbench, BioSPICE (Biological Simulation Program for Intra-Cellular Evaluation), and BioCoRE (Biological Collaborative Research Environment) are importantmore » in connecting biologists and their scientific problems to computational infrastructures. On the Computational Cell Environment and Heuristic Entity-Relationship Building Environment projects at the Pacific Northwest National Laboratory, we are jointly developing a new breed of scientific problem solving environment called SysBioPSE that will allow biologists to access and apply computational resources in the scientific research context. In contrast to other computational science environments, SysBioPSE operates as an abstraction layer above a computational infrastructure. The goal of SysBioPSE is to allow biologists to apply computational resources in the context of the scientific problems they are addressing and the scientific perspectives from which they conduct their research. More specifically, SysBioPSE allows biologists to capture and represent scientific concepts and theories and experimental processes, and to link these views to scientific applications, data repositories, and computer systems.« less

  2. A distributed computing environment with support for constraint-based task scheduling and scientific experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, J.P.; Shapiro, L.G.; Tanimoto, S.L.

    1997-04-01

    This paper describes a computing environment which supports computer-based scientific research work. Key features include support for automatic distributed scheduling and execution and computer-based scientific experimentation. A new flexible and extensible scheduling technique that is responsive to a user`s scheduling constraints, such as the ordering of program results and the specification of task assignments and processor utilization levels, is presented. An easy-to-use constraint language for specifying scheduling constraints, based on the relational database query language SQL, is described along with a search-based algorithm for fulfilling these constraints. A set of performance studies show that the environment can schedule and executemore » program graphs on a network of workstations as the user requests. A method for automatically generating computer-based scientific experiments is described. Experiments provide a concise method of specifying a large collection of parameterized program executions. The environment achieved significant speedups when executing experiments; for a large collection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled processors was obtained.« less

  3. A Computing Environment to Support Repeatable Scientific Big Data Experimentation of World-Wide Scientific Literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlicher, Bob G; Kulesz, James J; Abercrombie, Robert K

    A principal tenant of the scientific method is that experiments must be repeatable and relies on ceteris paribus (i.e., all other things being equal). As a scientific community, involved in data sciences, we must investigate ways to establish an environment where experiments can be repeated. We can no longer allude to where the data comes from, we must add rigor to the data collection and management process from which our analysis is conducted. This paper describes a computing environment to support repeatable scientific big data experimentation of world-wide scientific literature, and recommends a system that is housed at the Oakmore » Ridge National Laboratory in order to provide value to investigators from government agencies, academic institutions, and industry entities. The described computing environment also adheres to the recently instituted digital data management plan mandated by multiple US government agencies, which involves all stages of the digital data life cycle including capture, analysis, sharing, and preservation. It particularly focuses on the sharing and preservation of digital research data. The details of this computing environment are explained within the context of cloud services by the three layer classification of Software as a Service , Platform as a Service , and Infrastructure as a Service .« less

  4. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1995-01-01

    The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.

  5. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    NASA Astrophysics Data System (ADS)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-10-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game self-efficacy, including whether gender differences were observed. We examined 407 middle school students' scientific inquiry self-efficacy and computer game self-efficacy before and after completing a computer game-like assessment about a science mystery. Results from path analyses indicated that prior scientific inquiry self-efficacy predicted achievement on end-of-module questions, which in turn predicted change in scientific inquiry self-efficacy. By contrast, computer game self-efficacy was neither predictive of nor predicted by performance on the science assessment. While boys had higher computer game self-efficacy compared to girls, multi-group analyses suggested only minor gender differences in how efficacy beliefs related to performance. Implications for assessments with virtual environments and future design and research are discussed.

  6. Singularity: Scientific containers for mobility of compute.

    PubMed

    Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  7. Singularity: Scientific containers for mobility of compute

    PubMed Central

    Kurtzer, Gregory M.; Bauer, Michael W.

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014

  8. Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds

    NASA Astrophysics Data System (ADS)

    Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano

    Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.

  9. New project to support scientific collaboration electronically

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Rasmussen, C. E.; Niciejewski, R. J.; Killeen, T. L.; Kelly, J. D.; Zambre, Y.; Rosenberg, T. J.; Stauning, P.; Friis-Christensen, E.; Mende, S. B.; Weymouth, T. E.; Prakash, A.; McDaniel, S. E.; Olson, G. M.; Finholt, T. A.; Atkins, D. E.

    A new multidisciplinary effort is linking research in the upper atmospheric and space, computer, and behavioral sciences to develop a prototype electronic environment for conducting team science worldwide. A real-world electronic collaboration testbed has been established to support scientific work centered around the experimental operations being conducted with instruments from the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland. Such group computing environments will become an important component of the National Information Infrastructure initiative, which is envisioned as the high-performance communications infrastructure to support national scientific research.

  10. Are Cloud Environments Ready for Scientific Applications?

    NASA Astrophysics Data System (ADS)

    Mehrotra, P.; Shackleford, K.

    2011-12-01

    Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to multiple cloud environments including NASA's Nebula environment, Amazon's EC2, Magellan at NERSC, and SGI's Cyclone system. We critically examined the performance of the applications on these systems. We also collected information on the usability of these cloud environments. In this talk we will present the results of our study focusing on the efficacy of using clouds for NASA's scientific applications.

  11. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  12. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  13. Architectural Principles and Experimentation of Distributed High Performance Virtual Clusters

    ERIC Educational Resources Information Center

    Younge, Andrew J.

    2016-01-01

    With the advent of virtualization and Infrastructure-as-a-Service (IaaS), the broader scientific computing community is considering the use of clouds for their scientific computing needs. This is due to the relative scalability, ease of use, advanced user environment customization abilities, and the many novel computing paradigms available for…

  14. Virtual Environments in Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Lisinski, T. A. (Technical Monitor)

    1994-01-01

    Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.

  15. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    ERIC Educational Resources Information Center

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-01-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game…

  16. Dataset of Scientific Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Ho, Chiung Ching

    2015-01-01

    This paper presents the dataset collected from student interactions with INQPRO, a computer-based scientific inquiry learning environment. The dataset contains records of 100 students and is divided into two portions. The first portion comprises (1) "raw log data", capturing the student's name, interfaces visited, the interface…

  17. The Development and Evaluation of a Computer-Simulated Science Inquiry Environment Using Gamified Elements

    ERIC Educational Resources Information Center

    Tsai, Fu-Hsing

    2018-01-01

    This study developed a computer-simulated science inquiry environment, called the Science Detective Squad, to engage students in investigating an electricity problem that may happen in daily life. The environment combined the simulation of scientific instruments and a virtual environment, including gamified elements, such as points and a story for…

  18. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hey, Tony; Agarwal, Deborah; Borgman, Christine

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  19. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  20. Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments

    ERIC Educational Resources Information Center

    Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer

    2013-01-01

    Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile computing…

  1. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  2. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  3. The Petascale Data Storage Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Garth; Long, Darrell; Honeyman, Peter

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  4. Large-Scale Distributed Computational Fluid Dynamics on the Information Power Grid Using Globus

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen; Biswas, Rupak; Saini, Subhash; VanderWijngaart, Robertus; Yarrow, Maurice; Zechtzer, Lou; Foster, Ian; Larsson, Olle

    1999-01-01

    This paper describes an experiment in which a large-scale scientific application development for tightly-coupled parallel machines is adapted to the distributed execution environment of the Information Power Grid (IPG). A brief overview of the IPG and a description of the computational fluid dynamics (CFD) algorithm are given. The Globus metacomputing toolkit is used as the enabling device for the geographically-distributed computation. Modifications related to latency hiding and Load balancing were required for an efficient implementation of the CFD application in the IPG environment. Performance results on a pair of SGI Origin 2000 machines indicate that real scientific applications can be effectively implemented on the IPG; however, a significant amount of continued effort is required to make such an environment useful and accessible to scientists and engineers.

  5. Hermes: Seamless delivery of containerized bioinformatics workflows in hybrid cloud (HTC) environments

    NASA Astrophysics Data System (ADS)

    Kintsakis, Athanassios M.; Psomopoulos, Fotis E.; Symeonidis, Andreas L.; Mitkas, Pericles A.

    Hermes introduces a new "describe once, run anywhere" paradigm for the execution of bioinformatics workflows in hybrid cloud environments. It combines the traditional features of parallelization-enabled workflow management systems and of distributed computing platforms in a container-based approach. It offers seamless deployment, overcoming the burden of setting up and configuring the software and network requirements. Most importantly, Hermes fosters the reproducibility of scientific workflows by supporting standardization of the software execution environment, thus leading to consistent scientific workflow results and accelerating scientific output.

  6. The Goal Specificity Effect on Strategy Use and Instructional Efficiency during Computer-Based Scientific Discovery Learning

    ERIC Educational Resources Information Center

    Kunsting, Josef; Wirth, Joachim; Paas, Fred

    2011-01-01

    Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…

  7. PISCES: An environment for parallel scientific computation

    NASA Technical Reports Server (NTRS)

    Pratt, T. W.

    1985-01-01

    The parallel implementation of scientific computing environment (PISCES) is a project to provide high-level programming environments for parallel MIMD computers. Pisces 1, the first of these environments, is a FORTRAN 77 based environment which runs under the UNIX operating system. The Pisces 1 user programs in Pisces FORTRAN, an extension of FORTRAN 77 for parallel processing. The major emphasis in the Pisces 1 design is in providing a carefully specified virtual machine that defines the run-time environment within which Pisces FORTRAN programs are executed. Each implementation then provides the same virtual machine, regardless of differences in the underlying architecture. The design is intended to be portable to a variety of architectures. Currently Pisces 1 is implemented on a network of Apollo workstations and on a DEC VAX uniprocessor via simulation of the task level parallelism. An implementation for the Flexible Computing Corp. FLEX/32 is under construction. An introduction to the Pisces 1 virtual computer and the FORTRAN 77 extensions is presented. An example of an algorithm for the iterative solution of a system of equations is given. The most notable features of the design are the provision for several granularities of parallelism in programs and the provision of a window mechanism for distributed access to large arrays of data.

  8. A Study of the Relationship of Communication Technology Configurations in Virtual Research Environments and Effectiveness of Collaborative Research

    ERIC Educational Resources Information Center

    Ahmed, Iftekhar

    2009-01-01

    Virtual Research Environments (VRE) are electronic meeting places for interaction among scientists created by combining software tools and computer networking. Virtual teams are enjoying increased importance in the conduct of scientific research because of the rising cost of traditional scientific scholarly communication, the growing importance of…

  9. SNS programming environment user's guide

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.; Humes, D. Creig; Cronin, Catherine K.; Bowen, John T.; Drozdowski, Joseph M.; Utley, Judith A.; Flynn, Theresa M.; Austin, Brenda A.

    1992-01-01

    The computing environment is briefly described for the Supercomputing Network Subsystem (SNS) of the Central Scientific Computing Complex of NASA Langley. The major SNS computers are a CRAY-2, a CRAY Y-MP, a CONVEX C-210, and a CONVEX C-220. The software is described that is common to all of these computers, including: the UNIX operating system, computer graphics, networking utilities, mass storage, and mathematical libraries. Also described is file management, validation, SNS configuration, documentation, and customer services.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less

  11. Auspice: Automatic Service Planning in Cloud/Grid Environments

    NASA Astrophysics Data System (ADS)

    Chiu, David; Agrawal, Gagan

    Recent scientific advances have fostered a mounting number of services and data sets available for utilization. These resources, though scattered across disparate locations, are often loosely coupled both semantically and operationally. This loosely coupled relationship implies the possibility of linking together operations and data sets to answer queries. This task, generally known as automatic service composition, therefore abstracts the process of complex scientific workflow planning from the user. We have been exploring a metadata-driven approach toward automatic service workflow composition, among other enabling mechanisms, in our system, Auspice: Automatic Service Planning in Cloud/Grid Environments. In this paper, we present a complete overview of our system's unique features and outlooks for future deployment as the Cloud computing paradigm becomes increasingly eminent in enabling scientific computing.

  12. Computer Assisted Instructional Design for Computer-Based Instruction. Final Report. Working Papers.

    ERIC Educational Resources Information Center

    Russell, Daniel M.; Pirolli, Peter

    Recent advances in artificial intelligence and the cognitive sciences have made it possible to develop successful intelligent computer-aided instructional systems for technical and scientific training. In addition, computer-aided design (CAD) environments that support the rapid development of such computer-based instruction have also been recently…

  13. Science Education Using a Computer Model-Virtual Puget Sound

    NASA Astrophysics Data System (ADS)

    Fruland, R.; Winn, W.; Oppenheimer, P.; Stahr, F.; Sarason, C.

    2002-12-01

    We created an interactive learning environment based on an oceanographic computer model of Puget Sound-Virtual Puget Sound (VPS)-as an alternative to traditional teaching methods. Students immersed in this navigable 3-D virtual environment observed tidal movements and salinity changes, and performed tracer and buoyancy experiments. Scientific concepts were embedded in a goal-based scenario to locate a new sewage outfall in Puget Sound. Traditional science teaching methods focus on distilled representations of agreed-upon knowledge removed from real-world context and scientific debate. Our strategy leverages students' natural interest in their environment, provides meaningful context and engages students in scientific debate and knowledge creation. Results show that VPS provides a powerful learning environment, but highlights the need for research on how to most effectively represent concepts and organize interactions to support scientific inquiry and understanding. Research is also needed to ensure that new technologies and visualizations do not foster misconceptions, including the impression that the model represents reality rather than being a useful tool. In this presentation we review results from prior work with VPS and outline new work for a modeling partnership recently formed with funding from the National Ocean Partnership Program (NOPP).

  14. Data sonification and sound visualization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaper, H. G.; Tipei, S.; Wiebel, E.

    1999-07-01

    Sound can help us explore and analyze complex data sets in scientific computing. The authors describe a digital instrument for additive sound synthesis (Diass) and a program to visualize sounds in a virtual reality environment (M4Cave). Both are part of a comprehensive music composition environment that includes additional software for computer-assisted composition and automatic music notation.

  15. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    PubMed

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  16. Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis

    PubMed Central

    Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.

    2014-01-01

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300

  17. Performance measurement and modeling of component applications in a high performance computing environment : a case study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Robert C.; Ray, Jaideep; Malony, A.

    2003-11-01

    We present a case study of performance measurement and modeling of a CCA (Common Component Architecture) component-based application in a high performance computing environment. We explore issues peculiar to component-based HPC applications and propose a performance measurement infrastructure for HPC based loosely on recent work done for Grid environments. A prototypical implementation of the infrastructure is used to collect data for a three components in a scientific application and construct performance models for two of them. Both computational and message-passing performance are addressed.

  18. HPC on Competitive Cloud Resources

    NASA Astrophysics Data System (ADS)

    Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff

    Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.

  19. Using Scenarios to Design Complex Technology-Enhanced Learning Environments

    ERIC Educational Resources Information Center

    de Jong, Ton; Weinberger, Armin; Girault, Isabelle; Kluge, Anders; Lazonder, Ard W.; Pedaste, Margus; Ludvigsen, Sten; Ney, Muriel; Wasson, Barbara; Wichmann, Astrid; Geraedts, Caspar; Giemza, Adam; Hovardas, Tasos; Julien, Rachel; van Joolingen, Wouter R.; Lejeune, Anne; Manoli, Constantinos C.; Matteman, Yuri; Sarapuu, Tago; Verkade, Alex; Vold, Vibeke; Zacharia, Zacharias C.

    2012-01-01

    Science Created by You (SCY) learning environments are computer-based environments in which students learn about science topics in the context of addressing a socio-scientific problem. Along their way to a solution for this problem students produce many types of intermediate products or learning objects. SCY learning environments center the entire…

  20. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    ERIC Educational Resources Information Center

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  1. Computational Science in Armenia (Invited Talk)

    NASA Astrophysics Data System (ADS)

    Marandjian, H.; Shoukourian, Yu.

    This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.

  2. Status and Roadmap of CernVM

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.

  3. High-performance scientific computing in the cloud

    NASA Astrophysics Data System (ADS)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  4. USRA/RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1992-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under a cooperative agreement with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing; Advanced Methods for Scientific Computing; Learning Systems; High Performance Networks and Technology; Graphics, Visualization, and Virtual Environments.

  5. A toolbox and a record for scientific model development

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1994-01-01

    Scientific computation can benefit from software tools that facilitate construction of computational models, control the application of models, and aid in revising models to handle new situations. Existing environments for scientific programming provide only limited means of handling these tasks. This paper describes a two pronged approach for handling these tasks: (1) designing a 'Model Development Toolbox' that includes a basic set of model constructing operations; and (2) designing a 'Model Development Record' that is automatically generated during model construction. The record is subsequently exploited by tools that control the application of scientific models and revise models to handle new situations. Our two pronged approach is motivated by our belief that the model development toolbox and record should be highly interdependent. In particular, a suitable model development record can be constructed only when models are developed using a well defined set of operations. We expect this research to facilitate rapid development of new scientific computational models, to help ensure appropriate use of such models and to facilitate sharing of such models among working computational scientists. We are testing this approach by extending SIGMA, and existing knowledge-based scientific software design tool.

  6. Construction, Categorization, and Consensus: Student Generated Computational Artifacts as a Context for Disciplinary Reflection

    ERIC Educational Resources Information Center

    Wilkerson-Jerde, Michelle Hoda

    2014-01-01

    There are increasing calls to prepare K-12 students to use computational tools and principles when exploring scientific or mathematical phenomena. The purpose of this paper is to explore whether and how constructionist computer-supported collaborative environments can explicitly engage students in this practice. The Categorizer is a…

  7. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.

  8. The future of scientific workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deelman, Ewa; Peterka, Tom; Altintas, Ilkay

    Today’s computational, experimental, and observational sciences rely on computations that involve many related tasks. The success of a scientific mission often hinges on the computer automation of these workflows. In April 2015, the US Department of Energy (DOE) invited a diverse group of domain and computer scientists from national laboratories supported by the Office of Science, the National Nuclear Security Administration, from industry, and from academia to review the workflow requirements of DOE’s science and national security missions, to assess the current state of the art in science workflows, to understand the impact of emerging extreme-scale computing systems on thosemore » workflows, and to develop requirements for automated workflow management in future and existing environments. This article is a summary of the opinions of over 50 leading researchers attending this workshop. We highlight use cases, computing systems, workflow needs and conclude by summarizing the remaining challenges this community sees that inhibit large-scale scientific workflows from becoming a mainstream tool for extreme-scale science.« less

  9. Improving science and mathematics education with computational modelling in interactive engagement environments

    NASA Astrophysics Data System (ADS)

    Neves, Rui Gomes; Teodoro, Vítor Duarte

    2012-09-01

    A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.

  10. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    NASA Astrophysics Data System (ADS)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.

  11. Individual Differences in Learning from an Intelligent Discovery World: Smithtown.

    ERIC Educational Resources Information Center

    Shute, Valerie J.

    "Smithtown" is an intelligent computer program designed to enhance an individual's scientific inquiry skills as well as to provide an environment for learning principles of basic microeconomics. It was hypothesized that intelligent computer instruction on applying effective interrogative skills (e.g., changing one variable at a time…

  12. Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    2008-05-01

    The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.

  13. Widening the adoption of workflows to include human and human-machine scientific processes

    NASA Astrophysics Data System (ADS)

    Salayandia, L.; Pinheiro da Silva, P.; Gates, A. Q.

    2010-12-01

    Scientific workflows capture knowledge in the form of technical recipes to access and manipulate data that help scientists manage and reuse established expertise to conduct their work. Libraries of scientific workflows are being created in particular fields, e.g., Bioinformatics, where combined with cyber-infrastructure environments that provide on-demand access to data and tools, result in powerful workbenches for scientists of those communities. The focus in these particular fields, however, has been more on automating rather than documenting scientific processes. As a result, technical barriers have impeded a wider adoption of scientific workflows by scientific communities that do not rely as heavily on cyber-infrastructure and computing environments. Semantic Abstract Workflows (SAWs) are introduced to widen the applicability of workflows as a tool to document scientific recipes or processes. SAWs intend to capture a scientists’ perspective about the process of how she or he would collect, filter, curate, and manipulate data to create the artifacts that are relevant to her/his work. In contrast, scientific workflows describe the process from the point of view of how technical methods and tools are used to conduct the work. By focusing on a higher level of abstraction that is closer to a scientist’s understanding, SAWs effectively capture the controlled vocabularies that reflect a particular scientific community, as well as the types of datasets and methods used in a particular domain. From there on, SAWs provide the flexibility to adapt to different environments to carry out the recipes or processes. These environments range from manual fieldwork to highly technical cyber-infrastructure environments, i.e., such as those already supported by scientific workflows. Two cases, one from Environmental Science and another from Geophysics, are presented as illustrative examples.

  14. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1991-01-01

    The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience.

  15. FAST: A multi-processed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.

  16. A characterization of workflow management systems for extreme-scale applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia

    We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less

  17. A characterization of workflow management systems for extreme-scale applications

    DOE PAGES

    Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia; ...

    2017-02-16

    We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less

  18. InSAR Scientific Computing Environment

    NASA Astrophysics Data System (ADS)

    Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.

    2010-12-01

    The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with graduated exposure to the levels of sophistication, allowing novices to apply it readily for common tasks and experienced users to mine data with great facility and flexibility. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. In this paper we briefly describe both the legacy and the new core processing algorithms and their integration into the new computing environment. We describe the ISCE component and application architecture and the features that permit the desired flexibility, extensibility and ease-of-use. We summarize the state of progress of the environment and the plans for completion of the environment and for its future introduction into the radar processing community.

  19. Enhancements to VTK enabling Scientific Visualization in Immersive Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Patrick; Jhaveri, Sankhesh; Chaudhary, Aashish

    Modern scientific, engineering and medical computational sim- ulations, as well as experimental and observational data sens- ing/measuring devices, produce enormous amounts of data. While statistical analysis provides insight into this data, scientific vi- sualization is tactically important for scientific discovery, prod- uct design and data analysis. These benefits are impeded, how- ever, when scientific visualization algorithms are implemented from scratch—a time-consuming and redundant process in im- mersive application development. This process can greatly ben- efit from leveraging the state-of-the-art open-source Visualization Toolkit (VTK) and its community. Over the past two (almost three) decades, integrating VTK with a virtual reality (VR)more » environment has only been attempted to varying degrees of success. In this pa- per, we demonstrate two new approaches to simplify this amalga- mation of an immersive interface with visualization rendering from VTK. In addition, we cover several enhancements to VTK that pro- vide near real-time updates and efficient interaction. Finally, we demonstrate the combination of VTK with both Vrui and OpenVR immersive environments in example applications.« less

  20. Scientific Assistant Virtual Laboratory (SAVL)

    NASA Astrophysics Data System (ADS)

    Alaghband, Gita; Fardi, Hamid; Gnabasik, David

    2007-03-01

    The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.

  1. IPython: components for interactive and parallel computing across disciplines. (Invited)

    NASA Astrophysics Data System (ADS)

    Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.

    2013-12-01

    Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.

  2. A Comparison Study of Augmented Reality versus Interactive Simulation Technology to Support Student Learning of a Socio-Scientific Issue

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Hsu, Ying-Shao; Wu, Hsin-Kai

    2016-01-01

    We investigated the impact of an augmented reality (AR) versus interactive simulation (IS) activity incorporated in a computer learning environment to facilitate students' learning of a socio-scientific issue (SSI) on nuclear power plants and radiation pollution. We employed a quasi-experimental research design. Two classes (a total of 45…

  3. Delivering Insight The History of the Accelerated Strategic Computing Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larzelere II, A R

    2007-01-03

    The history of the Accelerated Strategic Computing Initiative (ASCI) tells of the development of computational simulation into a third fundamental piece of the scientific method, on a par with theory and experiment. ASCI did not invent the idea, nor was it alone in bringing it to fruition. But ASCI provided the wherewithal - hardware, software, environment, funding, and, most of all, the urgency - that made it happen. On October 1, 2005, the Initiative completed its tenth year of funding. The advances made by ASCI over its first decade are truly incredible. Lawrence Livermore, Los Alamos, and Sandia National Laboratories,more » along with leadership provided by the Department of Energy's Defense Programs Headquarters, fundamentally changed computational simulation and how it is used to enable scientific insight. To do this, astounding advances were made in simulation applications, computing platforms, and user environments. ASCI dramatically changed existing - and forged new - relationships, both among the Laboratories and with outside partners. By its tenth anniversary, despite daunting challenges, ASCI had accomplished all of the major goals set at its beginning. The history of ASCI is about the vision, leadership, endurance, and partnerships that made these advances possible.« less

  4. The Brink of Change: Gender in Technology-Rich Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Goldstein, Jessica; Puntambeka, Sadhana

    2004-01-01

    This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students attitudes towards using computers and working in groups during scientific inquiry. Students attitudes towards technology and group work were…

  5. Integrating Grid Services into the Cray XT4 Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NERSC; Cholia, Shreyas; Lin, Hwa-Chun Wendy

    2009-05-01

    The 38640 core Cray XT4"Franklin" system at the National Energy Research Scientific Computing Center (NERSC) is a massively parallel resource available to Department of Energy researchers that also provides on-demand grid computing to the Open Science Grid. The integration of grid services on Franklin presented various challenges, including fundamental differences between the interactive and compute nodes, a stripped down compute-node operating system without dynamic library support, a shared-root environment and idiosyncratic application launching. Inour work, we describe how we resolved these challenges on a running, general-purpose production system to provide on-demand compute, storage, accounting and monitoring services through generic gridmore » interfaces that mask the underlying system-specific details for the end user.« less

  6. Integrated instrumentation & computation environment for GRACE

    NASA Astrophysics Data System (ADS)

    Dhekne, P. S.

    2002-03-01

    The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.

  7. The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications

    NASA Technical Reports Server (NTRS)

    Johnston, William E.

    2002-01-01

    With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.

  8. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  9. LaRC local area networks to support distributed computing

    NASA Technical Reports Server (NTRS)

    Riddle, E. P.

    1984-01-01

    The Langley Research Center's (LaRC) Local Area Network (LAN) effort is discussed. LaRC initiated the development of a LAN to support a growing distributed computing environment at the Center. The purpose of the network is to provide an improved capability (over inteactive and RJE terminal access) for sharing multivendor computer resources. Specifically, the network will provide a data highway for the transfer of files between mainframe computers, minicomputers, work stations, and personal computers. An important influence on the overall network design was the vital need of LaRC researchers to efficiently utilize the large CDC mainframe computers in the central scientific computing facility. Although there was a steady migration from a centralized to a distributed computing environment at LaRC in recent years, the work load on the central resources increased. Major emphasis in the network design was on communication with the central resources within the distributed environment. The network to be implemented will allow researchers to utilize the central resources, distributed minicomputers, work stations, and personal computers to obtain the proper level of computing power to efficiently perform their jobs.

  10. Enabling Earth Science Through Cloud Computing

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  11. First-Principles Thermodynamics Study of Spinel MgAl 2 O 4 Surface Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Wang, Jian-guo; Wang, Yong

    The surface stability of all possible terminations for three low-index (111, 110, 100) structures of the spinel MgAl2O4 has been studied using first-principles based thermodynamic approach. The surface Gibbs free energy results indicate that the 100_AlO2 termination is the most stable surface structure under ultra-high vacuum at T=1100 K regardless of Al-poor or Al-rich environment. With increasing oxygen pressure, the 111_O2(Al) termination becomes the most stable surface in the Al-rich environment. The oxygen vacancy formation is thermodynamically favorable over the 100_AlO2, 111_O2(Al) and the (111) structure with Mg/O connected terminations. On the basis of surface Gibbs free energies for bothmore » perfect and defective surface terminations, the 100_AlO2 and 111_O2(Al) are the most dominant surfaces in Al-rich environment under atmospheric condition. This is also consistent with our previously reported experimental observation. This work was supported by a Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL). The computing time was granted by the National Energy Research Scientific Computing Center (NERSC). Part of computing time was also granted by a scientific theme user proposal in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington.« less

  12. Reducing Time to Science: Unidata and JupyterHub Technology Using the Jetstream Cloud

    NASA Astrophysics Data System (ADS)

    Chastang, J.; Signell, R. P.; Fischer, J. L.

    2017-12-01

    Cloud computing can accelerate scientific workflows, discovery, and collaborations by reducing research and data friction. We describe the deployment of Unidata and JupyterHub technologies on the NSF-funded XSEDE Jetstream cloud. With the aid of virtual machines and Docker technology, we deploy a Unidata JupyterHub server co-located with a Local Data Manager (LDM), THREDDS data server (TDS), and RAMADDA geoscience content management system. We provide Jupyter Notebooks and the pre-built Python environments needed to run them. The notebooks can be used for instruction and as templates for scientific experimentation and discovery. We also supply a large quantity of NCEP forecast model results to allow data-proximate analysis and visualization. In addition, users can transfer data using Globus command line tools, and perform their own data-proximate analysis and visualization with Notebook technology. These data can be shared with others via a dedicated TDS server for scientific distribution and collaboration. There are many benefits of this approach. Not only is the cloud computing environment fast, reliable and scalable, but scientists can analyze, visualize, and share data using only their web browser. No local specialized desktop software or a fast internet connection is required. This environment will enable scientists to spend less time managing their software and more time doing science.

  13. Cancer Diagnosis Epigenomics Scientific Workflow Scheduling in the Cloud Computing Environment Using an Improved PSO Algorithm

    PubMed

    N, Sadhasivam; R, Balamurugan; M, Pandi

    2018-01-27

    Objective: Epigenetic modifications involving DNA methylation and histone statud are responsible for the stable maintenance of cellular phenotypes. Abnormalities may be causally involved in cancer development and therefore could have diagnostic potential. The field of epigenomics refers to all epigenetic modifications implicated in control of gene expression, with a focus on better understanding of human biology in both normal and pathological states. Epigenomics scientific workflow is essentially a data processing pipeline to automate the execution of various genome sequencing operations or tasks. Cloud platform is a popular computing platform for deploying large scale epigenomics scientific workflow. Its dynamic environment provides various resources to scientific users on a pay-per-use billing model. Scheduling epigenomics scientific workflow tasks is a complicated problem in cloud platform. We here focused on application of an improved particle swam optimization (IPSO) algorithm for this purpose. Methods: The IPSO algorithm was applied to find suitable resources and allocate epigenomics tasks so that the total cost was minimized for detection of epigenetic abnormalities of potential application for cancer diagnosis. Result: The results showed that IPSO based task to resource mapping reduced total cost by 6.83 percent as compared to the traditional PSO algorithm. Conclusion: The results for various cancer diagnosis tasks showed that IPSO based task to resource mapping can achieve better costs when compared to PSO based mapping for epigenomics scientific application workflow. Creative Commons Attribution License

  14. Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.

  15. A Visual Database System for Image Analysis on Parallel Computers and its Application to the EOS Amazon Project

    NASA Technical Reports Server (NTRS)

    Shapiro, Linda G.; Tanimoto, Steven L.; Ahrens, James P.

    1996-01-01

    The goal of this task was to create a design and prototype implementation of a database environment that is particular suited for handling the image, vision and scientific data associated with the NASA's EOC Amazon project. The focus was on a data model and query facilities that are designed to execute efficiently on parallel computers. A key feature of the environment is an interface which allows a scientist to specify high-level directives about how query execution should occur.

  16. L3 Interactive Data Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, Michael; Adams, Paul

    2006-09-05

    The L3 system is a computational steering environment for image processing and scientific computing. It consists of an interactive graphical language and interface. Its purpose is to help advanced users in controlling their computational software and assist in the management of data accumulated during numerical experiments. L3 provides a combination of features not found in other environments; these are: - textual and graphical construction of programs - persistence of programs and associated data - direct mapping between the scripts, the parameters, and the produced data - implicit hierarchial data organization - full programmability, including conditionals and functions - incremental executionmore » of programs The software includes the l3 language and the graphical environment. The language is a single-assignment functional language; the implementation consists of lexer, parser, interpreter, storage handler, and editing support, The graphical environment is an event-driven nested list viewer/editor providing graphical elements corresponding to the language. These elements are both the represenation of a users program and active interfaces to the values computed by that program.« less

  17. Job Superscheduler Architecture and Performance in Computational Grid Environments

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Oliker, Leonid; Biswas, Rupak

    2003-01-01

    Computational grids hold great promise in utilizing geographically separated heterogeneous resources to solve large-scale complex scientific problems. However, a number of major technical hurdles, including distributed resource management and effective job scheduling, stand in the way of realizing these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job migration algorithms. We also model the critical interaction between the superscheduler and autonomous local schedulers. Extensive performance comparisons with ideal, central, and local schemes using real workloads from leading computational centers are conducted in a simulation environment. Additionally, synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling in distributed computational grids.

  18. Northwest Trajectory Analysis Capability: A Platform for Enhancing Computational Biophysics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Elena S.; Stephan, Eric G.; Corrigan, Abigail L.

    2008-07-30

    As computational resources continue to increase, the ability of computational simulations to effectively complement, and in some cases replace, experimentation in scientific exploration also increases. Today, large-scale simulations are recognized as an effective tool for scientific exploration in many disciplines including chemistry and biology. A natural side effect of this trend has been the need for an increasingly complex analytical environment. In this paper, we describe Northwest Trajectory Analysis Capability (NTRAC), an analytical software suite developed to enhance the efficiency of computational biophysics analyses. Our strategy is to layer higher-level services and introduce improved tools within the user’s familiar environmentmore » without preventing researchers from using traditional tools and methods. Our desire is to share these experiences to serve as an example for effectively analyzing data intensive large scale simulation data.« less

  19. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  20. Aerothermodynamic environment for a Titan probe with deployable decelerator

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Swenson, B. L.; Balakrishnan, A.

    1985-01-01

    It is pointed out that further exploration of Titan, Saturn's largest moon, is of current interest to the scientific community, particularly from the standpoint of the organic chemical evolution of its atmosphere. For a suitable study of this Saturnian satellite, a mission involving a Titan atmospheric entry probe is to be conducted. The probe is to employ a deployable decelerator with the aim to allow scientific measurements in the haze layer. The present investigation is concerned with an assessment of the aerothermodynamic environment for the considered probe during its hypervelocity, low-Reynolds-number entry. Attention is given to the employed computational method, the Titan probe configuration, the Titan probe trajectory, the viscous-layer regime of the aerothermodynamic environment, and the incipient merged-layer regime.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, Michael; Lethin, Richard

    Programming models and environments play the essential roles in high performance computing of enabling the conception, design, implementation and execution of science and engineering application codes. Programmer productivity is strongly influenced by the effectiveness of our programming models and environments, as is software sustainability since our codes have lifespans measured in decades, so the advent of new computing architectures, increased concurrency, concerns for resilience, and the increasing demands for high-fidelity, multi-physics, multi-scale and data-intensive computations mean that we have new challenges to address as part of our fundamental R&D requirements. Fortunately, we also have new tools and environments that makemore » design, prototyping and delivery of new programming models easier than ever. The combination of new and challenging requirements and new, powerful toolsets enables significant synergies for the next generation of programming models and environments R&D. This report presents the topics discussed and results from the 2014 DOE Office of Science Advanced Scientific Computing Research (ASCR) Programming Models & Environments Summit, and subsequent discussions among the summit participants and contributors to topics in this report.« less

  2. Laser-optical methods and systems of computer-automated investigation of bio-objects (plants, seeds, food products, and others)

    NASA Astrophysics Data System (ADS)

    Lisker, Joseph S.

    1999-01-01

    A new conception of the scientific problem of information exchange in the system plant-man-environment is developed. The laser-optical methods and the system are described which allow computer automated investigation of bio-objects without damaging their vital function. The results of investigation of optical-physiological features of plants and seeds are presented. The effects of chlorophyll well and IR beg are discovered for plants and also the effects os water pumping and protein transformations are shown for seeds. The perspectives of the use of the optical methods and equipment suggested to solve scientific problems of agriculture are discussed.

  3. Simulating Technology Processes to Foster Learning.

    ERIC Educational Resources Information Center

    Krumholtz, Nira

    1998-01-01

    Based on a spiral model of technology evolution, elementary students used LOGO computer software to become both developers and users of technology. The computerized environment enabled 87% to reach intuitive understanding of physical concepts; 24% expressed more formal scientific understanding. (SK)

  4. Manifold compositions, music visualization, and scientific sonification in an immersive virtual-reality environment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaper, H. G.

    1998-01-05

    An interdisciplinary project encompassing sound synthesis, music composition, sonification, and visualization of music is facilitated by the high-performance computing capabilities and the virtual-reality environments available at Argonne National Laboratory. The paper describes the main features of the project's centerpiece, DIASS (Digital Instrument for Additive Sound Synthesis); ''A.N.L.-folds'', an equivalence class of compositions produced with DIASS; and application of DIASS in two experiments in the sonification of complex scientific data. Some of the larger issues connected with this project, such as the changing ways in which both scientists and composers perform their tasks, are briefly discussed.

  5. Interactive Forecasting with the National Weather Service River Forecast System

    NASA Technical Reports Server (NTRS)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  6. InSAR Scientific Computing Environment - The Home Stretch

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.

    2011-12-01

    The Interferometric Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) is a software development effort in its third and final year within the NASA Advanced Information Systems and Technology program. The ISCE is a new computing environment for geodetic image processing for InSAR sensors enabling scientists to reduce measurements directly from radar satellites to new geophysical products with relative ease. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. Upcoming international SAR missions will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment has the functionality to become a key element in processing data from NASA's proposed DESDynI mission into higher level data products, supporting a new class of analyses that take advantage of the long time and large spatial scales of these new data. At the core of ISCE is a new set of efficient and accurate InSAR algorithms. These algorithms are placed into an object-oriented, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. ISCE supports data from nearly all of the available satellite platforms, including ERS, EnviSAT, Radarsat-1, Radarsat-2, ALOS, TerraSAR-X, and Cosmo-SkyMed. The code applies a number of parallelization techniques and sensible approximations for speed. It is configured to work on modern linux-based computers with gcc compilers and python. ISCE is now a complete, functional package, under configuration management, and with extensive documentation and tested use cases appropriate to geodetic imaging applications. The software has been tested with canonical simulated radar data ("point targets") as well as with a variety of existing satellite data, cross-compared with other software packages. Its extensibility has already been proven by the straightforward addition of polarimetric processing and calibration, and derived filtering and estimation routines associated with polarimetry that supplement the original InSAR geodetic functionality. As of October 2011, the software is available for non-commercial use through UNAVCO's WinSAR consortium.

  7. NASA Exhibits

    NASA Technical Reports Server (NTRS)

    Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick; hide

    2001-01-01

    A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.

  8. Scientific work environments in the next decade

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.

    1989-01-01

    The applications of contemporary computer graphics to scientific visualization is described, with emphasis on the nonintuitive problems. A radically different approach is proposed which centers on the idea of the scientist being in the simulation display space rather than observing it on a screen. Interaction is performed with nonstandard input devices to preserve the feeling of being immersed in the three-dimensional display space. Construction of such a system could begin now with currently available technology.

  9. A Computational framework for telemedicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, I.; von Laszewski, G.; Thiruvathukal, G. K.

    1998-07-01

    Emerging telemedicine applications require the ability to exploit diverse and geographically distributed resources. Highspeed networks are used to integrate advanced visualization devices, sophisticated instruments, large databases, archival storage devices, PCs, workstations, and supercomputers. This form of telemedical environment is similar to networked virtual supercomputers, also known as metacomputers. Metacomputers are already being used in many scientific application areas. In this article, we analyze requirements necessary for a telemedical computing infrastructure and compare them with requirements found in a typical metacomputing environment. We will show that metacomputing environments can be used to enable a more powerful and unified computational infrastructure formore » telemedicine. The Globus metacomputing toolkit can provide the necessary low level mechanisms to enable a large scale telemedical infrastructure. The Globus toolkit components are designed in a modular fashion and can be extended to support the specific requirements for telemedicine.« less

  10. The Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Lowndes, Douglas

    2005-03-01

    The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.

  11. Enabling a Scientific Cloud Marketplace: VGL (Invited)

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Woodcock, R.; Wyborn, L. A.; Vote, J.; Rankine, T.; Cox, S. J.

    2013-12-01

    The Virtual Geophysics Laboratory (VGL) provides a flexible, web based environment where researchers can browse data and use a variety of scientific software packaged into tool kits that run in the Cloud. Both data and tool kits are published by multiple researchers and registered with the VGL infrastructure forming a data and application marketplace. The VGL provides the basic work flow of Discovery and Access to the disparate data sources and a Library for tool kits and scripting to drive the scientific codes. Computation is then performed on the Research or Commercial Clouds. Provenance information is collected throughout the work flow and can be published alongside the results allowing for experiment comparison and sharing with other researchers. VGL's "mix and match" approach to data, computational resources and scientific codes, enables a dynamic approach to scientific collaboration. VGL allows scientists to publish their specific contribution, be it data, code, compute or work flow, knowing the VGL framework will provide other components needed for a complete application. Other scientists can choose the pieces that suit them best to assemble an experiment. The coarse grain workflow of the VGL framework combined with the flexibility of the scripting library and computational toolkits allows for significant customisation and sharing amongst the community. The VGL utilises the cloud computational and storage resources from the Australian academic research cloud provided by the NeCTAR initiative and a large variety of data accessible from national and state agencies via the Spatial Information Services Stack (SISS - http://siss.auscope.org). VGL v1.2 screenshot - http://vgl.auscope.org

  12. Accelerating scientific discovery : 2007 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, P.; Dave, P.; Drugan, C.

    2008-11-14

    As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis ofmore » Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.« less

  13. Towards a Scalable and Adaptive Application Support Platform for Large-Scale Distributed E-Sciences in High-Performance Network Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase Qishi; Zhu, Michelle Mengxia

    The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models featuremore » diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific workflows with the convenience of a few mouse clicks while hiding the implementation and technical details from end users. Particularly, we will consider two types of applications with distinct performance requirements: data-centric and service-centric applications. For data-centric applications, the main workflow task involves large-volume data generation, catalog, storage, and movement typically from supercomputers or experimental facilities to a team of geographically distributed users; while for service-centric applications, the main focus of workflow is on data archiving, preprocessing, filtering, synthesis, visualization, and other application-specific analysis. We will conduct a comprehensive comparison of existing workflow systems and choose the best suited one with open-source code, a flexible system structure, and a large user base as the starting point for our development. Based on the chosen system, we will develop and integrate new components including a black box design of computing modules, performance monitoring and prediction, and workflow optimization and reconfiguration, which are missing from existing workflow systems. A modular design for separating specification, execution, and monitoring aspects will be adopted to establish a common generic infrastructure suited for a wide spectrum of science applications. We will further design and develop efficient workflow mapping and scheduling algorithms to optimize the workflow performance in terms of minimum end-to-end delay, maximum frame rate, and highest reliability. We will develop and demonstrate the SWAMP system in a local environment, the grid network, and the 100Gpbs Advanced Network Initiative (ANI) testbed. The demonstration will target scientific applications in climate modeling and high energy physics and the functions to be demonstrated include workflow deployment, execution, steering, and reconfiguration. Throughout the project period, we will work closely with the science communities in the fields of climate modeling and high energy physics including Spallation Neutron Source (SNS) and Large Hadron Collider (LHC) projects to mature the system for production use.« less

  14. Building A Community Focused Data and Modeling Collaborative platform with Hardware Virtualization Technology

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Wang, W.; Melton, F. S.; Votava, P.; Milesi, C.; Hashimoto, H.; Nemani, R. R.; Hiatt, S. H.

    2009-12-01

    As the length and diversity of the global earth observation data records grow, modeling and analyses of biospheric conditions increasingly requires multiple terabytes of data from a diversity of models and sensors. With network bandwidth beginning to flatten, transmission of these data from centralized data archives presents an increasing challenge, and costs associated with local storage and management of data and compute resources are often significant for individual research and application development efforts. Sharing community valued intermediary data sets, results and codes from individual efforts with others that are not in direct funded collaboration can also be a challenge with respect to time, cost and expertise. We purpose a modeling, data and knowledge center that houses NASA satellite data, climate data and ancillary data where a focused community may come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform, named Ecosystem Modeling Center (EMC). With the recent development of new technologies for secure hardware virtualization, an opportunity exists to create specific modeling, analysis and compute environments that are customizable, “archiveable” and transferable. Allowing users to instantiate such environments on large compute infrastructures that are directly connected to large data archives may significantly reduce costs and time associated with scientific efforts by alleviating users from redundantly retrieving and integrating data sets and building modeling analysis codes. The EMC platform also provides the possibility for users receiving indirect assistance from expertise through prefabricated compute environments, potentially reducing study “ramp up” times.

  15. Building the Scientific Modeling Assistant: An interactive environment for specialized software design

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.

  16. Key Lessons in Building "Data Commons": The Open Science Data Cloud Ecosystem

    NASA Astrophysics Data System (ADS)

    Patterson, M.; Grossman, R.; Heath, A.; Murphy, M.; Wells, W.

    2015-12-01

    Cloud computing technology has created a shift around data and data analysis by allowing researchers to push computation to data as opposed to having to pull data to an individual researcher's computer. Subsequently, cloud-based resources can provide unique opportunities to capture computing environments used both to access raw data in its original form and also to create analysis products which may be the source of data for tables and figures presented in research publications. Since 2008, the Open Cloud Consortium (OCC) has operated the Open Science Data Cloud (OSDC), which provides scientific researchers with computational resources for storing, sharing, and analyzing large (terabyte and petabyte-scale) scientific datasets. OSDC has provided compute and storage services to over 750 researchers in a wide variety of data intensive disciplines. Recently, internal users have logged about 2 million core hours each month. The OSDC also serves the research community by colocating these resources with access to nearly a petabyte of public scientific datasets in a variety of fields also accessible for download externally by the public. In our experience operating these resources, researchers are well served by "data commons," meaning cyberinfrastructure that colocates data archives, computing, and storage infrastructure and supports essential tools and services for working with scientific data. In addition to the OSDC public data commons, the OCC operates a data commons in collaboration with NASA and is developing a data commons for NOAA datasets. As cloud-based infrastructures for distributing and computing over data become more pervasive, we ask, "What does it mean to publish data in a data commons?" Here we present the OSDC perspective and discuss several services that are key in architecting data commons, including digital identifier services.

  17. Scientific Visualization & Modeling for Earth Systems Science Education

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  18. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  20. Big Data, Big Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Bill

    Data—lots of data—generated in seconds and piling up on the internet, streaming and stored in countless databases. Big data is important for commerce, society and our nation’s security. Yet the volume, velocity, variety and veracity of data is simply too great for any single analyst to make sense of alone. It requires advanced, data-intensive computing. Simply put, data-intensive computing is the use of sophisticated computers to sort through mounds of information and present analysts with solutions in the form of graphics, scenarios, formulas, new hypotheses and more. This scientific capability is foundational to PNNL’s energy, environment and security missions. Seniormore » Scientist and Division Director Bill Pike and his team are developing analytic tools that are used to solve important national challenges, including cyber systems defense, power grid control systems, intelligence analysis, climate change and scientific exploration.« less

  1. Breaking the ice and forging links: the importance of socializing in research.

    PubMed

    Stobbe, Miranda; Mishra, Tarun; Macintyre, Geoff

    2013-01-01

    When meeting someone for the first time-whether another PhD student, or the Founding Editor-in-chief of PLOS Computational Biology-nothing breaks the ice like eating pancakes or having drinks together. A social atmosphere provides a relaxed, informal environment where people can connect, share ideas, and form collaborations. Being able to build a network and thrive in a social environment is crucial to a successful scientific career. This article highlights the importance of bringing people together who speak the same scientific language in an informal setting. Using examples of events held by Regional Student Groups of the ISCB's Student Council, this article shows that socializing is much more than simply sharing a drink.

  2. The Nimrod computational workbench: a case study in desktop metacomputing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramson, D.; Sosic, R.; Foster, I.

    The coordinated use of geographically distributed computers, or metacomputing, can in principle provide more accessible and cost- effective supercomputing than conventional high-performance systems. However, we lack evidence that metacomputing systems can be made easily usable, or that there exist large numbers of applications able to exploit metacomputing resources. In this paper, we present work that addresses both these concerns. The basis for this work is a system called Nimrod that provides a desktop problem-solving environment for parametric experiments. We describe how Nimrod has been extended to support the scheduling of computational resources located in a wide-area environment, and report onmore » an experiment in which Nimrod was used to schedule a large parametric study across the Australian Internet. The experiment provided both new scientific results and insights into Nimrod capabilities. We relate the results of this experiment to lessons learned from the I-WAY distributed computing experiment, and draw conclusions as to how Nimrod and I-WAY- like computing environments should be developed to support desktop metacomputing.« less

  3. Architectural Strategies for Enabling Data-Driven Science at Scale

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Law, E. S.; Doyle, R. J.; Little, M. M.

    2017-12-01

    The analysis of large data collections from NASA or other agencies is often executed through traditional computational and data analysis approaches, which require users to bring data to their desktops and perform local data analysis. Alternatively, data are hauled to large computational environments that provide centralized data analysis via traditional High Performance Computing (HPC). Scientific data archives, however, are not only growing massive, but are also becoming highly distributed. Neither traditional approach provides a good solution for optimizing analysis into the future. Assumptions across the NASA mission and science data lifecycle, which historically assume that all data can be collected, transmitted, processed, and archived, will not scale as more capable instruments stress legacy-based systems. New paradigms are needed to increase the productivity and effectiveness of scientific data analysis. This paradigm must recognize that architectural and analytical choices are interrelated, and must be carefully coordinated in any system that aims to allow efficient, interactive scientific exploration and discovery to exploit massive data collections, from point of collection (e.g., onboard) to analysis and decision support. The most effective approach to analyzing a distributed set of massive data may involve some exploration and iteration, putting a premium on the flexibility afforded by the architectural framework. The framework should enable scientist users to assemble workflows efficiently, manage the uncertainties related to data analysis and inference, and optimize deep-dive analytics to enhance scalability. In many cases, this "data ecosystem" needs to be able to integrate multiple observing assets, ground environments, archives, and analytics, evolving from stewardship of measurements of data to using computational methodologies to better derive insight from the data that may be fused with other sets of data. This presentation will discuss architectural strategies, including a 2015-2016 NASA AIST Study on Big Data, for evolving scientific research towards massively distributed data-driven discovery. It will include example use cases across earth science, planetary science, and other disciplines.

  4. Explore the virtual side of earth science

    USGS Publications Warehouse

    ,

    1998-01-01

    Scientists have always struggled to find an appropriate technology that could represent three-dimensional (3-D) data, facilitate dynamic analysis, and encourage on-the-fly interactivity. In the recent past, scientific visualization has increased the scientist's ability to visualize information, but it has not provided the interactive environment necessary for rapidly changing the model or for viewing the model in ways not predetermined by the visualization specialist. Virtual Reality Modeling Language (VRML 2.0) is a new environment for visualizing 3-D information spaces and is accessible through the Internet with current browser technologies. Researchers from the U.S. Geological Survey (USGS) are using VRML as a scientific visualization tool to help convey complex scientific concepts to various audiences. Kevin W. Laurent, computer scientist, and Maura J. Hogan, technical information specialist, have created a collection of VRML models available through the Internet at Virtual Earth Science (virtual.er.usgs.gov).

  5. 3-D Imaging In Virtual Environment: A Scientific Clinical and Teaching Tool

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    The advent of powerful graphics workstations and computers has led to the advancement of scientific knowledge through three-dimensional (3-D) reconstruction and imaging of biological cells and tissues. The Biocomputation Center at NASA Ames Research Center pioneered the effort to produce an entirely computerized method for reconstruction of objects from serial sections studied in a transmission electron microscope (TEM). The software developed, ROSS (Reconstruction of Serial Sections), is now being distributed to users across the United States through Space Act Agreements. The software is in widely disparate fields such as geology, botany, biology and medicine. In the Biocomputation Center, ROSS serves as the basis for development of virtual environment technologies for scientific and medical use. This report will describe the Virtual Surgery Workstation Project that is ongoing with clinicians at Stanford University Medical Center, and the role of the Visible Human data in the project.

  6. High-throughput neuroimaging-genetics computational infrastructure

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D.; Franco, Joseph; Toga, Arthur W.

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize diverse suites of software tools and web-services. These pipeline workflows are represented as portable XML objects which transfer the execution instructions and user specifications from the client user machine to remote pipeline servers for distributed computing. Using Alzheimer's and Parkinson's data, we provide several examples of translational applications using this infrastructure1. PMID:24795619

  7. Beyond the Renderer: Software Architecture for Parallel Graphics and Visualization

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1996-01-01

    As numerous implementations have demonstrated, software-based parallel rendering is an effective way to obtain the needed computational power for a variety of challenging applications in computer graphics and scientific visualization. To fully realize their potential, however, parallel renderers need to be integrated into a complete environment for generating, manipulating, and delivering visual data. We examine the structure and components of such an environment, including the programming and user interfaces, rendering engines, and image delivery systems. We consider some of the constraints imposed by real-world applications and discuss the problems and issues involved in bringing parallel rendering out of the lab and into production.

  8. Requirements for migration of NSSD code systems from LTSS to NLTSS

    NASA Technical Reports Server (NTRS)

    Pratt, M.

    1984-01-01

    The purpose of this document is to address the requirements necessary for a successful conversion of the Nuclear Design (ND) application code systems to the NLTSS environment. The ND application code system community can be characterized as large-scale scientific computation carried out on supercomputers. NLTSS is a distributed operating system being developed at LLNL to replace the LTSS system currently in use. The implications of change are examined including a description of the computational environment and users in ND. The discussion then turns to requirements, first in a general way, followed by specific requirements, including a proposal for managing the transition.

  9. Studying the Earth's Environment from Space: Computer Laboratory Exercised and Instructor Resources

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.; Alfultis, Michael

    1998-01-01

    Studying the Earth's Environment From Space is a two-year project to develop a suite of CD-ROMs containing Earth System Science curriculum modules for introductory undergraduate science classes. Lecture notes, slides, and computer laboratory exercises, including actual satellite data and software, are being developed in close collaboration with Carla Evans of NASA GSFC Earth Sciences Directorate Scientific and Educational Endeavors (SEE) project. Smith and Alfultis are responsible for the Oceanography and Sea Ice Processes Modules. The GSFC SEE project is responsible for Ozone and Land Vegetation Modules. This document constitutes a report on the first year of activities of Smith and Alfultis' project.

  10. The role of graphics super-workstations in a supercomputing environment

    NASA Technical Reports Server (NTRS)

    Levin, E.

    1989-01-01

    A new class of very powerful workstations has recently become available which integrate near supercomputer computational performance with very powerful and high quality graphics capability. These graphics super-workstations are expected to play an increasingly important role in providing an enhanced environment for supercomputer users. Their potential uses include: off-loading the supercomputer (by serving as stand-alone processors, by post-processing of the output of supercomputer calculations, and by distributed or shared processing), scientific visualization (understanding of results, communication of results), and by real time interaction with the supercomputer (to steer an iterative computation, to abort a bad run, or to explore and develop new algorithms).

  11. Site Environmental Report for 2010, Volumes 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskin, David; Bauters, Tim; Borglin, Ned

    2011-09-01

    LBNL is a multiprogram scientific facility operated by the UC for the DOE. LBNL’s research is directed toward the physical, biological, environmental, and computational sciences, in order to deliver scientific knowledge and discoveries pertinent to DOE’s missions. This annual Site Environmental Report covers activities conducted in CY 2010. The format and content of this report satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting,1 and the operating contract between UC and DOE

  12. Low Latency Workflow Scheduling and an Application of Hyperspectral Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Nguyen, P. T.; Chapman, D. R.; Halem, M.

    2012-12-01

    New system analytics for Big Data computing holds the promise of major scientific breakthroughs and discoveries from the exploration and mining of the massive data sets becoming available to the science community. However, such data intensive scientific applications face severe challenges in accessing, managing and analyzing petabytes of data. While the Hadoop MapReduce environment has been successfully applied to data intensive problems arising in business, there are still many scientific problem domains where limitations in the functionality of MapReduce systems prevent its wide adoption by those communities. This is mainly because MapReduce does not readily support the unique science discipline needs such as special science data formats, graphic and computational data analysis tools, maintaining high degrees of computational accuracies, and interfacing with application's existing components across heterogeneous computing processors. We address some of these limitations by exploiting the MapReduce programming model for satellite data intensive scientific problems and address scalability, reliability, scheduling, and data management issues when dealing with climate data records and their complex observational challenges. In addition, we will present techniques to support the unique Earth science discipline needs such as dealing with special science data formats (HDF and NetCDF). We have developed a Hadoop task scheduling algorithm that improves latency by 2x for a scientific workflow including the gridding of the EOS AIRS hyperspectral Brightness Temperatures (BT). This workflow processing algorithm has been tested at the Multicore Computing Center private Hadoop based Intel Nehalem cluster, as well as in a virtual mode under the Open Source Eucalyptus cloud. The 55TB AIRS hyperspectral L1b Brightness Temperature record has been gridded at the resolution of 0.5x1.0 degrees, and we have computed a 0.9 annual anti-correlation to the El Nino Southern oscillation in the Nino 4 region, as well as a 1.9 Kelvin decadal Arctic warming in the 4u and 12u spectral regions. Additionally, we will present the frequency of extreme global warming events by the use of a normalized maximum BT in a grid cell relative to its local standard deviation. A low-latency Hadoop scheduling environment maintains data integrity and fault tolerance in a MapReduce data intensive Cloud environment while improving the "time to solution" metric by 35% when compared to a more traditional parallel processing system for the same dataset. Our next step will be to improve the usability of our Hadoop task scheduling system, to enable rapid prototyping of data intensive experiments by means of processing "kernels". We will report on the performance and experience of implementing these experiments on the NEX testbed, and propose the use of a graphical directed acyclic graph (DAG) interface to help us develop on-demand scientific experiments. Our workflow system works within Hadoop infrastructure as a replacement for the FIFO or FairScheduler, thus the use of Apache "Pig" latin or other Apache tools may also be worth investigating on the NEX system to improve the usability of our workflow scheduling infrastructure for rapid experimentation.

  13. Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard

    2008-10-16

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one ofmore » the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less

  14. Reproducible Earth observation analytics: challenges, ideas, and a study case on containerized land use change detection

    NASA Astrophysics Data System (ADS)

    Appel, Marius; Nüst, Daniel; Pebesma, Edzer

    2017-04-01

    Geoscientific analyses of Earth observation data typically involve a long path from data acquisition to scientific results and conclusions. Before starting the actual processing, scenes must be downloaded from the providers' platforms and the computing infrastructure needs to be prepared. The computing environment often requires specialized software, which in turn might have lots of dependencies. The software is often highly customized and provided without commercial support, which leads to rather ad-hoc systems and irreproducible results. To let other scientists reproduce the analyses, the full workspace including data, code, the computing environment, and documentation must be bundled and shared. Technologies such as virtualization or containerization allow for the creation of identical computing environments with relatively little effort. Challenges, however, arise when the volume of the data is too large, when computations are done in a cluster environment, or when complex software components such as databases are used. We discuss these challenges for the example of scalable Land use change detection on Landsat imagery. We present a reproducible implementation that runs R and the scalable data management and analytical system SciDB within a Docker container. Thanks to an explicit container recipe (the Dockerfile), this enables the all-in-one reproduction including the installation of software components, the ingestion of the data, and the execution of the analysis in a well-defined environment. We furthermore discuss possibilities how the implementation could be transferred to multi-container environments in order to support reproducibility on large cluster environments.

  15. Use of the computational-informational web-GIS system for the development of climatology students' skills in modeling and understanding climate change

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    The current situation with the training of specialists in environmental sciences is complicated by the fact that the very scientific field is experiencing a period of rapid development. Global change has caused the development of measurement techniques and modeling of environmental characteristics, accompanied by the expansion of the conceptual and mathematical apparatus. Understanding and forecasting processes in the Earth system requires extensive use of mathematical modeling and advanced computing technologies. As a rule, available training programs in the environmental sciences disciplines do not have time to adapt to such rapid changes in the domain content. As a result, graduates of faculties do not understand processes and mechanisms of the global change, have only superficial knowledge of mathematical modeling of processes in the environment. They do not have the required skills in numerical modeling, data processing and analysis of observations and computation outputs and are not prepared to work with the meteorological data. For adequate training of future specialists in environmental sciences we propose the following approach, which reflects the new "research" paradigm in education. We believe that the training of such specialists should be done not in an artificial learning environment, but based on actual operating information-computational systems used in environment studies, in the so-called virtual research environment via development of virtual research and learning laboratories. In the report the results of the use of computational-informational web-GIS system "Climate" (http://climate.scert.ru/) as a prototype of such laboratory are discussed. The approach is realized at Tomsk State University to prepare bachelors in meteorology. Student survey shows that their knowledge has become deeper and more systemic after undergoing training in virtual learning laboratory. The scientific team plans to assist any educators to utilize the system in earth science education. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants 13-05-12034 and 14-05-00502.

  16. PISCES 2 users manual

    NASA Technical Reports Server (NTRS)

    Pratt, Terrence W.

    1987-01-01

    PISCES 2 is a programming environment and set of extensions to Fortran 77 for parallel programming. It is intended to provide a basis for writing programs for scientific and engineering applications on parallel computers in a way that is relatively independent of the particular details of the underlying computer architecture. This user's manual provides a complete description of the PISCES 2 system as it is currently implemented on the 20 processor Flexible FLEX/32 at NASA Langley Research Center.

  17. Methods for design and evaluation of parallel computating systems (The PISCES project)

    NASA Technical Reports Server (NTRS)

    Pratt, Terrence W.; Wise, Robert; Haught, Mary JO

    1989-01-01

    The PISCES project started in 1984 under the sponsorship of the NASA Computational Structural Mechanics (CSM) program. A PISCES 1 programming environment and parallel FORTRAN were implemented in 1984 for the DEC VAX (using UNIX processes to simulate parallel processes). This system was used for experimentation with parallel programs for scientific applications and AI (dynamic scene analysis) applications. PISCES 1 was ported to a network of Apollo workstations by N. Fitzgerald.

  18. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1992-01-01

    This presentation is designed to relate some of the experiences of the Scientific Computing Division at NCAR dealing with the 'data problem'. A brief history and a development of some basic Mass Storage System (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. There is discussion of future MSS needs for future computing environments.

  19. Scientific Discovery through Advanced Computing in Plasma Science

    NASA Astrophysics Data System (ADS)

    Tang, William

    2005-03-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.

  20. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  1. Bringing your tools to CyVerse Discovery Environment using Docker

    PubMed Central

    Devisetty, Upendra Kumar; Kennedy, Kathleen; Sarando, Paul; Merchant, Nirav; Lyons, Eric

    2016-01-01

    Docker has become a very popular container-based virtualization platform for software distribution that has revolutionized the way in which scientific software and software dependencies (software stacks) can be packaged, distributed, and deployed. Docker makes the complex and time-consuming installation procedures needed for scientific software a one-time process. Because it enables platform-independent installation, versioning of software environments, and easy redeployment and reproducibility, Docker is an ideal candidate for the deployment of identical software stacks on different compute environments such as XSEDE and Amazon AWS. CyVerse’s Discovery Environment also uses Docker for integrating its powerful, community-recommended software tools into CyVerse’s production environment for public use. This paper will help users bring their tools into CyVerse Discovery Environment (DE) which will not only allows users to integrate their tools with relative ease compared to the earlier method of tool deployment in DE but will also help users to share their apps with collaborators and release them for public use. PMID:27803802

  2. Bringing your tools to CyVerse Discovery Environment using Docker.

    PubMed

    Devisetty, Upendra Kumar; Kennedy, Kathleen; Sarando, Paul; Merchant, Nirav; Lyons, Eric

    2016-01-01

    Docker has become a very popular container-based virtualization platform for software distribution that has revolutionized the way in which scientific software and software dependencies (software stacks) can be packaged, distributed, and deployed. Docker makes the complex and time-consuming installation procedures needed for scientific software a one-time process. Because it enables platform-independent installation, versioning of software environments, and easy redeployment and reproducibility, Docker is an ideal candidate for the deployment of identical software stacks on different compute environments such as XSEDE and Amazon AWS. CyVerse's Discovery Environment also uses Docker for integrating its powerful, community-recommended software tools into CyVerse's production environment for public use. This paper will help users bring their tools into CyVerse Discovery Environment (DE) which will not only allows users to integrate their tools with relative ease compared to the earlier method of tool deployment in DE but will also help users to share their apps with collaborators and release them for public use.

  3. Encouraging Greater Student Inquiry Engagement in Science through Motivational Support by Online Scientist-Mentors

    ERIC Educational Resources Information Center

    Scogin, Stephen C.; Stuessy, Carol L.

    2015-01-01

    Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…

  4. A Generic Archive Protocol and an Implementation

    NASA Astrophysics Data System (ADS)

    Jordan, J. M.; Jennings, D. G.; McGlynn, T. A.; Ruggiero, N. G.; Serlemitsos, T. A.

    1993-01-01

    Archiving vast amounts of data has become a major part of every scientific space mission today. GRASP, the Generic Retrieval/Ar\\-chive Services Protocol, addresses the question of how to archive the data collected in an environment where the underlying hardware archives and computer hosts may be rapidly changing.

  5. A Group Intelligence-Based Asynchronous Argumentation Learning-Assistance Platform

    ERIC Educational Resources Information Center

    Huang, Chenn-Jung; Chang, Shun-Chih; Chen, Heng-Ming; Tseng, Jhe-Hao; Chien, Sheng-Yuan

    2016-01-01

    Structured argumentation support environments have been built and used in scientific discourse in the literature. However, to the best our knowledge, there is no research work in the literature examining whether student's knowledge has grown during learning activities with asynchronous argumentation. In this work, an intelligent computer-supported…

  6. The social computing room: a multi-purpose collaborative visualization environment

    NASA Astrophysics Data System (ADS)

    Borland, David; Conway, Michael; Coposky, Jason; Ginn, Warren; Idaszak, Ray

    2010-01-01

    The Social Computing Room (SCR) is a novel collaborative visualization environment for viewing and interacting with large amounts of visual data. The SCR consists of a square room with 12 projectors (3 per wall) used to display a single 360-degree desktop environment that provides a large physical real estate for arranging visual information. The SCR was designed to be cost-effective, collaborative, configurable, widely applicable, and approachable for naive users. Because the SCR displays a single desktop, a wide range of applications is easily supported, making it possible for a variety of disciplines to take advantage of the room. We provide a technical overview of the room and highlight its application to scientific visualization, arts and humanities projects, research group meetings, and virtual worlds, among other uses.

  7. Breaking the Ice and Forging Links: The Importance of Socializing in Research

    PubMed Central

    Stobbe, Miranda; Mishra, Tarun; Macintyre, Geoff

    2013-01-01

    When meeting someone for the first time—whether another PhD student, or the Founding Editor-in-chief of PLOS Computational Biology—nothing breaks the ice like eating pancakes or having drinks together. A social atmosphere provides a relaxed, informal environment where people can connect, share ideas, and form collaborations. Being able to build a network and thrive in a social environment is crucial to a successful scientific career. This article highlights the importance of bringing people together who speak the same scientific language in an informal setting. Using examples of events held by Regional Student Groups of the ISCB's Student Council, this article shows that socializing is much more than simply sharing a drink. PMID:24282392

  8. Framework Development Supporting the Safety Portal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, Steven Ralph; Kvarfordt, Kellie Jean; Vang, Leng

    2015-07-01

    In a collaborating scientific research arena it is important to have an environment where analysts have access to a shared repository of information, documents, and software tools, and be able to accurately maintain and track historical changes in models. The new Safety Portal cloud-based environment will be accessible remotely from anywhere regardless of computing platforms given that the platform has available Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report discusses current development of a cloud-based web portal for PRA tools.

  9. USRA/RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1992-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under a cooperative agreement with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) learning systems; (4) high performance networks and technology; and (5) graphics, visualization, and virtual environments. In the past year, parallel compiler techniques and adaptive numerical methods for flows in complicated geometries were identified as important problems to investigate for ARC's involvement in the Computational Grand Challenges of the next decade. We concluded a summer student visitors program during this six months. We had six visiting graduate students that worked on projects over the summer and presented seminars on their work at the conclusion of their visits. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period July 1, 1992 through December 31, 1992 is provided.

  10. Development of a Web Based Simulating System for Earthquake Modeling on the Grid

    NASA Astrophysics Data System (ADS)

    Seber, D.; Youn, C.; Kaiser, T.

    2007-12-01

    Existing cyberinfrastructure-based information, data and computational networks now allow development of state- of-the-art, user-friendly simulation environments that democratize access to high-end computational environments and provide new research opportunities for many research and educational communities. Within the Geosciences cyberinfrastructure network, GEON, we have developed the SYNSEIS (SYNthetic SEISmogram) toolkit to enable efficient computations of 2D and 3D seismic waveforms for a variety of research purposes especially for helping to analyze the EarthScope's USArray seismic data in a speedy and efficient environment. The underlying simulation software in SYNSEIS is a finite difference code, E3D, developed by LLNL (S. Larsen). The code is embedded within the SYNSEIS portlet environment and it is used by our toolkit to simulate seismic waveforms of earthquakes at regional distances (<1000km). Architecturally, SYNSEIS uses both Web Service and Grid computing resources in a portal-based work environment and has a built in access mechanism to connect to national supercomputer centers as well as to a dedicated, small-scale compute cluster for its runs. Even though Grid computing is well-established in many computing communities, its use among domain scientists still is not trivial because of multiple levels of complexities encountered. We grid-enabled E3D using our own dialect XML inputs that include geological models that are accessible through standard Web services within the GEON network. The XML inputs for this application contain structural geometries, source parameters, seismic velocity, density, attenuation values, number of time steps to compute, and number of stations. By enabling a portal based access to a such computational environment coupled with its dynamic user interface we enable a large user community to take advantage of such high end calculations in their research and educational activities. Our system can be used to promote an efficient and effective modeling environment to help scientists as well as educators in their daily activities and speed up the scientific discovery process.

  11. From the desktop to the grid: scalable bioinformatics via workflow conversion.

    PubMed

    de la Garza, Luis; Veit, Johannes; Szolek, Andras; Röttig, Marc; Aiche, Stephan; Gesing, Sandra; Reinert, Knut; Kohlbacher, Oliver

    2016-03-12

    Reproducibility is one of the tenets of the scientific method. Scientific experiments often comprise complex data flows, selection of adequate parameters, and analysis and visualization of intermediate and end results. Breaking down the complexity of such experiments into the joint collaboration of small, repeatable, well defined tasks, each with well defined inputs, parameters, and outputs, offers the immediate benefit of identifying bottlenecks, pinpoint sections which could benefit from parallelization, among others. Workflows rest upon the notion of splitting complex work into the joint effort of several manageable tasks. There are several engines that give users the ability to design and execute workflows. Each engine was created to address certain problems of a specific community, therefore each one has its advantages and shortcomings. Furthermore, not all features of all workflow engines are royalty-free -an aspect that could potentially drive away members of the scientific community. We have developed a set of tools that enables the scientific community to benefit from workflow interoperability. We developed a platform-free structured representation of parameters, inputs, outputs of command-line tools in so-called Common Tool Descriptor documents. We have also overcome the shortcomings and combined the features of two royalty-free workflow engines with a substantial user community: the Konstanz Information Miner, an engine which we see as a formidable workflow editor, and the Grid and User Support Environment, a web-based framework able to interact with several high-performance computing resources. We have thus created a free and highly accessible way to design workflows on a desktop computer and execute them on high-performance computing resources. Our work will not only reduce time spent on designing scientific workflows, but also make executing workflows on remote high-performance computing resources more accessible to technically inexperienced users. We strongly believe that our efforts not only decrease the turnaround time to obtain scientific results but also have a positive impact on reproducibility, thus elevating the quality of obtained scientific results.

  12. BASIC Data Manipulation And Display System (BDMADS)

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.

    1983-01-01

    BDMADS, a BASIC Data Manipulation and Display System, is a collection of software programs that run on an Apple II Plus personal computer. BDMADS provides a user-friendly environment for the engineer in which to perform scientific data processing. The computer programs and their use are described. Jet engine performance calculations are used to illustrate the use of BDMADS. Source listings of the BDMADS programs are provided and should permit users to customize the programs for their particular applications.

  13. Supporting Scientific Experimentation and Reasoning in Young Elementary School Students

    NASA Astrophysics Data System (ADS)

    Varma, Keisha

    2014-06-01

    Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.

  14. Bringing Legacy Visualization Software to Modern Computing Devices via Application Streaming

    NASA Astrophysics Data System (ADS)

    Fisher, Ward

    2014-05-01

    Planning software compatibility across forthcoming generations of computing platforms is a problem commonly encountered in software engineering and development. While this problem can affect any class of software, data analysis and visualization programs are particularly vulnerable. This is due in part to their inherent dependency on specialized hardware and computing environments. A number of strategies and tools have been designed to aid software engineers with this task. While generally embraced by developers at 'traditional' software companies, these methodologies are often dismissed by the scientific software community as unwieldy, inefficient and unnecessary. As a result, many important and storied scientific software packages can struggle to adapt to a new computing environment; for example, one in which much work is carried out on sub-laptop devices (such as tablets and smartphones). Rewriting these packages for a new platform often requires significant investment in terms of development time and developer expertise. In many cases, porting older software to modern devices is neither practical nor possible. As a result, replacement software must be developed from scratch, wasting resources better spent on other projects. Enabled largely by the rapid rise and adoption of cloud computing platforms, 'Application Streaming' technologies allow legacy visualization and analysis software to be operated wholly from a client device (be it laptop, tablet or smartphone) while retaining full functionality and interactivity. It mitigates much of the developer effort required by other more traditional methods while simultaneously reducing the time it takes to bring the software to a new platform. This work will provide an overview of Application Streaming and how it compares against other technologies which allow scientific visualization software to be executed from a remote computer. We will discuss the functionality and limitations of existing application streaming frameworks and how a developer might prepare their software for application streaming. We will also examine the secondary benefits realized by moving legacy software to the cloud. Finally, we will examine the process by which a legacy Java application, the Integrated Data Viewer (IDV), is to be adapted for tablet computing via Application Streaming.

  15. Visualization techniques to aid in the analysis of multi-spectral astrophysical data sets

    NASA Technical Reports Server (NTRS)

    Brugel, Edward W.; Domik, Gitta O.; Ayres, Thomas R.

    1993-01-01

    The goal of this project was to support the scientific analysis of multi-spectral astrophysical data by means of scientific visualization. Scientific visualization offers its greatest value if it is not used as a method separate or alternative to other data analysis methods but rather in addition to these methods. Together with quantitative analysis of data, such as offered by statistical analysis, image or signal processing, visualization attempts to explore all information inherent in astrophysical data in the most effective way. Data visualization is one aspect of data analysis. Our taxonomy as developed in Section 2 includes identification and access to existing information, preprocessing and quantitative analysis of data, visual representation and the user interface as major components to the software environment of astrophysical data analysis. In pursuing our goal to provide methods and tools for scientific visualization of multi-spectral astrophysical data, we therefore looked at scientific data analysis as one whole process, adding visualization tools to an already existing environment and integrating the various components that define a scientific data analysis environment. As long as the software development process of each component is separate from all other components, users of data analysis software are constantly interrupted in their scientific work in order to convert from one data format to another, or to move from one storage medium to another, or to switch from one user interface to another. We also took an in-depth look at scientific visualization and its underlying concepts, current visualization systems, their contributions, and their shortcomings. The role of data visualization is to stimulate mental processes different from quantitative data analysis, such as the perception of spatial relationships or the discovery of patterns or anomalies while browsing through large data sets. Visualization often leads to an intuitive understanding of the meaning of data values and their relationships by sacrificing accuracy in interpreting the data values. In order to be accurate in the interpretation, data values need to be measured, computed on, and compared to theoretical or empirical models (quantitative analysis). If visualization software hampers quantitative analysis (which happens with some commercial visualization products), its use is greatly diminished for astrophysical data analysis. The software system STAR (Scientific Toolkit for Astrophysical Research) was developed as a prototype during the course of the project to better understand the pragmatic concerns raised in the project. STAR led to a better understanding on the importance of collaboration between astrophysicists and computer scientists.

  16. The 21st Century Classroom-Scholarship Environment: What Will It Be Like?

    ERIC Educational Resources Information Center

    Graziadei, William D.; McCombs, Gillian M.

    1996-01-01

    Discusses the use of computing, communications, and traditional educational technology and the scientific process and describes the development of a teaching and learning module in biology at the State University of New York College at Plattsburgh that uses the Internet. Topics include interactive learning, future possibilities, and the use of…

  17. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  18. EASI: An electronic assistant for scientific investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schur, A.; Feller, D.; DeVaney, M.

    1991-09-01

    Although many automated tools support the productivity of professionals (engineers, managers, architects, secretaries, etc.), none specifically address the needs of the scientific researcher. The scientist's needs are complex and the primary activities are cognitive rather than physical. The individual scientist collects and manipulates large data sets, integrates, synthesizes, generates, and records information. The means to access and manipulate information are a critical determinant of the performance of the system as a whole. One hindrance in this process is the scientist's computer environment, which has changed little in the last two decades. Extensive time and effort is demanded from the scientistmore » to learn to use the computer system. This paper describes how chemists' activities and interactions with information were abstracted into a common paradigm that meets the critical requirement of facilitating information access and retrieval. This paradigm was embodied in EASI, a working prototype that increased the productivity of the individual scientific researcher. 4 refs., 2 figs., 1 tab.« less

  19. The CAVE (TM) automatic virtual environment: Characteristics and applications

    NASA Technical Reports Server (NTRS)

    Kenyon, Robert V.

    1995-01-01

    Virtual reality may best be defined as the wide-field presentation of computer-generated, multi-sensory information that tracks a user in real time. In addition to the more well-known modes of virtual reality -- head-mounted displays and boom-mounted displays -- the Electronic Visualization Laboratory at the University of Illinois at Chicago recently introduced a third mode: a room constructed from large screens on which the graphics are projected on to three walls and the floor. The CAVE is a multi-person, room sized, high resolution, 3D video and audio environment. Graphics are rear projected in stereo onto three walls and the floor, and viewed with stereo glasses. As a viewer wearing a location sensor moves within its display boundaries, the correct perspective and stereo projections of the environment are updated, and the image moves with and surrounds the viewer. The other viewers in the CAVE are like passengers in a bus, along for the ride. 'CAVE,' the name selected for the virtual reality theater, is both a recursive acronym (Cave Automatic Virtual Environment) and a reference to 'The Simile of the Cave' found in Plato's 'Republic,' in which the philosopher explores the ideas of perception, reality, and illusion. Plato used the analogy of a person facing the back of a cave alive with shadows that are his/her only basis for ideas of what real objects are. Rather than having evolved from video games or flight simulation, the CAVE has its motivation rooted in scientific visualization and the SIGGRAPH 92 Showcase effort. The CAVE was designed to be a useful tool for scientific visualization. The Showcase event was an experiment; the Showcase chair and committee advocated an environment for computational scientists to interactively present their research at a major professional conference in a one-to-many format on high-end workstations attached to large projection screens. The CAVE was developed as a 'virtual reality theater' with scientific content and projection that met the criteria of Showcase.

  20. SPAN: Ocean science

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Koblinsky, Chester J.; Webster, Ferris; Zlotnicki, Victor; Green, James L.

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links space and Earth science research and data analysis computers. It provides a common working environment for sharing computer resources, sharing computer peripherals, solving proprietary problems, and providing the potential for significant time and cost savings for correlative data analysis. This is one of a series of discipline-specific SPAN documents which are intended to complement the SPAN primer and SPAN Management documents. Their purpose is to provide the discipline scientists with a comprehensive set of documents to assist in the use of SPAN for discipline specific scientific research.

  1. Computer-Based Instruction in Military Environments: Defense Research Series. Volume 1

    DTIC Science & Technology

    1987-01-01

    following papers you will find both a practical and scientific basis for the way current and future training and training systems shouli be designed, applied...should be expended on the many payoffs of computer based instructional techniques. As you study these papers be aware that they are only part of the...your goal is to accomplish XXX, you should next do YYY" Conceptual Model orientation: "XXX will effect YYY by accomplishing ZZZ, which in turn effects

  2. Microgravity: Molecular Dynamics Simulations at the NCCS Probe the Behavior of Liquids in Low Gravity

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The life of the very small, whether in something as complicated as a human cell or as simple as a drop of water, is of fundamental scientific interest: By knowing how a tiny amount of material reacts to changes in its environment, scientists maybe able to answer questions about how a bulk of material would react to comparable changes. NASA is in the forefront of computational research into a broad range of basic scientific questions about fluid dynamics and the nature of liquid boundary instability. For example, one important issue for the space program is how drops of water and other materials will behave in the low-gravity environment of space and how the low gravity will affect the transport and containment of these materials. Accurate prediction of this behavior is among the aims of a set of molecular dynamics experiments carried out on the NCCSs Cray supercomputers. In conventional computational studies of materials, matter is treated as continuous - a macroscopic whole without regard to its molecular parts - and the behavior patterns of the matter in various physical environments are studied using well-established differential equations and mathematical parameters based on physical properties such as compressibility density, heat capacity, and vapor pressure of the bulk material.

  3. 76 FR 41234 - Advanced Scientific Computing Advisory Committee Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Secretariat, General Services Administration, notice is hereby given that the Advanced Scientific Computing... advice and recommendations concerning the Advanced Scientific Computing program in response only to... Advanced Scientific Computing Research program and recommendations based thereon; --Advice on the computing...

  4. Enabling scientific workflows in virtual reality

    USGS Publications Warehouse

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  5. Scene analysis for a breadboard Mars robot functioning in an indoor environment

    NASA Technical Reports Server (NTRS)

    Levine, M. D.

    1973-01-01

    The problem is delt with of computer perception in an indoor laboratory environment containing rocks of various sizes. The sensory data processing is required for the NASA/JPL breadboard mobile robot that is a test system for an adaptive variably-autonomous vehicle that will conduct scientific explorations on the surface of Mars. Scene analysis is discussed in terms of object segmentation followed by feature extraction, which results in a representation of the scene in the robot's world model.

  6. Cloud hosting of the IPython Notebook to Provide Collaborative Research Environments for Big Data Analysis

    NASA Astrophysics Data System (ADS)

    Kershaw, Philip; Lawrence, Bryan; Gomez-Dans, Jose; Holt, John

    2015-04-01

    We explore how the popular IPython Notebook computing system can be hosted on a cloud platform to provide a flexible virtual research hosting environment for Earth Observation data processing and analysis and how this approach can be expanded more broadly into a generic SaaS (Software as a Service) offering for the environmental sciences. OPTIRAD (OPTImisation environment for joint retrieval of multi-sensor RADiances) is a project funded by the European Space Agency to develop a collaborative research environment for Data Assimilation of Earth Observation products for land surface applications. Data Assimilation provides a powerful means to combine multiple sources of data and derive new products for this application domain. To be most effective, it requires close collaboration between specialists in this field, land surface modellers and end users of data generated. A goal of OPTIRAD then is to develop a collaborative research environment to engender shared working. Another significant challenge is that of data volume and complexity. Study of land surface requires high spatial and temporal resolutions, a relatively large number of variables and the application of algorithms which are computationally expensive. These problems can be addressed with the application of parallel processing techniques on specialist compute clusters. However, scientific users are often deterred by the time investment required to port their codes to these environments. Even when successfully achieved, it may be difficult to readily change or update. This runs counter to the scientific process of continuous experimentation, analysis and validation. The IPython Notebook provides users with a web-based interface to multiple interactive shells for the Python programming language. Code, documentation and graphical content can be saved and shared making it directly applicable to OPTIRAD's requirements for a shared working environment. Given the web interface it can be readily made into a hosted service with Wakari and Microsoft Azure being notable examples. Cloud-hosting of the Notebook allows the same familiar Python interface to be retained but backed by Cloud Computing attributes of scalability, elasticity and resource pooling. This combination makes it a powerful solution to address the needs of long-tail science users of Big Data: an intuitive interactive interface with which to access powerful compute resources. IPython Notebook can be hosted as a single user desktop environment but the recent development by the IPython community of JupyterHub enables it to be run as a multi-user hosting environment. In addition, IPython.parallel allows the exposition of parallel compute infrastructure through a Python interface. Applying these technologies in combination, a collaborative research environment has been developed for OPTIRAD on the UK JASMIN/CEMS facility's private cloud (http://jasmin.ac.uk). Based on this experience, a generic virtualised solution is under development suitable for use by the wider environmental science community - on both JASMIN and portable to third party cloud platforms.

  7. Build It: Will They Come?

    NASA Astrophysics Data System (ADS)

    Corrie, Brian; Zimmerman, Todd

    Scientific research is fundamentally collaborative in nature, and many of today's complex scientific problems require domain expertise in a wide range of disciplines. In order to create research groups that can effectively explore such problems, research collaborations are often formed that involve colleagues at many institutions, sometimes spanning a country and often spanning the world. An increasingly common manifestation of such a collaboration is the collaboratory (Bos et al., 2007), a “…center without walls in which the nation's researchers can perform research without regard to geographical location — interacting with colleagues, accessing instrumentation, sharing data and computational resources, and accessing information from digital libraries.” In order to bring groups together on such a scale, a wide range of components need to be available to researchers, including distributed computer systems, remote instrumentation, data storage, collaboration tools, and the financial and human resources to operate and run such a system (National Research Council, 1993). Media Spaces, as both a technology and a social facilitator, have the potential to meet many of these needs. In this chapter, we focus on the use of scientific media spaces (SMS) as a tool for supporting collaboration in scientific research. In particular, we discuss the design, deployment, and use of a set of SMS environments deployed by WestGrid and one of its collaborating organizations, the Centre for Interdisciplinary Research in the Mathematical and Computational Sciences (IRMACS) over a 5-year period.

  8. Metadata Management on the SCEC PetaSHA Project: Helping Users Describe, Discover, Understand, and Use Simulation Data in a Large-Scale Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.

    2007-12-01

    Large scientific collaborations, such as the SCEC Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA) Project, involve interactions between many scientists who exchange ideas and research results. These groups must organize, manage, and make accessible their community materials of observational data, derivative (research) results, computational products, and community software. The integration of scientific workflows as a paradigm to solve complex computations provides advantages of efficiency, reliability, repeatability, choices, and ease of use. The underlying resource needed for a scientific workflow to function and create discoverable and exchangeable products is the construction, tracking, and preservation of metadata. In the scientific workflow environment there is a two-tier structure of metadata. Workflow-level metadata and provenance describe operational steps, identity of resources, execution status, and product locations and names. Domain-level metadata essentially define the scientific meaning of data, codes and products. To a large degree the metadata at these two levels are separate. However, between these two levels is a subset of metadata produced at one level but is needed by the other. This crossover metadata suggests that some commonality in metadata handling is needed. SCEC researchers are collaborating with computer scientists at SDSC, the USC Information Sciences Institute, and Carnegie Mellon Univ. in order to perform earthquake science using high-performance computational resources. A primary objective of the "PetaSHA" collaboration is to perform physics-based estimations of strong ground motion associated with real and hypothetical earthquakes located within Southern California. Construction of 3D earth models, earthquake representations, and numerical simulation of seismic waves are key components of these estimations. Scientific workflows are used to orchestrate the sequences of scientific tasks and to access distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.

  9. iSPHERE - A New Approach to Collaborative Research and Cloud Computing

    NASA Astrophysics Data System (ADS)

    Al-Ubaidi, T.; Khodachenko, M. L.; Kallio, E. J.; Harry, A.; Alexeev, I. I.; Vázquez-Poletti, J. L.; Enke, H.; Magin, T.; Mair, M.; Scherf, M.; Poedts, S.; De Causmaecker, P.; Heynderickx, D.; Congedo, P.; Manolescu, I.; Esser, B.; Webb, S.; Ruja, C.

    2015-10-01

    The project iSPHERE (integrated Scientific Platform for HEterogeneous Research and Engineering) that has been proposed for Horizon 2020 (EINFRA-9- 2015, [1]) aims at creating a next generation Virtual Research Environment (VRE) that embraces existing and emerging technologies and standards in order to provide a versatile platform for scientific investigations and collaboration. The presentation will introduce the large project consortium, provide a comprehensive overview of iSPHERE's basic concepts and approaches and outline general user requirements that the VRE will strive to satisfy. An overview of the envisioned architecture will be given, focusing on the adapted Service Bus concept, i.e. the "Scientific Service Bus" as it is called in iSPHERE. The bus will act as a central hub for all communication and user access, and will be implemented in the course of the project. The agile approach [2] that has been chosen for detailed elaboration and documentation of user requirements, as well as for the actual implementation of the system, will be outlined and its motivation and basic structure will be discussed. The presentation will show which user communities will benefit and which concrete problems, scientific investigations are facing today, will be tackled by the system. Another focus of the presentation is iSPHERE's seamless integration of cloud computing resources and how these will benefit scientific modeling teams by providing a reliable and web based environment for cloud based model execution, storage of results, and comparison with measurements, including fully web based tools for data mining, analysis and visualization. Also the envisioned creation of a dedicated data model for experimental plasma physics will be discussed. It will be shown why the Scientific Service Bus provides an ideal basis to integrate a number of data models and communication protocols and to provide mechanisms for data exchange across multiple and even multidisciplinary platforms.

  10. Reproducible Computing: a new Technology for Statistics Education and Educational Research

    NASA Astrophysics Data System (ADS)

    Wessa, Patrick

    2009-05-01

    This paper explains how the R Framework (http://www.wessa.net) and a newly developed Compendium Platform (http://www.freestatistics.org) allow us to create, use, and maintain documents that contain empirical research results which can be recomputed and reused in derived work. It is illustrated that this technological innovation can be used to create educational applications that can be shown to support effective learning of statistics and associated analytical skills. It is explained how a Compendium can be created by anyone, without the need to understand the technicalities of scientific word processing (L style="font-variant: small-caps">ATEX) or statistical computing (R code). The proposed Reproducible Computing system allows educational researchers to objectively measure key aspects of the actual learning process based on individual and constructivist activities such as: peer review, collaboration in research, computational experimentation, etc. The system was implemented and tested in three statistics courses in which the use of Compendia was used to create an interactive e-learning environment that simulated the real-world process of empirical scientific research.

  11. A novel combined SLAM based on RBPF-SLAM and EIF-SLAM for mobile system sensing in a large scale environment.

    PubMed

    He, Bo; Zhang, Shujing; Yan, Tianhong; Zhang, Tao; Liang, Yan; Zhang, Hongjin

    2011-01-01

    Mobile autonomous systems are very important for marine scientific investigation and military applications. Many algorithms have been studied to deal with the computational efficiency problem required for large scale simultaneous localization and mapping (SLAM) and its related accuracy and consistency. Among these methods, submap-based SLAM is a more effective one. By combining the strength of two popular mapping algorithms, the Rao-Blackwellised particle filter (RBPF) and extended information filter (EIF), this paper presents a combined SLAM-an efficient submap-based solution to the SLAM problem in a large scale environment. RBPF-SLAM is used to produce local maps, which are periodically fused into an EIF-SLAM algorithm. RBPF-SLAM can avoid linearization of the robot model during operating and provide a robust data association, while EIF-SLAM can improve the whole computational speed, and avoid the tendency of RBPF-SLAM to be over-confident. In order to further improve the computational speed in a real time environment, a binary-tree-based decision-making strategy is introduced. Simulation experiments show that the proposed combined SLAM algorithm significantly outperforms currently existing algorithms in terms of accuracy and consistency, as well as the computing efficiency. Finally, the combined SLAM algorithm is experimentally validated in a real environment by using the Victoria Park dataset.

  12. CONVEX mini manual

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.

    1993-01-01

    The use of the CONVEX computers that are an integral part of the Supercomputing Network Subsystems (SNS) of the Central Scientific Computing Complex of LaRC is briefly described. Features of the CONVEX computers that are significantly different than the CRAY supercomputers are covered, including: FORTRAN, C, architecture of the CONVEX computers, the CONVEX environment, batch job submittal, debugging, performance analysis, utilities unique to CONVEX, and documentation. This revision reflects the addition of the Applications Compiler and X-based debugger, CXdb. The document id intended for all CONVEX users as a ready reference to frequently asked questions and to more detailed information contained with the vendor manuals. It is appropriate for both the novice and the experienced user.

  13. An Atom Is Known by the Company It Keeps: A Constructionist Learning Environment for Materials Science Using Agent-Based Modeling

    ERIC Educational Resources Information Center

    Blikstein, Paulo; Wilensky, Uri

    2009-01-01

    This article reports on "MaterialSim", an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as…

  14. Scaffolding a Complex Task of Experimental Design in Chemistry with a Computer Environment

    ERIC Educational Resources Information Center

    Girault, Isabelle; d'Ham, Cédric

    2014-01-01

    When solving a scientific problem through experimentation, students may have the responsibility to design the experiment. When students work in a conventional condition, with paper and pencil, the designed procedures stay at a very general level. There is a need for additional scaffolds to help the students perform this complex task. We propose a…

  15. Bridging Inquiry-Based Science and Constructionism: Exploring the Alignment between Students Tinkering with Code of Computational Models and Goals of Inquiry

    ERIC Educational Resources Information Center

    Wagh, Aditi; Cook-Whitt, Kate; Wilensky, Uri

    2017-01-01

    Research on the design of learning environments for K-12 science education has been informed by two bodies of literature: inquiry-based science and Constructionism. Inquiry-based science has emphasized engagement in activities that reflect authentic scientific practices. Constructionism has focused on designing intuitively accessible authoring…

  16. 76 FR 31945 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... teleconference meeting of the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal [email protected] . FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing...

  17. Optimization of sparse matrix-vector multiplication on emerging multicore platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard

    2007-01-01

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD dual-core and Intel quad-core designs, the heterogeneous STI Cell, as well as the first scientificmore » study of the highly multithreaded Sun Niagara2. We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural tradeoffs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less

  18. Models@Home: distributed computing in bioinformatics using a screensaver based approach.

    PubMed

    Krieger, Elmar; Vriend, Gert

    2002-02-01

    Due to the steadily growing computational demands in bioinformatics and related scientific disciplines, one is forced to make optimal use of the available resources. A straightforward solution is to build a network of idle computers and let each of them work on a small piece of a scientific challenge, as done by Seti@Home (http://setiathome.berkeley.edu), the world's largest distributed computing project. We developed a generally applicable distributed computing solution that uses a screensaver system similar to Seti@Home. The software exploits the coarse-grained nature of typical bioinformatics projects. Three major considerations for the design were: (1) often, many different programs are needed, while the time is lacking to parallelize them. Models@Home can run any program in parallel without modifications to the source code; (2) in contrast to the Seti project, bioinformatics applications are normally more sensitive to lost jobs. Models@Home therefore includes stringent control over job scheduling; (3) to allow use in heterogeneous environments, Linux and Windows based workstations can be combined with dedicated PCs to build a homogeneous cluster. We present three practical applications of Models@Home, running the modeling programs WHAT IF and YASARA on 30 PCs: force field parameterization, molecular dynamics docking, and database maintenance.

  19. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  20. 75 FR 9887 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building...

  1. 76 FR 9765 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Office of Science... Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub. L. 92... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research, SC-21/Germantown Building...

  2. 77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Recompetition results for Scientific Discovery through Advanced Computing (SciDAC) applications Co-design Public... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Office of... the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub...

  3. 75 FR 64720 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Department of... the Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L.... FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21...

  4. Learning Relative Motion Concepts in Immersive and Non-immersive Virtual Environments

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-12-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop virtual environment (DVE) conditions. Our results show that after the simulation activities, both IVE and DVE groups exhibited a significant shift toward a scientific understanding in their conceptual models and epistemological beliefs about the nature of relative motion, and also a significant improvement on relative motion problem-solving tests. In addition, we analyzed students' performance on one-dimensional and two-dimensional questions in the relative motion problem-solving test separately and found that after training in the simulation, the IVE group performed significantly better than the DVE group on solving two-dimensional relative motion problems. We suggest that egocentric encoding of the scene in IVE (where the learner constitutes a part of a scene they are immersed in), as compared to allocentric encoding on a computer screen in DVE (where the learner is looking at the scene from "outside"), is more beneficial than DVE for studying more complex (two-dimensional) relative motion problems. Overall, our findings suggest that such aspects of virtual realities as immersivity, first-hand experience, and the possibility of changing different frames of reference can facilitate understanding abstract scientific phenomena and help in displacing intuitive misconceptions with more accurate mental models.

  5. EUROPLANET-RI modelling service for the planetary science community: European Modelling and Data Analysis Facility (EMDAF)

    NASA Astrophysics Data System (ADS)

    Khodachenko, Maxim; Miller, Steven; Stoeckler, Robert; Topf, Florian

    2010-05-01

    Computational modeling and observational data analysis are two major aspects of the modern scientific research. Both appear nowadays under extensive development and application. Many of the scientific goals of planetary space missions require robust models of planetary objects and environments as well as efficient data analysis algorithms, to predict conditions for mission planning and to interpret the experimental data. Europe has great strength in these areas, but it is insufficiently coordinated; individual groups, models, techniques and algorithms need to be coupled and integrated. Existing level of scientific cooperation and the technical capabilities for operative communication, allow considerable progress in the development of a distributed international Research Infrastructure (RI) which is based on the existing in Europe computational modelling and data analysis centers, providing the scientific community with dedicated services in the fields of their computational and data analysis expertise. These services will appear as a product of the collaborative communication and joint research efforts of the numerical and data analysis experts together with planetary scientists. The major goal of the EUROPLANET-RI / EMDAF is to make computational models and data analysis algorithms associated with particular national RIs and teams, as well as their outputs, more readily available to their potential user community and more tailored to scientific user requirements, without compromising front-line specialized research on model and data analysis algorithms development and software implementation. This objective will be met through four keys subdivisions/tasks of EMAF: 1) an Interactive Catalogue of Planetary Models; 2) a Distributed Planetary Modelling Laboratory; 3) a Distributed Data Analysis Laboratory, and 4) enabling Models and Routines for High Performance Computing Grids. Using the advantages of the coordinated operation and efficient communication between the involved computational modelling, research and data analysis expert teams and their related research infrastructures, EMDAF will provide a 1) flexible, 2) scientific user oriented, 3) continuously developing and fast upgrading computational and data analysis service to support and intensify the European planetary scientific research. At the beginning EMDAF will create a set of demonstrators and operational tests of this service in key areas of European planetary science. This work will aim at the following objectives: (a) Development and implementation of tools for distant interactive communication between the planetary scientists and computing experts (including related RIs); (b) Development of standard routine packages, and user-friendly interfaces for operation of the existing numerical codes and data analysis algorithms by the specialized planetary scientists; (c) Development of a prototype of numerical modelling services "on demand" for space missions and planetary researchers; (d) Development of a prototype of data analysis services "on demand" for space missions and planetary researchers; (e) Development of a prototype of coordinated interconnected simulations of planetary phenomena and objects (global multi-model simulators); (f) Providing the demonstrators of a coordinated use of high performance computing facilities (super-computer networks), done in cooperation with European HPC Grid DEISA.

  6. 75 FR 43518 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of... Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S...

  7. SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research.

    PubMed

    Yaniv, Ziv; Lowekamp, Bradley C; Johnson, Hans J; Beare, Richard

    2018-06-01

    Modern scientific endeavors increasingly require team collaborations to construct and interpret complex computational workflows. This work describes an image-analysis environment that supports the use of computational tools that facilitate reproducible research and support scientists with varying levels of software development skills. The Jupyter notebook web application is the basis of an environment that enables flexible, well-documented, and reproducible workflows via literate programming. Image-analysis software development is made accessible to scientists with varying levels of programming experience via the use of the SimpleITK toolkit, a simplified interface to the Insight Segmentation and Registration Toolkit. Additional features of the development environment include user friendly data sharing using online data repositories and a testing framework that facilitates code maintenance. SimpleITK provides a large number of examples illustrating educational and research-oriented image analysis workflows for free download from GitHub under an Apache 2.0 license: github.com/InsightSoftwareConsortium/SimpleITK-Notebooks .

  8. High performance computing and communications: Advancing the frontiers of information technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.« less

  9. Protocols for Handling Messages Between Simulation Computers

    NASA Technical Reports Server (NTRS)

    Balcerowski, John P.; Dunnam, Milton

    2006-01-01

    Practical Simulator Network (PSimNet) is a set of data-communication protocols designed especially for use in handling messages between computers that are engaging cooperatively in real-time or nearly-real-time training simulations. In a typical application, computers that provide individualized training at widely dispersed locations would communicate, by use of PSimNet, with a central host computer that would provide a common computational- simulation environment and common data. Originally intended for use in supporting interfaces between training computers and computers that simulate the responses of spacecraft scientific payloads, PSimNet could be especially well suited for a variety of other applications -- for example, group automobile-driver training in a classroom. Another potential application might lie in networking of automobile-diagnostic computers at repair facilities to a central computer that would compile the expertise of numerous technicians and engineers and act as an expert consulting technician.

  10. XPRESS: eXascale PRogramming Environment and System Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brightwell, Ron; Sterling, Thomas; Koniges, Alice

    The XPRESS Project is one of four major projects of the DOE Office of Science Advanced Scientific Computing Research X-stack Program initiated in September, 2012. The purpose of XPRESS is to devise an innovative system software stack to enable practical and useful exascale computing around the end of the decade with near-term contributions to efficient and scalable operation of trans-Petaflops performance systems in the next two to three years; both for DOE mission-critical applications. To this end, XPRESS directly addresses critical challenges in computing of efficiency, scalability, and programmability through introspective methods of dynamic adaptive resource management and task scheduling.

  11. Computational provenance in hydrologic science: a snow mapping example.

    PubMed

    Dozier, Jeff; Frew, James

    2009-03-13

    Computational provenance--a record of the antecedents and processing history of digital information--is key to properly documenting computer-based scientific research. To support investigations in hydrologic science, we produce the daily fractional snow-covered area from NASA's moderate-resolution imaging spectroradiometer (MODIS). From the MODIS reflectance data in seven wavelengths, we estimate the fraction of each 500 m pixel that snow covers. The daily products have data gaps and errors because of cloud cover and sensor viewing geometry, so we interpolate and smooth to produce our best estimate of the daily snow cover. To manage the data, we have developed the Earth System Science Server (ES3), a software environment for data-intensive Earth science, with unique capabilities for automatically and transparently capturing and managing the provenance of arbitrary computations. Transparent acquisition avoids the scientists having to express their computations in specific languages or schemas in order for provenance to be acquired and maintained. ES3 models provenance as relationships between processes and their input and output files. It is particularly suited to capturing the provenance of an evolving algorithm whose components span multiple languages and execution environments.

  12. Visualization techniques to aid in the analysis of multispectral astrophysical data sets

    NASA Technical Reports Server (NTRS)

    Brugel, E. W.; Domik, Gitta O.; Ayres, T. R.

    1993-01-01

    The goal of this project was to support the scientific analysis of multi-spectral astrophysical data by means of scientific visualization. Scientific visualization offers its greatest value if it is not used as a method separate or alternative to other data analysis methods but rather in addition to these methods. Together with quantitative analysis of data, such as offered by statistical analysis, image or signal processing, visualization attempts to explore all information inherent in astrophysical data in the most effective way. Data visualization is one aspect of data analysis. Our taxonomy as developed in Section 2 includes identification and access to existing information, preprocessing and quantitative analysis of data, visual representation and the user interface as major components to the software environment of astrophysical data analysis. In pursuing our goal to provide methods and tools for scientific visualization of multi-spectral astrophysical data, we therefore looked at scientific data analysis as one whole process, adding visualization tools to an already existing environment and integrating the various components that define a scientific data analysis environment. As long as the software development process of each component is separate from all other components, users of data analysis software are constantly interrupted in their scientific work in order to convert from one data format to another, or to move from one storage medium to another, or to switch from one user interface to another. We also took an in-depth look at scientific visualization and its underlying concepts, current visualization systems, their contributions and their shortcomings. The role of data visualization is to stimulate mental processes different from quantitative data analysis, such as the perception of spatial relationships or the discovery of patterns or anomalies while browsing through large data sets. Visualization often leads to an intuitive understanding of the meaning of data values and their relationships by sacrificing accuracy in interpreting the data values. In order to be accurate in the interpretation, data values need to be measured, computed on, and compared to theoretical or empirical models (quantitative analysis). If visualization software hampers quantitative analysis (which happens with some commercial visualization products), its use is greatly diminished for astrophysical data analysis. The software system STAR (Scientific Toolkit for Astrophysical Research) was developed as a prototype during the course of the project to better understand the pragmatic concerns raised in the project. STAR led to a better understanding on the importance of collaboration between astrophysicists and computer scientists. Twenty-one examples of the use of visualization for astrophysical data are included with this report. Sixteen publications related to efforts performed during or initiated through work on this project are listed at the end of this report.

  13. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1991-01-01

    A summary and viewgraphs of a discussion presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. Some of the experiences of the Scientific Computing Division at the National Center for Atmospheric Research (NCAR) dealing the the 'data problem' are discussed. A brief history and a development of some basic mass storage system (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. Future MSS needs for future computing environments is discussed.

  14. Improving Scientific Research for the GEO Geohazard Supersites through a Virtual Research Environment

    NASA Astrophysics Data System (ADS)

    Salvi, S.; Trasatti, E.; Rubbia, G.; Romaniello, V.; Spinetti, C.; Corradini, S.; Merucci, L.

    2016-12-01

    The EU's H2020 EVER-EST Project is dedicated to the realization of a Virtual Research Environment (VRE) for Earth Science researchers, during 2015-2018. EVER-EST implements state-of-the-art technologies in the area of Earth Science data catalogues, data access/processing and long-term data preservation together with models, techniques and tools for the computational methods, such as scientific workflows. The VRE is designed with the aim of providing the Earth Science user community with an innovative virtual environment to enhance their ability to interoperate and share knowledge and experience, exploiting also the Research Object concept. The GEO Geohazard Supersites is one of the four Research Communities chosen to validate the e-infrastructure. EVER-EST will help the exploitation of the full potential of the GEO Geohazard Supersite and Natural Laboratories (GSNL) initiative demonstrating the use case in the Permanent Supersites of Mt Etna, Campi Flegrei-Vesuvius, and Icelandic volcanoes. Besides providing tools for active volcanoes monitoring and studies, we intend to demonstrate how a more organized and collaborative research environment, such as a VRE, can improve the quality of the scientific research on the Geohazard Supersites, addressing at the same time the problem of the slow uptake of scientific research findings in Disaster Risk Management. Presently, the full exploitation of the in situ and satellite data made available for each Supersite is delayed by the difficult access (especially for researchers in developing countries) to intensive processing and modeling capabilities. EVER-EST is designed to provide these means and also a friendly virtual environment for the easy transfer of scientific knowledge as soon as it is acquired, promoting collaboration among researchers located in distant regions of the world. A further benefit will be to increase the societal impact of the scientific advancements obtained in the Supersites, allowing a more uniform interface towards the different user communities, who will use part of the services provided by EVER-EST during research result uptake. We show a few test cases of use of the Geohazard Supersite VRE at the actual state of development, and its future development.

  15. Computational Environments and Analysis methods available on the NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will involve the further integration and analysis of this data across the social sciences to facilitate the impacts across the societal domain, including timely analysis to more accurately predict and forecast future climate and environmental state.

  16. Overview of the LINCS architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, J.G.; Watson, R.W.

    1982-01-13

    Computing at the Lawrence Livermore National Laboratory (LLNL) has evolved over the past 15 years with a computer network based resource sharing environment. The increasing use of low cost and high performance micro, mini and midi computers and commercially available local networking systems will accelerate this trend. Further, even the large scale computer systems, on which much of the LLNL scientific computing depends, are evolving into multiprocessor systems. It is our belief that the most cost effective use of this environment will depend on the development of application systems structured into cooperating concurrent program modules (processes) distributed appropriately over differentmore » nodes of the environment. A node is defined as one or more processors with a local (shared) high speed memory. Given the latter view, the environment can be characterized as consisting of: multiple nodes communicating over noisy channels with arbitrary delays and throughput, heterogenous base resources and information encodings, no single administration controlling all resources, distributed system state, and no uniform time base. The system design problem is - how to turn the heterogeneous base hardware/firmware/software resources of this environment into a coherent set of resources that facilitate development of cost effective, reliable, and human engineered applications. We believe the answer lies in developing a layered, communication oriented distributed system architecture; layered and modular to support ease of understanding, reconfiguration, extensibility, and hiding of implementation or nonessential local details; communication oriented because that is a central feature of the environment. The Livermore Interactive Network Communication System (LINCS) is a hierarchical architecture designed to meet the above needs. While having characteristics in common with other architectures, it differs in several respects.« less

  17. Performance Comparison of Mainframe, Workstations, Clusters, and Desktop Computers

    NASA Technical Reports Server (NTRS)

    Farley, Douglas L.

    2005-01-01

    A performance evaluation of a variety of computers frequently found in a scientific or engineering research environment was conducted using a synthetic and application program benchmarks. From a performance perspective, emerging commodity processors have superior performance relative to legacy mainframe computers. In many cases, the PC clusters exhibited comparable performance with traditional mainframe hardware when 8-12 processors were used. The main advantage of the PC clusters was related to their cost. Regardless of whether the clusters were built from new computers or whether they were created from retired computers their performance to cost ratio was superior to the legacy mainframe computers. Finally, the typical annual maintenance cost of legacy mainframe computers is several times the cost of new equipment such as multiprocessor PC workstations. The savings from eliminating the annual maintenance fee on legacy hardware can result in a yearly increase in total computational capability for an organization.

  18. A SOCIO-ECONOMIST LOOKS AT THE CURRENT VALUES AND CHANGING NEEDS OF YOUTH. FINAL DRAFT.

    ERIC Educational Resources Information Center

    THEOBALD, ROBERT

    MAN HAS ACHIEVED THE POWER TO CREATE AN ENVIRONMENT SUITED TO HIS NEEDS. THIS POWER COMES FROM DEVELOPMENTS IN THE UTILIZATION OF ENERGY, ADVANCEMENTS IN CHEMISTRY, AN INCREASE IN SCIENTIFIC PROBLEM SOLVING ABILITY AND COMPUTER TECHNOLOGY. THESE SOURCES OF POWER RESULT IN THE DRIVE TOWARD THE DEVELOPMENT OF DESTRUCTIVE POWER, THE CAPABILITY OF…

  19. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    DOE PAGES

    Christensen, A. J.; Srinivasan, V.; Hart, J. C.; ...

    2018-03-17

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less

  20. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, A. J.; Srinivasan, V.; Hart, J. C.

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less

  1. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security.

    PubMed

    Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy

    2018-05-01

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in "big data" analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.

  2. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    PubMed Central

    Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy

    2018-01-01

    Abstract Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields. PMID:29562368

  3. Grids: The Top Ten Questions

    DOE PAGES

    Schopf, Jennifer M.; Nitzberg, Bill

    2002-01-01

    The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less

  4. Algorithms for Haptic Rendering of 3D Objects

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao; Srinavasan, Mandayam

    2003-01-01

    Algorithms have been developed to provide haptic rendering of three-dimensional (3D) objects in virtual (that is, computationally simulated) environments. The goal of haptic rendering is to generate tactual displays of the shapes, hardnesses, surface textures, and frictional properties of 3D objects in real time. Haptic rendering is a major element of the emerging field of computer haptics, which invites comparison with computer graphics. We have already seen various applications of computer haptics in the areas of medicine (surgical simulation, telemedicine, haptic user interfaces for blind people, and rehabilitation of patients with neurological disorders), entertainment (3D painting, character animation, morphing, and sculpting), mechanical design (path planning and assembly sequencing), and scientific visualization (geophysical data analysis and molecular manipulation).

  5. A Look at the Impact of High-End Computing Technologies on NASA Missions

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Dunbar, Jill; Hardman, John; Bailey, F. Ron; Wheeler, Lorien; Rogers, Stuart

    2012-01-01

    From its bold start nearly 30 years ago and continuing today, the NASA Advanced Supercomputing (NAS) facility at Ames Research Center has enabled remarkable breakthroughs in the space agency s science and engineering missions. Throughout this time, NAS experts have influenced the state-of-the-art in high-performance computing (HPC) and related technologies such as scientific visualization, system benchmarking, batch scheduling, and grid environments. We highlight the pioneering achievements and innovations originating from and made possible by NAS resources and know-how, from early supercomputing environment design and software development, to long-term simulation and analyses critical to design safe Space Shuttle operations and associated spinoff technologies, to the highly successful Kepler Mission s discovery of new planets now capturing the world s imagination.

  6. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    NASA Astrophysics Data System (ADS)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  7. Enhancing endorsement of scientific inquiry increases support for pro-environment policies.

    PubMed

    Drummond, Aaron; Palmer, Matthew A; Sauer, James D

    2016-09-01

    Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies.

  8. Enhancing endorsement of scientific inquiry increases support for pro-environment policies

    PubMed Central

    Palmer, Matthew A.; Sauer, James D.

    2016-01-01

    Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies. PMID:27703700

  9. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102

  10. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations andmore » a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.« less

  11. The INDIGO-Datacloud Authentication and Authorization Infrastructure

    NASA Astrophysics Data System (ADS)

    Ceccanti, A.; Hardt, M.; Wegh, B.; Millar, AP; Caberletti, M.; Vianello, E.; Licehammer, S.

    2017-10-01

    Contemporary distributed computing infrastructures (DCIs) are not easily and securely accessible by scientists. These computing environments are typically hard to integrate due to interoperability problems resulting from the use of different authentication mechanisms, identity negotiation protocols and access control policies. Such limitations have a big impact on the user experience making it hard for user communities to port and run their scientific applications on resources aggregated from multiple providers. The INDIGO-DataCloud project wants to provide the services and tools needed to enable a secure composition of resources from multiple providers in support of scientific applications. In order to do so, a common AAI architecture has to be defined that supports multiple authentication mechanisms, support delegated authorization across services and can be easily integrated in off-the-shelf software. In this contribution we introduce the INDIGO Authentication and Authorization Infrastructure, describing its main components and their status and how authentication, delegation and authorization flows are implemented across services.

  12. Dynamic file-access characteristics of a production parallel scientific workload

    NASA Technical Reports Server (NTRS)

    Kotz, David; Nieuwejaar, Nils

    1994-01-01

    Multiprocessors have permitted astounding increases in computational performance, but many cannot meet the intense I/O requirements of some scientific applications. An important component of any solution to this I/O bottleneck is a parallel file system that can provide high-bandwidth access to tremendous amounts of data in parallel to hundreds or thousands of processors. Most successful systems are based on a solid understanding of the expected workload, but thus far there have been no comprehensive workload characterizations of multiprocessor file systems. This paper presents the results of a three week tracing study in which all file-related activity on a massively parallel computer was recorded. Our instrumentation differs from previous efforts in that it collects information about every I/O request and about the mix of jobs running in a production environment. We also present the results of a trace-driven caching simulation and recommendations for designers of multiprocessor file systems.

  13. Visual analytics as a translational cognitive science.

    PubMed

    Fisher, Brian; Green, Tera Marie; Arias-Hernández, Richard

    2011-07-01

    Visual analytics is a new interdisciplinary field of study that calls for a more structured scientific approach to understanding the effects of interaction with complex graphical displays on human cognitive processes. Its primary goal is to support the design and evaluation of graphical information systems that better support cognitive processes in areas as diverse as scientific research and emergency management. The methodologies that make up this new field are as yet ill defined. This paper proposes a pathway for development of visual analytics as a translational cognitive science that bridges fundamental research in human/computer cognitive systems and design and evaluation of information systems in situ. Achieving this goal will require the development of enhanced field methods for conceptual decomposition of human/computer cognitive systems that maps onto laboratory studies, and improved methods for conducting laboratory investigations that might better map onto real-world cognitive processes in technology-rich environments. Copyright © 2011 Cognitive Science Society, Inc.

  14. Cloud-based Jupyter Notebooks for Water Data Analysis

    NASA Astrophysics Data System (ADS)

    Castronova, A. M.; Brazil, L.; Seul, M.

    2017-12-01

    The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative and reproducible science.

  15. Anticipated Changes in Conducting Scientific Data-Analysis Research in the Big-Data Era

    NASA Astrophysics Data System (ADS)

    Kuo, Kwo-Sen; Seablom, Michael; Clune, Thomas; Ramachandran, Rahul

    2014-05-01

    A Big-Data environment is one that is capable of orchestrating quick-turnaround analyses involving large volumes of data for numerous simultaneous users. Based on our experiences with a prototype Big-Data analysis environment, we anticipate some important changes in research behaviors and processes while conducting scientific data-analysis research in the near future as such Big-Data environments become the mainstream. The first anticipated change will be the reduced effort and difficulty in most parts of the data management process. A Big-Data analysis environment is likely to house most of the data required for a particular research discipline along with appropriate analysis capabilities. This will reduce the need for researchers to download local copies of data. In turn, this also reduces the need for compute and storage procurement by individual researchers or groups, as well as associated maintenance and management afterwards. It is almost certain that Big-Data environments will require a different "programming language" to fully exploit the latent potential. In addition, the process of extending the environment to provide new analysis capabilities will likely be more involved than, say, compiling a piece of new or revised code. We thus anticipate that researchers will require support from dedicated organizations associated with the environment that are composed of professional software engineers and data scientists. A major benefit will likely be that such extensions are of higher-quality and broader applicability than ad hoc changes by physical scientists. Another anticipated significant change is improved collaboration among the researchers using the same environment. Since the environment is homogeneous within itself, many barriers to collaboration are minimized or eliminated. For example, data and analysis algorithms can be seamlessly shared, reused and re-purposed. In conclusion, we will be able to achieve a new level of scientific productivity in the Big-Data analysis environments.

  16. Anticipated Changes in Conducting Scientific Data-Analysis Research in the Big-Data Era

    NASA Technical Reports Server (NTRS)

    Kuo, Kwo-Sen; Seablom, Michael; Clune, Thomas; Ramachandran, Rahul

    2014-01-01

    A Big-Data environment is one that is capable of orchestrating quick-turnaround analyses involving large volumes of data for numerous simultaneous users. Based on our experiences with a prototype Big-Data analysis environment, we anticipate some important changes in research behaviors and processes while conducting scientific data-analysis research in the near future as such Big-Data environments become the mainstream. The first anticipated change will be the reduced effort and difficulty in most parts of the data management process. A Big-Data analysis environment is likely to house most of the data required for a particular research discipline along with appropriate analysis capabilities. This will reduce the need for researchers to download local copies of data. In turn, this also reduces the need for compute and storage procurement by individual researchers or groups, as well as associated maintenance and management afterwards. It is almost certain that Big-Data environments will require a different "programming language" to fully exploit the latent potential. In addition, the process of extending the environment to provide new analysis capabilities will likely be more involved than, say, compiling a piece of new or revised code.We thus anticipate that researchers will require support from dedicated organizations associated with the environment that are composed of professional software engineers and data scientists. A major benefit will likely be that such extensions are of higherquality and broader applicability than ad hoc changes by physical scientists. Another anticipated significant change is improved collaboration among the researchers using the same environment. Since the environment is homogeneous within itself, many barriers to collaboration are minimized or eliminated. For example, data and analysis algorithms can be seamlessly shared, reused and re-purposed. In conclusion, we will be able to achieve a new level of scientific productivity in the Big-Data analysis environments.

  17. Rapid performance modeling and parameter regression of geodynamic models

    NASA Astrophysics Data System (ADS)

    Brown, J.; Duplyakin, D.

    2016-12-01

    Geodynamic models run in a parallel environment have many parameters with complicated effects on performance and scientifically-relevant functionals. Manually choosing an efficient machine configuration and mapping out the parameter space requires a great deal of expert knowledge and time-consuming experiments. We propose an active learning technique based on Gaussion Process Regression to automatically select experiments to map out the performance landscape with respect to scientific and machine parameters. The resulting performance model is then used to select optimal experiments for improving the accuracy of a reduced order model per unit of computational cost. We present the framework and evaluate its quality and capability using popular lithospheric dynamics models.

  18. Examples of Effective Data Sharing in Scientific Publishing

    DOE PAGES

    Kitchin, John R.

    2015-05-11

    Here, we present a perspective on an approach to data sharing in scientific publications we have been developing in our group. The essence of the approach is that data can be embedded in a human-readable and machine-addressable way within the traditional publishing environment. We show this by example for both computational and experimental data. We articulate a need for new authoring tools to facilitate data sharing, and we discuss the tools we have been developing for this purpose. With these tools, data generation, analysis, and manuscript preparation can be deeply integrated, resulting in easier and better data sharing in scientificmore » publications.« less

  19. Examples of Effective Data Sharing in Scientific Publishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitchin, John R.

    Here, we present a perspective on an approach to data sharing in scientific publications we have been developing in our group. The essence of the approach is that data can be embedded in a human-readable and machine-addressable way within the traditional publishing environment. We show this by example for both computational and experimental data. We articulate a need for new authoring tools to facilitate data sharing, and we discuss the tools we have been developing for this purpose. With these tools, data generation, analysis, and manuscript preparation can be deeply integrated, resulting in easier and better data sharing in scientificmore » publications.« less

  20. Digital optical conversion module

    DOEpatents

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  1. Digital optical conversion module

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  2. Access control and privacy in large distributed systems

    NASA Technical Reports Server (NTRS)

    Leiner, B. M.; Bishop, M.

    1986-01-01

    Large scale distributed systems consists of workstations, mainframe computers, supercomputers and other types of servers, all connected by a computer network. These systems are being used in a variety of applications including the support of collaborative scientific research. In such an environment, issues of access control and privacy arise. Access control is required for several reasons, including the protection of sensitive resources and cost control. Privacy is also required for similar reasons, including the protection of a researcher's proprietary results. A possible architecture for integrating available computer and communications security technologies into a system that meet these requirements is described. This architecture is meant as a starting point for discussion, rather that the final answer.

  3. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds immense promise. In this environment, I believe it is necessary to institute a system of science based performance metrics to help quantify our progress towards science goals and scientific computing. As a final comment I would like to reaffirm that the shifting landscapes of science will force changes to our computational sciences, and leave you with the quote from Richard Hamming, 'The purpose of computing is insight, not numbers'.

  4. Making it Easy to Construct Accurate Hydrological Models that Exploit High Performance Computers (Invited)

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M. W.; Terrel, A.; Certik, O.; Seljebotn, D.

    2013-12-01

    This presentation will focus on two barriers to progress in the hydrological modeling community, and research and development conducted to lessen or eliminate them. The first is a barrier to sharing hydrological models among specialized scientists that is caused by intertwining the implementation of numerical methods with the implementation of abstract numerical modeling information. In the Proteus toolkit for computational methods and simulation, we have decoupled these two important parts of computational model through separate "physics" and "numerics" interfaces. More recently we have begun developing the Strong Form Language for easy and direct representation of the mathematical model formulation in a domain specific language embedded in Python. The second major barrier is sharing ANY scientific software tools that have complex library or module dependencies, as most parallel, multi-physics hydrological models must have. In this setting, users and developer are dependent on an entire distribution, possibly depending on multiple compilers and special instructions depending on the environment of the target machine. To solve these problem we have developed, hashdist, a stateless package management tool and a resulting portable, open source scientific software distribution.

  5. Grid Computing Environment using a Beowulf Cluster

    NASA Astrophysics Data System (ADS)

    Alanis, Fransisco; Mahmood, Akhtar

    2003-10-01

    Custom-made Beowulf clusters using PCs are currently replacing expensive supercomputers to carry out complex scientific computations. At the University of Texas - Pan American, we built a 8 Gflops Beowulf Cluster for doing HEP research using RedHat Linux 7.3 and the LAM-MPI middleware. We will describe how we built and configured our Cluster, which we have named the Sphinx Beowulf Cluster. We will describe the results of our cluster benchmark studies and the run-time plots of several parallel application codes that were compiled in C on the cluster using the LAM-XMPI graphics user environment. We will demonstrate a "simple" prototype grid environment, where we will submit and run parallel jobs remotely across multiple cluster nodes over the internet from the presentation room at Texas Tech. University. The Sphinx Beowulf Cluster will be used for monte-carlo grid test-bed studies for the LHC-ATLAS high energy physics experiment. Grid is a new IT concept for the next generation of the "Super Internet" for high-performance computing. The Grid will allow scientist worldwide to view and analyze huge amounts of data flowing from the large-scale experiments in High Energy Physics. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, and data sources.

  6. Modeling a Wireless Network for International Space Station

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Yaprak, Ece; Lamouri, Saad

    2000-01-01

    This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.

  7. Agent-based modeling and systems dynamics model reproduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, M. J.; Macal, C. M.

    2009-01-01

    Reproducibility is a pillar of the scientific endeavour. We view computer simulations as laboratories for electronic experimentation and therefore as tools for science. Recent studies have addressed model reproduction and found it to be surprisingly difficult to replicate published findings. There have been enough failed simulation replications to raise the question, 'can computer models be fully replicated?' This paper answers in the affirmative by reporting on a successful reproduction study using Mathematica, Repast and Swarm for the Beer Game supply chain model. The reproduction process was valuable because it demonstrated the original result's robustness across modelling methodologies and implementation environments.

  8. Prediction and characterization of application power use in a high-performance computing environment

    DOE PAGES

    Bugbee, Bruce; Phillips, Caleb; Egan, Hilary; ...

    2017-02-27

    Power use in data centers and high-performance computing (HPC) facilities has grown in tandem with increases in the size and number of these facilities. Substantial innovation is needed to enable meaningful reduction in energy footprints in leadership-class HPC systems. In this paper, we focus on characterizing and investigating application-level power usage. We demonstrate potential methods for predicting power usage based on a priori and in situ characteristics. Lastly, we highlight a potential use case of this method through a simulated power-aware scheduler using historical jobs from a real scientific HPC system.

  9. Separating Added Value from Hype: Some Experiences and Prognostications

    NASA Astrophysics Data System (ADS)

    Reed, Dan

    2004-03-01

    These are exciting times for the interplay of science and computing technology. As new data archives, instruments and computing facilities are connected nationally and internationally, a new model of distributed scientific collaboration is emerging. However, any new technology brings both opportunities and challenges -- Grids are no exception. In this talk, we will discuss some of the experiences deploying Grid software in production environments, illustrated with experiences from the NSF PACI Alliance, the NSF Extensible Terascale Facility (ETF) and other Grid projects. From these experiences, we derive some guidelines for deployment and some suggestions for community engagement, software development and infrastructure

  10. Hybrid cloud and cluster computing paradigms for life science applications

    PubMed Central

    2010-01-01

    Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982

  11. Hybrid cloud and cluster computing paradigms for life science applications.

    PubMed

    Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey

    2010-12-21

    Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.

  12. Adapting line integral convolution for fabricating artistic virtual environment

    NASA Astrophysics Data System (ADS)

    Lee, Jiunn-Shyan; Wang, Chung-Ming

    2003-04-01

    Vector field occurs not only extensively in scientific applications but also in treasured art such as sculptures and paintings. Artist depicts our natural environment stressing valued directional feature besides color and shape information. Line integral convolution (LIC), developed for imaging vector field in scientific visualization, has potential of producing directional image. In this paper we present several techniques of exploring LIC techniques to generate impressionistic images forming artistic virtual environment. We take advantage of directional information given by a photograph, and incorporate many investigations to the work including non-photorealistic shading technique and statistical detail control. In particular, the non-photorealistic shading technique blends cool and warm colors into the photograph to imitate artists painting convention. Besides, we adopt statistical technique controlling integral length according to image variance to preserve details. Furthermore, we also propose method for generating a series of mip-maps, which revealing constant strokes under multi-resolution viewing and achieving frame coherence in an interactive walkthrough system. The experimental results show merits of emulating satisfyingly and computing efficiently, as a consequence, relying on the proposed technique successfully fabricates a wide category of non-photorealistic rendering (NPR) application such as interactive virtual environment with artistic perception.

  13. Programs for attracting under-represented minority students to graduate school and research careers in computational science. Final report for period October 1, 1995 - September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno

    1997-10-01

    Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this programmore » to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.« less

  14. The Brink of Change: Gender in Technology-Rich Collaborative Learning Environments

    NASA Astrophysics Data System (ADS)

    Goldstein, Jessica; Puntambekar, Sadhana

    2004-12-01

    This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students' attitudes towards using computers and working in groups during scientific inquiry. Students' attitudes towards technology and group work were analyzed using questionnaires. To add depth to the findings from the survey research, the role of gender was also investigated through the analysis of student conversations in the context of two activities: exploring science information on a hypertext text and conducting hands-on investigations. The data suggest that not only are girls and boys are similar with regard to attitudes about computers and group work, but that during collaborative learning activities, girls may actually participate more actively and persistently regardless of the nature of the task.

  15. Large Scale Computing and Storage Requirements for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. Themore » effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.« less

  16. Deserts in the Deluge: TerraPopulus and Big Human-Environment Data.

    PubMed

    Manson, S M; Kugler, T A; Haynes, D

    2016-01-01

    Terra Populus, or TerraPop, is a cyberinfrastructure project that integrates, preserves, and disseminates massive data collections describing characteristics of the human population and environment over the last six decades. TerraPop has made a number of GIScience advances in the handling of big spatial data to make information interoperable between formats and across scientific communities. In this paper, we describe challenges of these data, or 'deserts in the deluge' of data, that are common to spatial big data more broadly, and explore computational solutions specific to microdata, raster, and vector data models.

  17. Agile parallel bioinformatics workflow management using Pwrake.

    PubMed

    Mishima, Hiroyuki; Sasaki, Kensaku; Tanaka, Masahiro; Tatebe, Osamu; Yoshiura, Koh-Ichiro

    2011-09-08

    In bioinformatics projects, scientific workflow systems are widely used to manage computational procedures. Full-featured workflow systems have been proposed to fulfil the demand for workflow management. However, such systems tend to be over-weighted for actual bioinformatics practices. We realize that quick deployment of cutting-edge software implementing advanced algorithms and data formats, and continuous adaptation to changes in computational resources and the environment are often prioritized in scientific workflow management. These features have a greater affinity with the agile software development method through iterative development phases after trial and error.Here, we show the application of a scientific workflow system Pwrake to bioinformatics workflows. Pwrake is a parallel workflow extension of Ruby's standard build tool Rake, the flexibility of which has been demonstrated in the astronomy domain. Therefore, we hypothesize that Pwrake also has advantages in actual bioinformatics workflows. We implemented the Pwrake workflows to process next generation sequencing data using the Genomic Analysis Toolkit (GATK) and Dindel. GATK and Dindel workflows are typical examples of sequential and parallel workflows, respectively. We found that in practice, actual scientific workflow development iterates over two phases, the workflow definition phase and the parameter adjustment phase. We introduced separate workflow definitions to help focus on each of the two developmental phases, as well as helper methods to simplify the descriptions. This approach increased iterative development efficiency. Moreover, we implemented combined workflows to demonstrate modularity of the GATK and Dindel workflows. Pwrake enables agile management of scientific workflows in the bioinformatics domain. The internal domain specific language design built on Ruby gives the flexibility of rakefiles for writing scientific workflows. Furthermore, readability and maintainability of rakefiles may facilitate sharing workflows among the scientific community. Workflows for GATK and Dindel are available at http://github.com/misshie/Workflows.

  18. Agile parallel bioinformatics workflow management using Pwrake

    PubMed Central

    2011-01-01

    Background In bioinformatics projects, scientific workflow systems are widely used to manage computational procedures. Full-featured workflow systems have been proposed to fulfil the demand for workflow management. However, such systems tend to be over-weighted for actual bioinformatics practices. We realize that quick deployment of cutting-edge software implementing advanced algorithms and data formats, and continuous adaptation to changes in computational resources and the environment are often prioritized in scientific workflow management. These features have a greater affinity with the agile software development method through iterative development phases after trial and error. Here, we show the application of a scientific workflow system Pwrake to bioinformatics workflows. Pwrake is a parallel workflow extension of Ruby's standard build tool Rake, the flexibility of which has been demonstrated in the astronomy domain. Therefore, we hypothesize that Pwrake also has advantages in actual bioinformatics workflows. Findings We implemented the Pwrake workflows to process next generation sequencing data using the Genomic Analysis Toolkit (GATK) and Dindel. GATK and Dindel workflows are typical examples of sequential and parallel workflows, respectively. We found that in practice, actual scientific workflow development iterates over two phases, the workflow definition phase and the parameter adjustment phase. We introduced separate workflow definitions to help focus on each of the two developmental phases, as well as helper methods to simplify the descriptions. This approach increased iterative development efficiency. Moreover, we implemented combined workflows to demonstrate modularity of the GATK and Dindel workflows. Conclusions Pwrake enables agile management of scientific workflows in the bioinformatics domain. The internal domain specific language design built on Ruby gives the flexibility of rakefiles for writing scientific workflows. Furthermore, readability and maintainability of rakefiles may facilitate sharing workflows among the scientific community. Workflows for GATK and Dindel are available at http://github.com/misshie/Workflows. PMID:21899774

  19. The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC

    NASA Astrophysics Data System (ADS)

    Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan

    2016-04-01

    The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.

  20. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Pugmire, David; Rogers, David

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  1. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Pugmire, David; Rogers, David

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  2. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  3. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  4. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    NASA Technical Reports Server (NTRS)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  5. Effects of explicit and implicit prompts on students' inquiry practices in computer-supported learning environments in high school earth science

    NASA Astrophysics Data System (ADS)

    Fang, Su-Chi; Hsu, Ying-Shao; Hsu, Wei Hsiu

    2016-07-01

    The study explored how to best use scaffolds for supporting students' inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then examined how the three scaffold-fading conditions influenced students' conceptual understanding, understanding of scientific inquiry, and inquiry abilities. Three grade-10 classes (N = 105) participated in this study; they were randomly assigned to and taught in the three conditions. Data-collection procedures included a pretest-posttest approach and in-depth observations of the target students. The findings showed that after these inquiry units, all of the students exhibited significant learning gains in conceptual knowledge and performed better inquiry abilities regardless of which condition was used. The explicit and fading conditions were more effective in enhancing students' understanding of scientific inquiry. The fading condition tended to better support the students' development of inquiry abilities and help transfer these abilities to a new setting involving an independent socioscientific task about where to build a dam. The results suggest that fading plays an essential role in enhancing the effectiveness of scaffolds.

  6. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires large quantity of memory as well as large and fast parallel storage systems. The entire system temperature is controlled by an energy and space efficient cooling solution, based on large rear door liquid cooled heat exchangers. This state-of-the-art infrastructure will boost research activities in the region, offer a powerful scientific tool for teaching at undergraduate and graduate levels, and enhance association and cooperation with business-oriented organizations.

  7. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  8. PREFACE: 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015)

    NASA Astrophysics Data System (ADS)

    Vlachos, Dimitrios; Vagenas, Elias C.

    2015-09-01

    The 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place in Mykonos, Greece, from Friday 5th June to Monday 8th June 2015. The Conference was attended by more than 150 participants and hosted about 200 oral, poster, and virtual presentations. There were more than 600 pre-registered authors. The 4th IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather intense as after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with a high quality of talks creating an innovative and productive scientific environment for all attendees. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  9. Identifying Key Features, Cutting Edge Cloud Resources, and Artificial Intelligence Tools to Achieve User-Friendly Water Science in the Cloud

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2017-12-01

    Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.

  10. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D L; Bell, J; Estep, D

    2008-02-15

    Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as themore » high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the mathematical developments required to meet the future science and engineering needs of the DOE. It is important to emphasize that the panelists were not asked to speculate only on advances that might be made in their own research specialties. Instead, the guidance this panel was given was to consider the broad science and engineering challenges that the DOE faces and identify the corresponding advances that must occur across the field of mathematics for these challenges to be successfully addressed. As preparation for the meeting, each panelist was asked to review strategic planning and other informational documents available for one or more of the DOE Program Offices, including the Offices of Science, Nuclear Energy, Fossil Energy, Environmental Management, Legacy Management, Energy Efficiency & Renewable Energy, Electricity Delivery & Energy Reliability and Civilian Radioactive Waste Management as well as the National Nuclear Security Administration. The panelists reported on science and engineering needs for each of these offices, and then discussed and identified mathematical advances that will be required if these challenges are to be met. A review of DOE challenges in energy, the environment and national security brings to light a broad and varied array of questions that the DOE must answer in the coming years. A representative subset of such questions includes: (1) Can we predict the operating characteristics of a clean coal power plant? (2) How stable is the plasma containment in a tokamak? (3) How quickly is climate change occurring and what are the uncertainties in the predicted time scales? (4) How quickly can an introduced bio-weapon contaminate the agricultural environment in the US? (5) How do we modify models of the atmosphere and clouds to incorporate newly collected data of possibly of new types? (6) How quickly can the United States recover if part of the power grid became inoperable? (7) What are optimal locations and communication protocols for sensing devices in a remote-sensing network? (8) How can new materials be designed with a specified desirable set of properties? In comparing and contrasting these and other questions of importance to DOE, the panel found that while the scientific breadth of the requirements is enormous, a central theme emerges: Scientists are being asked to identify or provide technology, or to give expert analysis to inform policy-makers that requires the scientific understanding of increasingly complex physical and engineered systems. In addition, as the complexity of the systems of interest increases, neither experimental observation nor mathematical and computational modeling alone can access all components of the system over the entire range of scales or conditions needed to provide the required scientific understanding.« less

  11. Crossing the chasm: how to develop weather and climate models for next generation computers?

    NASA Astrophysics Data System (ADS)

    Lawrence, Bryan N.; Rezny, Michael; Budich, Reinhard; Bauer, Peter; Behrens, Jörg; Carter, Mick; Deconinck, Willem; Ford, Rupert; Maynard, Christopher; Mullerworth, Steven; Osuna, Carlos; Porter, Andrew; Serradell, Kim; Valcke, Sophie; Wedi, Nils; Wilson, Simon

    2018-05-01

    Weather and climate models are complex pieces of software which include many individual components, each of which is evolving under pressure to exploit advances in computing to enhance some combination of a range of possible improvements (higher spatio-temporal resolution, increased fidelity in terms of resolved processes, more quantification of uncertainty, etc.). However, after many years of a relatively stable computing environment with little choice in processing architecture or programming paradigm (basically X86 processors using MPI for parallelism), the existing menu of processor choices includes significant diversity, and more is on the horizon. This computational diversity, coupled with ever increasing software complexity, leads to the very real possibility that weather and climate modelling will arrive at a chasm which will separate scientific aspiration from our ability to develop and/or rapidly adapt codes to the available hardware. In this paper we review the hardware and software trends which are leading us towards this chasm, before describing current progress in addressing some of the tools which we may be able to use to bridge the chasm. This brief introduction to current tools and plans is followed by a discussion outlining the scientific requirements for quality model codes which have satisfactory performance and portability, while simultaneously supporting productive scientific evolution. We assert that the existing method of incremental model improvements employing small steps which adjust to the changing hardware environment is likely to be inadequate for crossing the chasm between aspiration and hardware at a satisfactory pace, in part because institutions cannot have all the relevant expertise in house. Instead, we outline a methodology based on large community efforts in engineering and standardisation, which will depend on identifying a taxonomy of key activities - perhaps based on existing efforts to develop domain-specific languages, identify common patterns in weather and climate codes, and develop community approaches to commonly needed tools and libraries - and then collaboratively building up those key components. Such a collaborative approach will depend on institutions, projects, and individuals adopting new interdependencies and ways of working.

  12. The Study Team for Early Life Asthma Research (STELAR) consortium ‘Asthma e-lab’: team science bringing data, methods and investigators together

    PubMed Central

    Custovic, Adnan; Ainsworth, John; Arshad, Hasan; Bishop, Christopher; Buchan, Iain; Cullinan, Paul; Devereux, Graham; Henderson, John; Holloway, John; Roberts, Graham; Turner, Steve; Woodcock, Ashley; Simpson, Angela

    2015-01-01

    We created Asthma e-Lab, a secure web-based research environment to support consistent recording, description and sharing of data, computational/statistical methods and emerging findings across the five UK birth cohorts. The e-Lab serves as a data repository for our unified dataset and provides the computational resources and a scientific social network to support collaborative research. All activities are transparent, and emerging findings are shared via the e-Lab, linked to explanations of analytical methods, thus enabling knowledge transfer. eLab facilitates the iterative interdisciplinary dialogue between clinicians, statisticians, computer scientists, mathematicians, geneticists and basic scientists, capturing collective thought behind the interpretations of findings. PMID:25805205

  13. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  14. National research and education network

    NASA Technical Reports Server (NTRS)

    Villasenor, Tony

    1991-01-01

    Some goals of this network are as follows: Extend U.S. technological leadership in high performance computing and computer communications; Provide wide dissemination and application of the technologies both to the speed and the pace of innovation and to serve the national economy, national security, education, and the global environment; and Spur gains in the U.S. productivity and industrial competitiveness by making high performance computing and networking technologies an integral part of the design and production process. Strategies for achieving these goals are as follows: Support solutions to important scientific and technical challenges through a vigorous R and D effort; Reduce the uncertainties to industry for R and D and use of this technology through increased cooperation between government, industry, and universities and by the continued use of government and government funded facilities as a prototype user for early commercial HPCC products; and Support underlying research, network, and computational infrastructures on which U.S. high performance computing technology is based.

  15. Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System.

    PubMed

    Passerat-Palmbach, Jonathan; Reuillon, Romain; Leclaire, Mathieu; Makropoulos, Antonios; Robinson, Emma C; Parisot, Sarah; Rueckert, Daniel

    2017-01-01

    OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. OpenMOLE hides the complexity of designing complex experiments thanks to its DSL. Users can embed their own applications and scale their pipelines from a small prototype running on their desktop computer to a large-scale study harnessing distributed computing infrastructures, simply by changing a single line in the pipeline definition. The construction of the pipeline itself is decoupled from the execution context. The high-level DSL abstracts the underlying execution environment, contrary to classic shell-script based pipelines. These two aspects allow pipelines to be shared and studies to be replicated across different computing environments. Workflows can be run as traditional batch pipelines or coupled with OpenMOLE's advanced exploration methods in order to study the behavior of an application, or perform automatic parameter tuning. In this work, we briefly present the strong assets of OpenMOLE and detail recent improvements targeting re-executability of workflows across various Linux platforms. We have tightly coupled OpenMOLE with CARE, a standalone containerization solution that allows re-executing on a Linux host any application that has been packaged on another Linux host previously. The solution is evaluated against a Python-based pipeline involving packages such as scikit-learn as well as binary dependencies. All were packaged and re-executed successfully on various HPC environments, with identical numerical results (here prediction scores) obtained on each environment. Our results show that the pair formed by OpenMOLE and CARE is a reliable solution to generate reproducible results and re-executable pipelines. A demonstration of the flexibility of our solution showcases three neuroimaging pipelines harnessing distributed computing environments as heterogeneous as local clusters or the European Grid Infrastructure (EGI).

  16. Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System

    PubMed Central

    Passerat-Palmbach, Jonathan; Reuillon, Romain; Leclaire, Mathieu; Makropoulos, Antonios; Robinson, Emma C.; Parisot, Sarah; Rueckert, Daniel

    2017-01-01

    OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. OpenMOLE hides the complexity of designing complex experiments thanks to its DSL. Users can embed their own applications and scale their pipelines from a small prototype running on their desktop computer to a large-scale study harnessing distributed computing infrastructures, simply by changing a single line in the pipeline definition. The construction of the pipeline itself is decoupled from the execution context. The high-level DSL abstracts the underlying execution environment, contrary to classic shell-script based pipelines. These two aspects allow pipelines to be shared and studies to be replicated across different computing environments. Workflows can be run as traditional batch pipelines or coupled with OpenMOLE's advanced exploration methods in order to study the behavior of an application, or perform automatic parameter tuning. In this work, we briefly present the strong assets of OpenMOLE and detail recent improvements targeting re-executability of workflows across various Linux platforms. We have tightly coupled OpenMOLE with CARE, a standalone containerization solution that allows re-executing on a Linux host any application that has been packaged on another Linux host previously. The solution is evaluated against a Python-based pipeline involving packages such as scikit-learn as well as binary dependencies. All were packaged and re-executed successfully on various HPC environments, with identical numerical results (here prediction scores) obtained on each environment. Our results show that the pair formed by OpenMOLE and CARE is a reliable solution to generate reproducible results and re-executable pipelines. A demonstration of the flexibility of our solution showcases three neuroimaging pipelines harnessing distributed computing environments as heterogeneous as local clusters or the European Grid Infrastructure (EGI). PMID:28381997

  17. Scientific Services on the Cloud

    NASA Astrophysics Data System (ADS)

    Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong

    Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.

  18. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Maxine D.; Leigh, Jason

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascalemore » computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.« less

  19. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostadin, Damevski

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less

  20. Computational Science: A Research Methodology for the 21st Century

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2004-03-01

    Computational simulation - a means of scientific discovery that employs computer systems to simulate a physical system according to laws derived from theory and experiment - has attained peer status with theory and experiment. Important advances in basic science are accomplished by a new "sociology" for ultrascale scientific computing capability (USSCC), a fusion of sustained advances in scientific models, mathematical algorithms, computer architecture, and scientific software engineering. Expansion of current capabilities by factors of 100 - 1000 open up new vistas for scientific discovery: long term climatic variability and change, macroscopic material design from correlated behavior at the nanoscale, design and optimization of magnetic confinement fusion reactors, strong interactions on a computational lattice through quantum chromodynamics, and stellar explosions and element production. The "virtual prototype," made possible by this expansion, can markedly reduce time-to-market for industrial applications such as jet engines and safer, more fuel efficient cleaner cars. In order to develop USSCC, the National Energy Research Scientific Computing Center (NERSC) announced the competition "Innovative and Novel Computational Impact on Theory and Experiment" (INCITE), with no requirement for current DOE sponsorship. Fifty nine proposals for grand challenge scientific problems were submitted for a small number of awards. The successful grants, and their preliminary progress, will be described.

  1. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    NASA Astrophysics Data System (ADS)

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-06-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum `Computer-Assisted Instrumentation in the Design of Physics Laboratories' brings rigorous algorithm and syntax protocols together with imagination, communication, scientific applications and experimental innovation. The effectiveness of the curriculum was evaluated via statistical analysis of questionnaires, interview responses, the increase in student numbers majoring in physics, and performance in a competition. The results provide quantitative support that the curriculum remove huge barriers to programming which occur in text-based environments, helped students gain knowledge of programming and instrumentation, and increased the students' confidence and motivation to learn physics and computer languages.

  2. Environment and health: Probes and sensors for environment digital control

    NASA Astrophysics Data System (ADS)

    Schettini, Chiara

    2014-05-01

    The idea of studying the environment using New Technologies (NT) came from a MIUR (Ministry of Education of the Italian Government) notice that allocated funds for the realization of innovative school science projects. The "Environment and Health" project uses probes and sensors for digital control of environment (water, air and soil). The working group was composed of 4 Science teachers from 'Liceo Statale G. Mazzini ', under the coordination of teacher Chiara Schettini. The Didactic Section of Naples City of Sciences helped the teachers in developing the project and it organized a refresher course for them on the utilization of digital control sensors. The project connects Environment and Technology because the study of the natural aspects and the analysis of the chemical-physical parameters give students and teachers skills for studying the environment based on the utilization of NT in computing data elaboration. During the practical project, samples of air, water and soil are gathered in different contexts. Sample analysis was done in the school's scientific laboratory with digitally controlled sensors. The data are elaborated with specific software and the results have been written in a booklet and in a computing database. During the first year, the project involved 6 school classes (age of the students 14—15 years), under the coordination of Science teachers. The project aims are: 1) making students more aware about environmental matters 2) achieving basic skills for evaluating air, water and soil quality. 3) achieving strong skills for the utilization of digitally controlled sensors. 4) achieving computing skills for elaborating and presenting data. The project aims to develop a large environmental conscience and the need of a ' good ' environment for defending our health. Moreover it would increase the importance of NT as an instrument of knowledge.

  3. XVIS: Visualization for the Extreme-Scale Scientific-Computation Ecosystem Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geveci, Berk; Maynard, Robert

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respectivemore » features into a new visualization toolkit called VTK-m.« less

  4. Managing large-scale workflow execution from resource provisioning to provenance tracking: The CyberShake example

    USGS Publications Warehouse

    Deelman, E.; Callaghan, S.; Field, E.; Francoeur, H.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T.H.; Kesselman, C.; Maechling, P.; Mehringer, J.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.

    2006-01-01

    This paper discusses the process of building an environment where large-scale, complex, scientific analysis can be scheduled onto a heterogeneous collection of computational and storage resources. The example application is the Southern California Earthquake Center (SCEC) CyberShake project, an analysis designed to compute probabilistic seismic hazard curves for sites in the Los Angeles area. We explain which software tools were used to build to the system, describe their functionality and interactions. We show the results of running the CyberShake analysis that included over 250,000 jobs using resources available through SCEC and the TeraGrid. ?? 2006 IEEE.

  5. Trends in Programming Languages for Neuroscience Simulations

    PubMed Central

    Davison, Andrew P.; Hines, Michael L.; Muller, Eilif

    2009-01-01

    Neuroscience simulators allow scientists to express models in terms of biological concepts, without having to concern themselves with low-level computational details of their implementation. The expressiveness, power and ease-of-use of the simulator interface is critical in efficiently and accurately translating ideas into a working simulation. We review long-term trends in the development of programmable simulator interfaces, and examine the benefits of moving from proprietary, domain-specific languages to modern dynamic general-purpose languages, in particular Python, which provide neuroscientists with an interactive and expressive simulation development environment and easy access to state-of-the-art general-purpose tools for scientific computing. PMID:20198154

  6. Communications oriented programming of parallel iterative solutions of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Patrick, M. L.; Pratt, T. W.

    1986-01-01

    Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.

  7. Trends in programming languages for neuroscience simulations.

    PubMed

    Davison, Andrew P; Hines, Michael L; Muller, Eilif

    2009-01-01

    Neuroscience simulators allow scientists to express models in terms of biological concepts, without having to concern themselves with low-level computational details of their implementation. The expressiveness, power and ease-of-use of the simulator interface is critical in efficiently and accurately translating ideas into a working simulation. We review long-term trends in the development of programmable simulator interfaces, and examine the benefits of moving from proprietary, domain-specific languages to modern dynamic general-purpose languages, in particular Python, which provide neuroscientists with an interactive and expressive simulation development environment and easy access to state-of-the-art general-purpose tools for scientific computing.

  8. Managing Scientific Software Complexity with Bocca and CCA

    DOE PAGES

    Allan, Benjamin A.; Norris, Boyana; Elwasif, Wael R.; ...

    2008-01-01

    In high-performance scientific software development, the emphasis is often on short time to first solution. Even when the development of new components mostly reuses existing components or libraries and only small amounts of new code must be created, dealing with the component glue code and software build processes to obtain complete applications is still tedious and error-prone. Component-based software meant to reduce complexity at the application level increases complexity to the extent that the user must learn and remember the interfaces and conventions of the component model itself. To address these needs, we introduce Bocca, the first tool to enablemore » application developers to perform rapid component prototyping while maintaining robust software-engineering practices suitable to HPC environments. Bocca provides project management and a comprehensive build environment for creating and managing applications composed of Common Component Architecture components. Of critical importance for high-performance computing (HPC) applications, Bocca is designed to operate in a language-agnostic way, simultaneously handling components written in any of the languages commonly used in scientific applications: C, C++, Fortran, Python and Java. Bocca automates the tasks related to the component glue code, freeing the user to focus on the scientific aspects of the application. Bocca embraces the philosophy pioneered by Ruby on Rails for web applications: start with something that works, and evolve it to the user's purpose.« less

  9. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  10. Distributed GPU Computing in GIScience

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Yang, C.; Huang, Q.; Li, J.; Sun, M.

    2013-12-01

    Geoscientists strived to discover potential principles and patterns hidden inside ever-growing Big Data for scientific discoveries. To better achieve this objective, more capable computing resources are required to process, analyze and visualize Big Data (Ferreira et al., 2003; Li et al., 2013). Current CPU-based computing techniques cannot promptly meet the computing challenges caused by increasing amount of datasets from different domains, such as social media, earth observation, environmental sensing (Li et al., 2013). Meanwhile CPU-based computing resources structured as cluster or supercomputer is costly. In the past several years with GPU-based technology matured in both the capability and performance, GPU-based computing has emerged as a new computing paradigm. Compare to traditional computing microprocessor, the modern GPU, as a compelling alternative microprocessor, has outstanding high parallel processing capability with cost-effectiveness and efficiency(Owens et al., 2008), although it is initially designed for graphical rendering in visualization pipe. This presentation reports a distributed GPU computing framework for integrating GPU-based computing within distributed environment. Within this framework, 1) for each single computer, computing resources of both GPU-based and CPU-based can be fully utilized to improve the performance of visualizing and processing Big Data; 2) within a network environment, a variety of computers can be used to build up a virtual super computer to support CPU-based and GPU-based computing in distributed computing environment; 3) GPUs, as a specific graphic targeted device, are used to greatly improve the rendering efficiency in distributed geo-visualization, especially for 3D/4D visualization. Key words: Geovisualization, GIScience, Spatiotemporal Studies Reference : 1. Ferreira de Oliveira, M. C., & Levkowitz, H. (2003). From visual data exploration to visual data mining: A survey. Visualization and Computer Graphics, IEEE Transactions on, 9(3), 378-394. 2. Li, J., Jiang, Y., Yang, C., Huang, Q., & Rice, M. (2013). Visualizing 3D/4D Environmental Data Using Many-core Graphics Processing Units (GPUs) and Multi-core Central Processing Units (CPUs). Computers & Geosciences, 59(9), 78-89. 3. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879-899.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Song

    CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less

  12. Large Spatial Scale Ground Displacement Mapping through the P-SBAS Processing of Sentinel-1 Data on a Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Casu, F.; Bonano, M.; de Luca, C.; Lanari, R.; Manunta, M.; Manzo, M.; Zinno, I.

    2017-12-01

    Since its launch in 2014, the Sentinel-1 (S1) constellation has played a key role on SAR data availability and dissemination all over the World. Indeed, the free and open access data policy adopted by the European Copernicus program together with the global coverage acquisition strategy, make the Sentinel constellation as a game changer in the Earth Observation scenario. Being the SAR data become ubiquitous, the technological and scientific challenge is focused on maximizing the exploitation of such huge data flow. In this direction, the use of innovative processing algorithms and distributed computing infrastructures, such as the Cloud Computing platforms, can play a crucial role. In this work we present a Cloud Computing solution for the advanced interferometric (DInSAR) processing chain based on the Parallel SBAS (P-SBAS) approach, aimed at processing S1 Interferometric Wide Swath (IWS) data for the generation of large spatial scale deformation time series in efficient, automatic and systematic way. Such a DInSAR chain ingests Sentinel 1 SLC images and carries out several processing steps, to finally compute deformation time series and mean deformation velocity maps. Different parallel strategies have been designed ad hoc for each processing step of the P-SBAS S1 chain, encompassing both multi-core and multi-node programming techniques, in order to maximize the computational efficiency achieved within a Cloud Computing environment and cut down the relevant processing times. The presented P-SBAS S1 processing chain has been implemented on the Amazon Web Services platform and a thorough analysis of the attained parallel performances has been performed to identify and overcome the major bottlenecks to the scalability. The presented approach is used to perform national-scale DInSAR analyses over Italy, involving the processing of more than 3000 S1 IWS images acquired from both ascending and descending orbits. Such an experiment confirms the big advantage of exploiting large computational and storage resources of Cloud Computing platforms for large scale DInSAR analysis. The presented Cloud Computing P-SBAS processing chain can be a precious tool in the perspective of developing operational services disposable for the EO scientific community related to hazard monitoring and risk prevention and mitigation.

  13. Joint the Center for Applied Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamblin, Todd; Bremer, Timo; Van Essen, Brian

    The Center for Applied Scientific Computing serves as Livermore Lab’s window to the broader computer science, computational physics, applied mathematics, and data science research communities. In collaboration with academic, industrial, and other government laboratory partners, we conduct world-class scientific research and development on problems critical to national security. CASC applies the power of high-performance computing and the efficiency of modern computational methods to the realms of stockpile stewardship, cyber and energy security, and knowledge discovery for intelligence applications.

  14. Modeling and Analysis Compute Environments, Utilizing Virtualization Technology in the Climate and Earth Systems Science domain

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.

    2010-12-01

    Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.

  15. Effects of virtualization on a scientific application - Running a hyperspectral radiative transfer code on virtual machines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikotekar, Anand A; Vallee, Geoffroy R; Naughton III, Thomas J

    2008-01-01

    The topic of system-level virtualization has recently begun to receive interest for high performance computing (HPC). This is in part due to the isolation and encapsulation offered by the virtual machine. These traits enable applications to customize their environments and maintain consistent software configurations in their virtual domains. Additionally, there are mechanisms that can be used for fault tolerance like live virtual machine migration. Given these attractive benefits to virtualization, a fundamental question arises, how does this effect my scientific application? We use this as the premise for our paper and observe a real-world scientific code running on a Xenmore » virtual machine. We studied the effects of running a radiative transfer simulation, Hydrolight, on a virtual machine. We discuss our methodology and report observations regarding the usage of virtualization with this application.« less

  16. ASI's space automation and robotics programs: The second step

    NASA Technical Reports Server (NTRS)

    Dipippo, Simonetta

    1994-01-01

    The strategic decisions taken by ASI in the last few years in building up the overall A&R program, represent the technological drivers for other applications (i.e., internal automation of the Columbus Orbital Facility in the ESA Manned Space program, applications to mobile robots both in space and non-space environments, etc...). In this context, the main area of application now emerging is the scientific missions domain. Due to the broad range of applications of the developed technologies, both in the in-orbit servicing and maintenance of space structures and scientific missions, ASI foresaw the need to have a common technological development path, mainly focusing on: (1) control; (2) manipulation; (3) on-board computing; (4) sensors; and (5) teleoperation. Before entering into new applications in the scientific missions field, a brief overview of the status of the SPIDER related projects is given, underlining also the possible new applications for the LEO/GEO space structures.

  17. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    DOE PAGES

    Dart, Eli; Rotman, Lauren; Tierney, Brian; ...

    2014-01-01

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less

  18. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  19. Comparing the Consumption of CPU Hours with Scientific Output for the Extreme Science and Engineering Discovery Environment (XSEDE).

    PubMed

    Knepper, Richard; Börner, Katy

    2016-01-01

    This paper presents the results of a study that compares resource usage with publication output using data about the consumption of CPU cycles from the Extreme Science and Engineering Discovery Environment (XSEDE) and resulting scientific publications for 2,691 institutions/teams. Specifically, the datasets comprise a total of 5,374,032,696 central processing unit (CPU) hours run in XSEDE during July 1, 2011 to August 18, 2015 and 2,882 publications that cite the XSEDE resource. Three types of studies were conducted: a geospatial analysis of XSEDE providers and consumers, co-authorship network analysis of XSEDE publications, and bi-modal network analysis of how XSEDE resources are used by different research fields. Resulting visualizations show that a diverse set of consumers make use of XSEDE resources, that users of XSEDE publish together frequently, and that the users of XSEDE with the highest resource usage tend to be "traditional" high-performance computing (HPC) community members from astronomy, atmospheric science, physics, chemistry, and biology.

  20. Bibliometric approach of factors affecting scientific productivity in environmental sciences and ecology.

    PubMed

    Dragos, Cristian Mihai; Dragos, Simona Laura

    2013-04-01

    Different academic bibliometric studies have measured the influence of economic, political and linguistic factors in the academic output of countries. Separate analysis in different fields can reveal specific incentive factors. Our study proves that the Environmental Performance Index, computed by Yale University, is highly significant (p<0.01) for the productivity of research and development activities in environmental sciences and ecology. The control variables like education financing, publishing of ISI Thomson domestic journals and the English language are also significant. The methodology uses Ordinary Least Squares multiple regressions with convincing results (R(2)=0.752). The relative positions of the 92 countries in the sample are also discussed. We draw up a ranking of the countries' concern for the environment, considering evenly the scientific productivity and the environment quality. We notice huge differences concerning the number of inhabitants and population income between the countries that dominate the classification and those occupying the last positions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. 78 FR 41046 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Services Administration, notice is hereby given that the Advanced Scientific Computing Advisory Committee will be renewed for a two-year period beginning on July 1, 2013. The Committee will provide advice to the Director, Office of Science (DOE), on the Advanced Scientific Computing Research Program managed...

  2. Lowering the Barrier to Reproducible Research by Publishing Provenance from Common Analytical Tools

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Slaughter, P.; Walker, L.; Jones, C. S.; Missier, P.; Ludäscher, B.; Cao, Y.; McPhillips, T.; Schildhauer, M.

    2015-12-01

    Scientific provenance describes the authenticity, origin, and processing history of research products and promotes scientific transparency by detailing the steps in computational workflows that produce derived products. These products include papers, findings, input data, software products to perform computations, and derived data and visualizations. The geosciences community values this type of information, and, at least theoretically, strives to base conclusions on computationally replicable findings. In practice, capturing detailed provenance is laborious and thus has been a low priority; beyond a lab notebook describing methods and results, few researchers capture and preserve detailed records of scientific provenance. We have built tools for capturing and publishing provenance that integrate into analytical environments that are in widespread use by geoscientists (R and Matlab). These tools lower the barrier to provenance generation by automating capture of critical information as researchers prepare data for analysis, develop, test, and execute models, and create visualizations. The 'recordr' library in R and the `matlab-dataone` library in Matlab provide shared functions to capture provenance with minimal changes to normal working procedures. Researchers can capture both scripted and interactive sessions, tag and manage these executions as they iterate over analyses, and then prune and publish provenance metadata and derived products to the DataONE federation of archival repositories. Provenance traces conform to the ProvONE model extension of W3C PROV, enabling interoperability across tools and languages. The capture system supports fine-grained versioning of science products and provenance traces. By assigning global identifiers such as DOIs, reseachers can cite the computational processes used to reach findings. And, finally, DataONE has built a web portal to search, browse, and clearly display provenance relationships between input data, the software used to execute analyses and models, and derived data and products that arise from these computations. This provenance is vital to interpretation and understanding of science, and provides an audit trail that researchers can use to understand and replicate computational workflows in the geosciences.

  3. M4AST - A Tool for Asteroid Modelling

    NASA Astrophysics Data System (ADS)

    Birlan, Mirel; Popescu, Marcel; Irimiea, Lucian; Binzel, Richard

    2016-10-01

    M4AST (Modelling for asteroids) is an online tool devoted to the analysis and interpretation of reflection spectra of asteroids in the visible and near-infrared spectral intervals. It consists into a spectral database of individual objects and a set of routines for analysis which address scientific aspects such as: taxonomy, curve matching with laboratory spectra, space weathering models, and mineralogical diagnosis. Spectral data were obtained using groundbased facilities; part of these data are precompiled from the literature[1].The database is composed by permanent and temporary files. Each permanent file contains a header and two or three columns (wavelength, spectral reflectance, and the error on spectral reflectance). Temporary files can be uploaded anonymously, and are purged for the property of submitted data. The computing routines are organized in order to accomplish several scientific objectives: visualize spectra, compute the asteroid taxonomic class, compare an asteroid spectrum with similar spectra of meteorites, and computing mineralogical parameters. One facility of using the Virtual Observatory protocols was also developed.A new version of the service was released in June 2016. This new release of M4AST contains a database and facilities to model more than 6,000 spectra of asteroids. A new web-interface was designed. This development allows new functionalities into a user-friendly environment. A bridge system of access and exploiting the database SMASS-MIT (http://smass.mit.edu) allows the treatment and analysis of these data in the framework of M4AST environment.Reference:[1] M. Popescu, M. Birlan, and D.A. Nedelcu, "Modeling of asteroids: M4AST," Astronomy & Astrophysics 544, EDP Sciences, pp. A130, 2012.

  4. The 1987 RIACS annual report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established at the NASA Ames Research Center in June of 1983. RIACS is privately operated by the Universities Space Research Association (USRA), a consortium of 64 universities with graduate programs in the aerospace sciences, under several Cooperative Agreements with NASA. RIACS's goal is to provide preeminent leadership in basic and applied computer science research as partners in support of NASA's goals and missions. In pursuit of this goal, RIACS contributes to several of the grand challenges in science and engineering facing NASA: flying an airplane inside a computer; determining the chemical properties of materials under hostile conditions in the atmospheres of earth and the planets; sending intelligent machines on unmanned space missions; creating a one-world network that makes all scientific resources, including those in space, accessible to all the world's scientists; providing intelligent computational support to all stages of the process of scientific investigation from problem formulation to results dissemination; and developing accurate global models for climatic behavior throughout the world. In working with these challenges, we seek novel architectures, and novel ways to use them, that exploit the potential of parallel and distributed computation and make possible new functions that are beyond the current reach of computing machines. The investigation includes pattern computers as well as the more familiar numeric and symbolic computers, and it includes networked systems of resources distributed around the world. We believe that successful computer science research is interdisciplinary: it is driven by (and drives) important problems in other disciplines. We believe that research should be guided by a clear long-term vision with planned milestones. And we believe that our environment must foster and exploit innovation. Our activities and accomplishments for the calendar year 1987 and our plans for 1988 are reported.

  5. A Disciplined Architectural Approach to Scaling Data Analysis for Massive, Scientific Data

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Braverman, A. J.; Cinquini, L.; Turmon, M.; Lee, H.; Law, E.

    2014-12-01

    Data collections across remote sensing and ground-based instruments in astronomy, Earth science, and planetary science are outpacing scientists' ability to analyze them. Furthermore, the distribution, structure, and heterogeneity of the measurements themselves pose challenges that limit the scalability of data analysis using traditional approaches. Methods for developing science data processing pipelines, distribution of scientific datasets, and performing analysis will require innovative approaches that integrate cyber-infrastructure, algorithms, and data into more systematic approaches that can more efficiently compute and reduce data, particularly distributed data. This requires the integration of computer science, machine learning, statistics and domain expertise to identify scalable architectures for data analysis. The size of data returned from Earth Science observing satellites and the magnitude of data from climate model output, is predicted to grow into the tens of petabytes challenging current data analysis paradigms. This same kind of growth is present in astronomy and planetary science data. One of the major challenges in data science and related disciplines defining new approaches to scaling systems and analysis in order to increase scientific productivity and yield. Specific needs include: 1) identification of optimized system architectures for analyzing massive, distributed data sets; 2) algorithms for systematic analysis of massive data sets in distributed environments; and 3) the development of software infrastructures that are capable of performing massive, distributed data analysis across a comprehensive data science framework. NASA/JPL has begun an initiative in data science to address these challenges. Our goal is to evaluate how scientific productivity can be improved through optimized architectural topologies that identify how to deploy and manage the access, distribution, computation, and reduction of massive, distributed data, while managing the uncertainties of scientific conclusions derived from such capabilities. This talk will provide an overview of JPL's efforts in developing a comprehensive architectural approach to data science.

  6. Open Science in the Cloud: Towards a Universal Platform for Scientific and Statistical Computing

    NASA Astrophysics Data System (ADS)

    Chine, Karim

    The UK, through the e-Science program, the US through the NSF-funded cyber infrastructure and the European Union through the ICT Calls aimed to provide "the technological solution to the problem of efficiently connecting data, computers, and people with the goal of enabling derivation of novel scientific theories and knowledge".1 The Grid (Foster, 2002; Foster; Kesselman, Nick, & Tuecke, 2002), foreseen as a major accelerator of discovery, didn't meet the expectations it had excited at its beginnings and was not adopted by the broad population of research professionals. The Grid is a good tool for particle physicists and it has allowed them to tackle the tremendous computational challenges inherent to their field. However, as a technology and paradigm for delivering computing on demand, it doesn't work and it can't be fixed. On one hand, "the abstractions that Grids expose - to the end-user, to the deployers and to application developers - are inappropriate and they need to be higher level" (Jha, Merzky, & Fox), and on the other hand, academic Grids are inherently economically unsustainable. They can't compete with a service outsourced to the Industry whose quality and price would be driven by market forces. The virtualization technologies and their corollary, the Infrastructure-as-a-Service (IaaS) style cloud, hold the promise to enable what the Grid failed to deliver: a sustainable environment for computational sciences that would lower the barriers for accessing federated computational resources, software tools and data; enable collaboration and resources sharing and provide the building blocks of a ubiquitous platform for traceable and reproducible computational research.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Computing and Communications (C) Division is responsible for the Laboratory's Integrated Computing Network (ICN) as well as Laboratory-wide communications. Our computing network, used by 8,000 people distributed throughout the nation, constitutes one of the most powerful scientific computing facilities in the world. In addition to the stable production environment of the ICN, we have taken a leadership role in high-performance computing and have established the Advanced Computing Laboratory (ACL), the site of research on experimental, massively parallel computers; high-speed communication networks; distributed computing; and a broad variety of advanced applications. The computational resources available in the ACL are ofmore » the type needed to solve problems critical to national needs, the so-called Grand Challenge'' problems. The purpose of this publication is to inform our clients of our strategic and operating plans in these important areas. We review major accomplishments since late 1990 and describe our strategic planning goals and specific projects that will guide our operations over the next few years. Our mission statement, planning considerations, and management policies and practices are also included.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Computing and Communications (C) Division is responsible for the Laboratory`s Integrated Computing Network (ICN) as well as Laboratory-wide communications. Our computing network, used by 8,000 people distributed throughout the nation, constitutes one of the most powerful scientific computing facilities in the world. In addition to the stable production environment of the ICN, we have taken a leadership role in high-performance computing and have established the Advanced Computing Laboratory (ACL), the site of research on experimental, massively parallel computers; high-speed communication networks; distributed computing; and a broad variety of advanced applications. The computational resources available in the ACL are ofmore » the type needed to solve problems critical to national needs, the so-called ``Grand Challenge`` problems. The purpose of this publication is to inform our clients of our strategic and operating plans in these important areas. We review major accomplishments since late 1990 and describe our strategic planning goals and specific projects that will guide our operations over the next few years. Our mission statement, planning considerations, and management policies and practices are also included.« less

  9. Review of An Introduction to Parallel and Vector Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.; Lefton, Lew

    2006-06-30

    On one hand, the field of high-performance scientific computing is thriving beyond measure. Performance of leading-edge systems on scientific calculations, as measured say by the Top500 list, has increased by an astounding factor of 8000 during the 15-year period from 1993 to 2008, which is slightly faster even than Moore's Law. Even more importantly, remarkable advances in numerical algorithms, numerical libraries and parallel programming environments have led to improvements in the scope of what can be computed that are entirely on a par with the advances in computing hardware. And these successes have spread far beyond the confines of largemore » government-operated laboratories, many universities, modest-sized research institutes and private firms now operate clusters that differ only in scale from the behemoth systems at the large-scale facilities. In the wake of these recent successes, researchers from fields that heretofore have not been part of the scientific computing world have been drawn into the arena. For example, at the recent SC07 conference, the exhibit hall, which long has hosted displays from leading computer systems vendors and government laboratories, featured some 70 exhibitors who had not previously participated. In spite of all these exciting developments, and in spite of the clear need to present these concepts to a much broader technical audience, there is a perplexing dearth of training material and textbooks in the field, particularly at the introductory level. Only a handful of universities offer coursework in the specific area of highly parallel scientific computing, and instructors of such courses typically rely on custom-assembled material. For example, the present reviewer and Robert F. Lucas relied on materials assembled in a somewhat ad-hoc fashion from colleagues and personal resources when presenting a course on parallel scientific computing at the University of California, Berkeley, a few years ago. Thus it is indeed refreshing to see the publication of the book An Introduction to Parallel and Vector Scientic Computing, written by Ronald W. Shonkwiler and Lew Lefton, both of the Georgia Institute of Technology. They have taken the bull by the horns and produced a book that appears to be entirely satisfactory as an introductory textbook for use in such a course. It is also of interest to the much broader community of researchers who are already in the field, laboring day by day to improve the power and performance of their numerical simulations. The book is organized into 11 chapters, plus an appendix. The first three chapters describe the basics of system architecture including vector, parallel and distributed memory systems, the details of task dependence and synchronization, and the various programming models currently in use - threads, MPI and OpenMP. Chapters four through nine provide a competent introduction to floating-point arithmetic, numerical error and numerical linear algebra. Some of the topics presented include Gaussian elimination, LU decomposition, tridiagonal systems, Givens rotations, QR decompositions, Gauss-Seidel iterations and Householder transformations. Chapters 10 and 11 introduce Monte Carlo methods and schemes for discrete optimization such as genetic algorithms.« less

  10. Earth System Grid II, Turning Climate Datasets into Community Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects,more » we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.« less

  11. Field: a new meta-authoring platform for data-intensive scientific visualization

    NASA Astrophysics Data System (ADS)

    Downie, M.; Ameres, E.; Fox, P. A.; Goebel, J.; Graves, A.; Hendler, J.

    2012-12-01

    This presentation will demonstrate a new platform for data-intensive scientific visualization, called Field, that rethinks the problem of visual data exploration. Several new opportunities for scientific visualization present themselves here at this moment in time. We believe that when taken together they may catalyze a transformation of the practice of science and to begin to seed a technical culture within science that fuses data analysis, programming and myriad visual strategies. It is at integrative levels that the principle challenges exist, for many fundamental technical components of our field are now well understood and widely available. File formats from CSV through HDF all have broad library support; low-level high-performance graphics APIs (OpenGL) are in a period of stable growth; and a dizzying ecosystem of analysis and machine learning libraries abound. The hardware of computer graphics offers unprecedented computing power within commodity components; programming languages and platforms are coalescing around a core set of umbrella runtimes. Each of these trends are each set to continue — computer graphics hardware is developing at a super-Moore-law rate, and trends in publication and dissemination point only towards an increasing amount of access to code and data. The critical opportunity here for scientific visualization is, we maintain, not a in developing a new statistical library, nor a new tool centered on a particular technique, but rather new visual, "live" programming environment that is promiscuous in its scope. We can identify the necessarily methodological practice and traditions required here not in science or engineering but in the "live-coding" practices prevalent in the fields of digital art and design. We can define this practice as an approach to programming that is live, iterative, integrative, speculative and exploratory. "Live" because it is exclusively practiced in real-time (often during performance); "iterative", because intermediate programs and this visual results are constantly being made and remade en route; "speculative", because these programs and images result out of mode of inquiry into image-making not unlike that of hypothesis formation and testing; "integrative" because this style draws deeply upon the libraries of algorithms and materials available online today; and "exploratory" because the results of these speculations are inherently open to the data and unforeseen out the outset. To this end our development environment — Field — comprises a minimal core and a powerful plug-in system that can be extended from within the environment itself. By providing a hybrid text editor that can incorporate text-based programming at the same time with graphical user-interface elements, its flexible and extensible interface provides space as necessary for notation, visualization, interface construction, and introspection. In addition, it provides an advanced GPU-accelerated graphics system ideal for large-scale data visualization. Since Field was created in the context of widely divergent interdisciplinary projects, its aim is to give its users not only the ability to work rapidly, but to shape their Field environment extensively and flexibly for their own demands.

  12. Whole earth modeling: developing and disseminating scientific software for computational geophysics.

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    Historically, a great deal of specialized scientific software for modeling and data analysis has been developed by individual researchers or small groups of scientists working on their own specific research problems. As the magnitude of available data and computer power has increased, so has the complexity of scientific problems addressed by computational methods, creating both a need to sustain existing scientific software, and expand its development to take advantage of new algorithms, new software approaches, and new computational hardware. To that end, communities like the Computational Infrastructure for Geodynamics (CIG) have been established to support the use of best practices in scientific computing for solid earth geophysics research and teaching. Working as a scientific community enables computational geophysicists to take advantage of technological developments, improve the accuracy and performance of software, build on prior software development, and collaborate more readily. The CIG community, and others, have adopted an open-source development model, in which code is developed and disseminated by the community in an open fashion, using version control and software repositories like Git. One emerging issue is how to adequately identify and credit the intellectual contributions involved in creating open source scientific software. The traditional method of disseminating scientific ideas, peer reviewed publication, was not designed for review or crediting scientific software, although emerging publication strategies such software journals are attempting to address the need. We are piloting an integrated approach in which authors are identified and credited as scientific software is developed and run. Successful software citation requires integration with the scholarly publication and indexing mechanisms as well, to assign credit, ensure discoverability, and provide provenance for software.

  13. Developing science gateways for drug discovery in a grid environment.

    PubMed

    Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra

    2016-01-01

    Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.

  14. Dynamic Extension of a Virtualized Cluster by using Cloud Resources

    NASA Astrophysics Data System (ADS)

    Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter

    2012-12-01

    The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.

  15. EVER-EST: a virtual research environment for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marelli, Fulvio; Albani, Mirko; Glaves, Helen

    2016-04-01

    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Researchers will be able to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modelling, which lead to the specific results that need to be attributable, validated and shared both within the community and more widely e.g. in the form of scholarly communications. Central to the EVEREST approach is the concept of the Research Object (RO) , which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although several e-laboratories are incorporating the research object concept in their infrastructure, the EVER-EST VRE will be the first infrastructure to leverage the concept of Research Objects and their application in observational rather than experimental disciplines. Development of the EVEREST VRE will leverage the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows. The EVER-EST data processing infrastructure will be based on a Cloud Computing approach, in which new applications can be integrated using "virtual machines" that have their own specifications (disk size, processor speed, operating system etc.) and run on shared private (physical deployment over local hardware) or commercial Cloud infrastructures. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains including: ocean monitoring, natural hazards, land monitoring and risk management (volcanoes and seismicity). Each VRC will use the virtual research environment according to its own specific requirements for data, software, best practice and community engagement. This user-centric approach will allow an assessment to be made of the capability for the proposed solution to satisfy the heterogeneous needs of a variety of Earth Science communities for more effective collaboration, and higher efficiency and creativity in research. EVER-EST is funded by the European Commission's H2020 for three years starting in October 2015. The project is led by the European Space Agency (ESA), involves some of the major European Earth Science data providers/users including NERC, DLR, INGV, CNR and SatCEN.

  16. Measuring scientific reasoning through behavioral analysis in a computer-based problem solving exercise

    NASA Astrophysics Data System (ADS)

    Mead, C.; Horodyskyj, L.; Buxner, S.; Semken, S. C.; Anbar, A. D.

    2016-12-01

    Developing scientific reasoning skills is a common learning objective for general-education science courses. However, effective assessments for such skills typically involve open-ended questions or tasks, which must be hand-scored and may not be usable online. Using computer-based learning environments, reasoning can be assessed automatically by analyzing student actions within the learning environment. We describe such an assessment under development and present pilot results. In our content-neutral instrument, students solve a problem by collecting and interpreting data in a logical, systematic manner. We then infer reasoning skill automatically based on student actions. Specifically, students investigate why Earth has seasons, a scientifically simple but commonly misunderstood topic. Students are given three possible explanations and asked to select a set of locations on a world map from which to collect temperature data. They then explain how the data support or refute each explanation. The best approaches will use locations in both the Northern and Southern hemispheres to argue that the contrasting seasonality of the hemispheres supports only the correct explanation. We administered a pilot version to students at the beginning of an online, introductory science course (n = 223) as an optional extra credit exercise. We were able to categorize students' data collection decisions as more and less logically sound. Students who choose the most logical measurement locations earned higher course grades, but not significantly higher. This result is encouraging, but not definitive. In the future, we will clarify our results in two ways. First, we plan to incorporate more open-ended interactions into the assessment to improve the resolving power of this tool. Second, to avoid relying on course grades, we will independently measure reasoning skill with one of the existing hand-scored assessments (e.g., Critical Thinking Assessment Test) to cross-validate our new assessment.

  17. The acquisition of inquiry skills and computer skills by 8th grade urban middle school students in a technology-supported environment

    NASA Astrophysics Data System (ADS)

    Ruffin, Monya Aisha

    The evolution of increased global accessibility and dependency on computer technologies has revolutionized most aspects of everyday life, including a rapid transformation of 21st century schools. Current changes in education reflect the need for the integration of effective computer technologies in school curricula. The principal objective of this investigation was to examine the acquisition of computer skills and inquiry skills by urban eighth grade students in a technology-supported environment. The study specifically focused on students' ability to identify, understand, and work through the process of scientific inquiry, while also developing computer technology tool skills. The unique component of the study was its contextualization within a local historically significant setting---an African-American cemetery. Approximately seventy students, in a local middle school, participated in the five-week treatment. Students conducted research investigations on site and over the Internet, worked in collaborative groups, utilized technology labs, and received inquiry and computer technology instruction. A mixed method design employing quantitative and qualitative methods was used. Two pilot studies conducted in an after-school science club format helped sharpen the research question, data collection methods, and survey used in the school-based study. Complete sets of data from pre and post surveys and journals were collected from sixty students. Six students were randomly selected to participate in in-depth focus group interviews. Researcher observations and inferences were also included in the analysis. The research findings showed that, after the treatment, students: (a) acquired more inquiry skills and computer skills, (b) broadened their basic conceptual understanding and perspective about science, (c) engaged actively in a relevant learning process, (d) created tangible evidence of their inquiry skills and computer skills, and (e) recalled and retained more details about the inquiry process and the computer technology tools (when they attended at least 80% of the treatment sessions). The findings indicated that project-based, technology-supported experiences allowed students to learn content in an interdisciplinary way (building on culturally relevant local histories) and provided enjoyable learning opportunities for students and teachers. Participation in the treatment encouraged students to think beyond the technical aspects of technology and relate its relevancy and usefulness to solving scientific queries.

  18. IN13B-1660: Analytics and Visualization Pipelines for Big Data on the NASA Earth Exchange (NEX) and OpenNEX

    NASA Technical Reports Server (NTRS)

    Chaudhary, Aashish; Votava, Petr; Nemani, Ramakrishna R.; Michaelis, Andrew; Kotfila, Chris

    2016-01-01

    We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.

  19. Analytics and Visualization Pipelines for Big ­Data on the NASA Earth Exchange (NEX) and OpenNEX

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; Votava, P.; Nemani, R. R.; Michaelis, A.; Kotfila, C.

    2016-12-01

    We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.

  20. U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly

    2008-04-01

    The U.S. Army Research Laboratory (ARL) Multimodal Signatures Database (MMSDB) is a centralized collection of sensor data of various modalities that are co-located and co-registered. The signatures include ground and air vehicles, personnel, mortar, artillery, small arms gunfire from potential sniper weapons, explosives, and many other high value targets. This data is made available to Department of Defense (DoD) and DoD contractors, Intel agencies, other government agencies (OGA), and academia for use in developing target detection, tracking, and classification algorithms and systems to protect our Soldiers. A platform independent Web interface disseminates the signatures to researchers and engineers within the scientific community. Hierarchical Data Format 5 (HDF5) signature models provide an excellent solution for the sharing of complex multimodal signature data for algorithmic development and database requirements. Many open source tools for viewing and plotting HDF5 signatures are available over the Web. Seamless integration of HDF5 signatures is possible in both proprietary computational environments, such as MATLAB, and Free and Open Source Software (FOSS) computational environments, such as Octave and Python, for performing signal processing, analysis, and algorithm development. Future developments include extending the Web interface into a portal system for accessing ARL algorithms and signatures, High Performance Computing (HPC) resources, and integrating existing database and signature architectures into sensor networking environments.

  1. Extensible Computational Chemistry Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-08-09

    ECCE provides a sophisticated graphical user interface, scientific visualization tools, and the underlying data management framework enabling scientists to efficiently set up calculations and store, retrieve, and analyze the rapidly growing volumes of data produced by computational chemistry studies. ECCE was conceived as part of the Environmental Molecular Sciences Laboratory construction to solve the problem of researchers being able to effectively utilize complex computational chemistry codes and massively parallel high performance compute resources. Bringing the power of these codes and resources to the desktops of researcher and thus enabling world class research without users needing a detailed understanding of themore » inner workings of either the theoretical codes or the supercomputers needed to run them was a grand challenge problem in the original version of the EMSL. ECCE allows collaboration among researchers using a web-based data repository where the inputs and results for all calculations done within ECCE are organized. ECCE is a first of kind end-to-end problem solving environment for all phases of computational chemistry research: setting up calculations with sophisticated GUI and direct manipulation visualization tools, submitting and monitoring calculations on remote high performance supercomputers without having to be familiar with the details of using these compute resources, and performing results visualization and analysis including creating publication quality images. ECCE is a suite of tightly integrated applications that are employed as the user moves through the modeling process.« less

  2. The need and potential for building a integrated knowledge-base of the Earth-Human system

    NASA Astrophysics Data System (ADS)

    Jacobs, Clifford

    2011-03-01

    The pursuit of scientific understanding is increasingly based on interdisciplinary research. To understand more deeply the planet and its interactions requires a progressively more holistic approach, exploring knowledge coming from all scientific and engineering disciplines including but not limited to, biology, chemistry, computer sciences, geosciences, material sciences, mathematics, physics, cyberinfrastucture, and social sciences. Nowhere is such an approach more critical than in the study of global climate change in which one of the major challenges is the development of next-generation Earth System Models that include coupled and interactive representations of ecosystems, agricultural working lands and forests, urban environments, biogeochemistry, atmospheric chemistry, ocean and atmospheric currents, the water cycle, land ice, and human activities.

  3. Integrating Data Base into the Elementary School Science Program.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document describes seven science activities that combine scientific principles and computers. The objectives for the activities are to show students how the computer can be used as a tool to store and arrange scientific data, provide students with experience using the computer as a tool to manage scientific data, and provide students with…

  4. Data management and analysis for the Earth System Grid

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Henson, V. E.; Jones, P.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.

    2008-07-01

    The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. In order to address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.

  5. The InSAR Scientific Computing Environment

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Gurrola, Eric; Sacco, Gian Franco; Zebker, Howard

    2012-01-01

    We have developed a flexible and extensible Interferometric SAR (InSAR) Scientific Computing Environment (ISCE) for geodetic image processing. ISCE was designed from the ground up as a geophysics community tool for generating stacks of interferograms that lend themselves to various forms of time-series analysis, with attention paid to accuracy, extensibility, and modularity. The framework is python-based, with code elements rigorously componentized by separating input/output operations from the processing engines. This allows greater flexibility and extensibility in the data models, and creates algorithmic code that is less susceptible to unnecessary modification when new data types and sensors are available. In addition, the components support provenance and checkpointing to facilitate reprocessing and algorithm exploration. The algorithms, based on legacy processing codes, have been adapted to assume a common reference track approach for all images acquired from nearby orbits, simplifying and systematizing the geometry for time-series analysis. The framework is designed to easily allow user contributions, and is distributed for free use by researchers. ISCE can process data from the ALOS, ERS, EnviSAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X platforms, starting from Level-0 or Level 1 as provided from the data source, and going as far as Level 3 geocoded deformation products. With its flexible design, it can be extended with raw/meta data parsers to enable it to work with radar data from other platforms

  6. Do students with higher self-efficacy exhibit greater and more diverse scientific inquiry skills: An exploratory investigation in "River City", a multi-user virtual environment

    NASA Astrophysics Data System (ADS)

    Ketelhut, Diane Jass

    In this thesis, I conduct an exploratory study to investigate the relationship between students' self-efficacy on entry into authentic scientific activity and the scientific inquiry behaviors they employ while engaged in that process, over time. Scientific inquiry has been a major standard in most science education policy doctrines for the past two decades and is exemplified by activities such as making observations, formulating hypotheses, gathering and analyzing data, and forming conclusions from that data. The self-efficacy literature, however, indicates that self-efficacy levels affect perseverance and engagement. This study investigated the relationship between these two constructs. The study is conducted in a novel setting, using an innovative science curriculum delivered through an interactive computer technology that recorded each student's conversations, movements, and activities while behaving as a practicing scientist in a "virtual world" called River City. River City is a Multi-User Virtual Environment designed to engage students in a collaborative scientific inquiry-based learning experience. As a result, I was able to follow students' moment-by-moment choices of behavior while they were behaving as scientists. I collected data on students' total scientific inquiry behaviors over three visits to River City, as well as the number of sources from which they gathered their scientific data. I analyzed my longitudinal data on the 96 seventh-graders using individual growth modeling. I found that self-efficacy played a role in the number of data-gathering behaviors students engaged in initially, with high self-efficacy students engaging in more data gathering than students with low self-efficacy. However, the impact of student self-efficacy on rate of change in data gathering behavior differed by gender; by the end of the study, student self-efficacy did not impact data gathering. In addition, students' level of self-efficacy did not affect how many different sources from which they chose to gather data. There are indications in my results that novel interventions like a Multi-user Virtual Environment might act as a catalyst for change in student learning. Further research using these techniques may enable a better understanding of the interaction between self-efficacy and scientific inquiry, and eventually science learning outcomes.

  7. The Ever-Est Virtual Research Environment Infrastructure for Marine - the Sea Monitoring Virtual Research Community (vrc) Use Case

    NASA Astrophysics Data System (ADS)

    Foglini, F.

    2016-12-01

    The EVER-EST project aims to develop a generic Virtual Research Environment (VRE) tailored to the needs and validated by the Earth Science domain. To achieve this the EVER-EST VRE provides earth scientists with the means to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modellings, which lead to the specific results that need to be attributable, validated and shared within the community e.g. in the form of scholarly communications. Central to this approach is the concept of Research Objects (ROs) as semantically rich aggregations of resources that bring together data, methods and people in scientific investigations. ROs enable the creation of digital artifacts that can encapsulate scientific knowledge and provide a mechanism for sharing and discovering assets of reusable research and scientific assets as first-class citizens. The EVER-EST VRE is the first RO-centric native infrastructure leveraging the notion of ROs and their application in observational rather than experimental disciplines and particularly in Earth Science. The Institute of MARine Science (ISMAR-CNR) is a scientific partner of the EVER-EST project providing useful and applicable contributions to the identification and definition of variables indicated by the European Commission in the Marine Strategy Framework Directive (MSFD) to achieve the Good Environment Status (GES). The VRC is willing to deliver practical methods, procedures and protocols to support coherent and widely accepted interpretation of the MSFD. The use case deal with 1. the Posidonia meadows along the Apulian coast, 2. the deep-sea corals along the Apulian continenatal slope and 3. the jellyfish abundance in the Italian water. The SeaMonitoring VRC created specific RO for asesing deep sea corals suitabilty, Posidonia meadows occurrences and for detecting jelly fish density aloing the italian coast. The VRC developed specific RO for bathymetric data implementing a data preservation plan and a specific vocabulary for metadata.

  8. Trajectories of collaborative scientific conceptual change: Middle school students learning about ecosystems in a CSCL environment

    NASA Astrophysics Data System (ADS)

    Liu, Lei

    The dissertation aims to achieve two goals. First, it attempts to establish a new theoretical framework---the collaborative scientific conceptual change model, which explicitly attends to social factor and epistemic practices of science, to understand conceptual change. Second, it report the findings of a classroom study to investigate how to apply this theoretical framework to examine the trajectories of collaborative scientific conceptual change in a CSCL environment and provide pedagogical implications. Two simulations were designed to help students make connections between the macroscopic substances and the aperceptual microscopic entities and underlying processes. The reported study was focused on analyzing the aggregated data from all participants and the video and audio data from twenty focal groups' collaborative activities and the process of their conceptual development in two classroom settings. Mixed quantitative and qualitative analyses were applied to analyze the video/audio data. The results found that, overall participants showed significant improvements from pretest to posttest on system understanding. Group and teacher effect as well as group variability were detected in both students' posttest performance and their collaborative activities, and variability emerged in group interaction. Multiple data analyses found that attributes of collaborative discourse and epistemic practices made a difference in student learning. Generating warranted claims in discourse as well as the predicting, coordinating theory-evidence, and modifying knowledge in epistemic practices had an impact on student's conceptual understanding. However, modifying knowledge was found negatively related to students' learning effect. The case studies show how groups differed in using the computer tools as a medium to conduct collaborative discourse and epistemic practices. Only with certain combination of discourse features and epistemic practices can the group interaction lead to successful convergent understanding. The results of the study imply that the collaborative scientific conceptual change model is an effective framework to study conceptual change and the simulation environment may mediate the development of successful collaborative interactions (including collaborative discourse and epistemic practices) that lead to collaborative scientific conceptual change.

  9. Job Scheduling in a Heterogeneous Grid Environment

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  10. SCUBA divers as oceanographic samplers: The potential of dive computers to augment aquatic temperature monitoring

    PubMed Central

    Wright, Serena; Hull, Tom; Sivyer, David B.; Pearce, David; Pinnegar, John K.; Sayer, Martin D. J.; Mogg, Andrew O. M.; Azzopardi, Elaine; Gontarek, Steve; Hyder, Kieran

    2016-01-01

    Monitoring temperature of aquatic waters is of great importance, with modelled, satellite and in-situ data providing invaluable insights into long-term environmental change. However, there is often a lack of depth-resolved temperature measurements. Recreational dive computers routinely record temperature and depth, so could provide an alternate and highly novel source of oceanographic information to fill this data gap. In this study, a citizen science approach was used to obtain over 7,000 scuba diver temperature profiles. The accuracy, offset and lag of temperature records was assessed by comparing dive computers with scientific conductivity-temperature-depth instruments and existing surface temperature data. Our results show that, with processing, dive computers can provide a useful and novel tool with which to augment existing monitoring systems all over the globe, but especially in under-sampled or highly changeable coastal environments. PMID:27445104

  11. SCEAPI: A unified Restful Web API for High-Performance Computing

    NASA Astrophysics Data System (ADS)

    Rongqiang, Cao; Haili, Xiao; Shasha, Lu; Yining, Zhao; Xiaoning, Wang; Xuebin, Chi

    2017-10-01

    The development of scientific computing is increasingly moving to collaborative web and mobile applications. All these applications need high-quality programming interface for accessing heterogeneous computing resources consisting of clusters, grid computing or cloud computing. In this paper, we introduce our high-performance computing environment that integrates computing resources from 16 HPC centers across China. Then we present a bundle of web services called SCEAPI and describe how it can be used to access HPC resources with HTTP or HTTPs protocols. We discuss SCEAPI from several aspects including architecture, implementation and security, and address specific challenges in designing compatible interfaces and protecting sensitive data. We describe the functions of SCEAPI including authentication, file transfer and job management for creating, submitting and monitoring, and how to use SCEAPI in an easy-to-use way. Finally, we discuss how to exploit more HPC resources quickly for the ATLAS experiment by implementing the custom ARC compute element based on SCEAPI, and our work shows that SCEAPI is an easy-to-use and effective solution to extend opportunistic HPC resources.

  12. PREFACE: 2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013. The Conference was attended by more than 280 participants and hosted about 400 oral, poster, and virtual presentations while counted more than 600 pre-registered authors. The second IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel sessions were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. Further information on the editors, speakers and committees is available in the attached pdf.

  13. High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away

    NASA Astrophysics Data System (ADS)

    Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.

    2012-09-01

    By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data, and so the costs of running applications vary widely according to how they use resources. The cloud is well suited to processing CPU-bound (and memory bound) workflows such as the periodogram code, given the relatively low cost of processing in comparison with I/O operations. I/O-bound applications such as Montage perform best on high-performance clusters with fast networks and parallel file-systems. Science-driven Cyberinfrastructure: Montage has been widely used as a driver application to develop workflow management services, such as task scheduling in distributed environments, designing fault tolerance techniques for job schedulers, and developing workflow orchestration techniques. Running Parallel Applications Across Distributed Cloud Environments: Data processing will eventually take place in parallel distributed across cyber infrastructure environments having different architectures. We have used the Pegasus Work Management System (WMS) to successfully run applications across three very different environments: TeraGrid, OSG (Open Science Grid), and FutureGrid. Provisioning resources across different grids and clouds (also referred to as Sky Computing), involves establishing a distributed environment, where issues of, e.g, remote job submission, data management, and security need to be addressed. This environment also requires building virtual machine images that can run in different environments. Usually, each cloud provides basic images that can be customized with additional software and services. In most of our work, we provisioned compute resources using a custom application, called Wrangler. Pegasus WMS abstracts the architectures of the compute environments away from the end-user, and can be considered a first-generation tool suitable for scientists to run their applications on disparate environments.

  14. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun

    2015-01-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students (N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation…

  15. Resilient and Robust High Performance Computing Platforms for Scientific Computing Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yier

    As technology advances, computer systems are subject to increasingly sophisticated cyber-attacks that compromise both their security and integrity. High performance computing platforms used in commercial and scientific applications involving sensitive, or even classified data, are frequently targeted by powerful adversaries. This situation is made worse by a lack of fundamental security solutions that both perform efficiently and are effective at preventing threats. Current security solutions fail to address the threat landscape and ensure the integrity of sensitive data. As challenges rise, both private and public sectors will require robust technologies to protect its computing infrastructure. The research outcomes from thismore » project try to address all these challenges. For example, we present LAZARUS, a novel technique to harden kernel Address Space Layout Randomization (KASLR) against paging-based side-channel attacks. In particular, our scheme allows for fine-grained protection of the virtual memory mappings that implement the randomization. We demonstrate the effectiveness of our approach by hardening a recent Linux kernel with LAZARUS, mitigating all of the previously presented side-channel attacks on KASLR. Our extensive evaluation shows that LAZARUS incurs only 0.943% overhead for standard benchmarks, and is therefore highly practical. We also introduced HA2lloc, a hardware-assisted allocator that is capable of leveraging an extended memory management unit to detect memory errors in the heap. We also perform testing using HA2lloc in a simulation environment and find that the approach is capable of preventing common memory vulnerabilities.« less

  16. Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems

    DOE PAGES

    Hendrix, Valerie; Fox, James; Ghoshal, Devarshi; ...

    2016-07-21

    The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less

  17. Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrix, Valerie; Fox, James; Ghoshal, Devarshi

    The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less

  18. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak

    2006-01-01

    High-End Computing (HEC) has always played a major role in meeting the modeling and simulation needs of various NASA missions. With NASA's newest 62 teraflops Columbia supercomputer, HEC is having an even greater impact within the Agency and beyond. Significant cutting-edge science and engineering simulations in the areas of space exploration, Shuttle operations, Earth sciences, and aeronautics research, are already occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. The talk will describe how the integrated supercomputing production environment is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions.

  19. THE VIRTUAL INSTRUMENT: SUPPORT FOR GRID-ENABLED MCELL SIMULATIONS

    PubMed Central

    Casanova, Henri; Berman, Francine; Bartol, Thomas; Gokcay, Erhan; Sejnowski, Terry; Birnbaum, Adam; Dongarra, Jack; Miller, Michelle; Ellisman, Mark; Faerman, Marcio; Obertelli, Graziano; Wolski, Rich; Pomerantz, Stuart; Stiles, Joel

    2010-01-01

    Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application. While MCell provides the basis for running simulations, its capabilities are currently limited in terms of scale, ease-of-use, and interactivity. These limitations preclude usage scenarios that are critical for scientific advances. Our goal is to create a scientific “Virtual Instrument” from MCell by allowing its users to transparently access Grid resources while being able to steer running simulations. In this paper, we motivate the Virtual Instrument project and discuss a number of relevant issues and accomplishments in the area of Grid software development and application scheduling. We then describe our software design and report on the current implementation. We verify and evaluate our design via experiments with MCell on a real-world Grid testbed. PMID:20689618

  20. Evaluating non-relational storage technology for HEP metadata and meta-data catalog

    NASA Astrophysics Data System (ADS)

    Grigorieva, M. A.; Golosova, M. V.; Gubin, M. Y.; Klimentov, A. A.; Osipova, V. V.; Ryabinkin, E. A.

    2016-10-01

    Large-scale scientific experiments produce vast volumes of data. These data are stored, processed and analyzed in a distributed computing environment. The life cycle of experiment is managed by specialized software like Distributed Data Management and Workload Management Systems. In order to be interpreted and mined, experimental data must be accompanied by auxiliary metadata, which are recorded at each data processing step. Metadata describes scientific data and represent scientific objects or results of scientific experiments, allowing them to be shared by various applications, to be recorded in databases or published via Web. Processing and analysis of constantly growing volume of auxiliary metadata is a challenging task, not simpler than the management and processing of experimental data itself. Furthermore, metadata sources are often loosely coupled and potentially may lead to an end-user inconsistency in combined information queries. To aggregate and synthesize a range of primary metadata sources, and enhance them with flexible schema-less addition of aggregated data, we are developing the Data Knowledge Base architecture serving as the intelligence behind GUIs and APIs.

  1. The Czech National Grid Infrastructure

    NASA Astrophysics Data System (ADS)

    Chudoba, J.; Křenková, I.; Mulač, M.; Ruda, M.; Sitera, J.

    2017-10-01

    The Czech National Grid Infrastructure is operated by MetaCentrum, a CESNET department responsible for coordinating and managing activities related to distributed computing. CESNET as the Czech National Research and Education Network (NREN) provides many e-infrastructure services, which are used by 94% of the scientific and research community in the Czech Republic. Computing and storage resources owned by different organizations are connected by fast enough network to provide transparent access to all resources. We describe in more detail the computing infrastructure, which is based on several different technologies and covers grid, cloud and map-reduce environment. While the largest part of CPUs is still accessible via distributed torque servers, providing environment for long batch jobs, part of infrastructure is available via standard EGI tools in EGI, subset of NGI resources is provided into EGI FedCloud environment with cloud interface and there is also Hadoop cluster provided by the same e-infrastructure.A broad spectrum of computing servers is offered; users can choose from standard 2 CPU servers to large SMP machines with up to 6 TB of RAM or servers with GPU cards. Different groups have different priorities on various resources, resource owners can even have an exclusive access. The software is distributed via AFS. Storage servers offering up to tens of terabytes of disk space to individual users are connected via NFS4 on top of GPFS and access to long term HSM storage with peta-byte capacity is also provided. Overview of available resources and recent statistics of usage will be given.

  2. Introduction to the LaRC central scientific computing complex

    NASA Technical Reports Server (NTRS)

    Shoosmith, John N.

    1993-01-01

    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.

  3. OMPC: an Open-Source MATLAB®-to-Python Compiler

    PubMed Central

    Jurica, Peter; van Leeuwen, Cees

    2008-01-01

    Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB®, the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB®-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB® functions into Python programs. The imported MATLAB® modules will run independently of MATLAB®, relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB®. OMPC is available at http://ompc.juricap.com. PMID:19225577

  4. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Astrophysics Data System (ADS)

    Landgrebe, Anton J.

    1987-03-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  5. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Technical Reports Server (NTRS)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  6. On the Relevancy of Efficient, Integrated Computer and Network Monitoring in HEP Distributed Online Environment

    NASA Astrophysics Data System (ADS)

    Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.

    Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.

  7. Mission Simulation Facility: Simulation Support for Autonomy Development

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael

    2003-01-01

    The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.

  8. Analysis and design of energy monitoring platform for smart city

    NASA Astrophysics Data System (ADS)

    Wang, Hong-xia

    2016-09-01

    The development and utilization of energy has greatly promoted the development and progress of human society. It is the basic material foundation for human survival. City running is bound to consume energy inevitably, but it also brings a lot of waste discharge. In order to speed up the process of smart city, improve the efficiency of energy saving and emission reduction work, maintain the green and livable environment, a comprehensive management platform of energy monitoring for government departments is constructed based on cloud computing technology and 3-tier architecture in this paper. It is assumed that the system will provide scientific guidance for the environment management and decision making in smart city.

  9. Scientific Computing Paradigm

    NASA Technical Reports Server (NTRS)

    VanZandt, John

    1994-01-01

    The usage model of supercomputers for scientific applications, such as computational fluid dynamics (CFD), has changed over the years. Scientific visualization has moved scientists away from looking at numbers to looking at three-dimensional images, which capture the meaning of the data. This change has impacted the system models for computing. This report details the model which is used by scientists at NASA's research centers.

  10. Commentary: Considerations in Pedagogy and Assessment in the Use of Computers to Promote Learning about Scientific Models

    ERIC Educational Resources Information Center

    Adams, Stephen T.

    2004-01-01

    Although one role of computers in science education is to help students learn specific science concepts, computers are especially intriguing as a vehicle for fostering the development of epistemological knowledge about the nature of scientific knowledge--what it means to "know" in a scientific sense (diSessa, 1985). In this vein, the…

  11. High-End Scientific Computing

    EPA Pesticide Factsheets

    EPA uses high-end scientific computing, geospatial services and remote sensing/imagery analysis to support EPA's mission. The Center for Environmental Computing (CEC) assists the Agency's program offices and regions to meet staff needs in these areas.

  12. Costa - Introduction to 2015 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, James E.

    In parallel with Sandia National Laboratories having two major locations (NM and CA), along with a number of smaller facilities across the nation, so too is the distribution of scientific, engineering and computing resources. As a part of Sandia’s Institutional Computing Program, CA site-based Sandia computer scientists and engineers have been providing mission and research staff with local CA resident expertise on computing options while also focusing on two growing high performance computing research problems. The first is how to increase system resilience to failure, as machines grow larger, more complex and heterogeneous. The second is how to ensure thatmore » computer hardware and configurations are optimized for specialized data analytical mission needs within the overall Sandia computing environment, including the HPC subenvironment. All of these activities support the larger Sandia effort in accelerating development and integration of high performance computing into national security missions. Sandia continues to both promote national R&D objectives, including the recent Presidential Executive Order establishing the National Strategic Computing Initiative and work to ensure that the full range of computing services and capabilities are available for all mission responsibilities, from national security to energy to homeland defense.« less

  13. Discussion on the management system technology implementation of multimedia classrooms in the digital campus

    NASA Astrophysics Data System (ADS)

    Wang, Bo

    2018-04-01

    Based on the digitized information and network, digital campus is an integration of teaching, management, science and research, life service and technology service, and it is one of the current mainstream construction form of campus function. This paper regarded the "mobile computing" core digital environment construction development as the background, explored the multiple management system technology content design and achievement of multimedia classrooms in digital campus and scientifically proved the technology superiority of management system.

  14. The scientific research potential of virtual worlds.

    PubMed

    Bainbridge, William Sims

    2007-07-27

    Online virtual worlds, electronic environments where people can work and interact in a somewhat realistic manner, have great potential as sites for research in the social, behavioral, and economic sciences, as well as in human-centered computer science. This article uses Second Life and World of Warcraft as two very different examples of current virtual worlds that foreshadow future developments, introducing a number of research methodologies that scientists are now exploring, including formal experimentation, observational ethnography, and quantitative analysis of economic markets or social networks.

  15. Sscience & technology review; Science Technology Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This review is published ten times a year to communicate, to a broad audience, Lawrence Livermore National Laboratory`s scientific and technological accomplishments, particularly in the Laboratory`s core mission areas - global security, energy and the environment, and bioscience and biotechnology. This review for the month of July 1996 discusses: Frontiers of research in advanced computations, The multibeam Fabry-Perot velocimeter: Efficient measurement of high velocities, High-tech tools for the American textile industry, and Rock mechanics: can the Tuff take the stress.

  16. Consortium for Mathematics in the Geosciences (CMG++): Promoting the application of mathematics, statistics, and computational sciences to the geosciences

    NASA Astrophysics Data System (ADS)

    Mead, J.; Wright, G. B.

    2013-12-01

    The collection of massive amounts of high quality data from new and greatly improved observing technologies and from large-scale numerical simulations are drastically improving our understanding and modeling of the earth system. However, these datasets are also revealing important knowledge gaps and limitations of our current conceptual models for explaining key aspects of these new observations. These limitations are impeding progress on questions that have both fundamental scientific and societal significance, including climate and weather, natural disaster mitigation, earthquake and volcano dynamics, earth structure and geodynamics, resource exploration, and planetary evolution. New conceptual approaches and numerical methods for characterizing and simulating these systems are needed - methods that can handle processes which vary through a myriad of scales in heterogeneous, complex environments. Additionally, as certain aspects of these systems may be observable only indirectly or not at all, new statistical methods are also needed. This type of research will demand integrating the expertise of geoscientist together with that of mathematicians, statisticians, and computer scientists. If the past is any indicator, this interdisciplinary research will no doubt lead to advances in all these fields in addition to vital improvements in our ability to predict the behavior of the planetary environment. The Consortium for Mathematics in the Geosciences (CMG++) arose from two scientific workshops held at Northwestern and Princeton in 2011 and 2012 with participants from mathematics, statistics, geoscience and computational science. The mission of CMG++ is to accelerate the traditional interaction between people in these disciplines through the promotion of both collaborative research and interdisciplinary education. We will discuss current activities, describe how people can get involved, and solicit input from the broader AGU community.

  17. Advanced computations in plasma physics

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2002-05-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.

  18. Collaborative Visualization Project: shared-technology learning environments for science learning

    NASA Astrophysics Data System (ADS)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  19. Data handling and visualization for NASA's science programs

    NASA Technical Reports Server (NTRS)

    Bredekamp, Joseph H. (Editor)

    1995-01-01

    Advanced information systems capabilities are essential to conducting NASA's scientific research mission. Access to these capabilities is no longer a luxury for a select few within the science community, but rather an absolute necessity for carrying out scientific investigations. The dependence on high performance computing and networking, as well as ready and expedient access to science data, metadata, and analysis tools is the fundamental underpinning for the entire research endeavor. At the same time, advances in the whole range of information technologies continues on an almost explosive growth path, reaching beyond the research community to affect the population as a whole. Capitalizing on and exploiting these advances are critical to the continued success of space science investigations. NASA must remain abreast of developments in the field and strike an appropriate balance between being a smart buyer and a direct investor in the technology which serves its unique requirements. Another key theme deals with the need for the space and computer science communities to collaborate as partners to more fully realize the potential of information technology in the space science research environment.

  20. Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing

    PubMed Central

    Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong

    2014-01-01

    This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931

  1. Collaborative workbench for cyberinfrastructure to accelerate science algorithm development

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Maskey, M.; Kuo, K.; Lynnes, C.

    2013-12-01

    There are significant untapped resources for information and knowledge creation within the Earth Science community in the form of data, algorithms, services, analysis workflows or scripts, and the related knowledge about these resources. Despite the huge growth in social networking and collaboration platforms, these resources often reside on an investigator's workstation or laboratory and are rarely shared. A major reason for this is that there are very few scientific collaboration platforms, and those that exist typically require the use of a new set of analysis tools and paradigms to leverage the shared infrastructure. As a result, adoption of these collaborative platforms for science research is inhibited by the high cost to an individual scientist of switching from his or her own familiar environment and set of tools to a new environment and tool set. This presentation will describe an ongoing project developing an Earth Science Collaborative Workbench (CWB). The CWB approach will eliminate this barrier by augmenting a scientist's current research environment and tool set to allow him or her to easily share diverse data and algorithms. The CWB will leverage evolving technologies such as commodity computing and social networking to design an architecture for scalable collaboration that will support the emerging vision of an Earth Science Collaboratory. The CWB is being implemented on the robust and open source Eclipse framework and will be compatible with widely used scientific analysis tools such as IDL. The myScience Catalog built into CWB will capture and track metadata and provenance about data and algorithms for the researchers in a non-intrusive manner with minimal overhead. Seamless interfaces to multiple Cloud services will support sharing algorithms, data, and analysis results, as well as access to storage and computer resources. A Community Catalog will track the use of shared science artifacts and manage collaborations among researchers.

  2. Current And Future Directions Of Lens Design Software

    NASA Astrophysics Data System (ADS)

    Gustafson, Darryl E.

    1983-10-01

    The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.

  3. Defining Computational Thinking for Mathematics and Science Classrooms

    ERIC Educational Resources Information Center

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  4. Ermittlung von Wortstaemmen in russischen wissenschaftlichen Fachsprachen mit Hilfe des Computers (Establishing Word Stems in Scientific Russian With the Aid of a Computer)

    ERIC Educational Resources Information Center

    Halbauer, Siegfried

    1976-01-01

    It was considered that students of intensive scientific Russian courses could learn vocabulary more efficiently if they were taught word stems and how to combine them with prefixes and suffixes to form scientific words. The computer programs developed to identify the most important stems is discussed. (Text is in German.) (FB)

  5. Scientific Visualization: The Modern Oscilloscope for "Seeing the Unseeable" (LBNL Summer Lecture Series)

    ScienceCinema

    Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division and Scientific Visualization Group

    2018-05-07

    Summer Lecture Series 2008: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  6. An Object-Oriented Network-Centric Software Architecture for Physical Computing

    NASA Astrophysics Data System (ADS)

    Palmer, Richard

    1997-08-01

    Recent developments in object-oriented computer languages and infrastructure such as the Internet, Web browsers, and the like provide an opportunity to define a more productive computational environment for scientific programming that is based more closely on the underlying mathematics describing physics than traditional programming languages such as FORTRAN or C++. In this talk I describe an object-oriented software architecture for representing physical problems that includes classes for such common mathematical objects as geometry, boundary conditions, partial differential and integral equations, discretization and numerical solution methods, etc. In practice, a scientific program written using this architecture looks remarkably like the mathematics used to understand the problem, is typically an order of magnitude smaller than traditional FORTRAN or C++ codes, and hence easier to understand, debug, describe, etc. All objects in this architecture are ``network-enabled,'' which means that components of a software solution to a physical problem can be transparently loaded from anywhere on the Internet or other global network. The architecture is expressed as an ``API,'' or application programmers interface specification, with reference embeddings in Java, Python, and C++. A C++ class library for an early version of this API has been implemented for machines ranging from PC's to the IBM SP2, meaning that phidentical codes run on all architectures.

  7. Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.

    2003-01-01

    Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.

  8. Experimental evaluation of a flexible I/O architecture for accelerating workflow engines in ultrascale environments

    DOE PAGES

    Duro, Francisco Rodrigo; Blas, Javier Garcia; Isaila, Florin; ...

    2016-10-06

    The increasing volume of scientific data and the limited scalability and performance of storage systems are currently presenting a significant limitation for the productivity of the scientific workflows running on both high-performance computing (HPC) and cloud platforms. Clearly needed is better integration of storage systems and workflow engines to address this problem. This paper presents and evaluates a novel solution that leverages codesign principles for integrating Hercules—an in-memory data store—with a workflow management system. We consider four main aspects: workflow representation, task scheduling, task placement, and task termination. As a result, the experimental evaluation on both cloud and HPC systemsmore » demonstrates significant performance and scalability improvements over existing state-of-the-art approaches.« less

  9. System Architecture Development for Energy and Water Infrastructure Data Management and Geovisual Analytics

    NASA Astrophysics Data System (ADS)

    Berres, A.; Karthik, R.; Nugent, P.; Sorokine, A.; Myers, A.; Pang, H.

    2017-12-01

    Building an integrated data infrastructure that can meet the needs of a sustainable energy-water resource management requires a robust data management and geovisual analytics platform, capable of cross-domain scientific discovery and knowledge generation. Such a platform can facilitate the investigation of diverse complex research and policy questions for emerging priorities in Energy-Water Nexus (EWN) science areas. Using advanced data analytics, machine learning techniques, multi-dimensional statistical tools, and interactive geovisualization components, such a multi-layered federated platform is being developed, the Energy-Water Nexus Knowledge Discovery Framework (EWN-KDF). This platform utilizes several enterprise-grade software design concepts and standards such as extensible service-oriented architecture, open standard protocols, event-driven programming model, enterprise service bus, and adaptive user interfaces to provide a strategic value to the integrative computational and data infrastructure. EWN-KDF is built on the Compute and Data Environment for Science (CADES) environment in Oak Ridge National Laboratory (ORNL).

  10. Scientific Visualization, Seeing the Unseeable

    ScienceCinema

    LBNL

    2017-12-09

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  11. Building Nationally-Focussed, Globally Federated, High Performance Earth Science Platforms to Solve Next Generation Social and Economic Issues.

    NASA Astrophysics Data System (ADS)

    Wyborn, Lesley; Evans, Ben; Foster, Clinton; Pugh, Timothy; Uhlherr, Alfred

    2015-04-01

    Digital geoscience data and information are integral to informing decisions on the social, economic and environmental management of natural resources. Traditionally, such decisions were focused on regional or national viewpoints only, but it is increasingly being recognised that global perspectives are required to meet new challenges such as predicting impacts of climate change; sustainably exploiting scarce water, mineral and energy resources; and protecting our communities through better prediction of the behaviour of natural hazards. In recent years, technical advances in scientific instruments have resulted in a surge in data volumes, with data now being collected at unprecedented rates and at ever increasing resolutions. The size of many earth science data sets now exceed the computational capacity of many government and academic organisations to locally store and dynamically access the data sets; to internally process and analyse them to high resolutions; and then to deliver them online to clients, partners and stakeholders. Fortunately, at the same time, computational capacities have commensurately increased (both cloud and HPC): these can now provide the capability to effectively access the ever-growing data assets within realistic time frames. However, to achieve this, data and computing need to be co-located: bandwidth limits the capacity to move the large data sets; the data transfers are too slow; and latencies to access them are too high. These scenarios are driving the move towards more centralised High Performance (HP) Infrastructures. The rapidly increasing scale of data, the growing complexity of software and hardware environments, combined with the energy costs of running such infrastructures is creating a compelling economic argument for just having one or two major national (or continental) HP facilities that can be federated internationally to enable earth and environmental issues to be tackled at global scales. But at the same time, if properly constructed, these infrastructures can also service very small-scale research projects. The National Computational Infrastructure (NCI) at the Australian National University (ANU) has built such an HP infrastructure as part of the Australian Government's National Collaborative Research Infrastructure Strategy. NCI operates as a formal partnership between the ANU and the three major Australian National Government Scientific Agencies: the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the Bureau of Meteorology and Geoscience Australia. The government partners agreed to explore the new opportunities offered within the partnership with NCI, rather than each running their own separate agenda independently. The data from these national agencies, as well as from collaborating overseas organisations (e.g., NASA, NOAA, USGS, CMIP, etc.) are either replicated to, or produced at, NCI. By co-locating and harmonising these vast data collections within the integrated HP computing environments at NCI, new opportunities have arisen for Data-intensive Interdisciplinary Science at scales and resolutions not hitherto possible. The new NCI infrastructure has also enabled the blending of research by the university sector with the more operational business of government science agencies, with the fundamental shift being that researchers from both sectors work and collaborate within a federated data and computational environment that contains both national and international data collections.

  12. Design and implementation of space physics multi-model application integration based on web

    NASA Astrophysics Data System (ADS)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.

  13. Satellite Cloud and Radiative Property Processing and Distribution System on the NASA Langley ASDC OpenStack and OpenShift Cloud Platform

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.

    2017-12-01

    Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.

  14. The Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.; Primm, Lowell (Technical Monitor)

    2001-01-01

    The Microgravity Science Glovebox (MSG) provides scientific investigators the opportunity to implement interactive experiments on the International Space Station. The facility has been designed around the concept of an enclosed scientific workbench that allows the crew to assemble and operate an experimental apparatus with participation from ground-based scientists through real-time data and video links. Workbench utilities provided to operate the experiments include power, data acquisition, computer communications, vacuum, nitrogen. and specialized tools. Because the facility work area is enclosed and held at a negative pressure with respect to the crew living area, the requirements on the experiments for containment of small parts, particulates, fluids, and gasses are substantially reduced. This environment allows experiments to be constructed in close parallel with bench type investigations performed in groundbased laboratories. Such an approach enables experimental scientists to develop hardware that more closely parallel their traditional laboratory experience and transfer these experiments into meaningful space-based research. When delivered to the ISS the MSG will represent a significant scientific capability that will be continuously available for a decade of evolutionary research.

  15. Software for Secondary-School Learning About Robotics

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.

    2005-01-01

    The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.

  16. Comparing the Consumption of CPU Hours with Scientific Output for the Extreme Science and Engineering Discovery Environment (XSEDE)

    PubMed Central

    Börner, Katy

    2016-01-01

    This paper presents the results of a study that compares resource usage with publication output using data about the consumption of CPU cycles from the Extreme Science and Engineering Discovery Environment (XSEDE) and resulting scientific publications for 2,691 institutions/teams. Specifically, the datasets comprise a total of 5,374,032,696 central processing unit (CPU) hours run in XSEDE during July 1, 2011 to August 18, 2015 and 2,882 publications that cite the XSEDE resource. Three types of studies were conducted: a geospatial analysis of XSEDE providers and consumers, co-authorship network analysis of XSEDE publications, and bi-modal network analysis of how XSEDE resources are used by different research fields. Resulting visualizations show that a diverse set of consumers make use of XSEDE resources, that users of XSEDE publish together frequently, and that the users of XSEDE with the highest resource usage tend to be “traditional” high-performance computing (HPC) community members from astronomy, atmospheric science, physics, chemistry, and biology. PMID:27310174

  17. Educating the next generation of explorers at an historically Black University

    NASA Astrophysics Data System (ADS)

    Chaudhury, S.; Rodriguez, W. J.

    2003-04-01

    This paper describes the development of an innovative undergraduate research training model based at an Historically Black University in the USA that involves students with majors in diverse scientific disciplines in authentic Earth Systems Science research. Educating those who will be the next generation of explorers of earth and space poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. Over a 5-year span, Norfolk State University has been developing a program that has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through partnerships with local K-12 school teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment). The successes and challenges of this program along with some innovative uses of technology to promote inquiry learning will be presented in this paper.

  18. Bio-inspired Computing for Robots

    NASA Technical Reports Server (NTRS)

    Laufenberg, Larry

    2003-01-01

    Living creatures may provide algorithms to enable active sensing/control systems in robots. Active sensing could enable planetary rovers to feel their way in unknown environments. The surface of Jupiter's moon Europa consists of fractured ice over a liquid sea that may contain microbes similar to those on Earth. To explore such extreme environments, NASA needs robots that autonomously survive, navigate, and gather scientific data. They will be too far away for guidance from Earth. They must sense their environment and control their own movements to avoid obstacles or investigate a science opportunity. To meet this challenge, CICT's Information Technology Strategic Research (ITSR) Project is funding neurobiologists at NASA's Jet Propulsion Laboratory (JPL) and selected universities to search for biologically inspired algorithms that enable robust active sensing and control for exploratory robots. Sources for these algorithms are living creatures, including rats and electric fish.

  19. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may increase the rate of scientific discoveries and the transition of discoveries into real-world impacts.

  20. It's All About the Data: Workflow Systems and Weather

    NASA Astrophysics Data System (ADS)

    Plale, B.

    2009-05-01

    Digital data is fueling new advances in the computational sciences, particularly geospatial research as environmental sensing grows more practical through reduced technology costs, broader network coverage, and better instruments. e-Science research (i.e., cyberinfrastructure research) has responded to data intensive computing with tools, systems, and frameworks that support computationally oriented activities such as modeling, analysis, and data mining. Workflow systems support execution of sequences of tasks on behalf of a scientist. These systems, such as Taverna, Apache ODE, and Kepler, when built as part of a larger cyberinfrastructure framework, give the scientist tools to construct task graphs of execution sequences, often through a visual interface for connecting task boxes together with arcs representing control flow or data flow. Unlike business processing workflows, scientific workflows expose a high degree of detail and control during configuration and execution. Data-driven science imposes unique needs on workflow frameworks. Our research is focused on two issues. The first is the support for workflow-driven analysis over all kinds of data sets, including real time streaming data and locally owned and hosted data. The second is the essential role metadata/provenance collection plays in data driven science, for discovery, determining quality, for science reproducibility, and for long-term preservation. The research has been conducted over the last 6 years in the context of cyberinfrastructure for mesoscale weather research carried out as part of the Linked Environments for Atmospheric Discovery (LEAD) project. LEAD has pioneered new approaches for integrating complex weather data, assimilation, modeling, mining, and cyberinfrastructure systems. Workflow systems have the potential to generate huge volumes of data. Without some form of automated metadata capture, either metadata description becomes largely a manual task that is difficult if not impossible under high-volume conditions, or the searchability and manageability of the resulting data products is disappointingly low. The provenance of a data product is a record of its lineage, or trace of the execution history that resulted in the product. The provenance of a forecast model result, e.g., captures information about the executable version of the model, configuration parameters, input data products, execution environment, and owner. Provenance enables data to be properly attributed and captures critical parameters about the model run so the quality of the result can be ascertained. Proper provenance is essential to providing reproducible scientific computing results. Workflow languages used in science discovery are complete programming languages, and in theory can support any logic expressible by a programming language. The execution environments supporting the workflow engines, on the other hand, are subject to constraints on physical resources, and hence in practice the workflow task graphs used in science utilize relatively few of the cataloged workflow patterns. It is important to note that these workflows are executed on demand, and are executed once. Into this context is introduced the need for science discovery that is responsive to real time information. If we can use simple programming models and abstractions to make scientific discovery involving real-time data accessible to specialists who share and utilize data across scientific domains, we bring science one step closer to solving the largest of human problems.

  1. OMPC: an Open-Source MATLAB-to-Python Compiler.

    PubMed

    Jurica, Peter; van Leeuwen, Cees

    2009-01-01

    Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB((R)), the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB((R))-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB((R)) functions into Python programs. The imported MATLAB((R)) modules will run independently of MATLAB((R)), relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB((R)). OMPC is available at http://ompc.juricap.com.

  2. Development of a Heterogenic Distributed Environment for Spatial Data Processing Using Cloud Technologies

    NASA Astrophysics Data System (ADS)

    Garov, A. S.; Karachevtseva, I. P.; Matveev, E. V.; Zubarev, A. E.; Florinsky, I. V.

    2016-06-01

    We are developing a unified distributed communication environment for processing of spatial data which integrates web-, desktop- and mobile platforms and combines volunteer computing model and public cloud possibilities. The main idea is to create a flexible working environment for research groups, which may be scaled according to required data volume and computing power, while keeping infrastructure costs at minimum. It is based upon the "single window" principle, which combines data access via geoportal functionality, processing possibilities and communication between researchers. Using an innovative software environment the recently developed planetary information system (http://cartsrv.mexlab.ru/geoportal) will be updated. The new system will provide spatial data processing, analysis and 3D-visualization and will be tested based on freely available Earth remote sensing data as well as Solar system planetary images from various missions. Based on this approach it will be possible to organize the research and representation of results on a new technology level, which provides more possibilities for immediate and direct reuse of research materials, including data, algorithms, methodology, and components. The new software environment is targeted at remote scientific teams, and will provide access to existing spatial distributed information for which we suggest implementation of a user interface as an advanced front-end, e.g., for virtual globe system.

  3. Parallel computing works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less

  4. Exploring Cloud Computing for Large-scale Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Han, Binh; Yin, Jian

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less

  5. Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher R. Johnson, Charles D. Hansen

    2001-10-29

    The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less

  6. Virtualizing access to scientific applications with the Application Hosting Environment

    NASA Astrophysics Data System (ADS)

    Zasada, S. J.; Coveney, P. V.

    2009-12-01

    The growing power and number of high performance computing resources made available through computational grids present major opportunities as well as a number of challenges to the user. At issue is how these resources can be accessed and how their power can be effectively exploited. In this paper we first present our views on the usability of contemporary high-performance computational resources. We introduce the concept of grid application virtualization as a solution to some of the problems with grid-based HPC usability. We then describe a middleware tool that we have developed to realize the virtualization of grid applications, the Application Hosting Environment (AHE), and describe the features of the new release, AHE 2.0, which provides access to a common platform of federated computational grid resources in standard and non-standard ways. Finally, we describe a case study showing how AHE supports clinical use of whole brain blood flow modelling in a routine and automated fashion. Program summaryProgram title: Application Hosting Environment 2.0 Catalogue identifier: AEEJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence, Version 2 No. of lines in distributed program, including test data, etc.: not applicable No. of bytes in distributed program, including test data, etc.: 1 685 603 766 Distribution format: tar.gz Programming language: Perl (server), Java (Client) Computer: x86 Operating system: Linux (Server), Linux/Windows/MacOS (Client) RAM: 134 217 728 (server), 67 108 864 (client) bytes Classification: 6.5 External routines: VirtualBox (server), Java (client) Nature of problem: The middleware that makes grid computing possible has been found by many users to be too unwieldy, and presents an obstacle to use rather than providing assistance [1,2]. Such problems are compounded when one attempts to harness the power of a grid, or a federation of different grids, rather than just a single resource on the grid. Solution method: To address the above problem, we have developed AHE, a lightweight interface, designed to simplify the process of running scientific codes on a grid of HPC and local resources. AHE does this by introducing a layer of middleware between the user and the grid, which encapsulates much of the complexity associated with launching grid applications. Unusual features: The server is distributed as a VirtualBox virtual machine. VirtualBox ( http://www.virtualbox.org) must be downloaded and installed in order to run the AHE server virtual machine. Details of how to do this are given in the AHE 2.0 Quick Start Guide. Running time: Not applicable References:J. Chin, P.V. Coveney, Towards tractable toolkits for the grid: A plea for lightweight, useable middleware, NeSC Technical Report, 2004, http://nesc.ac.uk/technical_papers/UKeS-2004-01.pdf. P.V. Coveney, R.S. Saksena, S.J. Zasada, M. McKeown, S. Pickles, The Application Hosting Environment: Lightweight middleware for grid-based computational science, Computer Physics Communications 176 (2007) 406-418.

  7. Loci-STREAM Version 0.9

    NASA Technical Reports Server (NTRS)

    Wright, Jeffrey; Thakur, Siddharth

    2006-01-01

    Loci-STREAM is an evolving computational fluid dynamics (CFD) software tool for simulating possibly chemically reacting, possibly unsteady flows in diverse settings, including rocket engines, turbomachines, oil refineries, etc. Loci-STREAM implements a pressure- based flow-solving algorithm that utilizes unstructured grids. (The benefit of low memory usage by pressure-based algorithms is well recognized by experts in the field.) The algorithm is robust for flows at all speeds from zero to hypersonic. The flexibility of arbitrary polyhedral grids enables accurate, efficient simulation of flows in complex geometries, including those of plume-impingement problems. The present version - Loci-STREAM version 0.9 - includes an interface with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library for access to enhanced linear-equation-solving programs therein that accelerate convergence toward a solution. The name "Loci" reflects the creation of this software within the Loci computational framework, which was developed at Mississippi State University for the primary purpose of simplifying the writing of complex multidisciplinary application programs to run in distributed-memory computing environments including clusters of personal computers. Loci has been designed to relieve application programmers of the details of programming for distributed-memory computers.

  8. The Center for Computational Biology: resources, achievements, and challenges

    PubMed Central

    Dinov, Ivo D; Thompson, Paul M; Woods, Roger P; Van Horn, John D; Shattuck, David W; Parker, D Stott

    2011-01-01

    The Center for Computational Biology (CCB) is a multidisciplinary program where biomedical scientists, engineers, and clinicians work jointly to combine modern mathematical and computational techniques, to perform phenotypic and genotypic studies of biological structure, function, and physiology in health and disease. CCB has developed a computational framework built around the Manifold Atlas, an integrated biomedical computing environment that enables statistical inference on biological manifolds. These manifolds model biological structures, features, shapes, and flows, and support sophisticated morphometric and statistical analyses. The Manifold Atlas includes tools, workflows, and services for multimodal population-based modeling and analysis of biological manifolds. The broad spectrum of biomedical topics explored by CCB investigators include the study of normal and pathological brain development, maturation and aging, discovery of associations between neuroimaging and genetic biomarkers, and the modeling, analysis, and visualization of biological shape, form, and size. CCB supports a wide range of short-term and long-term collaborations with outside investigators, which drive the center's computational developments and focus the validation and dissemination of CCB resources to new areas and scientific domains. PMID:22081221

  9. The Center for Computational Biology: resources, achievements, and challenges.

    PubMed

    Toga, Arthur W; Dinov, Ivo D; Thompson, Paul M; Woods, Roger P; Van Horn, John D; Shattuck, David W; Parker, D Stott

    2012-01-01

    The Center for Computational Biology (CCB) is a multidisciplinary program where biomedical scientists, engineers, and clinicians work jointly to combine modern mathematical and computational techniques, to perform phenotypic and genotypic studies of biological structure, function, and physiology in health and disease. CCB has developed a computational framework built around the Manifold Atlas, an integrated biomedical computing environment that enables statistical inference on biological manifolds. These manifolds model biological structures, features, shapes, and flows, and support sophisticated morphometric and statistical analyses. The Manifold Atlas includes tools, workflows, and services for multimodal population-based modeling and analysis of biological manifolds. The broad spectrum of biomedical topics explored by CCB investigators include the study of normal and pathological brain development, maturation and aging, discovery of associations between neuroimaging and genetic biomarkers, and the modeling, analysis, and visualization of biological shape, form, and size. CCB supports a wide range of short-term and long-term collaborations with outside investigators, which drive the center's computational developments and focus the validation and dissemination of CCB resources to new areas and scientific domains.

  10. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizesmore » current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.« less

  11. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less

  12. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  13. Handling the Diversity in the Coming Flood of InSAR Data with the InSAR Scientific Computing Environment

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G. F.; Agram, P. S.; Lavalle, M.; Zebker, H. A.

    2014-12-01

    The NASA ESTO-developed InSAR Scientific Computing Environment (ISCE) provides acomputing framework for geodetic image processing for InSAR sensors that ismodular, flexible, and extensible, enabling scientists to reduce measurementsdirectly from a diverse array of radar satellites and aircraft to newgeophysical products. ISCE can serve as the core of a centralized processingcenter to bring Level-0 raw radar data up to Level-3 data products, but isadaptable to alternative processing approaches for science users interested innew and different ways to exploit mission data. This is accomplished throughrigorous componentization of processing codes, abstraction and generalization ofdata models, and a xml-based input interface with multi-level prioritizedcontrol of the component configurations depending on the science processingcontext. The proposed NASA-ISRO SAR (NISAR) Mission would deliver data ofunprecedented quantity and quality, making possible global-scale studies inclimate research, natural hazards, and Earth's ecosystems. ISCE is planned tobecome a key element in processing projected NISAR data into higher level dataproducts, enabling a new class of analyses that take greater advantage of thelong time and large spatial scales of these new data than current approaches.NISAR would be but one mission in a constellation of radar satellites in thefuture delivering such data. ISCE has been incorporated into two prototypecloud-based systems that have demonstrated its elasticity to addressing largerdata processing problems in a "production" context and its ability to becontrolled by individual science users on the cloud for large data problems.

  14. Cosmic Concepts: A Video Series for Scaffolded Learning

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Summers, Frank; Maple, John

    2016-01-01

    Scaffolding is widely considered to be an essential element of effective teaching and is used to help bridge knowledge gaps for learners. Scaffolding is especially important for distance-learning programs and computer-based learning environments. Preliminary studies are showing that when students learn about complex topics within computer-based learning environments without scaffolding, they fail to gain a conceptual understanding of the topic. As a result, researchers have begun to emphasize the importance of scaffolding for web-based as well as in-person instruction.To support scaffolded teaching practices and techniques, while addressing the needs of life-long learners, we have created the Cosmic Concepts video series. The series consists of short, one-topic videos that address scientific concepts with a special emphasis on those that traditionally cause confusion or are layered with misconceptions. Each video focuses on one idea at a time and provides a clear explanation of phenomena that is succinct enough for on-demand reference usage by all types of learners. Likewise, the videos can be used by educators to scaffold the scientific concepts behind astronomical images, or can be sequenced together to create well-structured pathways for presenting deeper and more layered ideas. This approach is critical for communicating information about astronomical discoveries that are often dense with unfamiliar concepts, complex ideas, and highly technical details. Additionally, learning tools in video formats support multi-sensory presentation approaches that can make astronomy more accessible to a variety of learners.

  15. Opening Reproducible Research

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel; Konkol, Markus; Pebesma, Edzer; Kray, Christian; Klötgen, Stephanie; Schutzeichel, Marc; Lorenz, Jörg; Przibytzin, Holger; Kussmann, Dirk

    2016-04-01

    Open access is not only a form of publishing such that research papers become available to the large public free of charge, it also refers to a trend in science that the act of doing research becomes more open and transparent. When science transforms to open access we not only mean access to papers, research data being collected, or data being generated, but also access to the data used and the procedures carried out in the research paper. Increasingly, scientific results are generated by numerical manipulation of data that were already collected, and may involve simulation experiments that are completely carried out computationally. Reproducibility of research findings, the ability to repeat experimental procedures and confirm previously found results, is at the heart of the scientific method (Pebesma, Nüst and Bivand, 2012). As opposed to the collection of experimental data in labs or nature, computational experiments lend themselves very well for reproduction. Some of the reasons why scientists do not publish data and computational procedures that allow reproduction will be hard to change, e.g. privacy concerns in the data, fear for embarrassment or of losing a competitive advantage. Others reasons however involve technical aspects, and include the lack of standard procedures to publish such information and the lack of benefits after publishing them. We aim to resolve these two technical aspects. We propose a system that supports the evolution of scientific publications from static papers into dynamic, executable research documents. The DFG-funded experimental project Opening Reproducible Research (ORR) aims for the main aspects of open access, by improving the exchange of, by facilitating productive access to, and by simplifying reuse of research results that are published over the Internet. Central to the project is a new form for creating and providing research results, the executable research compendium (ERC), which not only enables third parties to reproduce the original research and hence recreate the original research results (figures, tables), but also facilitates interaction with them as well as their recombination with new data or methods. Building on existing open standards and software, this project develops standards and tools for ERCs, and will demonstrate and evaluate these, focusing on the geosciences domains. The project goes beyond a technical solution for ERCs by evaluating the system from the perspectives of geoscience researchers as participants in a scientific publication process. It will focus on the statistical environment R, but also evaluate larger run time systems captured in virtual environments (Docker containers). ERCs are built upon and integrate well with both established day-to-day workflows of digital research and the scientific publication process. They make research accessible on different levels at any stage to anyone via open web platforms. Other scientists can transfer a compendium of software and tools to their own local environment and collaborate, while others make minimal changes and compare changed results in a web browser. Building on recent advances in mainstream IT, ORR envisions a new architecture for storing, executing and interacting with the original analysis environment alongside the corresponding research data and text. ORR bridges the gap between long-term archives, practical geoscience researchers, as well as publication media. Consequently, the project team seeks input and feedback from researchers working with geospatial data to ensure usable and useful open access publications as well as a publication process that minimizes effort while maximizing usability and re-usability. {References} Pebesma, E., D. Nüst, R. Bivand, 2012. The R software environment in reproducible geoscientific research. Eos, Transactions American Geophysical Union 93, vol 16, p. http://dx.doi.org/10.1029/2012EO160003{163-164}. Opening Reproducible Research project description and website: https://www.uni-muenster.de/forschungaz/project/9520?lang=en

  16. Data Provenance Hybridization Supporting Extreme-Scale Scientific WorkflowApplications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsethagen, Todd O.; Stephan, Eric G.; Raju, Bibi

    As high performance computing (HPC) infrastructures continue to grow in capability and complexity, so do the applications that they serve. HPC and distributed-area computing (DAC) (e.g. grid and cloud) users are looking increasingly toward workflow solutions to orchestrate their complex application coupling, pre- and post-processing needs To gain insight and a more quantitative understanding of a workflow’s performance our method includes not only the capture of traditional provenance information, but also the capture and integration of system environment metrics helping to give context and explanation for a workflow’s execution. In this paper, we describe IPPD’s provenance management solution (ProvEn) andmore » its hybrid data store combining both of these data provenance perspectives.« less

  17. The discovery of the causes of leprosy: A computational analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corruble, V.; Ganascia, J.G.

    1996-12-31

    The role played by the inductive inference has been studied extensively in the field of Scientific Discovery. The work presented here tackles the problem of induction in medical research. The discovery of the causes of leprosy is analyzed and simulated using computational means. An inductive algorithm is proposed, which is successful in simulating some essential steps in the progress of the understanding of the disease. It also allows us to simulate the false reasoning of previous centuries through the introduction of some medical a priori inherited form archaic medicine. Corroborating previous research, this problem illustrates the importance of the socialmore » and cultural environment on the way the inductive inference is performed in medicine.« less

  18. Computers and Computation. Readings from Scientific American.

    ERIC Educational Resources Information Center

    Fenichel, Robert R.; Weizenbaum, Joseph

    A collection of articles from "Scientific American" magazine has been put together at this time because the current period in computer science is one of consolidation rather than innovation. A few years ago, computer science was moving so swiftly that even the professional journals were more archival than informative; but today it is…

  19. Bringing numerous methods for expression and promoter analysis to a public cloud computing service.

    PubMed

    Polanski, Krzysztof; Gao, Bo; Mason, Sam A; Brown, Paul; Ott, Sascha; Denby, Katherine J; Wild, David L

    2018-03-01

    Every year, a large number of novel algorithms are introduced to the scientific community for a myriad of applications, but using these across different research groups is often troublesome, due to suboptimal implementations and specific dependency requirements. This does not have to be the case, as public cloud computing services can easily house tractable implementations within self-contained dependency environments, making the methods easily accessible to a wider public. We have taken 14 popular methods, the majority related to expression data or promoter analysis, developed these up to a good implementation standard and housed the tools in isolated Docker containers which we integrated into the CyVerse Discovery Environment, making these easily usable for a wide community as part of the CyVerse UK project. The integrated apps can be found at http://www.cyverse.org/discovery-environment, while the raw code is available at https://github.com/cyversewarwick and the corresponding Docker images are housed at https://hub.docker.com/r/cyversewarwick/. info@cyverse.warwick.ac.uk or D.L.Wild@warwick.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  20. The Virtual Geophysics Laboratory (VGL): Scientific Workflows Operating Across Organizations and Across Infrastructures

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.

    2012-12-01

    The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models, code, data, processing) are shared in the one virtual laboratory. VGL provides end users with access to an intuitive, user-centered interface that leverages cloud storage and cloud and cluster processing from both the research communities and commercial suppliers (e.g. Amazon). As the underlying data and information services are agnostic of the scientific domain, they can support many other data types. This fundamental characteristic results in a highly reusable virtual laboratory infrastructure that could also be used for example natural hazards, satellite processing, soil geochemistry, climate modeling, agriculture crop modeling.

  1. PREFACE: IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences

    NASA Astrophysics Data System (ADS)

    Kosmas, Theocharis; Vagenas, Elias; Vlachos, Dimitrios

    2013-02-01

    The first International Conference on Mathematical Modelling in Physical Sciences (IC-MSQUARE) took place in Budapest, Hungary, from Monday 3 to Friday 7 September 2012. The conference was attended by more than 130 participants, and hosted about 290 oral, poster and virtual papers by more than 460 pre-registered authors. The first IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields in which mathematical modelling is used, such as theoretical/mathematical physics, neutrino physics, non-integrable systems, dynamical systems, computational nanoscience, biological physics, computational biomechanics, complex networks, stochastic modelling, fractional statistics, DNA dynamics, and macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, two parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The mounting question is whether this occurred accidentally, or whether IC-MSQUARE is a necessity in the field of physical and mathematical modelling. For all of us working in the field, the existing and established conferences in this particular field suffer from two distinguished and recognized drawbacks: the first is the increasing orientation, while the second refers to the extreme specialization of the meetings. Therefore, a conference which aims to promote the knowledge and development of high-quality research in mathematical fields concerned with applications of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology, environmental sciences etc., appears to be a necessity. This is the key role that IC-MSQUARE will play. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contributions to IC-MSQUARE. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. Conference Chairmen Theocharis Kosmas Department of Physics, University of Ioannina Elias Vagenas RCAAM, Academy of Athens Dimitrios Vlachos Department of Computer Science and Technology, University of Peloponnese The PDF also contains a list of members of the International Scientific Committes and details of the Keynote and Invited Speakers.

  2. Supporting Scientific Analysis within Collaborative Problem Solving Environments

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.

  3. TOPICAL REVIEW: Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Chan, V. S.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.

  4. Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.

  5. Advanced Computation in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Tang, William

    2001-10-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.

  6. Finding Tropical Cyclones on a Cloud Computing Cluster: Using Parallel Virtualization for Large-Scale Climate Simulation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasenkamp, Daren; Sim, Alexander; Wehner, Michael

    Extensive computing power has been used to tackle issues such as climate changes, fusion energy, and other pressing scientific challenges. These computations produce a tremendous amount of data; however, many of the data analysis programs currently only run a single processor. In this work, we explore the possibility of using the emerging cloud computing platform to parallelize such sequential data analysis tasks. As a proof of concept, we wrap a program for analyzing trends of tropical cyclones in a set of virtual machines (VMs). This approach allows the user to keep their familiar data analysis environment in the VMs, whilemore » we provide the coordination and data transfer services to ensure the necessary input and output are directed to the desired locations. This work extensively exercises the networking capability of the cloud computing systems and has revealed a number of weaknesses in the current cloud system software. In our tests, we are able to scale the parallel data analysis job to a modest number of VMs and achieve a speedup that is comparable to running the same analysis task using MPI. However, compared to MPI based parallelization, the cloud-based approach has a number of advantages. The cloud-based approach is more flexible because the VMs can capture arbitrary software dependencies without requiring the user to rewrite their programs. The cloud-based approach is also more resilient to failure; as long as a single VM is running, it can make progress while as soon as one MPI node fails the whole analysis job fails. In short, this initial work demonstrates that a cloud computing system is a viable platform for distributed scientific data analyses traditionally conducted on dedicated supercomputing systems.« less

  7. Computational intelligence in bioinformatics: SNP/haplotype data in genetic association study for common diseases.

    PubMed

    Kelemen, Arpad; Vasilakos, Athanasios V; Liang, Yulan

    2009-09-01

    Comprehensive evaluation of common genetic variations through association of single-nucleotide polymorphism (SNP) structure with common complex disease in the genome-wide scale is currently a hot area in human genome research due to the recent development of the Human Genome Project and HapMap Project. Computational science, which includes computational intelligence (CI), has recently become the third method of scientific enquiry besides theory and experimentation. There have been fast growing interests in developing and applying CI in disease mapping using SNP and haplotype data. Some of the recent studies have demonstrated the promise and importance of CI for common complex diseases in genomic association study using SNP/haplotype data, especially for tackling challenges, such as gene-gene and gene-environment interactions, and the notorious "curse of dimensionality" problem. This review provides coverage of recent developments of CI approaches for complex diseases in genetic association study with SNP/haplotype data.

  8. Use of CFD modelling for analysing air parameters in auditorium halls

    NASA Astrophysics Data System (ADS)

    Cichowicz, Robert

    2017-11-01

    Modelling with the use of numerical methods is currently the most popular method of solving scientific as well as engineering problems. Thanks to the use of computer methods it is possible for example to comprehensively describe the conditions in a given room and to determine thermal comfort, which is a complex issue including subjective sensations of the persons in a given room. The article presents the results of measurements and numerical computing that enabled carrying out the assessment of environment parameters, taking into consideration microclimate, temperature comfort, speeds in the zone of human presence and dustiness in auditory halls. For this purpose measurements of temperature, relative humidity and dustiness were made with the use of a digital microclimate meter and a laser dust particles counter. Thanks to the above by using the application DesignBuilder numerical computing was performed and the obtained results enabled determining PMV comfort indicator in selected rooms.

  9. High performance hybrid functional Petri net simulations of biological pathway models on CUDA.

    PubMed

    Chalkidis, Georgios; Nagasaki, Masao; Miyano, Satoru

    2011-01-01

    Hybrid functional Petri nets are a wide-spread tool for representing and simulating biological models. Due to their potential of providing virtual drug testing environments, biological simulations have a growing impact on pharmaceutical research. Continuous research advancements in biology and medicine lead to exponentially increasing simulation times, thus raising the demand for performance accelerations by efficient and inexpensive parallel computation solutions. Recent developments in the field of general-purpose computation on graphics processing units (GPGPU) enabled the scientific community to port a variety of compute intensive algorithms onto the graphics processing unit (GPU). This work presents the first scheme for mapping biological hybrid functional Petri net models, which can handle both discrete and continuous entities, onto compute unified device architecture (CUDA) enabled GPUs. GPU accelerated simulations are observed to run up to 18 times faster than sequential implementations. Simulating the cell boundary formation by Delta-Notch signaling on a CUDA enabled GPU results in a speedup of approximately 7x for a model containing 1,600 cells.

  10. The Benefits and Complexities of Operating Geographic Information Systems (GIS) in a High Performance Computing (HPC) Environment

    NASA Astrophysics Data System (ADS)

    Shute, J.; Carriere, L.; Duffy, D.; Hoy, E.; Peters, J.; Shen, Y.; Kirschbaum, D.

    2017-12-01

    The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center is building and maintaining an Enterprise GIS capability for its stakeholders, to include NASA scientists, industry partners, and the public. This platform is powered by three GIS subsystems operating in a highly-available, virtualized environment: 1) the Spatial Analytics Platform is the primary NCCS GIS and provides users discoverability of the vast DigitalGlobe/NGA raster assets within the NCCS environment; 2) the Disaster Mapping Platform provides mapping and analytics services to NASA's Disaster Response Group; and 3) the internal (Advanced Data Analytics Platform/ADAPT) enterprise GIS provides users with the full suite of Esri and open source GIS software applications and services. All systems benefit from NCCS's cutting edge infrastructure, to include an InfiniBand network for high speed data transfers; a mixed/heterogeneous environment featuring seamless sharing of information between Linux and Windows subsystems; and in-depth system monitoring and warning systems. Due to its co-location with the NCCS Discover High Performance Computing (HPC) environment and the Advanced Data Analytics Platform (ADAPT), the GIS platform has direct access to several large NCCS datasets including DigitalGlobe/NGA, Landsat, MERRA, and MERRA2. Additionally, the NCCS ArcGIS Desktop Windows virtual machines utilize existing NetCDF and OPeNDAP assets for visualization, modelling, and analysis - thus eliminating the need for data duplication. With the advent of this platform, Earth scientists have full access to vast data repositories and the industry-leading tools required for successful management and analysis of these multi-petabyte, global datasets. The full system architecture and integration with scientific datasets will be presented. Additionally, key applications and scientific analyses will be explained, to include the NASA Global Landslide Catalog (GLC) Reporter crowdsourcing application, the NASA GLC Viewer discovery and analysis tool, the DigitalGlobe/NGA Data Discovery Tool, the NASA Disaster Response Group Mapping Platform (https://maps.disasters.nasa.gov), and support for NASA's Arctic - Boreal Vulnerability Experiment (ABoVE).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hules, John

    This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.

  12. Center for Technology for Advanced Scientific Componet Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindaraju, Madhusudhan

    Advanced Scientific Computing Research Computer Science FY 2010Report Center for Technology for Advanced Scientific Component Software: Distributed CCA State University of New York, Binghamton, NY, 13902 Summary The overall objective of Binghamton's involvement is to work on enhancements of the CCA environment, motivated by the applications and research initiatives discussed in the proposal. This year we are working on re-focusing our design and development efforts to develop proof-of-concept implementations that have the potential to significantly impact scientific components. We worked on developing parallel implementations for non-hydrostatic code and worked on a model coupling interface for biogeochemical computations coded in MATLAB.more » We also worked on the design and implementation modules that will be required for the emerging MapReduce model to be effective for scientific applications. Finally, we focused on optimizing the processing of scientific datasets on multi-core processors. Research Details We worked on the following research projects that we are working on applying to CCA-based scientific applications. 1. Non-Hydrostatic Hydrodynamics: Non-static hydrodynamics are significantly more accurate at modeling internal waves that may be important in lake ecosystems. Non-hydrostatic codes, however, are significantly more computationally expensive, often prohibitively so. We have worked with Chin Wu at the University of Wisconsin to parallelize non-hydrostatic code. We have obtained a speed up of about 26 times maximum. Although this is significant progress, we hope to improve the performance further, such that it becomes a practical alternative to hydrostatic codes. 2. Model-coupling for water-based ecosystems: To answer pressing questions about water resources requires that physical models (hydrodynamics) be coupled with biological and chemical models. Most hydrodynamics codes are written in Fortran, however, while most ecologists work in MATLAB. This disconnect creates a great barrier. To address this, we are working on a model coupling interface that will allow biogeochemical computations written in MATLAB to couple with Fortran codes. This will greatly improve the productivity of ecosystem scientists. 2. Low overhead and Elastic MapReduce Implementation Optimized for Memory and CPU-Intensive Applications: Since its inception, MapReduce has frequently been associated with Hadoop and large-scale datasets. Its deployment at Amazon in the cloud, and its applications at Yahoo! for large-scale distributed document indexing and database building, among other tasks, have thrust MapReduce to the forefront of the data processing application domain. The applicability of the paradigm however extends far beyond its use with data intensive applications and diskbased systems, and can also be brought to bear in processing small but CPU intensive distributed applications. MapReduce however carries its own burdens. Through experiments using Hadoop in the context of diverse applications, we uncovered latencies and delay conditions potentially inhibiting the expected performance of a parallel execution in CPU-intensive applications. Furthermore, as it currently stands, MapReduce is favored for data-centric applications, and as such tends to be solely applied to disk-based applications. The paradigm, falls short in bringing its novelty to diskless systems dedicated to in-memory applications, and compute intensive programs processing much smaller data, but requiring intensive computations. In this project, we focused both on the performance of processing large-scale hierarchical data in distributed scientific applications, as well as the processing of smaller but demanding input sizes primarily used in diskless, and memory resident I/O systems. We designed LEMO-MR [1], a Low overhead, elastic, configurable for in- memory applications, and on-demand fault tolerance, an optimized implementation of MapReduce, for both on disk and in memory applications. We conducted experiments to identify not only the necessary components of this model, but also trade offs and factors to be considered. We have initial results to show the efficacy of our implementation in terms of potential speedup that can be achieved for representative data sets used by cloud applications. We have quantified the performance gains exhibited by our MapReduce implementation over Apache Hadoop in a compute intensive environment. 3. Cache Performance Optimization for Processing XML and HDF-based Application Data on Multi-core Processors: It is important to design and develop scientific middleware libraries to harness the opportunities presented by emerging multi-core processors. Implementations of scientific middleware and applications that do not adapt to the programming paradigm when executing on emerging processors can severely impact the overall performance. In this project, we focused on the utilization of the L2 cache, which is a critical shared resource on chip multiprocessors (CMP). The access pattern of the shared L2 cache, which is dependent on how the application schedules and assigns processing work to each thread, can either enhance or hurt the ability to hide memory latency on a multi-core processor. Therefore, while processing scientific datasets such as HDF5, it is essential to conduct fine-grained analysis of cache utilization, to inform scheduling decisions in multi-threaded programming. In this project, using the TAU toolkit for performance feedback from dual- and quad-core machines, we conducted performance analysis and recommendations on how processing threads can be scheduled on multi-core nodes to enhance the performance of a class of scientific applications that requires processing of HDF5 data. In particular, we quantified the gains associated with the use of the adaptations we have made to the Cache-Affinity and Balanced-Set scheduling algorithms to improve L2 cache performance, and hence the overall application execution time [2]. References: 1. Zacharia Fadika, Madhusudhan Govindaraju, ``MapReduce Implementation for Memory-Based and Processing Intensive Applications'', accepted in 2nd IEEE International Conference on Cloud Computing Technology and Science, Indianapolis, USA, Nov 30 - Dec 3, 2010. 2. Rajdeep Bhowmik, Madhusudhan Govindaraju, ``Cache Performance Optimization for Processing XML-based Application Data on Multi-core Processors'', in proceedings of The 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 17-20, 2010, Melbourne, Victoria, Australia. Contact Information: Madhusudhan Govindaraju Binghamton University State University of New York (SUNY) mgovinda@cs.binghamton.edu Phone: 607-777-4904« less

  13. Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication

    ERIC Educational Resources Information Center

    Wolf, Michael Maclean

    2009-01-01

    Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…

  14. The Versatile Terminal.

    ERIC Educational Resources Information Center

    Evans, C. D.

    This paper describes the experiences of the industrial research laboratory of Kodak Ltd. in finding and providing a computer terminal most suited to its very varied requirements. These requirements include bibliographic and scientific data searching and access to a number of worldwide computing services for scientific computing work. The provision…

  15. Overview of ergonomics built environment.

    PubMed

    Costa, Ana Paula Lima; Campos, Fábio; Villarouco, Vilma

    2012-01-01

    This article provides an overview of academic research in the scientific discipline of ergonomics in the context of the built environment, from data collected from journals, conferences and research groups whose focus is the theme of the Ergonomics of Built Environment. Starting from the context of the Ergonomics of Built Environment, it identifies the broadcast media who publish work in this area and its scientific production, seeking to recover from the first published papers to the production of the most recent scientific journals and conferences to be launched 2010. From this mapping, we identified the major outstanding and open issues in these studies, outlining the state of the art Ergonomics Built Environment, in order to inform those interested and intend to develop scientific research in this field.

  16. Grid heterogeneity in in-silico experiments: an exploration of drug screening using DOCK on cloud environments.

    PubMed

    Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason

    2010-01-01

    Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time costs were minimal. Despite the increase in overhead, virtual clusters are an ideal solution for Grid heterogeneity. With greater development of virtual cluster technology in Grid environments, the problem of platform heterogeneity may be eliminated through virtualization, allowing greater usage of VS, and will benefit all Grid applications in general.

  17. Amplify scientific discovery with artificial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automatedmore » language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.« less

  18. A Framework for the Design of Effective Graphics for Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Miceli, Kristina D.

    1992-01-01

    This proposal presents a visualization framework, based on a data model, that supports the production of effective graphics for scientific visualization. Visual representations are effective only if they augment comprehension of the increasing amounts of data being generated by modern computer simulations. These representations are created by taking into account the goals and capabilities of the scientist, the type of data to be displayed, and software and hardware considerations. This framework is embodied in an assistant-based visualization system to guide the scientist in the visualization process. This will improve the quality of the visualizations and decrease the time the scientist is required to spend in generating the visualizations. I intend to prove that such a framework will create a more productive environment for tile analysis and interpretation of large, complex data sets.

  19. Exploiting opportunistic resources for ATLAS with ARC CE and the Event Service

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Filipčič, A.; Guan, W.; Tsulaia, V.; Walker, R.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    With ever-greater computing needs and fixed budgets, big scientific experiments are turning to opportunistic resources as a means to add much-needed extra computing power. These resources can be very different in design from those that comprise the Grid computing of most experiments, therefore exploiting them requires a change in strategy for the experiment. They may be highly restrictive in what can be run or in connections to the outside world, or tolerate opportunistic usage only on condition that tasks may be terminated without warning. The Advanced Resource Connector Computing Element (ARC CE) with its nonintrusive architecture is designed to integrate resources such as High Performance Computing (HPC) systems into a computing Grid. The ATLAS experiment developed the ATLAS Event Service (AES) primarily to address the issue of jobs that can be terminated at any point when opportunistic computing capacity is needed by someone else. This paper describes the integration of these two systems in order to exploit opportunistic resources for ATLAS in a restrictive environment. In addition to the technical details, results from deployment of this solution in the SuperMUC HPC centre in Munich are shown.

  20. Physics in Industry: A Case Study

    NASA Astrophysics Data System (ADS)

    Pratt-Ferguson, Ben

    2007-10-01

    Often ignored and sometimes even considered ``black sheep'' by the university & government-lab physicists, many industrial physicists continue making valuable scientific contributions in diverse areas, from computer science to aero and thermo-dynamics, communications, mathematics, engineering, and simulation, to name a few. This talk will focus on what industrial physicists do, what preparations are beneficial to obtaining a first industrial job, and what the business environment is like for physicists. The case study will be that of the author, starting with undergraduate and graduate studies and continuing on to jobs in industry.

  1. Container-Based Clinical Solutions for Portable and Reproducible Image Analysis.

    PubMed

    Matelsky, Jordan; Kiar, Gregory; Johnson, Erik; Rivera, Corban; Toma, Michael; Gray-Roncal, William

    2018-05-08

    Medical imaging analysis depends on the reproducibility of complex computation. Linux containers enable the abstraction, installation, and configuration of environments so that software can be both distributed in self-contained images and used repeatably by tool consumers. While several initiatives in neuroimaging have adopted approaches for creating and sharing more reliable scientific methods and findings, Linux containers are not yet mainstream in clinical settings. We explore related technologies and their efficacy in this setting, highlight important shortcomings, demonstrate a simple use-case, and endorse the use of Linux containers for medical image analysis.

  2. Computer-Supported Aids to Making Sense of Scientific Articles: Cognitive, Motivational, and Attitudinal Effects

    ERIC Educational Resources Information Center

    Gegner, Julie A.; Mackay, Donald H. J.; Mayer, Richard E.

    2009-01-01

    High school students can access original scientific research articles on the Internet, but may have trouble understanding them. To address this problem of online literacy, the authors developed a computer-based prototype for guiding students' comprehension of scientific articles. High school students were asked to read an original scientific…

  3. Scientific Computing for Chemists: An Undergraduate Course in Simulations, Data Processing, and Visualization

    ERIC Educational Resources Information Center

    Weiss, Charles J.

    2017-01-01

    The Scientific Computing for Chemists course taught at Wabash College teaches chemistry students to use the Python programming language, Jupyter notebooks, and a number of common Python scientific libraries to process, analyze, and visualize data. Assuming no prior programming experience, the course introduces students to basic programming and…

  4. Computational chemistry in pharmaceutical research: at the crossroads.

    PubMed

    Bajorath, Jürgen

    2012-01-01

    Computational approaches are an integral part of pharmaceutical research. However, there are many of unsolved key questions that limit the scientific progress in the still evolving computational field and its impact on drug discovery. Importantly, a number of these questions are not new but date back many years. Hence, it might be difficult to conclusively answer them in the foreseeable future. Moreover, the computational field as a whole is characterized by a high degree of heterogeneity and so is, unfortunately, the quality of its scientific output. In light of this situation, it is proposed that changes in scientific standards and culture should be seriously considered now in order to lay a foundation for future progress in computational research.

  5. [Earth and Space Sciences Project Services for NASA HPCC

    NASA Technical Reports Server (NTRS)

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  6. Scholarly literature and the press: scientific impact and social perception of physics computing

    NASA Astrophysics Data System (ADS)

    Pia, M. G.; Basaglia, T.; Bell, Z. W.; Dressendorfer, P. V.

    2014-06-01

    The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the relationship between the scientific impact and the social perception of HEP physics research versus that of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing via press releases from the major HEP laboratories would be beneficial to the high energy physics community.

  7. Software Reuse Methods to Improve Technological Infrastructure for e-Science

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.

    2011-01-01

    Social computing has the potential to contribute to scientific research. Ongoing developments in information and communications technology improve capabilities for enabling scientific research, including research fostered by social computing capabilities. The recent emergence of e-Science practices has demonstrated the benefits from improvements in the technological infrastructure, or cyber-infrastructure, that has been developed to support science. Cloud computing is one example of this e-Science trend. Our own work in the area of software reuse offers methods that can be used to improve new technological development, including cloud computing capabilities, to support scientific research practices. In this paper, we focus on software reuse and its potential to contribute to the development and evaluation of information systems and related services designed to support new capabilities for conducting scientific research.

  8. Study of FES/CAST/HGS

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Cummings, Rick; Jones, Brian

    1992-01-01

    The microgravity materials processing program has been instrumental in providing the crystal growth community with an experimental environment to better understand the phenomena associated with the growing of crystals. In many applications one may pursue the growth of large single crystals which cannot be grown on earth due to convective driven flows. A microgravity environment is characterized by neither convection of buoyancy. Consequently superior crystals are able to be grown in space. On the other hand, since neither convection nor buoyancy dominates the fluid flow in a microgravity environment, then lesser dominating phenomena can affect crystal growth, such as surface driven flows or diffusion limited solidification. In the case of experiments that are to be flown in space using the Fluid Experiments System (FES), diffusion limited growth should be the dominating phenomenon. The use of holographic and Schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The Holographic Ground System (HGS) facility at MSFC has been a primary resource in researching this capability. Consequently scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS (triglycine sulfate) Crystal Growth and the Casting and Solidification Technology (CAST) experiments that were flown on the International Microgravity Lab (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment in space worked. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.

  9. COPING WITH CONTAMINATED SEDIMENTS AND SOILS IN THE URBAN ENVIRONMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JONES,K.W.; VAN DER LELIE,D.; MCGUIGAN,M.

    2004-05-25

    Soils and sediments contaminated with toxic organic and inorganic compounds harmful to the environment and to human health are common in the urban environment. We report here on aspects of a program being carried out in the New York/New Jersey Port region to develop methods for processing dredged material from the Port to make products that are safe for introduction to commercial markets. We discuss some of the results of the program in Computational Environmental Science, Laboratory Environmental Science, and Applied Environmental Science and indicate some possible directions for future work. Overall, the program elements integrate the scientific and engineeringmore » aspects with regulatory, commercial, urban planning, local governments, and community group interests. Well-developed connections between these components are critical to the ultimate success of efforts to cope with the problems caused by contaminated urban soils and sediments.« less

  10. From computer-assisted intervention research to clinical impact: The need for a holistic approach.

    PubMed

    Ourselin, Sébastien; Emberton, Mark; Vercauteren, Tom

    2016-10-01

    The early days of the field of medical image computing (MIC) and computer-assisted intervention (CAI), when publishing a strong self-contained methodological algorithm was enough to produce impact, are over. As a community, we now have substantial responsibility to translate our scientific progresses into improved patient care. In the field of computer-assisted interventions, the emphasis is also shifting from the mere use of well-known established imaging modalities and position trackers to the design and combination of innovative sensing, elaborate computational models and fine-grained clinical workflow analysis to create devices with unprecedented capabilities. The barriers to translating such devices in the complex and understandably heavily regulated surgical and interventional environment can seem daunting. Whether we leave the translation task mostly to our industrial partners or welcome, as researchers, an important share of it is up to us. We argue that embracing the complexity of surgical and interventional sciences is mandatory to the evolution of the field. Being able to do so requires large-scale infrastructure and a critical mass of expertise that very few research centres have. In this paper, we emphasise the need for a holistic approach to computer-assisted interventions where clinical, scientific, engineering and regulatory expertise are combined as a means of moving towards clinical impact. To ensure that the breadth of infrastructure and expertise required for translational computer-assisted intervention research does not lead to a situation where the field advances only thanks to a handful of exceptionally large research centres, we also advocate that solutions need to be designed to lower the barriers to entry. Inspired by fields such as particle physics and astronomy, we claim that centralised very large innovation centres with state of the art technology and health technology assessment capabilities backed by core support staff and open interoperability standards need to be accessible to the wider computer-assisted intervention research community. Copyright © 2016. Published by Elsevier B.V.

  11. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri

    2014-01-01

    This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.

  12. iRODS-Based Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    NASA Astrophysics Data System (ADS)

    Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, D.; Gill, R.; Sinno, S. S.; Shen, Y.; Carriere, L. E.; Brieger, L.; Moore, R.; Rajasekar, A.; Schroeder, W.; Wan, M.

    2011-12-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service. A virtual climate data server is an OAIS-compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have developed prototype vCDSs to manage NetCDF, HDF, and GeoTIF data products. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA's Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into these virtualized resources, multiple vCDSs can use iRODS's federation and realized object capabilities to create an integrated ecosystem of data servers that can scale and adapt to changing requirements. This approach enables platform- or software-as-a-service deployment of the vCDSs and allows the NCCS to offer virtualization-as-a-service, a capacity to respond in an agile way to new customer requests for data services, and a path for migrating existing services into the cloud. We have registered MODIS Atmosphere data products in a vCDS that contains 54 million registered files, 630TB of data, and over 300 million metadata values. We are now assembling IPCC AR5 data into a production vCDS that will provide the platform upon which NCCS's Earth System Grid (ESG) node publishes to the extended science community. In this talk, we describe our approach, experiences, lessons learned, and plans for the future.

  13. 78 FR 6087 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building... Theory and Experiment (INCITE) Public Comment (10-minute rule) Public Participation: The meeting is open...

  14. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs. A principal goal is to provide support for the Fourier Transform Spectrometer (FTS) instrument which will produce over 700,000 soundings over the life of their three-year mission. The cost to purchase and operate a cluster-based system in order to generate Level 2 Full Physics products from this data was prohibitive. Through an evaluation of cloud computing solutions, Amazon's Elastic Compute Cloud (EC2) was selected for the CARVE deployment. As the ACCE infrastructure is developed and extended to form an infrastructure for airborne missions, the experience of working with CARVE has provided a number of lessons learned and has proven to be important in reinforcing the unique aspects of airborne missions and the importance of the ACCE infrastructure in developing a cost effective, flexible multi-mission capability that leverages emerging capabilities in cloud computing, workflow management, and distributed computing.

  15. Software engineering and automatic continuous verification of scientific software

    NASA Astrophysics Data System (ADS)

    Piggott, M. D.; Hill, J.; Farrell, P. E.; Kramer, S. C.; Wilson, C. R.; Ham, D.; Gorman, G. J.; Bond, T.

    2011-12-01

    Software engineering of scientific code is challenging for a number of reasons including pressure to publish and a lack of awareness of the pitfalls of software engineering by scientists. The Applied Modelling and Computation Group at Imperial College is a diverse group of researchers that employ best practice software engineering methods whilst developing open source scientific software. Our main code is Fluidity - a multi-purpose computational fluid dynamics (CFD) code that can be used for a wide range of scientific applications from earth-scale mantle convection, through basin-scale ocean dynamics, to laboratory-scale classic CFD problems, and is coupled to a number of other codes including nuclear radiation and solid modelling. Our software development infrastructure consists of a number of free tools that could be employed by any group that develops scientific code and has been developed over a number of years with many lessons learnt. A single code base is developed by over 30 people for which we use bazaar for revision control, making good use of the strong branching and merging capabilities. Using features of Canonical's Launchpad platform, such as code review, blueprints for designing features and bug reporting gives the group, partners and other Fluidity uers an easy-to-use platform to collaborate and allows the induction of new members of the group into an environment where software development forms a central part of their work. The code repositoriy are coupled to an automated test and verification system which performs over 20,000 tests, including unit tests, short regression tests, code verification and large parallel tests. Included in these tests are build tests on HPC systems, including local and UK National HPC services. The testing of code in this manner leads to a continuous verification process; not a discrete event performed once development has ceased. Much of the code verification is done via the "gold standard" of comparisons to analytical solutions via the method of manufactured solutions. By developing and verifying code in tandem we avoid a number of pitfalls in scientific software development and advocate similar procedures for other scientific code applications.

  16. Highly parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.; Tichy, Walter F.

    1990-01-01

    Highly parallel computing architectures are the only means to achieve the computation rates demanded by advanced scientific problems. A decade of research has demonstrated the feasibility of such machines and current research focuses on which architectures designated as multiple instruction multiple datastream (MIMD) and single instruction multiple datastream (SIMD) have produced the best results to date; neither shows a decisive advantage for most near-homogeneous scientific problems. For scientific problems with many dissimilar parts, more speculative architectures such as neural networks or data flow may be needed.

  17. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues includedmore » research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three topics and a representative of each of the four major DOE Office of Science Advanced Scientific Computing Research Facilities: the Argonne Leadership Computing Facility (ALCF), the Energy Sciences Network (ESnet), the National Energy Research Scientific Computing Center (NERSC), and the Oak Ridge Leadership Computing Facility (OLCF). The rest of the workshop consisted of topical breakout discussions and focused writing periods that produced much of this report.« less

  18. The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.

    2017-03-01

    It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.

  19. From multisensory integration in peripersonal space to bodily self-consciousness: from statistical regularities to statistical inference.

    PubMed

    Noel, Jean-Paul; Blanke, Olaf; Serino, Andrea

    2018-06-06

    Integrating information across sensory systems is a critical step toward building a cohesive representation of the environment and one's body, and as illustrated by numerous illusions, scaffolds subjective experience of the world and self. In the last years, classic principles of multisensory integration elucidated in the subcortex have been translated into the language of statistical inference understood by the neocortical mantle. Most importantly, a mechanistic systems-level description of multisensory computations via probabilistic population coding and divisive normalization is actively being put forward. In parallel, by describing and understanding bodily illusions, researchers have suggested multisensory integration of bodily inputs within the peripersonal space as a key mechanism in bodily self-consciousness. Importantly, certain aspects of bodily self-consciousness, although still very much a minority, have been recently casted under the light of modern computational understandings of multisensory integration. In doing so, we argue, the field of bodily self-consciousness may borrow mechanistic descriptions regarding the neural implementation of inference computations outlined by the multisensory field. This computational approach, leveraged on the understanding of multisensory processes generally, promises to advance scientific comprehension regarding one of the most mysterious questions puzzling humankind, that is, how our brain creates the experience of a self in interaction with the environment. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  20. Building Cognition: The Construction of Computational Representations for Scientific Discovery

    ERIC Educational Resources Information Center

    Chandrasekharan, Sanjay; Nersessian, Nancy J.

    2015-01-01

    Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a…

  1. Using Microsoft PowerPoint as an Astronomical Image Analysis Tool

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, Bernhard

    2006-12-01

    Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies

  2. Using Java for distributed computing in the Gaia satellite data processing

    NASA Astrophysics Data System (ADS)

    O'Mullane, William; Luri, Xavier; Parsons, Paul; Lammers, Uwe; Hoar, John; Hernandez, Jose

    2011-10-01

    In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications around 1999 they were the first of their kind in astronomy. Now a great deal of astronomy software is written in Java as are many business applications. We discuss the current environment and trends concerning the language and present an actual example of scientific use of Java for high-performance distributed computing: ESA's mission Gaia. The Gaia scanning satellite will perform a galactic census of about 1,000 million objects in our galaxy. The Gaia community has chosen to write its processing software in Java. We explore the manifold reasons for choosing Java for this large science collaboration. Gaia processing is numerically complex but highly distributable, some parts being embarrassingly parallel. We describe the Gaia processing architecture and its realisation in Java. We delve into the astrometric solution which is the most advanced and most complex part of the processing. The Gaia simulator is also written in Java and is the most mature code in the system. This has been successfully running since about 2005 on the supercomputer "Marenostrum" in Barcelona. We relate experiences of using Java on a large shared machine. Finally we discuss Java, including some of its problems, for scientific computing.

  3. Missed Opportunities for Science Learning: Unacknowledged Unscientific Arguments in Asynchronous Online and Face-to-Face Discussions

    NASA Astrophysics Data System (ADS)

    Callis-Duehl, Kristine; Idsardi, Robert; Humphrey, Eve A.; Gougis, Rebekka Darner

    2018-02-01

    We explored the scientific argumentation that occurs among university biology students during an argumentation task implemented in two environments: face-to-face in a classroom and online in an asynchronous discussion. We observed 10 student groups, each composed of three students. Our analysis focused on how students respond to their peers' unscientific arguments, which we define as assertions, hypotheses, propositions, or explanations that are inaccurate or incomplete from a scientific perspective. Unscientific arguments provide opportunities for productive dissent, scientific argumentation, and conceptual development of scientifically desirable conceptions. We found that students did not respond to the majority of unscientific arguments in both environments. Challenges to unscientific arguments were expressed as a question or through explanation, although the latter was more common online than face-to-face. Students demonstrated significantly more epistemic distancing in the face-to-face environment than the online environment. We discuss the differences in discourse observed in both environments and teaching implications. We also provide direction for future research seeking to address the challenges of engaging students in productive scientific argumentation in both face-to-face and online environments.

  4. An infrastructure for the integration of geoscience instruments and sensors on the Grid

    NASA Astrophysics Data System (ADS)

    Pugliese, R.; Prica, M.; Kourousias, G.; Del Linz, A.; Curri, A.

    2009-04-01

    The Grid, as a computing paradigm, has long been in the attention of both academia and industry[1]. The distributed and expandable nature of its general architecture result to scalability and more efficient utilisation of the computing infrastructures. The scientific community, including that of geosciences, often handles problems with very high requirements in data processing, transferring, and storing[2,3]. This has raised the interest on Grid technologies but these are often viewed solely as an access gateway to HPC. Suitable Grid infrastructures could provide the geoscience community with additional benefits like those of sharing, remote access and control of scientific systems. These systems can be scientific instruments, sensors, robots, cameras and any other device used in geosciences. The solution for practical, general, and feasible Grid-enabling of such devices requires non-intrusive extensions on core parts of the current Grid architecture. We propose an extended version of an architecture[4] that can serve as the solution to the problem. The solution we propose is called Grid Instrument Element (IE) [5]. It is an addition to the existing core Grid parts; the Computing Element (CE) and the Storage Element (SE) that serve the purposes that their name suggests. The IE that we will be referring to, and the related technologies have been developed in the EU project on the Deployment of Remote Instrumentation Infrastructure (DORII1). In DORII, partners of various scientific communities including those of Earthquake, Environmental science, and Experimental science, have adopted the technology of the Instrument Element in order to integrate to the Grid their devices. The Oceanographic and coastal observation and modelling Mediterranean Ocean Observing Network (OGS2), a DORII partner, is in the process of deploying the above mentioned Grid technologies on two types of observational modules: Argo profiling floats and a novel Autonomous Underwater Vehicle (AUV). In this paper i) we define the need for integration of instrumentation in the Grid, ii) we introduce the solution of the Instrument Element, iii) we demonstrate a suitable end-user web portal for accessing Grid resources, iv) we describe from the Grid-technological point of view the process of the integration to the Grid of two advanced environmental monitoring devices. References [1] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska, "Experiences with GRIA—Industrial Applications on a Web Services Grid," e-Science and Grid Computing, First International Conference on e-Science and Grid Computing, 2005, pp. 98-105. [2] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The data grid: Towards an architecture for the distributed management and analysis of large scientific datasets," Journal of Network and Computer Applications, vol. 23, 2000, pp. 187-200. [3] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, "Data management and transfer in high-performance computational grid environments," Parallel Computing, vol. 28, 2002, pp. 749-771. [4] E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S. Orlando, A. Petrucci, S. Squizzato, and S. Traldi, "Instrument Element: A New Grid component that Enables the Control of Remote Instrumentation," Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)-Volume 00, IEEE Computer Society Washington, DC, USA, 2006. [5] R. Ranon, L. De Marco, A. Senerchia, S. Gabrielli, L. Chittaro, R. Pugliese, L. Del Cano, F. Asnicar, and M. Prica, "A Web-based Tool for Collaborative Access to Scientific Instruments in Cyberinfrastructures." 1 The DORII project is supported by the European Commission within the 7th Framework Programme (FP7/2007-2013) under grant agreement no. RI-213110. URL: http://www.dorii.eu 2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. URL: http://www.ogs.trieste.it

  5. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  6. Using Just-in-Time Information to Support Scientific Discovery Learning in a Computer-Based Simulation

    ERIC Educational Resources Information Center

    Hulshof, Casper D.; de Jong, Ton

    2006-01-01

    Students encounter many obstacles during scientific discovery learning with computer-based simulations. It is hypothesized that an effective type of support, that does not interfere with the scientific discovery learning process, should be delivered on a "just-in-time" base. This study explores the effect of facilitating access to…

  7. Virtual Observatory and Distributed Data Mining

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.

    2012-03-01

    New modes of discovery are enabled by the growth of data and computational resources (i.e., cyberinfrastructure) in the sciences. This cyberinfrastructure includes structured databases, virtual observatories (distributed data, as described in Section 20.2.1 of this chapter), high-performance computing (petascale machines), distributed computing (e.g., the Grid, the Cloud, and peer-to-peer networks), intelligent search and discovery tools, and innovative visualization environments. Data streams from experiments, sensors, and simulations are increasingly complex and growing in volume. This is true in most sciences, including astronomy, climate simulations, Earth observing systems, remote sensing data collections, and sensor networks. At the same time, we see an emerging confluence of new technologies and approaches to science, most clearly visible in the growing synergism of the four modes of scientific discovery: sensors-modeling-computing-data (Eastman et al. 2005). This has been driven by numerous developments, including the information explosion, development of large-array sensors, acceleration in high-performance computing (HPC) power, advances in algorithms, and efficient modeling techniques. Among these, the most extreme is the growth in new data. Specifically, the acquisition of data in all scientific disciplines is rapidly accelerating and causing a data glut (Bell et al. 2007). It has been estimated that data volumes double every year—for example, the NCSA (National Center for Supercomputing Applications) reported that their users cumulatively generated one petabyte of data over the first 19 years of NCSA operation, but they then generated their next one petabyte in the next year alone, and the data production has been growing by almost 100% each year after that (Butler 2008). The NCSA example is just one of many demonstrations of the exponential (annual data-doubling) growth in scientific data collections. In general, this putative data-doubling is an inevitable result of several compounding factors: the proliferation of data-generating devices, sensors, projects, and enterprises; the 18-month doubling of the digital capacity of these microprocessor-based sensors and devices (commonly referred to as "Moore’s law"); the move to digital for nearly all forms of information; the increase in human-generated data (both unstructured information on the web and structured data from experiments, models, and simulation); and the ever-expanding capability of higher density media to hold greater volumes of data (i.e., data production expands to fill the available storage space). These factors are consequently producing an exponential data growth rate, which will soon (if not already) become an insurmountable technical challenge even with the great advances in computation and algorithms. This technical challenge is compounded by the ever-increasing geographic dispersion of important data sources—the data collections are not stored uniformly at a single location, or with a single data model, or in uniform formats and modalities (e.g., images, databases, structured and unstructured files, and XML data sets)—the data are in fact large, distributed, heterogeneous, and complex. The greatest scientific research challenge with these massive distributed data collections is consequently extracting all of the rich information and knowledge content contained therein, thus requiring new approaches to scientific research. This emerging data-intensive and data-oriented approach to scientific research is sometimes called discovery informatics or X-informatics (where X can be any science, such as bio, geo, astro, chem, eco, or anything; Agresti 2003; Gray 2003; Borne 2010). This data-oriented approach to science is now recognized by some (e.g., Mahootian and Eastman 2009; Hey et al. 2009) as the fourth paradigm of research, following (historically) experiment/observation, modeling/analysis, and computational science.

  8. Pynamic: the Python Dynamic Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G L; Ahn, D H; de Supinksi, B R

    2007-07-10

    Python is widely used in scientific computing to facilitate application development and to support features such as computational steering. Making full use of some of Python's popular features, which improve programmer productivity, leads to applications that access extremely high numbers of dynamically linked libraries (DLLs). As a result, some important Python-based applications severely stress a system's dynamic linking and loading capabilities and also cause significant difficulties for most development environment tools, such as debuggers. Furthermore, using the Python paradigm for large scale MPI-based applications can create significant file IO and further stress tools and operating systems. In this paper, wemore » present Pynamic, the first benchmark program to support configurable emulation of a wide-range of the DLL usage of Python-based applications for large scale systems. Pynamic has already accurately reproduced system software and tool issues encountered by important large Python-based scientific applications on our supercomputers. Pynamic provided insight for our system software and tool vendors, and our application developers, into the impact of several design decisions. As we describe the Pynamic benchmark, we will highlight some of the issues discovered in our large scale system software and tools using Pynamic.« less

  9. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: Earth System Modeling Software Framework Survey

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.

  10. Conceptual model of iCAL4LA: Proposing the components using comparative analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Siti Zulaiha; Mutalib, Ariffin Abdul

    2016-08-01

    This paper discusses an on-going study that initiates an initial process in determining the common components for a conceptual model of interactive computer-assisted learning that is specifically designed for low achieving children. This group of children needs a specific learning support that can be used as an alternative learning material in their learning environment. In order to develop the conceptual model, this study extracts the common components from 15 strongly justified computer assisted learning studies. A comparative analysis has been conducted to determine the most appropriate components by using a set of specific indication classification to prioritize the applicability. The results of the extraction process reveal 17 common components for consideration. Later, based on scientific justifications, 16 of them were selected as the proposed components for the model.

  11. GROTTO visualization for decision support

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.

    1998-08-01

    In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.

  12. Final Report for DOE Award ER25756

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesselman, Carl

    2014-11-17

    The SciDAC-funded Center for Enabling Distributed Petascale Science (CEDPS) was established to address technical challenges that arise due to the frequent geographic distribution of data producers (in particular, supercomputers and scientific instruments) and data consumers (people and computers) within the DOE laboratory system. Its goal is to produce technical innovations that meet DOE end-user needs for (a) rapid and dependable placement of large quantities of data within a distributed high-performance environment, and (b) the convenient construction of scalable science services that provide for the reliable and high-performance processing of computation and data analysis requests from many remote clients. The Centermore » is also addressing (c) the important problem of troubleshooting these and other related ultra-high-performance distributed activities from the perspective of both performance and functionality« less

  13. MememxGATE: Unearthing Latent Content Features for Improved Search and Relevancy Ranking Across Scientific Literature

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; McGibbney, L. J.; Mattmann, C. A.; Ramirez, P.; Joyce, M.; Whitehall, K. D.

    2015-12-01

    Quantifying scientific relevancy is of increasing importance to NASA and the research community. Scientific relevancy may be defined by mapping the impacts of a particular NASA mission, instrument, and/or retrieved variables to disciplines such as climate predictions, natural hazards detection and mitigation processes, education, and scientific discoveries. Related to relevancy, is the ability to expose data with similar attributes. This in turn depends upon the ability for us to extract latent, implicit document features from scientific data and resources and make them explicit, accessible and useable for search activities amongst others. This paper presents MemexGATE; a server side application, command line interface and computing environment for running large scale metadata extraction, general architecture text engineering, document classification and indexing tasks over document resources such as social media streams, scientific literature archives, legal documentation, etc. This work builds on existing experiences using MemexGATE (funded, developed and validated through the DARPA Memex Progrjam PI Mattmann) for extracting and leveraging latent content features from document resources within the Materials Research domain. We extend the software functionality capability to the domain of scientific literature with emphasis on the expansion of gazetteer lists, named entity rules, natural language construct labeling (e.g. synonym, antonym, hyponym, etc.) efforts to enable extraction of latent content features from data hosted by wide variety of scientific literature vendors (AGU Meeting Abstract Database, Springer, Wiley Online, Elsevier, etc.) hosting earth science literature. Such literature makes both implicit and explicit references to NASA datasets and relationships between such concepts stored across EOSDIS DAAC's hence we envisage that a significant part of this effort will also include development and understanding of relevancy signals which can ultimately be utilized for improved search and relevancy ranking across scientific literature.

  14. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.

  15. New Trends in E-Science: Machine Learning and Knowledge Discovery in Databases

    NASA Astrophysics Data System (ADS)

    Brescia, Massimo

    2012-11-01

    Data mining, or Knowledge Discovery in Databases (KDD), while being the main methodology to extract the scientific information contained in Massive Data Sets (MDS), needs to tackle crucial problems since it has to orchestrate complex challenges posed by transparent access to different computing environments, scalability of algorithms, reusability of resources. To achieve a leap forward for the progress of e-science in the data avalanche era, the community needs to implement an infrastructure capable of performing data access, processing and mining in a distributed but integrated context. The increasing complexity of modern technologies carried out a huge production of data, whose related warehouse management and the need to optimize analysis and mining procedures lead to a change in concept on modern science. Classical data exploration, based on local user own data storage and limited computing infrastructures, is no more efficient in the case of MDS, worldwide spread over inhomogeneous data centres and requiring teraflop processing power. In this context modern experimental and observational science requires a good understanding of computer science, network infrastructures, Data Mining, etc. i.e. of all those techniques which fall into the domain of the so called e-science (recently assessed also by the Fourth Paradigm of Science). Such understanding is almost completely absent in the older generations of scientists and this reflects in the inadequacy of most academic and research programs. A paradigm shift is needed: statistical pattern recognition, object oriented programming, distributed computing, parallel programming need to become an essential part of scientific background. A possible practical solution is to provide the research community with easy-to understand, easy-to-use tools, based on the Web 2.0 technologies and Machine Learning methodology. Tools where almost all the complexity is hidden to the final user, but which are still flexible and able to produce efficient and reliable scientific results. All these considerations will be described in the detail in the chapter. Moreover, examples of modern applications offering to a wide variety of e-science communities a large spectrum of computational facilities to exploit the wealth of available massive data sets and powerful machine learning and statistical algorithms will be also introduced.

  16. A whole-process progressive training mode to foster optoelectronic students' innovative practical ability

    NASA Astrophysics Data System (ADS)

    Zhong, Hairong; Xu, Wei; Hu, Haojun; Duan, Chengfang

    2017-08-01

    This article analyzes the features of fostering optoelectronic students' innovative practical ability based on the knowledge structure of optoelectronic disciplines, which not only reveals the common law of cultivating students' innovative practical ability, but also considers the characteristics of the major: (1) The basic theory is difficult, and the close combination of science and technology is obvious; (2)With the integration of optics, mechanics, electronics and computer, the system technology is comprehensive; (3) It has both leading-edge theory and practical applications, so the benefit of cultivating optoelectronic students is high ; (4) The equipment is precise and the practice is costly. Considering the concept and structural characteristics of innovative and practical ability, and adhering to the idea of running practice through the whole process, we put forward the construction of three-dimensional innovation and practice platform which consists of "Synthetically Teaching Laboratory + Innovation Practice Base + Scientific Research Laboratory + Major Practice Base + Joint Teaching and Training Base", and meanwhile build a whole-process progressive training mode to foster optoelectronic students' innovative practical ability, following the process of "basic experimental skills training - professional experimental skills training - system design - innovative practice - scientific research project training - expanded training - graduation project": (1) To create an in - class practical ability cultivation environment that has distinctive characteristics of the major, with the teaching laboratory as the basic platform; (2) To create an extra-curricular innovation practice activities cultivation environment that is closely linked to the practical application, with the innovation practice base as a platform for improvement; (3) To create an innovation practice training cultivation environment that leads the development of cutting-edge, with the scientific research laboratory as a platform to explore; (4) To create an out-campus expanded training environment of optoelectronic major practice and optoelectronic system teaching and training, with the major practice base as an expansion of the platform; (5) To break students' "pre-job training barriers" between school and work, with graduation design as the comprehensive training and testing link.

  17. An Interdisciplinary Guided Inquiry on Estuarine Transport Using a Computer Model in High School Classrooms

    ERIC Educational Resources Information Center

    Chan, Kit Yu Karen; Yang, Sylvia; Maliska, Max E.; Grunbaum, Daniel

    2012-01-01

    The National Science Education Standards have highlighted the importance of active learning and reflection for contemporary scientific methods in K-12 classrooms, including the use of models. Computer modeling and visualization are tools that researchers employ in their scientific inquiry process, and often computer models are used in…

  18. An Analysis on the Effect of Computer Self-Efficacy over Scientific Research Self-Efficacy and Information Literacy Self-Efficacy

    ERIC Educational Resources Information Center

    Tuncer, Murat

    2013-01-01

    Present research investigates reciprocal relations amidst computer self-efficacy, scientific research and information literacy self-efficacy. Research findings have demonstrated that according to standardized regression coefficients, computer self-efficacy has a positive effect on information literacy self-efficacy. Likewise it has been detected…

  19. The Impact of Three-Dimensional Computational Modeling on Student Understanding of Astronomical Concepts: A Quantitative Analysis

    ERIC Educational Resources Information Center

    Hansen, John; Barnett, Michael; MaKinster, James; Keating, Thomas

    2004-01-01

    The increased availability of computational modeling software has created opportunities for students to engage in scientific inquiry through constructing computer-based models of scientific phenomena. However, despite the growing trend of integrating technology into science curricula, educators need to understand what aspects of these technologies…

  20. Integration and Exposure of Large Scale Computational Resources Across the Earth System Grid Federation (ESGF)

    NASA Astrophysics Data System (ADS)

    Duffy, D.; Maxwell, T. P.; Doutriaux, C.; Williams, D. N.; Chaudhary, A.; Ames, S.

    2015-12-01

    As the size of remote sensing observations and model output data grows, the volume of the data has become overwhelming, even to many scientific experts. As societies are forced to better understand, mitigate, and adapt to climate changes, the combination of Earth observation data and global climate model projects is crucial to not only scientists but to policy makers, downstream applications, and even the public. Scientific progress on understanding climate is critically dependent on the availability of a reliable infrastructure that promotes data access, management, and provenance. The Earth System Grid Federation (ESGF) has created such an environment for the Intergovernmental Panel on Climate Change (IPCC). ESGF provides a federated global cyber infrastructure for data access and management of model outputs generated for the IPCC Assessment Reports (AR). The current generation of the ESGF federated grid allows consumers of the data to find and download data with limited capabilities for server-side processing. Since the amount of data for future AR is expected to grow dramatically, ESGF is working on integrating server-side analytics throughout the federation. The ESGF Compute Working Team (CWT) has created a Web Processing Service (WPS) Application Programming Interface (API) to enable access scalable computational resources. The API is the exposure point to high performance computing resources across the federation. Specifically, the API allows users to execute simple operations, such as maximum, minimum, average, and anomalies, on ESGF data without having to download the data. These operations are executed at the ESGF data node site with access to large amounts of parallel computing capabilities. This presentation will highlight the WPS API, its capabilities, provide implementation details, and discuss future developments.

  1. Chaste: An Open Source C++ Library for Computational Physiology and Biology

    PubMed Central

    Mirams, Gary R.; Arthurs, Christopher J.; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Corrias, Alberto; Davit, Yohan; Dunn, Sara-Jane; Fletcher, Alexander G.; Harvey, Daniel G.; Marsh, Megan E.; Osborne, James M.; Pathmanathan, Pras; Pitt-Francis, Joe; Southern, James; Zemzemi, Nejib; Gavaghan, David J.

    2013-01-01

    Chaste — Cancer, Heart And Soft Tissue Environment — is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to ‘re-invent the wheel’ with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials. PMID:23516352

  2. Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; VanderWijngaart, Rob

    2003-01-01

    The growing gap between sustained and peak performance for scientific applications has become a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor- mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6 achieves high performance on a large fraction of our application suite and in many cases significantly outperforms the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.

  3. Using Computer Simulations for Promoting Model-based Reasoning. Epistemological and Educational Dimensions

    NASA Astrophysics Data System (ADS)

    Develaki, Maria

    2017-11-01

    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.

  4. Interoperability of GADU in using heterogeneous Grid resources for bioinformatics applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulakhe, D.; Rodriguez, A.; Wilde, M.

    2008-03-01

    Bioinformatics tools used for efficient and computationally intensive analysis of genetic sequences require large-scale computational resources to accommodate the growing data. Grid computational resources such as the Open Science Grid and TeraGrid have proved useful for scientific discovery. The genome analysis and database update system (GADU) is a high-throughput computational system developed to automate the steps involved in accessing the Grid resources for running bioinformatics applications. This paper describes the requirements for building an automated scalable system such as GADU that can run jobs on different Grids. The paper describes the resource-independent configuration of GADU using the Pegasus-based virtual datamore » system that makes high-throughput computational tools interoperable on heterogeneous Grid resources. The paper also highlights the features implemented to make GADU a gateway to computationally intensive bioinformatics applications on the Grid. The paper will not go into the details of problems involved or the lessons learned in using individual Grid resources as it has already been published in our paper on genome analysis research environment (GNARE) and will focus primarily on the architecture that makes GADU resource independent and interoperable across heterogeneous Grid resources.« less

  5. Tool for Analysis and Reduction of Scientific Data

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    The Automated Scheduling and Planning Environment (ASPEN) computer program has been updated to version 3.0. ASPEN as a whole (up to version 2.0) has been summarized, and selected aspects of ASPEN have been discussed in several previous NASA Tech Briefs articles. Restated briefly, ASPEN is a modular, reconfigurable, application software framework for solving batch problems that involve reasoning about time, activities, states, and resources. Applications of ASPEN can include planning spacecraft missions, scheduling of personnel, and managing supply chains, inventories, and production lines. ASPEN 3.0 can be customized for a wide range of applications and for a variety of computing environments that include various central processing units and randomaccess memories. Domain-specific reasoning modules (e.g., modules for determining orbits for spacecraft) can easily be plugged into ASPEN 3.0. Improvements over other, similar software that have been incorporated into ASPEN 3.0 include a provision for more expressive time-line values, new parsing capabilities afforded by an ASPEN language based on Extensible Markup Language, improved search capabilities, and improved interfaces to other, utility-type software (notably including MATLAB).

  6. StarLogo TNG

    NASA Astrophysics Data System (ADS)

    Klopfer, Eric; Scheintaub, Hal; Huang, Wendy; Wendel, Daniel

    Computational approaches to science are radically altering the nature of scientific investigatiogn. Yet these computer programs and simulations are sparsely used in science education, and when they are used, they are typically “canned” simulations which are black boxes to students. StarLogo The Next Generation (TNG) was developed to make programming of simulations more accessible for students and teachers. StarLogo TNG builds on the StarLogo tradition of agent-based modeling for students and teachers, with the added features of a graphical programming environment and a three-dimensional (3D) world. The graphical programming environment reduces the learning curve of programming, especially syntax. The 3D graphics make for a more immersive and engaging experience for students, including making it easy to design and program their own video games. Another change to StarLogo TNG is a fundamental restructuring of the virtual machine to make it more transparent. As a result of these changes, classroom use of TNG is expanding to new areas. This chapter is concluded with a description of field tests conducted in middle and high school science classes.

  7. CERN-derived analysis of lunar radiation backgrounds

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Svoboda, Robert

    1993-01-01

    The Moon produces radiation which background-limits scientific experiments there. Early analyses of these backgrounds have either failed to take into consideration the effect of charm in particle physics (because they pre-dated its discovery), or have used branching ratios which are no longer strictly valid (due to new accelerator data). We are presently investigating an analytical program for deriving muon and neutrino spectra generated by the Moon, converting an existing CERN computer program known as GEANT which does the same for the Earth. In so doing, this will (1) determine an accurate prompt neutrino spectrum produced by the lunar surface; (2) determine the lunar subsurface particle flux; (3) determine the consequence of charm production physics upon the lunar background radiation environment; and (4) provide an analytical tool for the NASA astrophysics community with which to begin an assessment of the Moon as a scientific laboratory versus its particle radiation environment. This will be done on a recurring basis with the latest experimental results of the particle data groups at Earth-based high-energy accelerators, in particular with the latest branching ratios for charmed meson decay. This will be accomplished for the first time as a full 3-dimensional simulation.

  8. OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual experiments

    NASA Astrophysics Data System (ADS)

    Rebuffi, Luca; Sanchez del Rio, Manuel

    2017-08-01

    The evolution of the hardware platforms, the modernization of the software tools, the access to the codes of a large number of young people and the popularization of the open source software for scientific applications drove us to design OASYS (ORange SYnchrotron Suite), a completely new graphical environment for modelling X-ray experiments. The implemented software architecture allows to obtain not only an intuitive and very-easy-to-use graphical interface, but also provides high flexibility and rapidity for interactive simulations, making configuration changes to quickly compare multiple beamline configurations. Its purpose is to integrate in a synergetic way the most powerful calculation engines available. OASYS integrates different simulation strategies via the implementation of adequate simulation tools for X-ray Optics (e.g. ray tracing and wave optics packages). It provides a language to make them to communicate by sending and receiving encapsulated data. Python has been chosen as main programming language, because of its universality and popularity in scientific computing. The software Orange, developed at the University of Ljubljana (SLO), is the high level workflow engine that provides the interaction with the user and communication mechanisms.

  9. SEMS: System for Environmental Monitoring and Sustainability

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.

    1998-01-01

    The goal of this project was to establish a computational and data management system, SEMS, building on our existing system and MTPE-related research. We proposed that the new system would help support Washington University's efforts in environmental sustainability through use in: (a) Problem-based environmental curriculum for freshmen and sophomores funded by the Hewlett Foundation that integrates scientific, cultural, and policy perspectives to understand the dynamics of wetland degradation, deforestation, and desertification and that will develop policies for sustainable environments and economies; (b) Higher-level undergraduate and graduate courses focused on monitoring the environment and developing policies that will lead to sustainable environmental and economic conditions; and (c) Interdisciplinary research focused on the dynamics of the Missouri River system and development of policies that lead to sustainable environmental and economic floodplain conditions.

  10. Computational Analysis of a Thermoelectric Generator for Waste-Heat Harvesting in Wearable Systems

    NASA Astrophysics Data System (ADS)

    Kossyvakis, D. N.; Vassiliadis, S. G.; Vossou, C. G.; Mangiorou, E. E.; Potirakis, S. M.; Hristoforou, E. V.

    2016-06-01

    Over recent decades, a constantly growing interest in the field of portable electronic devices has been observed. Recent developments in the scientific areas of integrated circuits and sensing technologies have enabled realization and design of lightweight low-power wearable sensing systems that can be of great use, especially for continuous health monitoring and performance recording applications. However, to facilitate wide penetration of such systems into the market, the issue of ensuring their seamless and reliable power supply still remains a major concern. In this work, the performance of a thermoelectric generator, able to exploit the temperature difference established between the human body and the environment, has been examined computationally using ANSYS 14.0 finite-element modeling (FEM) software, as a means for providing the necessary power to various portable electronic systems. The performance variation imposed due to different thermoelement geometries has been estimated to identify the most appropriate solution for the considered application. Furthermore, different ambient temperature and heat exchange conditions between the cold side of the generator and the environment have been investigated. The computational analysis indicated that power output in the order of 1.8 mW can be obtained by a 100-cm2 system, if specific design criteria can be fulfilled.

  11. The need for scientific software engineering in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Luty, Brock; Rose, Peter W.

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  12. The need for scientific software engineering in the pharmaceutical industry.

    PubMed

    Luty, Brock; Rose, Peter W

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  13. Applying the Scientific Method of Cybersecurity Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tardiff, Mark F.; Bonheyo, George T.; Cort, Katherine A.

    The cyber environment has rapidly evolved from a curiosity to an essential component of the contemporary world. As the cyber environment has expanded and become more complex, so have the nature of adversaries and styles of attacks. Today, cyber incidents are an expected part of life. As a result, cybersecurity research emerged to address adversarial attacks interfering with or preventing normal cyber activities. Historical response to cybersecurity attacks is heavily skewed to tactical responses with an emphasis on rapid recovery. While threat mitigation is important and can be time critical, a knowledge gap exists with respect to developing the sciencemore » of cybersecurity. Such a science will enable the development and testing of theories that lead to understanding the broad sweep of cyber threats and the ability to assess trade-offs in sustaining network missions while mitigating attacks. The Asymmetric Resilient Cybersecurity Initiative at Pacific Northwest National Laboratory is a multi-year, multi-million dollar investment to develop approaches for shifting the advantage to the defender and sustaining the operability of systems under attack. The initiative established a Science Council to focus attention on the research process for cybersecurity. The Council shares science practices, critiques research plans, and aids in documenting and reporting reproducible research results. The Council members represent ecology, economics, statistics, physics, computational chemistry, microbiology and genetics, and geochemistry. This paper reports the initial work of the Science Council to implement the scientific method in cybersecurity research. The second section describes the scientific method. The third section in this paper discusses scientific practices for cybersecurity research. Section four describes initial impacts of applying the science practices to cybersecurity research.« less

  14. Martian Boneyards: Scientific Inquiry in an MMO Game

    ERIC Educational Resources Information Center

    Asbell-Clarke, Jodi; Edwards, Teon; Rowe, Elizabeth; Larsen, Jamie; Sylvan, Elisabeth; Hewitt, Jim

    2012-01-01

    This paper reports on research of a game designed for scientific inquiry in a new and publicly available massively-multiplayer online environment (MMO). Educators and game designers worked together to create a highly immersive environment, a compelling storyline, and research-grounded tools for scientific inquiry within the game. The designers…

  15. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE PAGES

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...

    2015-02-19

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  16. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  17. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  18. Enabling Efficient Climate Science Workflows in High Performance Computing Environments

    NASA Astrophysics Data System (ADS)

    Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.

    2015-12-01

    A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.

  19. RF Wave Simulation Using the MFEM Open Source FEM Package

    NASA Astrophysics Data System (ADS)

    Stillerman, J.; Shiraiwa, S.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Kolev, T.

    2016-10-01

    A new plasma wave simulation environment based on the finite element method is presented. MFEM, a scalable open-source FEM library, is used as the basis for this capability. MFEM allows for assembling an FEM matrix of arbitrarily high order in a parallel computing environment. A 3D frequency domain RF physics layer was implemented using a python wrapper for MFEM and a cold collisional plasma model was ported. This physics layer allows for defining the plasma RF wave simulation model without user knowledge of the FEM weak-form formulation. A graphical user interface is built on πScope, a python-based scientific workbench, such that a user can build a model definition file interactively. Benchmark cases have been ported to this new environment, with results being consistent with those obtained using COMSOL multiphysics, GENRAY, and TORIC/TORLH spectral solvers. This work is a first step in bringing to bear the sophisticated computational tool suite that MFEM provides (e.g., adaptive mesh refinement, solver suite, element types) to the linear plasma-wave interaction problem, and within more complicated integrated workflows, such as coupling with core spectral solver, or incorporating additional physics such as an RF sheath potential model or kinetic effects. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  20. Information Management for a Large Multidisciplinary Project

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Randall, Donald P.; Cronin, Catherine K.

    1992-01-01

    In 1989, NASA's Langley Research Center (LaRC) initiated the High-Speed Airframe Integration Research (HiSAIR) Program to develop and demonstrate an integrated environment for high-speed aircraft design using advanced multidisciplinary analysis and optimization procedures. The major goals of this program were to evolve the interactions among disciplines and promote sharing of information, to provide a timely exchange of information among aeronautical disciplines, and to increase the awareness of the effects each discipline has upon other disciplines. LaRC historically has emphasized the advancement of analysis techniques. HiSAIR was founded to synthesize these advanced methods into a multidisciplinary design process emphasizing information feedback among disciplines and optimization. Crucial to the development of such an environment are the definition of the required data exchanges and the methodology for both recording the information and providing the exchanges in a timely manner. These requirements demand extensive use of data management techniques, graphic visualization, and interactive computing. HiSAIR represents the first attempt at LaRC to promote interdisciplinary information exchange on a large scale using advanced data management methodologies combined with state-of-the-art, scientific visualization techniques on graphics workstations in a distributed computing environment. The subject of this paper is the development of the data management system for HiSAIR.

  1. WWW creates new interactive 3D graphics and collaborative environments for medical research and education.

    PubMed

    Samothrakis, S; Arvanitis, T N; Plataniotis, A; McNeill, M D; Lister, P F

    1997-11-01

    Virtual Reality Modelling Language (VRML) is the start of a new era for medicine and the World Wide Web (WWW). Scientists can use VRML across the Internet to explore new three-dimensional (3D) worlds, share concepts and collaborate together in a virtual environment. VRML enables the generation of virtual environments through the use of geometric, spatial and colour data structures to represent 3D objects and scenes. In medicine, researchers often want to interact with scientific data, which in several instances may also be dynamic (e.g. MRI data). This data is often very large and is difficult to visualise. A 3D graphical representation can make the information contained in such large data sets more understandable and easier to interpret. Fast networks and satellites can reliably transfer large data sets from computer to computer. This has led to the adoption of remote tale-working in many applications including medical applications. Radiology experts, for example, can view and inspect in near real-time a 3D data set acquired from a patient who is in another part of the world. Such technology is destined to improve the quality of life for many people. This paper introduces VRML (including some technical details) and discusses the advantages of VRML in application developing.

  2. Utah Virtual Lab: JAVA interactivity for teaching science and statistics on line.

    PubMed

    Malloy, T E; Jensen, G C

    2001-05-01

    The Utah on-line Virtual Lab is a JAVA program run dynamically off a database. It is embedded in StatCenter (www.psych.utah.edu/learn/statsampler.html), an on-line collection of tools and text for teaching and learning statistics. Instructors author a statistical virtual reality that simulates theories and data in a specific research focus area by defining independent, predictor, and dependent variables and the relations among them. Students work in an on-line virtual environment to discover the principles of this simulated reality: They go to a library, read theoretical overviews and scientific puzzles, and then go to a lab, design a study, collect and analyze data, and write a report. Each student's design and data analysis decisions are computer-graded and recorded in a database; the written research report can be read by the instructor or by other students in peer groups simulating scientific conventions.

  3. 75 FR 65639 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ...: Computational Biology Special Emphasis Panel A. Date: October 29, 2010. Time: 2 p.m. to 3:30 p.m. Agenda: To.... Name of Committee: Center for Scientific Review Special Emphasis Panel; Member Conflict: Computational...

  4. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  5. Scaling to diversity: The DERECHOS distributed infrastructure for analyzing and sharing data

    NASA Astrophysics Data System (ADS)

    Rilee, M. L.; Kuo, K. S.; Clune, T.; Oloso, A.; Brown, P. G.

    2016-12-01

    Integrating Earth Science data from diverse sources such as satellite imagery and simulation output can be expensive and time-consuming, limiting scientific inquiry and the quality of our analyses. Reducing these costs will improve innovation and quality in science. The current Earth Science data infrastructure focuses on downloading data based on requests formed from the search and analysis of associated metadata. And while the data products provided by archives may use the best available data sharing technologies, scientist end-users generally do not have such resources (including staff) available to them. Furthermore, only once an end-user has received the data from multiple diverse sources and has integrated them can the actual analysis and synthesis begin. The cost of getting from idea to where synthesis can start dramatically slows progress. In this presentation we discuss a distributed computational and data storage framework that eliminates much of the aforementioned cost. The SciDB distributed array database is central as it is optimized for scientific computing involving very large arrays, performing better than less specialized frameworks like Spark. Adding spatiotemporal functions to the SciDB creates a powerful platform for analyzing and integrating massive, distributed datasets. SciDB allows Big Earth Data analysis to be performed "in place" without the need for expensive downloads and end-user resources. Spatiotemporal indexing technologies such as the hierarchical triangular mesh enable the compute and storage affinity needed to efficiently perform co-located and conditional analyses minimizing data transfers. These technologies automate the integration of diverse data sources using the framework, a critical step beyond current metadata search and analysis. Instead of downloading data into their idiosyncratic local environments, end-users can generate and share data products integrated from diverse multiple sources using a common shared environment, turning distributed active archive centers (DAACs) from warehouses into distributed active analysis centers.

  6. FDA's Activities Supporting Regulatory Application of "Next Gen" Sequencing Technologies.

    PubMed

    Wilson, Carolyn A; Simonyan, Vahan

    2014-01-01

    Applications of next-generation sequencing (NGS) technologies require availability and access to an information technology (IT) infrastructure and bioinformatics tools for large amounts of data storage and analyses. The U.S. Food and Drug Administration (FDA) anticipates that the use of NGS data to support regulatory submissions will continue to increase as the scientific and clinical communities become more familiar with the technologies and identify more ways to apply these advanced methods to support development and evaluation of new biomedical products. FDA laboratories are conducting research on different NGS platforms and developing the IT infrastructure and bioinformatics tools needed to enable regulatory evaluation of the technologies and the data sponsors will submit. A High-performance Integrated Virtual Environment, or HIVE, has been launched, and development and refinement continues as a collaborative effort between the FDA and George Washington University to provide the tools to support these needs. The use of a highly parallelized environment facilitated by use of distributed cloud storage and computation has resulted in a platform that is both rapid and responsive to changing scientific needs. The FDA plans to further develop in-house capacity in this area, while also supporting engagement by the external community, by sponsoring an open, public workshop to discuss NGS technologies and data formats standardization, and to promote the adoption of interoperability protocols in September 2014. Next-generation sequencing (NGS) technologies are enabling breakthroughs in how the biomedical community is developing and evaluating medical products. One example is the potential application of this method to the detection and identification of microbial contaminants in biologic products. In order for the U.S. Food and Drug Administration (FDA) to be able to evaluate the utility of this technology, we need to have the information technology infrastructure and bioinformatics tools to be able to store and analyze large amounts of data. To address this need, we have developed the High-performance Integrated Virtual Environment, or HIVE. HIVE uses a combination of distributed cloud storage and distributed cloud computations to provide a platform that is both rapid and responsive to support the growing and increasingly diverse scientific and regulatory needs of FDA scientists in their evaluation of NGS in research and ultimately for evaluation of NGS data in regulatory submissions. © PDA, Inc. 2014.

  7. Final Scientific Report: A Scalable Development Environment for Peta-Scale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karbach, Carsten; Frings, Wolfgang

    2013-02-22

    This document is the final scientific report of the project DE-SC000120 (A scalable Development Environment for Peta-Scale Computing). The objective of this project is the extension of the Parallel Tools Platform (PTP) for applying it to peta-scale systems. PTP is an integrated development environment for parallel applications. It comprises code analysis, performance tuning, parallel debugging and system monitoring. The contribution of the Juelich Supercomputing Centre (JSC) aims to provide a scalable solution for system monitoring of supercomputers. This includes the development of a new communication protocol for exchanging status data between the target remote system and the client running PTP.more » The communication has to work for high latency. PTP needs to be implemented robustly and should hide the complexity of the supercomputer's architecture in order to provide a transparent access to various remote systems via a uniform user interface. This simplifies the porting of applications to different systems, because PTP functions as abstraction layer between parallel application developer and compute resources. The common requirement for all PTP components is that they have to interact with the remote supercomputer. E.g. applications are built remotely and performance tools are attached to job submissions and their output data resides on the remote system. Status data has to be collected by evaluating outputs of the remote job scheduler and the parallel debugger needs to control an application executed on the supercomputer. The challenge is to provide this functionality for peta-scale systems in real-time. The client server architecture of the established monitoring application LLview, developed by the JSC, can be applied to PTP's system monitoring. LLview provides a well-arranged overview of the supercomputer's current status. A set of statistics, a list of running and queued jobs as well as a node display mapping running jobs to their compute resources form the user display of LLview. These monitoring features have to be integrated into the development environment. Besides showing the current status PTP's monitoring also needs to allow for submitting and canceling user jobs. Monitoring peta-scale systems especially deals with presenting the large amount of status data in a useful manner. Users require to select arbitrary levels of detail. The monitoring views have to provide a quick overview of the system state, but also need to allow for zooming into specific parts of the system, into which the user is interested in. At present, the major batch systems running on supercomputers are PBS, TORQUE, ALPS and LoadLeveler, which have to be supported by both the monitoring and the job controlling component. Finally, PTP needs to be designed as generic as possible, so that it can be extended for future batch systems.« less

  8. RIACS/USRA

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1993-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing, Advanced Methods for Scientific Computing, High Performance Networks and Technology, and Learning Systems. Parallel compiler techniques, adaptive numerical methods for flows in complicated geometries, and optimization were identified as important problems to investigate for ARC's involvement in the Computational Grand Challenges of the next decade.

  9. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  10. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  11. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    NASA Astrophysics Data System (ADS)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially increasing data volumes at NCI. Traditional HPC and data environments are still made available in a way that flexibly provides the tools, services and supporting software systems on these new petascale infrastructures. But to enable the research to take place at this scale, the data, metadata and software now need to evolve together - creating a new integrated high performance infrastructure. The new infrastructure at NCI currently supports a catalogue of integrated, reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. One of the challenges for NCI has been to support existing techniques and methods, while carefully preparing the underlying infrastructure for the transition needed for the next class of Data-intensive Science. In doing so, a flexible range of techniques and software can be made available for application across the corpus of data collections available, and to provide a new infrastructure for future interdisciplinary research.

  12. Modeling and Intervening across Time in Scientific Inquiry Exploratory Learning Environment

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Phon-Amnuaisuk, Somnuk; Chong, Yen-Kuan

    2008-01-01

    This article aims at discussing how Dynamic Decision Network (DDN) can be employed to tackle the challenges in modeling temporally variable scientific inquiry skills and provision of adaptive pedagogical interventions in INQPRO, a scientific inquiry exploratory learning environment for learning O'level Physics. We begin with an overview of INQPRO…

  13. Interactive Parallel Data Analysis within Data-Centric Cluster Facilities using the IPython Notebook

    NASA Astrophysics Data System (ADS)

    Pascoe, S.; Lansdowne, J.; Iwi, A.; Stephens, A.; Kershaw, P.

    2012-12-01

    The data deluge is making traditional analysis workflows for many researchers obsolete. Support for parallelism within popular tools such as matlab, IDL and NCO is not well developed and rarely used. However parallelism is necessary for processing modern data volumes on a timescale conducive to curiosity-driven analysis. Furthermore, for peta-scale datasets such as the CMIP5 archive, it is no longer practical to bring an entire dataset to a researcher's workstation for analysis, or even to their institutional cluster. Therefore, there is an increasing need to develop new analysis platforms which both enable processing at the point of data storage and which provides parallelism. Such an environment should, where possible, maintain the convenience and familiarity of our current analysis environments to encourage curiosity-driven research. We describe how we are combining the interactive python shell (IPython) with our JASMIN data-cluster infrastructure. IPython has been specifically designed to bridge the gap between the HPC-style parallel workflows and the opportunistic curiosity-driven analysis usually carried out using domain specific languages and scriptable tools. IPython offers a web-based interactive environment, the IPython notebook, and a cluster engine for parallelism all underpinned by the well-respected Python/Scipy scientific programming stack. JASMIN is designed to support the data analysis requirements of the UK and European climate and earth system modeling community. JASMIN, with its sister facility CEMS focusing the earth observation community, has 4.5 PB of fast parallel disk storage alongside over 370 computing cores provide local computation. Through the IPython interface to JASMIN, users can make efficient use of JASMIN's multi-core virtual machines to perform interactive analysis on all cores simultaneously or can configure IPython clusters across multiple VMs. Larger-scale clusters can be provisioned through JASMIN's batch scheduling system. Outputs can be summarised and visualised using the full power of Python's many scientific tools, including Scipy, Matplotlib, Pandas and CDAT. This rich user experience is delivered through the user's web browser; maintaining the interactive feel of a workstation-based environment with the parallel power of a remote data-centric processing facility.

  14. Evolution of the Virtualized HPC Infrastructure of Novosibirsk Scientific Center

    NASA Astrophysics Data System (ADS)

    Adakin, A.; Anisenkov, A.; Belov, S.; Chubarov, D.; Kalyuzhny, V.; Kaplin, V.; Korol, A.; Kuchin, N.; Lomakin, S.; Nikultsev, V.; Skovpen, K.; Sukharev, A.; Zaytsev, A.

    2012-12-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies, and Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG). Since each institute has specific requirements on the architecture of computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for a particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM&MG), and a Grid Computing Facility of BINP. A dedicated optical network with the initial bandwidth of 10 Gb/s connecting these three facilities was built in order to make it possible to share the computing resources among the research communities, thus increasing the efficiency of operating the existing computing facilities and offering a common platform for building the computing infrastructure for future scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technology based on XEN and KVM platforms. This contribution gives a thorough review of the present status and future development prospects for the NSC virtualized computing infrastructure and the experience gained while using it for running production data analysis jobs related to HEP experiments being carried out at BINP, especially the KEDR detector experiment at the VEPP-4M electron-positron collider.

  15. An atom is known by the company it keeps: Content, representation and pedagogy within the epistemic revolution of the complexity sciences

    NASA Astrophysics Data System (ADS)

    Blikstein, Paulo

    The goal of this dissertation is to explore relations between content, representation, and pedagogy, so as to understand the impact of the nascent field of complexity sciences on science, technology, engineering and mathematics (STEM) learning. Wilensky & Papert coined the term "structurations" to express the relationship between knowledge and its representational infrastructure. A change from one representational infrastructure to another they call a "restructuration." The complexity sciences have introduced a novel and powerful structuration: agent-based modeling. In contradistinction to traditional mathematical modeling, which relies on equational descriptions of macroscopic properties of systems, agent-based modeling focuses on a few archetypical micro-behaviors of "agents" to explain emergent macro-behaviors of the agent collective. Specifically, this dissertation is about a series of studies of undergraduate students' learning of materials science, in which two structurations are compared (equational and agent-based), consisting of both design research and empirical evaluation. I have designed MaterialSim, a constructionist suite of computer models, supporting materials and learning activities designed within the approach of agent-based modeling, and over four years conducted an empirical inves3 tigation of an undergraduate materials science course. The dissertation is comprised of three studies: Study 1 - diagnosis . I investigate current representational and pedagogical practices in engineering classrooms. Study 2 - laboratory studies. I investigate the cognition of students engaging in scientific inquiry through programming their own scientific models. Study 3 - classroom implementation. I investigate the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to complexity sciences, as well as the feasibility of the integration of constructionist, agent-based learning environments in engineering classrooms. Data sources include classroom observations, interviews, videotaped sessions of model-building, questionnaires, analysis of computer-generated logfiles, and quantitative and qualitative analysis of artifacts. Results shows that (1) current representational and pedagogical practices in engineering classrooms were not up to the challenge of the complex content being taught, (2) by building their own scientific models, students developed a deeper understanding of core scientific concepts, and learned how to better identify unifying principles and behaviors in materials science, and (3) programming computer models was feasible within a regular engineering classroom.

  16. Scientific American Inventions From Outer Space: Everyday Uses For NASA Technology

    NASA Technical Reports Server (NTRS)

    Baker, David

    2000-01-01

    The purpose of this book is to present some of the inventions highlighted in the yearly publication of the National Aeronautics and Space Administration (NASA) Spinoff. These inventions cover a wide range, some of which include improvements in health, medicine, public safety, energy, environment, resource management, computer technology, automation, construction, transportation, and manufacturing technology. NASA technology has brought forth thousands of commercial products which include athletic shoes, portable x-ray machines, and scratch-resistant sunglasses, guidance systems, lasers, solar power, robotics and prosthetic devices. These products are examples of NASA research innovations which have positively impacted the community.

  17. Creating technical heritage object replicas in a virtual environment

    NASA Astrophysics Data System (ADS)

    Egorova, Olga; Shcherbinin, Dmitry

    2016-03-01

    The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.

  18. CRAY mini manual. Revision D

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.

    1993-01-01

    This document briefly describes the use of the CRAY supercomputers that are an integral part of the Supercomputing Network Subsystem of the Central Scientific Computing Complex at LaRC. Features of the CRAY supercomputers are covered, including: FORTRAN, C, PASCAL, architectures of the CRAY-2 and CRAY Y-MP, the CRAY UNICOS environment, batch job submittal, debugging, performance analysis, parallel processing, utilities unique to CRAY, and documentation. The document is intended for all CRAY users as a ready reference to frequently asked questions and to more detailed information contained in the vendor manuals. It is appropriate for both the novice and the experienced user.

  19. High Performance Distributed Computing in a Supercomputer Environment: Computational Services and Applications Issues

    NASA Technical Reports Server (NTRS)

    Kramer, Williams T. C.; Simon, Horst D.

    1994-01-01

    This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.

  20. MODIS algorithm development and data visualization using ACTS

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.

    1992-01-01

    The study of the Earth as a system will require the merger of scientific and data resources on a much larger scale than has been done in the past. New methods of scientific research, particularly in the development of geographically dispersed, interdisciplinary teams, are necessary if we are to understand the complexity of the Earth system. Even the planned satellite missions themselves, such as the Earth Observing System, will require much more interaction between researchers and engineers if they are to produce scientifically useful data products. A key component in these activities is the development of flexible, high bandwidth data networks that can be used to move large amounts of data as well as allow researchers to communicate in new ways, such as through video. The capabilities of the Advanced Communications Technology Satellite (ACTS) will allow the development of such networks. The Pathfinder global AVHRR data set and the upcoming SeaWiFS Earthprobe mission would serve as a testbed in which to develop the tools to share data and information among geographically distributed researchers. Our goal is to develop a 'Distributed Research Environment' that can be used as a model for scientific collaboration in the EOS era. The challenge is to unite the advances in telecommunications with the parallel advances in computing and networking.

  1. A high-speed linear algebra library with automatic parallelism

    NASA Technical Reports Server (NTRS)

    Boucher, Michael L.

    1994-01-01

    Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.

  2. Creating a Parallel Version of VisIt for Microsoft Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlock, B J; Biagas, K S; Rawson, P L

    2011-12-07

    VisIt is a popular, free interactive parallel visualization and analysis tool for scientific data. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images or movies for presentations. VisIt was designed from the ground up to work on many scales of computers from modest desktops up to massively parallel clusters. VisIt is comprised of a set of cooperating programs. All programs can be run locally or in client/server mode in which some run locally and some run remotely on compute clusters. The VisIt program most able to harness today's computing powermore » is the VisIt compute engine. The compute engine is responsible for reading simulation data from disk, processing it, and sending results or images back to the VisIt viewer program. In a parallel environment, the compute engine runs several processes, coordinating using the Message Passing Interface (MPI) library. Each MPI process reads some subset of the scientific data and filters the data in various ways to create useful visualizations. By using MPI, VisIt has been able to scale well into the thousands of processors on large computers such as dawn and graph at LLNL. The advent of multicore CPU's has made parallelism the 'new' way to achieve increasing performance. With today's computers having at least 2 cores and in many cases up to 8 and beyond, it is more important than ever to deploy parallel software that can use that computing power not only on clusters but also on the desktop. We have created a parallel version of VisIt for Windows that uses Microsoft's MPI implementation (MSMPI) to process data in parallel on the Windows desktop as well as on a Windows HPC cluster running Microsoft Windows Server 2008. Initial desktop parallel support for Windows was deployed in VisIt 2.4.0. Windows HPC cluster support has been completed and will appear in the VisIt 2.5.0 release. We plan to continue supporting parallel VisIt on Windows so our users will be able to take full advantage of their multicore resources.« less

  3. Position Paper: Applying Machine Learning to Software Analysis to Achieve Trusted, Repeatable Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prowell, Stacy J; Symons, Christopher T

    2015-01-01

    Producing trusted results from high-performance codes is essential for policy and has significant economic impact. We propose combining rigorous analytical methods with machine learning techniques to achieve the goal of repeatable, trustworthy scientific computing.

  4. Advanced Scientific Computing Research Exascale Requirements Review. An Office of Science review sponsored by Advanced Scientific Computing Research, September 27-29, 2016, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almgren, Ann; DeMar, Phil; Vetter, Jeffrey

    The widespread use of computing in the American economy would not be possible without a thoughtful, exploratory research and development (R&D) community pushing the performance edge of operating systems, computer languages, and software libraries. These are the tools and building blocks — the hammers, chisels, bricks, and mortar — of the smartphone, the cloud, and the computing services on which we rely. Engineers and scientists need ever-more specialized computing tools to discover new material properties for manufacturing, make energy generation safer and more efficient, and provide insight into the fundamentals of the universe, for example. The research division of themore » U.S. Department of Energy’s (DOE’s) Office of Advanced Scientific Computing and Research (ASCR Research) ensures that these tools and building blocks are being developed and honed to meet the extreme needs of modern science. See also http://exascaleage.org/ascr/ for additional information.« less

  5. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    PubMed Central

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  6. Instrumentino: An Open-Source Software for Scientific Instruments.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C

    2015-01-01

    Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.

  7. Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.

    PubMed

    Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  8. Charon Toolkit for Parallel, Implicit Structured-Grid Computations: Functional Design

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Kutler, Paul (Technical Monitor)

    1997-01-01

    In a previous report the design concepts of Charon were presented. Charon is a toolkit that aids engineers in developing scientific programs for structured-grid applications to be run on MIMD parallel computers. It constitutes an augmentation of the general-purpose MPI-based message-passing layer, and provides the user with a hierarchy of tools for rapid prototyping and validation of parallel programs, and subsequent piecemeal performance tuning. Here we describe the implementation of the domain decomposition tools used for creating data distributions across sets of processors. We also present the hierarchy of parallelization tools that allows smooth translation of legacy code (or a serial design) into a parallel program. Along with the actual tool descriptions, we will present the considerations that led to the particular design choices. Many of these are motivated by the requirement that Charon must be useful within the traditional computational environments of Fortran 77 and C. Only the Fortran 77 syntax will be presented in this report.

  9. A PICKSC Science Gateway for enabling the common plasma physicist to run kinetic software

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Winjum, B. J.; Zonca, A.; Youn, C.; Tsung, F. S.; Mori, W. B.

    2017-10-01

    Computer simulations offer tremendous opportunities for studying plasmas, ranging from simulations for students that illuminate fundamental educational concepts to research-level simulations that advance scientific knowledge. Nevertheless, there is a significant hurdle to using simulation tools. Users must navigate codes and software libraries, determine how to wrangle output into meaningful plots, and oftentimes confront a significant cyberinfrastructure with powerful computational resources. Science gateways offer a Web-based environment to run simulations without needing to learn or manage the underlying software and computing cyberinfrastructure. We discuss our progress on creating a Science Gateway for the Particle-in-Cell and Kinetic Simulation Software Center that enables users to easily run and analyze kinetic simulations with our software. We envision that this technology could benefit a wide range of plasma physicists, both in the use of our simulation tools as well as in its adaptation for running other plasma simulation software. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.

  10. A network-based distributed, media-rich computing and information environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, R.L.

    1995-12-31

    Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to be a prototype National Information Infrastructure development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multi-media technologies, and data-mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and K-12 education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; (3) To define a new way of collaboration between computer science and industrially-relevant research.« less

  11. Quantum Testbeds Stakeholder Workshop (QTSW) Report meeting purpose and agenda.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebner, Gregory A.

    Quantum computing (QC) is a promising early-stage technology with the potential to provide scientific computing capabilities far beyond what is possible with even an Exascale computer in specific problems of relevance to the Office of Science. These include (but are not limited to) materials modeling, molecular dynamics, and quantum chromodynamics. However, commercial QC systems are not yet available and the technical maturity of current QC hardware, software, algorithms, and systems integration is woefully incomplete. Thus, there is a significant opportunity for DOE to define the technology building blocks, and solve the system integration issues to enable a revolutionary tool. Oncemore » realized, QC will have world changing impact on economic competitiveness, the scientific enterprise, and citizen well-being. Prior to this workshop, DOE / Office of Advanced Scientific Computing Research (ASCR) hosted a workshop in 2015 to explore QC scientific applications. The goal of that workshop was to assess the viability of QC technologies to meet the computational requirements in support of DOE’s science and energy mission and to identify the potential impact of these technologies.« less

  12. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE PAGES

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil; ...

    2018-03-22

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  13. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  14. Virtualization of Legacy Instrumentation Control Computers for Improved Reliability, Operational Life, and Management.

    PubMed

    Katz, Jonathan E

    2017-01-01

    Laboratories tend to be amenable environments for long-term reliable operation of scientific measurement equipment. Indeed, it is not uncommon to find equipment 5, 10, or even 20+ years old still being routinely used in labs. Unfortunately, the Achilles heel for many of these devices is the control/data acquisition computer. Often these computers run older operating systems (e.g., Windows XP) and, while they might only use standard network, USB or serial ports, they require proprietary software to be installed. Even if the original installation disks can be found, it is a burdensome process to reinstall and is fraught with "gotchas" that can derail the process-lost license keys, incompatible hardware, forgotten configuration settings, etc. If you have running legacy instrumentation, the computer is the ticking time bomb waiting to put a halt to your operation.In this chapter, I describe how to virtualize your currently running control computer. This virtualized computer "image" is easy to maintain, easy to back up and easy to redeploy. I have used this multiple times in my own lab to greatly improve the robustness of my legacy devices.After completing the steps in this chapter, you will have your original control computer as well as a virtual instance of that computer with all the software installed ready to control your hardware should your original computer ever be decommissioned.

  15. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  16. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE PAGES

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    2016-07-26

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  17. Idle waves in high-performance computing

    NASA Astrophysics Data System (ADS)

    Markidis, Stefano; Vencels, Juris; Peng, Ivy Bo; Akhmetova, Dana; Laure, Erwin; Henri, Pierre

    2015-01-01

    The vast majority of parallel scientific applications distributes computation among processes that are in a busy state when computing and in an idle state when waiting for information from other processes. We identify the propagation of idle waves through processes in scientific applications with a local information exchange between the two processes. Idle waves are nondispersive and have a phase velocity inversely proportional to the average busy time. The physical mechanism enabling the propagation of idle waves is the local synchronization between two processes due to remote data dependency. This study provides a description of the large number of processes in parallel scientific applications as a continuous medium. This work also is a step towards an understanding of how localized idle periods can affect remote processes, leading to the degradation of global performance in parallel scientific applications.

  18. Performance of the engineering analysis and data system 2 common file system

    NASA Technical Reports Server (NTRS)

    Debrunner, Linda S.

    1993-01-01

    The Engineering Analysis and Data System (EADS) was used from April 1986 to July 1993 to support large scale scientific and engineering computation (e.g. computational fluid dynamics) at Marshall Space Flight Center. The need for an updated system resulted in a RFP in June 1991, after which a contract was awarded to Cray Grumman. EADS II was installed in February 1993, and by July 1993 most users were migrated. EADS II is a network of heterogeneous computer systems supporting scientific and engineering applications. The Common File System (CFS) is a key component of this system. The CFS provides a seamless, integrated environment to the users of EADS II including both disk and tape storage. UniTree software is used to implement this hierarchical storage management system. The performance of the CFS suffered during the early months of the production system. Several of the performance problems were traced to software bugs which have been corrected. Other problems were associated with hardware. However, the use of NFS in UniTree UCFM software limits the performance of the system. The performance issues related to the CFS have led to a need to develop a greater understanding of the CFS organization. This paper will first describe the EADS II with emphasis on the CFS. Then, a discussion of mass storage systems will be presented, and methods of measuring the performance of the Common File System will be outlined. Finally, areas for further study will be identified and conclusions will be drawn.

  19. Virtual Exploitation Environment Demonstration for Atmospheric Missions

    NASA Astrophysics Data System (ADS)

    Natali, Stefano; Mantovani, Simone; Hirtl, Marcus; Santillan, Daniel; Triebnig, Gerhard; Fehr, Thorsten; Lopes, Cristiano

    2017-04-01

    The scientific and industrial communities are being confronted with a strong increase of Earth Observation (EO) satellite missions and related data. This is in particular the case for the Atmospheric Sciences communities, with the upcoming Copernicus Sentinel-5 Precursor, Sentinel-4, -5 and -3, and ESA's Earth Explorers scientific satellites ADM-Aeolus and EarthCARE. The challenge is not only to manage the large volume of data generated by each mission / sensor, but to process and analyze the data streams. Creating synergies among the different datasets will be key to exploit the full potential of the available information. As a preparation activity supporting scientific data exploitation for Earth Explorer and Sentinel atmospheric missions, ESA funded the "Technology and Atmospheric Mission Platform" (TAMP) [1] [2] project; a scientific and technological forum (STF) has been set-up involving relevant European entities from different scientific and operational fields to define the platforḿs requirements. Data access, visualization, processing and download services have been developed to satisfy useŕs needs; use cases defined with the STF, such as study of the SO2 emissions for the Holuhraun eruption (2014) by means of two numerical models, two satellite platforms and ground measurements, global Aerosol analyses from long time series of satellite data, and local Aerosol analysis using satellite and LIDAR, have been implemented to ensure acceptance of TAMP by the atmospheric sciences community. The platform pursues the "virtual workspace" concept: all resources (data, processing, visualization, collaboration tools) are provided as "remote services", accessible through a standard web browser, to avoid the download of big data volumes and for allowing utilization of provided infrastructure for computation, analysis and sharing of results. Data access and processing are achieved through standardized protocols (WCS, WPS). As evolution toward a pre-operational environment, the "Virtual Exploitation Environment Demonstration for Atmospheric Missions" (VEEDAM) aims at maintaining, running and evolving the platform, demonstrating e.g. the possibility to perform massive processing over heterogeneous data sources. This work presents the VEEDAM concepts, provides pre-operational examples, stressing on the interoperability achievable exposing standardized data access and processing services (e.g. making accessible data and processing resources from different VREs). [1] TAMP platform landing page http://vtpip.zamg.ac.at/ [2] TAMP introductory video https://www.youtube.com/watch?v=xWiy8h1oXQY

  20. Comparisons of some large scientific computers

    NASA Technical Reports Server (NTRS)

    Credeur, K. R.

    1981-01-01

    In 1975, the National Aeronautics and Space Administration (NASA) began studies to assess the technical and economic feasibility of developing a computer having sustained computational speed of one billion floating point operations per second and a working memory of at least 240 million words. Such a powerful computer would allow computational aerodynamics to play a major role in aeronautical design and advanced fluid dynamics research. Based on favorable results from these studies, NASA proceeded with developmental plans. The computer was named the Numerical Aerodynamic Simulator (NAS). To help insure that the estimated cost, schedule, and technical scope were realistic, a brief study was made of past large scientific computers. Large discrepancies between inception and operation in scope, cost, or schedule were studied so that they could be minimized with NASA's proposed new compter. The main computers studied were the ILLIAC IV, STAR 100, Parallel Element Processor Ensemble (PEPE), and Shuttle Mission Simulator (SMS) computer. Comparison data on memory and speed were also obtained on the IBM 650, 704, 7090, 360-50, 360-67, 360-91, and 370-195; the CDC 6400, 6600, 7600, CYBER 203, and CYBER 205; CRAY 1; and the Advanced Scientific Computer (ASC). A few lessons learned conclude the report.

  1. USSR Report: Cybernetics, Computers and Automation Technology. No. 69.

    DTIC Science & Technology

    1983-05-06

    computers in multiprocessor and multistation design , control and scientific research automation systems. The results of comparing the efficiency of...Podvizhnaya, Scientific Research Institute of Control Computers, Severodonetsk] [Text] The most significant change in the design of the SM-2M compared to...UPRAVLYAYUSHCHIYE SISTEMY I MASHINY, Nov-Dec 82) 95 APPLICATIONS Kiev Automated Control System, Design Features and Prospects for Development (V. A

  2. Parallel algorithm of VLBI software correlator under multiprocessor environment

    NASA Astrophysics Data System (ADS)

    Zheng, Weimin; Zhang, Dong

    2007-11-01

    The correlator is the key signal processing equipment of a Very Lone Baseline Interferometry (VLBI) synthetic aperture telescope. It receives the mass data collected by the VLBI observatories and produces the visibility function of the target, which can be used to spacecraft position, baseline length measurement, synthesis imaging, and other scientific applications. VLBI data correlation is a task of data intensive and computation intensive. This paper presents the algorithms of two parallel software correlators under multiprocessor environments. A near real-time correlator for spacecraft tracking adopts the pipelining and thread-parallel technology, and runs on the SMP (Symmetric Multiple Processor) servers. Another high speed prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm is realized on a small Beowulf cluster platform. Both correlators have the characteristic of flexible structure, scalability, and with 10-station data correlating abilities.

  3. Enabling scientific teamwork

    NASA Astrophysics Data System (ADS)

    Hereld, Mark; Hudson, Randy; Norris, John; Papka, Michael E.; Uram, Thomas

    2009-07-01

    The Computer Supported Collaborative Work research community has identified that the technology used to support distributed teams of researchers, such as email, instant messaging, and conferencing environments, are not enough. Building from a list of areas where it is believed technology can help support distributed teams, we have divided our efforts into support of asynchronous and synchronous activities. This paper will describe two of our recent efforts to improve the productivity of distributed science teams. One effort focused on supporting the management and tracking of milestones and results, with the hope of helping manage information overload. The second effort focused on providing an environment that supports real-time analysis of data. Both of these efforts are seen as add-ons to the existing collaborative infrastructure, developed to enhance the experience of teams working at a distance by removing barriers to effective communication.

  4. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Patrick

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energymore » advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.« less

  5. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.

    2006-01-01

    Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.

  6. Preface: SciDAC 2007

    NASA Astrophysics Data System (ADS)

    Keyes, David E.

    2007-09-01

    It takes a village to perform a petascale computation—domain scientists, applied mathematicians, computer scientists, computer system vendors, program managers, and support staff—and the village was assembled during 24-28 June 2007 in Boston's Westin Copley Place for the third annual Scientific Discovery through Advanced Computing (SciDAC) 2007 Conference. Over 300 registered participants networked around 76 posters, focused on achievements and challenges in 36 plenary talks, and brainstormed in two panels. In addition, with an eye to spreading the vision for simulation at the petascale and to growing the workforce, 115 participants—mostly doctoral students and post-docs complementary to the conferees—were gathered on 29 June 2007 in classrooms of the Massachusetts Institute of Technology for a full day of tutorials on the use of SciDAC software. Eleven SciDAC-sponsored research groups presented their software at an introductory level, in both lecture and hands-on formats that included live runs on a local BlueGene/L. Computation has always been about garnering insight into the behavior of systems too complex to explore satisfactorily by theoretical means alone. Today, however, computation is about much more: scientists and decision makers expect quantitatively reliable predictions from simulations ranging in scale from that of the Earth's climate, down to quarks, and out to colliding black holes. Predictive simulation lies at the heart of policy choices in energy and environment affecting billions of lives and expenditures of trillions of dollars. It is also at the heart of scientific debates on the nature of matter and the origin of the universe. The petascale is barely adequate for such demands and we are barely established at the levels of resolution and throughput that this new scale of computation affords. However, no scientific agenda worldwide is pushing the petascale frontier on all its fronts as vigorously as SciDAC. The breadth of this conference archive reflects the philosophy of the SciDAC program, which was introduced as a collaboration of all of the program offices in the Office of Science of the U.S. Department of Energy (DOE) in Fall 2001 and was renewed for a second period of five years in Fall 2006, with additional support in certain areas from the DOE's National Nuclear Security Administration (NNSA) and the U.S. National Science Foundation (NSF). All of the projects in the SciDAC portfolio were represented at the conference and most are captured in this volume. In addition, the Organizing Committee incorporated into the technical program a number of computational science highlights from outside of SciDAC, and, indeed, from outside of the United States. As implied by the title, scientific discovery is the driving deliverable of the SciDAC program, spanning the full range of the DOE Office of Science: accelerator design, astrophysics, chemistry and materials science, climate science, combustion, life science, nuclear physics, plasma physics, and subsurface physics. As articulated in the eponymous report that launched SciDAC, the computational challenges of these diverse areas are remarkably common. Each is profoundly multiscale in space and time and therefore continues to benefit at any margin from access to the largest and fastest computers available. Optimality of representation and execution requires adaptive, scalable mathematical algorithms in both continuous (geometrically complex domain) and discrete (mesh and graph) aspects. Programmability and performance optimality require software environments that both manage the intricate details of the underlying hardware and abstract them for scientific users. Running effectively on remote specialized hardware requires transparent workflow systems. Comprehending the petascale data sets generated in such simulations requires automated tools for data exploration and visualization. Archiving and sharing access to this data within the inevitably distributed community of leading scientists requires networked collaborative environments. Each of these elements is a research and development project in its own right. SciDAC does not replace theoretical programs oriented towards long-term basic research, but harvests them for contemporary, complementary state-of-the-art computational campaigns. By clustering researchers from applications and enabling technologies into coordinated, mission-driven projects, SciDAC accomplishes two ends with remarkable effectiveness: (1) it enriches the scientific perspective of both applications and enabling communities through mutual interaction and (2) it leverages between applications solutions and effort encapsulated in software. Though SciDAC is unique, its objective of multiscale science at extreme computational scale is shared and approached through different programmatic mechanisms, notably NNSA's ASC program, NSF's Cyberinfrastructure program, and DoD's CREATE program in the U.S., and RIKEN's computational simulation programs in Japan. Representatives of each of these programs were given the podium at SciDAC 2007 and communication occurred that will be valuable towards the ends of complementarity, leverage, and promulgation of best practices. The 2007 conference was graced with additional welcome program announcements. Michael Strayer announced a new program of postdoctoral research fellowships in the enabling technologies. (The computer science post-docs will be named after the late Professor Ken Kennedy, who briefly led the SciDAC project Center for Scalable Application Development Software (CScADS) until his untimely death in February 2007.) IBM announced its petascale BlueGene/P system on June 26. Meanwhile, at ISC07 in Dresden, the semi-annual posting of a revised Top 500 list on June 27 showed several new Top 10 systems accessible to various SciDAC participants. While SciDAC is dominated in 2007 by the classical scientific pursuit of understanding through reduction to components and isolation of causes and effects, simulation at scale is beginning to offer something even more tantalizing: synthesis and integration of multiple interacting phenomena in complex systems. Indeed, the design-oriented elements of SciDAC, such as accelerator and tokamak modeling, area already emphasizing multiphysics coupling, and climate science has been doing so for years in the coupling of models of the ocean, atmosphere, ice, and land. In one of the panels at SciDAC 2007, leaders of a three-stage `progressive workshop' on exascale simulation for energy and environment (E3), considered prospects for whole-system modeling in a variety of scientific areas within the domain of DOE related to energy, environmental, and global security. Computer vendors were invited to comment on the prospects for delivering exascale computing systems in another panel. The daunting nature of this challenge is summarized with the observation that the peak processing power of the entire Top 500 list of June 2007 is only 0.0052 exaflop/s. It takes the combined power of most of the computers on the internet today worldwide to reach 1 exaflop/s or 1018 floating point operations per second. The program of SciDAC 2007 followed a template honed by its predecessor meetings in San Francisco in 2005 and Denver in 2006. The Boston venue permitted outreach to a number of universities in the immediate region and throughout southern New England, including SciDAC campuses of Boston University, Harvard, and MIT, and a dozen others including most of the Ivy League. Altogether 55 universities, 20 laboratories, 14 private companies, 5 agencies, and 4 countries were represented among the conference and tutorial workshop participants. Approximately 47% of the conference participants were from government laboratories, 37% from universities, 9% from federal program offices, and 7% from industry. Keys to the success of SciDAC 2007 were the informal poster receptions, coffee breaks, working breakfasts and lunches, and even the `Right-brain Night' featuring artistic statements, both reverent and irreverent, by computational scientists, inspired by their work. The organizers thank the sponsors for their generosity in attracting participants to these informal occasions with sumptuous snacks and beverages: AMD, Cray, DataDirect, IBM, SGI, SiCortex, and the Institute of Physics. A conference as logistically complex as SciDAC 2007 cannot possibly and should not be executed primarily by the scientists, themselves. It is a great pleasure to acknowledge the many talented staff that contributed to a productive time for all participants and nearperfect adherence to schedule. Chief among them is Betsy Riley, currently detailed from ORNL to the program office in Germantown, with degrees in mathematics and computer science, but a passion for organizing interdisciplinary scientific programs. Betsy staffed the organizing committee during the year of telecon meetings leading up to the conference and masterminded sponsorship, invitations, and the compilation of the proceedings. Assisting her from ORNL in managing the program were Daniel Pack, Angela Beach, and Angela Fincher. Cynthia Latham of ORNL performed admirably in website and graphic design for all aspects of the online and printed materials of the meeting. John Bui, John Smith, and Missy Smith of ORNL ran their customary tight ship with respect to audio-visual execution and capture, assisted by Eric Ecklund and Keith Quinn of the Westin. Pamelia Nixon-Hartje of Ambassador Services was personally invaluable in getting the most out of the hotel and its staff. We thank Jeff Nichols of ORNL for managing the primary subcontract for the meeting. The SciDAC tutorial program was a joint effort of Professor John Negele of MIT, David Skinner, PI of the SciDAC Outreach Center, and the SciDAC 2007 Chair. Sponsorship from the Outreach Center in the form of travel scholarships for students, and of the local area SciDAC university delegation of BU, Harvard, and MIT for food and facilities is gratefully acknowledged. Of course, the archival success of a scientific meeting rests with the willingness of the presenters to make the extra effort to package their field-leading science in a form suitable for interaction with colleagues from other disciplines rather than fellow specialists. This goal, oft-stated in the run up to the meeting, was achieved to an admirable degree, both in the live presentations and in these proceedings. This effort is its own reward, since it leads to enhanced communication and accelerated scientific progress. Our greatest thanks are reserved for Michael Strayer, Associate Director for OASCR and the Director of SciDAC, for envisioning this celebratory meeting three years ago, and sustaining it with his own enthusiasm, in order to provide a highly visible manifestation of the fruits of SciDAC. He and the other Office of Science program managers in attendance and working in Washington, DC to communicate the opportunities afforded by SciDAC deserve the gratitude of a new virtual scientific village created and cemented under the vision of scientific discovery through advanced computing. David E Keyes Fu Foundation Professor of Applied Mathematics

  7. EPA Collaboration with Israel

    EPA Pesticide Factsheets

    The United States and Israel focus on scientific and technical collaboration to protect the environment, by exchanging scientific and technical information, arranging visits of scientific personnel, cooperating in scientific symposia and workshops, etc.

  8. Evolving the Technical Infrastructure of the Planetary Data System for the 21st Century

    NASA Technical Reports Server (NTRS)

    Beebe, Reta F.; Crichton, D.; Hughes, S.; Grayzeck, E.

    2010-01-01

    The Planetary Data System (PDS) was established in 1989 as a distributed system to assure scientific oversight. Initially the PDS followed guidelines recommended by the National Academies Committee on Data Management and Computation (CODMAC, 1982) and placed emphasis on archiving validated datasets. But overtime user demands, supported by increased computing capabilities and communication methods, have placed increasing demands on the PDS. The PDS must add additional services to better enable scientific analysis within distributed environments and to ensure that those services integrate with existing systems and data. To face these challenges the Planetary Data System (PDS) must modernize its architecture and technical implementation. The PDS 2010 project addresses these challenges. As part of this project, the PDS has three fundamental project goals that include: (1) Providing more efficient client delivery of data by data providers to the PDS (2) Enabling a stable, long-term usable planetary science data archive (3) Enabling services for the data consumer to find, access and use the data they require in contemporary data formats. In order to achieve these goals, the PDS 2010 project is upgrading both the technical infrastructure and the data standards to support increased efficiency in data delivery as well as usability of the PDS. Efforts are underway to interface with missions as early as possible and to streamline the preparation and delivery of data to the PDS. Likewise, the PDS is working to define and plan for data services that will help researchers to perform analysis in cost-constrained environments. This presentation will cover the PDS 2010 project including the goals, data standards and technical implementation plans that are underway within the Planetary Data System. It will discuss the plans for moving from the current system, version PDS 3, to version PDS 4.

  9. The Impact of Student Self-Efficacy on Scientific Inquiry Skills: An Exploratory Investigation in "River City," a Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass

    2007-01-01

    This exploratory study investigated data-gathering behaviors exhibited by 100 seventh-grade students as they participated in a scientific inquiry-based curriculum project delivered by a multi-user virtual environment (MUVE). This research examined the relationship between students' self-efficacy on entry into the authentic scientific activity and…

  10. Rethinking the Ethics of Scientific Knowledge: A Case Study of Teaching the Environment in Science Classrooms

    ERIC Educational Resources Information Center

    Kim, Mijung; Roth, Wolff-Michael

    2008-01-01

    In this paper we argue that scientific literacy ought to be rethought in that it involves ethics as its core element. Considering the fact that science education has addressed ethical dilemmas of Science, Technology, Society and Environment (STSE) issues, it is worthwhile to question what the ethics of scientific knowledge mean in terms of their…

  11. The Role of the Learning Environment of the Faculty of Education at Najran University in the Development of Scientific Thinking

    ERIC Educational Resources Information Center

    Alsayed, Ahmad Atteya Ahmad; Nimer, Ameen Mohammad Ameen

    2016-01-01

    This research aimed to identify the role of the learning environment of the faculty of education at Najran University, KSA, in developing the scientific thinking style of its students. This required identification of the extent of respondents choose the scientific, religious or superstitious thinking style in interpretation of life and social…

  12. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.

    2013-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband Platform facilitates the addition of new scientific methods, which are written by earth scientists in a number of languages such as C, C++, Fortran, and Python. The Broadband Platform's modular design also supports the reuse of existing software modules as building blocks to create new scientific methods. Additionally, the Platform implements a wrapper around each scientific module, converting input and output files to and from the specific formats required (or produced) by individual scientific codes. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes the addition of 3 new simulation methods and several new data products, such as map and distance-based goodness of fit plots. Finally, as the number and complexity of scenarios simulated using the Broadband Platform increase, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  13. RAPPORT: running scientific high-performance computing applications on the cloud.

    PubMed

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  14. GANGA: A tool for computational-task management and easy access to Grid resources

    NASA Astrophysics Data System (ADS)

    Mościcki, J. T.; Brochu, F.; Ebke, J.; Egede, U.; Elmsheuser, J.; Harrison, K.; Jones, R. W. L.; Lee, H. C.; Liko, D.; Maier, A.; Muraru, A.; Patrick, G. N.; Pajchel, K.; Reece, W.; Samset, B. H.; Slater, M. W.; Soroko, A.; Tan, C. L.; van der Ster, D. C.; Williams, M.

    2009-11-01

    In this paper, we present the computational task-management tool GANGA, which allows for the specification, submission, bookkeeping and post-processing of computational tasks on a wide set of distributed resources. GANGA has been developed to solve a problem increasingly common in scientific projects, which is that researchers must regularly switch between different processing systems, each with its own command set, to complete their computational tasks. GANGA provides a homogeneous environment for processing data on heterogeneous resources. We give examples from High Energy Physics, demonstrating how an analysis can be developed on a local system and then transparently moved to a Grid system for processing of all available data. GANGA has an API that can be used via an interactive interface, in scripts, or through a GUI. Specific knowledge about types of tasks or computational resources is provided at run-time through a plugin system, making new developments easy to integrate. We give an overview of the GANGA architecture, give examples of current use, and demonstrate how GANGA can be used in many different areas of science. Catalogue identifier: AEEN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL No. of lines in distributed program, including test data, etc.: 224 590 No. of bytes in distributed program, including test data, etc.: 14 365 315 Distribution format: tar.gz Programming language: Python Computer: personal computers, laptops Operating system: Linux/Unix RAM: 1 MB Classification: 6.2, 6.5 Nature of problem: Management of computational tasks for scientific applications on heterogenous distributed systems, including local, batch farms, opportunistic clusters and Grids. Solution method: High-level job management interface, including command line, scripting and GUI components. Restrictions: Access to the distributed resources depends on the installed, 3rd party software such as batch system client or Grid user interface.

  15. Large-scale deep learning for robotically gathered imagery for science

    NASA Astrophysics Data System (ADS)

    Skinner, K.; Johnson-Roberson, M.; Li, J.; Iscar, E.

    2016-12-01

    With the explosion of computing power, the intelligence and capability of mobile robotics has dramatically increased over the last two decades. Today, we can deploy autonomous robots to achieve observations in a variety of environments ripe for scientific exploration. These platforms are capable of gathering a volume of data previously unimaginable. Additionally, optical cameras, driven by mobile phones and consumer photography, have rapidly improved in size, power consumption, and quality making their deployment cheaper and easier. Finally, in parallel we have seen the rise of large-scale machine learning approaches, particularly deep neural networks (DNNs), increasing the quality of the semantic understanding that can be automatically extracted from optical imagery. In concert this enables new science using a combination of machine learning and robotics. This work will discuss the application of new low-cost high-performance computing approaches and the associated software frameworks to enable scientists to rapidly extract useful science data from millions of robotically gathered images. The automated analysis of imagery on this scale opens up new avenues of inquiry unavailable using more traditional manual or semi-automated approaches. We will use a large archive of millions of benthic images gathered with an autonomous underwater vehicle to demonstrate how these tools enable new scientific questions to be posed.

  16. Adventures in supercomputing: Scientific exploration in an era of change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, E.; Helland, B.; Summers, B.

    1997-11-01

    Students deserve the opportunity to explore the world of science surrounding them. Therefore it is important that scientific exploration and investigation be a part of each student`s educational career. The Department of Energy`s Adventures in Superconducting (AiS) takes students beyond mere scientific literacy to a rich embodiment of scientific exploration. AiS provides today`s science and math students with a greater opportunity to investigate science problems, propose solutions, explore different methods of solving the problem, organize their work into a technical paper, and present their results. Students learn at different rates in different ways. Science classes with students having varying learningmore » styles and levels of achievement have always been a challenge for teachers. The AiS {open_quotes}hands-on, minds-on{close_quotes} project-based method of teaching science meets the challenge of this diversity heads on! AiS uses the development of student chosen projects as the means of achieving a lifelong enthusiasm for scientific proficiency. One goal of AiS is to emulate the research that takes place in the everyday environment of scientists. Students work in teams and often collaborate with students nationwide. With the help of mentors from the academic and scientific community, students pose a problem in science, investigate possible solutions, design a mathematical and computational model for the problem, exercise the model to achieve results, and evaluate the implications of the results. The students then have the opportunity to present the project to their peers, teachers, and scientists. Using this inquiry-based technique, students learn more than science skills, they learn to reason and think -- going well beyond the National Science Education Standard. The teacher becomes a resource person actively working together with the students in their quest for scientific knowledge.« less

  17. Use of Emerging Grid Computing Technologies for the Analysis of LIGO Data

    NASA Astrophysics Data System (ADS)

    Koranda, Scott

    2004-03-01

    The LIGO Scientific Collaboration (LSC) today faces the challenge of enabling analysis of terabytes of LIGO data by hundreds of scientists from institutions all around the world. To meet this challenge the LSC is developing tools, infrastructure, applications, and expertise leveraging Grid Computing technologies available today, and making available to LSC scientists compute resources at sites across the United States and Europe. We use digital credentials for strong and secure authentication and authorization to compute resources and data. Building on top of products from the Globus project for high-speed data transfer and information discovery we have created the Lightweight Data Replicator (LDR) to securely and robustly replicate data to resource sites. We have deployed at our computing sites the Virtual Data Toolkit (VDT) Server and Client packages, developed in collaboration with our partners in the GriPhyN and iVDGL projects, providing uniform access to distributed resources for users and their applications. Taken together these Grid Computing technologies and infrastructure have formed the LSC DataGrid--a coherent and uniform environment across two continents for the analysis of gravitational-wave detector data. Much work, however, remains in order to scale current analyses and recent lessons learned need to be integrated into the next generation of Grid middleware.

  18. Activities of the Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  19. National Fusion Collaboratory: Grid Computing for Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2004-05-01

    The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.

  20. Mobile Devices and GPU Parallelism in Ionospheric Data Processing

    NASA Astrophysics Data System (ADS)

    Mascharka, D.; Pankratius, V.

    2015-12-01

    Scientific data acquisition in the field is often constrained by data transfer backchannels to analysis environments. Geoscientists are therefore facing practical bottlenecks with increasing sensor density and variety. Mobile devices, such as smartphones and tablets, offer promising solutions to key problems in scientific data acquisition, pre-processing, and validation by providing advanced capabilities in the field. This is due to affordable network connectivity options and the increasing mobile computational power. This contribution exemplifies a scenario faced by scientists in the field and presents the "Mahali TEC Processing App" developed in the context of the NSF-funded Mahali project. Aimed at atmospheric science and the study of ionospheric Total Electron Content (TEC), this app is able to gather data from various dual-frequency GPS receivers. It demonstrates parsing of full-day RINEX files on mobile devices and on-the-fly computation of vertical TEC values based on satellite ephemeris models that are obtained from NASA. Our experiments show how parallel computing on the mobile device GPU enables fast processing and visualization of up to 2 million datapoints in real-time using OpenGL. GPS receiver bias is estimated through minimum TEC approximations that can be interactively adjusted by scientists in the graphical user interface. Scientists can also perform approximate computations for "quickviews" to reduce CPU processing time and memory consumption. In the final stage of our mobile processing pipeline, scientists can upload data to the cloud for further processing. Acknowledgements: The Mahali project (http://mahali.mit.edu) is funded by the NSF INSPIRE grant no. AGS-1343967 (PI: V. Pankratius). We would like to acknowledge our collaborators at Boston College, Virginia Tech, Johns Hopkins University, Colorado State University, as well as the support of UNAVCO for loans of dual-frequency GPS receivers for use in this project, and Intel for loans of smartphones.

Top